Powered by Deep Web Technologies
Note: This page contains sample records for the topic "x-ray photoelectron spectroscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Backstreaming of a perfluorinated polyether pump oil—an x?ray photoelectron spectroscopy study  

Science Conference Proceedings (OSTI)

The backstreaming of a perfluorinated polyether mechanical pump oil was determined by using x?ray photoelectron spectroscopy to measure oil content on silicon wafer surfaces. Backstreaming test pressures ranged from 0.4 mTorr to 100 mTorr. Backstreaming was identified at most test pressures even though perfluorinated polyether pump oils have low vapor pressures. Overall

Robert Sherman; John Vossen

1990-01-01T23:59:59.000Z

2

Oxidation of stepped Pt(111) studied by x-ray photoelectron spectroscopy and density functional theory  

SciTech Connect

In this comparative density functional theory and x-ray photoelectron spectroscopy study on the interaction of oxygen with stepped Pt(111) surfaces, we show that both the initial adsorption and oxidation occur at the steps rather than terraces. An equivalent behavior was observed for the oxide formation at higher chemical potentials, where, after the formation of a one-dimensional PtO{sub 2}-type oxide at the steps, similar oxide chains form on the (111) terraces, indicating the initial stages of bulk oxide formation.

Bandlow, Jochen; Kaghazchi, Payam; Jacob, Timo [Institut fuer Elektrochemie, Universitaet Ulm, Albert-Einstein-Allee 47, D-89069 Ulm (Germany); Papp, C.; Traenkenschuh, B.; Streber, R.; Lorenz, M. P. A.; Fuhrmann, T.; Steinrueck, H.-P. [Lehrstuhl fuer Physikalische Chemie II, Universitaet Erlangen-Nuernberg, Egerlandstr. 3, D-91058 Erlangen (Germany); Denecke, R. [Wilhelm-Ostwald-Institut fuer Physikalische und Theoretische Chemie, Universitaet Leipzig, Linnestr. 2, D-04103 Leipzig (Germany)

2011-05-01T23:59:59.000Z

3

X-ray photoelectron spectroscopy characterization of the {omega} phase in water quenched Ti-5553 alloy  

SciTech Connect

X-ray photoelectron spectroscopy was used to investigate the {omega} phase in water quenched Ti-5553 alloy with a nominal composition of Ti-5Al-5V-5Mo-3Cr (wt.%), and the {omega} and the {beta} phase were distinguished by deconvoluting the XPS spectra of Al2p, V2p and Cr2p core level regions. In addition, it is found that the binding energy of core level electron of alloying elements shifts comparing with that of pure metals, and the fact was interpreted by charge redistribution model. X-ray photoelectron spectroscopy technique could be used to characterize the nano-scale {omega} phase in {beta} alloys. - Highlights: Black-Right-Pointing-Pointer We characterize the {omega} phase in Ti-5553 alloy by XPS. Black-Right-Pointing-Pointer Binding energy of Al2p, V2p and Cr2p electron are different in the {omega} and {beta} phase. Black-Right-Pointing-Pointer Structural difference leads to the binding energy gap.

Qin, Dongyang, E-mail: qindongyang19831205@126.com [State Key Laboratory for Mechanical Behavior of Materials, Xian Jiaotong University, Xi'an 710049 (China) [State Key Laboratory for Mechanical Behavior of Materials, Xian Jiaotong University, Xi'an 710049 (China); Northwest Institute for Non-ferrous Metal Research, Xi'an 710016 (China); Lu, Yafeng [Northwest Institute for Non-ferrous Metal Research, Xi'an 710016 (China)] [Northwest Institute for Non-ferrous Metal Research, Xi'an 710016 (China); Zhang, Kong; Liu, Qian [The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)] [The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhou, Lian [Northwest Institute for Non-ferrous Metal Research, Xi'an 710016 (China)] [Northwest Institute for Non-ferrous Metal Research, Xi'an 710016 (China)

2012-11-15T23:59:59.000Z

4

Novel Approaches to Soft X-ray Spectroscopy: Scanning TransmissionX-ray Microscopy and Ambient Pressure X-Ray PhotoelectronSpectroscopy  

Science Conference Proceedings (OSTI)

This workshop focused on novel spectroscopies at Beamlines 11.0.2, 5.3.2 and 9.3.2 at the ALS. The workshop brought together users from a wide range of fields to highlight recent experimental and technical developments both in scanning transmission X-ray spectroscopy (STXM) and ambient pressure photoelectron spectroscopy (APPES). The morning session featured talks on experiments involving new developments at the STXM, while the afternoon session was devoted to those using APXPS. In the morning session, Tolek Tyliszczak discussed the improved detector developments at the STXM, such as an avalanche photodiode detector and fluorescence and electron detection, as well as the continued development of in situ cells for heating, gas flow, and electrochemical cells. Of these, only the avalanche photodiode in combination with a novel multichannel photon-counting system is in routine use in time-resolved studies. Bartel Van Waeyenberge (Ghent University) presented results of magnetic imaging with a time resolution of 70-100 ps combined with a lateral resolution of 20-40 nm performed with the STXM (Beamline 11.0.2). As a complement to the time-domain ''pump-and-probe'' measurements, they developed a frequency-domain ''sine-excitation'' technique in order to study specific eigenmodes of these ferromagnetic patterns with high spatial resolution. This new approach was used to study the gyrotropic vortex motions in micron-sized ferromagnetic patterns. Adam Hitchcock (McMaster University) presented the development, in collaboration with Daniel Guay (INRS, Varennes) and Sherry Zhang, of the apparatus and techniques for applying STXM to in-situ studies of electrochemistry, in particular electrochromism in polyaniline. In addition, substantial progress was reported on a joint project to develop substrates and methods for chemically selective lithography of multilayer polymer systems. Selective patterns, such as that displayed in the figure, can now be written efficiently with the bend magnet STXM on Beamline 5.3.2. Yves Acremann (SSRL) discussed time and spatially resolved X-ray magnetic circular dichroism (XMCD) experiments on spin transfer devices at the STXM (Beamline 11.0.2). These elegant experiments explore time resolved measurements of the magnetization dynamics within a 100 x 150 nm sample influenced by a spin-polarized current. This experiment shows that the magnetization in these magnetic nanostructures are not uniform, as they are influenced by the Oersted field of the charge current needed to generate the spin current. The implementation of a novel multichannel photon counting system in combination with an avalanche photon detector decreased the data-acquisition time by a factor of 10, owing to its ability to resolve the structure of multi bunch mode. Gordon E. Brown, Jr. (Stanford University and SSRL) described ''Applications of STXM to Microbial Bioweathering and Biomineralization''. In the interaction of bacteria with ferrihydrite nanoparticles, microenvironments that were very different than the bulk material were observed, showing that bulk thermodynamics may not be useful for predicting micro phases. Gordon also presented work showing that iron nanoparticles are attracted to the negatively charged bacteria and form a coating that reduces iron oxide minerals. The afternoon session started with presentations by Simon Mun and Hendrik Bluhm, who discussed the current status and the future plans for the two APPES end-stations at the ALS, which are located at Beamlines 9.3.2 and 11.0.2, respectively. In both end-stations, samples can be measured in gaseous environments at pressures of up to several Torr, which makes possible the investigation of numerous phenomena, in particular in the fields of atmospheric and environmental science as well as heterogeneous catalysis. Specific examples of the application of APPES were shown in the following presentations. John Hemminger (University of California, Irvine) reported on APPES investigations at Beamlines 9.3.2 and 11.0.2 of the interaction of alkali halide surfaces with water. The m

Bluhm, Hendrik; Gilles, Mary K.; Mun, Simon B.; Tyliszczak, Tolek

2006-02-01T23:59:59.000Z

5

In situ X-ray photoelectron spectroscopy of model catalysts: At the edge of the gap  

E-Print Network (OSTI)

We present a High-Pressure X-ray Photoelectron Spectroscopy (HP-XPS) and first-principles kinetic Monte Carlo study addressing the nature of the active surface in CO oxidation over Pd(100). Simultaneously measuring the chemical composition at the surface and in the near-surface gas-phase, we reveal both O-covered pristine Pd(100) and a surface oxide as stable, highly active phases in the near-ambient regime accessible to HP-XPS. Surprisingly, no adsorbed CO can be detected during high CO2 production rates, which can be explained by a combination of a remarkably short residence time of the CO molecule on the surface and mass-transfer limitations in the present set-up.

Blomberg, S; Gustafson, J; Martin, N M; Fernandes, V R; Borg, A; Liu, Z; Chang, R; Matera, S; Reuter, K; Lundgren, E

2013-01-01T23:59:59.000Z

6

Module to guide the expert use of x-ray photoelectron spectroscopy by corrosion scientists  

SciTech Connect

This contribution, to the potential development of data systems having some degree of 'expert' character for use in x-ray photoelectron spectroscopy (XPS), illustrates the manner in which models of 'Rules' might be developed by the user community. The field of corrosion science is taken as an example of one community of researchers who make regular use of XPS for well defined needs. These 'needs' are redefined as a series of Goals that have to be reached in order to characterize the surface in terms of layer sequences and the enrichment of given elements within them. Rules are written to allow a structured approach to achieve each Goal. A feature of this set of Rules is that they are designed expressly to allow automated interpretation of the survey scan. This approach is facilitated by the use of a recommendation that the survey spectrum be acquired as a series of accumulated scans instead of the usual approach of making a single scan through the spectrum. Repeat scans enable the information extracted by the operation of the Rules to be processed and displayed for information during the period that is normally used for the survey scan. It is intended that this information will inform the setting up of any subsequent high resolution scans and their interactive interpretation. It will also inform any future operations such as ion etching or angle-resolved measurements. In some cases, the information made available may be all that is required by the user and in this case the 'expert module' approach becomes particularly cost effective. The operation of the rules is illustrated throughout by an examination of data obtained for passivated stainless steel, giving a data set of measurements, typical of those made by corrosion scientists, that can be compared with the literature values obtained by more conventional XPS interpretation.

Castle, J. E. [Surface Analysis Laboratory, School of Engineering, Mail Drop H6, University of Surrey, Guildford GU2 7XH (United Kingdom)

2007-01-15T23:59:59.000Z

7

Annealing dependence of diamond-metal Schottky barrier heights probed by hard x-ray photoelectron spectroscopy  

SciTech Connect

Hard x-ray photoelectron spectroscopy was applied to investigate the diamond-metal Schottky barrier heights for several metals and diamond surface terminations. The position of the diamond valence-band maximum was determined by theoretically calculating the diamond density of states and applying cross section corrections. The diamond-platinum Schottky barrier height was lowered by 0.2 eV after thermal annealing, indicating annealing may increase carrier injection in diamond devices leading to photoconductive gain. The platinum contacts on oxygen-terminated diamond was found to provide a higher Schottky barrier and therefore a better blocking contact than that of the silver contact in diamond-based electronic devices.

Gaowei, M.; Muller, E. M. [Department of Materials Science and Engineering, SUNY Stony Brook, Stony Brook, New York 11794 (United States); Rumaiz, A. K. [National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973 (United States); Weiland, C.; Cockayne, E.; Woicik, J. C. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Jordan-Sweet, J. [IBM T.J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Smedley, J. [Instrumentation Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)

2012-05-14T23:59:59.000Z

8

X-ray photoelectron spectroscopy studies on Pd doped SnO{sub 2} liquid petroleum gas sensor  

Science Conference Proceedings (OSTI)

The present investigation deals with the electrical response of palladium doped tin oxide, as a means of improving the selectivity for liquid petroleum gas (LPG) in the presence of CO, CH{sub 4}. The sensor element with the composition of Pd(1.5 wt{percent}) in the base material SnO{sub 2} sintered at 800{degree}C, has shown a high sensitivity towards LPG with a negligible cross interference of CO and CH{sub 4} at an operating temperature of 350{degree}C. This greatly suggests the possibility of utilizing the sensor for the detection of LPG. X-ray photoelectron spectroscopy studies have been carried out to determine the possible chemical species involved in the gas-solid interaction and the enhancing mechanism of the Pd doped SnO{sub 2} sensor element, towards LPG sensitivity. {copyright} {ital 1997 American Institute of Physics.}

Phani, A.R. [Department of Physics, University of LAquila, 67040, LAquila (Italy)

1997-10-01T23:59:59.000Z

9

Energy band alignment of InGaZnO{sub 4}/Si heterojunction determined by x-ray photoelectron spectroscopy  

SciTech Connect

X-ray photoelectron spectroscopy was utilized to determine the valence band offset ({Delta}E{sub V}) of the InGaZnO{sub 4} (IGZO)/Si heterojunction. The IGZO films were grown on Si (100) using radio frequency magnetron sputtering. A value of {Delta}E{sub V} = 2.53 eV was obtained by using In 3d{sub 5/2}, Ga 2p{sub 3/2} core energy levels as references. Taking into consideration the experimental band gap of 3.20 eV of the IGZO, this would result in a conduction band offset {Delta}E{sub C} = 0.45 eV in this heterostructure.

Xie Zhangyi; Lu Hongliang; Xu Saisheng; Geng Yang; Sun Qingqing; Ding Shijin; Zhang, David Wei [State Key Laboratory of ASIC and System, Department of Microelectronics, Fudan University, Shanghai 200433 (China)

2012-12-17T23:59:59.000Z

10

In-situ X-ray photoelectron spectroscopy studies of water on metals and oxides at ambient conditions  

DOE Green Energy (OSTI)

X-ray photoelectron spectroscopy (XPS) is a powerful tool for surface and interface analysis, providing the elemental composition of surfaces and the local chemical environment of adsorbed species. Conventional XPS experiments have been limited to ultrahigh vacuum (UHV) conditions due to a short mean free path of electrons in a gas phase. The recent advances in instrumentation coupled with third-generation synchrotron radiation sources enables in-situ XPS measurements at pressures above 5 Torr. In this review, we describe the basic design of the ambient pressure XPS setup that combines differential pumping with an electrostatic focusing. We present examples of the application of in-situ XPS to studies of water adsorption on the surface of metals and oxides including Cu(110), Cu(111), TiO2(110) under environmental conditions of water vapor pressure. On all these surfaces we observe a general trend where hydroxyl groups form first, followed by molecular water adsorption. The importance of surface OH groups and their hydrogen bonding to water molecules in water adsorption on surfaces is discussed in detail.

Salmeron, Miquel; Yamamoto, S.; Bluhm, H.; Andersson, K.; Ketteler, G.; Ogasawara, H.; Salmeron, M.; Nilsson, A.

2007-10-29T23:59:59.000Z

11

In situ x-ray photoelectron spectroscopy studies of gas/solidinterfaces at near-ambient conditions  

Science Conference Proceedings (OSTI)

X-ray photoelectron spectroscopy (XPS) is a quantitative, chemically specific technique with a probing depth of a few angstroms to a few nanometers. It is therefore ideally suited to investigate the chemical nature of the surfaces of catalysts. Because of the scattering of electrons by gas molecules, XPS is generally performed under vacuum conditions. However, for thermodynamic and/or kinetic reasons, the catalyst's chemical state observed under vacuum reaction conditions is not necessarily the same as that of a catalyst under realistic operating pressures. Therefore, investigations of catalysts should ideally be performed under reaction conditions, i.e., in the presence of a gas or gas mixtures. Using differentially pumped chambers separated by small apertures, XPS can operate at pressures of up to 1 Torr, and with a recently developed differentially pumped lens system, the pressure limit has been raised to about 10 Torr. Here, we describe the technical aspects of high-pressure XPS and discuss recent applications of this technique to oxidation and heterogeneous catalytic reactions on metal surfaces.

Bluhm, Hendrik; Havecker, Michael; Knop-Gericke, Axel; Kiskinova,Maya; Schlogl, Robert; Salmeron, Miquel

2007-12-03T23:59:59.000Z

12

Band alignment of InGaZnO{sub 4}/Si interface by hard x-ray photoelectron spectroscopy  

SciTech Connect

Although amorphous InGaZnO{sub 4} has intensively been studied for a semiconductor channel material of thin-film transistors in next-generation flat-panel displays, its electronic structure parameters have not been reported. In this work, the electron affinities ({chi}) and the ionization potentials (I{sub p}) of crystalline and amorphous InGaZnO{sub 4} (c-IGZO and a-IGZO) were measured using bulk-sensitive hard x-ray photoelectron spectroscopy. First, the {chi} and I{sub p} values of c-IGZO and a-IGZO thin films were estimated by aligning the Zn 2p{sub 3/2} core level energies to a literature value for ZnO, which provided {chi} = 3.90 eV and I{sub p} = 7.58 eV for c-IGZO and 4.31 eV and 7.41 eV for a-IGZO. It was also confirmed that the escape depth of the photoelectrons excited by the photon energy of 5950.2 eV is 3.3 nm for a-IGZO and large enough for directly measuring the interface electronic structure using a-IGZO/c-Si heterojunctions. It provided the valence band offset of {approx}2.3 eV, which agrees well with the above data. The present results substantiate that the a-IGZO/c-Si interface follows well the Schottky-Mott rule.

Lee, Kyeongmi; Kamiya, Toshio [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-1, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Nomura, Kenji [Frontier Research Center, Tokyo Institute of Technology, Mailbox S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Yanagi, Hiroshi [Interdisciplinary Graduate School of Medical and Engineering Material Science and Technology, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510 (Japan); Ikenaga, Eiji; Sugiyama, Takeharu [Japan Synchrotron Radiation Research Institute, SPring-8, Hyogo 679-5198 (Japan); Kobayashi, Keisuke [National Institute for Materials Science, SPring-8, Hyogo 679-5148 (Japan); Hosono, Hideo [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-1, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Frontier Research Center, Tokyo Institute of Technology, Mailbox S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)

2012-08-01T23:59:59.000Z

13

Ultrahigh vacuum sample mount for x-ray photoelectron spectroscopy up to very high temperature (150-1400 K)  

SciTech Connect

Spectroscopic studies are rarely performed at very high temperature, especially when combined with light from a synchrotron source. Demanding conditions of maintaining ultrahigh vacuum (UHV) during heating, together with the typically brief access to beam time at multiuser synchrotron end stations, may contribute to some of the reasons for the difficulty of such experiments. Consequently, a large number of materials with interesting properties and industrial applications at high temperature remain unexplored. The authors describe here a simple portable sample mount assembly that can be easily utilized at a beamline, with potential utility for a variety of spectroscopic measurements requiring elevated temperatures and an UHV environment. In the specific application described here, the authors use a resistive cartridge heater interfaced with a standard manipulator previously designed for cooling by liquid nitrogen with an UHV chamber and a cylindrical mirror analyzer for x-ray photoemission spectroscopy (XPS) [also known as electron spectroscopy for chemical analysis (ESCA)] at the Synchrotron Radiation Center in Stoughton, WI. The heater cartridge required only modest power to reach target temperatures using an open-loop temperature control. Finally, the authors describe the measurements of XPS (ESCA) and total-electron yield x-ray absorption spectroscopy on nanopowders and on single crystals grown by them. They emphasize the simplicity of the setup, which they believe would be of interest to groups performing measurements at large facilities, where access and time are both limited.

Williamsen, Mark S.; Ray, Shishir K.; Zou Ying; Dudek, John A.; Sen, Somaditya; Bissen, Mark; Kretsch, Laura; Palkar, Vaijayanti R.; Onellion, Marshall F.; Guptasarma, Prasenjit [Department of Physics, University of Wisconsin-Milwaukee, 1900 E. Kenwood Blvd., Milwaukee, Wisconsin 53211 (United States); Synchrotron Radiation Center, 3731 Schneider Dr., Stoughton, Wisconsin 53589 (United States); Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076 (India); Department of Physics, University of Wisconsin--Madison, 1150 University Ave., Madison, Wisconsin 53706 (United States); Department of Physics, University of Wisconsin-Milwaukee, 1900 E. Kenwood Blvd., Milwaukee, Wisconsin 53211 (United States)

2011-05-15T23:59:59.000Z

14

X-ray Absorption Spectroscopy  

SciTech Connect

This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

Yano, Junko; Yachandra, Vittal K.

2009-07-09T23:59:59.000Z

15

Measurement of the valence band-offset in a PbSe/ZnO heterojunction by x-ray photoelectron spectroscopy  

SciTech Connect

A heterojunction of PbSe/ZnO has been grown by molecular beam epitaxy. X-ray photoelectron spectroscopy was used to directly measure the valence-band offset (VBO) of the heterojunction. The VBO, {Delta}E{sub V}, was determined as 2.51 {+-} 0.05 eV using the Pb 4p{sup 3/2} and Zn 2p{sup 3/2} core levels as a reference. The conduction-band offset, {Delta}E{sub C}, was, therefore, determined to be 0.59 {+-} 0.05 eV based on the above {Delta}E{sub V} value. This analysis indicates that the PbSe/ZnO heterojunction forms a type I (Straddling Gap) heterostructure.

Li Lin; Qiu Jijun; Weng Binbin; Yuan Zijian; Shi Zhisheng [School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States); Li Xiaomin; Gan Xiaoyan [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Sellers, Ian R. [Deparment of Physics, University of Oklahoma, Norman, Oklahoma 73019 (United States)

2012-12-24T23:59:59.000Z

16

Effects of sulfation level on the desulfation behavior of pre-sulfated Pt BaO/Al2O3 lean NOx trap catalysts: a combined H2 Temperature-Programmed Reaction, in-situ sulfur K-edge X-ray Absorption Near-Edge Spectroscopy, X-ray Photoelectron Spectroscopy, and Time-Resolved X-ray Diffraction Study  

SciTech Connect

Desulfation by hydrogen of pre-sulfated Pt(2wt%) BaO(20wt%)/Al2O3 with various sulfur loading (S/Ba = 0.12, 0.31 and 0.62) were investigated by combining H2 temperature programmed reaction (TPRX), x-ray photoelectron spectroscopy (XPS), in-situ sulfur K-edge x-ray absorption near-edge spectroscopy (XANES), and synchrotron time-resolved x-ray diffraction (TR-XRD) techniques. We find that the amount of H2S desorbed during the desulfation in the H2 TPRX experiments is not proportional to the amount of initial sulfur loading. The results of both in-situ sulfur K-edge XANES and TR-XRD show that at low sulfur loadings, sulfates were transformed to a BaS phase and remained in the catalyst, rather than being removed as H2S. On the other hand, when the deposited sulfur level exceeded a certain threshold (at least S/Ba = 0.31) sulfates were reduced to form H2S, and the relative amount of the residual sulfide species in the catalyst was much less than at low sulfur loading. Unlike samples with high sulfur loading (e.g., S/Ba = 0.62), H2O did not promote the desulfation for the sample with S/Ba of 0.12, implying that the formed BaS species originating from the reduction of sulfates at low sulfur loading are more stable to hydrolysis. The results of this combined spectroscopy investigation provide clear evidence to show that sulfates at low sulfur loadings are less likely to be removed as H2S and have a greater tendency to be transformed to BaS on the material, leading to the conclusion that desulfation behavior of Pt BaO/Al2O3 lean NOx trap catalysts is markedly dependent on the sulfation levels.

Kim, Do Heui; Szanyi, Janos; Kwak, Ja Hun; Wang, Xianqin; Hanson, Jonathan C.; Engelhard, Mark H.; Peden, Charles HF

2009-04-03T23:59:59.000Z

17

X-ray Photoelectron Spectroscopy ofGaP_{1-x}N_x Photocorroded as a Result of Hydrogen Productionthrough Water Electrolysis  

DOE Green Energy (OSTI)

Photoelectrochemical (PEC) cells produce hydrogen gas through the sunlight driven electrolysis of water. By extracting hydrogen and oxygen from water and storing solar energy in the H-H bond, they offer a promising renewable energy technology. Addition of dilute amounts of nitrogen to III-V semiconductors has been shown to dramatically increase the stability of these materials for hydrogen production. In an effort to learn more about the origin of semiconductor photocorrosion in PEC cells, three samples of p-type GaP with varying levels of nitrogen content (0%, 0.2%, 2%) were photocorroded and examined by X-ray Photoelectron Spectroscopy (XPS). GaPN samples were observed to be more efficient during the hydrogen production process than the pure GaP samples. Sample surfaces contained gallium oxides in the form of Ga{sub 2}O{sub 3} and Ga(OH){sub 3} and phosphorus oxide (P{sub 2}O{sub 5}), as well as surface oxides from exposure to air. A significant shift in intensity from bulk to surface peaks dramatic nitrogen segregation to the surface during photoelectrochemical hydrogen production. Further investigations, including using a scanning electron microscope to investigate sample topography and inductively coupled plasma mass spectroscopy (ICP-MS) analysis for solution analyses, are under way to determine the mechanism for these changes.

Mayer, Marie A.; /Illinois U., Urbana /SLAC

2006-09-27T23:59:59.000Z

18

Water adsorption, solvation and deliquescence of alkali halide thin films on SiO2 studied by ambient pressure X-ray photoelectron spectroscopy  

Science Conference Proceedings (OSTI)

The adsorption of water on KBr thin films evaporated onto SiO2 was investigated as a function of relative humidity (RH) by ambient pressure X-ray photoelectron spectroscopy. At 30percent RH adsorbed water reaches a coverage of approximately one monolayer. As the humidity continues to increase, the coverage of water remains constant or increases very slowly until 60percent RH, followed by a rapid increase up to 100percent RH. At low RH a significant number of the Br atoms are lost due to irradiation damage. With increasing humidity solvation increases ion mobility and gives rise to a partial recovery of the Br/K ratio. Above 60percent RH the increase of the Br/K ratio accelerates. Above the deliquescence point (85percent RH), the thickness of the water layer continues to increase and reaches more than three layers near saturation. The enhancement of the Br/K ratio at this stage is roughly a factor 2.3 on a 0.5 nm KBr film, indicating a strong preferential segregation of Br ions to the surface of the thin saline solution on SiO2.

Arima, Kenta; Jiang, Peng; Deng, Xingyi; Bluhm, Henrik; Salmeron, Miquel

2010-03-31T23:59:59.000Z

19

X-ray photoelectron spectroscopy of negative electrodes from high-power lithium-ion cells showing various levels of power fade  

DOE Green Energy (OSTI)

High-power lithium-ion cells for transportation applications are being developed and studied at Argonne National Laboratory. The current generation of cells containing LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}-based cathodes, graphite-based anodes, and LiPF6-based electrolytes show loss of capacity and power during accelerated testing at elevated temperatures. Negative electrode samples harvested from some cells that showed varying degrees of power and capacity fade were examined by X-ray photoelectron spectroscopy (XPS). The samples exhibited a surface film on the graphite, which was thicker on samples from cells that showed higher fade. Furthermore, solvent-based compounds were dominant on samples from low power fade cells, whereas LiPF{sub 6}-based products were dominant on samples from high power fade cells. The effect of sample rinsing and air exposure is discussed. Mechanisms are proposed to explain the formation of compounds suggested by the XPS data.

Herstedt, Marie; Abraham, Daniel P.; Kerr, John B.

2004-02-28T23:59:59.000Z

20

Kinetics of the sulfur oxidation on palladium: A combined in situ x-ray photoelectron spectroscopy and density-functional study  

Science Conference Proceedings (OSTI)

We studied the reaction kinetics of sulfur oxidation on the Pd(100) surface by in situ high resolution x-ray photoelectron spectroscopy and ab initio density functional calculations. Isothermal oxidation experiments were performed between 400 and 500 K for small amounts ({approx}0.02 ML) of preadsorbed sulfur, with oxygen in large excess. The main stable reaction intermediate found on the surface is SO{sub 4}, with SO{sub 2} and SO{sub 3} being only present in minor amounts. Density-functional calculations depict a reaction energy profile, which explains the sequential formation of SO{sub 2}, SO{sub 3}, and eventually SO{sub 4}, also highlighting that the in-plane formation of SO from S and O adatoms is the rate limiting step. From the experiments we determined the activation energy of the rate limiting step to be 85 {+-} 6 kJ mol{sup -1} by Arrhenius analysis, matching the calculated endothermicity of the SO formation.

Gotterbarm, Karin; Hoefert, Oliver; Lorenz, Michael P. A.; Streber, Regine; Papp, Christian [Lehrstuhl fuer Physikalische Chemie II, Universitaet Erlangen-Nuernberg, Egerlandstr. 3, 91058 Erlangen (Germany); Luckas, Nicola; Vines, Francesc [Lehrstuhl fuer Theoretische Chemie, Universitaet Erlangen-Nuernberg, Egerlandstr. 3, 91058 Erlangen (Germany); Steinrueck, Hans-Peter [Lehrstuhl fuer Physikalische Chemie II, Universitaet Erlangen-Nuernberg, Egerlandstr. 3, 91058 Erlangen (Germany); Erlangen Catalysis Resource Center (ECRC), Universitaet Erlangen-Nuernberg, Egerlandstr. 3, 91058 Erlangen (Germany); Interdisciplinary Center for Interface Controlled Processes, Egerlandstr. 3, 91058 Erlangen (Germany); Goerling, Andreas [Lehrstuhl fuer Theoretische Chemie, Universitaet Erlangen-Nuernberg, Egerlandstr. 3, 91058 Erlangen (Germany); Interdisciplinary Center for Interface Controlled Processes, Egerlandstr. 3, 91058 Erlangen (Germany)

2012-03-07T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray photoelectron spectroscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Effects of Sulfation Level on the Desulfation Behavior of Presulfated Pt-BaO/Al2O3 Lean NOx Trap Catalysts: A Combined H2 Temperature-Programmed Reaction, in Situ Sulfur K-Edge X-ray Absorption Near-Edge Spectroscopy, X-ray Photoelectron Spectroscopy, and Time-Resolved X-ray Diffraction Study  

SciTech Connect

Desulfation by hydrogen of presulfated Pt (2 wt %)-BaO(20 wt %)/Al{sub 2}O{sub 3} with various sulfur loading (S/Ba = 0.12, 0.31, and 0.62) were investigated by combining H{sub 2} temperature programmed reaction (TPRX), X-ray photoelectron spectroscopy (XPS), in situ sulfur K-edge X-ray absorption near-edge spectroscopy (XANES), and synchrotron time-resolved X-ray diffraction (TR-XRD) techniques. We find that the amount of H{sub 2}S desorbed during the desulfation in the H{sub 2} TPRX experiments is not proportional to the amount of initial sulfur loading. The results of both in situ sulfur K-edge XANES and TR-XRD show that at low sulfur loadings, sulfates were transformed to a BaS phase and remained in the catalyst rather than being removed as H{sub 2}S. On the other hand, when the deposited sulfur level exceeded a certain threshold (at least S/Ba = 0.31) sulfates were reduced to form H{sub 2}S, and the relative amount of the residual sulfide species in the catalyst was much less than at low sulfur loading. Unlike samples with high sulfur loading (e.g., S/Ba = 0.62), H{sub 2}O did not promote the desulfation for the sample with S/Ba of 0.12, implying that the formed BaS species originating from the reduction of sulfates at low sulfur loading are more stable to hydrolysis. The results of this combined spectroscopy investigation provide clear evidence to show that sulfates at low sulfur loadings are less likely to be removed as H{sub 2}S and have a greater tendency to be transformed to BaS on the material, leading to the conclusion that desulfation behavior of Pt-BaO/Al{sub 2}O{sub 3} lean NO{sub x} trap catalysts is markedly dependent on the sulfation levels.

Kim, D.H.; Hanson, J.; Szanyi, J.; Kwak, J.H.; Wang, X.; Hanson, J.C.; Engelhard, M.; and Peden, C.H.F.

2009-04-30T23:59:59.000Z

22

Validity of automated x-ray photoelectron spectroscopy algorithm to determine the amount of substance and the depth distribution of atoms  

SciTech Connect

The author reports a systematic study of the range of validity of a previously developed algorithm for automated x-ray photoelectron spectroscopy analysis, which takes into account the variation in both peak intensity and the intensity in the background of inelastically scattered electrons. This test was done by first simulating spectra for the Au4d peak with gold atoms distributed in the form of a wide range of nanostructures, which includes overlayers with varying thickness, a 5 A layer of atoms buried at varying depths and a substrate covered with an overlayer of varying thickness. Next, the algorithm was applied to analyze these spectra. The algorithm determines the number of atoms within the outermost 3 {lambda} of the surface. This amount of substance is denoted AOS{sub 3{lambda}} (where {lambda} is the electron inelastic mean free path). In general the determined AOS{sub 3{lambda}} is found to be accurate to within {approx}10-20% depending on the depth distribution of the atoms. The algorithm also determines a characteristic length L, which was found to give unambiguous information on the depth distribution of the atoms for practically all studied cases. A set of rules for this parameter, which relates the value of L to the depths where the atoms are distributed, was tested, and these rules were found to be generally valid with only a few exceptions. The results were found to be rather independent of the spectral energy range (from 20 to 40 eV below the peak energy) used in the analysis.

Tougaard, Sven [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense M DK-5230 (Denmark)

2013-05-15T23:59:59.000Z

23

X-ray photoelectron spectroscopy and structural analysis of amorphous SiO{sub x}N{sub y} films deposited at low temperatures  

Science Conference Proceedings (OSTI)

We establish, using a tetrahedral model, the bonding properties of amorphous silicon oxynitride (a-SiO{sub x}N{sub y}) films deposited at low temperatures (LTs) by electron-cyclotron resonance chemical-vapor deposition (ECRCVD) on several substrates and under various conditions of gas flows and total gas pressure in a dilute mixture of SiH{sub 4}+N{sub 2} in Ar. The atomic percentage of each tetrahedral unit incorporated in the film network is calculated from the deconvolution of the high-resolution x-ray photoelectron spectroscopy (XPS) spectra in the Si 2p{sub 3/2} region and corroborated by the results obtained from both survey scans and the high-resolution XPS spectra in the N 1s region. The Si{sub 3}N{sub 4} phase is the most important one and the only bonding unit which is incorporated in all our LT ECRCVD SiO{sub x}N{sub y} films. The incorporation of all the other component tetrahedrons depends strongly on growth conditions. The threshold values of the N/Si atomic ratio for which intrinsic defects, such as Si-Si bonds, are not incorporated in the network depend on the O/Si ratio incorporated in the films, mainly due to the competition between oxygen and nitrogen atoms in their reaction with silicon dangling bonds. The effect of the total gas pressure on the atomic percentages of the oxidation states present in the LT ECRCVD SiO{sub x}N{sub y} films is qualitatively similar to the effect of the ion bombarding energy or the plasma density. O-N bonds are present only in samples having high amount of oxygen and nitrogen in their networks. For these films, our results show unambiguously the presence of the N-Si{sub 2}O tetrahedron and suggest that N-Si{sub 3-{nu}}O{sub {nu}} tetrahedrons with {nu}{>=}2 are not incorporated in their networks. A correlation is observed between the N-Si{sub 2}O and the Si-O{sub 3}(ON) tetrahedrons whose component peak is localized at (104.0{+-}0.2) eV in the Si 2p{sub 3/2} region of the XPS data, which suggests that both bonding units coexist in these films as some sort of complex bonding configuration.

Cova, P.; Poulin, S.; Masut, R.A. [Departmento de Fisica, Laboratorio de Simulacion de Dispositivos Semiconductores, Universidad de Oriente, Apartado 124, Cumana 6101, Sucre (Venezuela); Regroupement Quebecois sur les Materiaux de Pointe (RQMP) and Departement de Genie Physique, Ecole Polytechnique, C.P. 6079, succ. Centre-ville, Montreal, Quebec H3C 3A7 (Canada)

2005-11-01T23:59:59.000Z

24

Adsorption and decomposition of Ru{sub 3}(CO){sub 9}(CH{sub 3}CN){sub 3} at platinum surfaces: An X-ray photoelectron spectroscopy and Fourier transform-infrared spectroscopy study  

Science Conference Proceedings (OSTI)

The direct methanol fuel cell (DMFC) is an attractive power source for mobile applications due to the high-energy density of methanol, the portability and ease of distribution of liquid rather than gaseous fuel, and elimination of the need for a bulky, power-consuming fuel reformer. There are several factors limiting the power output of polymer electrolyte DMFCs. One of the major factors is the slow kinetics of the methanol electrooxidation reaction on the conventional platinum catalyst material. A CH{sub 3}CN-modified triruthenium carbonyl cluster, Ru{sub 3}(CO){sub 9}(CH{sub 3}CN){sub 3}(I), has been adsorbed on platinum and platinum oxide surfaces from dichloromethane solutions. The modified surface has been characterized by X-ray photoelectron spectroscopy (XPS) and polarized grazing angle Fourier transform-infrared (FT-IR) microscopy. The proposed mechanism for the adsorption of I involves the chemisorption of the metal cluster at the platinum surface by losing the acetonitrile ligand. The original cluster, Ru{sub 3}(CO){sub 12}, could not be adsorbed under the same experimental conditions used for cluster I. The cluster-modified surface was treated with hydrogen for the reduction of the cluster to its metallic state on the Pt surface. This was done at different temperatures. The XPS results show the formation of a complex Ru-RuO{sub 2}-RuO{sub 3}/Pt surface.

Fachini, E.R.; Cabrera, C.R. [Univ. of Puerto Rico, San Juan (Puerto Rico). Dept. of Chemistry

1999-02-02T23:59:59.000Z

25

Core Level Spectroscopies Surface Science and X-Ray Spectroscopy Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Core Level Spectroscopy Creation and Decay of Core Holes Spectroscopic Techniques X-ray Photoelectron (XPS) X-ray Absorption (XAS) X-ray Emission (XES) Auger Electron (AES) Core holes are created by the ionization of a core electron in XPS and by excitation in XAS . The XPS and XAS final states are highly unstable and the core hole decays by non-radiant Auger relaxation (AES) or by radiant x-ray emission processes (XES). XPS and AES probe the unoccupied electronic stru cture, while XAS projects the unoccupied valence states of the system onto a particular atom. A brief description of the each of the different spectroscopies illustrated by schematic pictures of the creation and decay with data measured for N2 adsorbed on Ni(100) can be found by scrolling

26

Electronic structure of delta-doped La:SrTiO{sub 3} layers by hard x-ray photoelectron spectroscopy  

Science Conference Proceedings (OSTI)

We have employed hard x-ray photoemission (HAXPES) to study a delta-doped SrTiO{sub 3} layer that consisted of a 3-nm thickness of La-doped SrTiO{sub 3} with 6% La embedded in a SrTiO{sub 3} film. Results are compared to a thick, uniformily doped La:SrTiO{sub 3} layer. We find no indication of a band offset for the delta-doped layer, but evidence of the presence of Ti{sup 3+} in both the thick sample and the delta-layer, and indications of a density of states increase near the Fermi energy in the delta-doped layer. These results further demonstrate that HAXPES is a powerful tool for the non-destructive investigation of deeply buried doped layers.

Kaiser, A. M. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Peter-Gruenberg-Institut PGI-6, Forschungszentrum Juelich, 52425 Juelich (Germany); Gray, A. X. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Conti, G.; Fadley, C. S. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Jalan, B. [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States); Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minnesota 55455 (United States); Kajdos, A. P.; Stemmer, S. [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States); Gloskovskii, A. [Institut fuer Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universitaet, 55099 Mainz (Germany); Ueda, S.; Yamashita, Y.; Kobayashi, K. [NIMS Beamline Station at SPring-8, National Institute for Materials Science, Hyogo 679-5148 (Japan); Drube, W. [Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg (Germany)

2012-06-25T23:59:59.000Z

27

Epitaxial BaTiO{sub 3}(100) films on Pt(100): A low-energy electron diffraction, scanning tunneling microscopy, and x-ray photoelectron spectroscopy study  

Science Conference Proceedings (OSTI)

The growth of epitaxial ultrathin BaTiO{sub 3} films on a Pt(100) substrate has been studied by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and x-ray photoelectron spectroscopy (XPS). The films have been prepared by radio-frequency-assisted magnetron sputter deposition at room temperature and develop a long-range order upon annealing at 900 K in O{sub 2}. By adjusting the Ar and O{sub 2} partial pressures of the sputter gas, the stoichiometry was tuned to match that of a BaTiO{sub 3}(100) single crystal as determined by XPS. STM reveals the growth of continuous BaTiO{sub 3} films with unit cell high islands on top. With LEED already for monolayer thicknesses, the formation of a BaTiO{sub 3}(100)-(1 x 1) structure has been observed. Films of 2-3 unit cell thickness show a brilliant (1 x 1) LEED pattern for which an extended set of LEED I-V data has been acquired. At temperatures above 1050 K the BaTiO{sub 3} thin film starts to decay by formation of vacancy islands. In addition (4 x 4) and (3 x 3) surface reconstructions develop upon prolonged heating.

Foerster, Stefan; Huth, Michael; Schindler, Karl-Michael; Widdra, Wolf [Institute of Physics, Martin-Luther-Universitaet Halle-Wittenberg, Halle (Germany)

2011-09-14T23:59:59.000Z

28

X-RAY PHOTOELECTRON SPECTROSCOPY OF X RAY ...  

Science Conference Proceedings (OSTI)

... NANOMATERIALS – GRAPHENE AND III-V INTERFACES RM Wallace RM Wallace ... Conclusions 29 Page 30. Graphene at a Crossroads ...

2013-03-29T23:59:59.000Z

29

High-Resolution X-ray Spectroscopy  

Science Conference Proceedings (OSTI)

... In support of these efforts, we also maintain laboratory x-ray sources from 1 keV to 300 keV, energy and intensity calibration facilities, and a vacuum ...

2013-02-26T23:59:59.000Z

30

Photon Sciences | Beamlines | SRX: Submicron Resolution X-ray Spectroscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

SRX: Submicron Resolution X-ray Spectroscopy SRX: Submicron Resolution X-ray Spectroscopy Poster | Fact Sheet | Preliminary Design Report Scientific Scope Scientific communities such as environmental sciences, life sciences, and material sciences have identified the need to develop analytical resources to advance the understanding of complex natural and engineered systems that are heterogeneous on the micron to nanometer scale. These needs for high intensity x-ray nanoprobes resulted in the commitment of the NSLS-II Project to build the Submicron Resolution X-ray (SRX) Spectroscopy beamline showing a unique combination of high spectral resolution over a very broad energy range and very high beam intensity in a sub-micrometer spot. NSLS-II will provide one of the best sources in the world for such an instrument.

31

X-ray photoelectron spectroscopic investigation of nanocrystalline calcium silicate hydrates synthesised by reactive milling  

Science Conference Proceedings (OSTI)

X-ray photoelectron spectroscopy (XPS) has been used to analyse a series of mechanochemically synthesised, nanocrystalline calcium silicate hydrates (C-S-H). The samples, with Ca/Si ratios of 0.2 to 1.5, showed structural features of C-S-H(I). XPS analysis revealed changes in the extent of silicate polymerisation. Si 2p, Ca 2p and O 1s spectra showed that, unlike for the crystalline calcium silicate hydrate phases studied previously, there was no evidence of silicate sheets (Q{sup 3}) at low Ca/Si ratios. Si 2p and O 1s spectra indicated silicate depolymerisation, expressed by decreasing silicate chain length, with increasing C/S. In all spectra, peak narrowing was observed with increasing Ca/Si, indicating increased structural ordering. The rapid changes of the slope of FWHM of Si 2p, {delta} {sub Ca-Si} and {delta} {sub NBO-BO} as function of C/S ratio indicated a possible miscibility gap in the C-S-H-solid solution series between C/S 5/6 and 1. The modified Auger parameter ({alpha}') of nanocrystalline C-S-H decreased with increasing silicate polymerisation, a trend already observed studying crystalline C-S-H. Absolute values of {alpha}' were shifted about - 0.7 eV with respect to crystalline phases of equal C/S ratio, due to reduced crystallinity.

Black, Leon [Forschungszentrum Karlsruhe GmbH, Institut fuer Technische Chemie, Bereich Thermische Abfallbehandlung (ITC-TAB), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany) and Materials and Engineering Research Institute, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB (United Kingdom)]. E-mail: l.black@shu.ac.uk; Garbev, Krassimir [Forschungszentrum Karlsruhe GmbH, Institut fuer Technische Chemie, Bereich Thermische Abfallbehandlung (ITC-TAB), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Beuchle, Guenter [Forschungszentrum Karlsruhe GmbH, Institut fuer Technische Chemie, Bereich Thermische Abfallbehandlung (ITC-TAB), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Stemmermann, Peter [Forschungszentrum Karlsruhe GmbH, Institut fuer Technische Chemie, Bereich Thermische Abfallbehandlung (ITC-TAB), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Schild, Dieter [Forschungszentrum Karlsruhe GmbH, Institut fuer Nukleare Entsorgung (INE), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

2006-06-15T23:59:59.000Z

32

Single atom identification by energy dispersive x-ray spectroscopy  

SciTech Connect

Using aberration-corrected scanning transmission electron microscope and energy dispersive x-ray spectroscopy, single, isolated impurity atoms of silicon and platinum in monolayer and multilayer graphene are identified. Simultaneously acquired electron energy loss spectra confirm the elemental identification. Contamination difficulties are overcome by employing near-UHV sample conditions. Signal intensities agree within a factor of two with standardless estimates.

Lovejoy, T. C.; Dellby, N.; Krivanek, O. L. [Nion, 1102 8th St., Kirkland, Washington 98033 (United States); Ramasse, Q. M. [SuperSTEM Laboratory, STFC Daresbury, Keckwick Lane, Daresbury WA4 4AD (United Kingdom); Falke, M.; Kaeppel, A.; Terborg, R. [Bruker Nano GmbH, Schwarzschildstr. 12, 12489 Berlin (Germany); Zan, R. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom)

2012-04-09T23:59:59.000Z

33

Proton induced quasi-monochromatic x-ray beams for soft x-ray spectroscopy studies and selective x-ray fluorescence analysis  

Science Conference Proceedings (OSTI)

We present the analytical features and performance of an x-ray spectroscopy end station of moderate energy resolution operating with proton-induced quasi-monochromatic x-ray beams. The apparatus was designed, installed and operated at the 5.5 MV Tandem VdG Accelerator Laboratory of the Institute of Nuclear Physics, N.C.S.R. 'Demokritos,' Athens. The setup includes a two-level ultrahigh vacuum chamber that hosts in the lower level up to six primary targets in a rotatable holder; there, the irradiation of pure element materials-used as primary targets-with few-MeV high current ({approx}{mu}A) proton beams produces intense quasi-monochromatic x-ray beams of selectable energy. In the chamber's upper level, a six-position rotatable sample holder hosts the targets considered for x-ray spectroscopy studies. The proton-induced x-ray beam, after proper collimation, is guided to the sample position whereas various filters can be also inserted along the beam's path to eliminate the backscattered protons or/and to absorb selectively components of the x-ray beam. The apparatus incorporates an ultrathin window Si(Li) spectrometer (FWHM 136 eV at 5.89 keV) coupled with low-noise electronics capable of efficiently detecting photons down to carbon K{alpha}. Exemplary soft x-ray spectroscopy studies and results of selective x-ray fluorescence analysis are presented.

Sokaras, D. [Institute of Nuclear Physics, N.C.S.R. Demokritos, Aghia Paraskevi, 15310 Athens (Greece); Zarkadas, Ch. [PANalytical B.V., 7600 AA Almelo (Netherlands); Fliegauf, R.; Beckhoff, B. [Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, 10587 Berlin (Germany); Karydas, A. G. [Institute of Nuclear Physics, N.C.S.R. Demokritos, Aghia Paraskevi, 15310 Athens (Greece); Nuclear Spectrometry and Applications Laboratory, IAEA Laboratories, A-2444 Seibersdorf (Austria)

2012-12-15T23:59:59.000Z

34

Photoelectron Spectroscopy of U Oxide at LLNL  

Science Conference Proceedings (OSTI)

In our laboratory at LLNL, an effort is underway to investigate the underlying complexity of 5f electronic structure with spin-resolved photoelectron spectroscopy using chiral photonic excitation, i.e. Fano Spectroscopy. Our previous Fano measurements with Ce indicate the efficacy of this approach and theoretical calculations and spectral simulations suggest that Fano Spectroscopy may resolve the controversy concerning Pu electronic structure and electron correlation. To this end, we have constructed and commissioned a new Fano Spectrometer, testing it with the relativistic 5d system Pt. Here, our preliminary photoelectron spectra of the UO{sub 2} system are presented. X-ray photoelectron spectroscopy has been used to characterize a sample of UO{sub 2} grown on an underlying substrate of Uranium. Both AlK{alpha} (1487 eV) and MgK{alpha} (1254 eV) emission were utilized as the excitation. Using XPS and comparing to reference spectra, it has been shown that our sample is clearly UO{sub 2}.

Tobin, J G; Yu, S; Chung, B W; Waddill, G D

2010-03-02T23:59:59.000Z

35

X-ray spectroscopy of neutron star low-mass X-ray binaries  

E-Print Network (OSTI)

In this thesis, I present work spanning a variety of topics relating to neutron star lowmass X-ray binaries (LMXBs) and utilize spectral information from X-ray observations to further our understanding of these sources. ...

Krauss, Miriam Ilana

2007-01-01T23:59:59.000Z

36

Photoelectron spectroscopy of negative ions  

Science Conference Proceedings (OSTI)

Ultraviolet photoelectron spectroscopy of negative ions was used to probe the anionic and neutral states of the halogen monoxides, halogen dioxides, halocarbenes, and fluorovinylidene species. Ions, created in a flowing afterglow source, were mass selected and photodetached by continuous monochromatic laser radiation, and the kinetic energy of the photodetached electrons were determined. The photoelectron spectra provide electronic and vibrational structure. Photoelectron spectra of the halogen monoxides yielded adiabatic electron affinities, neutral and anion frequencies, and spin-orbit splittings. Franck-Condon analyses provided the change in bond length between the neutral and anion species. Neutral heats of formation and dissociation energies were combined with electron affinities to determine anion heats of formation and dissociation energies. Adiabatic electron affinities, neutral vibrational frequencies and anion vibrational frequencies were determined from photoelectron spectra of OClO[sup [minus

Gilles, M.K.

1993-01-01T23:59:59.000Z

37

Simulated X-Ray Absorption Spectroscopy on the Water Dimer  

DOE Green Energy (OSTI)

The ability of an individual H{sub 2}O molecule to form multiple hydrogen bonds with neighboring molecules makes it an ideal substance for the study of hydrogen bonding. X-ray absorption spectroscopy (XAS) can be used to study what intermolecular structures the hydrogen-bonded water molecules form. XAS excites core electrons from the oxygen 1 s atomic orbital to an unoccupied orbital. The resulting absorption spectrum shows the energy levels of the unoccupied orbitals, which in turn is dependent on the intermolecular structure of the H{sub 2}O system. Previous studies using molecular dynamics computer simulations have concluded that the intermolecular structure of liquid water is a distorted tetrahedron. Yet x-ray absorption spectra show discrepancies between liquid water and ice Ih, which is already known to have a rigid tetrahedral structure. The research group, which is based in the University of Sweden in Stockholm and the Stanford Synchrotron Radiation Laboratory at the Stanford Linear Accelerator Center, has studied the possible presence of broken hydrogen bonds in the liquid water intermolecular structure to explain these deviations. Computer simulations are used to construct theoretical absorption spectra for models of liquid water including broken hydrogen bonds. Creating such models requires controlling variables. The simplest method of isolating individual variables, such as hydrogen bond length and angles, is to study the water dimer. Here, the water dimer is used to study how the absorption spectra change with the way the water molecules are positioned and oriented relative to each other.

Wung, A

2004-02-05T23:59:59.000Z

38

Spectroscopic differentiation between O-atom vacancy and divacancy defects, respectively, in TiO2 and HfO2 by X-ray absorption spectroscopy  

Science Conference Proceedings (OSTI)

Defect state features have been detected in second derivative O K edge spectra for thin films of nano-crystalline TiO"2 and HfO"2. Based on soft X-ray photoelectron band edge spectra, and the occurrence of occupied band edge 4f states in Gd(Sc,Ti)O"3, ... Keywords: Bound resonance states, Divacancies, Immobile and mobile vacancies, Monovacancies, Pre-edge regime, X-ray absorption spectroscopy

G. Lucovsky; K. -B. Chung; J. -W. Kim; D. Norlund

2009-07-01T23:59:59.000Z

39

Ultrafast X-ray and 2-dimensional UV Spectroscopy of TiO2 ...  

Science Conference Proceedings (OSTI)

Presentation Title, Ultrafast X-ray and 2-dimensional UV Spectroscopy of TiO2 Nanoparticles. Author(s), Majed Chergui. On-Site Speaker (Planned), Majed ...

40

Observation and simulation of hard x ray photoelectron diffraction to determine polarity of polycrystalline zinc oxide films with rotation domains  

SciTech Connect

X ray photoelectron diffraction (XPD) patterns of polar zinc oxide (ZnO) surfaces were investigated experimentally using hard x rays and monochromatized Cr K{alpha} radiation and theoretically using a cluster model approach and a dynamical Bloch wave approach. We focused on photoelectrons emitted from the Zn 2p{sub 3/2} and O 1s orbitals in the analysis. The obtained XPD patterns for the (0001) and (0001) surfaces of a ZnO single crystal were distinct for a given emitter and polarity. Polarity determination of c-axis-textured polycrystalline ZnO thin films was also achieved with the concept of XPD, even though the in-plane orientation of the columnar ZnO grains was random.

Williams, Jesse R.; Adachi, Yutaka; Ohashi, Naoki [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); NIMS Saint-Gobain Research Center of Excellence for Advanced Materials, NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Pis, Igor [Synchrotron X-ray Station at SPring-8, NIMS, SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, Prague 8 18000 (Czech Republic); Kobata, Masaaki [Synchrotron X-ray Station at SPring-8, NIMS, SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Winkelmann, Aimo [Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Saale) (Germany); Matsushita, Tomohiro [Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Kobayashi, Keisuke [Synchrotron X-ray Station at SPring-8, NIMS, SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046 (Japan)

2012-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray photoelectron spectroscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Probing buried layers by photoelectron spectromicroscopy with hard x-ray excitation  

SciTech Connect

We report about a proof-of-principle experiment which explores the perspectives of performing hard x-ray photoemission spectromicroscopy with high lateral resolution. Our results obtained with an energy-filtered photoemission microscope at the PETRA III storage ring facility using hard x-ray excitation up to 6.5 keV photon energy demonstrate that it is possible to obtain selected-area x-ray photoemission spectra from regions less than 500 nm in diameter.

Wiemann, C.; Patt, M.; Cramm, S. [Peter Gruenberg Institute (PGI-6) and JARA-FIT, Research Centre Juelich, D-52425 Juelich (Germany); Escher, M.; Merkel, M. [FOCUS GmbH, D-65510 Huenstetten (Germany); Gloskovskii, A. [Institut fuer Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universitaet Mainz, D-55128 Mainz (Germany); Thiess, S.; Drube, W. [DESY Photon Science, Deutsches Elektronen-Synchrotron, D-22603 Hamburg (Germany); Schneider, C. M. [Peter Gruenberg Institute (PGI-6) and JARA-FIT, Research Centre Juelich, D-52425 Juelich (Germany); Fakultaet f. Physik and Center for Nanointegration Duisburg-Essen (CENIDE), Universitaet Duisburg-Essen, D-47048 Duisburg (Germany)

2012-05-28T23:59:59.000Z

42

Ambient-Pressure X-ray Photoelectron Spectroscopy  

E-Print Network (OSTI)

and Lars-Åke Näslund (both SSRL) who presented recent dataa dedicated APXPS endstation at SSRL. The second day of the

Bluhm, Hendrik

2008-01-01T23:59:59.000Z

43

Electrochemical in-situ reaction cell for X-ray scattering, diffraction and spectroscopy  

DOE Green Energy (OSTI)

An electrochemical in-situ reaction cell for hard X-ray experiments with battery electrodes is described. Applications include the small angle scattering, diffraction, and near-edge spectroscopy of lithium manganese oxide electrodes.

Braun, Artur; Granlund, Eric; Cairns, Elton J.

2003-01-27T23:59:59.000Z

44

High?resolution x?ray microscopy using an undulator source, photoelectron studies with MAXIMUM  

Science Conference Proceedings (OSTI)

We present the first results of high?spatial resolution x?ray imaging studies with an upgraded version of the scanning photoemission multiple application x?ray imaging undulator microscope. The microscope is a multilayercoated Schwarzschild objective that focuses undulator radiation onto the sample. The recent upgrade improved the spatial resolution by a factor six reaching a full width at half maximum value of 0.5 ?m. Highly polished mirrors reduced the diffuse background by almost two orders of magnitude and drastically improved the contrast. The improved microscope was used to perform a series of tests on microgrids and reverse Fresnel zone plates. The microscope capability to detect chemical and topological contrast was verified by using patterned metal overlayers on Si and GaAs substrates. Further improvements to increase the flux and the spatial resolution are underway; this includes the installation of a new undulator beamline.

C. Capasso; A. K. Ray?Chaudhuri; W. Ng; S. Liang; R. K. Cole; J. Wallace; F. Cerrina; G. Margaritondo; J. H. Underwood; J. B. Kortright; R. C. C. Perera

1991-01-01T23:59:59.000Z

45

Advanced experimental applications for x-ray transmission gratings spectroscopy using a novel grating fabrication method  

Science Conference Proceedings (OSTI)

A novel fabrication method for soft x-ray transmission grating and other optical elements is presented. The method uses focused-ion-beam technology to fabricate high-quality free standing grating bars on transmission electron microscopy grids. High quality transmission gratings are obtained with superb accuracy and versatility. Using these gratings and back-illuminated CCD camera, absolutely calibrated x-ray spectra can be acquired for soft x-ray source diagnostics in the 100-3000 eV spectral range. Double grating combinations of identical or different parameters are easily fabricated, allowing advanced one-shot application of transmission grating spectroscopy. These applications include spectroscopy with different spectral resolutions, bandwidths, dynamic ranges, and may serve for identification of high-order contribution, and spectral calibrations of various x-ray optical elements.

Hurvitz, G.; Ehrlich, Y.; Shpilman, Z.; Levy, I.; Fraenkel, M. [Plasma Physics Department, Applied Physics Division, Soreq NRC, Yavne (Israel); Strum, G. [Solid State Department, Applied Physics Division, Soreq NRC, Yavne (Israel)

2012-08-15T23:59:59.000Z

46

X-ray Spectroscopy for Quality Control of Chemotherapy Drugs  

Science Conference Proceedings (OSTI)

We develop a method, employing Compton peak standardization and the use of matrix-matched spiked samples with Total Reflection X-ray Fluorescence (TXRF), for the determination of platinum plasma concentrations of patients undergoing chemotherapy with Pt-bearing drugs. Direct blood plasma analysis attains Pt detection limits of 70 ng/ml. Measurement results of prescribed drug doses are compared to achieved blood Pt concentrations indicating a lack of expected correlations. Direct analysis of Pt-containing infused drugs from a variety of suppliers indicates cases of abnormal concentrations which raises quality control issues. We demonstrate the potential usefulness of the method for pharmacokinetic studies or for routine optimization and quality control of Pt chemotherapy treatments.

Greaves, E. D.; Barros, H.; Bermudez, J.; Sajo-Bohus, L. [Universidad Simon Bolivar, Apartado 89000, Caracas 1080A (Venezuela); Angeli-Greaves, M. [Universidad Central de Venezuela, Apartado 90373 Caracas 1083A (Venezuela)

2007-10-26T23:59:59.000Z

47

X-Ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin X-Ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin Films Title X-Ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin Films Publication Type Journal Article LBNL Report Number LBNL-50574 Year of Publication 2002 Authors Richardson, Thomas J., Baker Farangis, Jonathan L. Slack, Ponnusamy Nachimuthu, Rupert C. C. Perera, Nobumichi Tamura, and Michael D. Rubin Journal Journal of Alloys and Compounds Volume 356-357 Start Page 204 Pagination 204-207 Date Published 08/2003 Keywords A. hydrogen storage materials, NEXAFS, thin film s; C. EXAFS, x-ray diffraction Abstract Mixed metal thin films containing magnesium and a first-row transition element exhibit very large changes in both reflectance and transmittance on exposure to hydrogen gas. Changes in electronic structure and coordination of the magnesium and transition metal atoms during hydrogen absorption were studied using dynamic in situ transmission mode X-ray absorption spectroscopy. Mg K-edge and Ni, Co, and Ti L-edge spectra reflect both reversible and irreversible changes in the metal environments. A significant shift in the nickel L absorption edge shows it to be an active participant in hydride formation. The effect on cobalt and titanium is much less dramatic, suggesting that these metals act primarily as catalysts for formation of magnesium hydride.

48

Ultrafast conversions between hydrogen bonded structures in liquid water observed by femtosecond x-ray spectroscopy  

DOE Green Energy (OSTI)

We present the first femtosecond soft x-ray spectroscopy in liquids, enabling the observation of changes in hydrogen bond structures in water via core-hole excitation. The oxygen K-edge of vibrationally excited water is probed with femtosecond soft x-ray pulses, exploiting the relation between different water structures and distinct x-ray spectral features. After excitation of the intramolecular OH stretching vibration, characteristic x-ray absorption changes monitor the conversion of strongly hydrogen-bonded water structures to more disordered structures with weaker hydrogen-bonding described by a single subpicosecond time constant. The latter describes the thermalization time of vibrational excitations and defines the characteristic maximum rate with which nonequilibrium populations of more strongly hydrogen-bonded water structures convert to less-bonded ones. On short time scales, the relaxation of vibrational excitations leads to a transient high-pressure state and a transient absorption spectrum different from that of statically heated water.

Wen, Haidan; Huse, Nils; Schoenlein, Robert W.; Lindenberg, Aaron M.

2010-05-01T23:59:59.000Z

49

Ultra-soft x-ray absorption spectroscopy: A bulk and surface probe of materials  

SciTech Connect

Direct comparisons between surface and bulk of diverse materials can be made by simultaneous electron yield (5 nm depth sensitivity) and fluorescence yield (200 nm) ultra soft x-ray absorption spectroscopy measurements utilizing a rapid sample interchange apparatus. For example the orientations of functional groups have been characterized at and near the surface of a series of model polymeric materials highlighting the chemical and molecular sensitivity of ultra soft x-ray absorption spectroscopy. In addition we discuss a bulk sensitive use of fluorescence yield to non destructively study a buried metal polymer interface. A second bulk sensitive example is the use of fluorescence yield oxygen K near edge x-ray spectroscopy as a method to determine the hole state density of high Tc materials.

Fischer, D.A. [National Institute of Standards and Technology, Gaithersburg, MD (United States); Mitchell, G.E.; Dekoven, B.M. [Dow Chemical Co., Midland, MI (United States); Yeh, A.T.; Gland, J.L. [Michigan Univ., Ann Arbor, MI (United States); Moodenbaugh, A.R. [Brookhaven National Lab., Upton, NY (United States)

1993-06-01T23:59:59.000Z

50

Ultra-soft x-ray absorption spectroscopy: A bulk and surface probe of materials  

SciTech Connect

Direct comparisons between surface and bulk of diverse materials can be made by simultaneous electron yield (5 nm depth sensitivity) and fluorescence yield (200 nm) ultra soft x-ray absorption spectroscopy measurements utilizing a rapid sample interchange apparatus. For example the orientations of functional groups have been characterized at and near the surface of a series of model polymeric materials highlighting the chemical and molecular sensitivity of ultra soft x-ray absorption spectroscopy. In addition we discuss a bulk sensitive use of fluorescence yield to non destructively study a buried metal polymer interface. A second bulk sensitive example is the use of fluorescence yield oxygen K near edge x-ray spectroscopy as a method to determine the hole state density of high Tc materials.

Fischer, D.A. (National Institute of Standards and Technology, Gaithersburg, MD (United States)); Mitchell, G.E.; Dekoven, B.M. (Dow Chemical Co., Midland, MI (United States)); Yeh, A.T.; Gland, J.L. (Michigan Univ., Ann Arbor, MI (United States)); Moodenbaugh, A.R. (Brookhaven National Lab., Upton, NY (United States))

1993-01-01T23:59:59.000Z

51

Mode-Locked Multichromatic X-Rays in a Seeded Free-Electron Laser for Single-Shot X-Ray Spectroscopy  

SciTech Connect

We present the promise of generating gigawatt mode-locked multichromatic x rays in a seeded free-electron laser (FEL). We show that, by using a laser to imprint periodic modulation in electron beam phase space, a single-frequency coherent seed can be amplified and further translated to a mode-locked multichromatic output in an FEL. With this configuration the FEL output consists of a train of mode-locked ultrashort pulses which span a wide frequency gap with a series of equally spaced sharp lines. These gigawatt multichromatic x rays may potentially allow one to explore the structure and dynamics of a large number of atomic states simultaneously. The feasibility of generating mode-locked x rays ranging from carbon K edge ({approx}284 eV) to copper L{sub 3} edge ({approx}931 eV) is confirmed with numerical simulation using the realistic parameters of the linac coherent light source (LCLS) and LCLS-II. We anticipate that the mode-locked multichromatic x rays in FELs may open up new opportunities in x-ray spectroscopy (i.e. resonant inelastic x-ray scattering, time-resolved scattering and spectroscopy, etc.).

Xiang, Dao; Ding, Yuantao; Raubenheimer, Tor; Wu, Juhao; /SLAC

2012-05-10T23:59:59.000Z

52

SSRL School on Synchrotron X-ray Spectroscopy Techniques in Environmental  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home Agenda Location Visitor Information Transportation Tourism & Dining SSRL School on Synchrotron X-ray Spectroscopy Techniques in Environmental and Materials Sciences: Theory and Application June 2-5, 2009 Group photo of the attendees at the SSRL School on X-ray Spectropscopy Techniques in Environmental and Materials Sciences: Theory and Application held June 2-5, 2009 at the Stanford Synchrotron Radiation Lightsource. » View photos from XAS 2009 Overview: Modern synchrotron radiation based X-ray absorption spectroscopy (SR-XAS) techniques offer the ability to probe local molecular scale physical and electronic structures that govern key properties of technological and environmental materials and molecular complexes. The high collimation, intensity, and tunability of SR allow the investigation of a wide range of materials, including thin films and interfaces, nanoparticles, amorphous materials, solutions, hydrated and disordered bacteriogenic minerals, soils, interfaces, and dissolved species.

53

Microscale X-ray Absorption Spectroscopy on the GSECARS Sector 13 at the APS  

E-Print Network (OSTI)

GeoSoilEnviroCARS (GSECARS) is a national user facility for frontier research in the earth sciences using synchrotrons radiation at the Advanced Photon Source, Argonne National Laboratory. GSECARS provides earth scientists with access to the high-brilliance hard x-rays from this third-generation synchrotrons light source. The research conducted at this facility will advance our knowledge of the composition, structure and properties of earth materials, the processes they control and the processes that produce them. All principal synchrotron-based analytical techniques in demand by earth scientists are being brought to bear on earth science problems: (1) high-pressure/high-temperature crystallography and spectroscopy using the diamond anvil cell; (2) high-pressure/high-temperature crystallography using the large-volume press; (3) powder, single crystal and interface diffraction; (4) x-ray absorption fine structure (XAFS) spectroscopy; (5) x-ray fluorescence microprobe analysis and microspectroscopy; and (6) mic...

Stephen-Sutto

2000-01-01T23:59:59.000Z

54

Multidimensional X-Ray Spectroscopy of Valence and Core Excitations in Cysteine  

E-Print Network (OSTI)

Several nonlinear spectroscopy experiments which employ broadband x-ray pulses to probe the coupling between localized core and delocalized valence excitation are simulated for the amino acid cysteine at the K-edges of oxygen and nitrogen and the K and L-edges of sulfur. We focus on two dimensional (2D) and 3D signals generated by two- and three-pulse stimulated x-ray Raman spectroscopy (SXRS) with frequency-dispersed probe. We show how the four-pulse x-ray signals $\\boldsymbol{k}_\\mathrm{I}=-\\boldsymbol{k}_1+\\boldsymbol{k}_2+\\boldsymbol{k}_3$ and $\\boldsymbol{k}_\\mathrm{II}=\\boldsymbol{k}_1-\\boldsymbol{k}_2+\\boldsymbol{k}_3$ can give new 3D insight into the SXRS signals. The coupling between valence- and core-excited states can be visualized in three dimensional plots, revealing the origin of the polarizability that controls the simpler pump-probe SXRS signals.

Jason D. Biggs; Yu Zhang; Daniel Healion; Shaul Mukamel

2013-03-19T23:59:59.000Z

55

Photoelectron spectroscopy of supersonic molecular beams  

DOE Green Energy (OSTI)

A new technique for performing high resolution molecular photoelectron spectroscopy is described, beginning with its conceptual development, through the construction of a prototypal apparatus, to the initial applications on a particularly favorable molecular system. The distinguishing features of this technique are: (1) the introduction of the sample in the form of a collimated supersonic molecular beam; and (2) the use of an electrostatic deflection energy analyzer which is carefully optimized in terms of sensitivity and resolution. This combination makes it possible to obtain photoelectron spectra at a new level of detail for many small molecules. Three experiments are described which rely on the capability to perform rotationally-resolved photoelectron spectroscopy on the hydrogen molecule and its isotopes. The first is a measurement of the ionic vibrational and rotational spectroscopic constants and the vibrationally-selected photoionization cross sections. The second is a determination of the photoelectron asymmetry parameter, ..beta.., for selected rotational transitions. The third is an investigation of the rotational relaxation in a free jet expansion, using photoelectron spectroscopy as a probe of the rotational state population distributions. In the closing chapter an assessment is made of the successes and limitations of the technique, and an indication is given of areas for further improvement in future spectrometers.

Pollard, J.E.

1982-05-01T23:59:59.000Z

56

Spectroscopy of transient neutral species via negative ion photoelectron spectroscopy  

SciTech Connect

Negative ion photoelectron spectroscopy has been used to study two types of transient neutral species: bound free radicals (NO{sub 2} and NO{sub 3}) and unstable neutral species ((IHI) and (FH{sub 2})). The negative ion time-of-flight photoelectron spectrometer used for these experiments is described in detail.

Weaver, A.

1991-12-01T23:59:59.000Z

57

Spectroscopy of transient neutral species via negative ion photoelectron spectroscopy  

Science Conference Proceedings (OSTI)

Negative ion photoelectron spectroscopy has been used to study two types of transient neutral species: bound free radicals (NO{sub 2} and NO{sub 3}) and unstable neutral species ([IHI] and [FH{sub 2}]). The negative ion time-of-flight photoelectron spectrometer used for these experiments is described in detail.

Weaver, A.

1991-12-01T23:59:59.000Z

58

An energy dispersive x-ray absorption spectroscopy beamline, X6A, at NSLS  

Science Conference Proceedings (OSTI)

An energy dispersive x-ray absorption spectroscopy instrument has been built at the X6A beam port of the x-ray ring at the National Synchrotron Light Source (NSLS). This instrument allows the collection of extended x-ray-absorption fine structure and/or x-ray absorption near-edge structure spectra for many elements on the millisecond time scale. The beamline employs a four-point crystal bender and a rectangular Si 220 crystal to access incident energies between 6.5 and 21 keV. Because the polychromator focuses the synchrotron beam to a narrow 100-[mu]m line, this experimental apparatus is ideal for x-ray absorption spectroscopy experiments in special environments such as at high pressures, for [ital in] [ital situ] experiments, and/or for very small samples. In this manuscript we will describe the instrument design and present data with which to evaluate the instrument. This beamline is available through the NSLS user proposal system.

Lee, P.L.; Beno, M.A.; Jennings, G.; Ramanathan, M.; Knapp, G.S.; Huang, K. (Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)); Bai, J. (Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States) Department of Physics, Brooklyn College of CUNY, Brooklyn, New York 11210 (United States)); Montano, P.A. (Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States) Department of Physics, University of Illinois, Chicago, Chicago, Illinois 60680 (United States))

1994-01-01T23:59:59.000Z

59

High-Resolution Structure of the Photosynthetic Mn4Ca Catalyst from X-ray Spectroscopy  

Science Conference Proceedings (OSTI)

The application of high-resolution X-ray spectroscopy methods to study the photosynthetic water oxidizing complex, which contains a unique hetero-nuclear catalytic Mn4Ca cluster, are described. Issues of X-ray damage especially at the metal sites in the Mn4Ca cluster are discussed. The structure of the Mn4Ca catalyst at high-resolution which has so far eluded attempts of determination by X-ray diffraction, EXAFS and other spectroscopic techniques has been addressed using polarized EXAFS techniques applied to oriented PS II membrane preparations and PS II single crystals. A review of how the resolution of traditional EXAFS techniques can be improved, using methods such as range-extended EXAFS is presented, and the changes that occur in the structure of the cluster as it advances through the catalytic cycle are described. X-ray absorption and emission techniques (XANES and K? emission) have been used earlier to determine the oxidation states of the Mn4Ca cluster, and in this report we review the use of X-ray resonant Raman spectroscopy to understand the electronic structure of the Mn4Ca cluster as it cycles through the intermediate S-states.

Yachandra, Vittal; Yano, Junko; Kern, Jan; Pushkar, Yulia; Sauer, Kenneth; Glatzel, Pieter; Bergmann, Uwe; Messinger, Johannes; Zouni, Athina; Yachandra, Vittal K.

2007-08-01T23:59:59.000Z

60

Testing LaMgAl11O19 crystal for X-ray spectroscopy  

DOE Green Energy (OSTI)

We investigated the properties of the rare earth crystal LaMgAl{sub 11}O{sub 19} and its application to soft X-ray spectroscopy. Its relative reflectivity and half width rocking curve were measured to up to the reflection order of 28. In addition, a comparative measurement of the iron L-shell soft X-ray line emission was made on the EBIT-I Livermore electron beam ion trap by fielding the LaMgAl{sub 11}O{sub 19} crystal side by side with a rubidium hydrogen phthalate crystal in a flat crystal spectrometer. From these measurements, reflectivity and spectral resolving power were determined.

Chen, H; Beiersdorfer, P; Baronova, E; Kalashnikova, I; Stepanenko, M

2004-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray photoelectron spectroscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Two-dimensional stimulated resonance Raman spectroscopy of molecules with broadband x-ray pulses  

Science Conference Proceedings (OSTI)

Expressions for the two-dimensional stimulated x-ray Raman spectroscopy (2D-SXRS) signal obtained using attosecond x-ray pulses are derived. The 1D- and 2D-SXRS signals are calculated for trans-N-methyl acetamide (NMA) with broad bandwidth (181 as, 14.2 eV FWHM) pulses tuned to the oxygen and nitrogen K-edges. Crosspeaks in 2D signals reveal electronic Franck-Condon overlaps between valence orbitals and relaxed orbitals in the presence of the core-hole.

Biggs, Jason D.; Zhang Yu; Healion, Daniel; Mukamel, Shaul [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States)

2012-05-07T23:59:59.000Z

62

Two-Dimensional Stimulated Resonance Raman Spectroscopy of Molecules with Broadband X-ray Pulses  

E-Print Network (OSTI)

Expressions for the two-dimensional Stimulated x-ray Raman Spectroscopy (2D-SXRS) signal obtained using attosecond x-ray pulses are derived. The 1D- and 2D-SXRS signals are calculated for trans-N-methyl acetamide (NMA) with broad bandwidth (FWHM ~14.2eV, 181 as) pulses tuned to the oxygen and nitrogen K-edges. Crosspeaks in 2D signals reveal electronic Franck-Condon overlaps between valence orbitals and relaxed orbitals in the presence of the core hole.

Jason D. Biggs; Yu Zhang; Daniel Healion; Shaul Mukamel

2012-04-26T23:59:59.000Z

63

Anion photoelectron spectroscopy of radicals and clusters  

SciTech Connect

Anion photoelectron spectroscopy is used to study free radicals and clusters. The low-lying {sup 2}{Sigma} and {sup 2}{Pi} states of C{sub 2n}H (n = 1--4) have been studied. The anion photoelectron spectra yielded electron affinities, term values, and vibrational frequencies for these combustion and astrophysically relevant species. Photoelectron angular distributions allowed the author to correctly assign the electronic symmetry of the ground and first excited states and to assess the degree of vibronic coupling in C{sub 2}H and C{sub 4}H. Other radicals studied include NCN and I{sub 3}. The author was able to observe the low-lying singlet and triplet states of NCN for the first time. Measurement of the electron affinity of I{sub 3} revealed that it has a bound ground state and attachment of an argon atom to this moiety enabled him to resolve the symmetric stretching progression.

Travis, Taylor R.

1999-12-16T23:59:59.000Z

64

SURFACE SEGREGATION STUDIES OF SOFC CATHODES: COMBINING SOFT X-RAYS AND ELECTROCHEMICAL IMPEDENCE SPECTROSCOPY  

DOE Green Energy (OSTI)

A system to grow heteroepitaxial thin-films of solid oxide fuel cell (SOFC) cathodes on single crystal substrates was developed. The cathode composition investigated was 20% strontium-doped lanthanum manganite (LSM) grown by pulsed laser deposition (PLD) on single crystal (111) yttria-stabilized zirconia (YSZ) substrates. By combining electrochemical impedance spectroscopy (EIS) with x-ray photoemission spectroscopy (XPS) and x-ray absorption spectroscopy XAS measurements, we conclude that electrically driven cation migration away from the two-phase gas-cathode interface results in improved electrochemical performance. Our results provide support to the premise that the removal of surface passivating phases containing Sr2+ and Mn2+, which readily form at elevated temperatures even in O2 atmospheric pressures, is responsible for the improved cathodic performance upon application of a bias.

Miara, Lincoln J.; Piper, L.F.J.; Davis, Jacob N.; Saraf, Laxmikant V.; Kaspar, Tiffany C.; Basu, Soumendra; Smith, K. E.; Pal, Uday B.; Gopalan, Srikanth

2010-12-01T23:59:59.000Z

65

Characterization of Gas Shales by X-ray Raman Spectroscopy | Stanford  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization of Gas Shales by X-ray Raman Spectroscopy Characterization of Gas Shales by X-ray Raman Spectroscopy Monday, May 14, 2012 - 3:30pm SSRL Conference Room 137-322 Drew Pomerantz, Schlumberger Unconventional hydrocarbon resources such as gas shale and oil-bearing shale have emerged recently as economically viable sources of energy, dramatically altering America's energy landscape. Despite their importance, the basic chemistry and physics of shales are not understood as well as conventional reservoirs. In particular, shales are unique in that they contain kerogen, a complex organic solid that controls factors such as the amount of hydrocarbon that can be produced from the reservoir and the rate at which the hydrocarbon is produced. The industry's current understanding of the chemical composition of kerogen is limited, preventing detailed

66

Characterization of Gas Shales by X-ray Raman Spectroscopy | Stanford  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization of Gas Shales by X-ray Raman Spectroscopy Characterization of Gas Shales by X-ray Raman Spectroscopy Thursday, February 23, 2012 - 10:30am SSRL Third Floor Conference Room 137-322 Drew Pomerantz, Schlumberger Unconventional hydrocarbon resources such as gas shale and oil-bearing shale have emerged recently as economically viable sources of energy, dramatically altering America's energy landscape. Despite their importance, the basic chemistry and physics of shales are not understood as well as conventional reservoirs. In particular, shales are unique in that they contain kerogen, a complex organic solid that controls factors such as the amount of hydrocarbon that can be produced from the reservoir and the rate at which the hydrocarbon is produced. The industry's current understanding of the chemical composition of kerogen is limited, preventing detailed

67

A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies  

SciTech Connect

We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.

Szlachetko, J. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Nachtegaal, M.; Boni, E. de; Willimann, M.; Safonova, O.; Sa, J.; Smolentsev, G.; Szlachetko, M.; Bergamaschi, A.; Schmitt, B.; David, C.; Luecke, A. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Bokhoven, J. A. van [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zuerich (Switzerland); Dousse, J.-Cl.; Hoszowska, J.; Kayser, Y. [Department of Physics, University of Fribourg, 1700 Fribourg (Switzerland); Jagodzinski, P. [University of Technology, Kielce (Poland)

2012-10-15T23:59:59.000Z

68

Development of Thin-Window Silicon Drift Detector for X-ray Spectroscopy  

Science Conference Proceedings (OSTI)

A new set of thin-window silicon drift detectors composed of an array of hexagonal shaped detectors has been designed, constructed and tested for X-ray spectroscopy. Each individual ThinWinSDD has a thin entrance window on one side and a spiral shaped hexagonal cathode around a center anode on the other side. To produce the thin entrance window a 10 keV implantation of boron through a 500 A silicon dioxide was used. The implantation was followed by an annealing at 700 C for 30 min and a reactive ion etching step to ensure the removal of silicon dioxide from the smallest feature (5 mum). An aluminum layer is coated in the same vacuum system after back-sputtering. This step involves removing the native oxide that has formed on the top of the silicon substrate and then sputtering a 1100 A thick layer of aluminum onto the X-ray entrance window. The aluminum layer must be thick enough to block visible light, but thin enough to be transparent to soft X-rays down to 280 eV. We discuss first test results that include detector leakage current measurements and the response for multiple detectors exposed to the National Synchrotron Light Source's UV beam line U3C located at Brookhaven National Laboratory for X-ray energies as low as 280 eV.

Chen, W.; Carini, G.A.; De Geronimo, G.; Fried, J.; Gaskin, J.A.; Keister, J.W.; Li, Z.; Ramsey, B.D.; Rehak, P.; Siddons, D.P.

2009-10-01T23:59:59.000Z

69

High-brightness beamline for X-ray spectroscopy at the Advanced Light Source  

SciTech Connect

Beamline 9.3.1 at the Advanced Light Source (ALS) is a windowless beamline, covering the 1-6 keV photon-energy range, designed to achieve the goals of high energy resolution, high flux, and high brightness at the sample. When completed later this year, it will be the first ALS monochromatic hard-x-ray beamline, and its brightness will be an order-of-magnitude higher than presently available in this energy range. In addition, it will provide flux and resolution comparable to any other beamline now in operation. To achieve these goals, two technical improvements, relative to existing x-ray beamlines, were incorporated. First, a somewhat novel optical design for x-rays, in which matched toroidal mirrors are positioned before and after the double-crystal monochromator, was adopted. This configuration allows for high resolution by passing a collimated beam through the monochromator, and for high brightness by focusing the ALS source on the sample with unit magnification. Second, a new ''Cowan type'' double-crystal monochromator based on the design used at NSLS beamline X-24A was developed. The measured mechanical precision of this new monochromator shows significant improvement over existing designs, without using positional feedback available with piezoelectric devices. Such precision is essential because of the high brightness of the radiation and the long distance (12m) from the source (sample) to the collimating (focusing) mirror. This combination of features will provide a bright, high resolution, and stable x-ray beam for use in the x-ray spectroscopy program at the ALS.

Perera, R.C.C.; Jones, G. [Lawrence Berkeley Lab., CA (US); Lindle, D.W. [Univ. of Nevada, Las Vegas, NV (US). Dept. of Chemistry

1994-08-01T23:59:59.000Z

70

Wiggler-base Hard X-ray Spectroscopy Beamline at CLS  

Science Conference Proceedings (OSTI)

The CLS 06ID-1 Hard X-ray Micro-Analysis Beamline (HXMA) is a general purpose hard X-ray spectroscopy beamline (5 to 40 keV) designed to serve users in XAFS, diffraction and microprobe communities. The beamline uses the synchrotron radiation from a superconducting wiggler. The primary beamline optics include a 1.2 m water-cooled silicon collimating mirror (separate Rh and Pt coating stripes), a liquid nitrogen cooled double crystal monochromator (Kohzu CMJ-1) housing two crystal pairs (Si 111 and 220), and a 1.15 m long water-cooled silicon toroidal focusing mirror (separate Rh and Pt coating stripes). All mirrors are equipped with dynamical meridian benders. The experimental hutch hosts three experimental setups for XAFS, diffraction and microprobe, respectively. Primary design considerations and some commissioning results are discussed.

Jiang, D. T. [Canadian Light Source, University of Saskatchewan, Saskatoon, SK (Canada); Department of Physics, University of Guelph, Guelph ON N1G 2W1 (Canada); Chen, N. [Canadian Light Source, University of Saskatchewan, Saskatoon, SK (Canada); Geological Sciences Department, University of Saskachewan, Saskatoon, SK (Canada); Sheng, W. [Canadian Light Source, University of Saskatchewan, Saskatoon, SK (Canada)

2007-01-19T23:59:59.000Z

71

Cryogenic detector development at LLNL: ultraviolet x-ray, gamma-ray and biomolecule spectroscopy  

SciTech Connect

We are developing low-temperature detectors for optical, ultraviolet, X-ray, and gamma-ray spectroscopy, and for biomolecular mass spectrometry. We present development work on these detectors and materials analysis and biomolecular mass spectrometry. We have measured thin-film Nb/Al/Al2O3/AlNb superconducting tunnel junction (STJ) X-ray detectors in the 0.2 to 1 keV band with a range of different junction sizes and aluminum film thicknesses. In one case, we have achieved the statistical limit to the energy resolution of 13 eV FWHM at 227 eV with an output count rate of 20,600 cts/s.

Labov, S.E.; Frank, M.; le Grand, J.B. [and others

1997-08-12T23:59:59.000Z

72

Isotope and Temperature Effects in Liquid Water Probed by X-RayAbsorption and Resonant X-Ray Emission Spectroscopy  

DOE Green Energy (OSTI)

High-resolution x-ray absorption and emission spectra ofliquid water exhibit a strong isotope effect. Further, the emissionspectra show a splitting of the 1b1 emission line, a weak temperatureeffect, and a pronounced excitation-energy dependence. They can bedescribed as a superposition of two independent contributions. Bycomparing with gasphase, ice, and NaOH/NaOD, we propose that the twocomponents are governed by the initial state hydrogen bondingconfiguration and ultrafast dissociation on the time scale of the O 1score hole decay.

Fuchs, O.; Zharnikov, M.; Weinhardt, L.; Blum, M.; Weigand, M.; Zubavichus, Y.; Bar, M.; Maier, F.; Denlinger, J.D.; Heske, C.; Grunze,M.; Umbach, E.

2007-03-10T23:59:59.000Z

73

Understanding Electrocatalytic Pathways in Low and Medium Temperature Fuel Cells: Synchrotron-based In Situ X-Ray Absorption Spectroscopy  

DOE Green Energy (OSTI)

Over the last few decades, researchers have made significant developments in producing more advanced electrocatalytic materials for power generation applications. For example, traditional fuel cell catalysts often involve high-priced precious metals such as Pt. However, in order for fuel cells to become commercially viable, there is a need to reduce or completely remove precious metal altogether. As a result, a myriad of novel, unconventional materials have been explored such as chalcogenides, porphyrins, and organic-metal-macrocycles for low/medium temperature fuel cells as well as enzymatic and microbial fuel cells. As these materials increasingly become more complex, researchers often find themselves in search of new characterization methods, especially those which are allow in situ and operando measurements with element specificity. One such method that has received much attention for analysis of electrocatalytic materials is X-ray absorption spectroscopy (XAS). XAS is an element specific, core level absorption technique which yields structural and electronic information. As a core electron method, XAS requires an extremely bright source, hence a synchrotron. The resulting intensity of synchrotron radiation allow for experiments to be conducted in situ, under electrochemically relevant conditions. Although a bulk-averaging technique requiring rigorous mathematical manipulation, XAS has the added benefit that it can probe materials which possess no long range order. This makes it ideal to characterize nano-scale electrocatalysts. XAS experiments are conducted by ramping the X-ray photon energy while measuring absorption of the incident beam the sample or by counting fluorescent photons released from a sample due to subsequent relaxation. Absorption mode XAS follows the Beer-Lambert Law, {mu}x = log(I{sub 0}/I{sub t}) (1) where {mu} is the absorption coefficient, x is the sample thickness and I{sub 0} and I{sub t} are the intensities of the incident and transmission beams respectively. When the energy of the incident X-rays exceed the electron binding energy (E{sub 0}) of the element under investigation, the electron is ejected from the core to available excited states in the form of a photoelectron with kinetic energy: E{sub k} = h? - E{sub 0} (2) with, E{sub k} being the kinetic energy of the released photoelectron and h? the energy of the incident beam. In general, the X-ray absorption spectrum is broken down into two distinct energy regions: the X-ray absorption near-edge structure or XANES (-50eV {le} E{sub 0} {le} 50eV) and the extended X-ray absorption fine-structure or EXAFS (50eV {le} E{sub 0} {le} {approx}1000eV). The XANES region is dominated by low-energy photoelectrons which undergo multiple scattering events. As such, it can reveal information about oxidation state, local symmetry, electronic structure, and the extent of oxidation of a material. Due to this complex multiple scattering, there is no simple XANES equation to describe it quantitatively. However, recent advancements in computers and the evolution of numerical methods such as the FEFF code have made possible reliable XANES simulations. Photoelectrons in the EXAFS region have high enough E{sub k} to undergo primarily single back-scattering events. These back-scattered photoelectrons interfere with the outgoing photoelectrons, causing the oscillations in the absorption spectrum. Using the previously developed EXAFS equations it is now possible to model EXAFS data to determine coordination numbers, bond distances, and mean-square disorder (commonly referred to as Debye-Waller factor). EXAFS data is often shown by Fourier Transforming KSpace into distance, r, space where the total magnitude is plotted against the radial coordinates. This allow for easy qualitative comparison of samples. Employing EXAFS on nanoscale materials has the added advantage that it can quantitatively illustrate changes in atom-atom coordination, which can be related to particle size or morphology. Overall this technique enables the measurement of both bulk and surface adsor

Mukerjee, S.; Ziegelbauer, J; Arruda, T; Ramaker, D; Shyam, B

2008-01-01T23:59:59.000Z

74

Electronic Properties of Hydrogen Storage Materials with Photon-in/Photon-out Soft-X-Ray Spectroscopy  

DOE Green Energy (OSTI)

The applications of resonant soft X-ray emission spectroscopy on a variety of carbon systems have yielded characteristic fingerprints. With high-resolution monochromatized synchrotron radiation excitation, resonant inelastic X-ray scattering has emerged as a new source of information about electronic structure and excitation dynamics. Photon-in/photon-out soft-X-ray spectroscopy is used to study the electronic properties of fundamental materials, nanostructure, and complex hydrides and will offer potential in-depth understanding of chemisorption and/or physisorption mechanisms of hydrogen adsorption/desorption capacity and kinetics.

Guo, Jinghua

2008-09-22T23:59:59.000Z

75

Dynamics and rheology under continuous shear flow studied by X-ray photon correlation spectroscopy  

E-Print Network (OSTI)

X-ray Photon Correlation Spectroscopy (XPCS) has emerged as a unique technique allowing the measurement of dynamics in materials on mesoscopic lengthscales. In particular, applications in soft matter physics cover a broad range of topics which include, but are not limited to, nanostructured materials such as colloidal suspensions or polymers, dynamics at liquid surfaces, membranes and interfaces, and the glass or gel transition. One of the most common problems associated with the use of bright X-ray beams with soft materials is beam induced radiation damage, and this is likely to become an even more limiting factor at future synchrotron and free electron laser sources. Flowing the sample during data acquisition is one of the simplest method allowing to limit the radiation damage. In addition to distributing the dose over many different scatterers, the method also enables new functionalities such as time-resolved studies in mixing cells. Here, we further develop an experimental technique that was recently proposed combining XPCS and continuously flowing samples. More specifically, we use a model system to show how the macroscopic advective response to flow and the microscopic dissipative dynamics (diffusion) can be quantified from the X-ray data. The method has many potential applications, e.g. dynamics of glasses and gels under continuous shear/flow, protein aggregations processes, the interplay between dynamics and rheology in complex fluids.

Andrei Fluerasu; Pawel Kwasniewski; Chiara Caronna; Fanny Destremaut; Jean-Baptiste Salmon; Anders Madsen

2010-01-10T23:59:59.000Z

76

New Homogeneous Standards by Atomic Layer Deposition for Synchrotron X-ray Fluorescence and Absorption Spectroscopies.  

SciTech Connect

Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotron techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial resolution better than 25 nm. Limiting factors for Stardust STXM analyses were self-imposed limits of photon dose due to radiation damage concerns, and significant attenuation of <1500 eV X-rays by {approx}80{micro}m thick, {approx}25 mg/cm{sup 3} density silica aerogel capture medium. In practice, the ISPE team characterized the major, light elements using STXM (O, Mg, Al, Si) and the heavier minor and trace elements using SXRF. The two data sets overlapped only with minor Fe and Ni ({approx}1% mass abundance), providing few quantitative cross-checks. New improved standards for cross calibration are essential for consortium-based analyses of Stardust interstellar and cometary particles, IDPs. Indeed, they have far reaching application across the whole synchrotron-based analytical community. We have synthesized three ALD multilayers simultaneously on silicon nitride membranes and silicon and characterized them using RBS (on Si), XRF (on Si{sub 3}N{sub 4}) and STXM/XAS (holey Si{sub 3}N{sub 4}). The systems we have started to work with are Al-Zn-Fe and Y-Mg-Er. We have found these ALD multi-layers to be uniform at {micro}m- to nm scales, and have found excellent consistency between four analytical techniques so far. The ALD films can also be used as a standard for e-beam instruments, eg., TEM EELS or EDX. After some early issues with the consistency of coatings to the back-side of the membrane windows, we are confident to be able to show multi-analytical agreement to within 10%. As the precision improves, we can use the new standards to verify or improve the tabulated cross-sections.

Butterworth, A.L.; Becker, N.; Gainsforth, Z.; Lanzirotti, A.; Newville, M.; Proslier, T.; Stodolna, J.; Sutton, S.; Tyliszczak, T.; Westphal, A.J.; Zasadzinski, J. (UCB)

2012-03-13T23:59:59.000Z

77

Characterization of geometrical factors for quantitative angle-resolved photoelectron spectroscopy  

SciTech Connect

For conventional angle-resolved x-ray photoelectron spectroscopy (ARXPS), the area under the core-level peaks depends mainly on the in-depth distribution of chemical species at the top surface of a specimen. But the x-ray photoelectron spectroscopy (XPS) intensity is also affected by tool-related geometrical factors such as the shape of the x-ray beam, the spectrometer analysis volume, and the manipulator rotation axis. Data analysis is therefore typically based on normalization with respect to the signal from the substrate. Here, we present an original method to perform quantitative ARXPS without normalization, involving evaluation of these geometrical factors. The method is illustrated for a multiprobe XPS system using a methodology based on a specific software (XPSGeometry{sup Registered-Sign }), but is a general process that can be adapted to all types of XPS equipment, even those not specifically designed for ARXPS. In that case, this method enables bringing the sample as close as possible to the manipulator axis of rotation in order to perform automatic acquisitions.

Martinez, Eugenie; Herrera-Gomez, Alberto; Allain, Mickael; Renault, Olivier; Faure, Alain; Chabli, Amal; Bertin, Francois [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, F-38054 Grenoble Cedex 9 (France); CINVESTAV-Queretaro, Libramiento Norponiente 2000, Real de Juriquilla, Queretaro, 76000 (Mexico); CEA, LETI, MINATEC Campus, 17 rue des Martyrs, F-38054 Grenoble Cedex 9 (France)

2012-07-15T23:59:59.000Z

78

X-ray absorption spectroscopy studies of electrochemically deposited thin oxide films.  

DOE Green Energy (OSTI)

We have utilized ''in situ'' X-ray Absorption Fine Structure Spectroscopy to investigate the structure and composition of thin oxide films of nickel and iron that have been prepared by electrodeposition on a graphite substrate from aqueous solutions. The films are generally disordered. Structural information has been obtained from the analysis of the data. We also present initial findings on the local structure of heavy metal ions, e.g. Sr and Ce, incorporated into the electrodeposited nickel oxide films. Our results are of importance in a number of technological applications, among them, batteries, fuel cells, electrochromic and ferroelectric materials, corrosion protection, as well as environmental speciation and remediation.

Balasubramanian, M.

1998-06-02T23:59:59.000Z

79

FPGA-based compression of streaming x-ray photon correlation spectroscopy data  

Science Conference Proceedings (OSTI)

A data acquisition system to perform real-time background subtraction and lower-level-discrimination-based compression of streaming x-ray photon correlation spectroscopy (XPCS) data from a fast charge-coupled device (CCD) area detector has been built and put into service at the Advanced Photon source (APS) at Argonne National Laboratory. A commercial frame grabber with on-board field-programmable gate array (FPGA) was used in the design, and continuously processes 60 frames per second each consisting of 1,024 x 1,024 pixels with up to 64512 photon hits per frame.

Madden, Timothy; Jemian, Peter; Narayanan, Surcsh; Sandy, Alec; Sikorski, Marcin; Sprung, Michael; Weizeorick, John

2011-08-09T23:59:59.000Z

80

Core and Valence Excitations in Resonant X-ray Spectroscopy using Restricted Excitation Window Time-dependent Density Functional Theory  

Science Conference Proceedings (OSTI)

We report simulations of X-ray absorption near edge structure (XANES), resonant inelastic X-ray scattering (RIXS) and 1D stimulated X-ray Raman spectroscopy (SXRS) signals of cysteine at the oxygen, nitrogen and sulfur K and L2,3 edges. The simulated XANES signals from the restricted window time-dependent density functional theory (REW-TDDFT) and the static exchange (STEX) method are compared with experiments, showing that REW-TDDFT is more accurate and computationally less expensive than STEX. Simulated RIXS and 1D SXRS signals from REW-TDDFT give some insights on the correlation of different excitations in the molecule.

Zhang, Yu; Biggs, Jason D.; Healion, Daniel; Govind, Niranjan; Mukamel, Shaul

2012-11-21T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray photoelectron spectroscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions  

DOE Green Energy (OSTI)

The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound [yields] bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN[sup [minus

Bradforth, S.E.

1992-11-01T23:59:59.000Z

82

Pu electronic structure and photoelectron spectroscopy  

Science Conference Proceedings (OSTI)

The electronic structure of PuCoGa{sub 5}, Pu metal, and PuO{sub 2} is explored using photoelectron spectroscopy. Ground state electronic properties are inferred from temperature dependent photoemission near the Fermi energy for Pu metal. Angle-resolved photoemission details the energy vs. crystaJ momentum landscape near the Fermi energy for PuCoGa{sub 5} which shows significant dispersion in the quasiparticle peak near the Fermi energy. For the Mott insulators AnO{sub 2}(An = U, Pu) the photoemission results are compared against hybrid functional calculations and the model prediction of a cross over from ionic to covalent bonding is found to be reasonable.

Joyce, John J [Los Alamos National Laboratory; Durakiewicz, Tomasz [Los Alamos National Laboratory; Graham, Kevin S [Los Alamos National Laboratory; Bauer, Eric D [Los Alamos National Laboratory; Moore, David P [Los Alamos National Laboratory; Mitchell, Jeremy N [Los Alamos National Laboratory; Kennison, John A [Los Alamos National Laboratory; Martin, Richard L [Los Alamos National Laboratory; Roy, Lindsay E [Los Alamos National Laboratory; Scuseria, G. E. [RICE UNIV

2010-01-01T23:59:59.000Z

83

A Fern Fatale - X-ray Absorption Spectroscopy Imaging an Arsenic-Loving  

NLE Websites -- All DOE Office Websites (Extended Search)

Fern Fatale - X-ray Absorption Spectroscopy Imaging of an Arsenic-Loving Fern Fatale - X-ray Absorption Spectroscopy Imaging of an Arsenic-Loving Fern For many people, arsenic is synonymous with poison, so it is perhaps a surprise that some plants, such as the fern Pteris vittata (Figure 1) seem to quite deliberately accumulate large amounts of it. What is more, the plant converts it to the most toxic inorganic form known. How does it do this? First some background; while there is some evidence that arsenic is required for health [1], this is debatable. On the other hand, the poisonous nature of arsenic compounds was understood by the ancient Greeks and Romans, and it has been used throughout history as a homicidal and suicidal agent. It is found in two environmentally common oxy acids; arsenous acid (H3AsO3), and arsenic acid (H3AsO4), whose salts are known as arsenites and arsenates, respectively. Of these, the trivalent arsenic species are the most toxic. The infamous agent of murder is arsenic trioxide (white arsenic or As2O3), which is simply the (reputedly tasteless) anhydride of arsenous acid.

84

X-RAY ABSORPTION SPECTROSCOPY OF TRANSITION METAL-MAGNESIUM HYDRIDE FILMS  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectroscopy of Transition Metal-Magnesium Spectroscopy of Transition Metal-Magnesium Hydride Thin Films T. J. Richardson a, *, B. Farangis a , J. L. Slack a , P. Nachimuthu b , R. Pereira b , N. Tamura b , and M. Rubin a a Environmental Energy Technologies Division, b Advanced Light Source, Ernest Orlando Lawrence Berkeley National Laboratory Berkeley, California 94720, USA *Corresponding author, E-mail address: tjrichardson@lbl.gov Abstract Mixed metal thin films containing magnesium and a first-row transition element exhibit very large changes in both reflectance and transmittance on exposure to hydrogen gas. Changes in electronic structure and coordination of the magnesium and transition metal atoms during hydrogen absorption were studied using dynamic in situ transmission mode X-ray absorption

85

Final Version: Orbital Specificity in the Unoccupied States of UO2 from Resonant Inverse Photoelectron Spectroscopy  

SciTech Connect

One of the crucial questions of all actinide electronic structure determinations is the issue of 5f versus 6d character and the distribution of these components across the density of states. Here, a break-though experiment is discussed, which has allowed the direct determination of the U5f and U6d contributions to the unoccupied density of states (UDOS) in Uranium Dioxide. A novel Resonant Inverse Photoelectron (RIPES) and X-ray Emission Spectroscopy (XES) investigation of UO{sub 2} is presented. It is shown that the U5f and U6d components are isolated and identified unambiguously.

Tobin, J G; Yu, S W

2012-03-12T23:59:59.000Z

86

X-ray And EUV Spectroscopy Of Highly Charged Tungsten Ions  

SciTech Connect

The Berlin EBIT has been established by the Max-Planck-Institut fuer Plasmaphysik to generate atomic physics data in support of research in the field of controlled nuclear fusion, by measuring the radiation from highly charged ions in the x-ray, extreme ultraviolet and visible spectral ranges and providing valuable diagnostics for high temperature plasmas. In future fusion devices, for example ITER, currently being constructed at Cadarache, France, the plasma facing components will be armored with high-Z materials, most likely tungsten, due to the favorable properties of this element. At the same time the tremendous radiation cooling of these high-Z materials represents a threat to fusion and obliges one to monitor carefully the radiation. With EBIT a selected ensemble of ions in specific charge states can be produced, stored and excited for spectroscopic investigations. Employing this technique, we have for example resolved the wide structure observed around 5 nm at the ASDEX Upgrade tokamak as originating from E1-transitions into the open 4d shell of tungsten ions in charge states 25+ to 37+ producing a band-like emission pattern. Further, these ions emit well-separated M1 lines in the EUV range around 65 nm suitable for plasma diagnostics. Kr-like to Cr-like tungsten ions (38+ to 50+) show strong soft-x-ray lines in the range 0.5 to 2 and 5 to 15 nm. Lines of even higher charged tungsten ions, up to Ne-like W{sup 64+}, abundant in the core plasma of present and future fusion test devices, have been investigated with high resolution Bragg-crystal spectroscopy at 0.13 nm. Recently, x-ray spectroscopic measurements of the dielectronic recombination LMn resonances of W{sup 60+} to W{sup 67+} ions have been preformed and compare well with atomic structure calculations.

Biedermann, Christoph; Radtke, Rainer [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 17491 Greifswald, and Institut fuer Physik der Humboldt-Universitaet zu Berlin, Arbeitsgruppe Plasmaphysik, Newtonstr 15, 12489 Berlin (Germany)

2009-09-10T23:59:59.000Z

87

Ultrafast X-Ray Spectroscopy as a Probe of Nonequilibrium Dynamics in  

NLE Websites -- All DOE Office Websites (Extended Search)

The Electronic Origin of Photoinduced Strain The Electronic Origin of Photoinduced Strain Modifying Proteins to Combat Disease Higher Temperature at the Earth's Core Clues about Rheumatoid Arthritis Damage Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Ultrafast X-Ray Spectroscopy as a Probe of Nonequilibrium Dynamics in Ruthenium Complexes FEBRUARY 8, 2013 Bookmark and Share Copyright © 2012 Elsevier B.V. All rights reserved. Exciting the atoms or molecules of a substance via the use of visible light, or photoexcitation, can play a significant role in a range of energy-conversion processes, such as natural photosynthesis (oxygen from water) and manmade solar cells (electricity from sunlight). But a better

88

Atomic physics studies of highly charged ions on tokamaks using x-ray spectroscopy  

SciTech Connect

An overview is given of atomic physics issues which have been studied on tokamaks with the help resolution x-ray spectroscopy. The issues include the testing of model calculations predicting the excitation of line radiation, the determination of rate coefficients, and accurate atomic structure measurements. Recent research has focussed primarily on highly charged heliumlike (22 less than or equal to Z less than or equal to 28) and neonlike (34 less than or equal to Z less than or equal to 63) ions, and results are presented from measurements on the PLT and TFTR tokamaks. Many of the measurements have been aided by improved instrumental design and new measuring techniques. Remarkable agreement has been found between measurements and theory in most cases. However, in this review those areas are stressed where agreement is worst and where further investigations are needed. 19 refs., 13 figs., 2 tabs.

Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K.W.

1989-07-01T23:59:59.000Z

89

X-ray Absorption Spectroscopy Beamline at the Siam Photon Laboratory  

SciTech Connect

A bending magnet beamline has been constructed and commissioned for x-ray absorption spectroscopy (XAS) at the Siam Photon Laboratory. The photon energy is tunable from 1830 eV to 8000 eV using a Lemmonier-type, fixed-exit double crystal monochromator equipped with InSb(111), Si(111), Ge(220) crystals. Elemental K-edges are then accessible from silicon to iron. A series of low conductance vacuum tubes has been designed and installed between the pumping chambers in the front end to obtain the proper pressure difference between the upstream and the downstream of the front end. Thus lower-energy photons, around K-edges of silicon, phosphorous, and sulfur, can be delivered to the experimental XAS station without being absorbed by a window. In this report, the design of the beamline is described. The commissioning results including the measured photon flux at sample and experimental XAS spectra are presented.

Klysubun, Wantana; Tarawarakarn, Pongjakr; Sombunchoo, Panidtha; Klinkhieo, Supat; Chaiprapa, Jitrin [National Synchrotron Research Center, 111 University Ave., Muang District, Nakhon Ratchasima 30000 (Thailand); Songsiriritthigul, Prayoon [National Synchrotron Research Center, 111 University Ave., Muang District, Nakhon Ratchasima 30000 (Thailand); School of Physics, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand)

2007-01-19T23:59:59.000Z

90

RHESSI MICROFLARE STATISTICS. II. X-RAY IMAGING, SPECTROSCOPY, AND ENERGY DISTRIBUTIONS I. G. Hannah, S. Christe,1  

E-Print Network (OSTI)

RHESSI MICROFLARE STATISTICS. II. X-RAY IMAGING, SPECTROSCOPY, AND ENERGY DISTRIBUTIONS I. G distribution of RHESSI flares and compare it to previous thermal energy distributions of transient events. We flares down to nanoflares. The fre- quency distribution of the energy in these events has been studied

California at Berkeley, University of

91

PHOTOELECTRON SPECTROSCOPY OF HEAVY ATOMS AND MOLECULES  

E-Print Network (OSTI)

of timing measurements at SSRL, see K. M. Monahan and V.radiation available at SSRL to measure photoelectron angularfor the 8° beam line at SSRL eaploying In and Al windows.

White, M.G.

2010-01-01T23:59:59.000Z

92

Nuclear resonant X-ray spectroscopy of (Mg,Fe)SiO3 orthoenstatites JENNIFER M. JACKSON1,*, EMILY A. HAMECHER1  

E-Print Network (OSTI)

Nuclear resonant X-ray spectroscopy of (Mg,Fe)SiO3 orthoenstatites JENNIFER M. JACKSON1,*, EMILY A, 9700 S. Cass Ave., Argonne, IL 60439, USA Abstract: We present nuclear resonant inelastic X-ray scattering (NRIXS) and synchrotron Mo¨ssbauer spectroscopy (SMS) measurements, both nuclear resonant X

Jackson, Jennifer M.

93

X-ray spectroscopy of gamma-ray bursts: the path to the progenitor  

E-Print Network (OSTI)

Despite great observational and theoretical effort, the burst progenitor is still a mysterious object. It is generally accepted that one of the best ways to unveil its nature is the study of the properties of the close environment in which the explosion takes place. We discuss the potentiality and feasibility of time resolved X-ray spectroscopy, focusing on the prompt gamma-ray phase. We show that the study of absorption features (or continuum absorption) can reveal the radial structure of the close environment, unaccessible with different techniques. We discuss the detection of absorption in the prompt and afterglow spectra of several bursts, showing how these are consistent with gamma-ray bursts taking place in dense regions. In particular, we show that the radius and density of the surrounding cloud can be measured through the evolution of the column density in the prompt burst phase. The derived cloud properties are similar to those of the star forming cocoons and globules within molecular clouds. We conclude that the burst are likely associated with the final evolutionary stages of massive stars.

Davide Lazzati; Rosalba Perna; Gabriele Ghisellini

2002-01-17T23:59:59.000Z

94

Multipixel characterization of imaging CZT detectors for hard X-ray imaging and spectroscopy  

E-Print Network (OSTI)

We report our in-depth study of Cd-Zn-Te (CZT) crystals to determine an optimum pixel and guard band configuration for Hard X-ray imaging and spectroscopy. We tested 20x20x5mm crystals with 8x8 pixels on a 2.46mm pitch. We have studied different types of cathode / anode contacts and different pixel pad sizes. We present the measurements of leakage current as well as spectral response for each pixel. Our I-V measurement setup is custom designed to allow automated measurements of the I-V curves sequentially for all 64 pixels, whereas the radiation properties measurement setup allows for interchangeable crystals with the same XAIM3.2 ASIC readout from IDEAS. We have tested multiple crystals of each type, and each crystal in different positions to measure the variation between individual crystals and variation among the ASIC channels. We also compare the same crystals with and without a grounded guard band deposited on the crystal side walls vs. a floating guard band and compare results to simulations. This study was carried out to find the optimum CZT crystal configuration for prototype detectors for the proposed Black-Hole Finder mission, EXIST.

S. V. Vadawale; J. Hong; J. Grindlay; P. Williams; M. Zhang; E. Bellm; T. Narita; W. Craig; B. Parker; C. Stahle; Feng Yan

2004-09-03T23:59:59.000Z

95

Understanding Sulfur Poisoning and Regeneration of Nickel Biomass Conditioning Catalysts using X-Ray Absorption Spectroscopy  

Science Conference Proceedings (OSTI)

The production of biofuels can proceed via a biomass gasification to produce syngas, which can then undergo catalytic conditioning and reforming reactions prior to being sent to a fuel synthesis reactor. Catalysts used for biomass conditioning are plagued by short lifetimes which are a result of, among other things, poisoning. Syngas produced from biomass gasification may contain between 30-300 ppm H2S, depending on the feedstock and gasification conditions, and H2S is a key catalyst poison. In order to overcome catalyst poisoning, either an H2S-tolerant catalyst or an efficient regeneration protocol should be employed. In this study, sulfur K-edge X-ray absorption near edge spectroscopy (XANES) was used to monitor sulfur species on spent catalyst samples and the transformation of these species from sulfides to sulfates during steam and air regeneration on a Ni/Mg/K/Al2O3 catalyst used to condition biomass-derived syngas. Additionally, nickel K-edge EXAFS and XANES are used to examine the state of nickel species on the catalysts. Post-reaction samples showed the presence of sulfides on the H2S-poisoned nickel catalyst and although some gaseous sulfur species were observed to leave the catalyst bed during regeneration, sulfur remained on the catalyst and a transformation from sulfides to sulfates was observed. The subsequent H2 reduction led to a partial reduction of sulfates back to sulfides. A proposed reaction sequence is presented and recommended regeneration strategies are discussed.

Yung, M. M.; Cheah, S.; Kuhn, J. N.

2013-01-01T23:59:59.000Z

96

Soft X-ray emission spectroscopy of liquids and lithium batterymaterials  

SciTech Connect

Lithium ion insertion into electrode materials is commonly used in rechargeable battery technology. The insertion implies changes in both the crystal structure and the electronic structure of the electrode material. Side-reactions may occur on the surface of the electrode which is exposed to the electrolyte and form a solid electrolyte interface (SEI). The understanding of these processes is of great importance for improving battery performance. The chemical and physical properties of water and alcohols are complicated by the presence of strong hydrogen bonding. Various experimental techniques have been used to study geometrical structures and different models have been proposed to view the details of how these liquids are geometrically organized by hydrogen bonding. However, very little is known about the electronic structure of these liquids, mainly due to the lack of suitable experimental tools. In this thesis examples of studies of lithium battery electrodes and liquid systems using soft x-ray emission spectroscopy will be presented. Monochromatized synchrotron radiation has been used to accomplish selective excitation, in terms of energy and polarization. The electronic structure of graphite electrodes has been studied, before and after lithium intercalation. Changes in the electronic structure upon lithiation due to transfer of electrons into the graphite {pi}-bands have been observed. Transfer of electrons in to the 3d states of transition metal oxides upon lithiation have been studied, through low energy excitations as dd- and charge transfer-excitations. A SEI was detected on cycled graphite electrodes. By the use of selective excitation different carbon sites were probed in the SEI. The local electronic structure of water, methanol and mixtures of the two have been examined using a special liquid cell, to separate the liquid from the vacuum in the experimental chamber. Results from the study of liquid water showed a strong influence on the 3a1 molecular orbital and orbital mixing between water molecules upon hydrogen bonding. Apart from the four-hydrogen-bonding structure in water, a structure where one hydrogen bond is broken could be separated and identified. The soft x-ray emission study of methanol showed the existence of ring and chain formations in the liquid phase and the dominating structures are formed of 6 and 8 molecules. Upon mixing of the two liquids, a segregation at the molecular level was found and the formation of new structures, which could explain the unexpected low increase of the entropy.

Augustsson, Andreas

2004-10-27T23:59:59.000Z

97

Soft X-ray Spectroscopy Study of the Electronic Structure of Oxidized and Partially Oxidized Magnetite Nanoparticles  

SciTech Connect

The crystal structure of magnetite nanoparticles may be transformed to maghemite by complete oxidation, but under many relevant conditions the oxidation is partial, creating a mixed-valence material with structural and electronic properties that are poorly characterized. We used X-ray diffraction, Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, and soft X-ray absorption and emission spectroscopy to characterize the products of oxidizing uncoated and oleic acid-coated magnetite nanoparticles in air. The oxidization of uncoated magnetite nanoparticles creates a material that is structurally and electronically indistinguishable from maghemite. By contrast, while oxidized oleic acid-coated nanoparticles are also structurally indistinguishable from maghemite, Fe L-edge spectroscopy revealed the presence of interior reduced iron sites even after a 2-year period. We used X-ray emission spectroscopy at the O K-edge to study the valence bands (VB) of the iron oxide nanoparticles, using resonant excitation to remove the contributions from oxygen atoms in the ligands and from low-energy excitations that obscured the VB edge. The bonding in all nanoparticles was typical of maghemite, with no detectable VB states introduced by the long-lived, reduced-iron sites in the oleic acid-coated sample. However, O K-edge absorption spectroscopy observed a 0.2 eV shift in the position of the lowest unoccupied states in the coated sample, indicating an increase in the semiconductor band gap relative to bulk stoichiometric maghemite that was also observed by optical absorption spectroscopy. The results show that the ferrous iron sites within ferric iron oxide nanoparticles coated by an organic ligand can persist under ambient conditions with no evidence of a distinct interior phase and can exert an effect on the global electronic and optical properties of the material. This phenomenon resembles the band gap enlargement caused by electron accumulation in the conduction band of TiO2.

Gilbert, Benjamin; Katz, Jordan E.; Denlinger, Jonathan D.; Yin, Yadong; Falcone, Roger; Waychunas, Glenn A.

2010-10-24T23:59:59.000Z

98

Design and Operation of a High Pressure Reaction Cell for in situ X-ray Absorption Spectroscopy  

DOE Green Energy (OSTI)

X-ray absorption spectroscopy measurements of catalytic reactions have been instrumental in advancing the understanding of catalytic processes. These measurements require an in situ catalysis reaction cell with unique properties. Here we describe the design and initial operation of an in situ/operando catalysis reaction cell for transmission X-ray absorption spectroscopy measurements. The cell is designed: to be an ideal catalytic reactor with no mass transfer effects; to give the same conversion and selectivity under similar space velocities as standard laboratory micro-reactors; to be operational temperatures up to 600 {sup o}C and pressures up to 14 bar; to be X-ray transparent allowing XAS measurement to be collected in transmission for all elements with Z {>=} 23 (vanadium K-edge at 5.5 keV); to measure the actual catalyst bed temperature; to not use o-ring seals, or water cooling; to be robust, compact, easy to assemble, and use, and relatively low cost to produce. The heart of the cell is fabricated from an X-ray transparent beryllium tube that forms a plug flow reactor. XAFS data recorded during the reduction of a Re/{gamma}-A{sub 2}O{sub 3} catalyst as a function of hydrogen pressure from 0.05 to 8 bar, and from a Pt-Sn/{gamma}-A{sub 2}O{sub 3} catalyst during n-heptane reforming are given as initial examples of the versatility of the reactor.

Bare,S.; Yang, N.; Kelly, S.; Mickelson, G.; Modica, F.

2007-01-01T23:59:59.000Z

99

High-Resolution Structure of the Photosynthetic Mn4Ca Catalyst from X-ray Spectroscopy  

E-Print Network (OSTI)

the Photosynthetic Mn 4 Ca Catalyst from X-ray Spectroscopystructure of the Mn 4 Ca catalyst at high-resolution whichthe structure of Mn 4 Ca catalyst as it cycles through the

Yano, Junko

2008-01-01T23:59:59.000Z

100

Imaging X-ray spectroscopy with micro-X and Chandra  

E-Print Network (OSTI)

High spectral resolution observations of X-ray phenomena have the potential to uncover new physics. Currently, only point sources can be probed with high resolution spectra, using gratings. Extended objects like supernova ...

Rutherford, John (John Morton)

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray photoelectron spectroscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A high-resolution large-acceptance analyzer for X-ray fluorescence and Raman spectroscopy  

E-Print Network (OSTI)

E. Berman and Z. Yin, at the NSLS as well as Dr. H. Tompkinswhich was taken at the NSLS beamline X-25 shows a cleanwith soft X-rays. At the NSLS wiggler beamline X-25, we

Bergmann, Uwe; Cramer, Stephen P.

2001-01-01T23:59:59.000Z

102

X-ray afterglows and spectroscopy of Gamma-Ray Bursts  

E-Print Network (OSTI)

I will review the constraints set by X-ray measurements of afterglows on several issues of GRB, with particular regard to the fireball model, the environment, the progenitor and dark GRB.

Luigi Piro

2004-02-26T23:59:59.000Z

103

X-RAY ABSORPTION SPECTROSCOPY FOR THE CHEMICAL CHARACTERIZATION OF ATMOSPHERIC AEROSOLS  

E-Print Network (OSTI)

CHARACTERIZATION OF ATMOSPHERIC AEROSOLS J. M. Jaklevic andOF ATMOSPHERIC AEROSOLS X~RAY J. M. Jaklevic and A. C.from the atmospheric aerosol. Modern air sampling technology

Jaklevic, J. M.

2011-01-01T23:59:59.000Z

104

Soft x-ray absorption and photoemission spectroscopy study of superoxide KO2 J.-S. Kang,* D. H. Kim, and J. H. Hwang  

E-Print Network (OSTI)

Soft x-ray absorption and photoemission spectroscopy study of superoxide KO2 J.-S. Kang,* D. H. Kim of superoxide KO2 was investigated by employing soft x-ray absorption spectros- copy XAS and core cooling, O2 - molecular bond axes seem to tilt to have a lower crystal monoclinic symme- try. By lowering

Min, Byung Il

105

Resonant x-ray emission spectroscopy of liquid water: novel instrumentation, high resolution, and the"map" approach  

DOE Green Energy (OSTI)

Techniques to study the electronic structure of liquids are rare. Most recently, resonant x-ray emission spectroscopy (XES) has been shown to be an extremely versatile spectroscopy to study both occupied and unoccupied electronic states for liquids in thermodynamic equilibrium. However, XES requires high-brilliance soft x-ray synchrotron radiation and poses significant technical challenges to maintain a liquid sample in an ultra-high vacuum environment. Our group has therefore developed and constructed a novel experimental setup for the study of liquids, with the long-term goal of investigating the electronic structure of biological systems in aqueous environments. We have developed a flow-through liquid cell in which the liquid is separated from vacuum by a thin Si3N4 or SiC window and which allows a precise control of temperature. This approach has significant advantages compared to static liquids cells used in the past. Furthermore, we have designed a dedicated high-transmission, high-resolution soft x-ray spectrometer. The high transmission makes it possible to measure complete resonant XES"maps" in less than an hour, giving unprecedented detailed insight into the electronic structure of the investigated sample. Using this new equipment we have investigated the electronic structure of liquid water. Furthermore, our XES spectra and maps give information about ultra-fast dissociation on the timescale of the O 1s core hole lifetime, which is strongly affected by the initial state hydrogen bonding configuration.

Weinhardt, L.; Fuchs, O.; Blum, M.; Bär, M.; Weigand, M.; Denlinger, J.D.; Zubavichus, Y.; Zharnikov, M.; Grunze, M.; Heske, C.; Umbach, E.

2008-06-17T23:59:59.000Z

106

Design of a continuous-flow reactor for in situ x-ray absorption spectroscopy of solids in supercritical fluids  

Science Conference Proceedings (OSTI)

This paper presents the design and performance of a novel high-temperature and high-pressure continuous-flow reactor, which allows for x-ray absorption spectroscopy or diffraction in supercritical water and other fluids under high pressure and temperature. The in situ cell consists of a tube of sintered, polycrystalline aluminum nitride, which is tolerant to corrosive chemical media, and was designed to be stable at temperatures up to 500 deg. C and pressures up to 30 MPa. The performance of the reactor is demonstrated by the measurement of extended x-ray absorption fine structure spectra of a carbon-supported ruthenium catalyst during the continuous hydrothermal gasification of ethanol in supercritical water at 400 deg. C and 24 MPa.

Dreher, M.; De Boni, E.; Nachtegaal, M.; Wambach, J.; Vogel, F. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

2012-05-15T23:59:59.000Z

107

Application of soft x-ray appearance potential spectroscopy to light lanthanides, 4d transition metals, and insulators  

SciTech Connect

Evaporated films of La, Ce, Yb, Y, Ag--Mn(5 percent), KCl, MnF$sub 2$, CsCl and LaF$sub 3$ were studied using the soft x-ray appearance potential spectroscopy (SXAPS) technique. Studies were also made of bulk polycrystalline samples of Y, Zr, Nb, and Mo. The results are discussed in terms of existing SXAPS theories. Several similarities between soft x-ray absorption (SXA) data and the SXAPS results are discussed, and it is shown that the SXA data can aid in the interpretation of SXAPS spectra when using the well-known self-convolution model. In this approximation the absorption coefficient, $alpha$(E), is substituted for the density of states, N(E-E/sub c/) $Yields$ $alpha$(E). For more localized excitations, a convolution of $alpha$(E) with bremsstrahlung isochromat data, based on Wendin's two density of states formalism is used to predict SNAPS results. (auth)

Smith, R. J.

1975-10-01T23:59:59.000Z

108

BONDING IN INORGANIC COMPOUNDS: A STUDY BY X-RAY PHOTOELECTRON SPECTROSCOPY  

E-Print Network (OSTI)

to calculate the fluorine and chlorine charges in CIF. C IfEB=248.62eV ) for Ref. 2. Chlorine binding energies arefor Ref. 2, 3, & 4; the chlorine values for Ref. 1 are based

Avanzino, Steven Charles

2011-01-01T23:59:59.000Z

109

X-ray Photoelectron Spectroscopy and Kinetic Study: Pt-Group Metals and Bimetallic Surfaces  

E-Print Network (OSTI)

Pt-group metals were some of the first metals to be studied as catalysts for industrial use. The goal of these studies was to ascertain a fundamental understanding of CO oxidation and acetylene cyclotrimerization reactions on Ptgroup metals. A further goal was to determine the optimal conditions for each reaction. CO oxidation on Rh(111),Pt(100), and Pd(100) was scrutinized on various oxide surfaces from chemisorbed to bulk metal oxides. Low pressure reactions on Rh(111) reveal the highest activity was a CO uninhibited surface with oxidation revealed that only oxidation reactions on Pd(100) show oxygen penetration after CO has been consumed; however, during the highest activity XPS found only chemisorbed species. The cyclotrimerization of acetylene to benzene is another reaction found in industry typically carried out on Pd. The active site is considered to be a 7 atom configuration with 6 atoms surrounding a central atom. By adding relatively catalytically inert Au atoms to the active Pd(111) surface the acetylene coupling activity is enhanced. Cyclization activity is a function of the surface composition and the surface structure. A single Pd atom surrounded by six Au atoms is found to have the highest activity at 300K for acetylene cyclotrimerization.

Gath, Kerrie K.

2008-12-01T23:59:59.000Z

110

Charge transfer effects in electrocatalytic Ni-C revealed by x-ray photoelectron spectroscopy  

SciTech Connect

Binary Ni-C thin-film alloys, which have been shown to be passive against corrosion in hot sulphuric acid solution whilst also being electrocatalytically active, were investigated by XPS to determine the oxidation state of the metal and carbon components. The Ni component produces a Ni 2p spectrum similar to that of metallic nickel (i.e., no oxidation occurs) but with a 0.3 eV shift to higher binding energy (BE) due to electron donation to the carbon matrix. The C 1s peak shows a shift to lower BE by accepting electrons from the Ni nanocrystals. A cluster-model analysis of the observed Ni 2p spectrum is consistent with the electron transfer from the nickel to the carbon.

Haslam, G. E.; Chin, X.-Y.; Burstein, G. T. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke St., Cambridge CB2 3QZ (United Kingdom); Sato, K.; Mizokawa, T. [Department of Complexity Science and Engineering, University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8651 (Japan)

2012-06-04T23:59:59.000Z

111

In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions  

E-Print Network (OSTI)

The lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state ...

Lu, Yi-chun

112

X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals  

E-Print Network (OSTI)

linked to Au, Ag, and indium tin oxide (ITO) by this method.band spectrum of ITO (indium tin oxide). The valence band is

Hamad, Kimberly S.

2000-01-01T23:59:59.000Z

113

X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals  

E-Print Network (OSTI)

Figure 2-5 FESEM of 60Å CdSe nanocrystals on hexanedithiol/properties of semiconductor (CdSe, InAs) nanocrystals andCdSe)..

Hamad, Kimberly S.

2000-01-01T23:59:59.000Z

114

B30: Infrared Spectra and X-Ray Photoelectron Spectroscopy Study ...  

Science Conference Proceedings (OSTI)

A18: Effect of Local Alendronate Delivery on In Vivo Osteogenesis From PCL ... A7: On-the-fly System Design for High Precision/Ultra Fast/Wide Area Fabrication .... C19: Dissolution Behavior of Cu Under Bump Metallization in Ball Grid Array ... High Volume and Fast Turnaround Automated Inline TEM Sample Preparation.

115

Studies of Cu(II) in soil by X-ray absorption spectroscopy A. I. Frenkel1 and G. V. Korshin2  

E-Print Network (OSTI)

Studies of Cu(II) in soil by X-ray absorption spectroscopy A. I. Frenkel1 and G. V. Korshin2 1. Frenkel, A. I. and Korshin, G. V. 2001. Studies of Cu(II) in soil by X-ray absorption spectroscopy. Can. J. Soil Sci. 81: 271­276. Based on original data for copper, this paper evaluates the use and advantages

Frenkel, Anatoly

116

Synchrotron X-ray Measurements  

Science Conference Proceedings (OSTI)

... fine structure (EXAFS) spectroscopy; (3) variable kinetic energy X-ray ... advanced materials is critical to the development and optimization of products ...

2012-10-04T23:59:59.000Z

117

High Energy Resolution Fluorescence Detection X-Ray Absorption Spectroscopy: Detection of Adsorption Sites in Supported Metal Catalysts  

Science Conference Proceedings (OSTI)

High energy resolution fluorescence detection (HERFD) X-ray adsorption spectroscopy (XAS) is demonstrated as a new tool to identify the geometry of metal adsorption sites and the orbitals involved in bonding. The type of CO adsorption site on a nanoparticular Pt-Al2O3 catalyst is determined. The orbitals involved in the Pt - CO bonding are identified using theoretical FEFF8.0 calculations. In situ application of HERFD XAS is applicable to a large number of catalytic systems and will provide fundamental insights in structure - performance relationships.

Tromp, Moniek [University of Southampton, School of Chemistry, Highfield, Southampton, SO17 1BJ (United Kingdom); Bokhoven, Jeroen A. van [Institute for chemical and bioengineering ETH Zurich (Switzerland); Safonova, Olga V.; Glatzel, Pieter [ESRF, Grenoble (France); Groot, Frank M. F. de [Utrecht University, Utrecht (Netherlands); Evans, John [University of Southampton, School of Chemistry, Highfield, Southampton, SO17 1BJ (United Kingdom); Diamond Light Source, Didcot (United Kingdom)

2007-02-02T23:59:59.000Z

118

Firmware lower-level discrimination and compression applied to streaming x-ray photon correlation spectroscopy area-detector data  

Science Conference Proceedings (OSTI)

We present a data acquisition system to perform on-the-fly background subtraction and lower-level discrimination compression of streaming x-ray photon correlation spectroscopy data from a fast charge-coupled device (CCD) area detector. The system is built using a commercial frame grabber with an on-board field-programmable gate array. The system is capable of continuously processing at least 60 CCD frames per second each consisting of 1024 x 1024 16-bit pixels with < or approx. 15 000 photon hits per frame at a maximum compression factor of {approx_equal}95%.

Madden, T.; Fernandez, P.; Jemian, P.; Narayanan, S.; Sandy, A. R.; Sikorski, M.; Sprung, M.; Weizeorick, J. [X-Ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439 (United States)

2011-07-15T23:59:59.000Z

119

Local structure of indium oxynitride from x-ray absorption spectroscopy  

SciTech Connect

Synchrotron x-ray absorption near edge structures (XANES) measurements of In L{sub 3} edge is used in conjunction with first principles calculations to characterize rf magnetron sputtered indium oxynitride at different O contents. Good agreement between the measured and the independently calculated spectra are obtained. Calculations show that the XANES spectra of this alloy are sensitive to the coordination numbers of the In atoms, i.e., fourfold for indium nitride-like structures and sixfold for indium oxide-like structures, but not to the substitution of nearest neighbor N by O or vice versa.

T-Thienprasert, J.; Onkaw, D.; Rujirawat, S.; Limpijumnong, S. [School of Physics, Suranaree University of Technology and National Synchrotron Research Center, Nakhon Ratchasima 30000 (Thailand); Nukeaw, J.; Sungthong, A. [Nanotechnology Research Center of KMITL and Department of Applied Physics, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Porntheeraphat, S. [Thai Microelectronics Center, National Electronics and Computer Technology Center, Pathumthani 12120 (Thailand); Singkarat, S. [Fast Neutron Research Facility, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

2008-08-04T23:59:59.000Z

120

Probing the hydrogen-bond network of water via time-resolved soft x-ray spectroscopy  

DOE Green Energy (OSTI)

We report time-resolved studies of hydrogen bonding in liquid H2O, in response to direct excitation of the O-H stretch mode at 3 mu m, probed via soft x-ray absorption spectroscopy at the oxygen K-edge. This approach employs a newly developed nanofluidic cell for transient soft x-ray spectroscopy in liquid phase. Distinct changes in the near-edge spectral region (XANES) are observed, and are indicative of a transient temperature rise of 10K following transient laser excitation and rapid thermalization of vibrational energy. The rapid heating occurs at constant volume and the associated increase in internal pressure, estimated to be 8MPa, is manifest by distinct spectral changes that differ from those induced by temperature alone. We conclude that the near-edge spectral shape of the oxygen K-edge is a sensitive probe of internal pressure, opening new possibilities for testing the validity of water models and providing new insight into the nature of hydrogen bonding in water.

Huse, Nils; Wen, Haidan; Nordlund, Dennis; Szilagyi, Erzsi; Daranciang, Dan; Miller, Timothy A.; Nilsson, Anders; Schoenlein, Robert W.; Lindenberg, Aaron M.

2009-04-24T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray photoelectron spectroscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

REACTION KINETICS AND X-RAY ABSORPTION SPECTROSCOPY STUDIES OF YTTRIUM CONTAINING METAL HYDRIDE ELECTRODES  

DOE Green Energy (OSTI)

This was a study of electrode degradation mechanisms and the reaction kinetics of LaNi{sub 4.7}Sn{sub 0.3}, La{sub (1{minus}x)}, (x = 0.1, 0.2, and 0.3) and La{sub 0.7}Y{sub 0.3}Ni{sub 4.6}Sn{sub 0.3}Co{sub 0.1} metal hydride electrodes. Alloy characterization included x-ray diffraction (XRD), x-ray absorption (XAS), hydrogen absorption in a Sieverts apparatus, and electrochemical cycling of alloy electrodes. The atomic volume of H was determined for two of the alloys. Electrochemical kinetic measurements were made using steady state galvanostatic measurements, galvanodynamic sweep, and electrochemical impedance techniques. XAS was used to examine the degree of corrosion of the alloys with cycling. Alloying with Y decreased the corrosion rate. The results are consistent with corrosion inhibition by a Y containing passive film. The increase in the kinetics of the hydrogen oxidation reaction (HOR) with increasing depth of discharge was much greater on the Y containing alloys. This may be due to the dehydriding of the catalytic species on the surface of the metal hydride particles.

TICIANELLI,E.A.; MUKERJEE,S.; MCBREEN,J.; ADZIC,G.D.; JOHNSON,J.R.; REILLY,J.J.

1998-11-01T23:59:59.000Z

122

SOFT X-RAY SPECTROSCOPY OF THE CYGNUS LOOP SUPERNOVA REMNANT  

SciTech Connect

We present the results of a suborbital rocket flight whose scientific target was the Cygnus Loop Supernova Remnant. The payload consists of wire grid collimators, off-plane grating arrays, and gaseous electron multiplier (GEM) detectors. The system is designed for spectral measurements in the 17-107 A bandpass with a resolution up to {approx}60 ({lambda}/{Delta}{lambda}). The Extended X-ray Off-plane Spectrometer (EXOS) was launched on a Terrier-Black Brant rocket on 2009 November 13 from White Sands Missile Range and obtained 340 s of useable scientific data. The X-ray emission is dominated by O VII and O VIII, including the He-like O VII triplet at {approx}22 A. Another emission feature at {approx}45 A is composed primarily of Si XI and Si XII. The best-fit model to this spectrum is an equilibrium plasma model at a temperature of log(T) = 6.4 (0.23 keV).

Oakley, Phil [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., 37-582F, Cambridge, MA 02139 (United States)] [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., 37-582F, Cambridge, MA 02139 (United States); McEntaffer, Randall [Department of Physics and Astronomy, Van Allen Hall, University of Iowa, Iowa City, IA 52242 (United States)] [Department of Physics and Astronomy, Van Allen Hall, University of Iowa, Iowa City, IA 52242 (United States); Cash, Webster, E-mail: Oakley@mit.edu [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States)] [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States)

2013-03-20T23:59:59.000Z

123

Auto-oligomerization and hydration of pyrrole revealed by x-ray absorption spectroscopy  

DOE Green Energy (OSTI)

Near edge x-ray absorption fine structure (NEXAFS) spectra have been measured at the carbon and nitrogen K-edges of the prototypical aromatic molecule, pyrrole, both in the gas phase and when solvated in water, and compared with spectra simulated using a combination of classical molecular dynamics and first principles density functional theory in the excited state core hole approximation. The excellent agreement enabled detailed assignments. Pyrrole is highly reactive, particularly in water, and reaction products formed by the auto-oligomerization of pyrrole are identified. The solvated spectra have been measured at two different temperatures, indicating that the final states remain largely unaffected by both hydration and temperature. This is somewhat unexpected, since the nitrogen in pyrrole can donate a hydrogen bond to water.

Advanced Light Source; Schwartz, Craig P.; Uejio, Janel S.; Duffin, Andrew M.; England, Alice H.; Prendergast, David; Saykally, Richard J

2009-05-29T23:59:59.000Z

124

Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology  

SciTech Connect

Progress in science often follows or parallels the development of new techniques. The optical microscope helped convert medicine and biology from a speculative activity in old times to today's sophisticated scientific disciplines. The telescope changed the study and interpretation of heavens from mythology to science. X-ray diffraction enabled the flourishing of solid state physics and materials science. The technique object of this review, Ambient Pressure Photoelectron Spectroscopy or APPES for short, has also the potential of producing dramatic changes in the study of liquid and solid surfaces, particularly in areas such as atmospheric, environment and catalysis sciences. APPES adds an important missing element to the host of techniques that give fundamental information, i.e., spectroscopy and microscopy, about surfaces in the presence of gases and vapors, as encountered in industrial catalysis and atmospheric environments. APPES brings electron spectroscopy into the realm of techniques that can be used in practical environments. Decades of surface science in ultra high vacuum (UHV) has shown the power of electron spectroscopy in its various manifestations. Their unique property is the extremely short elastic mean free path of electrons as they travel through condensed matter, of the order of a few atomic distances in the energy range from a few eV to a few thousand eV. As a consequence of this the information obtained by analyzing electrons emitted or scattered from a surface refers to the top first few atomic layers, which is what surface science is all about. Low energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), Ultraviolet photoelectron spectroscopy (UPS), and other such techniques have been used for decades and provided some of the most fundamental knowledge about surface crystallography, composition and electronic structure available today. Unfortunately the high interaction cross section of electrons with matter also prevents them from traveling long distances unscattered in gas environments. Above the millibar pressure range this distance is reduced to less that a millimeter, effectively preventing its use in the most relevant environments, usually between millibars and atmospheric pressures. There is therefore a large gap of several orders of magnitude where information about surfaces is scarce because these powerful electron spectroscopies cannot operate. One characteristic of surfaces in ambient pressure environments is that they are covered by dense layers of molecules, even when their binding energy is weak. Water for example is known to form layers several molecules thick at room temperature in humid environments. Metals readily form oxide films several layers thick in oxygen atmospheres. Dense layers of adsorbed molecules can also be produced in ultra high vacuum, often by the simple and expedient method of cooling the sample to cryogenic temperatures. A large amount of data has been obtained in the past in UHV by surface scientists using this method. While this has provided valuable information it begs the question of whether the structures formed in this manner represent equilibrium structures or metastable ones, kinetically trapped due to high activation energies that cannot be overcome at low temperature. From a thermodynamic point of view is interesting to consider the entropic contribution to the Gibbs free energy, which we can call 'the pressure factor', equal to kT.logP. This factor amounts to a sizeable 0.3 eV difference at room temperature between UHV (<10{sup -8} Pascal) and atmospheric pressures. Such change if free energy can definitely result in changes in surface structure and stability. Entire areas of the phase diagram are out of reach due to the pressure gap. Even when cooling is not necessary, many surface treatments and most chemical reactions necessitate the presence of gases at pressures ranging from millibar to bars. What is the structure and chemical nature of the species formed on the surface in equilibrium with suc

Salmeron, Miquel; Salmeron, Miquel; Schlogl, Robert

2008-03-12T23:59:59.000Z

125

X-ray and vibrational spectroscopy of manganese complexes relevant to the oxygen-evolving complex of photosynthesis  

SciTech Connect

Manganese model complexes, relevant to the oxygen-evolving complex (OEC) in photosynthesis, were studied with Mn K-edge X-ray absorption near-edge spectroscopy (XANES), Mn Kb X-ray emission spectroscopy (XES), and vibrational spectroscopy. A more detailed understanding was obtained of the influence of nuclearity, overall structure, oxidation state, and ligand environment of the Mn atoms on the spectra from these methods. This refined understanding is necessary for improving the interpretation of spectra of the OEC. Mn XANES and Kb XES were used to study a di-(mu)-oxo and a mono-(mu)-oxo di-nuclear Mn compound in the (III,III), (III,IV), and (IV,IV) oxidation states. XANES spectra show energy shifts of 0.8 - 2.2 eV for 1-electron oxidation-state changes and 0.4 - 1.8 eV for ligand-environment changes. The shifts observed for Mn XES spectra were approximately 0.21 eV for oxidation state-changes and only approximately 0.04 eV for ligand-environment changes. This indicates that Mn Kb XES i s more sensitive to the oxidation state and less sensitive to the ligand environment of the Mn atoms than XANES. These complimentary methods provide information about the oxidation state and the ligand environment of Mn atoms in model compounds and biological systems. A versatile spectroelectrochemical apparatus was designed to aid the interpretation of IR spectra of Mn compounds in different oxidation states. The design, based on an attenuated total reflection device, permits the study of a wide spectral range: 16,700 (600 nm) - 225

Visser, Hendrik

2001-05-16T23:59:59.000Z

126

X-ray absorption spectroscopy on the calcium cofactor to the manganese cluster in photosynthetic oxygen evolution  

Science Conference Proceedings (OSTI)

Along with Mn, calcium and chloride ions are necessary cofactors for oxygen evolution in Photosystem II (PS II). To further test and verify whether Ca is close to the Mn cluster, the authors substituted strontium for Ca and probed from the Sr point of view for any nearby Mn. The extended X-ray absorption fine structure (EXAFS) of Sr-reactivated PS II indicates major differences between the intact and NH{sub 2}OH-treated samples. In intact samples, the Fourier transform of the Sr EXAFS shows a Fourier peak that is missing in inactive samples. This peak II is best simulated by two Mn neighbors at a distance of 3.5 Angstrom, confirming the proximity of Ca (Sr) cofactor to the Mn cluster. In addition, polarized Sr EXAFS on oriented Sr-reactivated samples shows this peak II is dichroic: large magnitude at 10 degrees (angle between the PS II membrane normal and the x-ray electric field vector) and small at 80 degrees. Analysis of the dichroism yields the relative angle between the Sr-Mn vector and membrane normal (23 degrees {+-} 4 degrees), and the isotropic coordination number for these layered samples. X-ray absorption spectroscopy has also been employed to assess the degree of similarity between the manganese cluster in PS II and a family of synthetic manganese complexes containing the distorted cubane [Mn{sub 4}O{sub 3}X] core (X = benzoate, acetate, methoxide, hydroxide, azide, fluoride, chloride or bromide). In addition, Mn{sub 4}O{sub 3}Cl complexes containing three or six terminal Cl ligands at three of the Mn were included in this study. The EXAFS method detects the small changes in the core structures as X is varied in this series, and serves to exclude these distorted cubanes of C3v symmetry as a topological model for the Mn catalytic cluster. The sulfur K-edge x-ray absorption near-edge structure (XANES) spectra for the amino acids cysteine, methionine, their corresponding oxidized forms cystine and methionine sulfoxide, and glutathione show distinct differences between the thiol and disulfide forms. Sulfur XANES is also used to detect changes (within 5%) of the thiol-to-disulfide ratio in whole human blood, plasma, and erythrocytes.

Cinco, Roehl M.

1999-12-16T23:59:59.000Z

127

Soft X-ray Spectroscopy of C60/Copper Phthalocyanine/MoO3 Interfaces: Role of Reduced MoO3 on Energetic Band Alignment and Improved Performance  

Science Conference Proceedings (OSTI)

The interfacial electronic structure of C{sub 60}/copper phthalocyanine (CuPc)/molybdenum trioxide (MoO{sub 3}) thin films grown in situ on indium tin oxide (ITO) substrates has been studied using synchrotron radiation-excited photoelectron spectroscopy in an attempt to understand the influence of oxide interlayers on the performance of small molecule organic photovoltaic devices. The MoO{sub 3} layer on ITO is found to significantly increase the work function of the substrate and induces large interface dipoles and band bending at the CuPc/MoO{sub 3} interface. The large band bending confirms the formation of an internal potential that assists hole extraction from the CuPc layer to the electrode. The electronic structure of the MoO{sub 3} layer on ITO was also examined using various soft X-ray spectroscopies to probe the conductive nature of the MoO{sub 3} thin film.

S Cho; L Piper; A DeMasi; A Preston; K Smith; K Chauhan; R Hatton; T Jones

2011-12-31T23:59:59.000Z

128

Reply to Comment on"Isotope and Temperature Effects in Liquid Water Probed by X-ray Absorption and Resonant X-ray Emission Spectroscopy"  

Science Conference Proceedings (OSTI)

In Ref. [1], we present and analyze experimental high resolution x-ray emission spectra (XES) of liquid water which exhibit a splitting of the 1b1 line into two components. We also suggest a qualitative model to explain the experimental spectra which, even though tentative (as clearly stated in the summary of Ref. [1]), is able to explain ALL available experimental data. In the preceding Comment, Pettersson et al. [3]claim that a spectrum with two similarly sharp 1b1 features both from a dissociated product (d2) and from the intact molecule (d1) would be"unphysical and unsubstantiated" since"the path connecting initial and final structure" is not taken into account. In the meantime, we have collected new data [2], which further support and strengthen our model.

Heske, C.; Zharnikov, M.; Weinhardt, L.; Blum, M.; Weigand, M.; Zubavichus, Y.; Bar, M.; Maier, F.; Denlinger, J. D.; Fuchs, O.; Grunze, M.; Umbach, E.

2008-05-14T23:59:59.000Z

129

Assessment of Aided Phytostabilization of Copper-Contaminated Soil by X-ray Absorption Spectroscopy and Chemical Extractions  

SciTech Connect

Field plots were established at a timber treatment site to evaluate remediation of Cu contaminated topsoils with aided phytostabilization. Soil containing 2600 mg kg{sup -1} Cu was amended with a combination of 5 wt% compost and 2 wt% iron grit, and vegetated. Sequential extraction was combined with extended X-ray absorption fine structure (EXAFS) spectroscopy to correlate changes in Cu distribution across five fractions with changes in the predominant Cu compounds two years after treatment in parallel treated and untreated field plots. Exchangeable Cu dominated untreated soil, most likely as Cu(II) species non-specifically bound to natural organic matter. The EXAFS spectroscopic results are consistent with the sequential extraction results, which show a major shift in Cu distribution as a result of soil treatment to the fraction bound to poorly crystalline Fe oxyhydroxides forming binuclear inner-sphere complexes.

J Kumpiene; M Mench; C Bes; J Fitts

2011-12-31T23:59:59.000Z

130

Complex phase compositions in nanostructured coatings as evidenced by photoelectron spectroscopy: The case of Al-Si-N hard coatings  

Science Conference Proceedings (OSTI)

The chemical state evolution of the Al-Si-N thin films at various Si contents is investigated by x-ray photoelectron spectroscopy (XPS). The detailed evolution of the Al 2p, Si 2p, and N 1s photoelectrons line positions and widths are used to identify different chemical environments as the Si content is changed. The results are compared to x-ray diffraction (XRD) data that indicate the formation of a two-phase Al{sub 1-x}Si{sub x}N/SiN{sub y} composite when the solubility limit of 6 at. % of Si in AlN is exceeded. In contrast to XRD data, no particular effect is observed in the XPS data at the solubility limit of Si. Instead, two compositional regions can be identified that are separated by a distinct change in the evolution of core level binding energy differences and chemical shifts at about 10-15 at. % of Si. This silicon concentration is identified as the onset of the formation of a SiN{sub y} intergranular phase that is a few monolayers thick, having a chemical bonding similar to that in bulk silicon nitride. The observed changes in the XPS data coincide well with the structural changes in the material at different silicon contents. The unambiguous identification of phases, especially of minority phases from XPS data, is, however, not possible.

Pelisson-Schecker, Aude; Patscheider, Joerg [Laboratory for Nanoscale Materials Science, Swiss Federal Laboratories for Materials Science and Technology, EMPA, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Hug, Hans Josef [Laboratory for Nanoscale Materials Science, Swiss Federal Laboratories for Materials Science and Technology, EMPA, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

2010-07-15T23:59:59.000Z

131

High-resolution x-ray spectroscopy with the EBIT Calorimeter Spectrometer  

Science Conference Proceedings (OSTI)

The EBIT Calorimeter Spectrometer (ECS) is a production-class 36 pixel x-ray calorimeter spectrometer that has been continuously operating at the Electron Beam Ion Trap (EBIT) facility at Lawrence Livermore National Laboratory for almost 2 years. The ECS was designed to be a long-lifetime, turn-key spectrometer that couples high performance with ease of operation and minimal operator intervention. To this end, a variant of the Suzaku/XRS spaceflight detector system has been coupled to a low-maintenance cryogenic system consisting of a long-lifetime liquid He cryostat, and a closed cycle, {sup 3}He pre-cooled adiabatic demagnetization refrigerator. The ECS operates for almost 3 weeks between cryogenic servicing and the ADR operates at 0.05 K for more than 60 hours between automatic recycles under software control. Half of the ECS semiconductor detector array is populated with mid-band pixels that have a resolution of 4.5 eV FWHM, a bandpass from 0.05-12 keV, and a quantum efficiency of 95% at 6 keV. The other half of the array has thick HgTe absorbers that have a bandpass from 0.3 to over 100 keV, an energy resolution of 33 eV FWHM, and a quantum efficiency of 32% at 60 keV. In addition, the ECS uses a real-time, autonomous, data collection and analysis system developed for the Suzaku/XRS instrument and implemented in off-the-shelf hardware for the ECS. Here we will discuss the performance of the ECS instrument and its implementation as a turnkey cryogenic detector system.

Porter, F S; Adams, J S; Beiersdorfer, P; Brown, G V; Clementson, J; Frankel, M; Kahn, S M; Kelley, R L; Kilbourne, C A

2009-10-01T23:59:59.000Z

132

UV-Raman spectroscopy, X-ray photoelectron spectroscopy, and temperature programmed desorption studies of model and bulk heterogeneous catalysts  

E-Print Network (OSTI)

they are. I have to thank Exxon Research and Engineeringand former employees of Exxon for encouraging me to quit anda half years of indecision at Exxon Research and Engineering

Tewell, Craig R.

2002-01-01T23:59:59.000Z

133

Critical-angle transmission grating spectrometer for high-resolution soft x-ray spectroscopy on the International X-ray Observatory  

E-Print Network (OSTI)

High-resolution spectroscopy at energies below 1 keV covers the lines of C, N, O, Ne and Fe ions, and is central to studies of the Interstellar Medium, the Warm Hot Intergalactic Medium, warm absorption and outflows in ...

Heilmann, Ralf K.

134

SPIN POLARIZED PHOTOELECTRON SPECTROSCOPY AS A PROBE OF MAGNETIC SYSTEMS.  

SciTech Connect

Spin-polarized photoelectron spectroscopy has developed into a versatile tool for the study of surface and thin film magnetism. In this chapter, we examine the methodology of the technique and its recent application to a number of different problems. We first examine the photoemission process itself followed by a detailed review of spin-polarization measurement techniques and the related experimental requirements. We review studies of spin polarized surface states, interface states and quantum well states followed by studies of the technologically important oxide systems including half-metallic transition metal oxides, ferromagnet/oxide interfaces and the antiferromagnetic cuprates that exhibit high Tc Superconductivity. We also discuss the application of high-resolution photoemission with spin resolving capabilities to the study of spin dependent self energy effects.

JOHNSON, P.D.; GUNTHERODT, G.

2006-11-01T23:59:59.000Z

135

CHARACTERIZATION OF THE LOCAL TITANIUM ENVIRONMENT IN DOPED SODIUM ALUMINUM HYDRIDE USING X-RAY ADSORPTION SPECTROSCOPY.  

DOE Green Energy (OSTI)

Ti K-edge x-ray absorption spectroscopy was used to explore the local titanium environment and valence in 2-4 mol% Ti-doped sodium alanate. An estimate of the oxidation state of the dopant, based upon known standards, revealed a zero-valent titanium atom. An analysis of the near-edge and extended fine structures indicates that the Ti does not enter substitutional or interstitial sites in the NaAlH{sub 4} lattice. Rather, the Ti is located on/near the surface and is coordinated by 10.2 {+-} 1 aluminum atoms with an interatomic distance of 2.82 {+-} 0.01 {angstrom}, similar to that of TiAl{sub 3}. The Fourier transformed EXAFS spectra reveals a lack of long-range order around the Ti dopant indicating that the Ti forms nano-clusters of TiAl{sub 3}. The similarity of the spectra in the hydrided and dehydrided samples suggests that the local Ti environment is nearly invariant during hydrogen cycling.

GRAETZ, J.; IGNATOV, A. YU; TYSON, T.A.; REILLY, J.J.; JOHNSON, J.

2004-11-30T23:59:59.000Z

136

Development of Palladium L-Edge X-Ray Absorption Spectroscopy And Its Application for Chloropalladium Complexes  

Science Conference Proceedings (OSTI)

X-ray absorption spectroscopy (XAS) is a synchrotron-based experimental technique that provides information about geometric and electronic structures of transition metal complexes. Combination of metal L-edge and ligand K-edge XAS has the potential to define the complete experimental ground state electronic structures for metal complexes with unoccupied d manifolds. We developed a quantitative treatment for Pd L-edge spectroscopy on the basis of the well-established chlorine K-edge XAS for a series of chloropalladium complexes that are pre-catalysts in various organic transformations. We found that Pd-Cl bonds are highly covalent, such as 24 {+-} 2%, 34 {+-} 3%, and 48 {+-} 4% chloride 3p character for each Pd-Cl bond in [PdCl{sub 4}]{sup 2-}, [PdCl{sub 6}]{sup 2-}, and PdCl{sub 2}, respectively. Pd(2p {yields} 4d) transition dipole integrals of 20.8 (SSRL)/16.9 (ALS) eV and 14.1 (SSRL)/11.9 (ALS) eV were determined using various combinations of L-edges for Pd(II) and Pd(IV), respectively. Application of metal-ligand covalency and transition dipole integrals were demonstrated for the example of bridging chloride ligands in PdCl{sub 2}. Our work lays the foundation for extending the quantitative treatment to other catalytically important ligands, such as phosphine, phosphite, olefin, amine, and alkyl in order to correlate the electronic structures of palladium complexes with their catalytic activity.

Boysen, R.B.; Szilagyi, R.K.

2009-05-12T23:59:59.000Z

137

Resonant soft X-ray emission spectroscopy of vanadium oxides andrelated compounds  

SciTech Connect

In today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one ''spintronic'' device that exploits both charge and ''spin'' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; and (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 {micro}m thick transparent pulsed laser deposited films of the Mn (< 4 at.%) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous distribution of Mn substituting for Zn a 2{sup +} state in the ZnO lattice. Ferromagnetic Resonance (FMR) technique is used to confirm the existence of ferromagnetic ordering at temperatures as high as 425K. The ab initio calculations were found to be consistent with the observation of ferromagnetism arising from fully polarized Mn 2{sup +} state. The key to observed room temperature ferromagnetism in this system is the low temperature processing, which prevents formation of clusters, secondary phases and the host ZnO from becoming n-type. The electronic structure of the same Mn doped ZnO thin films studied using XAS, XES and RIXS. revealed a strong hybridization between Mn 3d and O 2p states, which is an important characteristic of a Dilute magnetic Semiconductor (DMS). It is shown that the various processing conditions like sintering temperature, dopant concentration and the properties of precursors used for making of DMS have a great influence on the final properties. Use of various experimental techniques to verify the physical properties, and to understand the mechanism involved to give rise to ferromagnetism is presented. Methods to improve the magnetic moment in Mn doped ZnO are also described. New promising DMS materials (such as Cu doped ZnO are explored). The demonstrated new capability to fabricate powder, pellets, and thin films of room temperature ferromagnetic semiconductors thus makes possible the realization of a wide range of complex elements for a variety of new multifunctional phenomena related to Spintronic devices as well as magneto-optic components.

Schmitt, Thorsten

2004-11-01T23:59:59.000Z

138

Resonant soft X-ray emission spectroscopy of vanadium oxides andrelated compounds  

DOE Green Energy (OSTI)

In today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one ''spintronic'' device that exploits both charge and ''spin'' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; and (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 {micro}m thick transparent pulsed laser deposited films of the Mn (< 4 at.%) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous distribution of Mn substituting for Zn a 2{sup +} state in the ZnO lattice. Ferromagnetic Resonance (FMR) technique is used to confirm the existence of ferromagnetic ordering at temperatures as high as 425K. The ab initio calculations were found to be consistent with the observation of ferromagnetism arising from fully polarized Mn 2{sup +} state. The key to observed room temperature ferromagnetism in this system is the low temperature processing, which prevents formation of clusters, secondary phases and the host ZnO from becoming n-type. The electronic structure of the same Mn doped ZnO thin films studied using XAS, XES and RIXS. revealed a strong hybridization between Mn 3d and O 2p states, which is an important characteristic of a Dilute magnetic Semiconductor (DMS). It is shown that the various processing conditions like sintering temperature, dopant concentration and the properties of precursors used for making of DMS have a great influence on the final properties. Use of various experimental techniques to verify the physical properties, and to understand the mechanism involved to give rise to ferromagnetism is presented. Methods to improve the magnetic moment in Mn doped ZnO are also described. New promising DMS materials (such as Cu doped ZnO are explored). The demonstrated new capability to fabricate powder, pellets, and thin films of room temperature ferromagnetic semiconductors thus makes possible the realization of a wide range of complex elements for a variety of new multifunctional phenomena related to Spintronic devices as well as magneto-optic components.

Schmitt, Thorsten

2004-11-01T23:59:59.000Z

139

Control of resonance enhanced multi-photon ionization photoelectron spectroscopy by phase-shaped femtosecond laser pulse  

Science Conference Proceedings (OSTI)

In this paper, we theoretically demonstrate that the (2+1+1) resonance enhanced multi-photon ionization photoelectron spectroscopy in sodium atom can be effectively controlled by shaping femtosecond laser pulse with a {pi} phase step modulation in weak laser field, involving its total photoelectron energy, maximal photoelectron intensity, and spectroscopic bandwidth. Our results show that the total photoelectron energy can be suppressed but not enhanced, the maximal photoelectron intensity can be enhanced and also suppressed, and the photoelectron spectroscopy can be tremendously narrowed. These theoretical results can provide a feasible scheme to achieve the high-resolution photoelectron spectroscopy and study the excited state structure in atomic and molecular systems.

Zhang Shian; Lu Chenhui; Jia Tianqing; Sun Zhenrong [State Key Laboratory of Precision Spectroscopy, and Department of Physics, East China Normal University, Shanghai 200062 (China); Qiu Jianrong [State Key Laboratory of Luminescent Materials and Devices, and Institute of Optical Communication Materials, South China University of Technology, Wushan Road 381, Guangzhou 510640 (China)

2012-11-07T23:59:59.000Z

140

Influence of the cobalt particle size in the CO hydrogenation reaction studied by in situ X-ray absorption spectroscopy  

E-Print Network (OSTI)

Cobalt, nanoparticles, Fischer-Tropsch, X-ray absorption (oxides [5] and Fischer-Tropsch (FT) synthesis [6,7]. Itswhich is inactive for Fischer-Tropsch synthesis. This oxide

Herranz, Tirma

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray photoelectron spectroscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

End station for nanoscale magnetic materials study: Combination of scanning tunneling microscopy and soft X-ray magnetic circular dichroism spectroscopy  

SciTech Connect

We have constructed an end station for nanoscale magnetic materials study at the soft X-ray beamline HiSOR BL-14 at Hiroshima Synchrotron Radiation Center. An ultrahigh-vacuum scanning tunneling microscope (STM) was installed for an in situ characterization of nanoscale magnetic materials in combination with soft X-ray magnetic circular dichroism (XMCD) spectroscopy experiment. The STM was connected to the XMCD experimental station via damper bellows to isolate it from environmental vibrations, thus achieving efficient spatial resolution for observing Si(111) surface at atomic resolution. We performed an in situ experiment with STM and XMCD spectroscopy on Co nanoclusters on an Au(111) surface and explored its practical application to investigate magnetic properties for well-characterized nanoscale magnetic materials.

Ueno, Tetsuro; Sawada, Masahiro; Namatame, Hirofumi [Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046 (Japan); Kishimizu, Yusuke; Kimura, Akio [Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); Taniguchi, Masaki [Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046 (Japan); Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan)

2012-12-15T23:59:59.000Z

142

X-ray polarization spectroscopy to study anisotropic velocity distribution of hot electrons produced by an ultra-high-intensity laser  

SciTech Connect

The anisotropy of the hot-electron velocity distribution in ultra-high-intensity laser produced plasma was studied with x-ray polarization spectroscopy using multilayer planar targets including x-ray emission tracer in the middle layer. This measurement serves as a diagnostic for hot-electron transport from the laser-plasma interaction region to the overdense region where drastic changes in the isotropy of the electron velocity distribution are observed. These polarization degrees are consistent with analysis of a three-dimensional polarization spectroscopy model coupled with particle-in-cell simulations. Electron velocity distribution in the underdense region is affected by the electric field of the laser and that in the overdense region becomes wider with increase in the tracer depth. A full-angular spread in the overdense region of 22.4 deg.{sub -2.4}{sup +5.4} was obtained from the measured polarization degree.

Inubushi, Y. [Institute of Laser Engineering, Osaka University, Suita, Osaka (Japan); Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Okano, Y.; Nishimura, H.; Cai, H.; Nagatomo, H.; Kai, T.; Fujioka, S.; Nakamura, T.; Johzaki, T.; Mima, K. [Institute of Laser Engineering, Osaka University, Suita, Osaka (Japan); Kawamura, T. [Tokyo Institute of Technology, Yokohama, Kanagawa (Japan); Batani, D.; Morace, A.; Redaelli, R. [Dipartmento di Fisica 'G. Occhialini', University of Milano-Bicocca, Milan (Italy); Fourment, C.; Santos, J. J.; Malka, G. [CELIA, Universite de Bordeaux/CNRS/CEA, Talence (France); Boscheron, A.; Bonville, O.; Grenier, J. [CEA/CESTA, Le Barp (France)

2010-03-15T23:59:59.000Z

143

Speciation of Trace Elements in Biological and Environmental Samples by X-ray Absorption Spectroscopy: The Role of Plants and Microbes in Remediation  

Science Conference Proceedings (OSTI)

Plants can accumulate, detoxify, and transform trace elements present in contaminated soil and water, leading to the phytoremediation of contaminated sites. An important factor for consideration is the chemical form of trace elements accumulated in tissues of different plant species used for phytoremediation. This report describes the use of X-ray absorption spectroscopy (XAS) for successfully determining the speciation of trace elements in biological and environmental samples.

2001-11-21T23:59:59.000Z

144

Alignment of the photoelectron spectroscopy beamline at NSRL  

E-Print Network (OSTI)

The photoelectron spectroscopy beamline at National Synchrotron Radiation Laboratory (NSRL) is equipped with a spherical grating monochromator with the included angle of 174 deg. Three gratings with line density of 200, 700 and 1200 lines/mm are used to cover the energy region from 60 eV to 1000 eV. After several years operation, the spectral resolution and flux throughput were deteriorated, realignment is necessary to improve the performance. First, the wavelength scanning mechanism, the optical components position and the exit slit guide direction are aligned according to the design value. Second, the gratings are checked by Atomic Force Microscopy (AFM). And then the gas absorption spectrum is measured to optimize the focusing condition of the monochromator. The spectral resolving power is recovered to the designed value of 1000@244eV. The flux at the end station for the 200 lines/mm grating is about 10^10 photons/sec/200mA, which is in accordance with the design. The photon flux for the 700 lines/mm grati...

Li, Chaoyang; Wen, Shen; Pan, Congyuan; An, Ning; Du, Xuewei; Zhu, Junfa; Wang, Qiuping

2013-01-01T23:59:59.000Z

145

Alignment of the photoelectron spectroscopy beamline at NSRL  

E-Print Network (OSTI)

The photoelectron spectroscopy beamline at National Synchrotron Radiation Laboratory (NSRL) is equipped with a spherical grating monochromator with the included angle of 174 deg. Three gratings with line density of 200, 700 and 1200 lines/mm are used to cover the energy region from 60 eV to 1000 eV. After several years operation, the spectral resolution and flux throughput were deteriorated, realignment is necessary to improve the performance. First, the wavelength scanning mechanism, the optical components position and the exit slit guide direction are aligned according to the design value. Second, the gratings are checked by Atomic Force Microscopy (AFM). And then the gas absorption spectrum is measured to optimize the focusing condition of the monochromator. The spectral resolving power is recovered to the designed value of 1000@244eV. The flux at the end station for the 200 lines/mm grating is about 10^10 photons/sec/200mA, which is in accordance with the design. The photon flux for the 700 lines/mm grating is about 5 X 10^8 photons/sec/200mA, which is lower than expected. This poor flux throughput may be caused by carbon contamination on the optical components. The 1200 lines/mm grating has roughness much higher than expected so the diffraction efficiency is too low to detect any signal. A new grating would be ordered. After the alignment, the beamline has significant performance improvements in both the resolving power and the flux throughput for 200 and 700 lines/mm gratings and is provided to users.

Chaoyang Li; Hanbin Pan; Shen Wen; Congyuan Pan; Ning An; Xuewei Du; Junfa Zhu; Qiuping Wang

2013-03-04T23:59:59.000Z

146

Microgap x-ray detector  

DOE Patents (OSTI)

An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

Wuest, Craig R. (Danville, CA); Bionta, Richard M. (Livermore, CA); Ables, Elden (Livermore, CA)

1994-01-01T23:59:59.000Z

147

Short-range atomic structure of 1 wt. % Ga [delta]-stabilized plutonium by x-ray-absorption fine-structure spectroscopy  

Science Conference Proceedings (OSTI)

Using extended x-ray-absorption fine-structure (XAFS) spectroscopy we have determined the radii of the first three atomic shells around Ga and the first Pu shell in a fcc Pu alloy stabilized by 1 wt. % Ga. We find the Ga to be substitutional in the fcc lattice, with the first and second shells contracted by 3.7 and 0.9%, respectively, relative to distances expected from the lattice constant derived from x-ray diffraction. The lattice is well ordered around Ga, but there is considerable static disorder in all observed coordination shells of Pu. We discuss these results in relation to the mechanism by which Ga effects phase stabilization.

Cox, L.E.; Martinez, R. (Nuclear Materials Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)); Nickel, J.H.; Conradson, S.D.; Allen, P.G. (Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States))

1995-01-01T23:59:59.000Z

148

Growth and structure of water on SiO2 films on Si investigated byKelvin probe microscopy and in situ X-ray Spectroscopies  

SciTech Connect

The growth of water on thin SiO{sub 2} films on Si wafers at vapor pressures between 1.5 and 4 torr and temperatures between -10 and 21 C has been studied in situ using Kelvin Probe Microscopy and X-ray photoemission and absorption spectroscopies. From 0 to 75% relative humidity (RH) water adsorbs forming a uniform film 4-5 layers thick. The surface potential increases in that RH range by about 400 mV and remains constant upon further increase of the RH. Above 75% RH the water film grows rapidly, reaching 6-7 monolayers at around 90% RH and forming a macroscopic drop near 100%. The O K-edge near-edge X-ray absorption spectrum around 75% RH is similar to that of liquid water (imperfect H-bonding coordination) at temperatures above 0 C and ice-like below 0 C.

Verdaguer, A.; Weis, C.; Oncins, G.; Ketteler, G.; Bluhm, H.; Salmeron, M.

2007-06-14T23:59:59.000Z

149

X-ray Imaging Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging and Spectro-microscopy: Imaging and Spectro-microscopy: the Present and the Future Stanford Synchrotron Radiation Laboratory October 8-9, 2002 Organizers: John Miao & Keith Hodgson A workshop on "X-ray Imaging and Spectro-microscopy: the Present and the Future" was held on October 8-9, 2002. This workshop, organized by John Miao (SSRL) and Keith Hodgson (SSRL) provided a forum to discuss the scientific applications of a variety of imaging and spectro-microscopic techniques, including photoemission electron microscopy (PEEM), angle resolved photoemission spectroscopy (ARPES), coherent diffraction imaging, x-ray microscopy, micro-tomography, holographic imaging, and x-ray micro-probe. Twelve invited speakers discussed the important scientific applications of these techniques, and also predicted the future scientific directions with the advance of instrumentation and x-ray sources. The workshop was well attended with over fifty registered attendees.

150

X-ray absorption spectroscopy of aluminum z-pinch plasma with tungsten backlighter planar wire array source  

Science Conference Proceedings (OSTI)

Absorption features from K-shell aluminum z-pinch plasmas have recently been studied on Zebra, the 1.7 MA pulse power generator at the Nevada Terawatt Facility. In particular, tungsten plasma has been used as a semi-backlighter source in the generation of aluminum K-shell absorption spectra by placing a single Al wire at or near the end of a single planar W array. All spectroscopic experimental results were recorded using a time-integrated, spatially resolved convex potassium hydrogen phthalate (KAP) crystal spectrometer. Other diagnostics used to study these plasmas included x-ray detectors, optical imaging, laser shadowgraphy, and time-gated and time-integrated x-ray pinhole imagers. Through comparisons with previous publications, Al K-shell absorption lines are shown to be from much lower electron temperature ({approx}10-40 eV) plasmas than emission spectra ({approx}350-500 eV).

Osborne, G. C.; Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Weller, M. E.; Shrestha, I.; Shlyaptseva, V. V. [Physics Department, University of Nevada, Reno, Reno, Nevada 89557 (United States); Ouart, N. D. [Naval Research Laboratory, Washington, D.C. 20375 (United States)

2012-10-15T23:59:59.000Z

151

Single-crystal Raman spectroscopy and X-ray crystallography at beamline X26-C of the NSLS  

E-Print Network (OSTI)

Three-dimensional structures derived from X-ray diffraction of protein crystals provide a wealth of information. Features and interactions important for the function of macromolecules can be deduced and catalytic mechanisms postulated. Still, many questions can remain, for example regarding metal oxidation states and the interpretation of ‘mystery density’, i.e. ambiguous or unknown features within the electron density maps, especially at 2A ? resolutions typical of most macromolecular structures. Beamline X26-C at the

Deborah Stoner-ma; John M. Skinner; Dieter K. Schneider; Matt Cowan; Robert M. Sweet; Allen M. Orville

2010-01-01T23:59:59.000Z

152

In-situ X-ray photoelectron spectroscopy studies of water on metals and oxides at ambient conditions  

E-Print Network (OSTI)

Nature 388 431 Vi si [77] Wendt S, Schaub R, Matthiesen J,e d e ar ta e. ils al [78] Wendt S, Matthiesen J, Schaub R,

Yamamoto, S.

2008-01-01T23:59:59.000Z

153

Carbon contamination and oxidation of Au surfaces under extreme ultraviolet radiation: An x-ray photoelectron spectroscopy study  

E-Print Network (OSTI)

Carbon contamination and oxidation of Au surfaces under extreme ultraviolet radiation: An x 2012) Extreme ultraviolet (EUV) radiation-induced carbon contamination and oxidation of Au surfaces modification during EUV exposure. XPS analysis showed that total carbon contamination (C 1s peak

Harilal, S. S.

154

Conduction-band electronic states of YbInCu{sub 4} studied by photoemission and soft x-ray absorption spectroscopies  

SciTech Connect

We have studied conduction-band (CB) electronic states of a typical valence-transition compound YbInCu{sub 4} by means of temperature-dependent hard x-ray photoemission spectroscopy (HX-PES) of the Cu 2p{sub 3/2} and In 3d{sub 5/2} core states taken at h{nu}=5.95 keV, soft x-ray absorption spectroscopy (XAS) of the Cu 2p{sub 3/2} core absorption region around h{nu}{approx}935 eV, and soft x-ray photoemission spectroscopy (SX-PES) of the valence band at the Cu 2p{sub 3/2} absorption edge of h{nu}=933.0 eV. With decreasing temperature below the valence transition at T{sub V}=42 K, we have found that (1) the Cu 2p{sub 3/2} and In 3d{sub 5/2} peaks in the HX-PES spectra exhibit the energy shift toward the lower binding-energy side by {approx}40 and {approx}30 meV, respectively, (2) an energy position of the Cu 2p{sub 3/2} main absorption peak in the XAS spectrum is shifted toward higher photon-energy side by {approx}100 meV, with an appearance of a shoulder structure below the Cu 2p{sub 3/2} main absorption peak, and (3) an intensity of the Cu L{sub 3}VV Auger spectrum is abruptly enhanced. These experimental results suggest that the Fermi level of the CB-derived density of states is shifted toward the lower binding-energy side. We have described the valence transition in YbInCu{sub 4} in terms of the charge transfer from the CB to Yb 4f states.

Utsumi, Yuki; Kurihara, Hidenao; Maso, Hiroyuki; Tobimatsu, Komei [Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Sato, Hitoshi; Shimada, Kenya; Namatame, Hirofumi [Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima 739-0046 (Japan); Hiraoka, Koichi [Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Kojima, Kenichi [Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521 (Japan); Ohkochi, Takuo; Fujimori, Shin-ichi; Takeda, Yukiharu; Saitoh, Yuji [Synchrotron Radiation Research Center, Japan Atomic Energy Agency, Hyogo 679-5148 (Japan); Mimura, Kojiro [Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531 (Japan); Ueda, Shigenori; Yamashita, Yoshiyuki; Yoshikawa, Hideki; Kobayashi, Keisuke [NIMS Beamline Station at SPring-8, National Institute for Materials Science, Hyogo 679-5148 (Japan); Oguchi, Tamio [ISIR, Osaka University, Ibaraki 567-0047 (Japan); Taniguchi, Masaki [Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima 739-0046 (Japan)

2011-09-15T23:59:59.000Z

155

Hydrogen absorption in epitaxial W/Nb(001) and polycrystalline Fe/Nb(110) multilayers studied in-situ by X-ray/neutron scattering techniques and X-ray absorption spectroscopy  

DOE Green Energy (OSTI)

Hydrogen can be absorbed in large quantities by 100 {angstrom} thin Nb layers embedded in epitaxial W/Nb and polycrystalline Fe/Nb multilayers. The solubility and the hydrogen-induced structural changes of the host lattice are explored in-situ by small-angle neutron/X-ray reflectometry and high-angle diffraction. These measurements reveal for both systems that the relative out-of-plane expansion of the Nb layers is considerably larger than the relative increase of the Nb interplanar spacing indicating two distinctly different mechanisms of hydrogen absorption. In Fe/Nb multilayers, hydrogen expands the Nb interplanar spacing in a continuous way as function of the external pressure. In contrast, the Nb lattice expansion is discontinuous in epitaxial W/Nb multilayers: A jump in the Nb(002) Bragg reflection position occurs at a critical hydrogen pressure of 1 mbar. In-situ EXAFS spectroscopy also exhibits an irreversible expansion of the Nb lattice in the film plane for p{sub H{sub 2}}> 1 mbar. This can be regarded as a structural phase transition from an exclusively out-of-plane to a three-dimensionally expanded state at low and high hydrogen pressures, respectively.

Klose, F.; Rehm, C.; Fieber-Erdmann, M.; Holub-Krappe, E.; Bleif, H. J.; Sowers, H.; Goyette, R.; Troger, L.; Maletta, H.

1999-11-02T23:59:59.000Z

156

Applications and source development for high-repetition rate x-ray lasers  

Science Conference Proceedings (OSTI)

Many applications in material science, chemistry, and atomic physics require an x-ray source that has a repetition rate of 1 Hz to a few kHz. In these fields, a very wide range of photon energies is of interest. One application is time-resolved surface photoelectron spectroscopy and microscopy where low energy (energies below 100 eV are very good with higher energy capabilities expected in the future. In addition, prospects of table-top size x-ray lasers with kHz repetition rates are presented.

Eder, D.C.; Amendt, P.; Bolton, P.R. [and others

1993-07-30T23:59:59.000Z

157

Ultraviolet photoelectron spectroscopy of molybdenum and molybdenum monoxide anions  

E-Print Network (OSTI)

of Utah, Salt Lake City, Utah 84112 Received 30 May 1995; accepted 23 October 1995 The 351 nm photoelectron spectra of Mo and MoO have been measured. The electron affinity of atomic molybdenum is 0.748 2 e- denum monoxide illustrates these difficulties especially well, since the molybdenum atomic ground state

Lineberger, W. Carl

158

Double-core excitations in formamide can be probed by X-ray double-quantum-coherence spectroscopy  

Science Conference Proceedings (OSTI)

The attosecond, time-resolved X-ray double-quantum-coherence four-wave mixing signals of formamide at the nitrogen and oxygen K-edges are simulated using restricted excitation window time-dependent density functional theory and the excited core hole approximation. These signals, induced by core exciton coupling, are particularly sensitive to the level of treatment of electron correlation, thus providing direct experimental signatures of electron and core-hole many-body effects and a test of electronic structure theories.

Zhang Yu; Healion, Daniel; Biggs, Jason D.; Mukamel, Shaul [Department of Chemistry, University of California, 450 Rowland Hall, Irvine, California 92697 (United States)

2013-04-14T23:59:59.000Z

159

Chandra ACIS Survey of M33 (ChASeM33): X-ray Imaging Spectroscopy of M33SNR21, the brightest X-ray Supernova Remnant in M33  

E-Print Network (OSTI)

We present and interpret new X-ray data for M33SNR21, the brightest X-ray supernova remnant (SNR) in M33. The SNR is in seen projection against (and appears to be interacting with) the bright Hii region NGC592. Data for this source were obtained as part of the Chandra ACIS Survey of M33 (ChASeM33) 1

Terrance J. Gaetz; William P. Blair; John P. Hughes; P. Frank Winkler; Knox S. Long; Thomas G; Benjamin Williams; Richard J. Edgar; Parviz Ghavamian; Paul P. Plucinsky; Manami Sasaki; Robert P. Kirshner; Miguel Avillez; Dieter Breitschwerdt

2007-01-01T23:59:59.000Z

160

Electronic structure of phospho-olivines LixFePO4 (x=0,1) fromsoft-x-ray-absorption and -emission spectroscopies  

Science Conference Proceedings (OSTI)

The electronic structure of the phospho-olivine LixFePO4 wasstudied using soft-x-ray-absorption (XAS) and emission spectroscopies.Characteristic changes in the valence and conduction bands are observedupon delithation of LiFePO4 into FePO4. In LiFePO4, the Fe-3d states arelocalized with little overlap with the O-2p states. Delithiation ofLiFePO4 gives stronger hybridization between Fe-3d states and O-2p statesleading to delocalization of the O-2p states. The Fe L-edge absorptionspectra yield "fingerprints" of the different valence states of Fe inLiFePO4 and FePO4. Resonant soft-x-ray-emission spectroscopy at the Fe Ledge shows strong contributions from resonant inelastic soft x-rayscattering (RIXS), which is described using an ionic picture of the Fe-3dstates. Together the Fe L-edge XAS and RIXS study reveals a bondingcharacter of the Fe 3d-O2p orbitals in FePO4 in contrast to a nonbondingcharacter in LiFePO4.

Augustsson, A.; Zhuang, G.V.; Butorin, S.M.; Osorio-Guillen,J.M.; Dong, C.L.; Ahuja, R.; Chang, C.L.; Ross, P.N.; Nordgren, J.; Guo,J.-H.

2005-07-17T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray photoelectron spectroscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Particle size effect of hydride formation and surface hydrogen absorption of nanosized palladium catalysts : L{sub 3} edge vs K edge x-ray absorption spectroscopy.  

Science Conference Proceedings (OSTI)

The particle size effect on the formation of palladium hydride and on surface hydrogen adsorption was studied at room temperature using in situ X-ray absorption spectroscopy at the Pd K and L{sub 3} edges. Hydride formation was indirectly observed by lattice expansion in Pd K edge XANES spectra and by EXAFS analysis. Hydride formation was directly detected in the L{sub 3} edge spectra. A characteristic spectral feature caused by the formation of a Pd-H antibonding state showed strong particle size dependence. The L{sub 3} edge spectra were reproduced using full multiple scattering analysis and density of state calculations, and the contributions of bulk absorbed and surface hydrogen to the XANES spectra could be distinguished. The ratio of hydrogen on the surface versus that in the bulk increased with decreasing particle size, and smaller particles dissolved less hydrogen.

Tew, M. W.; Miller, J. T.; van Bokhoven, J. A. (Chemical Sciences and Engineering Division); ( SUF-USR); (ETH Zurich)

2009-08-01T23:59:59.000Z

162

Photo-Induced Spin-State Conversion in Solvated Transition Metal Complexes Probed via Time-Resolved Soft X-ray Spectroscopy  

SciTech Connect

Solution-phase photoinduced low-spin to high-spin conversion in the FeII polypyridyl complex [Fe(tren(py)3)]2+ (where tren(py)3 is tris(2-pyridylmethyliminoethyl)amine) has been studied via picosecond soft X-ray spectroscopy. Following 1A1 --> 1MLCT (metal-to-ligand charge transfer) excitation at 560 nm, changes in the iron L2- and L3-edges were observed concomitant with formation of the transient high-spin 5T2 state. Charge-transfer multiplet calculations coupled with data acquired on low-spin and high-spin model complexes revealed a reduction in ligand field splitting of 1 eV in the high-spin state relative to the singlet ground state. A significant reduction in orbital overlap between the central Fe-3d and the ligand N-2p orbitals was directly observed, consistent with the expected ca. 0.2 Angstrom increase in Fe-N bond length upon formation of the high-spin state. The overall occupancy of the Fe-3d orbitals remains constant upon spin crossover, suggesting that the reduction in sigma-donation is compensated by significant attenuation of pi-back-bonding in the metal-ligand interactions. These results demonstrate the feasibility and unique potential of time-resolved soft X-ray absorption spectroscopy to study ultrafast reactions in the liquid phase by directly probing the valence orbitals of first-row metals as well as lighter elements during the course of photochemical transformations.

Huse, Nils; Kim, Tae Kyu; Jamula, Lindsey; McCusker, James K.; de Groot, Frank M. F.; Schoenlein, Robert W.

2010-04-30T23:59:59.000Z

163

DEVELOPMENT OF NEXT-GENERATION DETECTORS AND INSTRUMENTATION FOR PHOTOELECTRON SPECTROSCOPY, DIFFRACTION AND HOLOGRAPHY  

SciTech Connect

We have developed a new multichannel detector for use in photoelectron spectroscopy (as well as other types of high-count-rate spectroscopy) that will operate at rates of up to 1 GHz. Such detectors are crucial to the full utilization of the high-brightness radiation generated by third-generation synchrotron radiation sources. In addition, new software and hardware has been developed to permit rapidly and accurately scanning photoelectron spectra that will be accumulated in as little as a 200 micros. A versatile next-generation sample goniometer permitting equally rapid scanning of specimen angles or photon energies for angle-resolved photoemission studies, photoelectron diffraction, and photoelectron holography measurements, and cooling to below 10K has also been designed and constructed. These capabilities have been incorporated into a unique photoelectron spectrometer/diffractometer at the Advanced Light Source of the Lawrence Berkeley National Laboratory; this experimental system includes ultrahigh energy resolution, in situ rotation, variable polarization, and optional spin detection. This overall system is now being used in studies of a variety of problems including magnetic metals and oxides; metal/metal, metal/metal oxide, and metal-oxide/metal-oxide multilayers; and systems exhibiting giant and colossal magnetoresistance.

Charles S. Fadley, Principal Investigator

2005-10-16T23:59:59.000Z

164

X-Ray Topography  

Science Conference Proceedings (OSTI)

Sep 17, 2009 ... Stress Mapping Analysis by Ray Tracing (SMART): A New Technique ... technique of synchrotron X-ray topography, where a grid made out of ...

165

Chandra ACIS Survey of M33 (ChASeM33): X-ray Imaging Spectroscopy of M33SNR21, the Brightest X-ray Supernova Remnant in M33  

E-Print Network (OSTI)

We present and interpret new X-ray data for M33SNR21, the brightest X-ray supernova remnant (SNR) in M33. The SNR is in seen projection against (and appears to be interacting with) the bright HII region NGC592. Data for this source were obtained as part of the Chandra ACIS Survey of M33 (ChASeM33) Very Large Project. The nearly on-axis Chandra data resolve the SNR into a ~5" diameter (20 pc at our assumed M33 distance of 817+/-58 kpc) slightly elliptical shell. The shell is brighter in the east, which suggests that it is encountering higher density material in that direction. The optical emission is coextensive with the X-ray shell in the north, but extends well beyond the X-ray rim in the southwest. Modeling the X-ray spectrum with an absorbed sedov model yields a shock temperature of 0.46(+0.01,-0.02) keV, an ionization timescale of n_e t = $2.1 (+0.2,-0.3) \\times 10^{12}$ cm$^{-3}$ s, and half-solar abundances (0.45 (+0.12, -0.09)). Assuming Sedov dynamics gives an average preshock H density of 1.7 +/- 0.3 cm$^{-3}$. The dynamical age estimate is 6500 +/- 600 yr, while the best fit $n_e t$ value and derived $n_e$ gives 8200 +/- 1700 yr; the weighted mean of the age estimates is 7600 +/- 600 yr. We estimate an X-ray luminosity (0.25-4.5 keV) of (1.2 +/- 0.2) times $10^{37}$ ergs s$^{-1}$ (absorbed), and (1.7 +/- 0.3) times $10^{37}$ ergs s$^{-1}$ (unabsorbed), in good agreement with the recent XMM-Newton determination. No significant excess hard emission was detected; the luminosity $\\le 1.2\\times 10^{35}$ ergs s$^{-1}$ (2-8 keV) for any hard point source.

Terrance J. Gaetz; William P. Blair; John P. Hughes; P. Frank Winkler; Knox S. Long; Thomas G. Pannuti; Benjamin Williams; Richard J. Edgar; Parviz Ghavamian; Paul P. Plucinsky; Manami Sasaki; Robert P. Kirshner; Miguel Avillez; Dieter Breitschwerdt

2007-06-18T23:59:59.000Z

166

Photoelectron Spectroscopy under Ambient Pressure and Temperature Conditions  

SciTech Connect

We describe the development and applications of novel instrumentation for photoemission spectroscopy of solid or liquid surfaces in the presence of gases under ambient conditions or pressure and temperature. The new instrument overcomes the strong scattering of electrons in gases by the use of an aperture close to the surface followed by a differentially-pumped electrostatic lens system. In addition to the scattering problem, experiments in the presence of condensed water or other liquids require the development of special sample holders to provide localized cooling. We discuss the first two generations of Ambient Pressure PhotoEmission Spectroscopy (APPES) instruments developed at synchrotron light sources (ALS in Berkeley and BESSY in Berlin), with special focus on the Berkeley instruments. Applications to environmental science and catalytic chemical research are illustrated in two examples.

Ogletree, D. Frank; Bluhm, Hendrik; Hebenstreit, Eleonore B.; Salmeron, Miquel

2009-02-27T23:59:59.000Z

167

Synchrotron x-ray spectroscopy of Eu/HNO{sub 3} aqueous solutions at high temperatures and pressures and Nb-bearing silicate melt phases coexisting with hydrothermal fluids using a modified hydrothermal diamond anvil cell and rail assembly  

Science Conference Proceedings (OSTI)

A modified hydrothermal diamond anvil cell (HDAC) rail assembly has been constructed for making synchrotron x-ray absorption spectroscopy, x-ray fluorescence, and x-ray mapping measurements on fluids or solid phases in contact with hydrothermal fluids up to {approx}900 deg. C and 700 MPa. The diamond anvils of the HDAC are modified by laser milling grooves or holes, for the reduction of attenuation of incident and fluorescent x rays and sample cavities. The modified HDAC rail assembly has flexibility in design for measurement of light elements at low concentrations or heavy elements at trace levels in the sample and the capability to probe minute individual phases of a multiphase fluid-based system using focused x-ray microbeam. The supporting rail allows for uniform translation of the HDAC, rotation and tilt stages, and a focusing mirror, which is used to illuminate the sample for visual observation using a microscope, relative to the direction of the incident x-ray beam. A structure study of Eu(III) aqua ion behavior in high-temperature aqueous solutions and a study of Nb partitioning and coordination in a silicate melt in contact with a hydrothermal fluid are described as applications utilizing the modified HDAC rail assembly.

Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I-Ming [Department of Physics, Astronomy and Materials Science, Missouri State University, Springfield, Missouri 65897 (United States); Department of Earth Sciences, St. Francis Xavier University, P.O. Box 5000, Antigonish, Nova Scotia B2G 2W5 (Canada); Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York 14853 (United States); MS 954, U.S. Geological Survey, Reston, Virginia 20192 (United States)

2007-05-15T23:59:59.000Z

168

X-ray beamsplitter  

DOE Patents (OSTI)

An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

Ceglio, Natale M. (Livermore, CA); Stearns, Daniel S. (Mountain View, CA); Hawryluk, Andrew M. (Modesto, CA); Barbee, Jr., Troy W. (Palo Alto, CA)

1989-01-01T23:59:59.000Z

169

Soft X-ray Studies of Pu Electronic Structure: Past Lessons and Future Directions  

Science Conference Proceedings (OSTI)

Photoelectron Spectroscopy (PES) and X-ray Absorption Spectroscopy (XAS, Figure 1) have contributed greatly to our improved understanding of Pu electronic structure. From these and related measurements, the following has been determined: (1) The Pu 5f spin-orbit splitting is large; (2) The number of Pu5f electrons is near 5; and (3) The Pu 5f spin-orbit splitting effect dominates 5f itineracy. Significant questions remain concerning the nature of Pu electronic structure. Perhaps the missing piece of the puzzle is the direct experimental determination of the unoccupied electronic structure using high energy inverse photoelectron spectroscopy or Bremstrahlung Isochromat Spectroscopy (BIS). Past BIS studies of Th and U indicate the feasibility and utility of Pu studies.

Tobin, J G; Yu, S W

2008-02-07T23:59:59.000Z

170

X-ray generator  

DOE Patents (OSTI)

Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

Dawson, John M. (Los Angeles, CA)

1976-01-01T23:59:59.000Z

171

Raman spectroscopy and x-ray diffraction of phase transitions in Cr2O3 to 61 GPa Sang-Heon Shim*  

E-Print Network (OSTI)

Radiation Laboratory SSRL using mono- chromatic x-ray beams ( 0.4959 Ã? at CHESS and 0.7277 Ã? at SSRL

Duffy, Thomas S.

172

Optical and X-ray Imaging Techniques for Material Characterization ...  

Science Conference Proceedings (OSTI)

Ultrafast X-ray and 2-dimensional UV Spectroscopy of TiO2 Nanoparticles: Majed Chergui1; 1Ecole Polytechnique Fédérale de Lausanne Mesoporous titanium ...

173

Kaonic Atom X?ray Spectra  

Science Conference Proceedings (OSTI)

In kaonic atoms energy displacement and broadening of states result from the strong interaction. The most simple kaonic atoms like kaonic hydrogen and deuterium open the possibility to measure this strong interaction induced shift and width by x?ray spectroscopy. In the SIDDHARTA experiment al LNF (Frascati) the DA?NE electron?positron collider delivers nearly mono?energetic negatively charged kaons from ? meson decay. This unique kaon source is used to form kaonic atoms. New high performance x?ray detectors (silicon drift detectors) arranged in an array allow x?ray spectroscopy with high energy resolution combined with timing capability. High precision x?ray measurements like SIDDHARTA at LNF will open the way to study the low energy regime of the strong force in the antikaon?nucleon interaction. The experiment and its current status is presented in this talk.

J. Marton; on behalf of the SIDDHARTA Collaboration

2009-01-01T23:59:59.000Z

174

Design Concept and Performance of the Soft X-ray Beamline HiSOR-BL14  

SciTech Connect

The soft X-ray beamline HiSOR-BL14 has been constructed at Hiroshima Synchrotron Radiation Center, aimed at absorption spectroscopy and photoelectron spectroscopy with linearly and circularly polarized light. The beamline layout is based on a Dragon-type design with a spherical grating monochromator. The beamline is able to accept synchrotron radiation from the bending magnet part of the HiSOR ring with a wide solid angle. The large horizontal angular acceptance and vertical one contribute to high photon flux and controllability of light polarization, respectively. Our performance test indicates that high resolving power has been achieved with sufficient photon flux to carry out spectroscopic experiments.

Sawada, M.; Namatame, H. [Hiroshima Synchrotron Radiation Center, Hiroshima University, Kagamiyama 2-313, Higashi-Hiroshima, Hiroshima 739-0046 (Japan); Yaji, K. [Institute for Solid State Physics, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8581 (Japan); Nagira, M.; Kimura, A.; Taniguchi, M. [Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-0046 (Japan)

2007-01-19T23:59:59.000Z

175

High resolution soft x-ray spectroscopy of low Z K-shell emission from laser-produced plasmas  

SciTech Connect

A large radius, R = 44.3 m, High Resolution Grating Spectrometer (HRGS) with 2400 line/mm variable line spacing has been designed for laser-produced plasma experiments conducted at the Lawrence Livermore National Laboratory Jupiter Laser Facility. The instrument has been run with a low-noise, charge-coupled device detector to record high signal-to-noise spectra in the 10-50 {angstrom} wavelength range. The instrument can be run with a 10-20 {micro}m wide slit to achieve the best spectral resolving power, approaching 1000 and similar to crystal spectrometers at 12-20 {angstrom}, or in slitless operation with a small symmetrical emission source. We describe preliminary spectra emitted from various H-like and He-like low Z ion plasmas heated by 100-500 ps (FWHM), 527 nm wavelength laser pulses. This instrument can be developed as a useful spectroscopy platform relevant to laboratory-based astrophysics as well as high energy density plasma studies.

Dunn, J; Magee, E W; Shepherd, R; Chen, H; Hansen, S B; Moon, S J; Brown, G V; Gu, M; Beiersdorfer, P; Purvis, M A

2008-05-21T23:59:59.000Z

176

Gamma Radiation & X-Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Gamma Radiation and X-Rays 1. Gamma radiation and X-rays are electromagnetic radiation like visible light, radio waves, and ultraviolet light. These electromagnetic radiations...

177

Optimization of the Configuration of Pixilated Detectors Based on the Shannon-Nyquist Theory for the X-Ray Spectroscopy of Hot Tokamak Plasmas  

SciTech Connect

This paper describes an optimization of the detector configuration, based on the Shannon-Nyquist theory, for two major x-ray diagnostic systems on tokamaks and stellarators: x-ray imaging crystal spectrometers and x-ray pinhole cameras. Typically, the spectral data recorded with pixilated detectors are oversampled, meaning that the same spectral information could be obtained using fewer pixels. Using experimental data from Alcator C-Mod, we quantify the degree of oversampling and propose alternate uses for the redundant pixels for additional diagnostic applications.

E. Wang, P. Beiersdorfer, M. Bitter, L.F. Delgado-Aprico, K.W. Hill and N. Pablant

2012-06-13T23:59:59.000Z

178

Optimization of the Configuration of Pixilated Detectors Based on the Sgabbib-Nyquist Theory for the X-ray Spectroscopy of Hot Tokamak Plasmas  

SciTech Connect

This paper describes an optimization of the detector configuration, based on the Shannon-Nyquist theory, for two major x-ray diagnostic systems on tokamaks and stellarators: x-ray imaging crystal spectrometers and x-ray pinhole cameras. Typically, the spectral data recorded with pixilated detectors are oversampled, meaning that the same spectral information could be obtained using fewer pixels. Using experimental data from Alcator C-Mod, we quantify the degree of oversampling and propose alternate uses for the redundant pixels for additional diagnostic applications.

: E. Wang, P. Beiersdorfer, M. Bitter, L.F. Delgado-Apricio, K.W. Hill and N. Pablant

2012-08-09T23:59:59.000Z

179

X-ray absorption spectroscopy  

E-Print Network (OSTI)

crystal XAS data from PS II at SSRL BL 9-3. It consists of aRadiation Laboratory (SSRL), the Advanced Light Source (operated by DOE OBES. The SSRL Biomedical Technology program

Yano, Junko; Yachandra, Vittal K.

2009-01-01T23:59:59.000Z

180

X-ray Absorption Spectroscopy  

E-Print Network (OSTI)

crystal XAS data from PS II at SSRL BL 9-3. It consists of aRadiation Laboratory (SSRL), the Advanced Light Source (operated by DOE OBES. The SSRL Biomedical Technology program

Yano, Junko

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray photoelectron spectroscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

X-ray microtomography  

SciTech Connect

In this tutorial, we describe X-ray microtomography as a technique to nondestructively characterize material microstructure in three dimensions at a micron level spatial resolution. While commercially available laboratory scale instrumentation is available, we focus our attention on synchrotron-based systems, where we can exploit a high flux, monochromatic X-ray beam to produce high fidelity three-dimensional images. A brief description of the physics and the mathematical analysis behind the technique is followed by example applications to specific materials characterization problems, with a particular focus on the utilization of three-dimensional image processing that can be used to extract a wide range of useful information.

Landis, Eric N., E-mail: landis@maine.edu [Department of Civil and Environmental Engineering, University of Maine, 5711 Boardman Hall, Orono, Maine 04469 (United States); Keane, Denis T., E-mail: dtkeane@northwestern.edu [Department of Materials Science and Engineering, Northwestern University (United States); DND-CAT, Advanced Photon Source, Argonne National Laboratory, Bldg. 432/A002, 9700 S. Cass Ave, Argonne, Illinois 60439 (United States)

2010-12-15T23:59:59.000Z

182

X-ray diffraction analysis and scanning micro-Raman spectroscopy of structural irregularities and strains deep inside the multilayered InGaN/GaN heterostructure  

SciTech Connect

High-resolution X-ray diffraction analysis and scanning confocal Raman spectroscopy are used to study the spatial distribution of strains in the In{sub x}Ga{sub 1-x}N/GaN layers and structural quality of these layers in a multilayered light-emitting diode structure produced by metal-organic chemical vapor deposition onto (0001)-oriented sapphire substrates. It is shown that elastic strains almost completely relax at the heterointerface between the thick GaN buffer layer and In{sub x}Ga{sub 1-x}N/GaN buffer superlattice. It is established that the GaN layers in the superlattice are in a stretched state, whereas the alloy layers are in a compressed state. In magnitude, the stretching strains in the GaN layers are lower than the compressive strains in the InGaN layers. It is shown that, as compared to the buffer layers, the layers of the superlattice contain a smaller number of dislocations and the distribution of dislocations is more randomly disordered. In micro-Raman studies on scanning through the thickness of the multilayered structure, direct evidence is obtained for the asymmetric gradient distributions of strains and crystal imperfections of the epitaxial nitride layers along the direction of growth. It is shown that the emission intensity of the In{sub x}Ga{sub 1-x}N quantum well is considerably (more than 30 times) higher than the emission intensity of the GaN barrier layers, suggesting the high efficiency of trapping of charge carriers by the quantum well.

Strelchuk, V. V., E-mail: Strelch@isp.kiev.ua; Kladko, V. P.; Avramenko, E. A.; Kolomys, O. F.; Safryuk, N. V.; Konakova, R. V. [National Academy of Sciences of Ukraine, Lashkaryov Institute of Semiconductor Physics (Ukraine); Yavich, B. S., E-mail: byavich@soptel.ru [ZAO Svetlana-Optoelectronics (Russian Federation); Valakh, M. Ya.; Machulin, V. F.; Belyaev, A. E. [National Academy of Sciences of Ukraine, Lashkaryov Institute of Semiconductor Physics (Ukraine)

2010-09-15T23:59:59.000Z

183

Introduction to Neutron and X-Ray Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

Scattering Studies of Thin Scattering Studies of Thin Polymer Films Introduction to Neutron and X-Ray Scattering Sunil K. Sinha UCSD/LANL Acknowledgements: Prof. R.Pynn( Indiana U.) Prof. M.Tolan (U. Dortmund) Wilhelm Conrad Röntgen 1845-1923 1895: Discovery of X-Rays 1901 W. C. Röntgen in Physics for the discovery of x-rays. 1914 M. von Laue in Physics for x-ray diffraction from crystals. 1915 W. H. Bragg and W. L. Bragg in Physics for crystal structure determination. 1917 C. G. Barkla in Physics for characteristic radiation of elements. 1924 K. M. G. Siegbahn in Physics for x-ray spectroscopy. 1927 A. H. Compton in Physics for scattering of x-rays by electrons. 1936 P. Debye in Chemistry for diffraction of x-rays and electrons in gases.

184

In situ photoelectron spectroscopy study of water adsorption on model biomaterial surfaces  

DOE Green Energy (OSTI)

Using in situ photoelectron spectroscopy at near ambient conditions, we compare the interaction of water with four different model biomaterial surfaces: self-assembled thiol monolayers on Au(111) that are functionalized with methyl, hydroxyl, and carboxyl groups, and phosphatidylcholine (POPC) lipid films on Silicon. We show that the interaction of water with biomaterial surfaces is mediated by polar functional groups that interact strongly with water molecules through hydrogen bonding, resulting in adsorption of 0.2-0.3 ML water on the polar thiol films in 700 mTorr water pressure and resulting in characteristic N1s and P2p shifts for the POPC films. Provided that beam damage is carefully controlled, in situ electron spectroscopy can give valuable information about water adsorption which is not accessible under ultra-high vacuum conditions.

Salmeron, Miquel; Ketteler, Guido; Ashby, Paul; Mun, B.S.; Ratera, I.; Bluhm, Hendrik; Kasemo, B.; Salmeron, Miquel

2007-07-10T23:59:59.000Z

185

Statistically meaningful data on the chemical state of ironprecipitates in processed multicrystalline silicon usingsynchrotron-based X-ray absorption spectroscopy  

DOE Green Energy (OSTI)

X-ray fluorescence microscopy (mu-XRF), x-ray beam induced current (XBIC), and x-ray absorption spectromicroscopy (mu-XAS) were performed on fully-processed Bay Six cast multicrystalline silicon and aluminum-gettered AstroPower Silicon-Film(TM) sheet material. Over ten iron precipitates--predominantly of iron silicide--were identified at low lifetime regions in both materials, both at grain boundaries and intragranular defects identified by XBIC. In addition, large (micron-sized) particles containing oxidized iron and other impurities (Ca, Cr, Mn) were found in BaySix material. The smaller iron silicide precipitates were more numerous and spatially distributed than their larger oxidized iron counterparts, and thus deemed more detrimental to minority carrier diffusion length.

Buonassisi, T.; Heuer, M.; Istratov, A.A.; Weber, E.R.; Cai, Z.; Lai, B.; Marcus, M.; Lu, J.; Rozgonyi, G.; Schindler, R.; Jonczyk, R.; Rand, J.

2004-11-08T23:59:59.000Z

186

Development of soft x-ray time-resolved photoemission spectroscopy system with a two-dimensional angle-resolved time-of-flight analyzer at SPring-8 BL07LSU  

Science Conference Proceedings (OSTI)

We have developed a soft x-ray time-resolved photoemission spectroscopy system using synchrotron radiation (SR) at SPring-8 BL07LSU and an ultrashort pulse laser system. Two-dimensional angle-resolved measurements were performed with a time-of-flight-type analyzer. The photoemission spectroscopy system is synchronized to light pulses of SR and laser using a time control unit. The performance of the instrument is demonstrated by mapping the band structure of a Si(111) crystal over the surface Brillouin zones and observing relaxation of the surface photo-voltage effect using the pump (laser) and probe (SR) method.

Ogawa, Manami; Yamamoto, Susumu; Nakamura, Fumitaka; Yukawa, Ryu; Fukushima, Akiko; Harasawa, Ayumi; Kakizaki, Akito; Matsuda, Iwao [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8581 (Japan); Kousa, Yuka; Kondoh, Hiroshi [Department of Chemistry, Keio University, Yokohama 223-8522 (Japan); Tanaka, Yoshihito [RIKEN/SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

2012-02-15T23:59:59.000Z

187

Formation of an SEI on a LiMn(2)O(4) Cathode during Room Temperature Charge-Discharge Cycling Studied by Soft X-Ray Absorption Spectroscopy at the Fluorine K-edge  

DOE Green Energy (OSTI)

The solid electrolyte interface (SEI) formation on the surface of LiMn{sub 2}O{sub 4} electrodes during room temperature charge-discharge cycling was studied using soft X-ray absorption spectroscopy at the Fluorine (F) K-edge. LiMn{sub 2}O{sub 4} electrodes without any binder were prepared by electrostatic spray deposition to eliminate the signal originating from the PVDF binder in the F K-edge X-ray absorption spectra. The F K-edge absorption spectra show that the SEI layer forms at a very early stage of cycling. SEI growth takes place during discharge. In addition, LiF formation is accelerated if the discharge step follows a charge step. The F K-edge absorption spectra suggest that the major component of the SEI is LiF.

Chung, K.Y.; Yang, X.; Yoon, W.-S.; Kim, K.-B.; Cho, B.-W.

2011-11-01T23:59:59.000Z

188

Fluctuation X-Ray Scattering  

SciTech Connect

The work supported by the grant was aimed at developing novel methods of finding the structures of biomolecules using x-rays from novel sources such as the x-ray free electron laser and modern synchrotrons

Saldin, PI: D. K.; Co-I's: J. C. H. Spence and P. Fromme

2013-01-25T23:59:59.000Z

189

X-ray Security Screening  

Science Conference Proceedings (OSTI)

National and International Standards for X-ray Security Screening Applications. Summary: The primary objective of this ...

2013-03-13T23:59:59.000Z

190

Tunable X-ray source  

DOE Patents (OSTI)

A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

Boyce, James R. (Williamsburg, VA)

2011-02-08T23:59:59.000Z

191

Synchrotron x-ray sources and new opportunities in the soil and environmental sciences  

Science Conference Proceedings (OSTI)

This report contains the following papers: characteristics of the advanced photon source and comparison with existing synchrotron facilities; x-ray absorption spectroscopy: EXAFS and XANES -- A versatile tool to study the atomic and electronic structure of materials; applications of x-ray spectroscopy and anomalous scattering experiments in the soil and environmental sciences; X-ray fluorescence microprobe and microtomography.

Schulze, D. (Purdue Univ., Lafayette, IN (USA)); Anderson, S. (Michigan State Univ., East Lansing, MI (USA)); Mattigod, S. (Pacific Northwest Lab., Richland, WA (USA))

1990-07-01T23:59:59.000Z

192

In situ photoelectron spectroscopy study of water adsorption on model biomaterial surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

184024 184024 (7pp) doi:10.1088/0953-8984/20/18/184024 In situ photoelectron spectroscopy study of water adsorption on model biomaterial surfaces G Ketteler 1 , P Ashby 2 , B S Mun 3,4 , I Ratera 5 , H Bluhm 6 , B Kasemo 1 and M Salmeron 2,5 1 Chalmers University of Technology, Department of Applied Physics, 41296 Gothenburg, Sweden 2 Molecular Foundry, Lawrence Berkeley National Laboratories, Berkeley, CA 94720, USA 3 Advanced Light Source, Lawrence Berkeley National Laboratories, Berkeley, CA 94720, USA 4 Department of Applied Physics, Hanyang University, Ansan, Kyunggi-Do 426-791, Korea 5 Materials Science Division, Lawrence Berkeley National Laboratories, Berkeley, CA 94720, USA 6 Chemical Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, CA 94720, USA Received 10 July 2007, in final form 13 September 2007 Published 17 April 2008 Online at stacks.iop.org/JPhysCM/20/184024

193

Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy  

Science Conference Proceedings (OSTI)

This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents.

Zanni, Martin T.

1999-12-17T23:59:59.000Z

194

Photoelectronic characterization of heterointerfaces.  

DOE Green Energy (OSTI)

In many devices such as solar cells, light emitting diodes, transistors, etc., the performance relies on the electronic structure at interfaces between materials within the device. The objective of this work was to perform robust characterization of hybrid (organic/inorganic) interfaces by tailoring the interfacial region for photoelectron spectroscopy. Self-assembled monolayers (SAM) were utilized to induce dipoles of various magnitudes at the interface. Additionally, SAMs of molecules with varying dipolar characteristics were mixed into spatially organized structures to systematically vary the apparent work function. Polymer thin films were characterized by depositing films of varying thicknesses on numerous substrates with and without interfacial modifications. Hard X-ray photoelectron spectroscopy (HAXPES) was performed to evaluate a buried interface between indium tin oxide (ITO), treated under various conditions, and poly(3-hexylthiophene) (P3HT). Conducting polymer films were found to be sufficiently conducting such that no significant charge redistribution in the polymer films was observed. Consequently, a further departure from uniform substrates was taken whereby electrically disconnected regions of the substrate presented ideally insulating interfacial contacts. In order to accomplish this novel strategy, interdigitated electrodes were used as the substrate. Conducting fingers of one half of the electrodes were electrically grounded while the other set of electrodes were electronically floating. This allowed for the evaluation of substrate charging on photoelectron spectra (SCOPES) in the presence of overlying semiconducting thin films. Such an experiment has never before been reported. This concept was developed out of the previous experiments on interfacial modification and thin film depositions and presents new opportunities for understanding chemical and electronic changes in a multitude of materials and interfaces.

Brumbach, Michael Todd

2012-02-01T23:59:59.000Z

195

Photon Sciences | Beamlines | IXS: Inelastic X-ray Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

IXS: Inelastic X-ray Scattering IXS: Inelastic X-ray Scattering Poster | Fact Sheet | Preliminary Design Report Scientific Scope Many hot topics related to the high frequency dynamics of condensed matter require both a narrower and steeper resolution function and access to a broader dynamic range than what are currently available. This represents a sort of "no man's land" that falls right in the dynamic gap lying between the high frequency spectroscopies, such as inelastic x-ray scattering (IXS), and the low frequency ones. New IXS spectrometers with improved energy and momentum resolutions would be required to fill this gap. To achieve this goal, a new x-ray optics concept for both the monochromatization and energy analysis of x-rays will be implemented at the NSLS-II Inelastic X-ray Scattering beamline. This solution exploits the

196

Auger, zero-energy photoelectron, coincidence spectroscopy (AZEPECO): Chemical-site-selective Auger electron spectroscopy  

SciTech Connect

The Auger electron spectrum associated with decay of a core-hole on the terminal nitrogen and that associated with the central nitrogen of nitrous oxide, N{sub 2}O, are obtained individually through the use of a coincidence technique. Specifically, each of the two Auger electron spectra is obtained by detection of Auger electrons in coincidence with near zero energy (threshold) photoelectrons at the respective ionization thresholds. These zero energy electrons serve to identify the core-ionization continuum associated with the different Auger electrons. The salient features of the experimental spectra are in good agreement with theoretical calculations. The low counting rate generally associated with coincidence experiments, especially in the gas phase, is not encountered because the low energy electrons are collected over a 4{pi} solid angle. Also, velocity discrimination is accomplished by a spatial filter rather than by time-of-flight to utilize the maximum duty cycle of the synchrotron source. These data are believed to be the first examples of chemical-site-selective molecular Auger spectra.

Lee, K.; Ji, D.; Hanson, D.M. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Chemistry; Hulbert, S.L. [Brookhaven National Lab., Upton, NY (United States). National Synchrotron Light Source; Kuiper, P. [Brookhaven National Lab., Upton, NY (United States). Physics Dept.

1993-12-31T23:59:59.000Z

197

Scanning x-ray microscope  

Science Conference Proceedings (OSTI)

A scanning x-ray microscope is described including: an x-ray source capable of emitting a beam of x-rays; a collimator positioned to receive the beam of x-rays and to collimate this beam, a focusing cone means to focus the beam of x-rays, directed by the collimator, onto a focal plane, a specimen mount for supporting a specimen in the focal plane to receive the focused beam of x-rays, and x-ray beam scanning means to relatively move the specimen and the focusing cone means and collimator to scan the focused x-ray beam across the specimen. A detector is disposed adjacent the specimen to detect flourescent photons emitted by the specimen upon exposure to the focused beam of x-rays to provide an electrical output representative of this detection. Means are included for displaying and/or recording the information provided by the output from the detector, as are means for providing information to the recording and/or display means representative of the scan rate and position of the focused x-ray beam relative to the specimen whereby the recording and/or display means can correlate the information received to record and/or display quantitive and distributive information as to the quantity and distribution of elements detected in the specimen. Preferably there is provided an x-ray beam modulation means upstream, relative to the direction of emission of the xray beam, of the focusing cone means.

Wang, C.

1982-02-23T23:59:59.000Z

198

X-ray lithography source  

SciTech Connect

A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

Piestrup, Melvin A. (Woodside, CA); Boyers, David G. (Mountain View, CA); Pincus, Cary (Sunnyvale, CA)

1991-01-01T23:59:59.000Z

199

X-ray lithography source  

DOE Patents (OSTI)

A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

Piestrup, M.A.; Boyers, D.G.; Pincus, C.

1991-12-31T23:59:59.000Z

200

Quick-scanning x-ray absorption spectroscopy system with a servo-motor-driven channel-cut monochromator with a temporal resolution of 10 ms  

SciTech Connect

We have developed a quick-scanning x-ray absorption fine structure (QXAFS) system and installed it at the recently constructed synchrotron radiation beamline BL33XU at the SPring-8. Rapid acquisition of high-quality QXAFS data was realized by combining a servo-motor-driven Si channel-cut monochromator with a tapered undulator. Two tandemly aligned monochromators with channel-cut Si(111) and Si(220) crystals covered energy ranges of 4.0-28.2 keV and 6.6-46.0 keV, respectively. The system allows the users to adjust instantly the energy ranges of scans, the starting angles of oscillations, and the frequencies. The channel-cut crystals are cooled with liquid nitrogen to enable them to withstand the high heat load from the undulator radiation. Deformation of the reflecting planes is reduced by clamping each crystal with two cooling blocks. Performance tests at the Cu K-edge demonstrated sufficiently high data quality for x-ray absorption near-edge structure and extended x-ray absorption fine-structure analyses with temporal resolutions of up to 10 and 25 ms, respectively.

Nonaka, T.; Dohmae, K.; Araki, T.; Hayashi, Y.; Hirose, Y. [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan); Uruga, T.; Yamazaki, H.; Tanida, H.; Goto, S. [JASRI/Spring-8, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Mochizuki, T. [JASRI/Spring-8, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Toyama Corp., Zama, Kanagawa 228-0003 (Japan)

2012-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray photoelectron spectroscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Broadband high resolution X-ray spectral analyzer  

DOE Patents (OSTI)

A broad bandwidth high resolution x-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces x-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available x-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for x-ray microanalysis or in research applications such as laboratory and astrophysical x-ray and particle spectroscopy.

Silver, Eric H. (Berkeley, CA); Legros, Mark (Berkeley, CA); Madden, Norm W. (Livermore, CA); Goulding, Fred (Lafayette, CA); Landis, Don (Pinole, CA)

1998-01-01T23:59:59.000Z

202

Broadband high resolution X-ray spectral analyzer  

DOE Patents (OSTI)

A broad bandwidth high resolution X-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces X-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available X-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for X-ray microanalysis or in research applications such as laboratory and astrophysical X-ray and particle spectroscopy. 6 figs.

Silver, E.H.; Legros, M.; Madden, N.W.; Goulding, F.; Landis, D.

1998-07-07T23:59:59.000Z

203

Real time x-ray studies during nanostructure formation on silicon via low energy ion beam irradiation using ultrathin iron films  

SciTech Connect

Real time grazing incidence small angle x-ray scattering and x-ray fluorescence (XRF) are used to elucidate nanodot formation on silicon surfaces during low energy ion beam irradiation of ultrathin iron-coated silicon substrates. Four surface modification stages were identified: (1) surface roughening due to film erosion, (2) surface smoothing and silicon-iron mixing, (3) structure formation, and (4) structure smoothing. The results conclude that 2.5 Multiplication-Sign 10{sup 15} iron atoms in a 50 nm depth triggers surface nanopatterning with a correlated nanodots distance of 25 nm. Moreover, there is a wide window in time where the surface can have correlated nanostructures even after the removal of all the iron atoms from the sample as confirmed by XRF and ex-situ x-ray photoelectron spectroscopy (XPS). In addition, in-situ XPS results indicated silicide formation, which plays a role in the structure formation mechanism.

El-Atwani, Osman [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Suslova, Anastassiya; Gonderman, Sean; Fowler, Justin; El-Atwani, Mohamad [School of Nuclear Engineering, Purdue University, West Lafayette, Indiana, 47907 (United States); DeMasi, Alexander; Ludwig, Karl [Physics Department, Boston University, Boston, Massachusetts 02215 (United States); Paul Allain, Jean [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); School of Nuclear Engineering, Purdue University, West Lafayette, Indiana, 47907 (United States)

2012-12-24T23:59:59.000Z

204

X-Ray Scattering Group, Condensed Matter Physics & Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

D.F. Inelastic x-ray scattering investigations of lattice dynamics in SmFeAsO1-xFy superconductors. Proceedings of The 9th International Conference on Spectroscopies in Novel...

205

VERY LARGE TELESCOPE/X-SHOOTER SPECTROSCOPY OF THE CANDIDATE BLACK HOLE X-RAY BINARY MAXI J1659-152 IN OUTBURST  

SciTech Connect

We present the optical to near-infrared spectrum of MAXI J1659-152 during the onset of its 2010 X-ray outburst. The spectrum was obtained with X-shooter on the ESO Very Large Telescope early in the outburst simultaneous with high-quality observations at both shorter and longer wavelengths. At the time of the observations, the source was in the low-hard state. The X-shooter spectrum includes many broad ({approx}2000 km s{sup -1}), double-peaked emission profiles of H, He I, and He II, characteristic signatures of a low-mass X-ray binary during outburst. We detect no spectral signatures of the low-mass companion star. The strength of the diffuse interstellar bands results in a lower limit to the total interstellar extinction of A{sub V} {approx_equal} 0.4 mag. Using the neutral hydrogen column density obtained from the X-ray spectrum we estimate A{sub V} {approx_equal} 1 mag. The radial velocity structure of the interstellar Na I D and Ca II H and K lines results in a lower limit to the distance of {approx}4 {+-} 1 kpc, consistent with previous estimates. With this distance and A{sub V} , the dereddened spectral energy distribution represents a flat disk spectrum. The two 10 minute X-shooter spectra show significant variability in the red wing of the emission-line profiles, indicating a global change in the density structure of the disk, though on a timescale much shorter than the typical viscous timescale of the disk.

Kaur, Ramanpreet; Kaper, Lex; Ellerbroek, Lucas E.; Russell, David M.; Altamirano, Diego; Wijnands, Rudy; Yang Yijung; Van der Horst, Alexander; Van der Klis, Michiel [Astronomical Institute 'Anton Pannekoek', University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); D'Avanzo, Paolo [INAF, Osservatorio Astronomico di Brera, via E. Bianchi 46, 23807 Merate (Italy); De Ugarte Postigo, Antonio; Fynbo, Johan P. U. [Dark Cosmology Centre, Niels Bohr Institute, Juliane Maries Vej 30, Copenhagen 2100 (Denmark); Flores, Hector [GEPI, Paris Observatory, CNRS, University of Paris-Diderot, 5 Place Jules Janssen, 92195 Meudon (France); Goldoni, Paolo [Laboratoire Astroparticule et Cosmologie, 10 rue A. Domon et L. Duquet, 75205 Paris Cedex 13 (France); Thoene, Christina C. [IAA-CSIC, Glorieta de la Astronomia s/n, 18008 Granada (Spain); Kouveliotou, Chryssa [Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Wiersema, Klaas [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Kuulkers, Erik, E-mail: r.kaur@uva.nl [European Space Agency, European Space Astronomy Centre, P.O. Box 78, 28691 Villanueva de la Canada, Madrid (Spain)

2012-02-20T23:59:59.000Z

206

High-Energy Processes in Young Stars: Chandra X-ray Spectroscopy of HDE 283572, RY Tau, and LkCa 21  

E-Print Network (OSTI)

Weak-lined T Tauri stars (WTTS) represent the important stage of stellar evolution between the accretion phase and the zero-age main sequence. At this stage, the star decouples from its accretion disk, and spins up to a higher rotation rate than in the preceding classical T Tauri phase. Consequently, dynamo processes can be expected to become even stronger at this stage. High energy processes can have effects on the remaining circumstellar material, possibly including protoplanets and planetesimals, and these effects may account for certain observable properties of asteroids in the current solar system. Chandra observed for 100 ks the WTTS HDE 283572 which probes the PMS stage of massive A-type stars. We present first results of the analysis of its high-resolution X-ray spectrum obtained with the High-Energy Transmission Grating Spectrometer. A wide range of Fe lines of high ionization states are observed, indicating a continuous emission measure distribution. No significant signal is detected longward of the O \\textsc{viii} Ly$\\alpha$ line because of the high photoelectric absorption. We also report on the preliminary analysis of the zeroth order spectra of RY Tau and LkCa21. In particular, we show evidence of an emission line in RY Tau at 6.4 keV that we identify as fluorescent emission by neutral Fe caused by a strong X-ray flare which illuminated some structure in (or surrounding) the CTTS. A comparison of X-ray spectra of classical T Tau stars, other WTTS, and young main-sequence stars is made.

Marc Audard; Stephen L. Skinner; Kester W. Smith; Manuel Guedel; Roberto Pallavicini

2004-09-13T23:59:59.000Z

207

The nature of the water nucleation sites on TiO2(110) surfaces relvealed by ambient pressure x-ray photoelectron spectroscopy  

E-Print Network (OSTI)

308, 1154 (2005). [6] S. Wendt, J. Matthiesen, R. Schaub,Phys. Rev. Lett. 96, [7] S. Wendt, R. Schaub, J. Matthiesen,

2007-01-01T23:59:59.000Z

208

Miniature x-ray source  

DOE Patents (OSTI)

A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

Trebes, James E. (Livermore, CA); Stone, Gary F. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA); Chornenky, Victor I. (Minnetonka, MN)

2002-01-01T23:59:59.000Z

209

Multivariate Curve Resolution Analysis for Interpretation of Dynamic Cu K-Edge X-ray Absorption Spectroscopy Spectra for a Cu Doped V2O5 Lithium Battery  

DOE Green Energy (OSTI)

Vanadium pentoxide materials prepared through sol-gel processes act as excellent intercalation hosts for lithium as well as polyvalent cations. A chemometric approach has been applied to study the X-ray absorption near-edge structure (XANES) evolution during in situ scanning of the Cu{sub 0.1}V{sub 2}O{sub 5} xerogel/Li ions battery. Among the more common techniques, the fixed size windows evolving factor analysis (FSWEFA) permits the number of species involved in the experiment to be determined and the range of existence of each of them. This result, combined with the constraints of the invariance of the total concentration and non-negativity of both concentrations and spectra, enabled us to obtain the spectra of the pure components using a multivariate curve resolution refined by an alternate least squares fitting procedure. This allowed the normalized concentration profile to be understood. This data treatment evidenced the occurrence, for the first time, of three species during the battery charging. This fact finds confirmation by comparison of the pure spectra with the experimental ones. Extended X-ray absorption fine structure (EXAFS) analysis confirms the occurrence of three different chemical environments of Cu during battery charging.

Conti, P.; Zamponi, S; Giorgetti, M; Berrettoni, M; Smyrl, W

2010-01-01T23:59:59.000Z

210

Two-temperature accretion flows in magnetic cataclysmic variables: Structures of post-shock emission regions and X-ray spectroscopy  

E-Print Network (OSTI)

We use a two-temperature hydrodynamical formulation to determine the temperature and density structures of the post-shock accretion flows in magnetic cataclysmic variables (mCVs) and calculate the corresponding X-ray spectra. The effects of two-temperature flows are significant for systems with a massive white dwarf and a strong white-dwarf magnetic field. Our calculations show that two-temperature flows predict harder keV spectra than one-temperature flows for the same white-dwarf mass and magnetic field. This result is insensitive to whether the electrons and ions have equal temperature at the shock but depends on the electron-ion exchange rate, relative to the rate of radiative loss along the flow. White-dwarf masses obtained by fitting the X-ray spectra of mCVs using hydrodynamic models including the two-temperature effects will be lower than those obtained using single-temperature models. The bias is more severe for systems with a massive white dwarf.

Saxton, C; Cropper, M; Ramsay, G; Saxton, Curtis; Wu, Kinwah; Cropper, Mark; Ramsay, Gavin

2005-01-01T23:59:59.000Z

211

Resonant Soft X-Ray Scattering - Combining Structural with Spectroscopic  

NLE Websites -- All DOE Office Websites (Extended Search)

Resonant Soft X-Ray Scattering - Combining Structural with Spectroscopic Resonant Soft X-Ray Scattering - Combining Structural with Spectroscopic Refinement Friday, September 28, 2012 - 10:00am SLAC, Bldg. 137, Room 322 SSRL Presents Kevin Stone X-ray absorption spectroscopy has become an important tool in understanding the electronic structure of materials. Resonant absorption edges in the soft x-ray regime are especially interesting as they allow the study of the lighter elements, such as in organic or organo-metallic substances, as well as important L-edges of the 3d transition metals important in magnetic and oxide systems. Measurements of soft x-ray absorption spectra are inherently surface sensitive, and are plagued by issues such as extinction (in electron yield measurements) or self absorption (in fluorescence yield

212

An in situ X-ray absorption spectroscopy investigation of the effect of Sn additions to carbon-supported Pt electrocatalysts: Part 1  

Science Conference Proceedings (OSTI)

Carbon-supported platinum (Pt/C) with an adsorbed layer of underpotential deposited (upd) Sn is a much better catalyst for the methanol oxidation reaction (MOR) than a carbon-supported platinum-tin (PtSn/C) alloy. In situ X-ray absorption (XAS) was used to determine the differences in the effects that the two methods of Sn addition have on the electronic properties and the structural properties of the catalyst. X-ray diffraction and XAS at the Pt L{sub 3} and L{sub 2} edges indicate that the PtSn/C catalyst has a Pt{sub 3}Sn L1{sub 2} structure, and alloying with Sn causes partial filling of the Pt d band vacancies and an increase in the Pt-Pt bond distance from 2.77 to 2.8 {angstrom}. However, upd Sn does not perturb Pt structurally or electronically. XAS at the Sn K edge indicates that both the upd Sn on Pt/C and the surface Sn on PtSn/C are associated with oxygenated species at all potentials, and that the nature and strength of the Sn-O bonds are potential dependent. The differences in the activity of the two catalysts for the MOR are due to the effects of alloying on the Pt electronic structure that inhibit the ability of the Pt to adsorb methanol and dissociate C-H bonds. The ability of PtSn/C to adsorb oxygen at low potentials enhances its activity for CO oxidation.

Mukerjee, S.; McBreen, J. [Brookhaven National Lab., Upton, NY (United States). Dept. of Applied Science

1999-02-01T23:59:59.000Z

213

Evolution of local structures in polycrystalline Zn1?xMgxO (0<=x<=0.15) studied by Raman spectroscopy and synchrotron x-ray pair-distribution-function analysis  

SciTech Connect

The local structures of Zn{sub 1-x}Mg{sub x}O alloys have been studied by Raman spectroscopy and by synchrotron x-ray pair-distribution-function (PDF) analysis. Within the solid solution range (0 {le} x {le} 0.15) of Zn{sub 1-x}Mg{sub x}O, the wurtzite framework is maintained with Mg homogeneously distributed throughout the wurtzite lattice. The E{sub 2}{sup high} Raman line of Zn{sub 1-x}Mg{sub x}O displays systematic changes in response to the evolution of the crystal lattice upon the Mg substitution. The redshift and broadening of the E{sub 2}{sup high} mode are explained by the expansion of hexagonal ab dimensions and compositional disorder of Zn/Mg, respectively. Synchrotron x-ray PDF analyses of Zn{sub 1-x}Mg{sub x}O reveal that the Mg atoms have a slightly reduced wurtzite parameter u and more regular tetrahedral bond distances than the Zn atoms. For both Zn and Mg, the internal tetrahedral geometries are independent of the alloy composition.

Kim, Young-Il; Page, Katharine; Limarga, Andi M.; Clarke, David R.; Seshadri, Ram (UCSB)

2008-09-18T23:59:59.000Z

214

TENDER ENERGY X-RAY ABSORPTION  

NLE Websites -- All DOE Office Websites (Extended Search)

TENDER ENERGY X-RAY ABSORPTION TENDER ENERGY X-RAY ABSORPTION SPECTROSCOPY (TES) Project Team: S. Bare 1,2 , J. Brandes 3 , T. Buonassisi 4 , J. Chen 5,2 , M. Croft 6 , E. DiMasi 7 , A. Frenkel 8,2 , D. Hesterberg 9 , S. Hulbert 7,2 , S. Khalid 7 , S. Myneni 10 , P. Northrup 7,11 , E.T. Rasbury 11 , B. Ravel 12 , R. Reeder 11 , J. Rodriguez 7,2 , D. Sparks 5,13 , V. Stojanoff 7 , G. Waychunas 14 1 UOP LLC, 2 Synchrotron Catalysis Consortium, 3 Skidaway Inst. of Oceanography, 4 MIT Laboratory for Photovoltaics Research, 5 Univ. of Delaware, 6 Rutgers Univ., 7 Brookhaven National Lab, 8 Yeshiva Univ., 9 North Carolina State Univ., 10 Princeton Univ., 11 Stony Brook Univ., 12 NIST, 13 Delaware Environmental Inst., 14 Lawrence Berkeley National Lab TECHNIQUES: High performance and in-situ X-ray absorption spectroscopy and spatially-resolved XAS of

215

Soft X-ray Studies of Pu Electronic Structure: Past Lessons and Future Directions  

Science Conference Proceedings (OSTI)

Photoelectron Spectroscopy (PES) and X-ray Absorption Spectroscopy (XAS) have contributed greatly to our improved understanding of Pu electronic structure. From these and related measurements, the following has been determined. 1. The Pu 5f spin-orbit splitting is large. 2. The number of Pu 5f electrons is near 5. 3. The Pu 5f spin-orbit splitting effect dominates 5f itinerancy. Significant questions remain concerning the nature of Pu electronic structure. Perhaps the missing piece of the puzzle is the direct experimental determination of the unoccupied electronic structure using high energy inverse photoelectron spectroscopy or Bremsstrahlung Isochromat Spectroscopy (BIS). Past BIS studies of Th and U indicate the feasibility and utility of Pu studies. To this end, a new BIS capability has been developed in our laboratory. Electron stimulated emission of photons has been carried out using the XES-350 monochromator and detector system. Some of our preliminary results are shown, using an electron excitation beam energy of 3000 eV. (authors)

Tobin, J.G.; Yu, S.W. [LLNL, Livermore, CA, 94550 (United States)

2008-07-01T23:59:59.000Z

216

Kinoform optics applied to X-ray photon correlation specroscopy  

Science Conference Proceedings (OSTI)

Moderate-demagnification higher-order silicon kinoform focusing lenses have been fabricated to facilitate small-angle X-ray photon correlation spectroscopy (XPCS) experiments. The geometric properties of such lenses, their focusing performance and their applicability for XPCS measurements are described. It is concluded that one-dimensional vertical X-ray focusing via silicon kinoform lenses significantly increases the usable coherent flux from third-generation storage-ring light sources for small-angle XPCS experiments.

Sandy, A.R.; Evans-Lutterodt, K.; Narayanan, S.; Sprung, M.; Su, J.D; Isakovic, A.F.; Stein, A.

2010-03-01T23:59:59.000Z

217

Miniature x-ray source  

DOE Patents (OSTI)

A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

Trebes, James E. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA)

2000-01-01T23:59:59.000Z

218

Tokamak x ray diagnostic instrumentation  

SciTech Connect

Three classes of x-ray diagnostic instruments enable measurement of a variety of tokamak physics parameters from different features of the x-ray emission spectrum. (1) The soft x-ray (1 to 50 keV) pulse-height-analysis (PHA) diagnostic measures impurity concentrations from characteristic line intensities and the continuum enhancement, and measures the electron temperature from the continuum slope. (2) The Bragg x-ray crystal spectrometer (XCS) measures the ion temperature and neutral-beam-induced toroidal rotation velocity from the Doppler broadening and wavelength shift, respectively, of spectral lines of medium-Z impurity ions. Impurity charge state distributions, precise wavelengths, and inner-shell excitation and recombination rates can also be studied. X rays are diffracted and focused by a bent crystal onto a position-sensitive detector. The spectral resolving power E/..delta..E is greater than 10/sup 4/ and time resolution is 10 ms. (3) The x-ray imaging system (XIS) measures the spatial structure of rapid fluctuations (0.1 to 100 kHZ) providing information on MHD phenomena, impurity transport rates, toroidal rotation velocity, plasma position, and the electron temperature profile. It uses an array of silicon surface-barrier diodes which view different chords of the plasma through a common slot aperture and operate in current (as opposed to counting) mode. The effectiveness of shields to protect detectors from fusion-neutron radiation effects has been studied both theoretically and experimentally.

Hill, K.W.; Beiersdorfer, P.; Bitter, M.; Fredrickson, E.; Von Goeler, S.; Hsuan, H.; Johnson, L.C.; Liew, S.L.; McGuire, K.; Pare, V.

1987-01-01T23:59:59.000Z

219

X-ray Transition Energies Search Form  

Science Conference Proceedings (OSTI)

[skip navigation] X-ray Transition Energies Database Main Page Search for X-ray transition energies by element(s), transition ...

220

Femtosecond photoelectron spectroscopy: a new tool for the study of anion dynamics  

SciTech Connect

A new experimental technique for the time-resolved study of anion reactions is presented. Using femtosecond laser pulses, which provide extremely fast ({approx} 100 fs) time resolution, in conjunction with photoelectron spectroscopy, which reveals differences between anion and neutral potential energy surfaces, a complex anion reaction can be followed from its inception through the formation of asymptotic products. Experimental data can be modeled quantitatively using established theoretical approaches, allowing for the refinement of potential energy surfaces as well as dynamical models. After a brief overview, a detailed account of the construction of the experimental apparatus is presented. Documentation of the data acquisition program is contained in the Appendix. The first experimental demonstration of the technique is then presented for I{sub 2}{sup -} photodissociation, modeled using a simulation program which is also detailed in the Appendix. The investigation of I{sub 2}{sup -} photodissociation in several size-selected I{sub 2}{sup -}(Ar){sub n} (n = 6-20) and I{sub 2}{sup -}(CO{sub 2}){sub n} (n = 4-16) clusters forms the heart of the dissertation. In a series of chapters, the numerous effects of solvation on this fundamental bond-breaking reaction are explored, the most notable of which is the recombination of I{sub 2}{sup -} on the ground {tilde X}({sup 2}{Sigma}{sub u}{sup +}) state in sufficiently large clusters. Recombination and trapping of I{sub 2}{sup -} on the excited {tilde A}({sup 2}{Pi}{sub 3/2,g}) state is also observed in both types of clusters. The studies have revealed electronic state transitions, the first step in recombination, on a {approx}500 fs to {approx}10 ps timescale. Accompanying the changes in electronic state is solvent reorganization, which occurs on a similar timescale. Over longer periods ({approx}1 ps to >200 ps), energy is transferred from vibrationally excite d I{sub 2}{sup -} to modes of the solvent, which in turn leads to solvent evaporation. These effects become more important as cluster size increases. In addition, differences in timescale and mechanism are observed between clusters of Ar, which binds to I{sup -} and I{sub 2}{sup -} rather weakly, and CO{sub 2}, whose large quadruple moment allows substantially stronger binding to these anions.

Greenblatt, B.J.

1999-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray photoelectron spectroscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Cryogenic, high-resolution x-ray detector with high count rate capability  

DOE Patents (OSTI)

A cryogenic, high-resolution X-ray detector with high count rate capability has been invented. The new X-ray detector is based on superconducting tunnel junctions (STJs), and operates without thermal stabilization at or below 500 mK. The X-ray detector exhibits good resolution (.about.5-20 eV FWHM) for soft X-rays in the keV region, and is capable of counting at count rates of more than 20,000 counts per second (cps). Simple, FET-based charge amplifiers, current amplifiers, or conventional spectroscopy shaping amplifiers can provide the electronic readout of this X-ray detector.

Frank, Matthias (Oakland, CA); Mears, Carl A. (Windsor, CA); Labov, Simon E. (Berkeley, CA); Hiller, Larry J. (Livermore, CA); Barfknecht, Andrew T. (Menlo Park, CA)

2003-03-04T23:59:59.000Z

222

Highly polarized emission in spin resolved photoelectron spectroscopy of alpha-Fe(001)/GaAs(001)  

SciTech Connect

Highly spin-polarized sources of electrons, Integrated into device design, remain of great interest to the spintronic and magneto-electronic device community Here, the growth of Fe upon GaAs(001) has been studied with photoelectron spectroscopy (PES), including Spin Resolved PES. Despite evidence of atomic level disorder such as intermixing, an over-layer with the spectroscopic signature of alpha-Fe(001), with a bcc real space ordering, Is obtained The results will be discussed in light of the possibility of using such films as a spin-polarized source in device applications.

Tobin, James; Yu, Sung Woo; Morton, Simon; Waddill, George; Thompson, Jamie; Neal, James; Spangenberg, Matthais; Shen, T.H.

2009-05-19T23:59:59.000Z

223

Compact x-ray source and panel  

SciTech Connect

A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

Sampayon, Stephen E. (Manteca, CA)

2008-02-12T23:59:59.000Z

224

X-RAY FLUORESCENCE MICROPROBE (XFM) TECHNIQUES AND CAPABILITIES  

NLE Websites -- All DOE Office Websites (Extended Search)

RAY FLUORESCENCE MICROPROBE (XFM) RAY FLUORESCENCE MICROPROBE (XFM) TECHNIQUES AND CAPABILITIES APPLICATIONS WORLD-LEADING MICROFOCUSED EXAFS SPECTROSCOPY * XFM is an optimized three-pole wiggler beamline for the characterization of materials in an "as-is" state that are chemically heterogeneous at the micrometer scale via synchrotron induced X-ray fluorescence. * XFM includes instrumentation for microbeam X-ray fluorescence (µXRF), diffraction (µXRD) and fluorescence computed microtomography (FCMT) . However, it is optimized to provide users state-of-the-art microfocused Extended X-ray Absorption Fine Structure (µEXAFS) spectroscopy between 4 to 20 keV. * XFM will trade-off beam size and flux for sample configuration flexibility. This includes more readily achievable stability

225

Inhomogeneity and glass-forming ability in the bulk metallic glass Pd{sub 42.5}Ni{sub 7.5}Cu{sub 30}P{sub 20} as seen via x-ray spectroscopies  

Science Conference Proceedings (OSTI)

Core-level photoemission spectroscopy and anomalous x-ray scattering (AXS) measurements were performed for the Pd{sub 42.5}Ni{sub 7.5}Cu{sub 30}P{sub 20} (PNCP) excellent metallic glass to investigate the chemical nature and local atomic structure, and the results were compared to those in Pd{sub 40}Ni{sub 40}P{sub 20} and Pd{sub 40}Cu{sub 40}P{sub 20}. The P 2p core levels clearly separate into two states, indicating that the P atoms have two different chemical sites, which is a strong experimental proof for the existence of an elastic inhomogeneity. From the AXS close to the Pd K edge, a specific Pd-P-Pd atomic configuration was observed, which is related to the stable state in the P 2p core levels. All of the core levels measured in PNCP have the deepest binding energies among these glasses, indicating the most stable electronic states. Local structure around the P atoms is discussed by the AXS data and a metastable crystal appeared in a supercooled metallic alloy close to PNCP.

Hosokawa, S. [Center for Materials Research Using Third-Generation Synchrotron Radiation Facilities, Hiroshima Institute of Technology, Hiroshima 731-5193 (Japan); Physikalische Chemie, Fachbereich Chemie, Philipps Universitaet Marburg, D-35032 Marburg (Germany); Sato, H.; Nakatake, M. [Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima 739-0046 (Japan); Ichitsubo, T.; Matsubara, E. [Department of Materials Science and Engineering, Graduate School of Engineering, Kyoto University, Kyoto 606-8501 (Japan); Happo, N. [Graduate School of Information Sciences, Hiroshima City University, Hiroshima 731-3194 (Japan); Berar, J.-F.; Boudet, N. [Institut Neel, CNRS, F-38042 Grenoble Cedex (France); Usuki, T. [Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, Yamagata 990-8560 (Japan); Pilgrim, W.-C. [Physikalische Chemie, Fachbereich Chemie, Philipps Universitaet Marburg, D-35032 Marburg (Germany); Nishiyama, N. [R and D Institute of Metals and Composites for Future Industries, Sendai 980-8577 (Japan)

2009-11-01T23:59:59.000Z

226

Electronic structure effects in liquid water studied by photoelectron spectroscopy and density functional theory  

DOE Green Energy (OSTI)

We present valence photoelectron emission spectra of liquid water in comparison with gas-phase water, ice close to the melting point, low temperature amorphous and crystalline ice. All aggregation states have major electronic structure changes relative to the free molecule, with rehybridization and development of bonding and anti-bonding states accompanying the hydrogen bond formation. Sensitivity to the local structural order, most prominent in the shape and splitting of the occupied 3a{sub 1} orbital, is understood from the electronic structure averaging over various geometrical structures, and reflects the local nature of the orbital interaction.

Nordlund, Dennis; Odelius, Michael; Bluhm, Hendrik; Ogasawara, Hirohito; Pettersson, Lars G.M.; Nilsson, Anders

2008-04-29T23:59:59.000Z

227

Chest x-Rays | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chest x-Rays Chest x-Rays Chest x-Rays Chest X-ray B-Reading The B-reading is a special reading of a standard chest x-ray film performed by a physician certified by the National Institute for Occupational Safety and Health (NIOSH). The reading looks for changes on the chest x-ray that may indicate exposure and disease caused by agents such as asbestos or silica. The B-reading is considered a special reading because doctors who are certified by NIOSH to perform B-readings use a specific protocol to read and record the findings as developed by the International Labour Organization (ILO). The ILO's protocol provides rules for systematically examining the x-ray in a step-by-step method and recording certain abnormalities or changes on the chest x-ray that can be attributable to

228

Spectral analysis of X-ray binaries  

E-Print Network (OSTI)

In this thesis, I present work from three separate research projects associated with observations of X-ray binaries. Two of those revolve around spectral characteristics of neutron star low-mass X-ray binaries (NS-LMXBs), ...

Fridriksson, Joel Karl

2011-01-01T23:59:59.000Z

229

SYNCHROTRON X-RAY BASED CHARACTERIZATION OF CDZNTE CRYSTALS  

Science Conference Proceedings (OSTI)

Synthetic CdZnTe or 'CZT' crystals can be used for the room temperature-based detection of {gamma}-radiation. Structural/morphological heterogeneities within CZT, such as twinning, inclusions, and polycrystallinity can affect detector performance. We used a synchrotron-based X-ray technique, specifically extended X-ray absorption fine-structure (EXAFS) spectroscopy, to determine whether there are differences on a local structural level between intact CZT of high and low radiation detector performance. These studies were complemented by data on radiation detector performance and transmission IR imaging. The EXAFS studies revealed no detectable local structural differences between the two types of CZT materials.

Duff, M

2006-09-28T23:59:59.000Z

230

Cryotomography x-ray microscopy state  

Science Conference Proceedings (OSTI)

An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

Le Gros, Mark (Berkeley, CA); Larabell, Carolyn A. (Berkeley, CA)

2010-10-26T23:59:59.000Z

231

X-ray transmissive debris shield  

DOE Patents (OSTI)

An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

Spielman, R.B.

1996-05-21T23:59:59.000Z

232

X-ray transmissive debris shield  

DOE Patents (OSTI)

An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

Spielman, Rick B. (Albuquerque, NM)

1996-01-01T23:59:59.000Z

233

A multi-crystal wavelength dispersive x-ray spectrometer  

Science Conference Proceedings (OSTI)

A multi-crystal wavelength dispersive hard x-ray spectrometer with high-energy resolution and large solid angle collection is described. The instrument is specifically designed for time-resolved applications of x-ray emission spectroscopy (XES) and x-ray Raman scattering (XRS) at X-ray Free Electron Lasers (XFEL) and synchrotron radiation facilities. It also simplifies resonant inelastic x-ray scattering (RIXS) studies of the whole 2d RIXS plane. The spectrometer is based on the Von Hamos geometry. This dispersive setup enables an XES or XRS spectrum to be measured in a single-shot mode, overcoming the scanning needs of the Rowland circle spectrometers. In conjunction with the XFEL temporal profile and high-flux, it is a powerful tool for studying the dynamics of time-dependent systems. Photo-induced processes and fast catalytic reaction kinetics, ranging from femtoseconds to milliseconds, will be resolvable in a wide array of systems circumventing radiation damage.

Alonso-Mori, Roberto; Montanez, Paul; Delor, James; Bergmann, Uwe [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kern, Jan [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8099 (United States); Sokaras, Dimosthenis; Weng, Tsu-Chien; Nordlund, Dennis [SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Tran, Rosalie; Yachandra, Vittal K.; Yano, Junko [Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8099 (United States)

2012-07-15T23:59:59.000Z

234

Exploring electronic structure through high-resolution hard x-ray  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploring electronic structure through high-resolution hard x-ray Exploring electronic structure through high-resolution hard x-ray spectroscopies Tuesday, July 23, 2013 - 11:00am SLAC, Conference Room 137-322 Presented by Dimosthenis Sokaras, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory Modern high brilliance beamlines coupled with recent advances in hard-x-ray optics are establishing high-resolution hard x-ray spectroscopies as a powerful analytical tool for routine electronic structure investigations. Their advantageous characteristics like the chemical sensitivity or the hard x-rays penetration depth, that permits the implementation of difficult sample environments, expand the applicability of the relevant studies to multidisciplinary scientific fields. Simultaneously, the experimental

235

SSRL School 2008 on Hard X-ray Scattering Techniques in MES  

NLE Websites -- All DOE Office Websites (Extended Search)

May 20-22, 2008 SSRL School on Synchrotron X-ray Absorption Spectroscopy Techniques in Environmental and Materials Sciences: Theory and Application Group photo from the 2008 SSRL...

236

Pt–metal oxide aerogel catalysts: X-ray photoemission investigation  

Science Conference Proceedings (OSTI)

X-ray photoemission spectroscopy was used to study Pt–metal oxide aerogel catalysts that have been developed to respond to increased NO x emissions of lean-burn engines. Lean-burn engines

A. J. Nelson; John G. Reynolds; R. D. Sanner; P. R. Coronado; L. M. Hair

2001-01-01T23:59:59.000Z

237

X-ray Diagnostics of Broad Absorption Line Quasar Geometry  

E-Print Network (OSTI)

A new generation of sensitive X-ray measurements are indicating that the existence of X-ray attenuation column densities, $N_{H}>10^{24}\\mathrm{cm}^{-2}$ is quite common amongst broad absorption line quasars (BALQSOs). This is significant to the geometry of the broad absorption line (BAL) outflow. In particular, such an X-ray shield also shields equatorial accretion disk winds from the UV, thereby preventing high velocity equatorial outflows from being launched. By contrast, bipolar winds initiated by continuum radiation pressure from the funnel of a slim accretion disk flare outward (like a trumpet) and offer vastly different absorbing columns to the X-ray and UV emission which are emitted from distinct regions of the disk, $\\sim 6M$ and $\\sim 10M-40M$, respectively (where $M$ is the radius of the black hole). Recent numerical work indicates that it is also possible to launch bipolar outflows from the inner regions of a thin disk. The recent discovery with VLBI that the Galactic analog of a BALQSO, the X-ray binary Circinus X-1 (with high velocity P Cygni X-ray absorption lines) is viewed virtually along the radio jet axis (and therefore along the spin axis of the black hole and the normal to the accretion disk) has rekindled interest in the bipolar models of BALQSOs. We explore this possibility by studying the nearest BAL QSO, MRK 231. High resolution 2-D optical spectroscopy and VLBI mappings of the radio jet axis indicates that the BAL outflow is parallel to the parsec scale radio jet.

Brian Punsly; Sebastian Lipari

2005-03-09T23:59:59.000Z

238

Determining Relative f and d Orbital Contributions to M?Cl Covalency in MCl62– (M = Ti, Zr, Hf, U) and UOCl5 Using Cl K-Edge X-ray Absorption Spectroscopy and Time-Dependent Density Functional Theory  

SciTech Connect

Chlorine K-edge X-ray absorption spectroscopy (XAS) and ground-state and time-dependent hybrid density functional theory (DFT) were used to probe electronic structure for O{sub h}-MCl{sub 6}{sup 2-}(M = Ti, Zr, Hf, U) and C{sub 4v}-UOCl{sub 5}{sup -}, and to determine the relative contributions of valence 3d, 4d, 5d, 6d, and 5f orbitals in M-Cl bonding. Spectral interpretations were guided by time-dependent DFT calculated transition energies and oscillator strengths, which agree well with the experimental XAS spectra. The data provide new spectroscopic evidence for the involvement of both 5f and 6d orbitals in actinide-ligand bonding in UCl{sub 6}{sup 2-}. For the MCl{sub 6}{sup 2-}, where transitions into d orbitals of t{sub 2g} symmetry are spectroscopically resolved for all four complexes, the experimentally determined Cl 3p character per M-Cl bond increases from 8.3(4)% (TiCl{sub 6}{sup 2-}) to 10.3(5)% (ZrCl{sub 6}{sup 2-}), 12(1)% (HfCl{sub 6}{sup 2-}), and 26 18(1)% (UCl{sub 6}{sup 2-}). Chlorine K-edge XAS spectra of UOCl{sub 5}{sup -} provide additional insights into the transition assignments by 27 lowering the symmetry to C{sub 4v}, where five pre-edge transitions into both 5f and 6d orbitals are observed. For UCl{sub 6}{sup 2-}, the XAS data 28 suggest that orbital mixing associated with the U 5f orbitals is considerably lower than that of the U 6d orbitals. For both UCl{sub 6}{sup 2-}29 and UOCl{sub 5}{sup -}, the ground-state DFT calculations predict a larger 5f contribution to bonding than is determined experimentally. 30 These findings are discussed in the context of conventional theories of covalent bonding for d- and f-block metal complexes.

Minasian, Stefan G.; Keith, Jason M.; Batista, Enrique R.; Boland, Kevin S.; Clark, David L.; Conradson, Steven D.; Kozimor, Stosh A.; Martin, Richard L.; Schwarz, Daniel E.; Shuh, David K.; Wagner, Gregory L.; Wilkerson, Marianne P.; Wolfsberg, Laura E.; Yang, Ping

2012-03-09T23:59:59.000Z

239

X-ray data booklet. Revision  

SciTech Connect

A compilation of data is presented. Included are properties of the elements, electron binding energies, characteristic x-ray energies, fluorescence yields for K and L shells, Auger energies, energy levels for hydrogen-, helium-, and neonlike ions, scattering factors and mass absorption coefficients, and transmission bands of selected filters. Also included are selected reprints on scattering processes, x-ray sources, optics, x-ray detectors, and synchrotron radiation facilities. (WRF)

Vaughan, D. (ed.)

1986-04-01T23:59:59.000Z

240

X-ray transmissive debris shield  

DOE Patents (OSTI)

A composite window structure is described for transmitting x-ray radiation and for shielding radiation generated debris. In particular, separate layers of different x-ray transmissive materials are laminated together to form a high strength, x-ray transmissive debris shield which is particularly suited for use in high energy fluences. In one embodiment, the composite window comprises alternating layers of beryllium and a thermoset polymer.

Spielman, Rick B. (Albuquerque, NM)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray photoelectron spectroscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NIST X-Ray Transition Energies  

Science Conference Proceedings (OSTI)

... with the International System of measurement ... titled "X-ray transition energies: new approach ... and by NIST's Systems Integration for Manufacturing ...

2011-12-09T23:59:59.000Z

242

X-ray Line Profile Analysis  

Science Conference Proceedings (OSTI)

... Magnetic Composite Materials · X-Ray Studies of Structural Effects Induced by Pulsed (30 Tesla), High Magnetic Fields at the Advanced Photon Source ...

243

NIST: X-Ray Mass Attenuation Coefficients  

Science Conference Proceedings (OSTI)

... NIST reserves the right to charge for these data in the ... ?/? and the mass energy-absorption coefficient ... The tables cover energies of the photon (x-ray ...

2011-12-09T23:59:59.000Z

244

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray...

245

Hard X-Ray Quad Collimator  

Technology Development and Commercialization Division One of the best ways to obtain small?size x?ray beams for structural biology research is to ...

246

X-Ray Absorption Characterization of Diesel Exhaust Particulates  

DOE Green Energy (OSTI)

We have characterized particulates from a 1993 11.1 Detroit Diesel Series 60 engine with electronic unit injectors operated using fuels with and without methylcyclopentadienyl manganese tricarbonyl (MMT) and overbased calcium sulfonate added. X-ray photoabsorption (XAS) spectroscopy was used to characterize the diesel particulates. Results reveal a mixture of primarily Mn-phosphate with some Mn-oxide, and Ca-sulfate on the surface of the filtered particulates from the diesel engine.

Nelson, A J; Ferreira, J L; Reynolds, J G; Roos, J W

1999-11-18T23:59:59.000Z

247

X?ray Fluorescence (XRF) Assay Using Laser Compton Scattered (LCS) X?rays  

Science Conference Proceedings (OSTI)

Laser Compton Scattered (LCS) X?rays are produced as a result of the interaction between accelerated electrons and a laser beam. The yield of LCS X?rays is dependent on the laser power

Syed F. Naeem; Khalid Chouffani; Douglas P. Wells

2009-01-01T23:59:59.000Z

248

X-Ray Multilayer Database from the LBL Center for X-Ray Optics (CXRO)  

DOE Data Explorer (OSTI)

An important activity of the Center for X-ray Optics (CXRO) is research on x-ray mirrors and their use in optical devices to focus and deflect x-ray beams. The two kinds of mirrors most widely used are glancing incidence reflectors and multilayer coatings. The X-Ray Multilayer Database is based on the results of surveys taken at the biennial Physics of X-Ray Multilayer Structures conferences. It contains measured x-ray reflectances reported for various multilayers. The database is provided as a service to the x-ray and multilayer research communities and is intended to reflect the state-of-the-art in multilayer x-ray mirrors. (Specialized Interface)

249

Materials Analysis by Soft x-ray Scanning Transmission X-ray ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Optical and X-ray Imaging Techniques for Material Characterization.

250

X-Ray Data Booklet X-RAY DATA BOOKLET  

E-Print Network (OSTI)

.10.Re 1. Introduction Mendelevium (Z=101) and Lawrencium (Z=103) isotopes have been dis- covered nearly isotopes have been studied so far using prompt gamma- ray spectroscopy: the neutron-odd 253No [9

Meagher, Mary

251

Standing-wave excited soft x-ray photoemission microscopy: application to Co microdot magnetic arrays  

SciTech Connect

We demonstrate the addition of depth resolution to the usual two-dimensional images in photoelectron emission microscopy (PEEM), with application to a square array of circular magnetic Co microdots. The method is based on excitation with soft x-ray standing-waves generated by Bragg reflection from a multilayer mirror substrate. Standing wave is moved vertically through sample simply by varying the photon energy around the Bragg condition. Depth-resolved PEEM images were obtained for all of the observed elements. Photoemission intensities as functions of photon energy were compared to x-ray optical calculations in order to quantitatively derive the depth-resolved film structure of the sample.

Gray, Alexander; Kronast, Florian; Papp, Christian; Yang, See-Hun; Cramm, Stefan; Krug, Ingo P.; Salmassi, Farhad; Gullikson, Eric M.; Hilken, Dawn L.; Anderson, Erik H.; Fischer, Peter; Durr, Hermann A.; Schneider, Claus M.; Fadley, Charles S.

2010-10-29T23:59:59.000Z

252

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Lensless X-Ray Imaging in Reflection Lensless X-Ray Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

253

An X-ray Polarimeter for Constellation-X  

E-Print Network (OSTI)

Polarimetry remains a largely unexploited technique in observational X-ray astronomy which could provide insight in the study of the strong gravity and magnetic fields at the core of the Constellation-X observational program. Adding a polarization capability to the Constellation-X instrumentation would be immensely powerful. It would make Constellation the first space observatory to simultaneously measure all astrophysically relevant parameters of source X-ray photons; their position (imaging), energy (spectroscopy), arrival time (timing), and polarization. Astrophysical polarimetry requires sensitive well-calibrated instruments. Many exciting objects are extra-galactic (i.e. faint) and may have small polarization. Recent advances in efficiency and bandpass make it attractive to consider a polarimetry Science Enhancement Package for the Constellation-X mission.

K. Jahoda; K. Black; P. Deines-Jones; J. E. Hill; T. Kallman; T. Strohmayer; J. H. Swank

2007-01-04T23:59:59.000Z

254

X-ray absorption studies of battery materials  

SciTech Connect

X-ray absorption spectroscopy (XAS) is ideal for {ital in}{ital situ} studies of battery materials because both the probe and signal are penetrating x rays. The advantage of XAS being element specific permits investigation of the environment of a constituent element in a composite material. This makes it very powerful for studying electrode additives and corrosion of individual components of complex metal hydride alloys. The near edge part of the spectrum (XANES) provides information on oxidation state and site symmetry of the excited atom. This is particularly useful in study of corrosion and oxidation changes in cathode materials during charge/discharge cycle. Extended fine structure (EXAFS) gives structural information. Thus the technique provides both chemical and structural information. Since XAS probes only short range order, it can be applied to study of amorphous electrode materials and electrolytes. This paper discusses advantages and limitations of the method, as well as some experimental aspects.

McBreen, J.

1996-10-01T23:59:59.000Z

255

Spectroscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectroscopy Spectroscopy Spectroscopy Print In spectroscopy experiments, a sample is illuminated with light and the various product particles (electrons, ions, or fluorescent photons) are detected and analyzed.The unifying feature is that some "property" of a material is measured as the x-ray (photon) energy is swept though a range of values. At the most basic level, one measures the absorption, transmission, or reflectivity of a sample as a function of photon energy. Probes that use the vacuum ultraviolet (VUV) region of the spectrum (10-100 eV) are very well matched to the elucidation of bonding in solids, surfaces, and molecules; to the investigation of electron-electron correlations in solids, atoms, and ions; and to the study of reaction pathways in chemical dynamics. At the lowest end of this energy range (below 1 eV) we have infrared, far-infrared, and terahertz spectroscopies, which are well matched to vibrational modes and other modes of excitation.

256

Instrument Series: Spectroscopy and Diffraction XPS Imaging  

NLE Websites -- All DOE Office Websites (Extended Search)

XPS Imaging XPS Imaging The X-ray photoelectron spectroscopy (XPS) imaging system provides fast, quantitative, real-time parallel imaging with highest resolution spectroscopy at all analysis areas. In addition, the system is equipped with temperature programmed desorption (TPD), ultraviolet photoelectron spectroscopy (UPS), ion scattering spectroscopy (ISS), a cluster/Ar + ion gun, and a five-axis automated stage with variable temperature sample environment at the analysis chamber. The system is also integrated with a radial distribution chamber (RDC), a full-size glove box, and a cold-stage at the sample introduction for air-sensitive, liquid-semisolid, biological and environmental sample transfers. In addition, the RDC has a simple sample transfer mechanism to the

257

Scanning transmission x-ray microscopy: A new ``looking glass`` into coal chemical structure  

SciTech Connect

This paper reports the use of scanning transmission x-ray microscopy to spatially map the chemistry of aromatic and aliphatic carbon functionalities in coal to a resolution of less than 0.1 {mu}m. Localized x-ray absorption spectroscopy recorded at the carbon K absorption edge was also used to facilitate analysis of variations in fundamental chemistry at maceral interfaces and within maceral boundaries.

Botto, R.E.; Cody, G.D.

1994-02-01T23:59:59.000Z

258

X-Ray Scattering Group, Condensed Matter Physics & Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

- Brookhaven National Laboratory, Upton, NY Beamline X1A2 - Soft x-ray diffraction and nano-imaging Beamline X17 - X-ray powder diffraction Beamline X22C - Resonant x-ray...

259

APS Bending Magnet X-rays and  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiation of Nd-Fe-B Permanent Magnets with Irradiation of Nd-Fe-B Permanent Magnets with APS Bending Magnet X-rays and 60 Co γ-rays J. Alderman and P.K. Job APS Operations Division Advanced Photon Source J. Puhl Ionizing Radiation Division National Institute of Standards and Technology June 2000 Table of Contents Introduction Radiation-Induced Demagnetization of Permanent Magnets Resources Required γ-ray Irradiation Results and Analysis of γ-ray Irradiation X-ray Irradiation Results and Analysis of X-ray Irradiation Summary and Conclusions Acknowledgements References Tables and Figures Introduction The Advanced Photon Source (APS), as well as other third-generation synchrotron light sources, uses permanent magnets in the insertion devices to produce x-rays for scientific

260

X-ray image intensifier phosphor  

DOE Patents (OSTI)

Y/sub 1-x/Gd/sub x/.PO$sub 4$:Tb$sup 3+$ is an effective phosphor for use in X-ray intensifier screens and in nuclear radiation detection systems.

D' Silva, A.P.; Fassel, V.A.

1975-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray photoelectron spectroscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

World's First Hard X-ray Laser  

NLE Websites -- All DOE Office Websites (Extended Search)

LCLS is the world's most powerful X-ray laser. Its highly focused beam, which arrives in staccato bursts a few quadrillionths of a second long, allows researchers to probe complex,...

262

X-ray grid-detector apparatus  

DOE Patents (OSTI)

A hybrid grid-detector apparatus for x-ray systems wherein a microchannel plate structure has an air-interspaced grid portion and a phosphor/optical fluid-filled grid portion. The grids are defined by multiple adjacent channels separated by lead-glass septa. X-rays entering the air-interspaced grid portion at an angle of impingement upon the septa are attenuated, while non-impinging x-rays pass through to the phosphor/fluid filled portion. X-ray energy is converted to luminescent energy in the phosphor/fluid filled portion and the resultant beams of light are directed out of the phosphor/optical fluid filled portion to an imaging device.

Boone, John M. (Folsom, CA); Lane, Stephen M. (Oakland, CA)

1998-01-27T23:59:59.000Z

263

X-Ray Nanoimaging: Instruments and Methods  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Nanoimaging: Instruments and Methods To be held as part of SPIE. http:spie.orgOP318 August 28-29, 2013; San Diego, California, USA...

264

Development and characterization of a novel compact x-ray source  

E-Print Network (OSTI)

For elemental analysis, x-ray fluorescence spectroscopy (XRF) is a rapid and simple method of analysis, which provides both quantitative and qualitative information. In general, most XRF instruments are not suited for use as portable field instruments. Most commercial XRF spectrometers require cooling units for the anode, large power supplies and, in some cases, liquid nitrogen to cool the x-ray detectors. Alternative x-ray sources using radioactive isotopes have been considered for portable XRF, but safety regulations and public concerns have hampered their usage. An x-ray source has been developed which uses a solid state electron multiplier to enhance the electron gain from a simple filament. The overall gain from the electron multiplier is sufficient to generate x-rays. However, the novel source produces less heating of the anode, eliminating the cooling unit requirement. This feature along with the small size of the electron multiplier, allows for a compact design, which lends itself to portability. An additional feature is that the power consumption of the system is lower than a typical xray tube system. Initial studies have shown that the system behaves similar to a conventional x-ray tube. Increasing anode voltage (electron energy) causes improved yield of the higher energy x-rays. Also, increasing the electron multiplier voltage (electron intensity) increases overall intensity of the x-ray output. Using the new source for XRF studies, the limits of detection were comparable with values reported in the literature. It was necessary, however, to prepare the samples using single elements to reduce matrix affects and lessen effects of overlapping peaks. In general the x-ray source shows potential as a portable x-ray source that may be used in the field.

Woo, Ronald Yut

1996-01-01T23:59:59.000Z

265

X-Ray Emission from Compact Sources  

SciTech Connect

This paper presents a review of the physical parameters of neutron stars and black holes that have been derived from X-ray observations. I then explain how these physical parameters can be used to learn about the extreme conditions occurring in regions of strong gravity, and present some recent evidence for relativistic effects seen in these systems. A glossary of commonly used terms and a short tutorial on the names of X-ray sources are also included.

Cominsky, L

2004-03-23T23:59:59.000Z

266

Argonne CNM: X-Ray Microscopy Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Microscopy Facilities X-Ray Microscopy Facilities The Hard X-Ray Nanoprobe (HXN) facility provides scanning fluorescence, scanning diffraction, and full-field transmission and tomographic imaging capabilities with a spatial resolution of 30 nm over a spectral range of 6-12 keV. Modes of Operation Full-Field Transmission Imaging and Nanotomography X-ray transmission imaging uses both the absorption and phase shift of the X-ray beam by the sample as contrast mechanisms. Absorption contrast is used to map the sample density. Elemental constituents can be located by using differential edge contrast in this mode. Phase contrast can be highly sensitive to edges and interfaces even when the X-ray absorption is weak. These contrast mechanisms are exploited to image samples rapidly in full-field transmission mode under various environmental conditions, or combined with nanotomography methods to study the three-dimensional structure of complex and amorphous nanomaterials with the HXN.

267

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Reflection Print Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

268

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Reflection Print Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

269

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging in Reflection Print X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

270

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging in Reflection Print X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

271

Compton backscattered collimated x-ray source  

SciTech Connect

A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

1998-01-01T23:59:59.000Z

272

Compton backscattered collmated X-ray source  

SciTech Connect

A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

2000-01-01T23:59:59.000Z

273

Copper Ridges Nearly Double X-ray Sensor Performance  

Science Conference Proceedings (OSTI)

... Physics Letters,* can measure X-ray energies with an ... X-rays and measure the energy based on ... by NASA and the NIST Office of Microelectronics ...

2011-10-03T23:59:59.000Z

274

Sandia National Laboratories X-ray Tube with Magnetic Electron ...  

... for the U.S. Department of Energy’s National ... high average power large area X-ray tube provides increased X-ray generation efficiency through ...

275

Inelastic X-ray and Nuclear Resonant Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamlines Divisions Argonne Home > Advanced Photon Source > Inelastic X-ray and Nuclear Resonant Scattering The Inelastic X-ray and Nuclear Resonant Scattering group...

276

Transient x-ray diffraction and its application to materials science and x-ray optics  

SciTech Connect

Time resolved x-ray diffraction and scattering have been applied to the measurement of a wide variety of physical phenomena from chemical reactions to shock wave physics. Interest in this method has heightened in recent years with the advent of versatile, high power, pulsed x-ray sources utilizing laser plasmas, electron beams and other methods. In this article, we will describe some of the fundamentals involved in time resolved x-ray diffraction, review some of the history of its development, and describe some recent progress in the field. In this article we will emphasize the use of laser-plasmas as the x-ray source for transient diffraction.

Hauer, A.A.; Kopp, R.; Cobble, J.; Kyrala, G.; Springer, R. [and others

1997-12-01T23:59:59.000Z

277

Spectroscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectroscopy Print Spectroscopy Print In spectroscopy experiments, a sample is illuminated with light and the various product particles (electrons, ions, or fluorescent photons) are detected and analyzed.The unifying feature is that some "property" of a material is measured as the x-ray (photon) energy is swept though a range of values. At the most basic level, one measures the absorption, transmission, or reflectivity of a sample as a function of photon energy. Probes that use the vacuum ultraviolet (VUV) region of the spectrum (10-100 eV) are very well matched to the elucidation of bonding in solids, surfaces, and molecules; to the investigation of electron-electron correlations in solids, atoms, and ions; and to the study of reaction pathways in chemical dynamics. At the lowest end of this energy range (below 1 eV) we have infrared, far-infrared, and terahertz spectroscopies, which are well matched to vibrational modes and other modes of excitation.

278

Spectroscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectroscopy Print Spectroscopy Print In spectroscopy experiments, a sample is illuminated with light and the various product particles (electrons, ions, or fluorescent photons) are detected and analyzed.The unifying feature is that some "property" of a material is measured as the x-ray (photon) energy is swept though a range of values. At the most basic level, one measures the absorption, transmission, or reflectivity of a sample as a function of photon energy. Probes that use the vacuum ultraviolet (VUV) region of the spectrum (10-100 eV) are very well matched to the elucidation of bonding in solids, surfaces, and molecules; to the investigation of electron-electron correlations in solids, atoms, and ions; and to the study of reaction pathways in chemical dynamics. At the lowest end of this energy range (below 1 eV) we have infrared, far-infrared, and terahertz spectroscopies, which are well matched to vibrational modes and other modes of excitation.

279

X-ray Microspectroscopy and Chemical Reactions in Soil Microsites  

Science Conference Proceedings (OSTI)

Soils provide long-term storage of environmental contaminants, which helps to protect water and air quality and diminishes negative impacts of contaminants on human and ecosystem health. Characterizing solid-phase chemical species in highly complex matrices is essential for developing principles that can be broadly applied to the wide range of notoriously heterogeneous soils occurring at the earth's surface. In the context of historical developments in soil analytical techniques, we describe applications of bulk-sample and spatially resolved synchrotron X-ray absorption spectroscopy (XAS) for characterizing chemical species of contaminants in soils, and for determining the uniqueness of trace-element reactivity in different soil microsites. Spatially resolved X-ray techniques provide opportunities for following chemical changes within soil microsites that serve as highly localized chemical micro- (or nano-)reactors of unique composition. An example of this microreactor concept is shown for micro-X-ray absorption near edge structure analysis of metal sulfide oxidation in a contaminated soil. One research challenge is to use information and principles developed from microscale soil chemistry for predicting macroscale and field-scale behavior of soil contaminants.

D Hesterberg; M Duff; J Dixon; M Vepraskas

2011-12-31T23:59:59.000Z

280

R-MATRIX ELECTRON-IMPACT EXCITATION OF Fe{sup 13+} AND ITS APPLICATION TO THE SOFT X-RAY AND EXTREME-ULTRAVIOLET SPECTROSCOPY OF CORONA-LIKE PLASMAS  

SciTech Connect

Accurate excitation parameters are required to interpret the ultraviolet and X-ray spectra of Fe{sup 13+}. In this work, we use the AUTOSTRUCTURE code to describe the atomic structure of Fe{sup 13+}. The 197 lowest-lying fine-structure levels of the 3s{sup x} 3p{sup y} 3d{sup z} (x + y + z = 3), 3s {sup 2}4l, and 3s3p4{l_brace}s, p, and d{r_brace} configurations are included along with further correlation configurations: 3s3p4f, 3p{sup x} 3d{sup y} 4l (x + y = 2), 3l4l'4l'', and 3l3l'5l''. The resultant level energies, lifetimes of excited states, and oscillator strengths of transitions between these levels are assessed by comparison with available experimental data and previous calculations. Electron-impact excitation data among these lowest-lying levels are generated using the intermediate-coupling frame transformation R-matrix method. We assess the present results by comparisons with laboratory measurement for the excitation to the metastable level 3s {sup 2}3p {sup 2} P {sup o} {sub 3/2} and with available close-coupling calculations for other excitations. Using these data and a collisional-radiative model, we have analyzed soft X-ray and extreme-ultraviolet spectra from space satellite observations of a stellar corona and of solar flares, as well as measurements from an electron beam ion trap. We assess the contribution from Fe{sup 13+} emission lines in the solar and Procyon corona observations, and find and identify new lines in the X-ray region observed in the solar and Procyon coronae. The laboratory measurements also confirm that weak lines (218.177 A and 224.354 A) of Fe{sup 13+} contribute to the observed intensities in solar observations. The polarization effect due to the directional monoenergetic distribution of the electron energy has been taken into account in comparison with the laboratory measurements. Electron density diagnostics for the astrophysical plasma sources have been performed using the updated data so as to investigate their sensitivity to the atomic data source.

Liang, G. Y.; Badnell, N. R. [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Crespo Lopez-Urrutia, J. R.; Baumann, T. M.; Tawara, H.; Ullrich, J. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Del Zanna, G. [DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Storey, P. J., E-mail: guiyun.liang@strath.ac.u [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

2010-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray photoelectron spectroscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Radiographic X-Ray Pulse Jitter  

Science Conference Proceedings (OSTI)

The Dual Beam Radiographic Facility consists of two identical radiographic sources. Major components of the machines are: Marx generator, water-filled pulse-forming line (PFL), water-filled coaxial transmission line, three-cell inductive voltage adder, and rod-pinch diode. The diode pulse has the following electrical specifications: 2.25-MV, 60-kA, 60-ns. Each source has the following x-ray parameters: 1-mm-diameter spot size, 4-rad at 1 m, 50-ns full width half max. The x-ray pulse is measured with PIN diode detectors. The sources were developed to produce high resolution images on single-shot, high-value experiments. For this application it is desirable to maintain a high level of reproducibility in source output. X-ray pulse jitter is a key metric for analysis of reproducibility. We will give measurements of x-ray jitter for each machine. It is expected that x-ray pulse jitter is predominantly due to PFL switch jitter, and therefore a correlation of the two will be discussed.

Mitton, C. V., Good, D. E., Henderson, D. J., Hogge, K. W.

2011-01-15T23:59:59.000Z

282

Dopant Site Determination in Iron Oxide Nanoparticles Utilizing X-ray  

NLE Websites -- All DOE Office Websites (Extended Search)

Dopant Site Determination in Iron Oxide Nanoparticles Utilizing X-ray Dopant Site Determination in Iron Oxide Nanoparticles Utilizing X-ray Absorption Techniques Monday, September 9, 2013 - 11:00am SLAC, Conference Room 137-322 Presented by Dr. Vanessa Pool The dopant behavior of spinels has been investigated for over half a century and yet new insight into this class of materials is still being made today. In this work, the question of dopant site preference is explored for the nanoparticle regime. Iron oxide nanoparticles have numerous exciting applications. To realize these applications, controlling the preferred dopant site and valence within the host material is important. X-ray Absorption Spectroscopy (XAS) and X-ray Magnetic Circular Dichroism (XMCD) are element specific techniques with magnetic contrast that give insights into the material composition. Using both

283

X Ray Scattering | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

X Ray Scattering X Ray Scattering Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas X Ray Scattering Print Text Size: A A A RSS Feeds FeedbackShare Page This activity supports basic research on the fundamental interactions of photons with matter to achieve an understanding of atomic, electronic, and magnetic structures and excitations and their relationships to materials properties. The main emphasis is on x-ray scattering, spectroscopy, and imaging research, primarily at major BES-supported user facilities.

284

Molecular orientation in soft matter thin films studied by resonant soft X-ray reflectivity  

SciTech Connect

We present a technique to study depth profiles of molecular orientation in soft matter thin films with nanometer resolution. The method is based on dichroism in resonant soft X-ray reflectivity using linear s- and p-polarization. It combines the chemical sensitivity of Near-Edge X-ray Absorption Fine Structure spectroscopy to specific molecular bonds and their orientation relative to the polarization of the incident beam with the precise depth profiling capability of X-ray reflectivity. We demonstrate these capabilities on side chain liquid crystalline polymer thin films with soft X-ray reflectivity data at the carbon K edge. Optical constants of the anisotropic refractive index ellipsoid were obtained from a quantitative analysis using the Berreman formalism. For films up to 50 nm thickness we find that the degree of orientation of the long axis exhibits no depth variation and isindependent of the film thickness.

Mezger, Markus; Jerome, Blandine; Kortright, Jeffrey B.; Valvidares, Manuel; Gullikson, Eric; Giglia, Angelo; Mahne, Nicola; Nannarone, Stefano

2011-01-12T23:59:59.000Z

285

Compensational scintillation detector with a flat energy response for flash X-ray measurements  

SciTech Connect

To measure the intensity of flash X-ray sources directly, a novel scintillation detector with a fast time response and flat energy response is developed by combining film scintillators of doped ZnO crystal and fast organic scintillator together. Through compensation design, the dual-scintillator detector (DSD) achieved a flat energy response to X-rays from tens of keV to several MeV, and sub-nanosecond time response by coupling to ultrafast photo-electronic devices. A prototype detector was fabricated according to the theoretical design; it employed ZnO:In and EJ228 with thicknesses of 0.3 mm and 0.1 mm, respectively. The energy response of this detector was tested on monoenergetic X-ray and {gamma}-ray sources. The detector performs very well with a sensitivity fluctuation below 5% for 8 discrete energy points within the 40-250 keV energy region and for other energies of 662 keV and 1.25 MeV as well, showing good accordance with the theoretical design. Additionally, the detector works properly for the application to the flash X-ray radiation field absolute intensity measurement. This DSD may be very useful for the diagnosis of time-resolved dynamic physical processes of flash X-ray sources without knowing the exact energy spectrum.

Chen Liang; Quan Lin; Zhang Zhongbing [Radiation Detection Research Center, Northwest Institute of Nuclear Technology, P.O. Box 69-9, Xi'an, Shaanxi 710024 (China); Ouyang Xiaoping [Radiation Detection Research Center, Northwest Institute of Nuclear Technology, P.O. Box 69-9, Xi'an, Shaanxi 710024 (China); School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206 (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Liu Bin [School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206 (China); Liu Jinliang [Radiation Detection Research Center, Northwest Institute of Nuclear Technology, P.O. Box 69-9, Xi'an, Shaanxi 710024 (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

2013-01-15T23:59:59.000Z

286

X-Ray Data from the X-Ray Data Booklet Online  

DOE Data Explorer (OSTI)

The original X-Ray Data Booklet, published in 1985, became a classic reference source. The online version has been significantly revised and updated to reflect today's science. Hundreds of pages of authoritative data provide the x-ray properties of elements, information on synchrotron radiation, scattering processes, optics and detectors, and other related calculations, formulas, and data tables.

Thompson, Albert C.; Attwood, David T.; Gullikson, Eric M.; Howells, Malcolm R.; Kortright, Jeffrey B.; Robinson, Arthur L.; Underwood, James H.; Kim, Kwang-Je; Kirz, Janos; Lindau, Ingolf; Pianetta, Piero; Winick, Herman; Williams, Gwyn P.; Scofield, James H.

287

Frontiers in X-Ray Science  

Science Conference Proceedings (OSTI)

The year 2010 marked the fiftieth anniversary of the optical laser and the first anniversary of the world's first hard x-ray free-electron laser, the Linac Coherent Light Source (LCLS) at SLAC. This exciting, new accelerator-based source of x-rays provides peak brilliances roughly a billion times greater than currently available from synchrotron sources such as the Advanced Photon Source at Argonne, and thus explores a qualitatively different parameter space. This talk will describe the first experiments at the LCLS aimed at understanding the nature of high intensity x-ray interactions, related applications in ultrafast imaging on the atomic scale and sketch nascent plans for the extension of both linac and storage-ring based photon sources.

Linda Young

2011-02-23T23:59:59.000Z

288

Using in situ X-ray absorption spectroscopy to study the local structure and oxygen ion conduction mechanism in (La{sub 0.6}Sr{sub 0.4})(Co{sub 0.2}Fe{sub 0.8})O{sub 3-{delta}}  

SciTech Connect

To study the local structure and oxygen ion conduction mechanism in (La{sub 0.6}Sr{sub 0.4})(Co{sub 0.2}Fe{sub 0.8})O{sub 3-{delta}} (LSCF) as a function of the oxygen partial pressure (P(O{sub 2})), in situ the Co and Fe K-edge X-ray absorption spectroscopy (XAS) was measured at elevated temperatures of 900 and 1000 K. The reduction of the Co and Fe valence, i.e., the oxygen content (3-{delta}) in LSCF, followed the change of P(O{sub 2}) from 1 to 10{sup -4} atm during{approx}4000 s. The quantitative analysis of the X-ray absorption near edge structure (XANES) and the extended X-ray absorption fine structure (EXAFS) indicated that the Fe valence was higher than the Co valence at oxidative condition ({delta} Almost-Equal-To 0) in LSCF. Whereas the Co valence decreased more than the Fe valence after reduction of P(O{sub 2}) at both 900 and 1000 K. From the relaxation plots of the valence and the oxygen content (3-{delta}) for Co and Fe after changing P(O{sub 2}), we successfully determined D{sub chem} and E{sub a} of an oxygen ion migration around Co and Fe in LSCF. A structural model with and without oxygen vacancies and an oxygen ion conduction mechanism for LSCF are proposed based on these results. - Graphical abstract: A structural model with and without oxygen vacancies, and the oxygen ion conduction mechanism of LSCF were speculated. In other words, oxygen vacancies would form more preferentially around Co than Fe from the results of in situ XAS analysis during reduction, and oxygen ions needs to pass through at the vicinity of Fe from the results of D{sub chem} and E{sub a}. Highlights: Black-Right-Pointing-Pointer Study of the oxygen ion conduction mechanism in (La{sub 0.6}Sr{sub 0.4})(Co{sub 0.2}Fe{sub 0.8})O{sub 3-{delta}} (LSCF). Black-Right-Pointing-Pointer Using in situ X-ray absorption for study of valence and oxygen diffusion coefficient. Black-Right-Pointing-Pointer The oxygen vacancies should be preferentially localized around Co in LSCF. Black-Right-Pointing-Pointer The values of the dynamics parameters for Co and Fe are close to each other.

Itoh, Takanori, E-mail: tknitoh@seimichemical.co.jp [AGC SeimiChemical Co., Ltd., 3-2-10 Chigasaki, Chigasaki City, Kanagawa 253-8585 (Japan); Nakayama, Masanobu [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya-city, Aichi 466-8555 (Japan)

2012-08-15T23:59:59.000Z

289

Radiobiological studies using gamma and x rays.  

Science Conference Proceedings (OSTI)

There are approximately 500 self-shielded research irradiators used in various facilities throughout the U.S. These facilities use radioactive sources containing either 137Cs or 60Co for a variety of biological investigations. A report from the National Academy of Sciences[1] described the issues with security of particular radiation sources and the desire for their replacement. The participants in this effort prepared two peer-reviewed publications to document the results of radiobiological studies performed using photons from 320-kV x rays and 137Cs on cell cultures and mice. The effectiveness of X rays was shown to vary with cell type.

Potter, Charles Augustus; Longley, Susan W.; Scott, Bobby R. [Lovelace Respiratory Research Institute, Albuquerque, NM; Lin, Yong [Lovelace Respiratory Research Institute, Albuquerque, NM; Wilder, Julie [Lovelace Respiratory Research Institute, Albuquerque, NM; Hutt, Julie A. [Lovelace Respiratory Research Institute, Albuquerque, NM; Padilla, Mabel T. [Lovelace Respiratory Research Institute, Albuquerque, NM; Gott, Katherine M. [Lovelace Respiratory Research Institute, Albuquerque, NM

2013-02-01T23:59:59.000Z

290

X-ray Science Division: Groups  

NLE Websites -- All DOE Office Websites (Extended Search)

Division: Groups Division: Groups Atomic, Molecular and Optical Physics (AMO) Primary Contact: Stephen Southworth Work focuses on understanding how strong optical and x-ray fields interact with matter, with an emphasis on photonic control of electronic, atomic and molecular motion. Chemical and Materials Science (CMS) Primary Contact: Randy Winans Research Disciplines: Chemistry, Materials Science Detectors (DET) Primary Contact: Antonino Miceli GMCA Structural Biology Facility (MX) Primary Contact: Robert Fischetti Research Disciplines: Biology, Life Sciences Imaging (IMG) Primary Contact: Francesco DeCarlo Research Disciplines: Materials Science, Biology, Physics, Life Sciences Inelastic X-ray & Nuclear Resonant Scattering (IXN) Primary Contact: Thomas Gog Research Disciplines: Condensed Matter Physics, Geophysics, Materials

291

The Soft-X-Ray Spectral Shape of X-Ray-Weak Seyferts  

E-Print Network (OSTI)

(I) We observed eight Seyfert~2s and two X--ray--weak Seyfert~1/QSOs with the ROSAT PSPC, and one Seyfert~2 with the ROSAT HRI. These targets were selected from the Extended 12\\um\\ Galaxy Sample. (II) Both Seyfert~1/QSOs vary by factors of 1.5---2. The photon indices steepen in the more luminous state, consistent with the variability being mainly due to the softest X--rays, which are confined to a size of less than a parsec. (III) Both the Seyfert~2s and Seyfert~1/QSOs are best fit with a photon index of $\\Gamma\\sim3$, which is steeper than the canonical value of $\\Gamma\\sim1.7$ measured for X--ray--strong Seyferts by ROSAT and at higher energies. Several physical explanations are suggested for the steeper slopes of X--ray--weak objects. (IV) We observed one Seyfert~2, NGC~5005, with the ROSAT HRI, finding about 13\\% of the soft X--rays to come from an extended component. This and other observations suggest that different components to the soft X--ray spectrum of some, if not all, X--ray--weak Seyferts may come from spatially distinct regions.

Brian Rush; Matthew A. Malkan

1995-07-27T23:59:59.000Z

292

Sharper Focusing of Hard X-rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Sharper Focusing of Hard X-rays FROM: Physics News Update Number 773 #1, April 12, 2006, by Phil Schewe and Ben Stein Note: This text has been slightly modified from the original. Sharper focusing of hard x-rays has been achieved with a device developed at Argonne National Lab. Because of their high energy, x-rays are hard to focus: they can be reflected from a surface but only at a glancing angle (less than a tenth of a degree); they can be refracted but the index of refraction is very close to 1, so that making efficient lenses becomes a problem; and they can be diffracted, but the relatively thick, variable pitch grating required for focusing is tricky to achieve. The Argonne device is of the diffraction type, and it consists of a stack of alternating layers of metal and silicon, made by depositing progressively thicker layers. When the x-rays fall on such a structure, nearly edge-on, what they see is a grating (called a linear zone plate) consisting of a sort of bar-code pattern.

293

Multiple wavelength x-ray monochromators  

DOE Patents (OSTI)

An apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined second distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focussing the separate first and second output x-ray radiation wavelengths into separate focal points.

Steinmeyer, P.A.

1991-01-01T23:59:59.000Z

294

Multiple wavelength x-ray monochromators  

DOE Patents (OSTI)

An apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined second distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focussing the separate first and second output x-ray radiation wavelengths into separate focal points.

Steinmeyer, P.A.

1991-12-31T23:59:59.000Z

295

Massively parallel X-ray scattering simulations  

Science Conference Proceedings (OSTI)

Although present X-ray scattering techniques can provide tremendous information on the nano-structural properties of materials that are valuable in the design and fabrication of energy-relevant nano-devices, a primary challenge remains in the analyses ...

Abhinav Sarje; Xiaoye S. Li; Slim Chourou; Elaine R. Chan; Alexander Hexemer

2012-11-01T23:59:59.000Z

296

X-Ray and Neutron Diffraction  

Science Conference Proceedings (OSTI)

Oct 20, 2010 ... Advanced X-Ray Scattering Techniques for Multi-Length Scale ... ?-Ti using the 3DXRD station 34-ID-E at the Advanced Photon Source, Argonne National Laboratory. ... Research at APS 34-ID-E, partly funded by BES/DOE.

297

Soft x-ray laser microscope  

Science Conference Proceedings (OSTI)

The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL's 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si[sub 3]N[sub 4]) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

Suckewer, P.I.

1990-10-01T23:59:59.000Z

298

Small Angle X-Ray Scattering Detector  

DOE Patents (OSTI)

A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

Hessler, Jan P.

2004-06-15T23:59:59.000Z

299

X-Ray Interactions with Matter  

DOE Data Explorer (OSTI)

The primary interactions of low-energy x-rays within condensed matter, viz. photoabsorption and coherent scattering, are described for photon energies outside the absorption threshold regions by using atomic scattering factors. The atomic scattering factors may be accurately determined from the atomic photoabsorption cross sections using modified Kramers-Kronig dispersion relations. From a synthesis of the currently available experimental data and recent theoretical calculations for photoabsorption, the angle-independent, forward-scattering components of the atomic scattering factors have been thus semiempirically determined and tabulated here for 92 elements and for the region 50-30,000 eV. Atomic scattering factors for all angles of coherent scattering and at the higher photon energies are obtained from these tabulated forward-scattering values by adding a simple angle-dependent form-factor correction. The incoherent scattering contributions that become significant for the light elements at the higher photon energies are similarly determined. The basic x-ray interaction relations that are used in applied x-ray physics are presented here in terms of the atomic scattering factors. The bulk optical constants are also related to the atomic scattering factors. These atomic and optical relations are applied to the detailed calculation of the reflectivity characteristics of a series of practical x-ray mirror, multilayer, and crystal monochromators. Comparisons of the results of this semiempirical,"atom-like", description of x-ray interactions for the low-energy region with those of experiment and ab initio theory are presented. (Taken from the abstract in OSTI Record 6131765) (Specialized Interface)

Henke, B.L.; Gullikson, E.M.; Davis, J.C.

300

Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research  

Science Conference Proceedings (OSTI)

Scanning transmission x-ray microscopy (STXM) combines x-ray microscopy and near edge x-ray absorption fine structure spectroscopy (NEXAFS). This combination provides spatially resolved bonding and oxidation state information. While there are reviews relevant to STXM/NEXAFS applications in other environmental fields (and magnetic materials) this chapter focuses on atmospheric aerosols. It provides an introduction to this technique in a manner approachable to non-experts. It begins with relevant background information on synchrotron radiation sources and a description of NEXAFS spectroscopy. The bulk of the chapter provides a survey of STXM/NEXAFS aerosol studies and is organized according to the type of aerosol investigated. The purpose is to illustrate the current range and recent growth of scientific investigations employing STXM-NEXAFS to probe atmospheric aerosol morphology, surface coatings, mixing states, and atmospheric processing.

Moffet, Ryan C.; Tivanski, Alexei V.; Gilles, Mary K.

2011-01-20T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray photoelectron spectroscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Phase I, study of a miniature X-ray source for interstitial radiotherapy of brain metastases  

SciTech Connect

Despite a variety of stereotactic techniques used to increase intracranical local control, dose escalation strategies remain controversial, with respect to therapeutric gain, convenience, and cost effectiveness, in the setting of brain metastases. In this report, we summarize our experience with the safety and efficacy of a new miniature X-ray device for interstitial radiosurgical treatment of intracranial metastatic neoplasms. Although the role of surgical resection of solitary metastases is established, aggressive treatment with proton, gamma knife, and linac radiation therapy for these lesions is under investigation. The new miniature X-ray device offers a very localized, convenient, time and cost efficient means of delivering radiotherapy to these lesions, with lower normal tissue exposure than gamma knife or proton beam techniques. Retreatment of previously irradiated areas are also now under investigation as part of a Phase II trial. The photon radiosurgery system is a miniature battery operated 40 kV x-ray device designed by the Photoelectron Corporation for use in the interstitial treatment of small tumors ({ge}3 cm in diameter) in humans. This 10 cm long, low current, high voltage X-ray generator is easily mounted in a stereotactic frame and produces low energy (10-20 KeV) x-rays to be emitted from the 10 cm long, 3.2 mm diameter probe, after stereotactic insertion into the tumor. Two scintillation detectors positioned on the stereotactic frame near the patient`s scalp monitor radiation. The spherical X-ray beam behaves essentially as a point source, with dose rate nominally 150 cGy/min. at a distance of 10mm, for a beam current of 40 {mu}A and a voltage of 40 kv.

Douglas, R.M.; Beatty, J.; Biggs, P. [Massachusetts General Hospital, Boston, MA (United States)] [and others] [Massachusetts General Hospital, Boston, MA (United States); and others

1995-12-31T23:59:59.000Z

302

Rise time measurement for ultrafast X-ray pulses  

Science Conference Proceedings (OSTI)

A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

Celliers, Peter M. (Berkeley, CA); Weber, Franz A. (Oakland, CA); Moon, Stephen J. (Tracy, CA)

2005-04-05T23:59:59.000Z

303

Rise Time Measurement for Ultrafast X-Ray Pulses  

DOE Patents (OSTI)

A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

2005-04-05T23:59:59.000Z

304

Synchrotron radiation based cross-sectional scanning photoelectron microscopy and spectroscopy of n-ZnO:Al/p-GaN:Mg heterojunction  

Science Conference Proceedings (OSTI)

Al-doped ZnO (AZO) deposited by radio frequency co-sputtering is formed on epitaxial Mg-doped GaN template at room temperature to achieve n-AZO/p-GaN heterojunction. Alignment of AZO and GaN bands is investigated using synchrotron radiation based cross-sectional scanning photoelectron microscopy and spectroscopy on the nonpolar side-facet of a vertically c-axis aligned heterostructure. It shows type-II band configuration with valence band offset of 1.63 {+-} 0.1 eV and conduction band offset of 1.61 {+-} 0.1 eV, respectively. Rectification behavior is clearly observed, with a ratio of forward-to-reverse current up to six orders of magnitude when the bias is applied across the p-n junction.

Lee, Kai-Hsuan; Chen, Chia-Hao [Nano Science Group, National Synchrotron Radiation Research Center, Hsin-Ann Rd. 101, 30076 Hsinchu, Taiwan (China)] [Nano Science Group, National Synchrotron Radiation Research Center, Hsin-Ann Rd. 101, 30076 Hsinchu, Taiwan (China); Chang, Ping-Chuan [Department of Electro-Optical Engineering, Kun Shan University, Dawan Rd. 949, 71003 Tainan, Taiwan (China)] [Department of Electro-Optical Engineering, Kun Shan University, Dawan Rd. 949, 71003 Tainan, Taiwan (China); Chen, Tse-Pu; Chang, Sheng-Po; Chang, Shoou-Jinn [Institute of Microelectronics and Department of Electrical Engineering, Center for Micro/Nano Science and Technology, Advanced Optoelectronic Technology Center, National Cheng Kung University, University Rd. 1, 70101 Tainan, Taiwan (China)] [Institute of Microelectronics and Department of Electrical Engineering, Center for Micro/Nano Science and Technology, Advanced Optoelectronic Technology Center, National Cheng Kung University, University Rd. 1, 70101 Tainan, Taiwan (China); Shiu, Hung-Wei; Chang, Lo-Yueh [Nano Science Group, National Synchrotron Radiation Research Center, Hsin-Ann Rd. 101, 30076 Hsinchu, Taiwan (China) [Nano Science Group, National Synchrotron Radiation Research Center, Hsin-Ann Rd. 101, 30076 Hsinchu, Taiwan (China); Department of Physics, National Tsing Hua University, Kuang-Fu Rd. 101, 30013 Hsinchu, Taiwan (China)

2013-02-18T23:59:59.000Z

305

X-ray flashes and X-ray rich gamma ray bursts. Memorie della Societa’ Astronomica Italiana  

E-Print Network (OSTI)

Abstract. X-ray flashes are detected in the Wide Field Cameras on BeppoSAX in the energy range 2-25 keV as bright X-ray sources lasting of the order of minutes, but remaining undetected in the Gamma Ray Bursts Monitor on BeppoSAX. They have properties very similar to the x-ray counterparts of GRBs and account for some of the Fast X-ray Transient events seen in almost every x-ray satellite. We review their X-ray properties and show that x-ray flashes are in fact very soft, x-ray rich, untriggered gamma ray bursts, in which the peak energy in 2-10 keV x-rays could be up to a factor of 100 larger than the peak energy in the 50-300 keV gamma ray range. The frequency is ? 100 yr ?1. 1 Fast X-ray Transients/High-latitude X-ray Transients Fast X-ray Transients have been observed with many x-ray satellites. In particular they are seen with x-ray instruments that scan the entire sky on a regular basis. Such events are detected in one sky scan and disappeared in the next, typically limiting the duration to be longer than a minute and shorter than a few hours. For this reason they are called Fast Transients. The first transients

John Heise; Jean In ’t Z; Peter M. Woods

2001-01-01T23:59:59.000Z

306

X-rays Illuminate Ancient Archimedes Text  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Links: Related Links: May 2005 Headlines TIP Article Press Release Walters Art Museum SSRL Home Page SLAC Home Page Stanford Home Page Tuesday, 31 May 2005 X-rays Illuminate Ancient Archimedes Text (contact: Uwe Bergmann, bergmann@slac.stanford.edu) Archimedes Figure Image provided by Will Noel, The Walters Art Museum An early transcription of Archimedes' mathematical theories has been brought to light through the probing of high-intensity x-rays at SSRL's BL6-2. The text contains part of the Method of Mechanical Theorems, one of Archimedes' most important works, which was probably copied out by a scribe in the tenth century. The parchment on which it was written was later scraped down and reused as pages in a twelfth century prayer book, producing a document known as a palimpsest (which comes from the Greek,

307

HIGH BRILLIANCE X-RAY SCATTERING FOR  

NLE Websites -- All DOE Office Websites (Extended Search)

BRILLIANCE X-RAY SCATTERING FOR BRILLIANCE X-RAY SCATTERING FOR LIFE SCIENCES (LIX) Group Leader: Lin Yang Proposal Team: O. Bilsel 1 , B. Hsiao 2 , H. Huang 3 , T. Irving 4 , A. Menzel 5 , L. Pollack 6 , C. Riekel 7 , J. Rubert 8 , H. Tsuruta 9 , L. Yang 10 1 University of Massachusetts, 2 Stony Brook University, 3 Rice University, 4 IIT, 5SLS, 6 Cornell University, 7 European Synchrotron Radiation Facility, 8 NEU, 9 Stanford Synchrotron Radiation Lightsource, 10 Brookhaven National Laboratory TECHNIQUES AND CAPABILITIES APPLICATIONS ADDITIONAL INFORMATION * Energy range 2-20keV using undulator source. Simultaneous SAXS/WAXS to cover 0.003-3Å -1 at 12keV with 1 micron spot size * Time-resolved solution scattering with resolution of (1) microseconds to milliseconds using continuous-flow mixing (5µm x 10µm spot size) and (2) milliseconds using stopped-

308

High resolution x-ray microscope  

Science Conference Proceedings (OSTI)

The authors present x-ray images of grid meshes and biological material obtained using a microspot x-ray tube with a multilayer optic and a 92-element parabolic compound refractive lens (CRL) made of a plastic containing only hydrogen and carbon. Images obtained using this apparatus are compared with those using an area source with a spherical lens and a spherical lens with multilayer condenser. The authors found the best image quality using the multilayer condenser with a parabolic lens, compared to images with a spherical lens and without the multilayer optics. The resolution was measured using a 155-element parabolic CRL and a multilayer condenser with the microspot tube. The experiment demonstrates about 1.1 {mu}m resolution.

Gary, C. K.; Park, H.; Lombardo, L. W.; Piestrup, M. A.; Cremer, J. T.; Pantell, R. H.; Dudchik, Y. I. [Adelphi Technology, Inc. 981-B Industrial Road, San Carlos, California 94070 (United States); Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Institute of Applied Physics Problems, Kurchatova 7, Minsk 220064 (Belarus)

2007-04-30T23:59:59.000Z

309

Sample holder for x-ray diffractometry  

DOE Patents (OSTI)

A sample holder for use with x-ray diffractometers with the capability to rotate the sample, as well as to adjust the position of the sample in the x, y, and z directions. Adjustment in the x direction is accomplished through loosening set screws, moving a platform, and retightening the set screws. Motion translators are used for adjustment in the y and z directions. An electric motor rotates the sample, and receives power from the diffractometer.

Hesch, V.L.

1991-12-31T23:59:59.000Z

310

Hard X-ray Variability of AGN  

E-Print Network (OSTI)

Aims: Active Galactic Nuclei are known to be variable throughout the electromagnetic spectrum. An energy domain poorly studied in this respect is the hard X-ray range above 20 keV. Methods: The first 9 months of the Swift/BAT all-sky survey are used to study the 14 - 195 keV variability of the 44 brightest AGN. The sources have been selected due to their detection significance of >10 sigma. We tested the variability using a maximum likelihood estimator and by analysing the structure function. Results: Probing different time scales, it appears that the absorbed AGN are more variable than the unabsorbed ones. The same applies for the comparison of Seyfert 2 and Seyfert 1 objects. As expected the blazars show stronger variability. 15% of the non-blazar AGN show variability of >20% compared to the average flux on time scales of 20 days, and 30% show at least 10% flux variation. All the non-blazar AGN which show strong variability are low-luminosity objects with L(14-195 keV) < 1E44 erg/sec. Conclusions: Concerning the variability pattern, there is a tendency of unabsorbed or type 1 galaxies being less variable than the absorbed or type 2 objects at hardest X-rays. A more solid anti-correlation is found between variability and luminosity, which has been previously observed in soft X-rays, in the UV, and in the optical domain.

V. Beckmann; S. D. Barthelmy; T. J. -L. Courvoisier; N. Gehrels; S. Soldi; J. Tueller; G. Wendt

2007-09-14T23:59:59.000Z

311

Energy Determination of X-Ray Transition Energies Using the ...  

Science Conference Proceedings (OSTI)

... We chose to measure x-ray transition energies from NIST ... This resulted in the production of x-ray emission ... would yield not only an energy scale for ...

2012-10-02T23:59:59.000Z

312

SLAC National Accelerator Laboratory - SLAC's X-ray Laser Explores...  

NLE Websites -- All DOE Office Websites (Extended Search)

X-ray Laser Explores Big Data Frontier By Glenn Roberts Jr. June 12, 2013 It's no surprise that the data systems for SLAC's Linac Coherent Light Source X-ray laser have drawn...

313

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in...

314

SLAC National Accelerator Laboratory - SLAC X-rays Help Discover...  

NLE Websites -- All DOE Office Websites (Extended Search)

which pulses 120 times a second. In the instant before the intense X-rays destroy a nanocrystal, detectors record a flash of X-ray diffraction information. Finally, scientists use...

315

Using Light to Control How X Rays Interact with Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Light to Control How X Rays Interact with Matter Using Light to Control How X Rays Interact with Matter Print Wednesday, 27 January 2010 00:00 Schemes that use one light...

316

Microstructural Mapping Using High-Energy X-Ray Scattering  

Science Conference Proceedings (OSTI)

Abstract Scope, Advanced characterization methods at the APS permit unique in- situ ... The combination of an undulator source, brilliance preserving optics and focusing .... Ultra-Small-Angle X-Ray Scattering—X-Ray Photon Correlation ...

317

Characterization of fuel cell electrocatalysts using x-ray methods  

DOE Green Energy (OSTI)

High surface area electrocatalysts are critical components of high efficiency low cost polymer membrane fuel cells. The platinum and/or platinum alloy catalysts are typically prepared as nanocrystalline carbon supported and unsupported anode and cathode materials. The choice of catalyst type depends on whether the application is for hydrogen or direct methanol fuel cells (DMFCs). 2 nm crystallite size Pt supported on Vulcan XC-72 carbon is the anode and cathode catalyst most commonly used for hydrogen fuel cells while Pt-Ru alloys of 3-5 nm are currently being used for anode catalysts in DMFC systems. Key parameters for successful catalyst design are average alloy composition, crystal structure, crystallite composition crystallite size and size distribution. All of the aforementioned parameters can be efficently and nondistructively measured using laboratory scale X-ray analysis methods. Recent advances in personal computer technology allow for full profile (Rietveld) and Warren-Averbach Fourier transform X-ray diffraction methods to be performed quickly and routinely. Full profile, also known as whole pattern analysis methods, model the entire X-ray diffraction pattern rather than just peak maxima. Highly overlapped diffraction patterns are very common in nanocrystalline materials due to size related line broadening phenomena. Full profile methods allow for the precise determination of lattice parameters and accurate measurement of individual diffraction line intensities. Phase fractions and percentages of amorphous material can also be estimated using full profile analysis techniques. Warren-Averbach Fourier transform methods allow for the determination of particle size distributions. This method offers advantages in speed and cost over electron microscopic analysis methods to obtain crystallite size distributions. Fundamental parameter X-ray fluorescence spectroscopy methods allows for the rapid accurate determination of catalyst composition and mass loadings on raw materials and membrane electrode assemblies. Another advantage of this method over older empirical standard methods is the elimination of many calibration standards of different compositions. The fundamental parameter method needs only a single standard per element for calibration. We have analyzed a large number of Pt and Pt/Ru based catalysts prepared by various synthesis techniques. These methods include unsupported and supported catalysts prepared by: colloidal precipitation, spray pyrolysis and ultrasonic atomization freeze drying methods. As prepared catalysts vary substantially crystallite size and size distribution. The degree of crystallinity, alloy composition and oxidation state also vary substantially with preparation method.

Garzon, F. H. (Fernando H.); Brosha, E. L. (Eric L.); Zawodzinski, C. (Christine); Ren, X. (Xiaoming)

2001-01-01T23:59:59.000Z

318

Direct Characterization of Kerogen by X-ray and Solid-State [superscript 13]C Nuclear Magnetic Resonance Methods  

Science Conference Proceedings (OSTI)

A combination of solid-state {sup 13}C NMR, X-ray photoelectron spectroscopy (XPS) and sulfur X-ray absorption near edge structure (S-XANES) techniques are used to characterize organic oxygen, nitrogen, and sulfur species and carbon chemical/structural features in kerogens. The kerogens studied represent a wide range of organic matter types and maturities. A van Krevelen plot based on elemental H/C data and XPS derived O/C data shows the well established pattern for type I, type II, and type III kerogens. The anticipated relationship between the Rock-Eval hydrogen index and H/C is independent of organic matter type. Carbon structural and lattice parameters are derived from solid-state {sup 13}C NMR analysis. As expected, the amount of aromatic carbon, measured by both {sup 13}C NMR and XPS, increases with decreasing H/C. The correlation between aromatic carbon and Rock-Eval T{sub max}, an indicator of maturity, is linear for types II and IIIC kerogens, but each organic matter type follows a different relationship. The average aliphatic carbon chain length (Cn) decreases with an increasing amount of aromatic carbon in a similar manner across all organic matter types. The fraction of aromatic carbons with attachments (FAA) decreases, while the average number of aromatic carbons per cluster (C) increases with an increasing amount of aromatic carbon. FAA values range from 0.2 to 0.4, and C values range from 12 to 20 indicating that kerogens possess on average 2- to 5-ring aromatic carbon units that are highly substituted. There is basic agreement between XPS and {sup 13}C NMR results for the amount and speciation of organic oxygen. XPS results show that the amount of carbon oxygen single bonded species increases and carbonyl-carboxyl species decrease with an increasing amount of aromatic carbon. Patterns for the relative abundances of nitrogen and sulfur species exist regardless of the large differences in the total amount of organic nitrogen and sulfur seen in the kerogens. XPS and S-XANES results indicate that the relative level of aromatic sulfur increases with an increasing amount of aromatic carbon for all kerogens. XPS show that the majority of nitrogen exists as pyrrolic forms in comparable relative abundances in all kerogens studied. The direct characterization results using X-ray and NMR methods for nitrogen, sulfur, oxygen, and carbon chemical structures provide a basis for developing both specific and general average chemical structural models for different organic matter type kerogens.

Kelemen, S. R.; Afeworki, M.; Gorbaty, M.L.; Sansone, M.; Kwiatek, P.J.; Walters, C.C.; Freund, H.; Siskin, M.; Bence, A.E.; Curry, D.J.; Solum, M.; Pugmire, R.J.; Vandenbroucke, M.; Leblond, M.; Behar, F. (ExxonMobil); (ExxonMobil); (IFP); (Utah)

2008-06-12T23:59:59.000Z

319

Direct Characterization of Kerogen By X-Ray And Solid-State **13C Nuclear Magnetic Resonance Methods  

DOE Green Energy (OSTI)

A combination of solid-state {sup 13}C NMR, X-ray photoelectron spectroscopy (XPS) and sulfur X-ray absorption near edge structure (S-XANES) techniques are used to characterize organic oxygen, nitrogen, and sulfur species and carbon chemical/structural features in kerogens. The kerogens studied represent a wide range of organic matter types and maturities. A van Krevelen plot based on elemental H/C data and XPS derived O/C data shows the well established pattern for type I, type II, and type III kerogens. The anticipated relationship between the Rock-Eval hydrogen index and H/C is independent of organic matter type. Carbon structural and lattice parameters are derived from solid-state 13C NMR analysis. As expected, the amount of aromatic carbon, measured by both {sup 13}C NMR and XPS, increases with decreasing H/C. The correlation between aromatic carbon and Rock-Eval Tmax, an indicator of maturity, is linear for types II and IIIC kerogens, but each organic matter type follows a different relationship. The average aliphatic carbon chain length (Cn') decreases with an increasing amount of aromatic carbon in a similar manner across all organic matter types. The fraction of aromatic carbons with attachments (FAA) decreases, while the average number of aromatic carbons per cluster (C) increases with an increasing amount of aromatic carbon. FAA values range from 0.2 to 0.4, and C values range from 12 to 20 indicating that kerogens possess on average 2- to 5-ring aromatic carbon units that are highly substituted. There is basic agreement between XPS and 13C NMR results for the amount and speciation of organic oxygen. XPS results show that the amount of carbon oxygen single bonded species increases and carbonyl-carboxyl species decrease with an increasing amount of aromatic carbon. Patterns for the relative abundances of nitrogen and sulfur species exist regardless of the large differences in the total amount of organic nitrogen and sulfur seen in the kerogens. XPS and S-XANES results indicate that the relative level of aromatic sulfur increases with an increasing amount of aromatic carbon for all kerogens. XPS show that the majority of nitrogen exists as pyrrolic forms in comparable relative abundances in all kerogens studied. The direct characterization results using X-ray and NMR methods for nitrogen, sulfur, oxygen, and carbon chemical structures provide a basis for developing both specific and general average chemical structural models for different organic matter type kerogens.

Keleman, S.R.; Afeworki, M.; Gorbaty, M.L.; Sansone, M.; Kwiatek, P.J.; Walters, C.C.; Freund, H.; Siskin, M.; Bence, A.E.; Curry, D.J.; Solum, M.; Pugmire, R.J.; Vandenbroucke, M.; Leblond, M.; Behar, F.

2007-07-09T23:59:59.000Z

320

Strengthened lithium for x-ray blast windows  

Science Conference Proceedings (OSTI)

Lithium's high x-ray transparency makes it an attractive material for windows intended to protect soft x-ray diagnostics in high energy density experiments. Pure lithium is soft and weak, but lithium mixed with lithium hydride powder becomes harder and stronger, in principle without any additional x-ray absorption. A comparison with the standard material for x-ray windows, beryllium, suggests that lithium or lithium strengthened by lithium hydride may well be an excellent option for such windows.

Pereira, N. R. [Ecopulse Inc., P.O. Box 528, Springfield, Virginia 22150 (United States); Imam, M. A. [Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375 (United States)

2008-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray photoelectron spectroscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Electron and X-Ray Microscopy: Structural Characterization of ...  

Science Conference Proceedings (OSTI)

Oct 28, 2009 ... Recent Advances in Structural Characterization of Materials: Electron and X-Ray Microscopy: Structural Characterization of Nanoscale ...

322

In Situ Synchrotron X-Ray Techniques for the Study of Lithium Battery Materials  

SciTech Connect

The combination of in situ X-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) is a very powerful technique in the study of lithium battery cathode materials. XRD identifies the phase changes that occur during cycling and XAS gives information on the redox charge compensation processes that occur on the transition metal oxides. Because of its element specific nature XAS can identify the occurrence of redox processes on the various cations in doped oxide cathode materials. Since XAS probes short range order and is particularly useful in the study of amorphous tin based composite oxide anode materials.

McBreen, J.; Mukerjee, S.; Yang, X. Q.; Sun, X., Ein-Eli, Y.

1998-11-01T23:59:59.000Z

323

Synchrotron X-ray Based Characterization of CdZnTe Crystals  

Science Conference Proceedings (OSTI)

Synthetic CdZnTe (CZT) crystals can be used for the room temperature-based detection of gamma radiation. Structural/morphological heterogeneities within CZT, such as secondary phases (namely, precipitates and inclusions), can negatively affect detector performance. We used a synchrotron-based x-ray technique, specifically extended x-ray absorption fine-structure (EXAFS) spectroscopy, to determine whether there are differences on a local structural level between intact CZT of high and low radiation detector performance. These studies were complemented by data on radiation detector performance and transmission infrared (IR) imaging. The EXAFS studies revealed no detectable local structural differences between the two types of CZT materials.

Duff,M.; Hunter, D.; Nuessle, P.; Black, D.; Burdette, H.; Woicik, J.; Burger, A.; Groza, M.

2007-01-01T23:59:59.000Z

324

X-ray Microscopy and Imaging: 2-BM  

NLE Websites -- All DOE Office Websites (Extended Search)

BM BM Introduction The 2-BM beamline offers measurement capabilities for x-ray microtomography, x-ray topography and x-ray microdiffraction. X-ray microtomography and x-ray diffraction instruments are installed on separate optical tables for independent operation with fast switch over time. Optically-coupled high-resolution CCD system is used for microtomography and topography with up to 1 micron spatial resolution. X-ray microdiffraction setup consists of KB microfocussing mirrors (~3 micron minimum spot), four-circle Huber diffractometer, high-precision translation sample stage, two orthogonally-mounted video cameras for viewing sample, fluorescence detector (Si-drift diode) and diffraction detector (a scintillation detector or a CCD). Three different levels of monochromaticity are available. Conventional monochromatic x-rays from a double-bounced Si (111) crystal monochromator (DCM, D E/E=1E-4), wide band-pass monochromatic x-rays from a double multilayer monochromator (DMM, D E/E=1~4E-2) and pink beam. The available x-ray range is from 5 keV to 30 keV. The lower limit is due to the x-ray windows and the upper limit is due to the critical angle of the x-ray mirror. Two different coatings (Cr and Pt) for the x-ray mirror allow either 20 keV or 30 keV energy cutoff.

325

Phase Contrast Microscopy with Soft and Hard X-rays  

E-Print Network (OSTI)

Calibration ­ Uses up part of dynamic range · Solution: ­ Soft x-rays: Back side Illumination ­ Hard xPhase Contrast Microscopy with Soft and Hard X-rays Using a Segmented Detector Benjamin Hornberger ­ Phase Contrast 101 · A Segmented Detector for Hard X-ray Microprobes ­ Segmented Silicon Chip ­ Charge

Homes, Christopher C.

326

Quantitative Analysis of Mt. St. Helens Ash by X-Ray Diffraction and X-Ray Fluorescence Spectrometry  

Science Conference Proceedings (OSTI)

A quantitative study by x-ray diffraction, optical polarizing microscopy, and x-ray fluorescence spectrometry of fallout and ambient ash from three Mt. St. Helens eruptions has revealed a consistent picture of the mineralogical and elemental ...

Briant L. Davis; L. Ronald Johnson; Dana T. Griffen; William Revell Phillips; Robert K. Stevens; David Maughan

1981-08-01T23:59:59.000Z

327

Soft x-ray spectromicroscopy development for materials science at the Advanced Light Source  

Science Conference Proceedings (OSTI)

Several third generation synchrotron radiation facilities are now operational and the high brightness of these photon sources offers new opportunities for x-ray microscopy. Well developed synchrotron radiation spectroscopy techniques are being applied in new instruments capable of imaging the surface of a material with a spatial resolution smaller than one micron. There are two aspects to this. One is to further the field of surface science by exploring the effects of spatial variations across a surface on a scale not previously accessible to x-ray measurements. The other is to open up new analytical techniques in materials science using x-rays, on a spatial scale comparable to that of the processes or devices to be studied. The development of the spectromicroscopy program at the Advanced Light Source will employ a variety of instruments, some are already operational. Their development and use will be discussed, and recent results will be presented to illustrate their capabilities.

Warwick, T.; Padmore, H. [Lawrence Berkeley National Lab., CA (United States); Ade, H. [North Carolina State Univ., Raleigh, NC (United States); Hitchcock, A.P. [McMaster Univ., Hamilton, Ontario (Canada); Rightor, E.G. [Dow Texas Polymer Center, Freeport, TX (United States); Tonner, B.P. [Univ. of Wisconsin, Milwaukee, WI (United States)

1996-08-01T23:59:59.000Z

328

In Situ X-Ray Probing Reveals Fingerprints of Surface Platinum Oxide  

DOE Green Energy (OSTI)

In situ x-ray absorption spectroscopy (XAS) at the Pt L{sub 3} edge is a useful probe for Pt-O interactions at polymer electrolyte membrane fuel cell (PEMFC) cathodes. We show that XAS using the high energy resolution fluorescence detection (HERFD) mode, applied to a well-defined monolayer Pt/Rh(111) sample where the bulk penetrating hard x-rays probe only surface Pt atoms, provides a unique sensitivity to structure and chemical bonding at the Pt-electrolyte interface. Ab initio multiple-scattering calculations using the FEFF8 code and complementary extended x-ray absorption fine structure (EXAFS) results indicate that the commonly observed large increase of the white-line at high electrochemical potentials on PEMFC cathodes originates from platinum oxide formation, whereas previously proposed chemisorbed oxygen-containing species merely give rise to subtle spectral changes.

Friebel, Daniel

2011-08-24T23:59:59.000Z

329

X-Ray Shines Light on Water Mystery  

DOE Green Energy (OSTI)

Water is the key compound for our existence on this planet and it is involved in many important physical, chemical, biological and geological processes. Although water is the most common molecular substance it is also most unusual with many anomalies in its thermodynamic properties such as compressibility, density variation and heat capacity. The question of the structure of the hydrogen bonding network in water has been discussed intensively for over 100 years and has not yet been resolved. This talk will describe recent x-ray spectroscopy and scattering measurements showing that the liquid can be described as fluctuations between two types of local hydrogen bonded structures driven by in commensurate requirements for minimizing enthalpy and maximizing entropy.

Nilsson, Anders (SLAC)

2010-11-17T23:59:59.000Z

330

X-Ray Imaging Crystal Spectrometer for Extended X-Ray Sources  

DOE Patents (OSTI)

Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokamak fusion experiment to provide spatially and temporally resolved data on plasma parameters such as ion temperature, toroidal and poloidal rotation, electron temperature, impurity ion charge-state distributions, and impurity transport. The imaging properties of these spherically or toroidally curved crystals provide both spectrally and spatially resolved X-ray data from the plasma using only one small spherically or toroidally curved crystal, thus eliminating the requirement for a large array of crystal spectrometers and the need to cross-calibrate the various crystals.

Bitter, Manfred L.; Fraekel, Benjamin; Gorman, James L.; Hill, Kenneth W.; Roquemore, Lane A.; Stodiek, Wolfgang; Goeler, Schweickhard von

1999-05-01T23:59:59.000Z

331

Calibrating X-ray Imaging Devices for Accurate Intensity Measurement  

SciTech Connect

The purpose of the project presented is to develop methods to accurately calibrate X-ray imaging devices. The approach was to develop X-ray source systems suitable for this endeavor and to develop methods to calibrate solid state detectors to measure source intensity. NSTec X-ray sources used for the absolute calibration of cameras are described, as well as the method of calibrating the source by calibrating the detectors. The work resulted in calibration measurements for several types of X-ray cameras. X-ray camera calibration measured efficiency and efficiency variation over the CCD. Camera types calibrated include: CCD, CID, back thinned (back illuminated), front illuminated.

Haugh, M. J.

2011-07-28T23:59:59.000Z

332

Apparatus for monitoring x-ray beam alignment  

DOE Patents (OSTI)

A self-contained, hand-held apparatus is provided for monitoring alignment of an x-ray beam in an instrument employing an x-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of x-ray beam intensities from the x-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low x-ray beam intensity. Another portion of the audible range corresponds to high x-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of x-ray fluorescent material, and a filter layer transparent to x-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the x-ray beam is aligned to a complete alignment by adjusting the x-ray beam to produce an audible sound of the maximum frequency.

Steinmeyer, P.A.

1989-09-12T23:59:59.000Z

333

Direct detection of x-rays for protein crystallography  

DOE Patents (OSTI)

An apparatus and method for directly determining the crystalline structure of a protein crystal. The crystal is irradiated by a finely collimated x-ray beam. The interaction o f the x-ray beam with the crystal produces scattered x-rays. These scattered x-rays are detected by means of a large area, thick CCD which is capable of measuring a significant number of scattered x-rays which impact its surface. The CCD is capable of detecting the position of impact of the scattered x-ray on the surface of the CCD and the quantity of scattered x-rays which impact the same cell or pixel. This data is then processed in real-time and the processed data is outputted to produce an image of the structure of the crystal. If this crystal is a protein the molecular structure of the protein can be determined from the data received.

Atac, Muzaffer; McKay, Timothy

1997-12-01T23:59:59.000Z

334

Photon Sciences | Beamlines | HXN: Hard X-ray Nanoprobe  

NLE Websites -- All DOE Office Websites (Extended Search)

HXN: Hard X-ray Nanoprobe HXN: Hard X-ray Nanoprobe Poster | Fact Sheet | Preliminary Design Report Scientific Scope The Hard X-ray Nanoprobe beamline and endstation instruments (HXN) will be designed and constructed to explore new frontiers of hard x-ray microscopy applications with the highest achievable spatial resolution. Currently the available spatial resolution for scientific applications, provided by scanning x-ray microscopes in the hard x-ray regime, is limited to ~50nm, which is still insufficient for probing the nanoscale interfacial structures critical in determining properties and functionalities of material and biological systems. The HXN beamline aims to enable x-ray experiments at spatial resolutions ranging from 10 to 30 nm with an ultimate goal of ~1 nm. Beamline Description

335

X-ray chemistry in envelopes around young stellar objects  

E-Print Network (OSTI)

We present chemical models of the envelope of a young stellar object (YSO) exposed to a central X-ray source. The models are applied to the massive star-forming region AFGL 2591 for different X-ray fluxes. The total X-ray ionization rate is dominated by the `secondary' ionization rate of H2 resulting from fast electrons. The carbon, sulphur and nitrogen chemistries are discussed. It is found that He+ and H3+ are enhanced and trigger a peculiar chemistry. Several molecular X-ray tracers are found and compared to tracers of the far ultraviolet (FUV) field. Like ultraviolet radiation fields, X-rays enhance simple hydrides, ions and radicals. In contrast to ultraviolet photons, X-rays can penetrate deep into the envelope and affect the chemistry even at large distances from the source. Whereas the FUV enhanced species cover a region of 200-300 AU, the region enhanced by X-rays is >1000 AU. Best-fit models for AFGL 2591 predict an X-ray luminosity LX > 1e+31 ergs/s with a hard X-ray spectrum TX > 3e+07 K. Furthermore, we find LX/Lbol ~ 1e-6. The chemistry of the bulk of the envelope mass is dominated by cosmic-ray induced reactions rather than by X-ray induced ionization for X-ray luminosities LX < 1e+33 ergs/s. The calculated line intensities of HCO+ and HCS+ show that high-J lines are more affected than lower J lines by the presence of X-rays due to their higher critical densities, and that such differences are detectable even with large aperture single-dish telescopes. Future instruments such as Herschel-HIFI or SOFIA will be able to observe X-ray enhanced hydrides whereas the sensitivity and spatial resolution of ALMA is well-suited to measure the size and geometry of the region affected by X-rays.

P. Staeuber; S. D. Doty; E. F. van Dishoeck; A. O. Benz

2005-06-14T23:59:59.000Z

336

X-Ray Diffraction on NIF  

SciTech Connect

The National Ignition Facility (NIF) is currently a 192 beam, 1.6 MJ laser. NIF Ramp-Compression Experiments have already made the relevant exo-planet pressure range from 1 to 50 Mbar accessible. We Proposed to Study Carbon Phases by X-Ray Diffraction on NIF. Just a few years ago, ultra-high pressure phase diagrams for materials were very 'simple'. New experiments and theories point out surprising and decidedly complex behavior at the highest pressures considered. High pressures phases of aluminum are also predicted to be complex. Recent metadynamics survey of carbon proposed a dynamic pathway among multiple phases. We need to develop diagnostics and techniques to explore this new regime of highly compressed matter science. X-Ray Diffraction - Understand the phase diagram/EOS/strength/texture of materials to 10's of Mbar. Strategy and physics goals: (1) Powder diffraction; (2) Begin with diamond; (3) Continue with metals etc.; (4) Explore phase diagrams; (5) Develop liquid diffraction; and (6) Reduce background/improve resolution.

Eggert, J H; Wark, J

2012-02-15T23:59:59.000Z

337

Surface Structure and Chemical Switching of Thioctic Acid Adsorbed on Au(111) as Observed Using Near-Edge X-ray Absorption Fine Structure  

DOE Green Energy (OSTI)

Thioctic acid (alpha-lipoic acid) is a molecule with a large disulfide-containing base, a short alkyl-chain with four CH{sub 2} units, and a carboxyl termination. Self-assembled monolayer (SAM) films of thioctic acid adsorbed on Au(111) have been investigated with near-edge x-ray absorption fine structure (NEXAFS) spectroscopy and x-ray photoelectron spectroscopy (XPS) to determine film quality, bonding and morphology. Using standard preparation protocols for SAMs, that is, dissolving thioctic acid in ethanol and exposing gold to the solution, results in poor films. These films are highly disordered, contain a mixture of carboxyl and carboxylate terminations, have more than monolayer coverage, and exhibit unbound disulfide. Conversely, forming films by dissolving 1 mmol thioctic acid into 5% acetic acid in ethanol (as previously reported with carboxyl-terminated alkyl-thiols) forms ordered monolayers with small amounts of unbound sulfur. NEXAFS indicates tilted over endgroups with the carboxyl group normal on average 38{sup o} from the surface normal. Slight dichroism in other features indicates alkyl chains statistically more upright than prostrate on the surface. Reflection-absorption Fourier transform infrared (RA-FTIR) spectra indicate hydrogen bonding between neighboring molecules. In such well-formed monolayers, a stark reorientation occurs upon deprotonation of the endgroup by rinsing in a KOH solution. The carboxylate plane normal is now about 66{sup o} from sample normal, a much more upright orientation. Data indicate this reorientation may also cause a more upright orientation to the alkyl portion of the molecules.

Meulenberg, R W; van Buuren, T; Vance, A L; Terminello, L J; Willey, T M; Bostedt, C; Fadley, C S

2004-01-06T23:59:59.000Z

338

Gray scale x-ray mask  

DOE Patents (OSTI)

The present invention describes a method for fabricating an embossing tool or an x-ray mask tool, providing microstructures that smoothly vary in height from point-to-point in etched substrates, i.e., structure which can vary in all three dimensions. The process uses a lithographic technique to transfer an image pattern in the surface of a silicon wafer by exposing and developing the resist and then etching the silicon substrate. Importantly, the photoresist is variably exposed so that when developed some of the resist layer remains. The remaining undeveloped resist acts as an etchant barrier to the reactive plasma used to etch the silicon substrate and therefore provides the ability etch structures of variable depths.

Morales, Alfredo M. (Livermore, CA); Gonzales, Marcela (Seattle, WA)

2006-03-07T23:59:59.000Z

339

X-rays from T Tau: A test case for accreting T Tauri stars  

E-Print Network (OSTI)

We test models for the generation of X-rays in accreting T Tauri stars (TTS), using X-ray data from the classical TTS T Tau. High-resolution spectroscopy from the Reflection Grating Spectrometers on XMM-Newton is used to infer electron densities, element abundances and the thermal structure of the X-ray source. We also discuss the ultraviolet light curve obtained by the Optical Monitor, and complementary ground-based photometry. A high-resolution image from Chandra constrains contributions from the two companions of T Tau N. The X-ray grating spectrum is rich in emission lines, but shows an unusual mixture of features from very hot (~30 MK) and very cool (1-3 MK) plasma, both emitted by similar amounts of emission measure. The cool plasma confirms the picture of a soft excess in the form of an enhanced OVII/OVIII Lya flux ratio, similar to that previously reported for other accreting TTS. Diagnostics from lines formed by this plasma indicate low electron densities (cool ``soft-excess'' plasma is orders of magnitude below that predicted for an accretion shock, assuming previously determined accretion rates of (3-6)E-8 M_sun/y. We argue that loading of magnetic field lines with infalling material suppresses the heating process in a part of the corona. We thus suggest that the X-ray production of T Tau is influenced by the accretion process although the X-rays may not form in the bulk of the accretion footpoints.

M. Guedel; S. L. Skinner; S. Yu. Mel'nikov; M. Audard; A. Telleschi; K. R. Briggs

2006-12-20T23:59:59.000Z

340

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

Note: This page contains sample records for the topic "x-ray photoelectron spectroscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Definition: X-Ray Diffraction (XRD) | Open Energy Information  

Open Energy Info (EERE)

X-Ray Diffraction (XRD) X-Ray Diffraction (XRD) Jump to: navigation, search Dictionary.png X-Ray Diffraction (XRD) X-Ray Diffraction (XRD) is a laboratory-based technique commonly used for identification of crystalline materials and analysis of unit cell dimensions. One of two primary types of XRD analysis (X-ray powder diffraction and single-crystal XRD) is commonly applied to samples to obtain specific information about the crystalline material under investigation. X-ray powder diffraction is widely used in geology, environmental science, material science, and engineering to rapidly identify unknown crystalline substances (typically in less than 20 minutes). A pure, finely ground, and homogenized sample is required for determination of the bulk composition. Additional uses include detailed

342

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

343

X-Ray Diffraction (XRD) | Open Energy Information  

Open Energy Info (EERE)

X-Ray Diffraction (XRD) X-Ray Diffraction (XRD) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: X-Ray Diffraction (XRD) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png X-Ray Diffraction (XRD): X-Ray Diffraction (XRD) is a laboratory-based technique commonly used for identification of crystalline materials and analysis of unit cell dimensions. One of two primary types of XRD analysis (X-ray powder diffraction and single-crystal XRD) is commonly applied to samples to

344

Portable X-Ray Diffraction (XRD) | Open Energy Information  

Open Energy Info (EERE)

Portable X-Ray Diffraction (XRD) Portable X-Ray Diffraction (XRD) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Portable X-Ray Diffraction (XRD) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Data Collection and Mapping Parent Exploration Technique: Data Collection and Mapping Information Provided by Technique Lithology: Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Portable X-Ray Diffraction (XRD): Portable X-Ray Diffraction (XRD) is a field-based technique that can be used for identification of crystalline materials and analysis of unit cell dimensions. Portable XRD analysis is similar to X-ray powder diffraction,

345

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

346

X-Ray Fluorescence (XRF) | Open Energy Information  

Open Energy Info (EERE)

X-Ray Fluorescence (XRF) X-Ray Fluorescence (XRF) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: X-Ray Fluorescence (XRF) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Bulk and trace element analysis of rocks, minerals, and sediments. Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png X-Ray Fluorescence (XRF): X-Ray Fluorescence is a lab-based technique used for bulk chemical analysis of rock, mineral, sediment, and fluid samples. The technique depends on the fundamental principles of x-ray interactions with solid materials, similar

347

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

348

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

349

APS 7-BM Beamline: X-Ray Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Useful Websites Useful Websites X-Ray Interactions with Matter from CRXO at LBNL. Intuitive interface for x-ray transmission and reflectivity for a wide range of materials. X-Ray Data Booklet from LBNL. Slightly outdated in places, but many useful tables of edge energies, fluorescence lines, and crystal lattice spacings. NIST XCOM Database. Powerful database of photoelectric absorption, elastic scattering, and Compton scattering cross-sections for a wide range of materials. X-Ray Server. Maintained by Sergey Stepanov at GMCA at the APS, this website has several powerful calculators for simulating x-ray reflection and diffraction. Software X-Ray Oriented Programs (XOP). This program, written by scientists at the ESRF and APS, is widely used in the synchrotron research community.

350

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

351

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

352

Density gradient free electron collisionally excited x-ray laser  

DOE Patents (OSTI)

An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.

Campbell, E.M.; Rosen, M.D.

1984-11-29T23:59:59.000Z

353

Fabrication process for a gradient index x-ray lens  

DOE Patents (OSTI)

A process for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments m the soft x-ray region.

Bionta, Richard M. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA); Skulina, Kenneth M. (Livermore, CA)

1995-01-01T23:59:59.000Z

354

Fabrication process for a gradient index x-ray lens  

DOE Patents (OSTI)

A process is disclosed for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments in the soft x-ray region. 13 figures.

Bionta, R.M.; Makowiecki, D.M.; Skulina, K.M.

1995-01-17T23:59:59.000Z

355

Multilayers for next generation x-ray sources  

Science Conference Proceedings (OSTI)

Multilayers are artificially layered structures that can be used to create optics and optical elements for a broad range of x-ray wavelengths, or can be optimized for other applications. The development of next generation x-ray sources (synchrotrons and x-ray free electron lasers) requires advances in x-ray optics. Newly developed multilayer-based mirrors and optical elements enabled efficient band-pass filtering, focusing and time resolved measurements in recent FLASH (Free Electron LASer in Hamburg) experiments. These experiments are providing invaluable feedback on the response of the multilayer structures to high intensity, short pulsed x-ray sources. This information is crucial to design optics for future x-ray free electron lasers and to benchmark computer codes that simulate damage processes.

Bajt, S; Chapman, H N; Spiller, E; Hau-Riege, S; Alameda, J; Nelson, A J; Walton, C C; Kjornrattanawanich, B; Aquila, A; Dollar, F; Gullikson, E; Tarrio, C

2007-05-04T23:59:59.000Z

356

Vector potential photoelectron microscopy  

SciTech Connect

A new class of electron microscope has been developed for the chemical microanalysis of a wide range of real world samples using photoelectron spectroscopy. Highly structured, three-dimensional samples, such as fiber mats and fracture surfaces can be imaged, as well as insulators and magnetic materials. The new microscope uses the vector potential field from a solenoid magnet as a spatial reference for imaging. A prototype instrument has demonstrated imaging of uncoated silk, magnetic steel wool, and micron-sized single strand tungsten wires.

Browning, R. [R. Browning Consultants, 14 John Street, Shoreham, New York 11786 (United States)

2011-10-15T23:59:59.000Z

357

Ultra-short wavelength x-ray system  

DOE Patents (OSTI)

A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.

Umstadter, Donald (Ann Arbor, MI); He, Fei (Ann Arbor, MI); Lau, Yue-Ying (Potomac, MD)

2008-01-22T23:59:59.000Z

358

NIST X-Ray Mass Attenuation Coefficients - Version History  

Science Conference Proceedings (OSTI)

... year, month day with database access date.) Hubbell, JH and Seltzer, SM (2004), Tables of X-Ray Mass Attenuation Coefficients and Mass Energy- ...

2010-10-05T23:59:59.000Z

359

4D Functional Materials Science with X-ray Microscopy  

Science Conference Proceedings (OSTI)

Ultrafast Electron Diffraction Studies of Lattice Dynamics in Thin Bismuth Films · Understanding Fatigue and Corrosion-Fatigue Behavior by In Situ 3D X-ray ...

360

X-Ray and Neutron Diffraction - Programmaster.org  

Science Conference Proceedings (OSTI)

Oct 20, 2010 ... Strain Determination in Nanoscale Microelectronic Materials Using X-Ray Diffraction: Conal Murray1; 1IBM T.J. Watson Research Center

Note: This page contains sample records for the topic "x-ray photoelectron spectroscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

High Temperature X-ray Diffraction Characterization of Thermal ...  

Science Conference Proceedings (OSTI)

Application of Conical Beam X-Ray Tomography to Multi-Phase Materials ... Digital Construction and Characterization of Reticulated Porous Microstructures ...

362

dosimetry of x-rays, gamma rays and electrons  

Science Conference Proceedings (OSTI)

... NIST and BIPM Standards for Air Kerma in Medium-Energy X-rays ... of the codes are available from the Government Printing Office, Washington, DC ...

2013-06-28T23:59:59.000Z

363

Neutron and X-ray Scattering Investigations of Microscopic Energy ...  

Science Conference Proceedings (OSTI)

A Case Study in Future Energy Challenges: Towards In Situ Hard X-ray Microscopy of ... of Crystal Structure and Domain Character in Lead Free Piezoceramics.

364

APS X-ray Optics Fabrication and Characterization Facility  

SciTech Connect

The APS is in the process of assembling an X-ray Optics Fabrication and characterization Facility. This report will describe its current (as of February 1993) design.

Davey, S.

1993-02-01T23:59:59.000Z

365

X-ray compass for determining device orientation  

DOE Patents (OSTI)

An apparatus and method for determining the orientation of a device with respect to an x-ray source are disclosed. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source. 25 figs.

Da Silva, L.B.; Matthews, D.L.; Fitch, J.P.; Everett, M.J.; Colston, B.W.; Stone, G.F.

1999-06-15T23:59:59.000Z

366

Synchrotron X-ray Studies of Supercritical Carbon Dioxide/ Reservoir...  

Open Energy Info (EERE)

Edit with form History Facebook icon Twitter icon Synchrotron X-ray Studies of Supercritical Carbon Dioxide Reservoir Rock Interfaces Geothermal Lab Call Project Jump to:...

367

Phase Sensitive X-ray Imager for More Accurate Digital ...  

Livermore Lab Report. News Archive. News ... use of higher energy X-rays which would result in a lower amount of absorbed radiation to the ... testing ...

368

X-Ray Scattering Group, Condensed Matter Physics & Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

Proceedings of the 12th International Clay Conference, Bahia Blanca, Argentina, July 22-28, 2001. Gibbs, D. X-ray magnetic scattering. Synchrotron Radiation News...

369

Neutron and X-Ray Studies of Advanced Materials IV  

Science Conference Proceedings (OSTI)

We propose to organize a seven-session Symposium on Neutron and X-Ray ... the advent of new powerful neutron sources such as the Spallation Neutron ...

370

Available Technologies: High Temperature Strain Cell for X-ray ...  

High Temperature Strain Cell for X-ray ... Six hexapole infrared lamps focus inside the sample chamber onto a ceramic material sample with a spherical ...

371

X-ray compass for determining device orientation  

DOE Patents (OSTI)

An apparatus and method for determining the orientation of a device with respect to an x-ray source. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source.

Da Silva, Luiz B. (Danville, CA); Matthews, Dennis L. (Moss Beach, CA); Fitch, Joseph P. (Livermore, CA); Everett, Matthew J. (Pleasanton, CA); Colston, Billy W. (Livermore, CA); Stone, Gary F. (Livermore, CA)

1999-01-01T23:59:59.000Z

372

Inelastic X-ray Scattering Reveals Microscopic Transport Properties...  

NLE Websites -- All DOE Office Websites (Extended Search)

Inelastic X-ray Scattering Reveals Microscopic Transport Properties of Molten Aluminum Oxide The transport properties of high-temperature oxide melts are of considerable interest...

373

SLAC National Accelerator Laboratory - X-ray Laser Pulses in...  

NLE Websites -- All DOE Office Websites (Extended Search)

SLAC researchers have demonstrated for the first time how to produce pairs of X-ray laser pulses in slightly different wavelengths, or colors, with finely adjustable intervals...

374

NIST X-Ray Transition Energies Version History  

Science Conference Proceedings (OSTI)

... Jr., P. Indelicato, L. de Billy, E. Lindroth, and J. Anton, "X-ray transition energies: new approach to a ... [Type of medium] Available: URL [Access date]. ...

2010-10-05T23:59:59.000Z

375

Optical and X-ray Imaging Techniques for Material Characterization  

Science Conference Proceedings (OSTI)

Hyperspectral CARS Microscopy in the Fingerprint Region · In Situ X-ray ... Opportunities for Multimodal CARS Microscopy in Materials Science · Photoemission ...

376

Particle Accelerator & X-Ray Optics | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Hard X-Ray Quad Collimator Facilitates Microcrystallography Experiments Isotopic Abundance in Atom Trap Trace Analysis Nanomaterials Analysis using a Scanning Electron Microscope...

377

X RAY TU E WITH MAGNETI ELE TRON STEERING  

Sandia National Laboratories has created an improved efficiency compact X-ray source to address a wide range ... escape the anode and cause electron h ...

378

Temporal multiplexing radiography for dynamic x-ray imaging  

Science Conference Proceedings (OSTI)

All current x-ray imaging devices acquire images sequentially, one at a time. Using a spatially distributed multibeam x-ray source we recently demonstrated the feasibility for multiplexing x-ray imaging, which can significantly increase the data collection speed. Here we present a general methodology for dynamic x-ray imaging of an object in cyclic motion with temporal multiplexing. Compared to the conventional sequential imaging technique, where 2N-1 phase images are required and N exposures are needed for a single phase image, a temporal multiplexing of dimension 2N-1 can reduce the imaging time by a factor of N while maintaining the temporal resolution.

Cao Guohua [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Zhang Jian [Department of Radiation Oncology and Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Zhou, Otto; Lu Jianping [Department of Physics and Astronomy and Curriculum in Applied Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina, 27599 (United States)

2009-09-15T23:59:59.000Z

379

Refractive Optics for Hard X-ray Transmission Microscopy  

Science Conference Proceedings (OSTI)

For hard x-ray transmission microscopy at photon energies higher than 15 keV we design refractive condenser and imaging elements to be used with synchrotron light sources as well as with x-ray tube sources. The condenser lenses are optimized for low x-ray attenuation--resulting in apertures greater than 1 mm--and homogeneous intensity distribution on the detector plane, whereas the imaging enables high-resolution (condenser and imaging lenses are being developed. The imaging lenses (compound refractive lenses, CRLs) are made of SU-8 negative resist by deep x-ray lithography. SU-8 shows high radiation stability. The fabrication technique enables high-quality lens structures regarding surface roughness and arrangement precision with arbitrary 2D geometry. To provide point foci, crossed pairs of lenses are used. Condenser lenses have been made utilizing deep x-ray lithographic patterning of thick SU-8 layers, too, whereas in this case, the aperture is limited due to process restrictions. Thus, in terms of large apertures, condenser lenses made of structured and rolled polyimide film are more attractive. Both condenser types, x-ray mosaic lenses and rolled x-ray prism lenses (RXPLs), are considered to be implemented into a microscope setup. The x-ray optical elements mentioned above are characterized with synchrotron radiation and x-ray laboratory sources, respectively.

Simon, M.; Last, A.; Mohr, J.; Nazmov, V.; Reznikova, E. [Institute for Microstructure Technology, Karlsruhe Institute of Technology Kaiserstrasse 12, 76131 Karlsruhe (Germany); Ahrens, G.; Voigt, A. [Microresist Technology, Koepenikerstrasse 325, 12555 Berlin (Germany)

2011-09-09T23:59:59.000Z

380

SLAC National Accelerator Laboratory - X-ray Science  

NLE Websites -- All DOE Office Websites (Extended Search)

energy technologies. SLAC's unique X-ray facilities - the Linac Coherent Light Source (LCLS) and the Stanford Synchrotron Radiation Lightsource (SSRL) - attract thousands of...

Note: This page contains sample records for the topic "x-ray photoelectron spectroscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

New Directions in X-ray Scattering - SSRL  

NLE Websites -- All DOE Office Websites (Extended Search)

associated with chemically and radioactively contaminated ground-water. Ability to probe weak scattering from single crystals as function of energy (resonance) and x-ray...

382

Bibliography of NRL Works on X-Ray Fluorescence Authored ...  

Science Conference Proceedings (OSTI)

... LS Birks, and EJ Brooks, "Grain-Boundary Diffusion of Zinc in Copper ... 111 J. Gilfrich, "X-Ray Diffraction Studies on the Titanium-Nickel System," in ...

2012-10-05T23:59:59.000Z

383

In situ X-ray Characterization of Energy Storage Materials |...  

NLE Websites -- All DOE Office Websites (Extended Search)

to accurately characterize the dynamic electrochemical processes at the nanometer and atomic level, we have employed a set of complementary, in situ X-ray characterization...

384

For Prospective Users: Learn about x-ray research  

NLE Websites -- All DOE Office Websites (Extended Search)

research in the fields of materials science; biological science; physics; chemistry; environmental, geophysical, and planetary science; and innovative x-ray instrumentation....

385

Staff at sector 30, inelastic x-ray scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

Status and Schedule Safety and Training Divisions APS Engineering Support Division AES Groups Accelerator Systems Division ASD Groups X-ray Science Division XSD Groups...

386

Improved Treatment of X-ray Resistant & Inoperable Cancers ...  

If the electron beam can be transported to the internal cancer without exposure to tissue, ... This figure shows a comparison of X-ray radiation ...

387

Spatially-Resolved X-Ray Microdiffraction Studies Inside Individual ...  

Science Conference Proceedings (OSTI)

This talk will describe recent advances including increased scanning speed, and will describe the use of this x-ray microscope to study mesoscale structural ...

388

Development of Coherent X-Ray Diffraction Microscopy and Its ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , Neutron and X-Ray Studies of Advanced Materials III. Presentation Title, 2010 ...

389

Background X-ray Spectrum of Radioactive Samples  

Science Conference Proceedings (OSTI)

An energy-dispersive X-ray spectrometer (EDS) is commonly used with a scanning electron microscope (SEM) to analyze the elemental compositions and microstructures of a variety of samples. For example, the microstructures of nuclear fuels are commonly investigated with this technique. However, the radioactivity of some materials introduces additional X-rays that contribute to the EDS background spectrum. These X-rays are generally not accounted for in spectral analysis software, and can cause misleading results. X-rays from internal conversion [1], Bremsstrahlung [2] radiation associated with alpha ionizations and beta particle interactions [3], and gamma rays from radioactive decay can all elevate the background of radioactive materials.

Shannon Yee; Dawn E. Janney

2008-02-01T23:59:59.000Z

390

Grain Boundary Deformation Analyzed Via X-Ray Diffraction ...  

Science Conference Proceedings (OSTI)

Modeling the Influence of the Second Phase Particle Spatial Distribution on Recrystallization of AA 7050 · Near-Field High Energy X-ray Diffraction Microscopy ...

391

Applications of High Resolution X-ray Computed Tomography in ...  

Science Conference Proceedings (OSTI)

... data, including concentration profiles from x-ray absorption measurements during ... Dynamic Evolution of Liquid-liquid Phase Separation While Cooling in a

392

Determining the Uncertainty of X-Ray Absorption ...  

Science Conference Proceedings (OSTI)

... The apparatus uses a tungsten filament and a tungsten target to generate x rays and the detector contains a CZT crystal. ...

2005-01-28T23:59:59.000Z

393

X-ray Detection with Large Area Avalanche Photodiodes for ...  

Science Conference Proceedings (OSTI)

... The primary photon detector was a 12-element ... The overall energy range for the experiment was ... to directly detect X-rays with energies between 0.3 ...

2013-07-23T23:59:59.000Z

394

Spectrometry of X-Ray Beams Used for Calibrations  

Science Conference Proceedings (OSTI)

... and used to calibrate a wavelength-dispersive crystal x-ray spectrograph used by Lawrence Livermore National Laboratory (LLNL) to diagnose ...

2012-06-26T23:59:59.000Z

395

X-ray Tube with Magnetic Electron Steering - Energy ...  

The high average power large area X-ray tube provides ... Solar Photovoltaic; Solar ... Description This invention consists of a cathode and anode ...

396

X-ray Methods in High-Intensity Discharges and Metal-Halide Lamps: X-ray Induced Fluorescence  

SciTech Connect

We describe the use of x-ray induced fluorescence to study metal-halide high-intensity discharge lamps and to measure equilibrium vapor pressures of metal-halide salts. The physical principles of metal-halide lamps, relevant aspects of x-ray-atom interactions, the experimental method using synchrotron radiation, and x-ray induced fluorescence measurements relevant to metal-halide lamps are covered.

Curry, John J.; Lapatovich, Walter P.; Henins, Albert (NIST)

2011-12-09T23:59:59.000Z

397

Angular Correlations of the X-Ray Background and Clustering of Extragalactic X-Ray Sources  

E-Print Network (OSTI)

The information content of the autocorrelation function (ACF) of intensity fluctuations of the X-ray background (XRB) is analyzed. The tight upper limits set by ROSAT deep survey data on the ACF at arcmin scales imply strong constraints on clustering properties of X-ray sources at cosmological distances and on their contribution to the soft XRB. If quasars have a clustering radius r_0=12-20 Mpc (H_0=50), and their two point correlation function, is constant in comoving coordinates as indicated by optical data, they cannot make up more 40-50% of the soft XRB (the maximum contribution may reach 80% in the case of stable clustering, epsilon=0). Active Star-forming (ASF) galaxies clustered like normal galaxies, with r_0=10-12 Mpc can yield up to 20% or up to 40% of the soft XRB for epsilon=-1.2 or epsilon=0, respectively. The ACF on degree scales essentially reflects the clustering properties of local sources and is proportional to their volume emissivity. The upper limits on scales of a few degrees imply that hard X-ray selected AGNs have r_06 deg, if real, may be due to AGNs with r_0=20 Mpc; the contribution from clusters of galaxies with r_0~50 Mpc is a factor 2 lower.

L. Danese; L. Toffolatti; A. Franceschini; J. M. Martin-Mirones; G. De Zotti

1993-02-24T23:59:59.000Z

398

Hydrogen deficient donors in low-mass X-ray binaries  

E-Print Network (OSTI)

A number of X-ray binaries (neutron stars or black holes accreting from a companion star) have such short orbital periods that ordinary, hydrogen rich, stars do not fit in. Instead the mass-losing star must be a compact, evolved star, leading to the transfer of hydrogen deficient material to the neutron star. I discuss the current knowledge of these objects, with focus on optical spectroscopy.

Gijs Nelemans

2007-11-05T23:59:59.000Z

399

Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding between water molecules that gives liquid water its peculiar characteristics, the electronic structure plays a crucial role in understanding the properties of the liquid state. Consequently, information essential for insight into chemical and biological processes in aqueous environments is lacking. To address this need, researchers from Germany and the U.S. have used soft x-ray spectroscopy at the ALS to gain detailed insight into the electronic structure of liquid water. Their spectra show a strong isotope and a weak temperature effect, and, for the first time, a splitting of the primary emission line in x-ray emission spectra. By making use of the internal "femtosecond clock" of the core-hole lifetime, a detailed picture of the electronic structure can be painted that involves fast dissociation processes of the probed water molecules.

400

Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding between water molecules that gives liquid water its peculiar characteristics, the electronic structure plays a crucial role in understanding the properties of the liquid state. Consequently, information essential for insight into chemical and biological processes in aqueous environments is lacking. To address this need, researchers from Germany and the U.S. have used soft x-ray spectroscopy at the ALS to gain detailed insight into the electronic structure of liquid water. Their spectra show a strong isotope and a weak temperature effect, and, for the first time, a splitting of the primary emission line in x-ray emission spectra. By making use of the internal "femtosecond clock" of the core-hole lifetime, a detailed picture of the electronic structure can be painted that involves fast dissociation processes of the probed water molecules.

Note: This page contains sample records for the topic "x-ray photoelectron spectroscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding between water molecules that gives liquid water its peculiar characteristics, the electronic structure plays a crucial role in understanding the properties of the liquid state. Consequently, information essential for insight into chemical and biological processes in aqueous environments is lacking. To address this need, researchers from Germany and the U.S. have used soft x-ray spectroscopy at the ALS to gain detailed insight into the electronic structure of liquid water. Their spectra show a strong isotope and a weak temperature effect, and, for the first time, a splitting of the primary emission line in x-ray emission spectra. By making use of the internal "femtosecond clock" of the core-hole lifetime, a detailed picture of the electronic structure can be painted that involves fast dissociation processes of the probed water molecules.

402

Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding between water molecules that gives liquid water its peculiar characteristics, the electronic structure plays a crucial role in understanding the properties of the liquid state. Consequently, information essential for insight into chemical and biological processes in aqueous environments is lacking. To address this need, researchers from Germany and the U.S. have used soft x-ray spectroscopy at the ALS to gain detailed insight into the electronic structure of liquid water. Their spectra show a strong isotope and a weak temperature effect, and, for the first time, a splitting of the primary emission line in x-ray emission spectra. By making use of the internal "femtosecond clock" of the core-hole lifetime, a detailed picture of the electronic structure can be painted that involves fast dissociation processes of the probed water molecules.

403

Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding between water molecules that gives liquid water its peculiar characteristics, the electronic structure plays a crucial role in understanding the properties of the liquid state. Consequently, information essential for insight into chemical and biological processes in aqueous environments is lacking. To address this need, researchers from Germany and the U.S. have used soft x-ray spectroscopy at the ALS to gain detailed insight into the electronic structure of liquid water. Their spectra show a strong isotope and a weak temperature effect, and, for the first time, a splitting of the primary emission line in x-ray emission spectra. By making use of the internal "femtosecond clock" of the core-hole lifetime, a detailed picture of the electronic structure can be painted that involves fast dissociation processes of the probed water molecules.

404

Workshops on Science Enabled by a Coherent, CW, Synchrotron X-ray Source, June 2011  

Science Conference Proceedings (OSTI)

In June of 2011 we held six two-day workshops called "XDL-2011: Science at the Hard X-ray Diffraction Limit". The six workshops covered (1) Diffraction-based imaging techniques, (2) Biomolecular structure from non-crystalline materials, (3) Ultra-fast science, (4) High-pressure science, (5) Materials research with nano-beams and (6) X-ray photon correlation spectroscopy (XPCS), In each workshop, invited speaker from around the world presented examples of novel experiments that require a CW, diffraction-limited source. During the workshop, each invited speaker provided a one-page description of the experiment and an illustrative graphic. The experiments identified by the workshops demonstrate the broad and deep scientific case for a CW coherent synchrotron x-ray source. The next step is to perform detailed simulations of the best of these ideas to test them quantitatively and to guide detailed x-ray beam-line designs. These designs are the first step toward developing detailed facility designs and cost estimates.

Brock, Joel

2012-01-03T23:59:59.000Z

405

Spectral distribution of Be/X-ray binaries in the Small Magellanic Cloud  

E-Print Network (OSTI)

The spectral distributions of Be/X-ray binaries in the Large Magellanic Cloud and Galaxy have been shown to differ significantly from the distribution of isolated Be stars in the Galaxy. Population synthesis models can explain this difference in spectral distributions through substantial angular momentum loss from the binary system. In this work we explore the spectral distribution of Be/X-ray binaries in the Small Magellanic Cloud (SMC) using high signal-to-noise spectroscopy of a sample of 37 optical counterparts to known X-ray pulsars. Our results show that the spectral distribution of Be/X-ray binaries in the SMC is consistent with that of the Galaxy, despite the lower metallicity environment of the SMC. This may indicate that, although the metallicity of the SMC is conducive to the formation of a large number of HMXBs, the spectral distribution of these systems is likely to be most strongly influenced by angular momentum losses during binary evolution, which are not particularly dependent on the local metallicity.

V. A. McBride; M. J. Coe; I. Negueruela; M. P. E. Schurch; K. E. McGowan

2008-04-30T23:59:59.000Z

406

3D Imaging of Nickel Oxidation States using Full Field X-ray Absorption Near Edge Structure Nanotomography  

Science Conference Proceedings (OSTI)

Reduction-oxidation (redox) cycling of the nickel electrocatalyst phase in the solid oxide fuel cell (SOFC) anode can lead to performance degradation and cell failure. A greater understanding of nickel redox mechanisms at the microstructural level is vital to future SOFC development. Transmission x-ray microscopy (TXM) provides several key techniques for exploring oxidation states within SOFC electrode microstructure. Specifically, x-ray nanotomography and x-ray absorption near edge structure (XANES) spectroscopy have been applied to study samples of varying nickel (Ni) and nickel oxide (NiO) compositions. The imaged samples are treated as mock SOFC anodes containing distinct regions of the materials in question. XANES spectra presented for the individual materials provide a basis for the further processing and analysis of mixed samples. Images of composite samples obtained are segmented, and the distinct nickel and nickel oxide phases are uniquely identified using full field XANES spectroscopy. Applications to SOFC analysis are discussed.

Nelson, George; Harris, William; Izzo, John; Grew, Kyle N. (Connecticut); (USARL)

2012-01-20T23:59:59.000Z

407

SLAC | 2011 X-Ray Spectroscopy of Magnetic Solids workshop -...  

NLE Websites -- All DOE Office Websites (Extended Search)

Abstracts Agenda Location Visitor Information Transportation About XRMS BaBar detector, SLAC LCLS experimental stations, SLAC Panofsky auditorium, SLAC SLAC National Accelerator...

408

Characterization of Gas Shales by X-ray Raman Spectroscopy |...  

NLE Websites -- All DOE Office Websites (Extended Search)

137-322 Drew Pomerantz, Schlumberger Unconventional hydrocarbon resources such as gas shale and oil-bearing shale have emerged recently as economically viable sources of...

409

X-ray Spectroscopy and Pulse Radiolysis of Aqueous Solutions  

E-Print Network (OSTI)

with the liquid water microjet produced an electron signalozone (produced by VUV photolysis of oxgyen and water ice).also be produced by photolysis of liquid water in the vacuum

England, Alice Heller

2011-01-01T23:59:59.000Z

410

Soft-x-ray spectroscopy study of nanoscale materials  

E-Print Network (OSTI)

brightness of the third generation source combined with highThe new generation synchrotron radiation sources producingthird generation synchrotron radiation sources. In addition

Guo, J.-H.

2005-01-01T23:59:59.000Z

411

X-ray spectral states of microquasars  

E-Print Network (OSTI)

We discuss the origin of the dramatically different X-ray spectral shapes observed in the Low Hard State (LHS: dominated by thermal comptonisation) and the High Soft State (HSS: dominated by the accretion disc thermal emission and non-thermal comptonisation in the corona). We present numerical simulations using a new code accounting for the so-called synchrotron boiler effect. These numerical simulations when compared to the data allow us to constrain the magnetic field and temperature of the hot protons in the corona. For the hard state of Cygnus X-1 we find a magnetic field below equipartition with radiation, suggesting that the corona is not powered through magnetic field dissipation (as assumed in most accretion disc corona models). On the other hand, our results also point toward proton temperatures that are substantially lower than typical temperatures of the ADAF models. Finally, we show that in both spectral states Comptonising plasma could be powered essentially through power-law acceleration of non-thermal electrons, which are then partly thermalised by the synchrotron and Coulomb boiler. This suggests that, contrary to current beliefs, the corona of the HSS and that of the LHS could be of very similar nature. The differences between the LHS and HSS coronal spectra would then be predominantly caused by the strong disc soft cooling emission which is present in the HSS and absent in the LHS.

Julien Malzac; Renaud Belmont

2008-10-25T23:59:59.000Z

412

X-ray attenuation properties of stainless steel (u)  

SciTech Connect

Stainless steel vessels are used to enclose solid materials for studying x-ray radiolysis that involves gas release from the materials. Commercially available stainless steel components are easily adapted to form a static or a dynamic condition to monitor the gas evolved from the solid materials during and after the x-ray irradiation. Experimental data published on the x-ray attenuation properties of stainless steel, however, are very scarce, especially over a wide range of x-ray energies. The objective of this work was to obtain experimental data that will be used to determine how a poly-energetic x-ray beam is attenuated by the stainless steel container wall. The data will also be used in conjunction with MCNP (Monte Carlos Nuclear Particle) modeling to develop an accurate method for determining energy absorbed in known solid samples contained in stainless steel vessels. In this study, experiments to measure the attenuation properties of stainless steel were performed for a range of bremsstrahlung x-ray beams with a maximum energy ranging from 150 keV to 10 MeV. Bremsstrahlung x-ray beams of these energies are commonly used in radiography of engineering and weapon components. The weapon surveillance community has a great interest in understanding how the x-rays in radiography affect short-term and long-term properties of weapon materials.

Wang, Lily L [Los Alamos National Laboratory; Berry, Phillip C [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

413

Hard X-ray Phase Contrast -Techniques and Applications -  

E-Print Network (OSTI)

Hard X-ray Phase Contrast Microscopy - Techniques and Applications - A Dissertation Presented of the Graduate School ii #12;Abstract of the Dissertation Hard X-ray Phase Contrast Microscopy - Techniques . . . . . . . . . . . . . . . . . . 58 3.2.4 Reconstruction Example for Integration Method . . . . 59 3.2.5 The Imaginary Part

414

High-energy x-ray production with pyroelectric crystals  

Science Conference Proceedings (OSTI)

The invention of pyroelectric x-ray generator technology has enabled researchers to develop ultraportable, low-power x-ray sources for use in imaging, materials analysis, and other applications. For many applications, the usefulness of an x-ray source is determined by its yield and endpoint energy. In x-ray fluorescence, for example, high-energy sources enable the excitation of the K-shell x-ray peaks for high-Z materials as well as the lower-energy L-shell peaks, allowing more positive sample identification. This report shows how a paired-crystal pyroelectric source can be used to approximately double the endpoint x-ray energy, in addition to doubling the x-ray yield, versus a single-crystal source. As an example of the advantage of a paired-crystal system, we present a spectrum showing the fluorescence of the K shell of thorium using a pyroelectric source, as well as a spectrum showing the fluorescence of the K shell of lead. Also shown is an x-ray spectrum with an endpoint energy of 215 keV.

Geuther, Jeffrey A.; Danon, Yaron [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

2005-05-15T23:59:59.000Z

415

ESRF HIGHLIGHTS 2005 X-RAY ABSORPTION AND MAGNETIC SCATTERING  

E-Print Network (OSTI)

96 ESRF HIGHLIGHTS 2005 X-RAY ABSORPTION AND MAGNETIC SCATTERING References [1] C. Antoniak, J to original phenomena. These effects are observed in charge-density wave (CDW) materials. Upon cooling of the screw like dislocation shown in Figure 121b. #12;97 HIGHLIGHTS 2005 ESRF X-RAY ABSORPTION AND MAGNETIC

Paris-Sud 11, Université de

416

Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism  

NLE Websites -- All DOE Office Websites (Extended Search)

Unexpected Angular Dependence of Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Wednesday, 29 August 2007 00:00 Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic linear dichroism (XMLD) are not only determined by the relative orientation of magnetic moments and x-ray polarization, but their orientation relative to the crystallographic axes must be taken into account for accurate interpretation of XMLD data. Magnetism and X Rays

417

Probing Spatial, Electronic Structures with X-ray Scattering, Spectroscopic  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Spatial, Electronic Structures with X-ray Scattering, Spectroscopic Probing Spatial, Electronic Structures with X-ray Scattering, Spectroscopic Techniques Wednesday, September 5, 2012 - 10:45am SLAC, Bldg. 137, Room 226 Gang Chen Seminar: Structures at atomic scales are traditionally determined through X-ray crystallography that amplifies scattering intensities by introducing spatial periodicity. For amorphous materials and many macromolecules, such as viruses, proteins and biofilms, it is hard to determine structures due to their incapability to crystallize or change of configuration during crystallization. In this talk, I will present the application of X-ray reflectivity and a newly developed fluctuation X-ray scattering technique to study the structures of lipid membranes and randomly oriented nanoparticles. Three different types of domain registrations occurring with

418

X-Ray Observations of Gamma-Ray Burst Afterglows  

E-Print Network (OSTI)

The discovery by the BeppoSAX satellite of X-ray afterglow emission from the gamma-ray burst which occurred on 28 February 1997 produced a revolution in our knowledge of the gamma-ray burst phenomenon. Along with the discovery of X-ray afterglows, the optical afterglows of gamma-ray bursts were discovered and the distance issue was settled, at least for long $\\gamma$-ray bursts. The 30 year mystery of the gamma-ray burst phenomenon is now on the way to solution. Here I rewiew the observational status of the X-ray afterglow emission, its mean properties (detection rate, continuum spectra, line features, and light curves), and the X-ray constraints on theoretical models of gamma-ray bursters and their progenitors. I also discuss the early onset afterglow emission, the remaining questions, and the role of future X-ray afterglow observations.

Filippo Frontera

2004-06-25T23:59:59.000Z

419

X-Ray Emission Spectrometer Design with Single-Shot Pump-Probe and Resonant Excitation Capabilities  

Science Conference Proceedings (OSTI)

Core-level spectroscopy in the soft X-ray regime is a powerful tool for the study of chemical bonding processes. The ultrafast, ultrabright X-ray pulses generated by the Linac Coherent Light Source (LCLS) allow these reactions to be studied in greater detail than ever before. In this study, we investigated a conceptual design of a spectrometer for the LCLS with imaging in the non-dispersive direction. This would allow single-shot collection of X-ray emission spectroscopy (XES) measurements with varying laser pump X-ray probe delay or a variation of incoming X-ray energy over the illuminated area of the sample. Ray-tracing simulations were used to demonstrate how the components of the spectrometer affect its performance, allowing a determination of the optimal final design. These simulations showed that the spectrometer's non-dispersive focusing is extremely sensitive to the size of the sample footprint; the spectrometer is not able to image a footprint width larger than one millimeter with the required resolution. This is compatible with a single shot scheme that maps out the laser pump X-ray probe delay in the non-dispersive direction as well as resonant XES applications at normal incidence. However, the current capabilities of the Soft X-Ray (SXR) beamline at the LCLS do not produce the required energy range in a small enough sample footprint, hindering the single shot resonant XES application at SXR for chemical dynamics studies at surfaces. If an upgraded or future beamline at LCLS is developed with lower monochromator energy dispersion the width can be made small enough at the required energy range to be imaged by this spectrometer design.

Spoth, Katherine; /SUNY, Buffalo /SLAC

2012-08-28T23:59:59.000Z

420

PHOTOELECTRON PHOTOION MOLECULAR BEAM SPECTROSCOPY  

E-Print Network (OSTI)

Phase Experimental Station at SSRL A. B. C. D. Introductionmass spectrometer used at SSRL. The photon baam ia comingon the 8° (1-2) line at SSRL after passing through a 1500 A

Trevor, Dennis J.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray photoelectron spectroscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Soft x-ray microanalysis and microscopy: A unique probe of the organic chemistry of heterogeneous solids  

SciTech Connect

STXM and C-NEXAFS (carbon near edge absorption micro-spectroscopy) microanalysis were used to analysis the microchemistry of cokes and highly carbonaceous materials. The issue of molecular orientation is addressed by using the intrinsic polarization of the x-ray beam at X1A beamline at NSLS.

Cody, G.D.; Botto, R.E. [Argonne National Lab., IL (United States); Ade, H. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Physics; Wirick, S. [SUNY at Stony Brook, NY (United States). Dept. of Physics; Davis, A.; Mitchell, G. [Pennsylvania State Univ., University Park, PA (United States). Coal and Organic Petrology Labs.

1995-08-01T23:59:59.000Z

422

Synchrotron radiation x-ray absorption fine-structure and Raman studies on CdZnTe ternary alloys  

E-Print Network (OSTI)

The synchrotron radiation (SR) X-ray absorption fine-structure spectroscopy (XAFS) technology has been employed to obtained Zn K-edge absorption spectra for Cd1[subscript 1-x]Zn[subscript x]Te alloy with x = 0.03, 0.10, ...

Becla, Piotr

423

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Biological Imaging by Soft X-Ray Diffraction Microscopy Biological Imaging by Soft X-Ray Diffraction Microscopy Print Wednesday, 30 November 2005 00:00 Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

424

Femtosecond Time-Delay X-ray Holography  

NLE Websites -- All DOE Office Websites (Extended Search)

Time-Delay X-ray Holography Time-Delay X-ray Holography X-ray free-electron lasers (XFELs) will produce photon pulses with a unique and desirable combination of properties. Their short X-ray wavelengths allow penetration into materials and the ability to probe structure at and below the nanometer scale. Their ultra-short duration gives information about this structure at the fundamental time-scales of atoms and molecules. The extreme intensity of the pulses will allow this information to be acquired in a single shot, so that these studies can be carried out on non-repeatable processes or on weakly-scattering objects that will be modified by the pulse. A fourth property of XFEL pulses is their high transverse coherence, which brings the promise of decades of innovation in visible optics to the X-ray regime, such as holography, interferometry, and laser-based imaging. Making an effective use of XFEL pulses, however, will benefit from innovations that are new to both X-ray science and coherent optics. One such innovation is the new method of time-delay X-ray holography [i], recently demonstrated at the FLASH FEL at DESY in Hamburg, to measure the evolution of objects irradiated by intense pulses.

425

Resonant Auger Effect at High X-Ray Intensity  

SciTech Connect

The resonant Auger effect of atomic neon exposed to high-intensity x-ray radiation in resonance with the 1s {yields} 3p transition is discussed. High intensity here means that the x-ray peak intensity is sufficient ({approx} 10{sup 18} W/cm{sup 2}) to induce Rabi oscillations between the neon ground state and the 1s{sup -1}3p ({sup 1}P) state within the relaxation lifetime of the inner-shell vacancy. For the numerical analysis presented, an effective two-level model, including a description of the resonant Auger decay process, is employed. Both coherent and chaotic x-ray pulses are treated. The latter are used to simulate radiation from x-ray free-electron lasers based on the principle of self-amplified spontaneous emission. Observing x-ray-driven atomic population dynamics in the time domain is challenging for chaotic pulse ensembles. A more practical option for experiments using x-ray free-electron lasers is to measure the line profiles in the kinetic energy distribution of the resonant Auger electron. This provides information on both atomic population dynamics and x-ray pulse properties.

Rohringer, N; Santra, R

2008-03-27T23:59:59.000Z

426

X-ray emission from laser-produced plasmas  

SciTech Connect

The intensity and spectral characteristics of x-ray emitted from laser-produced plasmas have been investigated computatinoally and experimentally. a two-dimensional implosi code was used successfully to calculate laser-plasma radiation characteristics and to aid in the design of laser targets for high-yield x-ray production. Other computer codes, in use or under development predict lime strengths and energies for laser-plasma x-ray emission. An experimental effort is aimed at reliable measurements of x-ray yields and spectra. a wide variety of x-ray detection methods have been evaluated, and x-ray yields have been measured from plasmas produced with two dissimilar laser systems. The high energy x-ray spectrum, from about 10 to 140 keV, has been studied using high-gain scintillatino detectors and thick K-edge filters. Various supplementary measurements have provided information concerning characteristics of the target-reflected laser light, the ion energies, and the laser intensity patterns.

Violet, C.E. [ed.

1974-07-01T23:59:59.000Z

427

Optical systems for synchrotron radiation: lecture 4. Soft x-ray imaging systems  

Science Conference Proceedings (OSTI)

The history and present techniques of soft x-ray imaging are reviewed briefly. The physics of x-ray imaging is described, including the temporal and spatial coherence of x-ray sources. Particular technologies described are: contact x-ray microscopy, zone plate imaging, scanned image zone plate microscopy, scanned image reflection microscopy, and soft x-ray holography and diffraction. (LEW)

Howells, M.R.

1986-04-01T23:59:59.000Z

428

Direct three-dimensional coherently scattered x-ray microtomography  

Science Conference Proceedings (OSTI)

Purpose: It has been shown that coherently scattered x rays can be used to discriminate and identify specific components in a mixture of low atomic weight materials. The authors demonstrated a new method of doing coherently scattered x-ray tomography with a thin sheet of x ray. Methods: A collimated x-ray fan-beam, a parallel polycapillary collimator, and a phantom consisting of several biocompatible materials of low attenuation-based contrast were used to investigate the feasibility of the method. Because of the particular experimental setup, only the phantom translation perpendicular to the x-ray beam is needed and, thus, there is no need of Radon-type tomographic reconstruction, except for the correction of the attenuation to the primary and scattered x rays, which was performed by using a conventional attenuation-based tomographic image data set. The coherent scatter image contrast changes with momentum transfer among component materials in the specimen were investigated with multiple x-ray sources with narrow bandwidth spectra generated with anode and filter combinations of Cu/Ni (8 keV), Mo/Zr (18 keV), and Ag/Pd (22 keV) and at multiple scatter angles by orienting the detector and polycapillary collimator at different angles to the illuminating x ray. Results: The contrast among different materials changes with the x-ray source energy and the angle at which the image was measured. The coherent scatter profiles obtained from the coherent scatter images are consistent with the published results. Conclusions: This method can be used to directly generate the three-dimensional coherent scatter images of small animal, biopsies, or other small objects with low atomic weight biological or similar synthetic materials with low attenuation contrast. With equipment optimized, submillimeter spatial resolution may be achieved.

Cui Congwu; Jorgensen, Steven M.; Eaker, Diane R.; Ritman, Erik L. [Department of Medical Physics, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street Southwest, Alfred Building 2-409, Rochester, Minnesota 55905 (United States)

2010-12-15T23:59:59.000Z

429

X-ray afterglows from gamma-ray bursts  

E-Print Network (OSTI)

We consider possible interpretations of the recently detected X- ray afterglow from the gamma-ray burst source GRB 970228. Cosmological and Galactic models of gamma-ray bursts predict different flux and spectral evolution of X-ray afterglows. We show that models based on adiabatic expansion of relativistic forward shocks require very efficient particle energization or post-burst re-acceleration during the expansion. Cooling neutron star models predict a very distinctive spectral and flux evolution that can be tested in current X-ray data.

M. Tavani

1997-03-24T23:59:59.000Z

430

Ten years of Vela x-ray observations  

SciTech Connect

The Vela spacecraft, particularly Vela 5B, produced all-sky X-ray data of unprecedented length and completeness. The data led to the discovery of X-ray bursts and numerous transient outbursts. Recent re-analysis has put the data in the form of 10-day skymaps covering a 7-year period, which have led to the discovery or confirmation of a number of long-term periodicities, and have made possible a time-lapse movie of the X-ray sky.

Terrell, J.; Priedhorsky, W.C.

1983-01-01T23:59:59.000Z

431

Sixth International Conference on X-ray Microscopy  

SciTech Connect

More than 180 participants from around the world crowded the Clark Kerr Campus of the University of California, Berkeley, from August 1-6, 1999 for the Sixth International Conference on X-Ray Microscopy (XRM99). Held every three years since 1983, the XRM conferences have become the primary international forum for the presentation and discussion of advances in high-spatial-resolution x-ray imaging and applications (including the use of x-ray spectroscopic and analytical techniques) in biological and medical sciences, environmental and soil sciences, and materials and surface sciences.

Robinson, Arthur L.

1999-08-23T23:59:59.000Z

432

Fast-switching elliptically polarized soft X-ray beam X13A at NSLS  

SciTech Connect

The X13A beamline at NSLS is dedicated to the generation and uses of fast-switching elliptically polarized soft X-ray radiation in the energy range from 250 to {approx}1600 eV. The source for this beamline is an elliptically polarized wiggler (EPW) that delivers linearly elliptically polarized soft X-rays at a switching rate, between right- and left-handed polarization, up to 100 Hz. The optical design is a spherical grating monochromator (SGM) that focuses and diffracts in plane orthogonal to the polarization switching direction. The X13A beamline scientific program is dedicated to spectroscopy and scattering studies of magnetism and magnetic materials. The fast-switching capability of the EPW enables the use of lock-in techniques, thereby greatly enhancing the detection sensitivity for small polarization-dependent signals.

Sanchez-Hanke, C.; Kao, C.; Hulbert, S.

2009-07-21T23:59:59.000Z

433

Reverse engineering the ancient ceramic technology based on X-ray fluorescence spectromicroscopy  

SciTech Connect

We present results of X-ray fluorescence (XRF) microprobe analyses of ancient ceramic cross-sections aiming at deciphering the different firing protocols used for their production. Micro-focused XRF elemental mapping, Fe chemical mapping and Fe K-edge X-ray absorption near edge structure spectroscopy were performed on pre-sigillata ceramics from southern Gaul, and terra Sigillata vessels from Italy and southern Gaul. Pieces from the different workshops and regions showed significant difference in the starting clay material, clay conditioning and kiln firing condition. By contrast, sherds from the same workshop exhibited more subtle differences and possible misfirings. Understanding the precise firing conditions and protocols would allow recreation of kilns for various productions. Furthermore, evolution and modification of kiln design would shed some light on how ancient potters devised solutions to diverse technological problems they encountered.

Sciau, Philippe; Leon, Yoanna; Goudeau, Philippe; Fakra, Sirine C.; Webb, Sam; Mehta, Apurva

2011-07-06T23:59:59.000Z

434

Flat Quartz-Crystal X-ray Spectrometer for Nuclear Forensics Applications  

E-Print Network (OSTI)

The ability to quickly and accurately quantify the plutonium (Pu) content in pressurized water reactor (PWR) spent nuclear fuel (SNF) is critical for nuclear forensics purposes. One non-destructive assay (NDA) technique being investigated to detect bulk Pu in SNF is measuring the self-induced x-ray fluorescence (XRF). Previous XRF measurements of Three Mile Island (TMI) PWR SNF taken in July 2008 and January 2009 at Oak Ridge National Laboratory (ORNL) successfully illustrated the ability to detect the 103.7 keV x ray from Pu using a planar high-purity germanium (HPGe) detector. This allows for a direct measurement of Pu in SNF. Additional gamma ray and XRF measurements were performed on TMI SNF at ORNL in October 2011 to measure the signal-to-noise ratio for the 103.7 keV peak. Previous work had shown that the Pu/U peak ratio was directly proportional to the Pu/U content and increased linearly with burnup. However, the underlying Compton background significantly reduced the signal-to-noise ratio for the x-ray peaks of interest thereby requiring a prolonged count time. Comprehensive SNF simulations by Stafford et al showed the contributions to the Compton continuum were due to high-energy gamma rays scattering in the fuel, shipping tube, cladding, collimator and detector1. The background radiation was primarily due to the incoherent scattering of the 137Cs 661.7 keV gamma. In this work methods to reduce the Compton background and thereby increase the signal-to-noise ratio were investigated. To reduce the debilitating effects of the Compton background, a crystal x-ray spectrometer system was designed. This wavelength-dispersive spectroscopy technique isolated the Pu and U x rays according to Bragg's law by x-ray diffraction through a crystal structure. The higher energy background radiation was blocked from reaching the detector using a customized collimator and shielding system. A flat quartz-crystal x-ray spectrometer system was designed specifically to fit the constraints and requirements of detecting XRF from SNF. Simulations were performed to design and optimize the collimator design and to quantify the improved signal-to-noise ratio of the Pu and U x-ray peaks. The proposed crystal spectrometer system successfully diffracted the photon energies of interest while blocking the high-energy radiation from reaching the detector and contributing to background counts. The spectrometer system provided a higher signal-to-noise ratio and lower percent error for the XRF peaks of interest from Pu and U. Using the flat quartz-crystal x-ray spectrometer and customized collimation system, the Monte Carlo N-Particle (MCNP) simulations showed the 103.7 keV Pu x-ray peak signal-to-noise ratio improved by a factor of 13 and decreased the percent error