National Library of Energy BETA

Sample records for x-ray photoelectron spectroscopy

  1. Chemical Shifts in X-ray and Photo-Electron Spectroscopy: A Historical review

    E-Print Network [OSTI]

    Lindgren, Ingvar

    Chemical Shifts in X-ray and Photo-Electron Spectroscopy: A Historical review Ingvar Lindgren 1 Introduction 2 2 Chemical shift in X-ray spectroscopy 2 2.1 Discovery of the chemical shift in X-ray spectroscopy . . . . . . . . . . . . . 3 2.2 Interpretation of the chemical shift in X-ray spectroscopy

  2. X-Ray Photoelectron Spectroscopy XPS Mark Engelhard

    E-Print Network [OSTI]

    system. · High pressure reactor with heating up to 800°C · Vacuum/Atmosphere tube furnace with heating up for his work with XPS. #12;Outline 6 · Introduction to XPS (basic principles) · Quantification · Energy An incoming photon causes the ejection of the photoelectron #12;Introduction to XPS -- Basic principles 11

  3. Contact-free pyroelectric measurements using x-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Ehre, D.; Cohen, H.

    2013-07-29

    Non-contact pyroelectricity measurements based on x-ray photoelectron spectroscopy (XPS) are presented. Applied to Lithium Tantalate crystals, we demonstrate how the XPS-derived surface potential provides a simple probe of the desired property, free of all top-contact related difficulties. In particular, the increase in Lithium Tantalate spontaneous polarization under cooling, an experimentally challenging feature, is evaluated. We further inspect the roll of surface contaminants and the control over trapped surface charge in the XPS vacuum environment. Our approach can be extended to other non-contact probes, as well as to measuring additional electrical properties, such as piezoelectricity and ferroelectricity.

  4. In situ x-ray photoelectron spectroscopy for electrochemical reactions in ordinary solvents

    SciTech Connect (OSTI)

    Masuda, Takuya [Global Research Center for Environment and Energy Based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), Tsukuba 305-0044 (Japan) [Global Research Center for Environment and Energy Based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), Tsukuba 305-0044 (Japan); PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 333-0012 (Japan); Yoshikawa, Hideki; Kobata, Masaaki; Kobayashi, Keisuke [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), Sayo, Hyogo 679-5148 (Japan)] [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), Sayo, Hyogo 679-5148 (Japan); Noguchi, Hidenori [Global Research Center for Environment and Energy Based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), Tsukuba 305-0044 (Japan) [Global Research Center for Environment and Energy Based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), Tsukuba 305-0044 (Japan); PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 333-0012 (Japan); Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044 (Japan); Kawasaki, Tadahiro [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603 (Japan)] [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603 (Japan); Uosaki, Kohei [Global Research Center for Environment and Energy Based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), Tsukuba 305-0044 (Japan) [Global Research Center for Environment and Energy Based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), Tsukuba 305-0044 (Japan); Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044 (Japan)

    2013-09-09

    In situ electrochemical X-ray photoelectron spectroscopy (XPS) apparatus, which allows XPS at solid/liquid interfaces under potential control, was constructed utilizing a microcell with an ultra-thin Si membrane, which separates vacuum and a solution. Hard X-rays from a synchrotron source penetrate into the Si membrane surface exposed to the solution. Electrons emitted at the Si/solution interface can pass through the membrane and be analyzed by an analyzer placed in vacuum. Its operation was demonstrated for potential-induced Si oxide growth in water. Effect of potential and time on the thickness of Si and Si oxide layers was quantitatively determined at sub-nanometer resolution.

  5. Probing hot-electron effects in wide area plasmonic surfaces using X-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Ayas, Sencer; Cupallari, Andi; Dana, Aykutlu

    2014-12-01

    Plasmon enhanced hot carrier formation in metallic nanostructures increasingly attracts attention due to potential applications in photodetection, photocatalysis, and solar energy conversion. Here, hot-electron effects in nanoscale metal-insulator-metal (MIM) structures are investigated using a non-contact X-ray photoelectron spectroscopy based technique using continuous wave X-ray and laser excitations. The effects are observed through shifts of the binding energy of the top metal layer upon excitation with lasers of 445, 532, and 650?nm wavelength. The shifts are polarization dependent for plasmonic MIM grating structures fabricated by electron beam lithography. Wide area plasmonic MIM surfaces fabricated using a lithography free route by the dewetting of evaporated Ag on HfO{sub 2} exhibit polarization independent optical absorption and surface photovoltage. Using a simple model and making several assumptions about the magnitude of the photoemission current, the responsivity and external quantum efficiency of wide area plasmonic MIM surfaces are estimated as 500?nA/W and 11 × 10{sup ?6} for 445?nm illumination.

  6. CHARACTERIZING SURFACE LAYERS IN NITINOL USING X-RAY PHOTOELECTRON SPECTROSCOPY

    SciTech Connect (OSTI)

    Christopfel, R.; Mehta, A.

    2008-01-01

    Nitinol is a shape memory alloy whose properties allow for large reversible deformations and a return to its original geometry. This nickel-titanium (NiTi) alloy has become a material used widely in the biomedical fi eld as a stent to open up collapsed arteries. Both ambient and biological conditions cause surface oxidation in these devices which in turn change its biocompatibility. The thickness of oxidized layers can cause fractures in the material if too large and can allow for penetration if too thin. Depending on the type and abundance of the chemical species on or near the surface, highly toxic metal ions can leak into the body causing cell damage or even cell death. Thus, biocompatibility of such devices is crucial. By using highly surface sensitive x-ray photoelectron spectroscopy to probe the surface of these structures, it is possible to decipher both layer composition and layer thickness. Two samples, both of which were mechanically polished, were investigated. Of the two samples, one was then exposed to a phosphate buffered saline (PBS) solution to mimic the chemical properties of blood, while the other remained unexposed. Although both samples were found to have oxide layers of appropriate thickness (on the order of a few nm), it was found that the sample exposed to the saline solution had a slightly thicker oxide layer and more signifi cantly, a phosphate layer very near the surface suggesting toxic metal components are well contained within the sample. These are considerable indications of a biocompatible device.

  7. Adsorption of 2-propanol on ice probed by ambient pressure X-ray photoelectron spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Newberg, John T.; Bluhm, Hendrik

    2015-08-18

    The interaction of 2-propanol with ice was examined via ambient pressure X-ray photoelectron spectroscopy (APXPS), a surface sensitive technique that probes the adsorbed 2-propanol directly with submonolayer resolution. Isothermal uptake experiments were performed on vapor deposited ice at 227 K in the presence of the equilibrium water vapor pressure of 0.05 Torr and 2-propanol partial pressures ranging from 5 × 10-5 to 2 × 10-3 Torr. The C 1s APXPS spectra of adsorbed 2-propanol showed two characteristic peaks associated with the COH alcohol group and CMe methyl groups in a 1 : 2 ratio, respectively. Coverage increased with 2-propanol partialmore »pressure and followed first order Langmuir kinetics with a Langmuir constant of K = 6.3 × 103 Torr-1. The 1 : 2 ratio of COH : CMe remained constant with increasing coverage, indicating there is no chemical reaction upon adsorption. The observed Langmuir kinetics using APXPS is consistent with previous observations of other small chain alcohols via indirect adsorption methods using, e.g., Knudsen cell and coated wall flow tube reactors.« less

  8. Dissociation of strong acid revisited: X-ray photoelectron spectroscop...

    Office of Scientific and Technical Information (OSTI)

    X-ray photoelectron spectroscopy and molecular dynamics simulations of HNO3 in water Citation Details In-Document Search Title: Dissociation of strong acid revisited:...

  9. X-ray Photoelectron Spectroscopy study of the compatibility of the explosive PETN with candidate plastic bonding materials

    SciTech Connect (OSTI)

    Vannet, M.D.; Wang, P.S.; Moddeman, W.E.; Bowling, W.C.

    1985-01-01

    The compatibility of the explosive PETN with two plastic bonding materials, ethyl cellulose and a halogenated vinyl polymer (FPC 461), was determined by X-ray Photoelectron Spectroscopy (XPS). Both were found to coat the PETN crystals, and no change in chemical composition was found in the PETN or the plastic due to either the process or their mutual presence. 3 refs., 1 fig., 1 tab.

  10. Time-resolved x-ray photoelectron spectroscopy techniques for real-time studies of interfacial charge transfer dynamics

    SciTech Connect (OSTI)

    Shavorskiy, Andrey; Hertlein, Marcus; Guo Jinghua; Tyliszczak, Tolek [Advanced Light Source, Lawrence Berkeley National Laboratory (United States); Cordones, Amy; Vura-Weis, Josh [Department of Chemistry, University of California Berkeley (United States); Siefermann, Katrin; Slaughter, Daniel; Sturm, Felix; Weise, Fabian; Khurmi, Champak; Belkacem, Ali; Weber, Thorsten; Gessner, Oliver [Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory (United States); Bluhm, Hendrik [Chemical Sciences Division, Lawrence Berkeley National Laboratory (United States); Strader, Matthew; Cho, Hana; Coslovich, Giacomo; Kaindl, Robert A. [Materials Sciences Division, Lawrence Berkeley National Laboratory (United States); Lin, Ming-Fu [Department of Chemistry, University of California Berkeley (United States); Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory (United States); and others

    2013-04-19

    X-ray based spectroscopy techniques are particularly well suited to gain access to local oxidation states and electronic dynamics in complex systems with atomic pinpoint accuracy. Traditionally, these techniques are applied in a quasi-static fashion that usually highlights the steady-state properties of a system rather than the fast dynamics that often define the system function on a molecular level. Novel x-ray spectroscopy techniques enabled by free electron lasers (FELs) and synchrotron based pump-probe schemes provide the opportunity to monitor intramolecular and interfacial charge transfer processes in real-time and with element and chemical specificity. Two complementary time-domain xray photoelectron spectroscopy techniques are presented that are applied at the Linac Coherent Light Source (LCLS) and the Advanced Light Source (ALS) to study charge transfer processes in N3 dye-sensitized ZnO semiconductor nanocrystals, which are at the heart of emerging light-harvesting technologies.

  11. An X-ray photoelectron spectroscopy study of the hydration of C{sub 2}S thin films

    SciTech Connect (OSTI)

    Rheinheimer, Vanessa; Casanova, Ignasi

    2014-06-01

    Electron-beam evaporation was used to produce thin films of ?-dicalcium silicate. Chemical and mineralogical compositions were characterized by X-ray photoelectron spectroscopy (XPS) and grazing-angle X-ray diffraction (GAXRD), respectively. Results show that no fractionation occurs during evaporation and isostructural condensation of the material as synthesized films have the same composition as the initial bulk material. Samples were gradually hydrated under saturated water spray conditions and analyzed with XPS. Polymerization of the silicate chains due to hydration, and subsequent formation of C-S-H, has been monitored through evaluation of energy shifts on characteristic silicon peaks. Quantitative analyses show changes on the surface by the reduction of the Ca/Si ratio and an increase on the difference between binding energies of bridging and non-bridging oxygen. Finally, SEM/FIB observation shows clear differences between the surface and cross section of the initial sample and the reacted sample.

  12. X-ray photoelectron spectroscopy studies on Pd doped SnO{sub 2} liquid petroleum gas sensor

    SciTech Connect (OSTI)

    Phani, A.R.

    1997-10-01

    The present investigation deals with the electrical response of palladium doped tin oxide, as a means of improving the selectivity for liquid petroleum gas (LPG) in the presence of CO, CH{sub 4}. The sensor element with the composition of Pd(1.5 wt{percent}) in the base material SnO{sub 2} sintered at 800{degree}C, has shown a high sensitivity towards LPG with a negligible cross interference of CO and CH{sub 4} at an operating temperature of 350{degree}C. This greatly suggests the possibility of utilizing the sensor for the detection of LPG. X-ray photoelectron spectroscopy studies have been carried out to determine the possible chemical species involved in the gas-solid interaction and the enhancing mechanism of the Pd doped SnO{sub 2} sensor element, towards LPG sensitivity. {copyright} {ital 1997 American Institute of Physics.}

  13. X-ray photoelectron spectroscopy study on the chemistry involved in tin oxide film growth during chemical vapor deposition processes

    SciTech Connect (OSTI)

    Mannie, Gilbere J. A.; Gerritsen, Gijsbert; Abbenhuis, Hendrikus C. L.; Deelen, Joop van; Niemantsverdriet, J. W.; Thuene, Peter C. [Materials innovation institute (M2i), P. O. Box 5008, 2600 GA Delft (Netherlands) and Physical Chemistry of Surfaces, Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven (Netherlands); Hybrid Catalysis BV, P. O. Box 513, 5600 MB Eindhoven (Netherlands); TNO Science and Industry, P. O. Box 6235, 5600 HE Eindhoven (Netherlands); Physical Chemistry of Surfaces, Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven (Netherlands)

    2013-01-15

    The chemistry of atmospheric pressure chemical vapor deposition (APCVD) processes is believed to be complex, and detailed reports on reaction mechanisms are scarce. Here, the authors investigated the reaction mechanism of monobutyl tinchloride (MBTC) and water during SnO{sub 2} thin film growth using x-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). XPS results indicate an acid-base hydrolysis reaction mechanism, which is tested with multilayer experiments, demonstrating self-terminating growth. In-house developed TEM wafers are used to visualize nucleation during these multilayer experiments, and results are compared with TEM results of APCVD samples. Results show almost identical nucleation behavior implying that their growth mechanism is identical. Our experiments suggest that in APCVD, when using MBTC and water, SnO{sub 2} film growth occurs via a heterolytic bond splitting of the Sn-Cl bonds without the need to invoke gas-phase radical or coordination chemistry of the MBTC precursor.

  14. Auger electron spectroscopy and x-ray photoelectron spectroscopy of the biocorrosion of copper by Gum Arabic, BCS and Pseudomonas atlantica exopolymer

    SciTech Connect (OSTI)

    Jolley, J.G.; Geesey, G.G.; Hankins, M.R.; Wright, R.B.; Wichlacz, P.L.

    1987-01-01

    Thin films (3.4 nm) of copper on germanium substrates were exposed to 10% Gum Arabic aqueous solution, 1% BCS (aqueous and simulated sea water solutions) and 0.5% Pseudomonas atlantica exopolymer (aqueous and simulated sea water solutions). Pre- and post-exposure characterization were done by Auger electron spectroscopy and x-ray photoelectron spectroscopy. Ancillary graphite furnace atomic absorption spectroscopy was used to monitor the removal process of the copper thin film from the germanium substrate. Results indicate that the copper was oxidized by the Gum Arabic and BCS, and some was removed from the Cu/Ge interface by all three polymers and incorporated into the polymer matrix. Thus biocorrosion of copper was exhibited by the Gum Arabic, BCS and Pseudomonas atlantica exopolymer. 14 refs., 4 figs., 3 tabs.

  15. Using “Tender” x-ray ambient pressure x-Ray photoelectron spectroscopy as a direct probe of solid-liquid interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua; Rani, Sana; Chang, Rui; Karlsson, Patrik G.; Edwards, Mårten O. M.; Lundqvist, Måns; Moberg, Robert; Ross, Phil; et al

    2015-05-07

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquidmore »and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt²? and Pt?? interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.« less

  16. Using “Tender” x-ray ambient pressure x-Ray photoelectron spectroscopy as a direct probe of solid-liquid interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Axnanda, Stephanus [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Crumlin, Ethan J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mao, Baohua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chinese Academy of Sciences, Shanghai (Republic of China); Rani, Sana [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chang, Rui [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chinese Academy of Sciences, Shanghai (Republic of China); Karlsson, Patrik G. [VG Scienta,Uppsala (Sweden); Edwards, Mårten O. M. [VG Scienta,Uppsala (Sweden); Lundqvist, Måns [VG Scienta,Uppsala (Sweden); Moberg, Robert [VG Scienta,Uppsala (Sweden); Ross, Phil [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hussain, Zahid [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Liu, Zhi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chinese Academy of Sciences, Shanghai (Republic of China); Shanghai Tech Univ., Shanghai (China)

    2015-05-07

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquid and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt²? and Pt?? interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.

  17. Assigning Oxidation States to Organic Compounds via Predictions from X-ray Photoelectron Spectroscopy: A Discussion of Approaches and Recommended Improvements

    SciTech Connect (OSTI)

    Gupta, Vipul; Ganegoda, Hasitha; Engelhard, Mark H.; Terry, Jeff H.; Linford, Matthew R.

    2014-02-11

    The traditional assignment of oxidation numbers to organic molecules is problematic. Accordingly, in 1999, Calzaferri proposed a simple and elegant solution that is based on the similar electronegativities of carbon and hydrogen: hydrogen would be assigned an oxidation number of zero when bonded to carbon. Here we show that X-ray photoelectron spectroscopy (XPS), a core electron spectroscopy that is sensitive to oxidation states of elements, confirms his suggestion. In particular, in this work we: (i) list the typical rules for assigning oxidation numbers, (ii) discuss the traditional assignment of oxidation numbers to organic molecules, (iii) review Calzaferri’s solution, (iv) introduce X-ray photoelectron spectroscopy (XPS), (v) show the consistency of Calzaferri’s suggestion with XPS results, (vi) provide supporting examples from the literature, (vii) provide examples from our own research, and (viii) further confirm the Calzaferri suggestion/photoelectron spectroscopy results by discussing two organic well-known reactions. We end by reechoing Calzaferri’s suggestion that the traditional rules for assigning oxidation numbers to organic molecules be modified.

  18. Conduction band offset at GeO{sub 2}/Ge interface determined by internal photoemission and charge-corrected x-ray photoelectron spectroscopies

    SciTech Connect (OSTI)

    Zhang, W. F.; Nishimula, T.; Nagashio, K.; Kita, K.; Toriumi, A.

    2013-03-11

    We report a consistent conduction band offset (CBO) at a GeO{sub 2}/Ge interface determined by internal photoemission spectroscopy (IPE) and charge-corrected X-ray photoelectron spectroscopy (XPS). IPE results showed that the CBO value was larger than 1.5 eV irrespective of metal electrode and substrate type variance, while an accurate determination of valence band offset (VBO) by XPS requires a careful correction of differential charging phenomena. The VBO value was determined to be 3.60 {+-} 0.2 eV by XPS after charge correction, thus yielding a CBO (1.60 {+-} 0.2 eV) in excellent agreement with the IPE results. Such a large CBO (>1.5 eV) confirmed here is promising in terms of using GeO{sub 2} as a potential passivation layer for future Ge-based scaled CMOS devices.

  19. Band alignment study of lattice-matched In{sub 0.49}Ga{sub 0.51}P and Ge using x-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Owen, Man Hon Samuel, E-mail: m.owen.sg@ieee.org, E-mail: yeo@ieee.org; Zhou, Qian; Gong, Xiao; Yeo, Yee-Chia, E-mail: m.owen.sg@ieee.org, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 119260 (Singapore); Zhang, Zheng; Pan, Ji Sheng [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Loke, Wan Khai; Wicaksono, Satrio; Yoon, Soon Fatt [School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Nanyang Avenue, Singapore 639798 (Singapore); Tok, Eng Soon [Department of Physics, National University of Singapore, Singapore 117551 (Singapore)

    2014-09-08

    Lattice-matched In{sub 0.49}Ga{sub 0.51}P was grown on a p-type Ge(100) substrate with a 10° off-cut towards the (111) by low temperature molecular beam epitaxy, and the band-alignment of In{sub 0.49}Ga{sub 0.51}P on Ge substrate was obtained by high resolution x-ray photoelectron spectroscopy. The valence band offset for the InGaP/Ge(100) interface was found to be 0.64?±?0.12?eV, with a corresponding conduction band offset of 0.60?±?0.12?eV. The InGaP/Ge interface is found to be of the type I band alignment.

  20. Angle-resolved environmental X-ray photoelectron spectroscopy: A new laboratory setup for photoemission studies at pressures up to 0.4 Torr

    SciTech Connect (OSTI)

    Mangolini, F.; Wabiszewski, G. E.; Egberts, P.; Ahlund, J.; Backlund, K.; Karlsson, P. G.; Adiga, V. P.; Streller, F.; Wannberg, B.; Carpick, R. W.

    2012-09-15

    The paper presents the development and demonstrates the capabilities of a new laboratory-based environmental X-ray photoelectron spectroscopy system incorporating an electrostatic lens and able to acquire spectra up to 0.4 Torr. The incorporation of a two-dimensional detector provides imaging capabilities and allows the acquisition of angle-resolved data in parallel mode over an angular range of 14 Degree-Sign without tilting the sample. The sensitivity and energy resolution of the spectrometer have been investigated by analyzing a standard Ag foil both under high vacuum (10{sup -8} Torr) conditions and at elevated pressures of N{sub 2} (0.4 Torr). The possibility of acquiring angle-resolved data at different pressures has been demonstrated by analyzing a silicon/silicon dioxide (Si/SiO{sub 2}) sample. The collected angle-resolved spectra could be effectively used for the determination of the thickness of the native silicon oxide layer.

  1. Measurement of the valence band-offset in a PbSe/ZnO heterojunction by x-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Li Lin; Qiu Jijun; Weng Binbin; Yuan Zijian; Shi Zhisheng [School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States); Li Xiaomin; Gan Xiaoyan [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Sellers, Ian R. [Deparment of Physics, University of Oklahoma, Norman, Oklahoma 73019 (United States)

    2012-12-24

    A heterojunction of PbSe/ZnO has been grown by molecular beam epitaxy. X-ray photoelectron spectroscopy was used to directly measure the valence-band offset (VBO) of the heterojunction. The VBO, {Delta}E{sub V}, was determined as 2.51 {+-} 0.05 eV using the Pb 4p{sup 3/2} and Zn 2p{sup 3/2} core levels as a reference. The conduction-band offset, {Delta}E{sub C}, was, therefore, determined to be 0.59 {+-} 0.05 eV based on the above {Delta}E{sub V} value. This analysis indicates that the PbSe/ZnO heterojunction forms a type I (Straddling Gap) heterostructure.

  2. Electronic structure of lanthanum copper oxychalcogenides LaCuOCh (Ch=S, Se, Te) by X-ray photoelectron and absorption spectroscopy

    SciTech Connect (OSTI)

    Rudyk, Brent W.; Blanchard, Peter E.R.; Cavell, Ronald G. [Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 (Canada); Mar, Arthur, E-mail: arthur.mar@ualberta.ca [Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 (Canada)

    2011-07-15

    X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge spectroscopy (XANES) have been applied to examine the electronic structures of lanthanum copper oxychalcogenides LaCuOCh (Ch=S, Se, Te), whose structure has been conventionally viewed as consisting of nominally isolated [LaO] and [CuCh] layers. However, there is evidence for weak La-Ch interactions between these layers, as seen in small changes in the satellite intensity of the La 3d XPS spectra as the chalcogen is changed and as supported by band structure calculations. The O 1s and Cu 2p XPS spectra are insensitive to chalcogen substitution. Lineshapes in the Cu 2p XPS spectra and fine-structure in the Cu L- and M-edge XANES spectra support the presence of Cu{sup +} species. The Ch XPS spectra show negative BE shifts relative to the elemental chalcogen, indicative of anionic species; these shifts correlate well with greater difference in electronegativity between the Cu and Ch atoms, provided that an intermediate electronegativity is chosen for Se. - Graphical abstract: The presence of anionic chalcogen atoms in LaCuOCh is supported by the Ch binding energies, which undergo negative shifts proportional to the polarity of the Cu-Ch bonds. Highlights: > La 3d XPS confirms La-Ch interlayer interactions between [LaO] and [CuCh] layers. > O 1s and Cu 2p XPS are insensitive to chalcogen substitution. > Cu XANES spectra support the presence of Cu{sup +} species. > Negative shifts in Ch binding energies imply anionic chalcogen atoms.

  3. Analysis of passivated A-286 stainless steel surfaces for mass spectrometer inlet systems by Auger electron and X-ray photoelectron spectroscopy and scanning electron microscopy

    SciTech Connect (OSTI)

    Ajo, Henry; Blankenship, Donnie; Clark, Elliot

    2014-07-25

    In this study, various commercially available surface treatments are being explored for use on stainless steel components in mass spectrometer inlet systems. Type A-286 stainless steel coupons, approximately 12.5 mm in diameter and 3 mm thick, were passivated with one of five different surface treatments; an untreated coupon served as a control. The surface and near-surface microstructure and chemistry of the coupons were investigated using sputter depth profiling using Auger electron spectroscopy, x-ray photoelectron spectroscopy, and scanning electron microscopy (SEM). All the surface treatments studied appeared to change the surface morphology dramatically, as evidenced by lack of tool marks on the treated samples in SEM images. In terms of the passivation treatment, Vendors A-D appeared to have oxide layers that were very similar in thickness to each other (0.7–0.9 nm thick), as well as to the untreated samples (the untreated sample oxide layers appeared to be somewhat larger). Vendor E’s silicon coating appears to be on the order of 200 nm thick.

  4. Analysis of passivated A-286 stainless steel surfaces for mass spectrometer inlet systems by Auger electron and X-ray photoelectron spectroscopy and scanning electron microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ajo, Henry; Blankenship, Donnie; Clark, Elliot

    2014-07-25

    In this study, various commercially available surface treatments are being explored for use on stainless steel components in mass spectrometer inlet systems. Type A-286 stainless steel coupons, approximately 12.5 mm in diameter and 3 mm thick, were passivated with one of five different surface treatments; an untreated coupon served as a control. The surface and near-surface microstructure and chemistry of the coupons were investigated using sputter depth profiling using Auger electron spectroscopy, x-ray photoelectron spectroscopy, and scanning electron microscopy (SEM). All the surface treatments studied appeared to change the surface morphology dramatically, as evidenced by lack of tool marks onmore »the treated samples in SEM images. In terms of the passivation treatment, Vendors A-D appeared to have oxide layers that were very similar in thickness to each other (0.7–0.9 nm thick), as well as to the untreated samples (the untreated sample oxide layers appeared to be somewhat larger). Vendor E’s silicon coating appears to be on the order of 200 nm thick.« less

  5. In Situ Observation of Water Dissociation with Lattice Incorporation at FeO Particle Edges Using Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy

    SciTech Connect (OSTI)

    Deng, Xingyi; Lee, Junseok; Wang, Congjun; Matranga, Christopher; Aksoy, Funda; Liu, Zhi

    2011-03-15

    The dissociation of H2O and formation of adsorbed hydroxyl groups, on FeO particles grown on Au(111) were identified with in situ,: X:ray photoelectron spectroscopy (XPS) at water pressures ranging from 3 x 10-8 to 0.1 Torr. The facile dissociation of H2O takes place at FeO particle edges, and it was successfully observed in situ With atomically resolved scanning tunneling microscopy (STM). The in situ STM studies show that adsorbed hydroxyl groups were formed exclusively along the edges of the FeO particles with the 0 atom becoming directly incorporated into the oxide crystalline lattice The STM results are consistent with coordinatively unsaturated ferrous (CUF) sites along the FeO particle edge causing the observed reactivity with H2O. Our results also directly illustrate how structural defects and under.-coordinated sites participate in chemical reactions.

  6. Electrical conductivity anomaly and X-ray photoelectron spectroscopy investigation of YCr{sub 1?x}Mn{sub x}O{sub 3} negative temperature coefficient ceramics

    SciTech Connect (OSTI)

    Zhang, Bo; University of Chinese Academy of Sciences, Beijing 100049 ; Zhao, Qing; Chang, Aimin E-mail: wuy@alfred.edu; Li, Yiyu; Liu, Yin; Wu, Yiquan E-mail: wuy@alfred.edu

    2014-03-10

    Electrical conductivity anomaly of perovskite-type YCr{sub 1?x}Mn{sub x}O{sub 3} negative temperature coefficient (NTC) ceramics produced by spark plasma sintering (SPS) has been investigated by using defect chemistry theory combination with X-ray photoelectron spectroscopy (XPS) analysis. From the results of the ln?-1/T curves and the XPS analysis, it can be considered that YCr{sub 1?x}Mn{sub x}O{sub 3} ceramics exhibit the hopping conductivity. The major carriers in YCrO{sub 3} are holes, which are compensated by the oxygen vacancies produced due to the introduction of Mn ions. The Mn{sup 4+} ion contents increase monotonically in the range of 0.2???x???0.5. The resistivity increases at first and then decreases with increasing Mn contents, which has the same varying tendency with activation energy. The electrical conductivity anomaly appearing in these ceramics may be due to the variation of Cr{sup 4+} and Mn{sup 4+} ions concentration as Mn content changes.

  7. Crystal structure, electrical resistivity, and X-ray photoelectron spectroscopy of BaAg{sub 2}As{sub 2}

    SciTech Connect (OSTI)

    Stoyko, Stanislav S.; Blanchard, Peter E.R. [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada)] [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada); Mar, Arthur, E-mail: arthur.mar@ualberta.ca [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada)] [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada)

    2012-10-15

    The ternary arsenide BaAg{sub 2}As{sub 2} has been prepared by reaction of the elements at 850 Degree-Sign C. Single-crystal and powder X-ray diffraction analysis revealed that it adopts the ThCr{sub 2}Si{sub 2}-type structure (Pearson symbol tI10, space group I4/mmm, Z=2, a=4.6025(3) A, c=10.8672(6) A at 295 K) featuring [Ag{sub 2}As{sub 2}] layers interconnected by homoatomic As-As bonds along the c-direction. Band structure calculations indicate no gap at the Fermi level, and support the occurrence of strong As-As and weak Ag-Ag bonding. The asymmetric lineshape and the absence of a BE shift in the Ag 3d{sub 5/2} core-line peak relative to the element suggest delocalization of the Ag valence electrons. A significant negative BE shift (1.0 eV) in the As 3d{sub 5/2} core-line peak relative to the element confirms the presence of anionic As atoms. A reversible transition is observed at 175 K in the electrical resistivity, and is probably related to a structural phase transition. - Graphical abstract: BaAg{sub 2}As{sub 2} adopts a ThCr{sub 2}Si{sub 2}-type structure with As-As pairs and undergoes a transition at 175 K in its electrical resistivity. Highlights: Black-Right-Pointing-Pointer BaAg{sub 2}As{sub 2} fills the gap within the BaM{sub 2}As{sub 2} series containing 4d metals. Black-Right-Pointing-Pointer [Ag{sub 2}As{sub 2}] layers are linked by As-As pairs. Black-Right-Pointing-Pointer XPS studies support the assignment of monovalent Ag and anionic As atoms. Black-Right-Pointing-Pointer An anomaly is observed at 175 K in the electrical resistivity.

  8. Electronic structure of rare-earth chromium antimonides RECrSb{sub 3} (RE=La-Nd, Sm, Gd-Dy, Yb) by X-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Crerar, Shane J. [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada)] [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada); Mar, Arthur, E-mail: arthur.mar@ualberta.ca [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada)] [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada); Grosvenor, Andrew P. [Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5C9 (Canada)] [Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5C9 (Canada)

    2012-12-15

    The electronic structure of the ternary rare-earth chromium antimonides RECrSb{sub 3} (RE=La-Nd, Sm, Gd-Dy, Yb) has been examined by high-resolution X-ray photoelectron spectroscopy (XPS) for the first time. The RE 3d or 4d core-line spectra are substantially complicated by the presence of satellite peaks but their general resemblance to those of RE{sub 2}O{sub 3} tends to support the presence of trivalent RE atoms in RECrSb{sub 3}. However, the Yb 4d spectrum of YbCrSb{sub 3} also shows peaks that are characteristic of divalent ytterbium. The Cr 2p core-line spectra exhibit asymmetric lineshapes and little change in binding energy (BE) relative to Cr metal, providing strong evidence for electronic delocalization. The Sb 3d core-line spectra reveal slightly negative BE shifts relative to elemental antimony, supporting the presence of anionic Sb species in RECrSb{sub 3}. The experimental valence band spectrum of LaCrSb{sub 3} matches well with the calculated density of states, and it can be fitted to component peaks belonging to individual atoms to yield an average formulation that agrees well with expectations ('La{sup 3+}Cr{sup 3+}(Sb{sup 2-}){sub 3}'). On progressing from LaCrSb{sub 3} to NdCrSb{sub 3}, the 4f-band in the valence band spectra grows in intensity and shifts to higher BE. The valence band spectrum for YbCrSb{sub 3} also supports the presence of divalent ytterbium. - Graphical Abstract: In their valence band spectra, the 4f-band intensifies and shifts to higher BE on progressing from LaCrSb{sub 3} to NdCrSb{sub 3}. Highlights: Black-Right-Pointing-Pointer High-resolution core-line and valence band XPS spectra were measured for RECrSb{sub 3}. Black-Right-Pointing-Pointer Divalent Yb is present in YbCrSb{sub 3}, in contrast to trivalent RE in other members. Black-Right-Pointing-Pointer Asymmetric Cr 2p spectral lineshape confirms delocalization of Cr valence electrons. Black-Right-Pointing-Pointer Small negative Sb 3d BE shifts support assignment of anionic Sb atoms. Black-Right-Pointing-Pointer Fitted valence band spectra show shifts in the 4f band as RE is changed.

  9. Chemical order in Ge{sub x}As{sub y}Se{sub 1-x-y} glasses probed by high resolution X-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Xu, S. W. [Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); College of Applied Sciences, Beijing University of Technology, Beijing100124 (China); Wang, R. P.; Luther-Davies, B. [Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Kovalskiy, A. [Department of Physics and Astronomy, Austin Peay State University, Clarksville, Tennessee 37043 (United States); Miller, A. C.; Jain, H. [Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, Pennsylvania 18015-3195 (United States)

    2014-02-28

    We have measured high-resolution x-ray photoelectron spectra of Ge{sub x}As{sub y}Se{sub 1-x-y} glasses with a mean coordination number (MCN) from 2.2 to 2.78. The valence band spectra showed that a number of Se–Se–Se trimers can be found in Se-rich samples, whilst multiband features induced by phase separation can be observed in extremely Se-poor samples. When the Ge, As, and Se 3d spectra were decomposed into several doublets, which correspond, respectively, to different chemical environments, the perfect AsSe{sub 3/2} pyramidal and GeSe{sub 4/2} tetrahedral structures in Se-rich samples gradually evolved into defect structures, including As–As and Ge–Ge homopolar bonds, with increasing Ge and As concentrations. Two transition-like features were found at MCN?=?2.5 and 2.64–2.72 that correspond first to the disappearance of Se-chains in the glass network and, subsequently, destruction of the perfect GeSe{sub 4/2} tetrahedral structures, respectively.

  10. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 ?m FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also presentmore »data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  11. A combined capacitance-voltage and hard x-ray photoelectron spectroscopy characterisation of metal/Al{sub 2}O{sub 3}/In{sub 0.53}Ga{sub 0.47}As capacitor structures

    SciTech Connect (OSTI)

    Lin, Jun; Povey, Ian M.; Hurley, Paul K.; Walsh, Lee; Hughes, Greg; Woicik, Joseph C.; O'Regan, Terrance P.

    2014-07-14

    Capacitance-Voltage (C-V) characterization and hard x-ray photoelectron spectroscopy (HAXPES) measurements have been used to study metal/Al{sub 2}O{sub 3}/In{sub 0.53}Ga{sub 0.47}As capacitor structures with high (Ni) and low (Al) work function metals. The HAXPES measurements observe a band bending occurring prior to metal deposition, which is attributed to a combination of fixed oxide charges and interface states of donor-type. Following metal deposition, the Fermi level positions at the Al{sub 2}O{sub 3}/In{sub 0.53}Ga{sub 0.47}As interface move towards the expected direction as observed from HAXPES measurements. The In{sub 0.53}Ga{sub 0.47}As surface Fermi level positions determined from both the C-V analysis at zero gate bias and HAXPES measurements are in reasonable agreement. The results are consistent with the presence of electrically active interface states at the Al{sub 2}O{sub 3}/In{sub 0.53}Ga{sub 0.47}As interface and suggest an interface state density increasing towards the In{sub 0.53}Ga{sub 0.47}As valence band edge.

  12. In-operando hard X-ray photoelectron spectroscopy study on the impact of current compliance and switching cycles on oxygen and carbon defects in resistive switching Ti/HfO{sub 2}/TiN cells

    SciTech Connect (OSTI)

    Sowinska, Malgorzata Bertaud, Thomas; Walczyk, Damian; Calka, Pauline; Walczyk, Christian; Thiess, Sebastian; Alff, Lambert; Schroeder, Thomas

    2014-05-28

    In this study, direct experimental materials science evidence of the important theoretical prediction for resistive random access memory (RRAM) technologies that a critical amount of oxygen vacancies is needed to establish stable resistive switching in metal-oxide-metal samples is presented. In detail, a novel in-operando hard X-ray photoelectron spectroscopy technique is applied to non-destructively investigates the influence of the current compliance and direct current voltage sweep cycles on the Ti/HfO{sub 2} interface chemistry and physics of resistive switching Ti/HfO{sub 2}/TiN cells. These studies indeed confirm that current compliance is a critical parameter to control the amount of oxygen vacancies in the conducting filaments in the oxide layer during the RRAM cell operation to achieve stable switching. Furthermore, clear carbon segregation towards the Ti/HfO{sub 2} interface under electrical stress is visible. Since carbon impurities impact the oxygen vacancy defect population under resistive switching, this dynamic carbon segregation to the Ti/HfO{sub 2} interface is suspected to negatively influence RRAM device endurance. Therefore, these results indicate that the RRAM materials engineering needs to include all impurities in the dielectric layer in order to achieve reliable device performance.

  13. Staff Research Physicist (X-Ray Spectroscopy) | Princeton Plasma...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    position to work on X-ray spectroscopy, atomic physics, X-ray instrumentation, and high energy density physics. Near-term research goals include participating in the design,...

  14. Atomic force microscopy and x-ray photoelectron spectroscopy investigations of the morphology and chemistry of a PdCl{sub 2}/SnCl{sub 2} electroless plating catalysis system adsorbed onto shape memory alloy particles

    SciTech Connect (OSTI)

    Silvain, J.F.; Fouassier, O.; Lescaux, S. [Institut de Chimie de la Matiere Condensee de Bordeaux (ICMCB) - CNRS, Universite de Bordeaux 1, 87 Avenue du Dr A. Schweitzer, F-33608 PESSAC (France); Veeco, Z.I. de la Gaudree, 11 Rue Marie Poussepin, F-91412 Dourdain (France)

    2004-11-01

    A study of the different stages of the electroless deposition of copper on micronic NiTi shape memory alloy particles activated by one-step and two-step methods has been conducted from both a chemical and a morphological point of view. The combination of x-ray photoelectron spectroscopy (XPS) measurements and atomic force microscopy (AFM) imaging has allowed detection of the distribution of the formed compounds and depth quantification and estimation of the surface topographic parameters. For the two-step method, at the sensitization of the early stages, it is observed by AFM that Sn is absorbed in form of clusters that tend to completely cover the surface and form a continuous film. XPS analysis have shown that Sn and Pd are first absorbed in form of oxide (SnO{sub 2} and PdO) and hydroxide [Sn(OH){sub 4}]. After the entire sensitization step, the NiTi substrate is covered with Sn-based compounds. After the sensitization and the activation steps the powder roughness increases. Behavior of the Sn and Pd growth for the one-step method does not follow the behavior found for the two-step method. Indeed, XPS analysis shows a three-dimensional (3D) growth of Pd clusters on top of a mixture of metallic tin, oxide (SnO) and hydroxide [Sn(OH){sub 2}]. These Pd clusters are covered with a thin layer of Pd-oxide contamination induced by the electroless process. The mean roughness for the one-step and two-step processes are equivalent. After copper deposition, the decrease of mean roughness is attributed to a filling of surface valleys, observed after the Sn-Pd coating step.

  15. Hard x-ray photoelectron spectroscopy study of Ge{sub 2}Sb{sub 2}Te{sub 5}; as-deposited amorphous, crystalline, and laser-reamorphized

    SciTech Connect (OSTI)

    Richter, Jan H. Tominaga, Junji; Fons, Paul; Kolobov, Alex V.; Ueda, Shigenori; Yoshikawa, Hideki; Yamashita, Yoshiyuki; Ishimaru, Satoshi; Kobayashi, Keisuke

    2014-02-10

    We have investigated the electronic structure of as-deposited, crystalline, and laser-reamorphized Ge{sub 2}Sb{sub 2}Te{sub 5} using high resolution, hard x-ray photoemission spectroscopy. A shift in the Fermi level as well as a broadening of the spectral features in the valence band and the Ge 3d level between the amorphous and crystalline state is observed. Upon amorphization, Ge 3d and Sb 4d spectra show a surprisingly small breaking of resonant bonds and changes in the bonding character as evidenced by the very similar density of states in all cases.

  16. Soft-x-ray spectroscopy study of nanoscale materials

    SciTech Connect (OSTI)

    Guo, J.-H.

    2005-07-30

    The ability to control the particle size and morphology of nanoparticles is of crucial importance nowadays both from a fundamental and industrial point of view considering the tremendous amount of high-tech applications. Controlling the crystallographic structure and the arrangement of atoms along the surface of nanostructured material will determine most of its physical properties. In general, electronic structure ultimately determines the properties of matter. Soft X-ray spectroscopy has some basic features that are important to consider. X-ray is originating from an electronic transition between a localized core state and a valence state. As a core state is involved, elemental selectivity is obtained because the core levels of different elements are well separated in energy, meaning that the involvement of the inner level makes this probe localized to one specific atomic site around which the electronic structure is reflected as a partial density-of-states contribution. The participation of valence electrons gives the method chemical state sensitivity and further, the dipole nature of the transitions gives particular symmetry information. The new generation synchrotron radiation sources producing intensive tunable monochromatized soft X-ray beams have opened up new possibilities for soft X-ray spectroscopy. The introduction of selectively excited soft X-ray emission has opened a new field of study by disclosing many new possibilities of soft X-ray resonant inelastic scattering. In this paper, some recent findings regarding soft X-ray absorption and emission studies of various nanostructured systems are presented.

  17. New focusing multilayer structures for X-ray plasma spectroscopy

    SciTech Connect (OSTI)

    Bibishkin, M S; Luchin, V I; Salashchenko, N N; Chernov, V V; Chkhalo, N I; Kazakov, E D; Shevelko, A P

    2008-02-28

    New focusing short-period multilayer structures are developed which opens up wide possibilities for X-ray and VUV spectroscopy. Multilayer structures are deposited on a flat surface of a mica crystal which is then bent to a small-radius cylinder. The use of this structure in a von Hamos spectrometer for X-ray laser plasma diagnostics is demonstrated. (interaction of laser radiation with matter. laser plasma)

  18. SMB, X-ray Absorption Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis of Protein1-0845*RV 14800Small Angle X-Ray Scattering Home

  19. SMB, X-ray Emission Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis of Protein1-0845*RV 14800Small Angle X-Ray Scattering

  20. Femtosecond x-ray absorption spectroscopy with hard x-ray free electron laser

    SciTech Connect (OSTI)

    Katayama, Tetsuo; Togashi, Tadashi; Tono, Kensuke; Kameshima, Takashi; Inubushi, Yuichi; Sato, Takahiro; Hatsui, Takaki; Yabashi, Makina; Obara, Yuki; Misawa, Kazuhiko; Bhattacharya, Atanu; Kurahashi, Naoya; Ogi, Yoshihiro; Suzuki, Toshinori; Molecular Reaction Dynamics Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako 351-0198

    2013-09-23

    We have developed a method of dispersive x-ray absorption spectroscopy with a hard x-ray free electron laser (XFEL), generated by a self-amplified spontaneous emission (SASE) mechanism. A transmission grating was utilized for splitting SASE-XFEL light, which has a relatively large bandwidth (?E/E ? 5 × 10{sup ?3}), into several branches. Two primary split beams were introduced into a dispersive spectrometer for measuring signal and reference spectra simultaneously. After normalization, we obtained a Zn K-edge absorption spectrum with a photon-energy range of 210 eV, which is in excellent agreement with that measured by a conventional wavelength-scanning method. From the analysis of the difference spectra, the noise ratio was evaluated to be ?3 × 10{sup ?3}, which is sufficiently small to trace minute changes in transient spectra induced by an ultrafast optical laser. This scheme enables us to perform single-shot, high-accuracy x-ray absorption spectroscopy with femtosecond time resolution.

  1. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    SciTech Connect (OSTI)

    Seidler, G. T. Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R.

    2014-11-15

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ?5 keV to ?10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10{sup 6}–10{sup 7} photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  2. High-resolution X-ray spectroscopy of Theta Car

    E-Print Network [OSTI]

    Yael Naze; Gregor Rauw

    2008-08-25

    Context : The peculiar hot star Theta Car in the open cluster IC2602 is a blue straggler as well as a single-line binary of short period (2.2d). Aims : Its high-energy properties are not well known, though X-rays can provide useful constraints on the energetic processes at work in binaries as well as in peculiar, single objects. Methods : We present the analysis of a 50ks exposure taken with the XMM-Newton observatory. It provides medium as well as high-resolution spectroscopy. Results : Our high-resolution spectroscopy analysis reveals a very soft spectrum with multiple temperature components (1--6MK) and an X-ray flux slightly below the `canonical' value (log[L_X(0.1-10.)/L_{BOL}] ~ -7). The X-ray lines appear surprisingly narrow and unshifted, reminiscent of those of beta Cru and tau Sco. Their relative intensities confirm the anomalous abundances detected in the optical domain (C strongly depleted, N strongly enriched, O slightly depleted). In addition, the X-ray data favor a slight depletion in neon and iron, but they are less conclusive for the magnesium abundance (solar-like?). While no significant changes occur during the XMM-Newton observation, variability in the X-ray domain is detected on the long-term range. The formation radius of the X-ray emission is loosely constrained to <5 R_sol, which allows for a range of models (wind-shock, corona, magnetic confinement,...) though not all of them can be reconciled with the softness of the spectrum and the narrowness of the lines.

  3. X-Ray Spectroscopy of the Mn(4) Ca Cluster in the Water-Oxidation...

    Office of Scientific and Technical Information (OSTI)

    X-Ray Spectroscopy of the Mn(4) Ca Cluster in the Water-Oxidation Complex of Photosystem II Citation Details In-Document Search Title: X-Ray Spectroscopy of the Mn(4) Ca Cluster in...

  4. In Operando Soft X-ray Spectroscopy of 3D Graphene Supercapacitor...

    Office of Scientific and Technical Information (OSTI)

    In Operando Soft X-ray Spectroscopy of 3D Graphene Supercapacitor Electrodes Citation Details In-Document Search Title: In Operando Soft X-ray Spectroscopy of 3D Graphene...

  5. Electrochemistry, Photoelectrochemistry And Photoelectron Spectroscopy Of Nanostructured Metal Oxides

    E-Print Network [OSTI]

    Södergren, S

    1997-01-01

    Electrochemistry, Photoelectrochemistry And Photoelectron Spectroscopy Of Nanostructured Metal Oxides

  6. X-ray spectroscopy of neutron star low-mass X-ray binaries

    E-Print Network [OSTI]

    Krauss, Miriam Ilana

    2007-01-01

    In this thesis, I present work spanning a variety of topics relating to neutron star lowmass X-ray binaries (LMXBs) and utilize spectral information from X-ray observations to further our understanding of these sources. ...

  7. X-ray Spectroscopy of Massive Star Winds: Shocks, Mass-Loss Rates, and Clumping

    E-Print Network [OSTI]

    Cohen, David

    X-ray Spectroscopy of Massive Star Winds: Shocks, Mass-Loss Rates, and Clumping David Cohen X-rays A. wind-shock physics B. wind absorption: wind mass-loss rate C. with H-alpha: wind clumping Chandra resolved X-ray line profile spectroscopy of O star winds #12;Prior to 2000: only low-resolution X

  8. X-ray Spectroscopy of O Supergiant Winds: Shock Physics, Clumping, and Mass-Loss Rates

    E-Print Network [OSTI]

    Cohen, David

    X-ray Spectroscopy of O Supergiant Winds: Shock Physics, Clumping, and Mass-Loss Rates David Cohen-ray emission: wind shocks 1. X-ray constraints on the shocked wind plasma 2. X-ray absorption as a mass. Adiabatic shocks Open questions: very dense winds (WR stars); low density winds (B stars); magnetic OB stars

  9. Self-detection of x-ray Fresnel transmittivity using photoelectron-induced gas ionization

    E-Print Network [OSTI]

    Stoupin, Stanislav

    2015-01-01

    Electric response of an x-ray mirror enclosed in a gas flow ionization chamber was studied under the conditions of total external reflection for hard x-rays. It is shown that the electric response of the system as a function of the incidence angle is defined by x-ray Fresnel transmittivity and photon-electron attenuation properties of the mirror material. A simple interpretation of quantum yield of the system is presented. The approach provides non-invasive in-situ diagnostics of hard x-ray optics, easy access to complementary x-ray transmittivity data in x-ray reflectivity experiments and can also pave the way to novel schemes for angle and energy resolving x-ray detectors.

  10. Near-Edge X-Ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    SciTech Connect (OSTI)

    Willey, T.M.; Fabbri, J.D.; Lee, J.R.I.; Schreiner, P.R.; Fokin, A.A.; Tkachenko, B.A.; Fokina, N.A.; Dahl, J.E.P.; Carlson, R.M.K.; Vance, A.L.; Yang, W.; Terminello, L.J.; Buuren, T.van; Melosh, N.A.

    2009-05-26

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 and 0.16 {+-} 0.04 eV, respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different degrees of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond nanoparticles.

  11. Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    SciTech Connect (OSTI)

    Willey, T M; Fabbri, J; Lee, J I; Schreiner, P; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J; Carlson, B; Vance, A L; Yang, W; Terminello, L J; van Buuren, T; Melosh, N

    2007-11-27

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface-modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 eV and 0.16 {+-} 0.04 eV respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different amounts of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond clusters.

  12. Metal binding in proteins: machine learning complements X-ray absorption spectroscopy

    E-Print Network [OSTI]

    Passerini, Andrea

    Metal binding in proteins: machine learning complements X-ray absorption spectroscopy Marco Lippi1 for the identification of metalloproteins and metal binding sites on a genome scale. An extensive evaluation conducted in combination with X- ray absorption spectroscopy shows the great potentiality of the approach. 1 Metal binding

  13. Ambient Pressure Photoelectron Spectroscopy Using Soft X-ray...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (AP-XPS) endstation1 pioneered at ALS based on differentially pumped electron energy analyzer has been recognized by scientific communities as an important in-situ tool...

  14. HIGH-RESOLUTION X-RAY SPECTROSCOPY OF CRUCIS: A

    E-Print Network [OSTI]

    Cohen, David

    a corona; clear presence of UV driven wind at moderate temperatures; lack of wind X-ray absorption edges the years, consen- sus has thus instead favored an Intrinsic Wind Shock (IWS) model, in which the X-ray emission comes from shocks distributed throughout the wind, most likely arising from the strong, intrinsic

  15. Ultrafast conversions between hydrogen bonded structures in liquid water observed by femtosecond x-ray spectroscopy

    E-Print Network [OSTI]

    Ultrafast conversions between hydrogen bonded structures in liquid water observed by femtosecond x the first femtosecond soft x-ray spectroscopy in liquids, enabling the observation of changes in hydrogen, characteristic x-ray absorption changes monitor the conversion of strongly hydrogen-bonded water structures

  16. Johann Spectrometer for High Resolution X-ray Spectroscopy

    SciTech Connect (OSTI)

    Machek, Pavel; Froeba, Michael; Welter, Edmund; Caliebe, Wolfgang; Brueggmann, Ulf; Draeger, Guenter

    2007-01-19

    A newly designed vacuum Johann spectrometer with a large focusing analyzer crystal for inelastic x-ray scattering and high resolution fluorescence spectroscopy has been installed at the DORIS III storage ring. Spherically bent crystals with a maximum diameter of 125 mm, and cylindrically bent crystals are employed as dispersive optical elements. Standard radius of curvature of the crystals is 1000 mm, however, the design of the mechanical components also facilitates measurements with smaller and larger bending radii. Up to four crystals are mounted on a revolving crystal changer which enables crystal changes without breaking the vacuum. The spectrometer works at fixed Bragg angle. It is preferably designed for the measurements in non-scanning mode with a broad beam spot, and offers a large flexibility to set the sample to the optimum position inside the Rowland circle. A deep depletion CCD camera is employed as a position sensitive detector to collect the energy-analyzed photons on the circumference of the Rowland circle. The vacuum in the spectrometer tank is typically 10-6 mbar. The sample chamber is separated from the tank either by 25 {mu}m thick Kapton windows, which allows samples to be measured under ambient conditions, or by two gate valves. The spectrometer is currently installed at wiggler beamline W1 whose working range is 4-10.5 keV with typical flux at the sample of 5x1010photons/s/mm2. The capabilities of the spectrometer are illustrated by resonant inelastic experiments on 3d transition metals and rare earth compounds, and by chemical shift measurements on chromium compounds.

  17. X-ray imaging crystal spectroscopy for use in plasma transport research

    E-Print Network [OSTI]

    Bitter, M.

    This research describes advancements in the spectral analysis and error propagation techniques associated with x-ray imaging crystal spectroscopy (XICS) that have enabled this diagnostic to be used to accurately constrain ...

  18. A new spectrometer design for the x-ray spectroscopy of laser...

    Office of Scientific and Technical Information (OSTI)

    A new spectrometer design for the x-ray spectroscopy of laser-produced plasmas with high (sub-ns) time resolution Citation Details In-Document Search Title: A new spectrometer...

  19. Structural investigation on Ge{sub x}Sb{sub 10}Se{sub 90?x} glasses using x-ray photoelectron spectra

    SciTech Connect (OSTI)

    Wei, Wen-Hou [Centre for Ultrahigh Bandwidth Devices for Optical Systems (CUDOS), Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Department of Applied Physics, Chongqing University, Chongqing 401331 (China); Xiang, Shen [College of Information Science and Engineering, Ningbo University, Ningbo 315211 (China); Xu, Si-Wei; Wang, Rong-Ping, E-mail: rongping.wang@anu.edu.au [Centre for Ultrahigh Bandwidth Devices for Optical Systems (CUDOS), Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Fang, Liang [Department of Applied Physics, Chongqing University, Chongqing 401331 (China)

    2014-05-14

    The structure of Ge{sub x}Sb{sub 10}Se{sub 90?x} glasses (x?=?7.5, 10, 15, 20, 25, 27.5, 30, and 32.5 at. %) has been investigated by x-ray photoelectron spectroscopy (XPS). Different structural units have been extracted and characterized by decomposing XPS core level spectra, the evolution of the relative concentration of each structural unit indicates that, the relative contributions of Se-trimers and Se-Se-Ge(Sb) structure decrease with increasing Ge content until they become zero at chemically stoichiometric glasses of Ge{sub 25}Sb{sub 10}Se{sub 65}, and then the homopolar bonds like Ge-Ge and Sb-Sb begin to appear in the spectra. Increase of homopolar bonds will extend band-tails into the gap and narrow the optical band gap. Thus, the glass with a stoichiometric composition generally has fewer defective bonds and larger optical bandgap.

  20. Stimulated X-Ray Emission for Spectroscopy | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveApril 2,BL4-2StefanLightsource Stimulated X-Ray

  1. XRMS: X-Ray Spectroscopy of Magnetic Solids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidarXRMS: X-Ray

  2. X-ray spectroscopy of the supernova remnant RCW 86

    E-Print Network [OSTI]

    Jacco Vink; Jelle Kaastra; Johan Bleeker

    1997-09-12

    We present an analysis of ASCA X-ray data of SNR RCW 86. There appears to be a remarkable spectral variation over the remnant, indicating temperatures varying from 0.8 keV to > 3 keV. We have fitted these spectra with non-equilibrium ionization models and found that all regions are best fitted by emission from a hot plasma underabundant in metals (<0.25 solar), but in some cases fluorescent emission indicates overabundances of Ar and Fe. The ionization stage of the metals appears to be far from equilibrium, at some spots as low as log(n_e t) 15.3 (SI units). We discuss the physical reality of the abundances and suggest an electron distribution with a supra-thermal tail to alleviate the strong depletion factors observed. We argue that RCW 86 is the result of a cavity explosion.

  3. X-ray Spectroscopy for Quality Control of Chemotherapy Drugs

    SciTech Connect (OSTI)

    Greaves, E. D.; Barros, H.; Bermudez, J.; Sajo-Bohus, L.; Angeli-Greaves, M.

    2007-10-26

    We develop a method, employing Compton peak standardization and the use of matrix-matched spiked samples with Total Reflection X-ray Fluorescence (TXRF), for the determination of platinum plasma concentrations of patients undergoing chemotherapy with Pt-bearing drugs. Direct blood plasma analysis attains Pt detection limits of 70 ng/ml. Measurement results of prescribed drug doses are compared to achieved blood Pt concentrations indicating a lack of expected correlations. Direct analysis of Pt-containing infused drugs from a variety of suppliers indicates cases of abnormal concentrations which raises quality control issues. We demonstrate the potential usefulness of the method for pharmacokinetic studies or for routine optimization and quality control of Pt chemotherapy treatments.

  4. Constraining Black Hole Spin Via X-ray Spectroscopy

    E-Print Network [OSTI]

    Laura W. Brenneman; Christopher S. Reynolds

    2006-08-23

    We present an analysis of the observed broad iron line feature and putative warm absorber in the long 2001 XMM-Newton observation of the Seyfert-1.2 galaxy MCG-6-30-15. The new "kerrdisk" model we have designed for simulating line emission from accretion disk systems allows black hole spin to be a free parameter in the fit, enabling the user to formally constrain the angular momentum of a black hole, among other physical parameters of the system. In an important extension of previous work, we derive constraints on the black hole spin in MCG-6-30-15 using a self-consistent model for X-ray reflection from the surface of the accretion disk while simultaneously accounting for absorption by dusty photoionized material along the line of sight (the warm absorber). Even including these complications, the XMM-Newton/EPIC-pn data require extreme relativistic broadening of the X-ray reflection spectrum; assuming no emission from within the radius of marginal stability, we derive a formal constraint on the dimensionless black hole spin parameter of a > 0.987 at 90% confidence. The principal unmodeled effect that can significantly reduce the inferred black hole spin is powerful emission from within the radius of marginal stability. Although significant theoretical developments are required to fully understand this region, we argue that the need for a rapidly spinning black hole is robust to physically plausible levels of emission from within the radius of marginal stability. In particular, we show that a non-rotating black hole is strongly ruled out.

  5. The X-ray correlation spectroscopy instrument at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Alonso-Mori, Roberto; Caronna, Chiara; Chollet, Matthieu; Curtis, Robin; Damiani, Daniel S.; Defever, Jim; Feng, Yiping; Flath, Daniel L.; Glownia, James M.; Lee, Sooheyong; et al

    2015-03-03

    The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4–25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milliseconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. In addition, a description of the instrument capabilities and recent achievements is presented.

  6. High-order multilayer coated blazed gratings for high resolution soft x-ray spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Voronov, Dmitriy L.; Goray, Leonid I.; Warwick, Tony; Yashchuk, Valeriy V.; Padmore, Howard A.

    2015-02-17

    A grand challenge in soft x-ray spectroscopy is to drive the resolving power of monochromators and spectrometers from the 104 achieved routinely today to well above 105. This need is driven mainly by the requirements of a new technique that is set to have enormous impact in condensed matter physics, Resonant Inelastic X-ray Scattering (RIXS). Unlike x-ray absorption spectroscopy, RIXS is not limited by an energy resolution dictated by the core-hole lifetime in the excitation process. Using much higher resolving power than used for normal x-ray absorption spectroscopy enables access to the energy scale of soft excitations in matter. Thesemore »excitations such as magnons and phonons drive the collective phenomena seen in correlated electronic materials such as high temperature superconductors. RIXS opens a new path to study these excitations at a level of detail not formerly possible. However, as the process involves resonant excitation at an energy of around 1 keV, and the energy scale of the excitations one would like to see are at the meV level, to fully utilize the technique requires the development of monochromators and spectrometers with one to two orders of magnitude higher energy resolution than has been conventionally possible. Here we investigate the detailed diffraction characteristics of multilayer blazed gratings. These elements offer potentially revolutionary performance as the dispersive element in ultra-high resolution x-ray spectroscopy. In doing so, we have established a roadmap for the complete optimization of the grating design. Traditionally 1st order gratings are used in the soft x-ray region, but we show that as in the optical domain, one can work in very high spectral orders and thus dramatically improve resolution without significant loss in efficiency.« less

  7. High-Resolution Structure of the Photosynthetic Mn4Ca Catalyst from X-ray Spectroscopy

    SciTech Connect (OSTI)

    Yachandra, Vittal; Yano, Junko; Kern, Jan; Pushkar, Yulia; Sauer, Kenneth; Glatzel, Pieter; Bergmann, Uwe; Messinger, Johannes; Zouni, Athina; Yachandra, Vittal K.

    2007-08-01

    The application of high-resolution X-ray spectroscopy methods to study the photosynthetic water oxidizing complex, which contains a unique hetero-nuclear catalytic Mn4Ca cluster, are described. Issues of X-ray damage especially at the metal sites in the Mn4Ca cluster are discussed. The structure of the Mn4Ca catalyst at high-resolution which has so far eluded attempts of determination by X-ray diffraction, EXAFS and other spectroscopic techniques has been addressed using polarized EXAFS techniques applied to oriented PS II membrane preparations and PS II single crystals. A review of how the resolution of traditional EXAFS techniques can be improved, using methods such as range-extended EXAFS is presented, and the changes that occur in the structure of the cluster as it advances through the catalytic cycle are described. X-ray absorption and emission techniques (XANES and K? emission) have been used earlier to determine the oxidation states of the Mn4Ca cluster, and in this report we review the use of X-ray resonant Raman spectroscopy to understand the electronic structure of the Mn4Ca cluster as it cycles through the intermediate S-states.

  8. Passive Spectroscopy Bolometers, Grating- And X-Ray Imaging Crystal Spectrometers

    SciTech Connect (OSTI)

    Bitter, M; Hill, K W; Scott, S; Paul, S; Ince-Cushmann, A; Reinke, M; Rice, J; Beiersdorfer, P; Gu, M F; Lee, S G; Broennimann, C; Eikenberry, E F

    2007-11-07

    This tutorial gives a brief introduction into passive spectroscopy and describes the working principles of bolometers, a high-resolution grating spectrometer, and a novel X-ray imaging crystal spectrometer, which is of particular interest for profile measurements of the ion temperature and plasma rotation velocity on ITER and future burning plasma experiments.

  9. Size-dependent lattice structure of palladium studied by x-ray absorption spectroscopy Chih-Ming Lin,1,

    E-Print Network [OSTI]

    Chen, Yang-Yuan

    Size-dependent lattice structure of palladium studied by x-ray absorption spectroscopy Chih palladium particles, along with bulk material as reference. With decreasing particle size, the extended x and related properties in substrate-free palladium nanoparticles by x-ray absorption spectroscopy XAS mea

  10. HIV-1 Tat membrane interactions probed using X-ray and neutron scattering, CD spectroscopy and MD simulations

    E-Print Network [OSTI]

    Nagle, John F.

    HIV-1 Tat membrane interactions probed using X-ray and neutron scattering, CD spectroscopy and MD translocation, were provided by wide-angle X-ray scattering (WAXS) and neutron scattering. CD spectroscopy for Neutron Research, 100 Bureau Drive, Stop 6102, Gaithersburg, MD 20899, United States d CHESS, Cornell

  11. High-resolution kaonic-atom x-ray spectroscopy with transition-edge-sensor microcalorimeters

    E-Print Network [OSTI]

    S. Okada; D. A. Bennett; W. B. Doriese; J. W. Fowler; K. D. Irwin; S. Ishimoto; M. Sato; D. R. Schmidt; D. S. Swetz; H. Tatsuno; J. N. Ullom; S. Yamada

    2014-02-19

    We are preparing for an ultra-high resolution x-ray spectroscopy of kaonic atoms using an x-ray spectrometer based on an array of superconducting transition-edge-sensor microcalorimeters developed by NIST. The instrument has excellent energy resolutions of 2 - 3 eV (FWHM) at 6 keV and a large collecting area of about 20 mm^2. This will open new door to investigate kaon-nucleus strong interaction and provide new accurate charged-kaon mass value.

  12. High-resolution kaonic-atom x-ray spectroscopy with transition-edge-sensor microcalorimeters

    E-Print Network [OSTI]

    Okada, S; Doriese, W B; Fowler, J W; Irwin, K D; Ishimoto, S; Sato, M; Schmidt, D R; Swetz, D S; Tatsuno, H; Ullom, J N; Yamada, S

    2014-01-01

    We are preparing for an ultra-high resolution x-ray spectroscopy of kaonic atoms using an x-ray spectrometer based on an array of superconducting transition-edge-sensor microcalorimeters developed by NIST. The instrument has excellent energy resolutions of 2 - 3 eV (FWHM) at 6 keV and a large collecting area of about 20 mm^2. This will open new door to investigate kaon-nucleus strong interaction and provide new accurate charged-kaon mass value.

  13. Two-dimensional stimulated resonance Raman spectroscopy of molecules with broadband x-ray pulses

    SciTech Connect (OSTI)

    Biggs, Jason D.; Zhang Yu; Healion, Daniel; Mukamel, Shaul [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States)

    2012-05-07

    Expressions for the two-dimensional stimulated x-ray Raman spectroscopy (2D-SXRS) signal obtained using attosecond x-ray pulses are derived. The 1D- and 2D-SXRS signals are calculated for trans-N-methyl acetamide (NMA) with broad bandwidth (181 as, 14.2 eV FWHM) pulses tuned to the oxygen and nitrogen K-edges. Crosspeaks in 2D signals reveal electronic Franck-Condon overlaps between valence orbitals and relaxed orbitals in the presence of the core-hole.

  14. In Situ Diffuse Reflectance IR Spectroscopy and X-ray Absorption Spectroscopy for Fast Catalytic Processes

    SciTech Connect (OSTI)

    N Marinkovic; Q Wang; A Frenkel

    2011-12-31

    A new instrument for synchronous in situ investigations of catalytic materials by IR and X-ray absorption spectroscopies was designed and built at the X18A beamline of the National Synchrotron Light Source of Brookhaven National Laboratory. It provides analytical tools for solving structural, electronic and kinetic problems in catalysis science by two complementary methods. Among the features attractive for catalysis research are the broad range of catalytically active elements that can be investigated (starting with Ni and beyond), the wide range of reaction conditions (temperatures up to 873 K, various reactive gases) and time scales (starting from tens of seconds). The results of several representative experiments that illustrate the attractive capabilities of the new set-up are discussed.

  15. X ray photoelectron analysis of oxide-semiconductor interface after breakdown in Al{sub 2}O{sub 3}/InGaAs stacks

    SciTech Connect (OSTI)

    Shekhter, P.; Palumbo, F.; Cohen Weinfeld, K.; Eizenberg, M.

    2014-09-08

    In this work, the post-breakdown characteristics of metal gate/Al{sub 2}O{sub 3}/InGaAs structures were studied using surface analysis by x ray photoelectron spectroscopy. The results show that for dielectric breakdown under positive bias, localized filaments consisting of oxidized substrate atoms (In, Ga and As) were formed, while following breakdown under negative bias, a decrease of oxidized substrate atoms was observed. Such differences in the microstructure at the oxide-semiconductor interface after breakdown for positive and negative voltages are explained by atomic diffusion of the contact atoms into the gate dielectric in the region of the breakdown spot by the current induced electro-migration effect. These findings show a major difference between Al{sub 2}O{sub 3}/InGaAs and SiO{sub 2}/Si interfaces, opening the way to a better understanding of the breakdown characteristics of III-V complementary-metal-oxide-semiconductor technology.

  16. Sequential single shot X-ray photon correlation spectroscopy at the SACLA free electron laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lehmkühler, Felix; Kwa?niewski, Pawe?; Roseker, Wojciech; Fischer, Birgit; Schroer, Martin A.; Tono, Kensuke; Katayama, Tetsuo; Sprung, Michael; Sikorski, Marcin; Song, Sanghoon; et al

    2015-11-27

    In this study, hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shotmore »based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources.« less

  17. Photoelectron spectroscopy of wet and gaseous samples through graphene membranes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kraus, Jürgen; Reichelt, Robert; Günther, Sebastian; Gregoratti, Luca; Amati, Matteo; Kiskinova, Maya; Yulaev, Alexander; Vlassiouk, Ivan V.; Kolmakov, Andrei

    2014-09-21

    Photoelectron spectroscopy (PES) and microscopy are highly important for exploring morphologically and chemically complex liquid–gas, solid–liquid and solid–gas interfaces under realistic conditions, but the very small electron mean free path inside dense media imposes serious experimental challenges. Currently, near ambient pressure PES is conducted using dexterously designed electron energy analyzers coupled with differentially pumped electron lenses which make it possible to conduct PES measurements at a few hPa. This report proposes an alternative ambient pressure approach that can be applied to a broad class of samples and be implemented in conventional PES instruments. It uses ultrathin electron transparent but molecularmore »impermeable membranes to isolate the high pressure sample environment from the high vacuum PES detection system. We show that the separating graphene membrane windows are both mechanically robust and sufficiently transparent for electrons in a wide energy range to allow soft X-ray PES of liquid and gaseous water. The performed proof-of-principle experiments confirm the possibility to probe vacuum-incompatible toxic or reactive samples placed inside such hermetic, gas flow or fluidic environmental cells.« less

  18. Multilayer graphene stacks grown by different methods-thickness measurements by X-ray diffraction, Raman spectroscopy and optical transmission

    SciTech Connect (OSTI)

    Tokarczyk, M., E-mail: mateusz.tokarczyk@fuw.edu.pl; Kowalski, G.; K?pa, H.; Grodecki, K.; Drabi?ska, A. [University of Warsaw, Institute of Experimental Physics, Faculty of Physics (Poland); Strupi?ski, W. [Institute of Electronic Materials Technology (Poland)

    2013-12-15

    X-ray diffraction, Raman spectroscopy and Optical absorption estimates of the thickness of graphene multi layer stacks (number of graphene layers) are presented for three different growth techniques. The objective of this work was focused on comparison and reconciliation of the two already widely used methods for thickness estimates (Raman and Absorption) with the calibration of the X-ray method as far as Scherer constant K is concerned and X-ray based Wagner-Aqua extrapolation method.

  19. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    SciTech Connect (OSTI)

    Bradforth, S.E.

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound [yields] bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN[sup [minus

  20. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    SciTech Connect (OSTI)

    Wang, Xin [Univ. of California, Davis, CA (United States). Dept. of Applied Science

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.

  1. On Relativistic Disk Spectroscopy in Compact Objects with X-ray CCD Cameras

    E-Print Network [OSTI]

    J. M. Miller; A. D'Ai; M. W. Bautz; S. Bhattacharyya; D. N. Burrows; E. M. Cackett; A. C. Fabian; M. J. Freyberg; F. Haberl; J. Kennea; M. A Nowak; R. C. Reis; T. E. Strohmayer; M. Tsujimoto

    2010-09-22

    X-ray charge-coupled devices (CCDs) are the workhorse detectors of modern X-ray astronomy. Typically covering the 0.3-10.0 keV energy range, CCDs are able to detect photoelectric absorption edges and K shell lines from most abundant metals. New CCDs also offer resolutions of 30-50 (E/dE), which is sufficient to detect lines in hot plasmas and to resolve many lines shaped by dynamical processes in accretion flows. The spectral capabilities of X-ray CCDs have been particularly important in detecting relativistic emission lines from the inner disks around accreting neutron stars and black holes. One drawback of X-ray CCDs is that spectra can be distorted by photon "pile-up", wherein two or more photons may be registered as a single event during one frame time. We have conducted a large number of simulations using a statistical model of photon pile-up to assess its impacts on relativistic disk line and continuum spectra from stellar-mass black holes and neutron stars. The simulations cover the range of current X-ray CCD spectrometers and operational modes typically used to observe neutron stars and black holes in X-ray binaries. Our results suggest that severe photon pile-up acts to falsely narrow emission lines, leading to falsely large disk radii and falsely low spin values. In contrast, our simulations suggest that disk continua affected by severe pile-up are measured to have falsely low flux values, leading to falsely small radii and falsely high spin values. The results of these simulations and existing data appear to suggest that relativistic disk spectroscopy is generally robust against pile-up when this effect is modest.

  2. ON RELATIVISTIC DISK SPECTROSCOPY IN COMPACT OBJECTS WITH X-RAY CCD CAMERAS

    SciTech Connect (OSTI)

    Miller, J. M.; Cackett, E. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); D'Ai, A. [Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo, Palermo (Italy); Bautz, M. W.; Nowak, M. A. [Kavli Institute for Astrophysics and Space Research, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Bhattacharyya, S. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Burrows, D. N.; Kennea, J. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, College Park, PA 16802 (United States); Fabian, A. C.; Reis, R. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 OHA (United Kingdom); Freyberg, M. J.; Haberl, F. [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse, 85748 Garching (Germany); Strohmayer, T. E. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Tsujimoto, M., E-mail: jonmm@umich.ed [Japan Aerospace Exploration Agency, Institute of Space and Astronomical Sciences, 3-1-1 Yoshino-dai, Sagamihara, Kanagawa 229-8510 (Japan)

    2010-12-01

    X-ray charge-coupled devices (CCDs) are the workhorse detectors of modern X-ray astronomy. Typically covering the 0.3-10.0 keV energy range, CCDs are able to detect photoelectric absorption edges and K shell lines from most abundant metals. New CCDs also offer resolutions of 30-50 (E/{Delta}E), which is sufficient to detect lines in hot plasmas and to resolve many lines shaped by dynamical processes in accretion flows. The spectral capabilities of X-ray CCDs have been particularly important in detecting relativistic emission lines from the inner disks around accreting neutron stars and black holes. One drawback of X-ray CCDs is that spectra can be distorted by photon 'pile-up', wherein two or more photons may be registered as a single event during one frame time. We have conducted a large number of simulations using a statistical model of photon pile-up to assess its impacts on relativistic disk line and continuum spectra from stellar-mass black holes and neutron stars. The simulations cover the range of current X-ray CCD spectrometers and operational modes typically used to observe neutron stars and black holes in X-ray binaries. Our results suggest that severe photon pile-up acts to falsely narrow emission lines, leading to falsely large disk radii and falsely low spin values. In contrast, our simulations suggest that disk continua affected by severe pile-up are measured to have falsely low flux values, leading to falsely small radii and falsely high spin values. The results of these simulations and existing data appear to suggest that relativistic disk spectroscopy is generally robust against pile-up when this effect is modest.

  3. Atomic structure of machined semiconducting chips: An x-ray absorption spectroscopy study

    SciTech Connect (OSTI)

    Paesler, M.; Sayers, D.

    1988-12-01

    X-ray absorption spectroscopy (XAS) has been used to examine the atomic structure of chips of germanium that were produced by single point diamond machining. It is demonstrated that although the local (nearest neighbor) atomic structure is experimentally quite similar to that of single crystal specimens information from more distant atoms indicates the presence of considerable stress. An outline of the technique is given and the strength of XAS in studying the machining process is demonstrated.

  4. Vertical dispersion methods in x-ray spectroscopy of high temperature plasmas

    SciTech Connect (OSTI)

    Renner, O.; Missalla, T.; Foerster, E.

    1995-12-31

    General formulae for the applying the vertical dispersion principle in x-ray spectroscopy of multiple charged ions are summarized, the characteristics of the experimental schemes based on flat and bent crystals are discussed. The unique properties of the novel spectroscopic methods, i.e., their extremely high dispersion, high spectral and 1-D spatial resolution and good collection efficiency, make them very attractive for ultrahigh-resolution spectroscopy. The examples of successful use of the vertical dispersion modifications of the double-crystal and the Johann spectrometer in diagnostics of several types of laser-generated plasma are presented.

  5. Sample-morphology effects on x-ray photoelectron peak intensities. II. Estimation of detection limits for thin-film materials

    SciTech Connect (OSTI)

    Powell, Cedric J.; Werner, Wolfgang S. M.; Smekal, Werner

    2014-09-01

    The authors show that the National Institute of Standards and Technology database for the simulation of electron spectra for surface analysis (SESSA) can be used to determine detection limits for thin-film materials such as a thin film on a substrate or buried at varying depths in another material for common x-ray photoelectron spectroscopy (XPS) measurement conditions. Illustrative simulations were made for a W film on or in a Ru matrix and for a Ru film on or in a W matrix. In the former case, the thickness of a W film at a given depth in the Ru matrix was varied so that the intensity of the W 4d{sub 5/2} peak was essentially the same as that for a homogeneous RuW{sub 0.001} alloy. Similarly, the thickness of a Ru film at a selected depth in the W matrix was varied so that the intensity of the Ru 3p{sub 3/2} peak matched that from a homogeneous WRu{sub 0.01} alloy. These film thicknesses correspond to the detection limits of each minor component for measurement conditions where the detection limits for a homogeneous sample varied between 0.1 at.?% (for the RuW{sub 0.001} alloy) and 1 at.?% (for the WRu{sub 0.01} alloy). SESSA can be similarly used to convert estimates of XPS detection limits for a minor species in a homogeneous solid to the corresponding XPS detection limits for that species as a thin film on or buried in the chosen solid.

  6. Instrument for x-ray absorption spectroscopy with in situ electrical control characterizations

    SciTech Connect (OSTI)

    Huang, Chun-Chao; Chang, Shu-Jui; Yang, Chao-Yao; Tseng, Yuan-Chieh [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan (China)] [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan (China); Chou, Hsiung [Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan (China)] [Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan (China)

    2013-12-15

    We report a synchrotron-based setup capable of performing x-ray absorption spectroscopy and x-ray magnetic circular dichroism with simultaneous electrical control characterizations. The setup can enable research concerning electrical transport, element- and orbital-selective magnetization with an in situ fashion. It is a unique approach to the real-time change of spin-polarized electronic state of a material/device exhibiting magneto-electric responses. The performance of the setup was tested by probing the spin-polarized states of cobalt and oxygen of Zn{sub 1-x}Co{sub x}O dilute magnetic semiconductor under applied voltages, both at low (?20 K) and room temperatures, and signal variations upon the change of applied voltage were clearly detected.

  7. Hard x-ray emission spectroscopy: a powerful tool for the characterization of magnetic semiconductors

    E-Print Network [OSTI]

    Rovezzi, Mauro

    2014-01-01

    This review aims to introduce the x-ray emission spectroscopy (XES) and resonant inelastic x-ray scattering (RIXS) techniques to the materials scientist working with magnetic semiconductors (e.g. semiconductors doped with 3d transition metals) for applications in the field of spin-electronics. We focus our attention on the hard part of the x-ray spectrum (above 3 keV) in order to demonstrate a powerful element- and orbital-selective characterization tool in the study of bulk electronic structure. XES and RIXS are photon-in/photon-out second order optical processes described by the Kramers-Heisenberg formula. Nowadays, the availability of third generation synchrotron radiation sources permits to apply such techniques also to dilute materials, opening the way for a detailed atomic characterization of impurity-driven materials. We present the K{\\ss} XES as a tool to study the occupied valence states (directly, via valence-to-core transitions) and to probe the local spin angular momentum (indirectly, via intra-at...

  8. New Homogeneous Standards by Atomic Layer Deposition for Synchrotron X-ray Fluorescence and Absorption Spectroscopies.

    SciTech Connect (OSTI)

    Butterworth, A.L.; Becker, N.; Gainsforth, Z.; Lanzirotti, A.; Newville, M.; Proslier, T.; Stodolna, J.; Sutton, S.; Tyliszczak, T.; Westphal, A.J.; Zasadzinski, J. (UCB)

    2012-03-13

    Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotron techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial resolution better than 25 nm. Limiting factors for Stardust STXM analyses were self-imposed limits of photon dose due to radiation damage concerns, and significant attenuation of <1500 eV X-rays by {approx}80{micro}m thick, {approx}25 mg/cm{sup 3} density silica aerogel capture medium. In practice, the ISPE team characterized the major, light elements using STXM (O, Mg, Al, Si) and the heavier minor and trace elements using SXRF. The two data sets overlapped only with minor Fe and Ni ({approx}1% mass abundance), providing few quantitative cross-checks. New improved standards for cross calibration are essential for consortium-based analyses of Stardust interstellar and cometary particles, IDPs. Indeed, they have far reaching application across the whole synchrotron-based analytical community. We have synthesized three ALD multilayers simultaneously on silicon nitride membranes and silicon and characterized them using RBS (on Si), XRF (on Si{sub 3}N{sub 4}) and STXM/XAS (holey Si{sub 3}N{sub 4}). The systems we have started to work with are Al-Zn-Fe and Y-Mg-Er. We have found these ALD multi-layers to be uniform at {micro}m- to nm scales, and have found excellent consistency between four analytical techniques so far. The ALD films can also be used as a standard for e-beam instruments, eg., TEM EELS or EDX. After some early issues with the consistency of coatings to the back-side of the membrane windows, we are confident to be able to show multi-analytical agreement to within 10%. As the precision improves, we can use the new standards to verify or improve the tabulated cross-sections.

  9. High-Resolution Spectroscopy with the Chandra X-ray Observatory

    ScienceCinema (OSTI)

    Canizares, Claude R. [MIT, Cambridge, Massachusetts, United States

    2010-01-08

    The capabilities of the Chandra X-ray Observatory and XMM-Newton for high-resolution spectroscopy have brought tradition plasma diagnostic techniques to the study of cosmic plasma. Observations have probed nearly every class of astronomical object, from young proto-starts through massive O starts and black hole binaries, supernova remnants, active galactic nuclei, and the intergalactic medium. Many of these sources show remarkable rich spectra that reveal new physical information, such as emission measure distributions, elemental abundances, accretion disk and wind signatures, and time variability. This talk will present an overview of the Chandra instrumentaton and selected examples of spectral observations of astrophysical and cosmological importance.

  10. Slow dynamics of nanocomposite polymer aerogels as revealed by X-ray photocorrelation spectroscopy (XPCS)

    SciTech Connect (OSTI)

    Hernández, Rebeca, E-mail: rhernandez@ictp.csic.es, E-mail: aurora.nogales@csic.es; Mijangos, Carmen [Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva, 3, 28006 Madrid (Spain)] [Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva, 3, 28006 Madrid (Spain); Nogales, Aurora, E-mail: rhernandez@ictp.csic.es, E-mail: aurora.nogales@csic.es; Ezquerra, Tiberio A. [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid (Spain)] [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid (Spain); Sprung, Michael [Petra III at DESY, Notkestr. 85, 22607 Hamburg (Germany)] [Petra III at DESY, Notkestr. 85, 22607 Hamburg (Germany)

    2014-01-14

    We report on a novel slow dynamics of polymer xerogels, aerogels, and nanocomposite aerogels with iron oxide nanoparticles, as revealed by X-ray photon correlation spectroscopy. The polymer aerogel and its nanocomposite aerogels, which are porous in nature, exhibit hyper-diffusive dynamics at room temperature. In contrast, non-porous polymer xerogels exhibit an absence of this peculiar dynamics. This slow dynamical process has been assigned to a relaxation of the characteristic porous structure of these materials and not to the presence of nanoparticles.

  11. Americium characterization by X-ray fluorescence and absorption spectroscopy in plutonium uranium mixed oxide

    SciTech Connect (OSTI)

    Degueldre, Claude Cozzo, Cedric; Martin, Matthias; Grolimund, Daniel; Mieszczynski, Cyprian

    2013-06-01

    Plutonium uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regard to their environment and the coolant. In this work the study of the atomic structure and next-neighbour environment of Am in the (Pu,U)O? lattice in an irradiated (60 MW d kg?¹) MOX sample was performed employing micro-X-ray fluorescence (µ-XRF) and micro-X-ray absorption fine structure (µ-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Am (~0.66 wt%) are determined from the experimental data gained for the irradiated fuel material examined in its peripheral zone (rim) of the fuel. In the irradiated sample Am builds up as Am³? species within an [AmO?]¹³? coordination environment (e.g. >90%) and no (<10%) Am(IV) or (V) can be detected in the rim zone. The occurrence of americium dioxide is avoided by the redox buffering activity of the uranium dioxide matrix. - Graphical abstract: Americium LIII XAFS spectra recorded for the irradiated MOX sub-sample in the rim zone for a 300 ?m×300 ?m beam size area investigated over six scans of 4 h. The records remain constant during multi-scan. The analysis of the XAFS signal shows that Am is found as trivalent in the UO? matrix. This analytical work shall open the door of very challenging analysis (speciation of fission product and actinides) in irradiated nuclear fuels. - Highlights: • Americium was characterized by microX-ray absorption spectroscopy in irradiated MOX fuel. • The americium redox state as determined from XAS data of irradiated fuel material was Am(III). • In the sample, the Am³? face an AmO?¹³?coordination environment in the (Pu,U)O? matrix. • The americium dioxide is reduced by the uranium dioxide matrix.

  12. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    SciTech Connect (OSTI)

    Bradforth, S.E.

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound {yields} bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN{sup {minus}}, NCO{sup {minus}} and NCS{sup {minus}}. Transition state photoelectron spectra are presented for the following systems Br + HI, Cl + HI, F + HI, F + CH{sub 3}0H,F + C{sub 2}H{sub 5}OH,F + OH and F + H{sub 2}. A time dependent framework for the simulation and interpretation of the bound {yields} free transition state photoelectron spectra is subsequently developed and applied to the hydrogen transfer reactions Br + HI, F + OH {yields} O({sup 3}P, {sup 1}D) + HF and F + H{sub 2}. The theoretical approach for the simulations is a fully quantum-mechanical wave packet propagation on a collinear model reaction potential surface. The connection between the wavepacket time evolution and the photoelectron spectrum is given by the time autocorrelation function. For the benchmark F + H{sub 2} system, comparisons with three-dimensional quantum calculations are made.

  13. Photoelectron Spectroscopy of SO3 -at 355 and 266 nm

    E-Print Network [OSTI]

    Continetti, Robert E.

    Photoelectron Spectroscopy of SO3 - at 355 and 266 nm S. Dobrin, B. H. Boo, L. S. Alconcel, and R Photoelectron spectra of SO3 - were recorded at 266 and 355 nm to study photodetachment of the SO3 - anion (2 A1) to the ground state of neutral SO3 (1 A1). A long vibrational progression in the 355 nm spectrum is attributed

  14. Design of Molecular Solar Cells via Feedback from Soft X-ray Spectroscopy

    SciTech Connect (OSTI)

    Himpsel, Franz J.

    2015-06-12

    Spectroscopy with soft X-rays was used to develop new materials and novel designs for solar cells and artificial photosynthesis. In order to go beyond the widely-used trial-and-error approach of gradually improving a particular design, we started from the most general layout of a solar cell (or a photo-electrochemical device) and asked which classes of materials are promising for best performance. For example, the most general design of a solar cell consists of a light absorber, an electron donor, and an electron acceptor. These are characterized by four energy levels, which were measured by a combination of spectroscopic X-ray techniques. Tuning synchrotron radiation to the absorption edges of specific elements provided element- and bond-selectivity. The spectroscopic results were complemented by state-of-the-art calculations of the electronic states. These helped explaining the observed energy levels and the orbitals associated with them. The calculations were extended to a large class of materials (for example thousands of porphyrin dye complexes) in order to survey trends in the energy level structure. A few highlights serve as examples: 1) Organic molecules combining absorber, donor, and acceptor with atomic precision. 2) Exploration of highly p-doped diamond films as inert, transparent electron donors. 3) Surface-sensitive characterization of nanorod arrays used as photoanodes in water splitting. 4) Computational design of molecular complexes for efficient solar cells using two photons.

  15. Millisecond Kinetics of Nanocrystal Cation Exchange UsingMicrofluidic X-ray Absorption Spectroscopy

    SciTech Connect (OSTI)

    Chan, Emory M.; Marcus, Matthew A.; Fakra, Sirine; Elnaggar,Mariam S.; Mathies, Richard A.; Alivisatos, A. Paul

    2007-05-07

    We describe the use of a flow-focusing microfluidic reactorto measure the kinetics of theCdSe-to-Ag2Se nanocrystal cation exchangereaction using micro-X-ray absorption spectroscopy (mu XAS). The smallmicroreactor dimensions facilitate the millisecond mixing of CdSenanocrystal and Ag+ reactant solutions, and the transposition of thereaction time onto spatial coordinates enables the in situ observation ofthe millisecond reaction with mu XAS. XAS spectra show the progression ofCdSe nanocrystals to Ag2Se over the course of 100 ms without the presenceof long-lived intermediates. These results, along with supporting stoppedflow absorption experiments, suggest that this nanocrystal cationexchange reaction is highly efficient and provide insight into how thereaction progresses in individual particles. This experiment illustratesthe value and potential of in situ microfluidic X-ray synchrotrontechniques for detailed studies of the millisecond structuraltransformations of nanoparticles and other solution-phase reactions inwhich diffusive mixing initiates changes in local bond structures oroxidation states.

  16. High-rate x-ray spectroscopy in mammography with a CdTe detector: A digital pulse processing approach

    SciTech Connect (OSTI)

    Abbene, L.; Gerardi, G.; Principato, F.; Del Sordo, S.; Ienzi, R.; Raso, G. [Dipartimento di Fisica e Tecnologie Relative, Universita di Palermo, Viale delle Scienze, Edificio 18, Palermo 90128 (Italy) and INAF/IASF Palermo, Via Ugo La Malfa 153, 90146 Palermo (Italy); Dipartimento di Fisica e Tecnologie Relative, Universita di Palermo, Viale delle Scienze, Edificio 18, Palermo 90128 (Italy); INAF/IASF Palermo, Via Ugo La Malfa 153, 90146 Palermo (Italy); Istituto di Radiologia, Policlinico, 90100 Palermo (Italy); Dipartimento di Fisica e Tecnologie Relative, Universita di Palermo, Viale delle Scienze, Edificio 18, Palermo 90128 (Italy)

    2010-12-15

    Purpose:Direct measurement of mammographic x-ray spectra under clinical conditions is a difficult task due to the high fluence rate of the x-ray beams as well as the limits in the development of high resolution detection systems in a high counting rate environment. In this work we present a detection system, based on a CdTe detector and an innovative digital pulse processing (DPP) system, for high-rate x-ray spectroscopy in mammography. Methods: The DPP system performs a digital pile-up inspection and a digital pulse height analysis of the detector signals, digitized through a 14-bit, 100 MHz digitizer, for x-ray spectroscopy even at high photon counting rates. We investigated on the response of the digital detection system both at low (150 cps) and at high photon counting rates (up to 500 kcps) by using monoenergetic x-ray sources and a nonclinical molybdenum anode x-ray tube. Clinical molybdenum x-ray spectrum measurements were also performed by using a pinhole collimator and a custom alignment device. Results: The detection system shows excellent performance up to 512 kcps with an energy resolution of 4.08% FWHM at 22.1 keV. Despite the high photon counting rate (up to 453 kcps), the molybdenum x-ray spectra, measured under clinical conditions, are characterized by a low number of pile-up events. The agreement between the attenuation curves and the half value layer values, obtained from the measured spectra, simulated spectra, and from the exposure values directly measured with an ionization chamber, also shows the accuracy of the measurements. Conclusions: These results make the proposed detection system a very attractive tool for both laboratory research and advanced quality controls in mammography.

  17. A novel von Hamos spectrometer for efficient X-ray emission spectroscopy in the laboratory

    SciTech Connect (OSTI)

    Anklamm, Lars, E-mail: anklamm@physik.tu-berlin.de; Schlesiger, Christopher; Malzer, Wolfgang; Grötzsch, Daniel; Neitzel, Michael; Kanngießer, Birgit [Institute for Optic and Atomic Physics, Technical University Berlin, Hardenbergstr. 36, 10623 Berlin (Germany)

    2014-05-15

    We present a novel, highly efficient von Hamos spectrometer for X-ray emission spectroscopy (XES) in the laboratory using highly annealed pyrolitic graphite crystals as the dispersive element. The spectrometer covers an energy range from 2.5 keV to 15 keV giving access to chemical speciation and information about the electronic configuration of 3d transition metals by means of the K? multiplet. XES spectra of Ti compounds are presented to demonstrate the speciation capabilities of the instrument. A spectral resolving power of E/?E = 2000 at 8 keV was achieved. Typical acquisition times range from 10?min for bulk material to hours for thin samples below 1??m.

  18. X-ray Absorption Spectroscopy Beamline at the Siam Photon Laboratory

    SciTech Connect (OSTI)

    Klysubun, Wantana; Tarawarakarn, Pongjakr; Sombunchoo, Panidtha; Klinkhieo, Supat; Chaiprapa, Jitrin; Songsiriritthigul, Prayoon

    2007-01-19

    A bending magnet beamline has been constructed and commissioned for x-ray absorption spectroscopy (XAS) at the Siam Photon Laboratory. The photon energy is tunable from 1830 eV to 8000 eV using a Lemmonier-type, fixed-exit double crystal monochromator equipped with InSb(111), Si(111), Ge(220) crystals. Elemental K-edges are then accessible from silicon to iron. A series of low conductance vacuum tubes has been designed and installed between the pumping chambers in the front end to obtain the proper pressure difference between the upstream and the downstream of the front end. Thus lower-energy photons, around K-edges of silicon, phosphorous, and sulfur, can be delivered to the experimental XAS station without being absorbed by a window. In this report, the design of the beamline is described. The commissioning results including the measured photon flux at sample and experimental XAS spectra are presented.

  19. Anion Photoelectron Spectroscopy of Exotic Species

    E-Print Network [OSTI]

    Yen, Terry A.

    2010-01-01

    Hatami, F. , et al. , InP quantum dots embedded in GaP:spectroscopy of InP quantum dots. Journal of Physicalfor InP with applications to large quantum dots. Physical

  20. RHESSI MICROFLARE STATISTICS. II. X-RAY IMAGING, SPECTROSCOPY, AND ENERGY DISTRIBUTIONS I. G. Hannah, S. Christe,1

    E-Print Network [OSTI]

    California at Berkeley, University of

    RHESSI MICROFLARE STATISTICS. II. X-RAY IMAGING, SPECTROSCOPY, AND ENERGY DISTRIBUTIONS I. G distribution of RHESSI flares and compare it to previous thermal energy distributions of transient events. We flares down to nanoflares. The fre- quency distribution of the energy in these events has been studied

  1. Nuclear resonant X-ray spectroscopy of (Mg,Fe)SiO3 orthoenstatites JENNIFER M. JACKSON1,*, EMILY A. HAMECHER1

    E-Print Network [OSTI]

    Jackson, Jennifer M.

    Nuclear resonant X-ray spectroscopy of (Mg,Fe)SiO3 orthoenstatites JENNIFER M. JACKSON1,*, EMILY A, 9700 S. Cass Ave., Argonne, IL 60439, USA Abstract: We present nuclear resonant inelastic X-ray scattering (NRIXS) and synchrotron Mo¨ssbauer spectroscopy (SMS) measurements, both nuclear resonant X

  2. THREE NEW GALACTIC CENTER X-RAY SOURCES IDENTIFIED WITH NEAR-INFRARED SPECTROSCOPY

    SciTech Connect (OSTI)

    DeWitt, Curtis; Bandyopadhyay, Reba M.; Eikenberry, Stephen S.; Sarajedini, Ata; Sellgren, Kris; Blum, Robert; Olsen, Knut; Bauer, Franz E.

    2013-11-01

    We have conducted a near-infrared spectroscopic survey of 47 candidate counterparts to X-ray sources discovered by the Chandra X-Ray Observatory near the Galactic center (GC). Though a significant number of these astrometric matches are likely to be spurious, we sought out spectral characteristics of active stars and interacting binaries, such as hot, massive spectral types or emission lines, in order to corroborate the X-ray activity and certify the authenticity of the match. We present three new spectroscopic identifications, including a Be high-mass X-ray binary (HMXB) or a ? Cassiopeiae (Cas) system, a symbiotic X-ray binary, and an O-type star of unknown luminosity class. The Be HMXB/? Cas system and the symbiotic X-ray binary are the first of their classes to be spectroscopically identified in the GC region.

  3. X-Ray Spectroscopy: An Experimental Technique to Measure Charge State Distribution Right at the Ion-Solid Interaction

    E-Print Network [OSTI]

    Sharma, Prashant

    2015-01-01

    Charge state distributions of $^{56}$Fe and $^{58}$Ni projectile ions passing through thin carbon foils have been studied in the energy range of 1.44 - 2.69 MeV/u using a novel method from the x-ray spectroscopy technique. Interestingly the charge state distribution in the bulk show Lorentzian behavior instead of usual Gaussian distribution. Further, different parameters of charge state distribution like mean charge state, distribution width and asymmetric parameter are determined and compared with the empirical calculations and ETACHA predictions. It is found that the x-ray measurement technique is appropriate to determine the mean charge state right at the interaction zone or in the bulk. Interestingly, empirical formalism predicts much lower projectile mean charge states compare to x-ray measurements which clearly indicate multi-electron capture from the target surface. The ETACHA predictions and experimental results are found to be comparable for energies $\\geq$ 2 MeV/u.

  4. Photon-in photon-out hard X-ray spectroscopy at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Alonso-Mori, Roberto; Sokaras, Dimosthenis; Zhu, Diling; Kroll, Thomas; Chollet, Mathieu; Feng, Yiping; Glownia, James M.; Kern, Jan; Lemke, Henrik T.; Nordlund, Dennis; et al

    2015-04-15

    X-ray free-electron lasers (FELs) have opened unprecedented possibilities to study the structure and dynamics of matter at an atomic level and ultra-fast timescale. Many of the techniques routinely used at storage ring facilities are being adapted for experiments conducted at FELs. In order to take full advantage of these new sources several challenges have to be overcome. They are related to the very different source characteristics and its resulting impact on sample delivery, X-ray optics, X-ray detection and data acquisition. Here it is described how photon-in photon-out hard X-ray spectroscopy techniques can be applied to study the electronic structure andmore »its dynamics of transition metal systems with ultra-bright and ultra-short FEL X-ray pulses. In particular, some of the experimental details that are different compared with synchrotron-based setups are discussed and illustrated by recent measurements performed at the Linac Coherent Light Source.« less

  5. Time-resolved x-ray Raman spectroscopy of photoexcited polydiacetylene oligomer: A simulation study

    E-Print Network [OSTI]

    Mukamel, Shaul

    , Osaka Prefecture University, Sakai 599-8531, Japan Sergei Volkov Department of Chemistry, University of the x-ray Raman peaks on the scattering wave vector k and energy . The electronic excitation energies progress in generating ultrafast x-ray pulses and bringing them down to the attosecond regime has opened up

  6. ON RELATIVISTIC DISK SPECTROSCOPY IN COMPACT OBJECTS WITH X-RAY CCD CAMERAS

    E-Print Network [OSTI]

    Miller, J. M.

    X-ray charge-coupled devices (CCDs) are the workhorse detectors of modern X-ray astronomy. Typically covering the 0.3-10.0 keV energy range, CCDs are able to detect photoelectric absorption edges and K shell lines from ...

  7. Soft X-ray Spectroscopy Study of the Electronic Structure of Oxidized and Partially Oxidized Magnetite Nanoparticles

    SciTech Connect (OSTI)

    Gilbert, Benjamin; Katz, Jordan E.; Denlinger, Jonathan D.; Yin, Yadong; Falcone, Roger; Waychunas, Glenn A.

    2010-10-24

    The crystal structure of magnetite nanoparticles may be transformed to maghemite by complete oxidation, but under many relevant conditions the oxidation is partial, creating a mixed-valence material with structural and electronic properties that are poorly characterized. We used X-ray diffraction, Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, and soft X-ray absorption and emission spectroscopy to characterize the products of oxidizing uncoated and oleic acid-coated magnetite nanoparticles in air. The oxidization of uncoated magnetite nanoparticles creates a material that is structurally and electronically indistinguishable from maghemite. By contrast, while oxidized oleic acid-coated nanoparticles are also structurally indistinguishable from maghemite, Fe L-edge spectroscopy revealed the presence of interior reduced iron sites even after a 2-year period. We used X-ray emission spectroscopy at the O K-edge to study the valence bands (VB) of the iron oxide nanoparticles, using resonant excitation to remove the contributions from oxygen atoms in the ligands and from low-energy excitations that obscured the VB edge. The bonding in all nanoparticles was typical of maghemite, with no detectable VB states introduced by the long-lived, reduced-iron sites in the oleic acid-coated sample. However, O K-edge absorption spectroscopy observed a 0.2 eV shift in the position of the lowest unoccupied states in the coated sample, indicating an increase in the semiconductor band gap relative to bulk stoichiometric maghemite that was also observed by optical absorption spectroscopy. The results show that the ferrous iron sites within ferric iron oxide nanoparticles coated by an organic ligand can persist under ambient conditions with no evidence of a distinct interior phase and can exert an effect on the global electronic and optical properties of the material. This phenomenon resembles the band gap enlargement caused by electron accumulation in the conduction band of TiO2.

  8. Understanding Sulfur Poisoning and Regeneration of Nickel Biomass Conditioning Catalysts using X-Ray Absorption Spectroscopy

    SciTech Connect (OSTI)

    Yung, M. M.; Cheah, S.; Kuhn, J. N.

    2013-01-01

    The production of biofuels can proceed via a biomass gasification to produce syngas, which can then undergo catalytic conditioning and reforming reactions prior to being sent to a fuel synthesis reactor. Catalysts used for biomass conditioning are plagued by short lifetimes which are a result of, among other things, poisoning. Syngas produced from biomass gasification may contain between 30-300 ppm H2S, depending on the feedstock and gasification conditions, and H2S is a key catalyst poison. In order to overcome catalyst poisoning, either an H2S-tolerant catalyst or an efficient regeneration protocol should be employed. In this study, sulfur K-edge X-ray absorption near edge spectroscopy (XANES) was used to monitor sulfur species on spent catalyst samples and the transformation of these species from sulfides to sulfates during steam and air regeneration on a Ni/Mg/K/Al2O3 catalyst used to condition biomass-derived syngas. Additionally, nickel K-edge EXAFS and XANES are used to examine the state of nickel species on the catalysts. Post-reaction samples showed the presence of sulfides on the H2S-poisoned nickel catalyst and although some gaseous sulfur species were observed to leave the catalyst bed during regeneration, sulfur remained on the catalyst and a transformation from sulfides to sulfates was observed. The subsequent H2 reduction led to a partial reduction of sulfates back to sulfides. A proposed reaction sequence is presented and recommended regeneration strategies are discussed.

  9. Identification of lead chemical form in mine waste materials by X-ray absorption spectroscopy

    SciTech Connect (OSTI)

    Taga, Raijeli L.; Ng, Jack [University of Queensland, National Research Centre for Environmental Toxicology (EnTox), Brisbane, 4108 (Australia); Zheng Jiajia; Huynh, Trang; Noller, Barry [University of Queensland, Centre for Mined Land Rehabilitation, Brisbane, 4072 (Australia); Harris, Hugh H. [School of Chemistry and Physics, University of Adelaide, Adelaide, 5005 (Australia)

    2010-06-23

    X-ray absorption spectroscopy (XAS) provides a direct means for measuring lead chemical forms in complex samples. In this study, XAS was used to identify the presence of plumbojarosite (PbFe{sub 6}(SO{sub 4}){sub 4}(OH){sub 12}) by lead L{sub 3}-edge XANES spectra in mine waste from a small gold mining operation in Fiji. The presence of plumbojarosite in tailings was confirmed by XRD but XANES gave better resolution. The potential for human uptake of Pb from tailings was measured using a physiologically based extract test (PBET), an in-vitro bioaccessibility (BAc) method. The BAc of Pb was 55%. Particle size distribution of tailings indicated that 40% of PM{sub 10} particulates exist which could be a potential risk for respiratory effects via the inhalation route. Food items collected in the proximity of the mine site had lead concentrations which exceed food standard guidelines. Lead within the mining lease exceeded sediment guidelines. The results from this study are used to investigate exposure pathways via ingestion and inhalation for potential risk exposure pathways of Pb in that locality. The highest Pb concentration in soil and tailings was 25,839 mg/kg, exceeding the Australian National Environment Protection Measure (NEPM) soil health investigation levels.

  10. NuSTAR Hard X-ray Survey of the Galactic Center Region I: Hard X-ray Morphology and Spectroscopy of the Diffuse Emission

    E-Print Network [OSTI]

    Mori, Kaya; Krivonos, Roman; Hong, Jaesub; Ponti, Gabriele; Bauer, Franz; Perez, Kerstin; Nynka, Melania; Zhang, Shuo; Tomsick, John A; Alexander, David M; Baganoff, Frederick K; Barret, Didier; Barriere, Nicolas; Boggs, Steven E; Canipe, Alicia M; Christensen, Finn E; Craig, William W; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W; Grindlay, Jonathan E; Harrison, Fiona A; Hornstrup, Allan; Kitaguchi, Takao; Koglin, Jason E; Luu, Vy; Madsen, Kristen K; Mao, Peter H; Miyasaka, Hiromasa; Perri, Matteo; Pivovaroff, Michael J; Puccetti, Simonetta; Rana, Vikram; Stern, Daniel; Westergaard, Niels J; Zhang, William W; Zoglauer, Andreas

    2015-01-01

    We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456-2901 into non-thermal X-ray filaments, molecular clouds, point sources and a previously unknown central component of hard X-ray emission (CHXE). NuSTAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with $\\Gamma\\sim1.3$-$2.3$ up to ~50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4 keV Fe K$\\alpha$ fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broad-band X-ray spectral analysis with a Monte-Carlo based X-ray reflection model self-consistently determined their intrinsic column density ($\\sim10^{23}$ cm$^{-2}$), primary X-ray spectra (power-laws wi...

  11. Imaging X-ray spectroscopy with micro-X and Chandra

    E-Print Network [OSTI]

    Rutherford, John (John Morton)

    2013-01-01

    High spectral resolution observations of X-ray phenomena have the potential to uncover new physics. Currently, only point sources can be probed with high resolution spectra, using gratings. Extended objects like supernova ...

  12. X-ray afterglows and spectroscopy of Gamma-Ray Bursts

    E-Print Network [OSTI]

    Luigi Piro

    2004-02-26

    I will review the constraints set by X-ray measurements of afterglows on several issues of GRB, with particular regard to the fireball model, the environment, the progenitor and dark GRB.

  13. Low-level determination of plutonium by gamma and L x-ray spectroscopy

    SciTech Connect (OSTI)

    Nitsche, H.; Gatti, R.C.; Lee, S.C.

    1991-04-01

    we have developed an analytical method for detection of {sup 239}Pu in aqueous samples at concentrations as low as 10{sup {minus}10} M. This nuclear counting technique utilizes the uranium L X-rays, which follow the alpha decay of plutonium. Because L X-rays are specific for the element and not for the individual isotopes, the isotopic composition of the plutonium sample must be known. The counting efficiency in the 11--23 keV range is determined from a plutonium standard, and the concentration of the sample is then calculated from the L X-ray count and the isotopic composition. The total L X-ray count is corrected for possible contributions from other radionuclides present as impurities by measuring the low-energy gamma spectrum for each contaminant to establish specific photon/X-ray ratios. The ratios are important when {sup 241}Pu and {sup 242}Pu are measured, because the respective decay chain members produce non-U L X-rays. This new method can replace the use of labor-intensive radiochemical separation techniques and elaborate activation methods for analysis of {sup 239}Pu in aqueous samples. It is also applicable for assaying plutonium in liquid wastes that pose possible hazards to the environment.

  14. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    SciTech Connect (OSTI)

    Gaudin, J.; Fourment, C.; Cho, B. I.; Engelhorn, K.; Galtier, E.; Harmand, M.; Leguay, P. M.; Lee, H. J.; Nagler, B.; Nakatsutsumi, M.; Ozkan, C.; Störmer, M.; Toleikis, S.; Tschentscher, Th.; Heimann, P. A.; Dorchies, F.

    2014-04-17

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called “molecular movie” within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level of the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.

  15. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gaudin, J.; Fourment, C.; Cho, B. I.; Engelhorn, K.; Galtier, E.; Harmand, M.; Leguay, P. M.; Lee, H. J.; Nagler, B.; Nakatsutsumi, M.; et al

    2014-04-17

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called “molecular movie” within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level ofmore »the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.« less

  16. X-ray Photoelectron Spectroscopy and Kinetic Study: Pt-Group Metals and Bimetallic Surfaces 

    E-Print Network [OSTI]

    Gath, Kerrie K.

    2010-01-14

    Pt-group metals were some of the first metals to be studied as catalysts for industrial use. The goal of these studies was to ascertain a fundamental understanding of CO oxidation and acetylene cyclotrimerization reactions ...

  17. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions

    E-Print Network [OSTI]

    Lu, Yi-chun

    The lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state ...

  18. In-situ X-ray Photoelectron Spectroscopy of a Catalyst for Artificial...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10.1002ange.201402311 Contacts: Hirohito Ogasawara, SSRL May Ling Ng, SUNCAT Sarp Kaya, JCAP (currently Ko University (Turkey)) PDF Version: PDF icon artificialphotosynthesis...

  19. Simple models for resolving environments in disordered alloys by x-ray photoelectron spectroscopy 

    E-Print Network [OSTI]

    Underwood, Thomas Livingstone

    2013-07-01

    In disordered alloys, atoms belonging to the same chemical element will exhibit different environments. This leads to variations in the atoms’ local electronic structures, which in turn leads to variations in the binding ...

  20. Depth-profiling X-ray photoelectron spectroscopy (XPS) analysis of interlayer diffusion in polyelectrolyte multilayers

    E-Print Network [OSTI]

    Rubner, Michael F.

    Functional organic thin films often demand precise control over the nanometer-level structure. Interlayer diffusion of materials may destroy this precise structure; therefore, a better understanding of when interlayer ...

  1. A study of poly,,p-phenylenevinylene... and its derivatives using x-ray photoelectron spectroscopy

    E-Print Network [OSTI]

    Kim, Sehun

    and dense films by the simple solution casting process.11,12 The band gap of this material is known on the effect of metal overlayers, the electrodes for LED. However, it is not easy to obtain detailed and reli- able information on this metal-semiconductor interface for- mation process without firm baseline

  2. Atmospheric Corrosion of Silver Investigated by X-ray Photoelectron Spectroscopy Dissertation

    E-Print Network [OSTI]

    in an attempt to correct the shortcomings of these accelerated tests. This study identifies Ag2SO3 and Ag2SO4 in the literature. Evidence suggests that Ag2SO3 is an intermediate step in the formation of Ag2SO4. Furthermore on silver. If Na+ is present, Ag2SO4 is the final state, whereas Ag2SO3 is not found in the presence

  3. X-Ray Photoelectron Spectroscopy (XPS) Applied to Soot & What It Can Do for You

    Broader source: Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  4. Ambient Pressure Photoelectron Spectroscopy Using Soft X-ray and Hard

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith PropaneNaturalTest YourProgram Alumni BelowInitiative

  5. Dissociation of strong acid revisited: X-ray photoelectron spectroscopy and

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) | SciTech Connect Discrimination of new physics

  6. In-situ X-ray Photoelectron Spectroscopy of a Catalyst for Artificial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLAN FOR THE SITE-218

  7. Cadmium Chemical Form in Mine Waste Materials by X-ray Absorption Spectroscopy

    SciTech Connect (OSTI)

    Diacomanolis, V.; Ng, J. C. [University of Queensland, National Research Centre for Environmental Toxicology, Coopers Plains, QLD, 4008 (Australia); Sadler, R. [School of Public Health, Griffith University, Brisbane, QLD (Australia); Harris, H. H. [School of Chemistry and Physics, University of Adelaide, Adelaide, SA (Australia); Nomura, M. [Photon Factory, Institute of Material Structure Science, Tsukuba (Japan); Noller, B. N. [University of Queensland, Centre For Mined Land Rehabilitation, St Lucia 4072 QLD (Australia)

    2010-06-23

    This study examines the molecular form of cadmium (Cd) present in mine wastes by X-ray Absorption Spectroscopy (XAS; Cd>20 mg/kg) using the K-edge of Cd at the Photon Factory Advanced Ring (PF-AR), NW10A beam line at KEK-Tsukuba-Japan. Mine waste materials and zinc concentrate were analyzed for Cd by ICPMS prior to undertaking XAS (range 21-452 mg/kg). Model compounds (CdO, Cd(OH){sub 2}, CdCO{sub 3}, Cdacetate, CdS, Cdstearate, CdDEDTC) and samples were examined in solid form at 20 K. The XANES spectra showed similar E max values for both model compounds and samples. The EXAFS showed that Cd-S in CdS, gives a flatter spectrum in the extended region compared to Cd-O found with CdCO{sub 3}, CdO and Cd Stearate. Linear combination fitting with model Cd compounds did not give clear assignments of composition, indicating that more detailed EXAFS spectra is required as mineral forms containing Cd were present rather than simple Cd compounds such as CdCO{sub 3}. The Cd bond for a single shell model in mine waste sample matrices appears to be either Cd-O or Cd-S, or a combination of both. Comparison of molecular data from the XAS studies with bioaccessibility data giving a prediction of bioavailability for mine waste materials provides useful information about the significance of the cadmium form as a contaminant for health risk assessment purposes.

  8. Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology

    SciTech Connect (OSTI)

    Salmeron, Miquel; Salmeron, Miquel; Schlogl, Robert

    2008-03-12

    Progress in science often follows or parallels the development of new techniques. The optical microscope helped convert medicine and biology from a speculative activity in old times to today's sophisticated scientific disciplines. The telescope changed the study and interpretation of heavens from mythology to science. X-ray diffraction enabled the flourishing of solid state physics and materials science. The technique object of this review, Ambient Pressure Photoelectron Spectroscopy or APPES for short, has also the potential of producing dramatic changes in the study of liquid and solid surfaces, particularly in areas such as atmospheric, environment and catalysis sciences. APPES adds an important missing element to the host of techniques that give fundamental information, i.e., spectroscopy and microscopy, about surfaces in the presence of gases and vapors, as encountered in industrial catalysis and atmospheric environments. APPES brings electron spectroscopy into the realm of techniques that can be used in practical environments. Decades of surface science in ultra high vacuum (UHV) has shown the power of electron spectroscopy in its various manifestations. Their unique property is the extremely short elastic mean free path of electrons as they travel through condensed matter, of the order of a few atomic distances in the energy range from a few eV to a few thousand eV. As a consequence of this the information obtained by analyzing electrons emitted or scattered from a surface refers to the top first few atomic layers, which is what surface science is all about. Low energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), Ultraviolet photoelectron spectroscopy (UPS), and other such techniques have been used for decades and provided some of the most fundamental knowledge about surface crystallography, composition and electronic structure available today. Unfortunately the high interaction cross section of electrons with matter also prevents them from traveling long distances unscattered in gas environments. Above the millibar pressure range this distance is reduced to less that a millimeter, effectively preventing its use in the most relevant environments, usually between millibars and atmospheric pressures. There is therefore a large gap of several orders of magnitude where information about surfaces is scarce because these powerful electron spectroscopies cannot operate. One characteristic of surfaces in ambient pressure environments is that they are covered by dense layers of molecules, even when their binding energy is weak. Water for example is known to form layers several molecules thick at room temperature in humid environments. Metals readily form oxide films several layers thick in oxygen atmospheres. Dense layers of adsorbed molecules can also be produced in ultra high vacuum, often by the simple and expedient method of cooling the sample to cryogenic temperatures. A large amount of data has been obtained in the past in UHV by surface scientists using this method. While this has provided valuable information it begs the question of whether the structures formed in this manner represent equilibrium structures or metastable ones, kinetically trapped due to high activation energies that cannot be overcome at low temperature. From a thermodynamic point of view is interesting to consider the entropic contribution to the Gibbs free energy, which we can call 'the pressure factor', equal to kT.logP. This factor amounts to a sizeable 0.3 eV difference at room temperature between UHV (<10{sup -8} Pascal) and atmospheric pressures. Such change if free energy can definitely result in changes in surface structure and stability. Entire areas of the phase diagram are out of reach due to the pressure gap. Even when cooling is not necessary, many surface treatments and most chemical reactions necessitate the presence of gases at pressures ranging from millibar to bars. What is the structure and chemical nature of the species formed on the surface in equilibrium with suc

  9. X-Ray Spectroscopy of the Classical Nova V458 Vulpeculae with Suzaku

    E-Print Network [OSTI]

    Tsujimoto, Masahiro; Drake, Jeremy J; Ness, Jan-Uwe; Kitamoto, Shunji

    2008-01-01

    We conducted a target of opportunity X-ray observation of the classical nova V458 Vulpeculae 88 days after the explosion using the Suzaku satellite. With a 20 ks exposure, the X-ray Imaging Spectrometer detected X-ray emission significantly harder than typical super-soft source emission. The X-ray spectrum shows K lines from N, Ne, Mg, Si, and S, and L-series emission from Fe in highly ionized states. The spectrum can be described by a single temperature (0.64 keV) thin thermal plasma model in collisional equilibrium with a hydrogen-equivalent extinction column density of ~3e21/cm2, a flux of ~1e-12 erg/s/cm2, and a luminosity of ~6e34 erg/s in the 0.3-3.0 keV band at an assumed distance of 13 kpc. We found a hint of an enhancement of N and deficiencies of O and Fe relative to other metals. The observed X-ray properties can be interpreted as the emission arising from shocks of ejecta from an ONe-type nova.

  10. X-Ray Spectroscopy of the Classical Nova V458 Vulpeculae with Suzaku

    E-Print Network [OSTI]

    Masahiro Tsujimoto; Dai Takei; Jeremy J. Drake; Jan-Uwe Ness; Shunji Kitamoto

    2008-10-17

    We conducted a target of opportunity X-ray observation of the classical nova V458 Vulpeculae 88 days after the explosion using the Suzaku satellite. With a 20 ks exposure, the X-ray Imaging Spectrometer detected X-ray emission significantly harder than typical super-soft source emission. The X-ray spectrum shows K lines from N, Ne, Mg, Si, and S, and L-series emission from Fe in highly ionized states. The spectrum can be described by a single temperature (0.64 keV) thin thermal plasma model in collisional equilibrium with a hydrogen-equivalent extinction column density of ~3e21/cm2, a flux of ~1e-12 erg/s/cm2, and a luminosity of ~6e34 erg/s in the 0.3-3.0 keV band at an assumed distance of 13 kpc. We found a hint of an enhancement of N and deficiencies of O and Fe relative to other metals. The observed X-ray properties can be interpreted as the emission arising from shocks of ejecta from an ONe-type nova.

  11. Effects of Plant Cell Wall Matrix Polysaccharides on Bacterial Cellulose Structure Studied with Vibrational Sum Frequency Generation Spectroscopy and X-ray Diffraction

    SciTech Connect (OSTI)

    Park, Yong Bum; Lee, Christopher M; Kafle, Kabindra; Park, Sunkyu; Cosgrove, Daniel; Kim, Seong H

    2014-07-14

    The crystallinity, allomorph content, and mesoscale ordering of cellulose produced by Gluconacetobacter xylinus cultured with different plant cell wall matrix polysaccharides were studied with vibrational sum frequency generation (SFG) spectroscopy and X-ray diffraction (XRD).

  12. Speciation and Release Kinetics of Cadmium in Alkali and Acidic Paddy Soils: Application of X-Ray Absorption Spectroscopy Monday, November 2, 2009: 10:30 AM

    E-Print Network [OSTI]

    Sparks, Donald L.

    Speciation and Release Kinetics of Cadmium in Alkali and Acidic Paddy Soils: Application of X under alkali and acidic conditions. X-ray absorption spectroscopy (XAS) was used to investigate Cd

  13. Double core-hole spectroscopy of transient plasmas produced in the interaction of ultraintense x-ray pulses with neon

    E-Print Network [OSTI]

    Gao, Cheng; Yuan, Jianmin

    2015-01-01

    Double core-hole (DCH) spectroscopy is investigated systematically for neon atomic system in the interaction with ultraintense x-ray pulses with photon energy from 937 eV to 2000 eV. A time-dependent rate equation, implemented in the detailed level accounting approximation, is utilized to study the dynamical evolution of the level population and emission properties of the highly transient plasmas. For x-ray pulses with photon energy in the range of 937-1030 eV, where $1s\\rightarrow 2p$ resonance absorption from single core-hole (SCH) states of neon charge states exist, inner-shell resonant absorption (IRA) effects play important roles in the time evolution of population and DCH spectroscopy. Such IRA physical effects are illustrated in detail by investigating the interaction of x-ray pulses at a photon energy of 944 eV, which corresponds to the $1s\\rightarrow 2p$ resonant absorption from the SCH states ($1s2s^22p^4$, $1s2s2p^5$ and $1s2p^6$) of Ne$^{3+}$. After averaging over the space and time distribution o...

  14. Observing heme doming in myoglobin with femtosecond X-ray absorption spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Levantino, M.; Lemke, H. T.; Schirò, G.; Glownia, M.; Cupane, A.; Cammarata, M.

    2015-07-01

    We report time-resolved X-ray absorption measurements after photolysis of carbonmonoxy myoglobin performed at the LCLS X-ray free electron laser with nearly 100 fs (FWHM) time resolution. Data at the Fe K-edge reveal that the photoinduced structural changes at the heme occur in two steps, with a faster (~70 fs) relaxation preceding a slower (~400 fs) one. We tentatively attribute the first relaxation to a structural rearrangement induced by photolysis involving essentially only the heme chromophore and the second relaxation to a residual Fe motion out of the heme plane that is coupled to the displacement of myoglobin F-helix.

  15. On Relativistic Disk Spectroscopy in Compact Objects with X-ray CCD Cameras

    E-Print Network [OSTI]

    Miller, J M; Bautz, M W; Bhattacharyya, S; Burrows, D N; Cackett, E M; Fabian, A C; Freyberg, M J; Haberl, F; Kennea, J; Nowak, M A; Reis, R C; Strohmayer, T E; Tsujimoto, M

    2010-01-01

    X-ray charge-coupled devices (CCDs) are the workhorse detectors of modern X-ray astronomy. Typically covering the 0.3-10.0 keV energy range, CCDs are able to detect photoelectric absorption edges and K shell lines from most abundant metals. New CCDs also offer resolutions of 30-50 (E/dE), which is sufficient to detect lines in hot plasmas and to resolve many lines shaped by dynamical processes in accretion flows. The spectral capabilities of X-ray CCDs have been particularly important in detecting relativistic emission lines from the inner disks around accreting neutron stars and black holes. One drawback of X-ray CCDs is that spectra can be distorted by photon "pile-up", wherein two or more photons may be registered as a single event during one frame time. We have conducted a large number of simulations using a statistical model of photon pile-up to assess its impacts on relativistic disk line and continuum spectra from stellar-mass black holes and neutron stars. The simulations cover the range of current X-...

  16. Suzaku Spectroscopy of the Extended X-Ray Emission in M17

    E-Print Network [OSTI]

    Yoshiaki Hyodo; Masahiro Tsujimoto; Kenji Hamaguchi; Katsuji Koyama; Shunji Kitamoto; Yoshitomo Maeda; Yohko Tsuboi; Yuichiro Ezoe

    2007-07-27

    We present the results of a Suzaku spectroscopic study of the soft extended X-ray emission in the HII region M17. The spectrum of the extended emission was obtained with a high signal-to-noise ratio in a spatially-resolved manner using the X-ray Imaging Spectrometer (XIS). We established that the contamination by unresolved point sources, the Galactic Ridge X-ray emission, the cosmic X-ray background, and the local hot bubble emission is negligible in the background-subtracted XIS spectrum of the diffuse emission. Half a dozen of emission lines were resolved clearly for the first time, including K lines of highly ionized O, Ne, and Mg as well as L series complex of Fe at 0.5--1.5 keV. Based on the diagnosis of these lines, we obtained the following results: (1) the extended emission is an optically-thin thermal plasma represented well by a single temperature of 3.0 +/- 0.4 MK, (2) the abundances of elements with emission lines in the diffuse spectrum are 0.1--0.3 solar, while those of bright discrete sources are 0.3--1.5 solar, (3) the metal abundances relative to each other in the diffuse emission are consistent with solar except for a Ne enhancement of a factor of 2, (4) both the plasma temperature and the chemical composition of the diffuse emission show no spatial variation across the studied spatial scale of about 5 pc.

  17. Center for X-Ray Optics, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    This report discusses the following topics: Center for X-Ray Optics; Soft X-Ray Imaging wit Zone Plate Lenses; Biological X-Ray microscopy; Extreme Ultraviolet Lithography for Nanoelectronic Pattern Transfer; Multilayer Reflective Optics; EUV/Soft X-ray Reflectometer; Photoemission Microscopy with Reflective Optics; Spectroscopy with Soft X-Rays; Hard X-Ray Microprobe; Coronary Angiography; and Atomic Scattering Factors.

  18. Transition state spectroscopy of the I + HI reaction in clusters: Photoelectron spectroscopy of (n = 115)IHI-- Ar

    E-Print Network [OSTI]

    Neumark, Daniel M.

    Transition state spectroscopy of the I + HI reaction in clusters: Photoelectron spectroscopy of (n spectroscopy and dynamics of the I ] HI reaction by measuring the anion photoelectron (PE) spectra Ar, and BrHI~ É Ar were studied in our laboratory. In this paper weIHI~ É N 2 O,18,19 examine

  19. Probing Reaction Dynamics of Transition-Metal Complexes in Solution via Time-Resolved X-ray Spectroscopy

    SciTech Connect (OSTI)

    Huse, Nils; Khalil, Munira; Kim, Tae Kyu; Smeigh, Amanda L.; Jamula, Lindsey; McCusker, James K.; Schoenlein, Robert W.

    2009-05-24

    We report measurements of the photo-induced Fe(II) spin crossover reaction dynamics in solution via time-resolved x-ray absorption spectroscopy. EXAFS measurements reveal that the iron?nitrogen bond lengthens by 0.21+-0.03 Angstrom in the high-spin transient excited state relative to the ground state. XANES measurements at the Fe L-edge show directly the influence of the structural change on the ligand-field splitting of the Fe(II) 3d orbitals associated with the spin transition.

  20. Local detection of X-ray spectroscopies with an in-situ Atomic Force Microscope

    E-Print Network [OSTI]

    Rodrigues, Mario S; LE Denmat, Simon; Chevrier, Joel; Felici, Roberto; Comin, Fabio

    2008-01-01

    We show how the in situ combination of Scanning Probe Microscopies (SPM) with X-ray microbeams enables many new experiments in the synchrotron radiation domain. Our instrument is based on an optics free AFM/STM that can be directly installed on most of the SR X-ray end stations. The instrument can be simply used for AFM imaging of the investigated sample or it can be used for detection of photoemitted electrons with a sharp STM like tungsten tip, thus leading to locally measure the EXAFS signal. Alternatively one can measure the photons absorbed by the tip, thus locally detecting diffraction. In this paper, we show examples of both measurements. We also describe the experimental setup and the tip-beam interaction that is a key point for alignment procedures. We finally show how these features can be exploited in an extended variety of domains, nanosciences and nanomechanics, just to name a few.

  1. Investigating inertial confinement fusion target fuel conditions through x-ray spectroscopy

    SciTech Connect (OSTI)

    Hansen, Stephanie B. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2012-05-15

    Inertial confinement fusion (ICF) targets are designed to produce hot, dense fuel in a neutron-producing core that is surrounded by a shell of compressing material. The x-rays emitted from ICF plasmas can be analyzed to reveal details of the temperatures, densities, gradients, velocities, and mix characteristics of ICF targets. Such diagnostics are critical to understand the target performance and to improve the predictive power of simulation codes.

  2. Broadband X-ray Spectroscopy of GRS 1915+105 A. Rau, J. Greiner

    E-Print Network [OSTI]

    Greiner, Jochen

    ) the 3-200 keV power law ux and b) the 2.25 GHz Green Bank Interferometer (GBI) radio ux. pivotes at 10 and 1998. The X-ray spectrum is dominated by the power law component. We found (i) that the power law is pivoting at 10-30 keV, (ii) that the power law slope correlates with radio ux, (iii) three di#11;erent

  3. SPIN POLARIZED PHOTOELECTRON SPECTROSCOPY AS A PROBE OF MAGNETIC SYSTEMS.

    SciTech Connect (OSTI)

    JOHNSON, P.D.; GUNTHERODT, G.

    2006-11-01

    Spin-polarized photoelectron spectroscopy has developed into a versatile tool for the study of surface and thin film magnetism. In this chapter, we examine the methodology of the technique and its recent application to a number of different problems. We first examine the photoemission process itself followed by a detailed review of spin-polarization measurement techniques and the related experimental requirements. We review studies of spin polarized surface states, interface states and quantum well states followed by studies of the technologically important oxide systems including half-metallic transition metal oxides, ferromagnet/oxide interfaces and the antiferromagnetic cuprates that exhibit high Tc Superconductivity. We also discuss the application of high-resolution photoemission with spin resolving capabilities to the study of spin dependent self energy effects.

  4. X-Ray Photon Correlation Spectroscopy Reveals Intermittent Aging Dynamics in a Metallic Glass

    E-Print Network [OSTI]

    Zach Evenson; Beatrice Ruta; Simon Hechler; Moritz Stolpe; Eloi Pineda; Isabella Gallino; Ralf Busch

    2015-09-02

    We use coherent X-rays to probe the aging dynamics of a metallic glass directly on the atomic level. Contrary to the common assumption of a steady slowing down of the dynamics usually observed in macroscopic studies, we show that the structural relaxation processes underlying aging in this metallic glass are intermittent and highly heterogeneous at the atomic scale. Moreover, physical aging is triggered by cooperative atomic rearrangements, driven by the relaxation of internal stresses. The rich diversity of this behavior reflects a complex energy landscape, giving rise to a unique type of glassy-state dynamics.

  5. X-ray continuum emission spectroscopy from hot dense matter at Gbar pressures

    SciTech Connect (OSTI)

    Kraus, D., E-mail: dominik.kraus@berkeley.edu; Falcone, R. W. [Department of Physics, University of California, Berkeley, California 94720 (United States); Döppner, T.; Kritcher, A. L.; Bachmann, B.; Collins, G. W.; Hawreliak, J. A.; Landen, O. L.; Ma, T.; Le Pape, S.; Swift, D. C. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Chapman, D. A. [Plasma Physics Group, Radiation Physics Department, AWE plc, Reading RG7 4PR, United Kingdom and Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94309 (United States); Neumayer, P. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany)

    2014-11-15

    We have measured the time-resolved x-ray continuum emission spectrum of ?30 times compressed polystyrene created at stagnation of spherically convergent shock waves within the Gbar fundamental science campaign at the National Ignition Facility. From an exponential emission slope between 7.7 keV and 8.1 keV photon energy and using an emission model which accounts for reabsorption, we infer an average electron temperature of 375 ± 21 eV, which is in good agreement with HYDRA-1D simulations.

  6. Suzaku X-Ray Spectroscopy of a Peculiar Hot Star in the Galactic Center Region

    E-Print Network [OSTI]

    Yoshiaki Hyodo; Masahiro Tsujimoto; Katsuji Koyama; Shogo Nishiyama; Tetsuya Nagata; Itsuki Sakon; Hiroshi Murakami; Hironori Matsumoto

    2007-12-03

    We present the results of a Suzaku study of a bright point-like source in the 6.7 keV intensity map of the Galactic center region. We detected an intense FeXXV 6.7 keV line with an equivalent width of ~1 keV as well as emission lines of highly ionized Ar and Ca from a spectrum obtained by the X-ray Imaging Spectrometer. The overall spectrum is described very well by a heavily absorbed (~2x10^{23}cm^{-2}) thin thermal plasma model with a temperature of 3.8+/-0.6 keV and a luminosity of ~3x10^{34} erg s^{-1} (2.0--8.0 keV) at 8 kpc. The absorption, temperature, luminosity, and the 6.7 keV line intensity were confirmed with the archived XMM-Newton data. The source has a very red (J-Ks=8.2 mag) infrared spectral energy distribution (SED), which was fitted by a blackbody emission of ~1000 K attenuated by a visual extinction of ~31 mag. The high plasma temperature and the large X-ray luminosity are consistent with a wind-wind colliding Wolf-Rayet binary. The similarity of the SED to those of the eponymous Quintuplet cluster members suggests that the source is a WC-type source.

  7. Deep X-ray spectroscopy and imaging of the Seyfert 2 galaxy, ESO 138-G001

    E-Print Network [OSTI]

    De Cicco, M; Bianchi, S; Piconcelli, E; Violino, G; Vignali, C; Nicastro, F

    2015-01-01

    We present a spectral and imaging analysis of the XMM-Newton and Chandra observations of the Seyfert 2 galaxy ESO138-G001, with the aim of characterizing the circumnuclear material responsible for the soft (0.3-2.0 keV) and hard (5-10 keV) X-ray emission. We confirm that the source is absorbed by Compton-thick gas. However, if a self-consistent model of reprocessing from cold toroidal material is used (MYTorus), a possible scenario requires the absorber to be inhomogenous, its column density along the line of sight being larger than the average column density integrated over all lines- of-sight through the torus. The iron emission line may be produced by moderately ionised iron (FeXII-FeXIII), as suggested by the shifted centroid energy and the low K{\\beta}/K{\\alpha} flux ratio. The soft X-ray emission is dominated by emission features, whose main excitation mechanism appears to be photoionisation, as confirmed by line diagnostics and the use of self-consistent models (CLOUDY).

  8. X-ray line polarization spectroscopy of Li-like satellite line...

    Office of Scientific and Technical Information (OSTI)

    United States Language: English Subject: 74; ANISOTROPY; DISTRIBUTION FUNCTIONS; ELECTRONS; KINETICS; LASERS; PLASMA; POLARIZATION; PULSES; SATELLITES; SPECTRA; SPECTROSCOPY...

  9. X-ray Spectroscopy with Elliptical Crystals and Face-On Framing Cameras

    SciTech Connect (OSTI)

    Heeter, R; Emig, J; Fournier, K; Hansen, S; May, M; Young, B

    2004-04-16

    X-ray spectrometers using elliptically bent crystals have desirable properties for applications requiring broad spectral coverage, good spectral resolution, and minimized source broadening. Previous work used custom-positioned film or microchannel plate detectors. They find it is also useful and cost-effective to field elliptical crystals in existing snouts on the face-on gated microchannel plate framing cameras commonly used at many facilities. they numerically explored the full design space (spectral range and resolution) of elliptical crystals compatible with the new MSPEC multipurpose spectrometer snout. They have tested at the Omega laser an elliptical RAP crystal with 174 mm focal length, 0.9885 eccentricity, and 4.6 degree inclination, viewing from 1.0 to at least 1.7 keV with E/dE of 300-500. A slit (2x mag) images 3 mm sources with 70 um spatial resolution.

  10. X-ray spectroscopy with elliptical crystals and face-on framing cameras

    SciTech Connect (OSTI)

    Heeter, R.F.; Emig, J.A.; Fournier, K.B.; Hansen, S.B.; May, M.J.; Young, B.K.F.

    2004-10-01

    X-ray spectrometers using elliptically bent crystals have desirable properties for applications requiring broad spectral coverage, good spectral resolution, and minimized source broadening. Previous work used custom-positioned film or microchannel plate detectors. We find it is also useful and cost-effective to field elliptical crystals in existing snouts on the face-on gated microchannel plate framing cameras commonly used at many facilities. We numerically explored the full design space (spectral range and resolution) of elliptical crystals compatible with the new multipurpose spectrometer snout. We have tested at the Omega laser an elliptical rubidium acid phthalate crystal with 174 mm focal length, 0.9885 eccentricity, and 4.6 deg. inclination, viewing from 1.0 to at least 1.7 keV with spectral resolution E/dE of 300-500. A slit (2xmagnification) images 3 mm sources with 70 {mu}m spatial resolution.

  11. Proceedings of the eighth international colloquium on ultraviolet and x-ray spectroscopy of astrophysical and laboratory plasmas (IAU colloquium 86)

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    This volume represents the Proceedings of the Eighth International Colloquium on Ultraviolet and X-Ray Spectroscopy of Astrophysical and Laboratory Plasmas. The aim of this series of colloquia has been to bring together workers in the fields of astrophysical spectroscopy, laboratory spectroscopy and atomic physics in order to exchange ideas and results on problems which are common to these different disciplines. In addition to the presented papers there was a poster paper session. (WRF)

  12. SiO2 thickness determination by x-ray photoelectron spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, Rutherford

    E-Print Network [OSTI]

    Florida, University of

    University, Uxbridge UB8 3PH, United Kingdom R. J. Bleiler Evans Texas, Round Rock, Texas 78681 K. Jones- creases in the projected range, Rp , of low energy ion im- plants. There are a number of analytical , nuclear reaction analysis NRA , and capacitance­voltage C­V measurements. In this study, we will compare

  13. Revealing the accretion disc corona in Mrk 335 with multi-epoch X-ray spectroscopy

    E-Print Network [OSTI]

    Keek, L

    2015-01-01

    Active galactic nuclei host an accretion disc with an X-ray producing corona around a supermassive black hole. In bright sources, such as the Seyfert 1 galaxy Mrk 335, reflection of the coronal emission off the accretion disc has been observed. Reflection produces spectral features such as an Fe K$\\alpha$ emission line, which allow for properties of the inner accretion disc and the corona to be constrained. We perform a multi-epoch spectral analysis of all XMM-Newton, Suzaku, and NuSTAR observations of Mrk 335, and we optimize our fitting procedure to unveil correlations between the Eddington ratio and the spectral parameters. We find that the disc's ionization parameter correlates strongly with the Eddington ratio: the inner disc is more strongly ionized at higher flux. The slope of the correlation is less steep than previously predicted. Furthermore, the cut-off of the power-law spectrum increases in energy with the Eddington ratio, whereas the reflection fraction exhibits a decrease. We interpret this beha...

  14. Some new schemes for producing high-accuracy elliptical X-ray mirrors by elastic bending

    SciTech Connect (OSTI)

    Padmore, H.A.; Howells, M.R.; Irick, S.; Renner, T.; Sandler, R.; Koo, Y.-M.

    1996-08-01

    Although x-ray micro-foci can be produced by a variety of diffractive methods, grazing incidence mirrors are the only route to an achromatic focus. In this paper we describe our efforts to produce elliptically shaped mirrors with the very high figure accuracy necessary for producing a micro-focus. The motivation for this work is provided by the need to produce achromatic foci for a range of applications ranging from tunable micro-focus x-ray photoelectron spectroscopy ({mu}-XPS) at soft x-ray energies to micro-focus white beam x-ray diffraction ({mu}-XRD) at hard x-ray energies. We describe the methodology of beam bending, a practical example of a system we have produced for {mu}-XRD, and results demonstrating the production of a surface with micro-radian figure accuracy.

  15. High energy x-ray diffraction/x-ray fluorescence spectroscopy for high-throughput analysis of composition spread thin films

    SciTech Connect (OSTI)

    Gregoire, John M. [Department of Physics, and Cornell Fuel Cell Institute, Cornell University, Ithaca, New York 14853 (United States); Dale, Darren; Kazimirov, Alexander [Cornell High Energy Synchrotron Source, Cornell University, New York 14853 (United States); DiSalvo, Francis J. [Department of Chemistry and Chemical Biology, and Cornell Fuel Cell Institute, Cornell University, New York 14853 (United States); Dover, R. Bruce van [Department of Materials Science and Engineering, and Cornell Fuel Cell Institute, Cornell University, New York 14853 (United States)

    2009-12-15

    High-throughput crystallography is an important tool in materials research, particularly for the rapid assessment of structure-property relationships. We present a technique for simultaneous acquisition of diffraction images and fluorescence spectra on a continuous composition spread thin film using a 60 keV x-ray source. Subsequent noninteractive data processing provides maps of the diffraction profiles, thin film fiber texture, and composition. Even for highly textured films, our diffraction technique provides detection of diffraction from each family of Bragg reflections, which affords direct comparison of the measured profiles with powder patterns of known phases. These techniques are important for high throughput combinatorial studies as they provide structure and composition maps which may be correlated with performance trends within an inorganic library.

  16. Near-edge X-ray absorption fine-structure spectroscopy of naphthalene diimide-thiophene co-polymers

    SciTech Connect (OSTI)

    Gann, Eliot; McNeill, Christopher R., E-mail: christopher.mcneill@monash.edu [Department of Materials Engineering, Monash University, Wellington Road, Clayton, Victoria 3800 (Australia); Szumilo, Monika; Sirringhaus, Henning [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)] [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Sommer, Michael [Institute of Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg (Germany)] [Institute of Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg (Germany); Maniam, Subashani; Langford, Steven J. [School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800 (Australia)] [School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800 (Australia); Thomsen, Lars [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)] [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)

    2014-04-28

    Near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy is an important tool for probing the structure of conjugated polymer films used in organic electronic devices. High-performance conjugated polymers are often donor-acceptor co-polymers which feature a repeat unit with multiple functional groups. To facilitate better application of NEXAFS spectroscopy to the study of such materials, improved understanding of the observed NEXAFS spectral features is required. In order to examine how the NEXAFS spectrum of a donor-acceptor co-polymer relates to the properties of the sub-units, a series of naphthalene diimide-thiophene-based co-polymers have been studied where the nature and length of the donor co-monomer has been systematically varied. The spectra of these materials are compared with that of a thiophene homopolymer and naphthalene diimide monomer enabling peak assignment and the influence of inter-unit electronic coupling to be assessed. We find that while it is possible to attribute peaks within the ?* manifold as arising primarily due to the naphthalene diimide or thiophene sub-units, very similar dichroism of these peaks is observed indicating that it may not be possible to separately probe the molecular orientation of the separate sub-units with carbon K-edge NEXAFS spectroscopy.

  17. Suzaku Spectroscopy Study of Hard X-Ray Emission in the Arches Cluster

    E-Print Network [OSTI]

    M. Tsujimoto; Y. Hyodo; K. Koyama

    2006-11-03

    We present the results of a Suzaku study of the Arches cluster. A high S/N spectrum in the 3-12 keV band was obtained with the XIS. We found that the spectrum consists of a thermal plasma, a hard power-law tail, and two Gaussian lines. The plasma component (kT~2.2 keV) is established from the presence of CaXIX and FeXXV K alpha lines as well as the absence of FeXXVI K alpha line. The two Gaussian lines represent the K alpha and beta lines from iron at lower ionization stages. Both the line centers and the intensity ratio of these two lines are consistent with the neutral iron. The hard power-law tail (index~0.7) was found to have no pronounced iron K edge feature. In comparison with the published Chandra spectra, we conclude that the thermal component is from the ensemble of point-like sources plus thermal diffuse emission concentrated at the cluster center, while the Gaussian and the hard tail components are from the non-thermal diffuse emission extended in a larger scale. In the band-limited XIS images, the distribution of the 7.5-10.0 keV emission resembles that of the 6.4 keV emission. This strongly suggests that the power-law emission is related to the 6.4 and 7.1 keV lines in the underlying physics. We discuss two ideas to explain both the hard continuum and the lines: (1) X-ray photoionization that produces fluorescence lines and the Thomson scattering continuum and (2) non-thermal electron impact ionization of iron atoms and bremsstrahlung continuum. But whichever scenario is adopted, the photon or particle flux from the Arches cluster is too low to account for the observed line and continuum intensity.

  18. Local structure of Fe in Fe-doped misfit-layered calcium cobaltite: An X-ray absorption spectroscopy study

    SciTech Connect (OSTI)

    Prasoetsopha, Natkrita; Pinitsoontorn, Supree; Bootchanont, Atipong; Kidkhunthod, Pinit; Srepusharawoot, Pornjuk; Kamwanna, Teerasak; Amornkitbamrung, Vittaya; Kurosaki, Ken; Yamanaka, Shinsuke

    2013-08-15

    Polycrystalline Ca{sub 3}Co{sub 4?x}Fe{sub x}O{sub 9+?} ceramics (x=0, 0.01, 0.03, 0.05) were fabricated using a simple thermal hydro-decomposition method and a spark plasma sintering technique. Thermoelectric property measurements showed that increasing Fe concentration resulted in a decrease in electrical resistivity, thermopower and thermal conductivity, leading to an improvement in the dimensionless figure-of-merit, >35% for x=0.05 at 1073 K. An X-ray absorption spectroscopy technique was used to investigate the local structure of Fe ions in the Ca{sub 3}Co{sub 4?x}Fe{sub x}O{sub 9+?} structure for the first time. By fitting data from the extended X-ray absorption fine structure (EXAFS) spectra and analyzing the X-ray absorption near-edge structure (XANES) spectra incorporated with first principle simulation, it was shown that Fe was substituted for Co in the the Ca{sub 2}CoO{sub 3} (rocksalt, RS) layer rather than in the CoO{sub 2} layer. Variation in the thermoelectric properties as a function of Fe concentration was attributed to charge transfer between the CoO{sub 2} and the RS layers. The origin of the preferential Fe substitution site was investigated considering the ionic radii of Co and Fe and the total energy of the system. - Graphical abstract: The Fe K-edge XANES spectra of: (a) experimental result in comparison to the simulated spectra when Fe atoms were substituted in the RS layer; (b) with magnetic moment; (c) without magnetic moment, and in the CoO{sub 2} layer; (d) with magnetic moment and (e) without magnetic moment. Highlights: • Synthesis, structural studies, and thermoelectric properties of Ca{sub 3}Co{sub 4?x}Fe{sub x}O{sub 9+?}. • Direct evidence for the local structure of the Fe ions in the Ca{sub 3}Co{sub 4?x}Fe{sub x}O{sub 9+?} using XAS analysis. • EXAFS and XANES analysis showed that Fe was likely to be situated in the RS layer structure. • Changes in TE property with Fe content was due to charge transfer between the CoO{sub 2} and the RS layers. • Total energy calculation showed energetically favorable Fe substitution in the RS layer.

  19. Determining Orientational Structure of Diamondoid Thiols Attached to Silver Using Near Edge X-ray Absorption Fine Structure Spectroscopy

    SciTech Connect (OSTI)

    Willey, T M; Lee, J I; Fabbri, J D; Wang, D; Nielsen, M; Randel, J C; Schreiner, P R; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J P; Carlson, R K; Terminello, L J; Melosh, N A; van Buuren, T

    2008-10-07

    Near-edge x-ray absorption fine structure spectroscopy (NEXAFS) is a powerful tool for determination of molecular orientation in self-assembled monolayers and other surface-attached molecules. A general framework for using NEXAFS to simultaneously determine molecular tilt and twist of rigid molecules attached to surfaces is presented. This framework is applied to self-assembled monolayers of higher diamondoid, hydrocarbon molecules with cubic-diamond-cage structures. Diamondoid monolayers chemisorbed on metal substrates are known to exhibit interesting electronic and surface properties. This work compares molecular orientation in monolayers prepared on silver substrates using two different thiol positional isomers of [121]tetramantane, and thiols derived from two different pentamantane structural isomers, [1212]pentamantane and [1(2,3)4]pentamantane. The observed differences in monolayer structure demonstrate the utility and limitations of NEXAFS spectroscopy and the framework. The results also demonstrate the ability to control diamondoid assembly, in particular the molecular orientational structure, providing a flexible platform for the modification of surface properties with this exciting new class of nanodiamond materials.

  20. The Electron-Phonon Interaction as Studied by Photoelectron Spectroscopy

    SciTech Connect (OSTI)

    D.W. Lynch

    2004-09-30

    With recent advances in energy and angle resolution, the effects of electron-phonon interactions are manifest in many valence-band photoelectron spectra (PES) for states near the Fermi level in metals.

  1. HIGH-RESOLUTION X-RAY SPECTROSCOPY REVEALS THE SPECIAL NATURE OF WOLF-RAYET STAR WINDS

    E-Print Network [OSTI]

    Oskinova, L. M.

    We present the first high-resolution X-ray spectrum of a putatively single Wolf-Rayet (WR) star. 400 ks observations of WR 6 by the XMM-Newton telescope resulted in a superb quality high-resolution X-ray spectrum. Spectral ...

  2. Spatially resolved high-resolution x-ray spectroscopy of high-current plasma-focus discharges

    SciTech Connect (OSTI)

    ZajaPc, S.; Rzadkiewicz, J.; Scholz, M.; Paduch, M.; Zielinska, E.; Rosmej, O.; Yongtao, Zhao; Gojska, A.

    2010-10-15

    Soft x-ray emission from a Mather-type plasma-focus device (PF-1000) operated at {approx}400 kJ was measured. The high density and temperature plasma were generated by the discharge in the deuterium-argon gas mixture in the modified (high-current) plasma-focus configuration. A spherically bent mica crystal spectrograph viewing the axial output of the pinch region was used to measure the x-ray spectra. Spatially resolved spectra including the characteristic x-ray lines of highly ionized Ar and continua were recorded by means of an x-ray film. The x-ray emission of PF-1000 device was studied at different areas of the pinch.

  3. High energy resolution five-crystal spectrometer for high quality fluorescence and absorption measurements on an x-ray absorption spectroscopy beamline

    SciTech Connect (OSTI)

    Llorens, Isabelle; Lahera, Eric; Delnet, William; Proux, Olivier; Dermigny, Quentin; Gelebart, Frederic; Morand, Marc; Shukla, Abhay; Bardou, Nathalie; Ulrich, Olivier; and others

    2012-06-15

    Fluorescence detection is classically achieved with a solid state detector (SSD) on x-ray absorption spectroscopy (XAS) beamlines. This kind of detection however presents some limitations related to the limited energy resolution and saturation. Crystal analyzer spectrometers (CAS) based on a Johann-type geometry have been developed to overcome these limitations. We have tested and installed such a system on the BM30B/CRG-FAME XAS beamline at the ESRF dedicated to the structural investigation of very dilute systems in environmental, material and biological sciences. The spectrometer has been designed to be a mobile device for easy integration in multi-purpose hard x-ray synchrotron beamlines or even with a laboratory x-ray source. The CAS allows to collect x-ray photons from a large solid angle with five spherically bent crystals. It will cover a large energy range allowing to probe fluorescence lines characteristic of all the elements from Ca (Z = 20) to U (Z = 92). It provides an energy resolution of 1-2 eV. XAS spectroscopy is the main application of this device even if other spectroscopic techniques (RIXS, XES, XRS, etc.) can be also achieved with it. The performances of the CAS are illustrated by two experiments that are difficult or impossible to perform with SSD and the complementarity of the CAS vs SSD detectors is discussed.

  4. Broadband spectroscopy of the eclipsing high mass X-ray binary 4U 1700-37 with Suzaku

    E-Print Network [OSTI]

    Jaisawal, Gaurava K

    2015-01-01

    We present the results obtained from broadband spectroscopy of the high mass X-ray binary 4U 1700-37 using data from a Suzaku observation in 2006 September 13-14 covering 0.29-0.72 orbital phase range. The light curves showed significant and rapid variation in source flux during entire observation. We did not find any signature of pulsations in the light curves. However, a quasi-periodic oscillation at ~20 mHz was detected in the power density spectrum of the source. The 1-70 keV spectrum was fitted with various continuum models. However, we found that the partially absorbed high energy cutoff power-law and Negative and Positive power-law with Exponential cutoff (NPEX) models described the source spectrum well. Iron emission lines at 6.4 keV and 7.1 keV were detected in the source spectrum. An absorption like feature at ~39 keV was detected in the residuals while fitting the data with NPEX model. Considering the feature as cyclotron absorption line, the surface magnetic field of the neutron star was estimated...

  5. X-ray absorption spectroscopy of LiBF 4 in propylene carbonate. A model lithium ion battery electrolyte

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smith, Jacob W.; Lam, Royce K.; Sheardy, Alex T.; Shih, Orion; Rizzuto, Anthony M.; Borodin, Oleg; Harris, Stephen J.; Prendergast, David; Saykally, Richard J.

    2014-08-20

    Since their introduction into the commercial marketplace in 1991, lithium ion batteries have become increasingly ubiquitous in portable technology. Nevertheless, improvements to existing battery technology are necessary to expand their utility for larger-scale applications, such as electric vehicles. Advances may be realized from improvements to the liquid electrolyte; however, current understanding of the liquid structure and properties remains incomplete. X-ray absorption spectroscopy of solutions of LiBF4 in propylene carbonate (PC), interpreted using first-principles electronic structure calculations within the eXcited electron and Core Hole (XCH) approximation, yields new insight into the solvation structure of the Li+ ion in this model electrolyte.more »By generating linear combinations of the computed spectra of Li+-associating and free PC molecules and comparing to the experimental spectrum, we find a Li+–solvent interaction number of 4.5. This result suggests that computational models of lithium ion battery electrolytes should move beyond tetrahedral coordination structures.« less

  6. Atomic-Scale Chemical Imaging and Quantification of Metallic Alloy Structures by Energy-Dispersive X-Ray Spectroscopy

    SciTech Connect (OSTI)

    Lu, Ping [Sandia National Laboratories; Zhou, Lin [Ames Laboratory; Kramer, Matthew J. [Ames Laboratory; Smith, David J. [Arizona State University

    2014-02-04

    Determination of atomic-scale crystal structure for nanostructured intermetallic alloys, such as magnetic alloys containing Al, Ni, Co (alnico) and Fe, is crucial for understanding physical properties such as magnetism, but technically challenging due to the small interatomic distances and the similar atomic numbers. By applying energy-dispersive X-ray spectroscopy (EDS) mapping to the study of two intermetallic phases of an alnico alloy resulting from spinodal decomposition, we have determined atomic-scale chemical composition at individual lattice sites for the two phases: one is the B2 phase with Fe0.76Co0.24 -Fe0.40Co0.60 ordering and the other is the L21 phase with Ni0.48Co0.52 at A-sites, Al at B?-sites and Fe0.20Ti0.80 at B??-sites, respectively. The technique developed through this study represents a powerful real-space approach to investigate structure chemically at the atomic scale for a wide range of materials systems.

  7. Fabrication of high-throughput critical-angle X-ray transmission gratings for wavelength-dispersive spectroscopy

    E-Print Network [OSTI]

    Bruccoleri, Alexander Robert

    2013-01-01

    The development of the critical-angle transmission (CAT) grating seeks both an order of magnitude improvement in the effective area, and a factor of three increase in the resolving power of future space-based, soft x-ray ...

  8. Speciation of Lead in a Mixed Soil Component System Using X-ray Absorption Fine Structure Spectroscopy

    E-Print Network [OSTI]

    Sparks, Donald L.

    Speciation of Lead in a Mixed Soil Component System Using X-ray Absorption Fine Structure (XAFS). Lead concentrations of 6000, 18000, and 29000 µg Pb/g solid were reacted with soil components

  9. X-ray emission from O stars

    E-Print Network [OSTI]

    David H. Cohen

    2008-02-01

    Young O stars are strong, hard, and variable X-ray sources, properties which strongly affect their circumstellar and galactic environments. After ~1 Myr, these stars settle down to become steady sources of soft X-rays. I use high-resolution X-ray spectroscopy and MHD modeling to show that young O stars like theta-1 Ori C are well explained by the magnetically channeled wind shock scenario. After their magnetic fields dissipate, older O stars produce X-rays via shock heating in their unstable stellar winds. Here too I use X-ray spectroscopy and numerical modeling to confirm this scenario. In addition to elucidating the nature and cause of the O star X-ray emission, modeling of the high-resolution X-ray spectra of O supergiants provides strong evidence that mass-loss rates of these O stars have been overestimated.

  10. Jet Papers presented to the 11th Colloquium on UV and X-Ray Spectroscopy of Astrophysical and Laboratory Plasmas (Nagoya, Japan, 29th May – 2nd June 1995)

    E-Print Network [OSTI]

    Jet Papers presented to the 11th Colloquium on UV and X-Ray Spectroscopy of Astrophysical and Laboratory Plasmas (Nagoya, Japan, 29th May – 2nd June 1995)

  11. Delocalization and occupancy effects of 5f orbitals in plutonium intermetallics using L3-edge resonant X-ray emission spectroscopy

    SciTech Connect (OSTI)

    Booth, C. H.; Medling, S. A.; Jiang, Yu; Bauer, E. D.; Tobash, P. H.; Mitchell, J. N.; Veirs, D. K.; Wall, M. A.; Allen, P. G.; Kas, J. J.; Sokaras, D.; Nordlund, D.; Weng, T.-C.

    2014-06-24

    Although actinide (An) L3 -edge X-ray absorption near-edge structure (XANES) spectroscopy has been very effective in determining An oxidation states in insulating, ionically bonded materials, such as in certain coordination compounds and mineral systems, the technique fails in systems featuring more delocalized 5f orbitals, especially in metals. Recently, actinide L3-edge resonant X-ray emission spec- troscopy (RXES) has been shown to be an effective alternative. This technique is further demonstrated here using a parameterized partial unoccupied density of states method to quantify both occupancy and delocalization of the 5f orbital in ?-Pu, ?-Pu, PuCoGa5 , PuCoIn5 , and PuSb2. These new results, supported by FEFF calculations, highlight the effects of strong correlations on RXES spectra and the technique?s ability to differentiate between f-orbital occupation and delocalization.

  12. Microgap x-ray detector

    DOE Patents [OSTI]

    Wuest, Craig R. (Danville, CA); Bionta, Richard M. (Livermore, CA); Ables, Elden (Livermore, CA)

    1994-01-01

    An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

  13. Microgap x-ray detector

    DOE Patents [OSTI]

    Wuest, C.R.; Bionta, R.M.; Ables, E.

    1994-05-03

    An x-ray detector is disclosed which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope. 3 figures.

  14. Room temperature reaction of oxygen with gold: an in situ ambient-pressure X-ray photoelectron spectroscopy investigation

    SciTech Connect (OSTI)

    Jiang, Peng; Porsgaard, Soeren; Borondics, Ferenc; Kober, Mariana; Caballero, Alfonso; Bluhm, Hendrik; Besenbacher, Flemming; Salmeron, Miquel

    2010-02-01

    Gold is commonly regarded as the most inert element.1 However, the discovery of the exceptional catalytic properties of gold nanoparticles (NPs) for low temperature CO oxidation2 initiated great interest due to its promising applications and spawned a large number of studies devoted to the understanding of the reaction mechanism.3-6 Nevertheless, no consistent and conclusive picture has arisen.7-13

  15. Carbon contamination and oxidation of Au surfaces under extreme ultraviolet radiation: An x-ray photoelectron spectroscopy study

    E-Print Network [OSTI]

    Harilal, S. S.

    Carbon contamination and oxidation of Au surfaces under extreme ultraviolet radiation: An x 2012) Extreme ultraviolet (EUV) radiation-induced carbon contamination and oxidation of Au surfaces modification during EUV exposure. XPS analysis showed that total carbon contamination (C 1s peak

  16. In situ x-ray photoelectron spectroscopy studies of gas/solid interfaces at near-ambient conditions

    E-Print Network [OSTI]

    Bluhm, Hendrik; Havecker, Michael; Knop-Gericke, Axel; Kiskinova, Maya; Schlogl, Robert; Salmeron, Miquel

    2008-01-01

    class of alcohol oxidation catalytic reactions. The CH 3 OHtechnique to oxidation and heterogeneous catalytic reactionsthe Ru oxidation states and their catalytic performance,

  17. Distribution and Structure of N Atoms in Multiwalled Carbon Nanotubes Using Variable-Energy X-Ray Photoelectron Spectroscopy

    E-Print Network [OSTI]

    Kim, Bongsoo

    Distribution and Structure of N Atoms in Multiwalled Carbon Nanotubes Using Variable-Energy X of concentration and electronic structure of the nitrogen (N) atoms doped in the multiwalled carbon nanotubes (CNTs of iron phthalocyanine (FePc), cobalt phthalocyanine (CoPc), and nickel phthalocyanine (Ni

  18. Time-resolved x-ray photoelectron spectroscopy techniques for real-time studies of interfacial charge transfer dynamics

    E-Print Network [OSTI]

    Neumark, Daniel M.

    charge transfer dynamics Andrey Shavorskiy, Amy Cordones, Josh Vura-Weis, Katrin Siefermann, Daniel, Joseph Robinson, Robert A. Kaindl, Robert W. Schoenlein, Ali Belkacem, Thorsten Weber, Daniel M. Neumark, Stephen R. Leone, Dennis Nordlund, Hirohito Ogasawara, Anders R. Nilsson, Oleg Krupin, Joshua J. Turner

  19. Probing temporal evolution of extreme ultraviolet assisted contamination on Ru mirror by x-ray photoelectron spectroscopy

    E-Print Network [OSTI]

    Harilal, S. S.

    Lafayette, Indiana 47907 B. Rice SEMATECH Inc., Albany, New York 12203 (Received 7 October 2011; accepted 4 concentration in the first 1 h followed by a slow but linear growth in the presence of EUV radiation. Further from plasma source to the mask and then to target wafer.5 However, Mo/Si MLM shows a very poor chemical

  20. Vibrational cooling in a cold ion trap: Vibrationally resolved photoelectron spectroscopy of cold C60

    E-Print Network [OSTI]

    Simons, Jack

    Vibrational cooling in a cold ion trap: Vibrationally resolved photoelectron spectroscopy of cold C August 2005 We demonstrate vibrational cooling of anions via collisions with a background gas in an ion cold C60 - anions, produced by electrospray ionization and cooled in the cold ion trap, have been

  1. An analytic model for the response of a CZT detector in diagnostic energy dispersive x-ray spectroscopy

    SciTech Connect (OSTI)

    LeClair, Robert J.; Wang Yinkun; Zhao Peiying; Boileau, Michel; Wang, Lilie; Fleurot, Fabrice [Department of Physics and Astronomy, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6 (Canada) and Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6 (Canada); Department of Physics and Astronomy, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6 (Canada)

    2006-05-15

    A CdZnTe detector (CZTD) can be very useful for measuring diagnostic x-ray spectra. The semiconductor detector does, however, exhibit poor hole transport properties and fluorescence generation upon atomic de-excitations. This article describes an analytic model to characterize these two phenomena that occur when a CZTD is exposed to diagnostic x rays. The analytical detector response functions compare well with those obtained via Monte Carlo calculations. The response functions were applied to 50, 80, and 110 kV x-ray spectra. Two 50 kV spectra were measured; one with no filtration and the other with 1.35 mm Al filtration. The unfiltered spectrum was numerically filtered with 1.35 mm of Al in order to see whether the recovered spectrum resembled the filtered spectrum actually measured. A deviation curve was obtained by subtracting one curve from the other on an energy bin by bin basis. The deviation pattern fluctuated around the zero line when corrections were applied to both spectra. Significant deviations from zero towards the lower energies were observed when the uncorrected spectra were used. Beside visual observations, the exposure obtained using the numerically attenuated unfiltered beam was compared to the exposure calculated with the actual filtered beam. The percent differences were 0.8% when corrections were applied and 25% for no corrections. The model can be used to correct diagnostic x-ray spectra measured with a CdZnTe detector.

  2. NuSTAR STUDY OF HARD X-RAY MORPHOLOGY AND SPECTROSCOPY OF PWN G21.5–0.9

    E-Print Network [OSTI]

    Nynka, Melania

    We present NuSTAR high-energy X-ray observations of the pulsar wind nebula (PWN)/supernova remnant G21.5–0.9. We detect integrated emission from the nebula up to ~40 keV, and resolve individual spatial features over a broad ...

  3. NuSTAR study of hard X-ray morphology and spectroscopy of PWN G21.5–0.9

    SciTech Connect (OSTI)

    Nynka, Melania; Hailey, Charles J.; Gotthelf, Eric V.; Mori, Kaya; Perez, Kerstin [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Reynolds, Stephen P. [Physics Department, NC State University, Raleigh, NC 27695 (United States); An, Hongjun [Department of Physics, McGill University, Rutherford Physics Building, 3600 University Street, Montreal, Quebec H3A 2T8 (Canada); Baganoff, Frederick K. [Center for Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Boggs, Steven E.; Krivonos, Roman; Zoglauer, Andreas [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Craig, William W. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Grefenstette, Brian W.; Harrison, Fiona A.; Madsen, Kristin K. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Wik, Daniel R.; Zhang, William W. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-07-01

    We present NuSTAR high-energy X-ray observations of the pulsar wind nebula (PWN)/supernova remnant G21.5–0.9. We detect integrated emission from the nebula up to ?40 keV, and resolve individual spatial features over a broad X-ray band for the first time. The morphology seen by NuSTAR agrees well with that seen by XMM-Newton and Chandra below 10 keV. At high energies, NuSTAR clearly detects non-thermal emission up to ?20 keV that extends along the eastern and northern rim of the supernova shell. The broadband images clearly demonstrate that X-ray emission from the North Spur and Eastern Limb results predominantly from non-thermal processes. We detect a break in the spatially integrated X-ray spectrum at ?9 keV that cannot be reproduced by current spectral energy distribution models, implying either a more complex electron injection spectrum or an additional process such as diffusion compared to what has been considered in previous work. We use spatially resolved maps to derive an energy-dependent cooling length scale, L(E)?E{sup m} with m = –0.21 ± 0.01. We find this to be inconsistent with the model for the morphological evolution with energy described by Kennel and Coroniti. This value, along with the observed steepening in power-law index between radio and X-ray, can be quantitatively explained as an energy-loss spectral break in the simple scaling model of Reynolds, assuming particle advection dominates over diffusion. This interpretation requires a substantial departure from spherical magnetohydrodynamic, magnetic-flux-conserving outflow, most plausibly in the form of turbulent magnetic-field amplification.

  4. High resolution absorption spectroscopy of exploding wire plasmas using an x-pinch x-ray source and spherically bent crystal

    SciTech Connect (OSTI)

    Knapp, P. F.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Hansen, S. B.

    2011-06-15

    We present here the use of absorption spectroscopy of the continuum radiation from x-pinch-produced point x-ray sources as a diagnostic to investigate the properties of aluminum plasmas created by pulsed power machines. This technique is being developed to determine the charge state, temperature, and density as a function of time and space under conditions that are inaccessible to x-ray emission spectroscopic diagnostics. The apparatus and its characterization are described, and the spectrometer dispersion, magnification, and resolution are calculated and compared with experimental results. Spectral resolution of about 5000 and spatial resolution of about 20 {mu}m are demonstrated. This spectral resolution is the highest available to date in an absorption experiment. The beneficial properties of the x-pinch x-ray source as the backlighter for this diagnostic are the small source size (<5 {mu}m), smooth continuum radiation, and short pulse duration (<0.1 ns). Results from a closely spaced (1 mm) exploding wire pair are shown and the general features are discussed.

  5. Photoelectron Spectroscopy under Ambient Pressure and Temperature Conditions

    SciTech Connect (OSTI)

    Ogletree, D. Frank; Bluhm, Hendrik; Hebenstreit, Eleonore B.; Salmeron, Miquel

    2009-02-27

    We describe the development and applications of novel instrumentation for photoemission spectroscopy of solid or liquid surfaces in the presence of gases under ambient conditions or pressure and temperature. The new instrument overcomes the strong scattering of electrons in gases by the use of an aperture close to the surface followed by a differentially-pumped electrostatic lens system. In addition to the scattering problem, experiments in the presence of condensed water or other liquids require the development of special sample holders to provide localized cooling. We discuss the first two generations of Ambient Pressure PhotoEmission Spectroscopy (APPES) instruments developed at synchrotron light sources (ALS in Berkeley and BESSY in Berlin), with special focus on the Berkeley instruments. Applications to environmental science and catalytic chemical research are illustrated in two examples.

  6. Influence of structural disorder on soft x-ray optical behavior of NbC thin films

    SciTech Connect (OSTI)

    Singh, Amol E-mail: rrcat.amol@gmail.com; Modi, Mohammed H.; Sinha, A. K.; Lodha, G. S.; Rajput, Parasmani

    2015-05-07

    Structural and chemical properties of compound materials are modified, when thin films are formed from bulk materials. To understand these changes, a study was pursued on niobium carbide (NbC) thin films of different thicknesses deposited on Si (100) substrate using ion beam sputtering technique. Optical response of the film was measured in 4–36?nm wavelength region using Indus-1 reflectivity beamline. A discrepancy in soft x-ray performance of NbC film was observed which could not be explained with Henke's tabulated data (see http://henke.lbl.gov/optical{sub c}onstants/ ). In order to understand this, detailed structural and chemical investigations were carried out using x-ray reflectivity, grazing incidence x-ray diffraction, x-ray absorption near edge structure, extended x-ray absorption fine structure, and x-ray photoelectron spectroscopy techniques. It was found that the presence of unreacted carbon and Nb deficiency due to reduced Nb-Nb coordination are responsible for lower soft x-ray reflectivity performance. NbC is an important material for soft x-ray optical devices, hence the structural disorder need to be controlled to achieve the best performances.

  7. Interaction of methanol and water on MgO,,100... studied by ultraviolet photoelectron and metastable impact electron spectroscopies

    E-Print Network [OSTI]

    Goodman, Wayne

    Interaction of methanol and water on MgO,,100... studied by ultraviolet photoelectron; accepted 27 October 1998 The coadsorption of methanol (CH3OH) and water (D2O) on the MgO 100 /Mo 100 photoelectron spectroscopy UPS HeI , and by thermal programmed desorption TPD . Methanol wets the MgO surface

  8. A high resolution and large solid angle x-ray Raman spectroscopy end-station at the Stanford Synchrotron Radiation Lightsource

    SciTech Connect (OSTI)

    Sokaras, D.; Nordlund, D.; Weng, T.-C.; Velikov, P.; Wenger, D.; Garachtchenko, A.; George, M.; Borzenets, V.; Johnson, B.; Rabedeau, T.; Mori, R. Alonso; Bergmann, U.; Qian, Q.

    2012-04-15

    We present a new x-ray Raman spectroscopy end-station recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The end-station is located at wiggler beamline 6-2 equipped with two monochromators-Si(111) and Si(311) as well as collimating and focusing optics. It consists of two multi-crystal Johann type spectrometers arranged on intersecting Rowland circles of 1 m diameter. The first one, positioned at the forward scattering angles (low-q), consists of 40 spherically bent and diced Si(110) crystals with 100 mm diameters providing about 1.9% of 4{pi} sr solid angle of detection. When operated in the (440) order in combination with the Si (311) monochromator, an overall energy resolution of 270 meV is obtained at 6462.20 eV. The second spectrometer, consisting of 14 spherically bent Si(110) crystal analyzers (not diced), is positioned at the backward scattering angles (high-q) enabling the study of non-dipole transitions. The solid angle of this spectrometer is about 0.9% of 4{pi} sr, with a combined energy resolution of 600 meV using the Si (311) monochromator. These features exceed the specifications of currently existing relevant instrumentation, opening new opportunities for the routine application of this photon-in/photon-out hard x-ray technique to emerging research in multidisciplinary scientific fields, such as energy-related sciences, material sciences, physical chemistry, etc.

  9. In situ apparatus for the study of clathrate hydrates relevant to solar system bodies using synchrotron X-ray diffraction and Raman spectroscopy

    E-Print Network [OSTI]

    Day, Sarah J; Evans, Aneurin; Parker, Julia E

    2015-01-01

    Clathrate hydrates are believed to play a significant role in various solar system environments, e.g. comets, and the surfaces and interiors of icy satellites, however the structural factors governing their formation and dissociation are poorly understood. We demonstrate the use of a high pressure gas cell, combined with variable temperature cooling and time-resolved data collection, to the in situ study of clathrate hydrates under conditions relevant to solar system environments. Clathrates formed and processed within the cell are monitored in situ using synchrotron X-ray powder diffraction and Raman spectroscopy. X-ray diffraction allows the formation of clathrate hydrates to be observed as CO2 gas is applied to ice formed within the cell. Complete conversion is obtained by annealing at temperatures just below the ice melting point. A subsequent rise in the quantity of clathrate is observed as the cell is thermally cycled. Four regions between 100-5000cm-1 are present in the Raman spectra that carry feature...

  10. Upgraded high time-resolved x-ray imaging crystal spectroscopy system for J-TEXT ohmic plasmas

    SciTech Connect (OSTI)

    Jin, W.; Chen, Z. Y. Huang, D. W.; Li, Q. L.; Yan, W.; Luo, Y. H.; Huang, Y. H.; Tong, R. H.; Yang, Z. J.; Rao, B.; Ding, Y. H.; Zhuang, G.; Lee, S. G.; Shi, Y. J.

    2014-02-15

    This paper presents the upgraded x-ray imaging crystal spectrometer (XICS) system on Joint Texas Experimental Tokamak (J-TEXT) tokamak and the latest experimental results obtained in last campaign. With 500 Hz frame rate of the new Pilatus detector and 5 cm × 10 cm spherically bent crystal, the XICS system can provide core electron temperature (T{sub e}), core ion temperature (T{sub i}), and plasma toroidal rotation (V{sub ?}) with a maximum temporal resolution of 2 ms for J-TEXT pure ohmic plasmas. These parameters with high temporal resolution are very useful in tokamak plasma research, especially for rapidly changed physical processes. The experimental results from the upgraded XICS system are presented.

  11. Direct speciation analysis of arsenic in sub-cellular compartments using micro-X-ray absorption spectroscopy

    SciTech Connect (OSTI)

    Bacquart, Thomas; Deves, Guillaume; Ortega, Richard

    2010-07-15

    Identification of arsenic chemical species at a sub-cellular level is a key to understanding the mechanisms involved in arsenic toxicology and antitumor pharmacology. When performed with a microbeam, X-ray absorption near-edge structure ({mu}-XANES) enables the direct speciation analysis of arsenic in sub-cellular compartments avoiding cell fractionation and other preparation steps that might modify the chemical species. This methodology couples tracking of cellular organelles in a single cell by confocal or epifluorescence microscopy with local analysis of chemical species by {mu}-XANES. Here we report the results obtained with a {mu}-XANES experimental setup based on Kirkpatrick-Baez X-ray focusing optics that maintains high flux of incoming radiation (>10{sup 11} ph/s) at micrometric spatial resolution (1.5x4.0 {mu}m{sup 2}). This original experimental setup enabled the direct speciation analysis of arsenic in sub-cellular organelles with a 10{sup -15} g detection limit. {mu}-XANES shows that inorganic arsenite, As(OH){sub 3}, is the main form of arsenic in the cytosol, nucleus, and mitochondrial network of cultured cancer cells exposed to As{sub 2}O{sub 3}. On the other hand, a predominance of As(III) species is observed in HepG2 cells exposed to As(OH){sub 3} with, in some cases, oxidation to a pentavalent form in nuclear structures of HepG2 cells. The observation of intra-nuclear mixed redox states suggests an inter-individual variability in a cell population that can only be evidenced with direct sub-cellular speciation analysis.

  12. Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles

    SciTech Connect (OSTI)

    Goldmann, Maximilian; Miguel-Sánchez, Javier; West, Adam H. C.; Yoder, Bruce L.; Signorell, Ruth

    2015-06-14

    We propose angle-resolved photoelectron spectroscopy of aerosol particles as an alternative way to determine the electron mean free path of low energy electrons in solid and liquid materials. The mean free path is obtained from fits of simulated photoemission images to experimental ones over a broad range of different aerosol particle sizes. The principal advantage of the aerosol approach is twofold. First, aerosol photoemission studies can be performed for many different materials, including liquids. Second, the size-dependent anisotropy of the photoelectrons can be exploited in addition to size-dependent changes in their kinetic energy. These finite size effects depend in different ways on the mean free path and thus provide more information on the mean free path than corresponding liquid jet, thin film, or bulk data. The present contribution is a proof of principle employing a simple model for the photoemission of electrons and preliminary experimental data for potassium chloride aerosol particles.

  13. Phase transitions in heated Sr{sub 2}MgTeO{sub 6} double perovskite oxide probed by X-ray diffraction and Raman spectroscopy

    SciTech Connect (OSTI)

    Manoun, Bouchaib Tamraoui, Y.; Lazor, P.; Yang, Wenge

    2013-12-23

    Double-perovskite oxide Sr{sub 2}MgTeO{sub 6} has been synthetized, and its crystal structure was probed by the technique of X-ray diffraction at room temperature. The structure is monoclinic, space group I2/m. Temperature-induced phase transitions in this compound were investigated by Raman spectroscopy up to 550?°C. Two low-wavenumber modes corresponding to external lattice vibrations merge at temperature of around 100?°C, indicating a phase transition from the monoclinic (I2/m) to the tetragonal (I4/m) structure. At 300?°C, changes in the slopes of temperature dependencies of external and O–Te–O bending modes are detected and interpreted as a second phase transition from the tetragonal (I4/m) to the cubic (Fm-3m) structure.

  14. Particle size effect of hydride formation and surface hydrogen absorption of nanosized palladium catalysts : L{sub 3} edge vs K edge x-ray absorption spectroscopy.

    SciTech Connect (OSTI)

    Tew, M. W.; Miller, J. T.; van Bokhoven, J. A.

    2009-08-01

    The particle size effect on the formation of palladium hydride and on surface hydrogen adsorption was studied at room temperature using in situ X-ray absorption spectroscopy at the Pd K and L{sub 3} edges. Hydride formation was indirectly observed by lattice expansion in Pd K edge XANES spectra and by EXAFS analysis. Hydride formation was directly detected in the L{sub 3} edge spectra. A characteristic spectral feature caused by the formation of a Pd-H antibonding state showed strong particle size dependence. The L{sub 3} edge spectra were reproduced using full multiple scattering analysis and density of state calculations, and the contributions of bulk absorbed and surface hydrogen to the XANES spectra could be distinguished. The ratio of hydrogen on the surface versus that in the bulk increased with decreasing particle size, and smaller particles dissolved less hydrogen.

  15. On Estimating the High-Energy Cutoff in the X-ray Spectra of Black Holes via Reflection Spectroscopy

    E-Print Network [OSTI]

    Garcia, Javier A; Steiner, James F; McClintock, Jeffrey E; Keck, Mason L; Wilms, Joern

    2015-01-01

    The fundamental parameters describing the coronal spectrum of an accreting black hole are the slope $\\Gamma$ of the power-law continuum and the energy $E_{cut}$ at which it rolls over. Remarkably, this parameter can be accurately measured for values as high as 1 MeV by modeling the spectrum of X-rays reflected from a black hole accretion disk at energies below 100 keV. This is possible because the details in the reflection spectrum, rich in fluorescent lines and other atomic features, are very sensitive to the spectral shape of the hardest coronal radiation illuminating the disk. We show that fitting simultaneous NuSTAR (3-79 keV) and low-energy (e.g., Suzaku) data with the most recent version of our reflection model RELXILL, one can obtain reasonable constraints on $E_{cut}$ at energies from tens of keV up to 1 MeV, for a source as faint as 1 mCrab in a 100 ks observation.

  16. Low-Dimensional Water on Ru(0001); Model System for X-ray Absorption Spectroscopy Studies of Liquid Water

    E-Print Network [OSTI]

    Nordlund, D.

    2009-01-01

    nm 2 STM image of isolated water molecules (bright spots) onLow-Dimensional Water on Ru(0001); Model System forSpectroscopy Studies of Liquid Water D. Nordlund 1 , H.

  17. Study of the low-lying electronic states of CCO by photoelectron spectroscopy of CCO and ab initio calculations

    E-Print Network [OSTI]

    Continetti, Robert E.

    Study of the low-lying electronic states of CCO by photoelectron spectroscopy of CCO and ab initio , studies of the energetics and dynamics of these molecules are of continued interest. Pho- toelectron spectroscopy of negative ions provides a powerful method for studying the structure and energetics of both

  18. Resonant Soft X-Ray Scattering - Combining Structural with Spectroscop...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spectroscopy has become an important tool in understanding the electronic structure of materials. Resonant absorption edges in the soft x-ray regime are especially interesting...

  19. ALS X-Rays Shine a New Light on Catalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were able to directly observe redox processes in thin-film iron and cobalt perovskite oxide electrocatalysts using surface-sensitive, x-ray absorption spectroscopy while...

  20. Chest x-Rays

    Broader source: Energy.gov [DOE]

    The B-reading is a special reading of a standard chest x-ray film performed by a physician certified by the National Institute for Occupational Safety and Health (NIOSH). The reading looks for changes on the chest x-ray that may indicate exposure and disease caused by agents such as asbestos or silica.

  1. X-ray beamsplitter

    DOE Patents [OSTI]

    Ceglio, Natale M. (Livermore, CA); Stearns, Daniel S. (Mountain View, CA); Hawryluk, Andrew M. (Modesto, CA); Barbee, Jr., Troy W. (Palo Alto, CA)

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  2. X-ray beamsplitter

    DOE Patents [OSTI]

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  3. Simulating Ru L3-Edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    SciTech Connect (OSTI)

    Kuiken, Benjamin E. Van; Valiev, Marat; Daifuku, Stephanie L.; Bannan, Caitlin; Strader, Matthew L.; Cho, Hana; Huse, Nils; Schoenlein, Robert W.; Govind, Niranjan; Khalil, Munira

    2013-04-26

    Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of RuII and RuIII complexes in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6]4- and RuII polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5MII-CN-RuIII(NH3)5] (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.

  4. Infrared photometry and spectroscopy of the supersoft X-ray source RX J0019.8+2156 (= QR And)

    E-Print Network [OSTI]

    H. Quaintrell; R. P. Fender

    1998-04-27

    We present JHK photometry and spectroscopy of RX J0019.8+2156. The spectrum appears to be dominated by the accretion disc to at least 2.4 microns, over any other source of emission. We find Paschen, Brackett and HeII lines strongly in emission, but no HeI. There are satellite lines approximately 850km/s either side of the strongest, unblended hydrogen lines. These satellite lines may be the spectral signature of jets from the accretion disc.

  5. Photoelectronic characterization of heterointerfaces.

    SciTech Connect (OSTI)

    Brumbach, Michael Todd

    2012-02-01

    In many devices such as solar cells, light emitting diodes, transistors, etc., the performance relies on the electronic structure at interfaces between materials within the device. The objective of this work was to perform robust characterization of hybrid (organic/inorganic) interfaces by tailoring the interfacial region for photoelectron spectroscopy. Self-assembled monolayers (SAM) were utilized to induce dipoles of various magnitudes at the interface. Additionally, SAMs of molecules with varying dipolar characteristics were mixed into spatially organized structures to systematically vary the apparent work function. Polymer thin films were characterized by depositing films of varying thicknesses on numerous substrates with and without interfacial modifications. Hard X-ray photoelectron spectroscopy (HAXPES) was performed to evaluate a buried interface between indium tin oxide (ITO), treated under various conditions, and poly(3-hexylthiophene) (P3HT). Conducting polymer films were found to be sufficiently conducting such that no significant charge redistribution in the polymer films was observed. Consequently, a further departure from uniform substrates was taken whereby electrically disconnected regions of the substrate presented ideally insulating interfacial contacts. In order to accomplish this novel strategy, interdigitated electrodes were used as the substrate. Conducting fingers of one half of the electrodes were electrically grounded while the other set of electrodes were electronically floating. This allowed for the evaluation of substrate charging on photoelectron spectra (SCOPES) in the presence of overlying semiconducting thin films. Such an experiment has never before been reported. This concept was developed out of the previous experiments on interfacial modification and thin film depositions and presents new opportunities for understanding chemical and electronic changes in a multitude of materials and interfaces.

  6. X-ray absorption spectroscopy of LiBF 4 in propylene carbonate. A model lithium ion battery electrolyte

    SciTech Connect (OSTI)

    Smith, Jacob W.; Lam, Royce K.; Sheardy, Alex T.; Shih, Orion; Rizzuto, Anthony M.; Borodin, Oleg; Harris, Stephen J.; Prendergast, David; Saykally, Richard J.

    2014-08-20

    Since their introduction into the commercial marketplace in 1991, lithium ion batteries have become increasingly ubiquitous in portable technology. Nevertheless, improvements to existing battery technology are necessary to expand their utility for larger-scale applications, such as electric vehicles. Advances may be realized from improvements to the liquid electrolyte; however, current understanding of the liquid structure and properties remains incomplete. X-ray absorption spectroscopy of solutions of LiBF4 in propylene carbonate (PC), interpreted using first-principles electronic structure calculations within the eXcited electron and Core Hole (XCH) approximation, yields new insight into the solvation structure of the Li+ ion in this model electrolyte. By generating linear combinations of the computed spectra of Li+-associating and free PC molecules and comparing to the experimental spectrum, we find a Li+–solvent interaction number of 4.5. This result suggests that computational models of lithium ion battery electrolytes should move beyond tetrahedral coordination structures.

  7. X-ray laser

    DOE Patents [OSTI]

    Nilsen, Joseph (Livermore, CA)

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  8. Covalency Trends in Group IV Metallocene Dichlorides. Chlorine K-Edge X-Ray Absorption Spectroscopy And Time Dependent-Density Functional Theory

    SciTech Connect (OSTI)

    Kozimor, S.A.; Yang, P.; Batista, E.R.; Boland, K.S.; Burns, C.J.; Christensen, C.N.; Clark, D.L.; Conradson, S.D.; Hay, P.J.; Lezama, J.S.; Martin, R.L.; Schwarz, D.E.; Wilkerson, M.P.; Wolfsberg, L.E.

    2009-05-20

    For 3-5d transition-metal ions, the (C{sub 5}R{sub 5}){sub 2}MCl{sub 2} (R = H, Me for M = Ti, Zr, Hf) bent metallocenes represent a series of compounds that have been central in the development of organometallic chemistry and homogeneous catalysis. Here, we evaluate how changes in the principal quantum number for the group IV (C{sub 5}H{sub 5}){sub 2}MCl{sub 2} (M = Ti, Zr, Hf; 1-3, respectively) complexes affects the covalency of M-Cl bonds through application of Cl K-edge X-ray Absorption Spectroscopy (XAS). Spectra were recorded on solid samples dispersed as a thin film and encapsulated in polystyrene matrices to reliably minimize problems associated with X-ray self-absorption. The data show that XAS pre-edge intensities can be quantitatively reproduced when analytes are encapsulated in polystyrene. Cl K-edge XAS data show that covalency in M-Cl bonding changes in the order Ti > Zr > Hf and demonstrates that covalency slightly decreases with increasing principal quantum number in 1-3. The percent Cl 3p character was experimentally determined to be 26, 23, and 18% per M-Cl bond in the thin-film samples for 1-3 respectively and was indistinguishable from the polystyrene samples, which analyzed as 25, 25, and 19% for 1-3, respectively. To aid in interpretation of Cl K-edge XAS, 1-3 were also analyzed by ground-state and time-dependent density functional theory (TD-DFT) calculations. The calculated spectra and percent chlorine character are in close agreement with the experimental observations, and show 20, 18, and 17% Cl 3p character per M-Cl bond for 1-3, respectively. Polystyrene matrix encapsulation affords a convenient method to safely contain radioactive samples to extend our studies to include actinide elements, where both 5f and 6d orbitals are expected to play a role in M-Cl bonding and where transition assignments must rely on accurate theoretical calculations.

  9. High resolution soft x-ray spectroscopy of low Z K-shell emission from laser-produced plasmas

    SciTech Connect (OSTI)

    Dunn, J; Magee, E W; Shepherd, R; Chen, H; Hansen, S B; Moon, S J; Brown, G V; Gu, M; Beiersdorfer, P; Purvis, M A

    2008-05-21

    A large radius, R = 44.3 m, High Resolution Grating Spectrometer (HRGS) with 2400 line/mm variable line spacing has been designed for laser-produced plasma experiments conducted at the Lawrence Livermore National Laboratory Jupiter Laser Facility. The instrument has been run with a low-noise, charge-coupled device detector to record high signal-to-noise spectra in the 10-50 {angstrom} wavelength range. The instrument can be run with a 10-20 {micro}m wide slit to achieve the best spectral resolving power, approaching 1000 and similar to crystal spectrometers at 12-20 {angstrom}, or in slitless operation with a small symmetrical emission source. We describe preliminary spectra emitted from various H-like and He-like low Z ion plasmas heated by 100-500 ps (FWHM), 527 nm wavelength laser pulses. This instrument can be developed as a useful spectroscopy platform relevant to laboratory-based astrophysics as well as high energy density plasma studies.

  10. Performance and characteristics of a high pressure, high temperature capillary cell with facile construction for operando x-ray absorption spectroscopy

    SciTech Connect (OSTI)

    Bansode, Atul; Urakawa, Atsushi, E-mail: aurakawa@iciq.es [Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona (Spain); Guilera, Gemma; Simonelli, Laura; Avila, Marta [ALBA Synchrotron Light Source, Crta. BP 1413, Km. 3.3, 08290 Cerdanyola del Vallès, Barcelona (Spain); Cuartero, Vera [ALBA Synchrotron Light Source, Crta. BP 1413, Km. 3.3, 08290 Cerdanyola del Vallès, Barcelona (Spain); European Synchrotron Radiation Facility (ESRF), CS40220, F-38043, Grenoble Cedex (France)

    2014-08-15

    We demonstrate the use of commercially available fused silica capillary and fittings to construct a cell for operando X-ray absorption spectroscopy (XAS) for the study of heterogeneously catalyzed reactions under high pressure (up to 200 bars) and high temperature (up to 280?°C) conditions. As the first demonstration, the cell was used for CO{sub 2} hydrogenation reaction to examine the state of copper in a conventional Cu/ZnO/Al{sub 2}O{sub 3} methanol synthesis catalyst. The active copper component of the catalyst was shown to remain in the metallic state under supercritical reaction conditions, at 200 bars and up to 260?°C. With the coiled heating system around the capillary, one can easily change the length of the capillary and control the amount of catalyst under investigation. With precise control of reactant(s) flow, the cell can mimic and serve as a conventional fixed-bed micro-reactor system to obtain reliable catalytic data. This high comparability of the reaction performance of the cell and laboratory reactors is crucial to gain insights into the nature of actual active sites under technologically relevant reaction conditions. The large length of the capillary can cause its bending upon heating when it is only fixed at both ends because of the thermal expansion. The degree of the bending can vary depending on the heating mode, and solutions to this problem are also presented. Furthermore, the cell is suitable for Raman studies, nowadays available at several beamlines for combined measurements. A concise study of CO{sub 2} phase behavior by Raman spectroscopy is presented to demonstrate a potential of the cell for combined XAS-Raman studies.

  11. Tools for a Theoretical X-ray Beamline J. J. Rehr*

    E-Print Network [OSTI]

    Botti, Silvana

    Tools for a Theoretical X-ray Beamline J. J. Rehr* Department of Physics University of Washington, France 22 October 2010 #12;X-ray Spectroscopy Beamline #12;Tools for a Theoretical X-ray Beamline · GOAL Theoretical X-ray Beamline: 2. Tools for EXAFS and XANES, EELS, XMCD, ... 3. DFT/MD-TOOLS 4. Next generation

  12. VOLUME 82, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 18 JANUARY 1999 High Energy Resolution Bolometers for Nuclear Physics and X-Ray Spectroscopy

    E-Print Network [OSTI]

    efficiency, since only a narrow band of energy can be analyzed at a time. The complementary energy dispersiveVOLUME 82, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 18 JANUARY 1999 High Energy Resolution Bolometers for Nuclear Physics and X-Ray Spectroscopy A. Alessandrello,1 J. W. Beeman,2 C

  13. X-ray absorption spectroscopy study of parent misfit-layered cobalt oxide [Sr?O?]q}CoO?

    SciTech Connect (OSTI)

    Chou, Ta-Lei [Laboratory of Inorganic Chemistry, Department of Chemistry, Aalto University, P.O. Box 16100, FI-00076 Aalto (Finland); Chan, Ting-Shan; Chen, Jin-Ming [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Yamauchi, Hisao [Laboratory of Inorganic Chemistry, Department of Chemistry, Aalto University, P.O. Box 16100, FI-00076 Aalto (Finland); Karppinen, Maarit, E-mail: maarit.karppinen@aalto.fi [Laboratory of Inorganic Chemistry, Department of Chemistry, Aalto University, P.O. Box 16100, FI-00076 Aalto (Finland)

    2013-06-01

    Here we present a comprehensive X-ray absorption spectroscopy study carried out at Co-L?,?, Co-K, O-K and Sr-K edges for the parent misfit-layered cobalt oxide phase [Sr?O?]?.??CoO?; comparison is made to another misfit-layered oxide [CoCa?O?]?.??CoO? and the perovskite oxide LaCoO?. A high-quality sample of [Sr?O?]?.??CoO? was obtained through ultra-high-pressure synthesis using Sr?Co?O? and Sr(OH)??8H?O as starting materials. Different dosages of KClO? were mixed with the raw materials as an oxygen source and tested, but it was found that the window for the redox control of [Sr?O?]?.??CoO? is rather narrow. From Co-K and Co-L?,? spectra a mixed III/IV valence state is revealed for cobalt in [Sr?O?]?.??}CoO?, but the average valence value is a little lower than in [CoCa?O?]?.??CoO?. Then, Sr-K spectrum indicates that the [Sr?O?] double-layer block in [Sr?O?]?.??CoO? clearly deviates from the cubic SrO rock-salt structure, suggesting a more complicated coordination environment for strontium. This together with a somewhat low Co-valence value and the fact that the phase formation of [Sr?O?]?.??CoO? required the presence of Sr(OH)??8H?O in the high-pressure synthesis suggest that the [Sr?O?] block contains ---OH groups, i.e. [Sr?(O,OH)?]?.??CoO?. - Graphical abstract: [Sr?O?]?.??CoO? obtained through high-pressure synthesis is a parent of misfit-layered cobalt oxides, such as [CoCa?O?]?.??CoO? or [MmA?O2+m]qCoO? in general. Our comprehensive X-ray absorption spectroscopy study shows that both [Sr?O?]?.??CoO? and [CoCa?O?]?.??CoO? possess mixed III/IV valence cobalt, but the average Co-valence is a little lower in the former. This is tentatively believed to be due to OH--- groups replacing part of O²? ions in the [Sr?O?] layer block. Highlights: • [Sr?O?]?.??CoO? is a parent of misfit-layered cobalt oxides. • It is obtained by ultra-high-pressure synthesis from Sr?Co?O?, Sr(OH)??6H?O and KClO?. • Co-K and Co---L XANES spectra reveal lower than expected Co-valence value. • Sr-K XANES spectrum indicates that the [Sr?O?] block is not of simple rock-salt structure. • This block most probably contains ---OH--- groups, i.e. [Sr?(O,OH)?]?.??CoO?.

  14. Photoelectron Spectroscopy and Theoretical Studies of UF5 ? and UF6 ?

    SciTech Connect (OSTI)

    Dau, Phuong D.; Su, Jing; Liu, Hong-Tao; Huang, Dao-Ling; Wei, Fan; Li, Jun; Wang, Lai S.

    2012-05-17

    The UF5 ? and UF6 ? anions are produced using electrospray ionization and investigated by photoelectron spectroscopy and relativistic quantum chemistry. An extensive vibrational progression is observed in the spectra of UF5 ?, indicating significant geometry changes between the anion and neutral ground state. Franck-Condon factor simulations of the observed vibrational progression yield an adiabatic electron detachment energy of 3.82 ± 0.05 eV for UF5 ?. Relativistic quantum calculations using density functional and ab initio theories are performed on UF5 ? and UF6 ? and their neutrals. The ground states of UF5 ? and UF5 are found to have C4v symmetry, but with a large U?F bond length change. The ground state of UF5 ? is a triplet state (3B2) with the two 5f electrons occupying a 5fz3-based 8a1 highest occupied molecular orbital (HOMO) and the 5fxyz-based 2b2 HOMO-1 orbital. The detachment cross section from the 5fxyz orbital is observed to be extremely small and the detachment transition from the 2b2 orbital is more than ten times weaker than that from the 8a1 orbital at the photon energies available. The UF6 ? anion is found to be octahedral, similar to neutral UF6 with the extra electron occupying the 5fxyz-based a2u orbital. Surprisingly, no photoelectron spectrum could be observed for UF6 ? due to the extremely low detachment cross section from the 5fxyz-based HOMO of UF6 ?.

  15. Tetrahalide Complexes of the [U(NR)(2)]2+ Ion: Synthesis, Theory, and Chlorine K-Edge X-ray Absorption Spectroscopy

    SciTech Connect (OSTI)

    Spencer, Liam P.; Yang, Ping; Minasian, Stefan G.; Jilek, Robert E.; Batista, Enrique R.; Boland, Kevin S.; Boncella, James M.; Conradson, S. D.; Clark, David L.; Hayton, Trevor W.; Kozimor, Stosh A.; Martin, Richard L.; MacInnes, Molly M.; Olson, Angela C.; Scott, Brian L.; Shuh, D. K.; Wilkerson, Marianne P.

    2013-02-13

    Synthetic routes to salts containing uranium bisimido tetrahalide anions [U(NR)(2)X-4](2-) (X = Cl-, Br-) and non-coordinating NEt4+ and PPh4+ countercations are reported. In general, these compounds can be prepared from U(NR)(2)I-2(THF)(x) (x = 2 and R = 'Bu, Ph; x = 3 and R = Me) upon addition of excess halide. In addition to providing stable coordination complexes with Cl-, the [U(NMe)(2)](2 +) cation also reacts with Br- to form stable [NEt4](2)[U(NMe)(2)Br-4] complexes. These materials were used as a platform to compare electronic structure and bonding in [U(NR)(2)](2+) with [UO2](2+). Specifically, Cl K-edge X-ray absorption spectroscopy (XAS) and both ground-state and time-dependent hybrid density functional theory (DFT and TDDFT) were used to probe U-Cl bonding interactions in [PPh4](2)[U((NBu)-Bu-t)(2)Cl-4] and [PPh4](2)[UO2Cl4]. The DFT and XAS results show the total amount of Cl 3p character mixed with the U 5f orbitals was roughly 7-10% per U-Cl bond for both compounds, which shows that moving from oxo to imido has little effect on orbital mixing between the U 5f and equatorial Cl 3p orbitals. The results are presented in the context of recent Cl K-edge XAS and DFT studies on other hexavalent uranium chloride systems with fewer oxo or imido ligands.

  16. X-ray microtomography

    SciTech Connect (OSTI)

    Landis, Eric N.; Keane, Denis T.

    2010-12-15

    In this tutorial, we describe X-ray microtomography as a technique to nondestructively characterize material microstructure in three dimensions at a micron level spatial resolution. While commercially available laboratory scale instrumentation is available, we focus our attention on synchrotron-based systems, where we can exploit a high flux, monochromatic X-ray beam to produce high fidelity three-dimensional images. A brief description of the physics and the mathematical analysis behind the technique is followed by example applications to specific materials characterization problems, with a particular focus on the utilization of three-dimensional image processing that can be used to extract a wide range of useful information.

  17. Silicon drift detector based X-ray spectroscopy diagnostic system for the study of non-thermal electrons at Aditya tokamak

    SciTech Connect (OSTI)

    Purohit, S., E-mail: pshishir@ipr.res.in; Joisa, Y. S.; Raval, J. V.; Ghosh, J.; Tanna, R.; Shukla, B. K.; Bhatt, S. B. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

    2014-11-15

    Silicon drift detector based X-ray spectrometer diagnostic was developed to study the non-thermal electron for Aditya tokamak plasma. The diagnostic was mounted on a radial mid plane port at the Aditya. The objective of diagnostic includes the estimation of the non-thermal electron temperature for the ohmically heated plasma. Bi-Maxwellian plasma model was adopted for the temperature estimation. Along with that the study of high Z impurity line radiation from the ECR pre-ionization experiments was also aimed. The performance and first experimental results from the new X-ray spectrometer system are presented.

  18. Photoelectron Spectroscopy and Theoretical Studies of Anion-pi Interactions: Binding Strength and Anion Specificity

    SciTech Connect (OSTI)

    Zhang, Jian; Zhou, Bin; Sun, Zhenrong; Wang, Xue B.

    2015-01-01

    Proposed in theory and confirmed to exist, anion–? interactions have been recognized as new and important non-covalent binding forces. Despite extensive theoretical studies, numerous crystal structural identifications, and a plethora of solution phase investigations, intrinsic anion–? interaction strengths that are free from complications of condensed phases’ environments, have not been directly measured in the gas phase. Herein we present a joint photoelectron spectroscopic and theoretical study on this subject, in which tetraoxacalix[2]arene[2]triazine 1, an electron-deficient and cavity self-tunable macrocyclic was used as a charge-neutral molecular host to probe its interactions with a series of anions with distinctly different shapes and charge states (spherical halides Cl?, Br?, I?, linear thiocyanate SCN?, trigonal planar nitrate NO??, pyramidic iodate IO??, and tetrahedral sulfate SO?²?). The binding energies of the resultant gaseous 1:1 complexes (1•Cl?,1•Br?, 1•I?, 1•SCN?, 1•NO??, 1•IO?? and 1•SO?²?) were directly measured experimentally, exhibiting substantial non-covalent interactions with pronounced anion specific effects. The binding strengths of Cl?, NO??, IO?? with 1 are found to be strongest among all singly charged anions, amounting to ca. 30 kcal/mol, but only about 40% of that between 1 and SO?²?. Quantum chemical calculations reveal that all anions reside in the center of the cavity of 1 with anion–? binding motif in the complexes’ optimized structures, where 1 is seen to be able to self-regulate its cavity structure to accommodate anions of different geometries and three-dimensional shapes. Electron density surface and natural bond orbital charge distribution analysis further support anion–? binding formation. The calculated binding energies of the anions and 1 nicely reproduce the experimentally estimated electron binding energy increase. This work illustrates that size-selective photoelectron spectroscopy combined with theoretical calculations represent a powerful technique to probe intrinsic anion–? interactions and has potential to provide quantitative guest-host molecular binding strengths and unravel fundamental insights in specific anion recognitions.

  19. CHANDRA X-RAY SPECTROSCOPY OF THE FOCUSED WIND IN THE CYGNUS X-1 SYSTEM. I. THE NONDIP SPECTRUM IN THE LOW/HARD STATE

    E-Print Network [OSTI]

    Hanke, Manfred

    We present analyses of a 50 ks observation of the supergiant X-ray binary system Cygnus X-1 (Cyg X-1)/HDE226868 taken with the Chandra High Energy Transmission Grating Spectrometer (HETGS). Cyg X-1 was in its spectrally ...

  20. Inner-Shell Excitation Spectroscopy of Fused-Ring Aromatic Molecules by Electron Energy Loss and X-ray Raman Techniques

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    recorded under scattering conditions where electric dipole transitions dominate (2.5 keV residual energy.08). These spectra are interpreted with the aid of ab initio calculations on selected species. They are compared,2-benzanthracene, recorded with inelastic X-ray Raman scattering in the dipole limit (qr

  1. X-Ray Data Booklet X-RAY DATA BOOKLET

    E-Print Network [OSTI]

    X-Ray Data Booklet X-RAY DATA BOOKLET Center for X-ray Optics and Advanced Light Source Lawrence Electromagnetic Relations Radioactivity and Radiation Protection Useful Formulas CXRO Home | ALS Home | LBL Home in PDF format Data Booklet Authors CXRO Home | ALS Home | LBL Home Privacy and Security Notice Please

  2. Spatiotemporal Monte Carlo transport methods in x-ray semiconductor detectors: Application to pulse-height spectroscopy in a-Se

    SciTech Connect (OSTI)

    Fang Yuan; Badal, Andreu; Allec, Nicholas; Karim, Karim S.; Badano, Aldo

    2012-01-15

    Purpose: The authors describe a detailed Monte Carlo (MC) method for the coupled transport of ionizing particles and charge carriers in amorphous selenium (a-Se) semiconductor x-ray detectors, and model the effect of statistical variations on the detected signal. Methods: A detailed transport code was developed for modeling the signal formation process in semiconductor x-ray detectors. The charge transport routines include three-dimensional spatial and temporal models of electron-hole pair transport taking into account recombination and trapping. Many electron-hole pairs are created simultaneously in bursts from energy deposition events. Carrier transport processes include drift due to external field and Coulombic interactions, and diffusion due to Brownian motion. Results: Pulse-height spectra (PHS) have been simulated with different transport conditions for a range of monoenergetic incident x-ray energies and mammography radiation beam qualities. Two methods for calculating Swank factors from simulated PHS are shown, one using the entire PHS distribution, and the other using the photopeak. The latter ignores contributions from Compton scattering and K-fluorescence. Comparisons differ by approximately 2% between experimental measurements and simulations. Conclusions: The a-Se x-ray detector PHS responses simulated in this work include three-dimensional spatial and temporal transport of electron-hole pairs. These PHS were used to calculate the Swank factor and compare it with experimental measurements. The Swank factor was shown to be a function of x-ray energy and applied electric field. Trapping and recombination models are all shown to affect the Swank factor.

  3. Fluctuation X-Ray Scattering

    SciTech Connect (OSTI)

    Saldin, PI: D. K.; Co-I's: J. C. H. Spence and P. Fromme

    2013-01-25

    The work supported by the grant was aimed at developing novel methods of finding the structures of biomolecules using x-rays from novel sources such as the x-ray free electron laser and modern synchrotrons

  4. Tunable X-ray source

    DOE Patents [OSTI]

    Boyce, James R. (Williamsburg, VA)

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  5. Variation in band offsets at ZnO/Sn:In2O3 (ITO) heterojunctions measured by x-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Kaspar, Tiffany C.; Droubay, Timothy C.

    2012-07-01

    Rational design and optimization of efficient photovoltaics requires fundamental knowledge of both the materials properties of the individual components and the conduction and valence band alignments at the materials interfaces. Efficient collection of electrons photogenerated in the absorber material requires a small or zero conduction band offset at both the absorber/n-type semiconductor and the n-type semiconductor/electrode interfaces. Negative conduction band offsets result in an energy barrier to electron injection, while large positive conduction band offsets (a “cliff” arrangement) result in too much energy lost during injection. However, it is difficult to predict heterojunction band offsets from bulk materials properties. Experimental band alignments of semiconductor heterojunctions rarely conform to the Anderson model,1 which assumes the band alignments are determined solely by differences in the electron affinity of the two semiconductors. Chemical bonds at the heterojunction interface give rise to an interfacial dipole which influences the interfacial band alignment. Thus, the complex interplay between electron affinity differences, Fermi level matching, interface-induced gap states, and band bending determine heterojunction band alignments.2-5 Band alignments can also be modified by doping, point defects, or control of non-stoichiometry at the interface; since these parameters can be affected by processing conditions, they offer a mechanism to modify the band alignments of a given heterojunction system.

  6. X-ray photoelectron spectroscopy of negative electrodes from high-power lithium-ion cells showing various levels of power fade

    E-Print Network [OSTI]

    Herstedt, Marie; Abraham, Daniel P.; Kerr, John B.

    2004-01-01

    on samples from low power fade cells, whereas LiPF 6 -basedon samples from high power fade cells. The effect of samplecriteria based on power fade Cell disassembly was conducted

  7. Broadband high resolution X-ray spectral analyzer

    DOE Patents [OSTI]

    Silver, E.H.; Legros, M.; Madden, N.W.; Goulding, F.; Landis, D.

    1998-07-07

    A broad bandwidth high resolution X-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces X-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available X-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for X-ray microanalysis or in research applications such as laboratory and astrophysical X-ray and particle spectroscopy. 6 figs.

  8. A new spectrometer design for the x-ray spectroscopy of laser-produced plasmas with high (sub-ns) time resolution

    SciTech Connect (OSTI)

    Bitter, M. Hill, K. W.; Efthimion, P. C.; Delgado-Aparicio, L.; Pablant, N.; Lu, Jian; Beiersdorfer, P.; Chen, Hui

    2014-11-15

    This paper describes a new type of x-ray crystal spectrometer, which can be used in combination with gated x-ray detectors to obtain spectra from laser-produced plasmas with a high (sub-ns) time resolution. The spectrometer consists of a convex, spherically bent crystal, which images individual spectral lines as perfectly straight lines across multiple, sequentially gated, strip detectors. Since the Bragg-reflected rays are divergent, the distance between detector and crystal is arbitrary, so that this distance can be appropriately chosen to optimize the experimental arrangement with respect to the detector parameters. The spectrometer concept was verified in proof-of-principle experiments by imaging the L?{sub 1}- and L?{sub 2}-lines of tungsten, at 9.6735 and 9.96150 keV, from a micro-focus x-ray tube with a tungsten target onto a two-dimensional pixilated Pilatus detector, using a convex, spherically bent Si-422 crystal with a radius of curvature of 500 mm.

  9. A new spectrometer design for the x-ray spectroscopy of laser-produced plasmas with high (sub-ns) time resolution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bitter, M.; Hill, K. W.; Efthimion, P. C.; Delgado-Aparicio, L.; Pablant, N.; Lu, Jian; Beiersdorfer, P.; Chen, Hui

    2014-11-01

    This paper describes a new type of x-ray crystal spectrometer, which can be used in combination with gated x-ray detectors to obtain spectra from laser-produced plasmas with a high (sub-ns) time resolution. The spectrometer consists of a convex, spherically bent crystal, which images individual spectral lines as perfectly straight lines across multiple, sequentially gated, strip detectors. Since the Bragg-reflected rays are divergent, the distance between detector and crystal is arbitrary, so that this distance can be appropriately chosen to optimize the experimental arrangement with respect to the detector parameters. The spectrometer concept was verified in proof-of-principle experiments by imaging themore »L?1- and L?2-lines of tungsten, at 9.6735 and 9.96150 keV, from a micro-focus x-ray tube with a tungsten target onto a two-dimensional pixilated Pilatus detector, using a convex, spherically bent Si-422 crystal with a radius of curvature of 500 mm.« less

  10. 2012 ELECTRONIC SPECTROSCOPY & DYNAMICS GORDON RESEARCH CONFERENCE, JULY 22-27, 2012

    SciTech Connect (OSTI)

    Kohler, Bern

    2012-07-27

    Topics covered in this GRC include high-resolution spectroscopy, coherent electronic energy transport in biology, excited state theory and dynamics, excitonics, electronic spectroscopy of cold and ultracold molecules, and the spectroscopy of nanostructures. Several sessions will highlight innovative techniques such as time-resolved x-ray spectroscopy, frequency combs, and liquid microjet photoelectron spectroscopy that have forged stimulating new connections between gas-phase and condensed-phase work.

  11. X-ray lithography source

    DOE Patents [OSTI]

    Piestrup, Melvin A. (Woodside, CA); Boyers, David G. (Mountain View, CA); Pincus, Cary (Sunnyvale, CA)

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  12. Femtosecond photoelectron spectroscopy: a new tool for the study of anion dynamics

    SciTech Connect (OSTI)

    Greenblatt, B.J.

    1999-02-01

    A new experimental technique for the time-resolved study of anion reactions is presented. Using femtosecond laser pulses, which provide extremely fast ({approx} 100 fs) time resolution, in conjunction with photoelectron spectroscopy, which reveals differences between anion and neutral potential energy surfaces, a complex anion reaction can be followed from its inception through the formation of asymptotic products. Experimental data can be modeled quantitatively using established theoretical approaches, allowing for the refinement of potential energy surfaces as well as dynamical models. After a brief overview, a detailed account of the construction of the experimental apparatus is presented. Documentation of the data acquisition program is contained in the Appendix. The first experimental demonstration of the technique is then presented for I{sub 2}{sup -} photodissociation, modeled using a simulation program which is also detailed in the Appendix. The investigation of I{sub 2}{sup -} photodissociation in several size-selected I{sub 2}{sup -}(Ar){sub n} (n = 6-20) and I{sub 2}{sup -}(CO{sub 2}){sub n} (n = 4-16) clusters forms the heart of the dissertation. In a series of chapters, the numerous effects of solvation on this fundamental bond-breaking reaction are explored, the most notable of which is the recombination of I{sub 2}{sup -} on the ground {tilde X}({sup 2}{Sigma}{sub u}{sup +}) state in sufficiently large clusters. Recombination and trapping of I{sub 2}{sup -} on the excited {tilde A}({sup 2}{Pi}{sub 3/2,g}) state is also observed in both types of clusters. The studies have revealed electronic state transitions, the first step in recombination, on a {approx}500 fs to {approx}10 ps timescale. Accompanying the changes in electronic state is solvent reorganization, which occurs on a similar timescale. Over longer periods ({approx}1 ps to >200 ps), energy is transferred from vibrationally excite d I{sub 2}{sup -} to modes of the solvent, which in turn leads to solvent evaporation. These effects become more important as cluster size increases. In addition, differences in timescale and mechanism are observed between clusters of Ar, which binds to I{sup -} and I{sub 2}{sup -} rather weakly, and CO{sub 2}, whose large quadruple moment allows substantially stronger binding to these anions.

  13. X-Ray Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0PhotosPresentationsWorld's largest singleX-Ray

  14. X-ray spectrometry

    SciTech Connect (OSTI)

    Markowicz, A.A.; Van Grieken, R.E.

    1986-04-01

    In the period under review, i.e, through 1984 and 1985, some 600 articles on XRS (X-ray spectrometry) were published; most of these have been scanned and the most fundamental ones are discussed. All references will refer to English-language articles, unless states otherwise. Also general books have appeared on quantitative EPXMA (electron-probe X-ray microanalysis) and analytical electron microscopy (AEM) as well as an extensive review on the application of XRS to trace analysis of environmental samples. In the period under review no radically new developments have been seen in XRS. However, significant improvements have been made. Gain in intensities has been achieved by more efficient excitation, higher reflectivity of dispersing media, and better geometry. Better understanding of the physical process of photon- and electron-specimen interactions led to complex but more accurate equations for correction of various interelement effects. Extensive use of micro- and minicomputers now enables fully automatic operation, including qualitative analysis. However, sample preparation and presentation still put a limit to further progress. Although some authors find XRS in the phase of stabilization or even stagnation, further gradual developments are expected, particularly toward more dedicated equipment, advanced automation, and image analysis systems. Ways are outlined in which XRS has been improved in the 2 last years by excitation, detection, instrumental, methodological, and theoretical advances. 340 references.

  15. X-ray absorption spectroscopic studies of the active sites of nickel- and copper-containing metalloproteins

    SciTech Connect (OSTI)

    Tan, G.O.

    1993-06-01

    X-ray absorption spectroscopy (XAS) is a useful tool for obtaining structural and chemical information about the active sites of metalloproteins and metalloenzymes. Information may be obtained from both the edge region and the extended X-ray absorption fine structure (EXAFS) or post-edge region of the K-edge X-ray absorption spectrum of a metal center in a compound. The edge contains information about the valence electronic structure of the atom that absorbs the X-rays. It is possible in some systems to infer the redox state of the metal atom in question, as well as the geometry and nature of ligands connected to it, from the features in the edge in a straightforward manner. The EXAFS modulations, being produced by the backscattering of the ejected photoelectron from the atoms surrounding the metal atom, provide, when analyzed, information about the number and type of neighbouring atoms, and the distances at which they occur. In this thesis, analysis of both the edge and EXAFS regions has been used to gain information about the active sites of various metalloproteins. The metalloproteins studied were plastocyanin (Pc), laccase and nickel carbon monoxide dehydrogenase (Ni CODH). Studies of Cu(I)-imidazole compounds, related to the protein hemocyanin, are also reported here.

  16. Highly polarized emission in spin resolved photoelectron spectroscopy of alpha-Fe(001)/GaAs(001)

    SciTech Connect (OSTI)

    Tobin, James; Yu, Sung Woo; Morton, Simon; Waddill, George; Thompson, Jamie; Neal, James; Spangenberg, Matthais; Shen, T.H.

    2009-05-19

    Highly spin-polarized sources of electrons, Integrated into device design, remain of great interest to the spintronic and magneto-electronic device community Here, the growth of Fe upon GaAs(001) has been studied with photoelectron spectroscopy (PES), including Spin Resolved PES. Despite evidence of atomic level disorder such as intermixing, an over-layer with the spectroscopic signature of alpha-Fe(001), with a bcc real space ordering, Is obtained The results will be discussed in light of the possibility of using such films as a spin-polarized source in device applications.

  17. In situ soft X-ray absorption spectroscopy investigation of electrochemical corrosion of copper in aqueous NaHCO3 solution

    SciTech Connect (OSTI)

    Jiang, Peng; Chen, Jeng-Lung; Borondics, Ferenc; Glans, Per-Anders; West, Mark W.; Chang, Ching-Lin; Salmeron, Miquel; Guo, Jinghua

    2010-03-31

    A novel electrochemical setup has been developed for soft x-ray absorption studies of the electronic structure of electrode materials during electrochemical cycling. In this communication we illustrate the operation of the cell with a study of the corrosion behavior of copper in aqueous NaHCO3 solution via the electrochemically induced changes of its electronic structure. This development opens the way for in situ investigations of electrochemical processes, photovoltaics, batteries, fuel cells, water splitting, corrosion, electrodeposition, and a variety of important biological processes.

  18. State-Dependent Electron Delocalization Dynamics at the Solute-Solvent Interface: Soft X-ray Absorption Spectroscopy and Ab Initio Calculations

    E-Print Network [OSTI]

    Bokarev, Sergey I; Suljoti, Edlira; Kühn, Oliver; Aziz, Emad F

    2013-01-01

    Non-radiative decay channels in the L-edge fluorescence spectra from transition metal-aqueous solutions give rise to spectral dips in X-ray transmission spectra. Their origin is unraveled here using partial and inverse partial fluorescence yields on the micro-jet combined with multi-reference ab initio electronic structure calculations. Comparing Fe2+, Fe3+, and Co2+ systems we demonstrate unequivocally that spectral dips are due to a state-dependent electron delocalization within the manifold of d-orbitals.

  19. Miniature x-ray source

    DOE Patents [OSTI]

    Trebes, James E. (Livermore, CA); Stone, Gary F. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA); Chornenky, Victor I. (Minnetonka, MN)

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  20. A new spectrometer design for the x-ray spectroscopy of laser-produced plasmas with high (sub-ns) time resolutiona)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bitter, M.; Hill, K. W.; Efthimion, P. C.; Delgado-Aparicio, L.; Pablant, N.; Lu, Jian; Beiersdorfer, P.; Chen, Hui

    2014-11-01

    This paper describes a new type of x-ray crystal spectrometer, which can be used in combination with gated x-ray detectors to obtain spectra from laser-produced plasmas with a high (sub-ns) time resolution. The spectrometer consists of a convex, spherically bent crystal, which images individual spectral lines as perfectly straight lines across multiple, sequentially gated, strip detectors. Since the Bragg-reflected rays are divergent, the distance between detector and crystal is arbitrary, so that this distance can be appropriately chosen to optimize the experimental arrangement with respect to the detector parameters. The spectrometer concept was verified in proof-of-principle experiments by imaging themore »L?1- and L?2-lines of tungsten, at 9.6735 and 9.96150 keV, from a micro-focus xray tube with a tungsten target onto a two-dimensional pixilated Pilatus detector, using a convex, spherically bent Si-422 crystal with a radius of curvature of 500 mm.« less

  1. On the origin of soft X-rays in obscured AGN: answers from high-resolution spectroscopy with XMM-Newton

    E-Print Network [OSTI]

    Matteo Guainazzi; Stefano Bianchi

    2006-10-24

    We present results of a high-resolution soft X-ray (0.2-2 keV) spectroscopic study of a sample of 69 nearby obscured Active Galactic Nuclei (AGN) observed with the Reflection Grating Spectrometer (RGS) on board XMM-Newton. This is the largest sample ever studied with this technique so far. The main conclusions of our study can be summarized as follows: a) narrow Radiative Recombination Continua are detected in about 36% of the objects in our sample (in 26% their intrinsic width is <10 eV); b) higher order transitions are generally enhanced with respect to pure photoionization, indicating that resonant scattering plays an important role in the ionization/excitation balance. These results support the scenario, whereby the active nucleus is responsible for the X-ray ``soft excess'' almost ubiquitously observed in nearby obscured AGN via photoionization of circumnuclear gas. They confirm on a statistical basis the conclusions drawn from the detailed study of the brightest spectra in the sample. Furthermore, we propose a criterion to statistically discriminate between AGN-photoionized sources and starburst galaxies, based on intensity of the forbidden component of the OVII He-alpha triplet (once normalized to the OVIII Ly-alpha) coupled with the integrated luminosity in He-like and H-like oxygen lines.

  2. X-ray shearing interferometer

    DOE Patents [OSTI]

    Koch, Jeffrey A. (Livermore, CA)

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  3. Note: A novel dual-channel time-of-flight mass spectrometer for photoelectron imaging spectroscopy

    SciTech Connect (OSTI)

    Qin Zhengbo; Wu Xia; Tang Zichao [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2013-06-15

    A novel dual-channel time-of-flight mass spectrometer (D-TOFMS) has been designed to select anions in the photoelectron imaging measurements. In this instrument, the radiation laser can be triggered precisely to overlap with the selected ion cloud at the first-order space focusing plane. Compared with that of the conventional single channel TOFMS, the in situ mass selection performance of D-TOFMS is significantly improved. Preliminary experiment results are presented for the mass-selected photodetachment spectrum of F{sup -} to demonstrate the capability of the instrument.

  4. Electronic structure effects in liquid water studied by photoelectron spectroscopy and density functional theory

    SciTech Connect (OSTI)

    Nordlund, Dennis; Odelius, Michael; Bluhm, Hendrik; Ogasawara, Hirohito; Pettersson, Lars G.M.; Nilsson, Anders

    2008-04-29

    We present valence photoelectron emission spectra of liquid water in comparison with gas-phase water, ice close to the melting point, low temperature amorphous and crystalline ice. All aggregation states have major electronic structure changes relative to the free molecule, with rehybridization and development of bonding and anti-bonding states accompanying the hydrogen bond formation. Sensitivity to the local structural order, most prominent in the shape and splitting of the occupied 3a{sub 1} orbital, is understood from the electronic structure averaging over various geometrical structures, and reflects the local nature of the orbital interaction.

  5. Synchrotron X-ray diffraction and Raman spectroscopy of Ln{sub 3}NbO{sub 7} (Ln=La, Pr, Nd, Sm-Lu) ceramics obtained by molten-salt synthesis

    SciTech Connect (OSTI)

    Siqueira, K.P.F.; Soares, J.C.; Granado, E.; Bittar, E.M.; Paula, A.M. de; Moreira, R.L.; Dias, A.

    2014-01-15

    Ln{sub 3}NbO{sub 7} (Ln=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) ceramics were obtained by molten-salt synthesis and their structures were systematically investigated by synchrotron X-ray diffraction (SXRD), second harmonic generation (SHG) and Raman spectroscopy. It was observed that ceramics with the largest ionic radii (La, Pr, Nd) crystallized into the Pmcn space group, while the ceramics with intermediate ionic radii (Sm-Gd) exhibited a different crystal structure belonging to the Ccmm space group. For this last group of ceramics, this result was corroborated by SHG and Raman scattering and ruled out any possibility for the non-centrosymmetric C 222{sub 1} space group, solving a recent controversy in the literature. Finally, according to SXRD, Tb-Lu containing samples exhibited an average defect fluorite structure (Fm3{sup ¯}m space group). Nonetheless, broad scattering at forbidden Bragg reflections indicates the presence of short-range domains with lower symmetry. Vibrational spectroscopy showed the presence of six Raman-active modes, inconsistent with the average cubic fluorite structure, and in line with the existence of lower-symmetry nano-domains immersed in the average fluorite structure of these ceramics. - Graphical abstract: Raman spectrum for Sm{sub 3}NbO{sub 7} ceramics showing their 27 phonon modes adjusted through Lorentzian lines. According to synchrotron X-ray diffraction and Raman scattering, this material belongs to the space group Cmcm. Display Omitted - Highlights: • Ln{sub 3}NbO{sub 7} ceramics were obtained by molten-salt synthesis. • SXRD, SHG and Raman scattering confirmed orthorhombic and cubic structures. • Ccmm instead of C222{sub 1} is the correct structure for Sm–Gd ceramics. • Pmcn space group was confirmed for La-, Pr- and Nd-based ceramics. • For Tb–Lu ceramics, ordered domains of a pyrochlore structure were observed.

  6. In situ flame chemistry tracing by imaging photoelectron photoion coincidence spectroscopy

    SciTech Connect (OSTI)

    Oßwald, P.; Köhler, M.; Hemberger, P.; Bodi, A.; Gerber, T.; Bierkandt, T.; Akyildiz, E.; Kasper, T.

    2014-02-15

    Adaptation of a low-pressure flat flame burner with a flame-sampling interface to the imaging photoelectron photoion coincidence spectrometer (iPEPICO) of the VUV beamline at the Swiss Light Source is presented. The combination of molecular-beam mass spectrometry and iPEPICO provides a new powerful analytical tool for the detailed investigation of reaction networks in flames. First results demonstrate the applicability of the new instrument to comprehensive flame diagnostics and the potentially high impact for reaction mechanism development for conventional and alternative fuels. Isomer specific identification of stable and radical flame species is demonstrated with unrivaled precision. Radical detection and identification is achieved for the initial H-abstraction products of fuel molecules as well as for the reaction controlling H, O, and OH radicals. Furthermore, quantitative evaluation of changing species concentrations during the combustion process and the applicability of respective results for kinetic model validation are demonstrated. Utilization of mass-selected threshold photoelectron spectra is shown to ensure precise signal assignment and highly reliable spatial profiles.

  7. Small-Angle X-ray Scattering and Single-Molecule FRET Spectroscopy Produce Highly Divergent Views of the Low-Denaturant Unfolded State

    SciTech Connect (OSTI)

    Yoo, Tae Yeon; Meisburger, Steve P.; Hinshaw, James; Pollack, Lois; Haran, Gilad; Sosnick, Tobin R.; Plaxco, Kevin (Cornell); (WIS-I); (UCSB); (UC)

    2012-10-10

    The results of more than a dozen single-molecule Foerster resonance energy transfer (smFRET) experiments suggest that chemically unfolded polypeptides invariably collapse from an expanded random coil to more compact dimensions as the denaturant concentration is reduced. In sharp contrast, small-angle X-ray scattering (SAXS) studies suggest that, at least for single-domain proteins at non-zero denaturant concentrations, such compaction may be rare. Here, we explore this discrepancy by studying protein L, a protein previously studied by SAXS (at 5 C), which suggested fixed unfolded-state dimensions from 1.4 to 5 M guanidine hydrochloride (GuHCl), and by smFRET (at 25 C), which suggested that, in contrast, the chain contracts by 15-30% over this same denaturant range. Repeating the earlier SAXS study under the same conditions employed in the smFRET studies, we observe little, if any, evidence that the unfolded state of protein L contracts as the concentration of GuHCl is reduced. For example, scattering profiles (and thus the shape and dimensions) collected within {approx} 4 ms after dilution to as low as 0.67 M GuHCl are effectively indistinguishable from those observed at equilibrium at higher denaturant. Our results thus argue that the disagreement between SAXS and smFRET is statistically significant and that the experimental evidence in favor of obligate polypeptide collapse at low denaturant cannot be considered conclusive yet.

  8. X-ray high-resolution spectroscopy reveals feedback in a Seyfert galaxy from an ultra fast wind with complex ionization and velocity structure

    E-Print Network [OSTI]

    Longinotti, Anna Lia; Guainazzi, Matteo; Giroletti, Marcello; Panessa, Francesca; Costantini, Elisa; Lleo, Maria Santos; Rodriguez-Pascual, Pedro

    2015-01-01

    Winds outflowing from Active Galactic Nuclei (AGNs) may carry significant amount of mass and energy out to their host galaxies. In this paper we report the detection of a sub-relativistic outflow observed in the Narrow Line Seyfert 1 Galaxy IRAS17020+4544 as a series of absorption lines corresponding to at least 5 absorption components with an unprecedented wide range of associated column densities and ionization levels and velocities in the range of 23,000-33,000 km/s, detected at X-ray high spectral resolution (E/Delta E ~1000) with the ESA's observatory XMM-Newton. The charge states of the material constituting the wind clearly indicate a range of low to moderate ionization states in the outflowing gas and column densities significantly lower than observed in highly ionized ultra fast outflows. We estimate that at least one of the outflow components may carry sufficient energy to substantially suppress star formation, and heat the gas in the host galaxy. IRAS17020+4544 provides therefore an interesting exa...

  9. X-ray fluorescence mapping

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single goldWindX-RayX-Ray ScienceX-Ray

  10. Femtosecond photoelectron spectroscopy of the I{sub 2}{sup {minus}} anion: A semiclassical molecular dynamics simulation method

    SciTech Connect (OSTI)

    Batista, V.S.; Zanni, M.T.; Greenblatt, B.J.; Neumark, D.M.; Miller, W.H. [Department of Chemistry, University of California, Berkeley, California 94720 (United States)] [Department of Chemistry, University of California, Berkeley, California 94720 (United States); [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    1999-02-01

    In this paper we describe a new semiclassical method for simulating femtosecond pump{endash}probe photoelectron spectroscopy, and its implementation to study the excited state photodissociation dynamics of the I{sub 2}{sup {minus}} anion. Our algorithm involves a forward{endash}backward (FB) semiclassical (SC) initial value representation (IVR) method for calculating the time dependent photodetachment spectrum P({epsilon},{Delta}t) as a function of the kinetic energy {epsilon} of the photodetached electron and the delay time {Delta}t between the pump and probe pulses. We describe the radiation-chromophore interaction perturbatively to first order in both pulse fields, assuming the Condon approximation for the electronic transition dipole moments. Our computed spectra are in excellent agreement with full quantum mechanical simulations. {copyright} {ital 1999 American Institute of Physics.}

  11. Miniature x-ray source

    DOE Patents [OSTI]

    Trebes, James E. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA)

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  12. Structure Matters: Combining X-Ray Scattering and Ultraviolet Photoelectron

    E-Print Network [OSTI]

    Schreiber, Frank

    such structural data and electronic information from UPS new insights in the fundamental principles of organic Institute for Applied Physics, University of Tu¨bingen, Auf der Morgenstelle 10, 2076 Tu¨bingen, Germany e within the framework of dynamical scattering theory with a recursive formalism described by Parratt [6

  13. Astrophysics Research Projects:Astrophysics Research Projects: massive star winds, x-ray emission, theoretical models,massive star winds, x-ray emission, theoretical models,

    E-Print Network [OSTI]

    Cohen, David

    Astrophysics Research Projects:Astrophysics Research Projects: massive star winds, x-ray emission, theoretical models,massive star winds, x-ray emission, theoretical models, spectroscopy, laboratory plasma-drivenhave powerful radiation-driven stellar windsstellar winds.. etaeta CarinaCarina #12;TheThe ChandraChandra X

  14. Gas-phase ultraviolet photoelectron spectroscopy and molecular orbital calculations on transition metal carbonyls and nitrosyls 

    E-Print Network [OSTI]

    Morris-Sherwood, Betty Jeanne

    1981-01-01

    the complexes are formally M(0) 3d 6 the calculations suggest that the "metal" electrons are highly delocalized onto the nitrosyls. This suggestion is supported by the similarity in the ionization energies of the chromium complexes to those... f t d tyj la~lao ~Ch 1 t? description of the molecular orbitals, which can be useful in under- standing the chemistry and bonding in transition metal complexes. The following study will apply PE spectroscopy and MO calcula- tions to derivatives...

  15. Ultrafast X-ray Sources

    SciTech Connect (OSTI)

    George Neil

    2010-04-19

    Since before the scattering of X-rays off of DNA led to the first understanding of the double helix structure, sources of X-rays have been an essential tool for scientists examining the structure and interactions of matter. The resolution of a microscope is proportional to the wavelength of light so x-rays can see much finer structures than visible light, down to single atoms. In addition, the energy of X-rays is resonant with the core atomic levels of atoms so with appropriate wavelengths the placement of specific atoms in a large molecule can be determined. Over 10,000 scientists use synchrotron sources, storage rings of high energy electrons, each year worldwide. As an example of such use, virtually every picture of a protein or drug molecule that one sees in the scientific press is a reconstruction based on X-ray scattering of synchrotron light from the crystallized form of that molecule. Unfortunately those pictures are static and proteins work through configuration (shape) changes in response to energy transfer. To understand how biological systems work requires following the energy flow to these molecules and tracking how shape changes drive their interaction with other molecules. We'd like to be able to freeze the action of these molecules at various steps along the way with an X-ray strobe light. How fast does it have to be? To actually get a picture of a molecule in a fixed configuration requires X-ray pulses as short as 30 femtoseconds (1/30 of a millionth of a millionth of a second). To capture the energy flow through changes in electronic levels requires a faster strobe, less than 1 femtosecond! And to acquire such information in smaller samples with higher accuracy demands brighter and brighter X-rays. Unfortunately modern synchrotrons (dubbed 3rd Generation Light Sources) cannot deliver such short bright pulses of X-rays. An entirely new approach is required, linear-accelerator (linac-)-based light sources termed 4th or Next Generation Light Sources (NGLSs). Although NGLSs will not displace synchrotrons from their role they do offer exciting new capabilities which can be understood from the physics of the light production in each device.

  16. Compact x-ray source and panel

    DOE Patents [OSTI]

    Sampayon, Stephen E. (Manteca, CA)

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  17. Reactivity of Au nanoparticles supported over SiO2 and TiO2 studiedby ambient pressure photoelectron spectroscopy

    SciTech Connect (OSTI)

    Herranz, Tirma; Deng, Xingyi; Cabot, Andreu; Alivisatos, Paul; Liu, Zhi; Soler-Illia, Galo; Salmeron, Miquel

    2009-04-15

    The influence of the metal cluster size and the identity of the support on the reactivity of gold based catalysts have been studied in the CO oxidation reaction. To overcome the structural complexity of the supported catalysts, gold nanoparticles synthesized from colloidal chemistry with precisely controlled size have been used. Those particles were supported over SiO{sub 2} and TiO{sub 2} and their catalytic activity was measured in a flow reactor. The reaction rate was dependent on the particle size and the support, suggesting two reaction pathways in the CO oxidation reaction. In parallel, ambient pressure photoelectron spectroscopy (APPS) has been performed under reaction conditions using bidimensional model catalysts prepared upon supporting the Au nanoparticles over planar polycrystalline SiO{sub 2} and TiO{sub 2} thin films by means of the Langmuir-Blodgett (LB) technique to mimic the characteristic of the powder samples. In this way, the catalytically active surface was characterized under true reaction conditions, revealing that during CO oxidation gold remains in the metallic state.

  18. Thermal stability in the blended lithium manganese oxide – Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, Enyuan; Bak, Seong Min; Senanayake, Sanjaya D.; Yang, Xiao-Qing; Nam, Kyung-Wan; Zhang, Lulu; Shao, Minhua

    2015-03-01

    Thermal stabilities of a series of blended LiMn2O4(LMO)-LiNi1/3Co1/3Mn1/3O2 (NCM) cathode materials with different weight ratios were studied by in situ time-resolved X-ray diffraction (XRD) combined with mass spectroscopy in the temperature range of 25°C-580°C under helium atmosphere. Upon heating, the electrochemically delithiated LMO changed into Mn3O4 phase at around 250°C. Formation of MnO with rocksalt structure started at 520°C. This observation is in contrast to the previous report for chemically delithiate LMO in air, in which a process of ?-MnO2 transforming to ?-MnO2 was observed. Oxygen peak was not observed in all cases, presumably as a result of either consumptionmore »by the carbon or detection limit. CO2 profile correlates well with the phase transition and indirectly suggests the oxygen release of the cathode. Introducing NCM into LMO has two effects: first, it makes the high temperature rock-salt phase formation more complicated with more peaks in CO2 profile due to different MO (M = Ni, Mn, Co) phases; secondly, the onset temperature of CO2 release is lowered, implying lowered oxygen release temperature. Upon heating, XRD patterns indicate the NCM part reacts first, followed by the LMO part. This confirms the better thermal stability of LMO over NCM.« less

  19. Thermal stability in the blended lithium manganese oxide – Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, Enyuan [Brookhaven National Lab. (BNL), Upton, NY (United States); Bak, Seong Min [Brookhaven National Lab. (BNL), Upton, NY (United States); Senanayake, Sanjaya D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yang, Xiao-Qing [Dongguk Univ., Seoul (Korea, Republic of). Dept. of Energy and Materials Engineering; Nam, Kyung-Wan [Dongguk Univ., Seoul (Korea, Republic of). Dept. of Energy and Materials Engineering] (ORCID:0000000162786369); Zhang, Lulu [Hong Kong Univ. of Science and Technology, Clear Water Bay (Hong Kong); Shao, Minhua

    2015-03-01

    Thermal stabilities of a series of blended LiMn2O4(LMO)-LiNi1/3Co1/3Mn1/3O2 (NCM) cathode materials with different weight ratios were studied by in situ time-resolved X-ray diffraction (XRD) combined with mass spectroscopy in the temperature range of 25°C-580°C under helium atmosphere. Upon heating, the electrochemically delithiated LMO changed into Mn3O4 phase at around 250°C. Formation of MnO with rocksalt structure started at 520°C. This observation is in contrast to the previous report for chemically delithiate LMO in air, in which a process of ?-MnO2 transforming to ?-MnO2 was observed. Oxygen peak was not observed in all cases, presumably as a result of either consumption by the carbon or detection limit. CO2 profile correlates well with the phase transition and indirectly suggests the oxygen release of the cathode. Introducing NCM into LMO has two effects: first, it makes the high temperature rock-salt phase formation more complicated with more peaks in CO2 profile due to different MO (M = Ni, Mn, Co) phases; secondly, the onset temperature of CO2 release is lowered, implying lowered oxygen release temperature. Upon heating, XRD patterns indicate the NCM part reacts first, followed by the LMO part. This confirms the better thermal stability of LMO over NCM.

  20. Focused X-ray source

    DOE Patents [OSTI]

    Piestrup, Melvin A. (Woodside, CA); Boyers, David G. (Mountain View, CA); Pincus, Cary I. (Sunnyvale, CA); Maccagno, Pierre (Stanford, CA)

    1990-01-01

    An intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator.

  1. Soft X-ray microflares

    E-Print Network [OSTI]

    Mirzoeva, I K

    2015-01-01

    Soft X-ray solar bursts are studied. Weak bursts with powers up to 10-8 W/m2 were detected. All the events were confirmed by GOES observations. Parameters of these microflares are determined. A physical mechanism for the low-intensity solar events is discussed.

  2. Focused X-ray source

    DOE Patents [OSTI]

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

    1990-08-21

    Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

  3. Reverse engineering the ancient ceramic technology based on X-ray fluorescence spectromicroscopy

    E-Print Network [OSTI]

    Reverse engineering the ancient ceramic technology based on X-ray fluorescence spectromicroscopy-ray fluorescence (XRF) microprobe analyses of ancient ceramic cross-sections aiming at deciphering the different and Fe K-edge X-ray absorption near edge structure spectroscopy were performed on pre-sigillata ceramics

  4. Producing X-rays at the APS

    ScienceCinema (OSTI)

    None

    2013-04-19

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

  5. Strong electron correlation in UO{sub 2}{sup ?}: A photoelectron spectroscopy and relativistic quantum chemistry study

    SciTech Connect (OSTI)

    Li, Wei-Li; Jian, Tian; Lopez, Gary V.; Wang, Lai-Sheng, E-mail: lai-sheng-wang@brown.edu [Department of Chemistry, Brown University, Providence, Rhode Island 02912 (United States)] [Department of Chemistry, Brown University, Providence, Rhode Island 02912 (United States); Su, Jing [Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084 (China) [Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084 (China); Division of Nuclear Materials Science and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China and Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Hu, Han-Shi; Cao, Guo-Jin; Li, Jun, E-mail: junli@tsinghua.edu.cn [Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084 (China)] [Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2014-03-07

    The electronic structures of actinide systems are extremely complicated and pose considerable challenges both experimentally and theoretically because of significant electron correlation and relativistic effects. Here we report an investigation of the electronic structure and chemical bonding of uranium dioxides, UO{sub 2}{sup ?} and UO{sub 2}, using photoelectron spectroscopy and relativistic quantum chemistry. The electron affinity of UO{sub 2} is measured to be 1.159(20) eV. Intense detachment bands are observed from the UO{sub 2}{sup ?} low-lying (7s?{sub g}){sup 2}(5f?{sub u}){sup 1} orbitals and the more deeply bound O2p-based molecular orbitals which are separated by a large energy gap from the U-based orbitals. Surprisingly, numerous weak photodetachment transitions are observed in the gap region due to extensive two-electron transitions, suggesting strong electron correlations among the (7s?{sub g}){sup 2}(5f?{sub u}){sup 1} electrons in UO{sub 2}{sup ?} and the (7s?{sub g}){sup 1}(5f?{sub u}){sup 1} electrons in UO{sub 2}. These observations are interpreted using multi-reference ab initio calculations with inclusion of spin-orbit coupling. The strong electron correlations and spin-orbit couplings generate orders-of-magnitude more detachment transitions from UO{sub 2}{sup ?} than expected on the basis of the Koopmans’ theorem. The current experimental data on UO{sub 2}{sup ?} provide a long-sought opportunity to arbitrating various relativistic quantum chemistry methods aimed at handling systems with strong electron correlations.

  6. Phase-sensitive X-ray imager

    DOE Patents [OSTI]

    Baker, Kevin Louis

    2013-01-08

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  7. Thermal stability in the blended lithium manganese oxide – Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study

    SciTech Connect (OSTI)

    Hu, Enyuan; Bak, Seong Min; Senanayake, Sanjaya D.; Yang, Xiao-Qing; Nam, Kyung-Wan; Zhang, Lulu; Shao, Minhua

    2015-03-01

    Thermal stabilities of a series of blended LiMn2O4(LMO)-LiNi1/3Co1/3Mn1/3O2 (NCM) cathode materials with different weight ratios were studied by in situ time-resolved X-ray diffraction (XRD) combined with mass spectroscopy in the temperature range of 25°C-580°C under helium atmosphere. Upon heating, the electrochemically delithiated LMO changed into Mn3O4 phase at around 250°C. Formation of MnO with rocksalt structure started at 520°C. This observation is in contrast to the previous report for chemically delithiate LMO in air, in which a process of ?-MnO2 transforming to ?-MnO2 was observed. Oxygen peak was not observed in all cases, presumably as a result of either consumption by the carbon or detection limit. CO2 profile correlates well with the phase transition and indirectly suggests the oxygen release of the cathode. Introducing NCM into LMO has two effects: first, it makes the high temperature rock-salt phase formation more complicated with more peaks in CO2 profile due to different MO (M = Ni, Mn, Co) phases; secondly, the onset temperature of CO2 release is lowered, implying lowered oxygen release temperature. Upon heating, XRD patterns indicate the NCM part reacts first, followed by the LMO part. This confirms the better thermal stability of LMO over NCM.

  8. Singlet-Triplet Splittings in CX2 (X ) F, Cl, Br, I) Dihalocarbenes via Negative Ion Photoelectron Spectroscopy

    E-Print Network [OSTI]

    Lineberger, W. Carl

    Singlet-Triplet Splittings in CX2 (X ) F, Cl, Br, I) Dihalocarbenes via Negative Ion Photoelectron2, and CI2. In addition to the long list of theoretical studies on CX2 (X ) F, Cl, Br, I

  9. SMB, X-Ray Spectroscopy & Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni > The2/01/12 Page 1 ofSuper HeavySLEPc SLEPcHome »

  10. X-ray Imaging Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single goldWindX-Ray ImagingInImaging and

  11. Soft X-ray techniques to study mesoscale magnetism

    E-Print Network [OSTI]

    Kortright, Jeffrey B.

    2003-01-01

    X-Ray Techniques to Study Mesoscale Magnetism Jeffrey B.X-Ray Techniques to Study Mesoscale Magnetism Jeffrey B.

  12. X-ray Observations of Mrk 231

    E-Print Network [OSTI]

    T. J. Turner

    1998-08-10

    This paper presents new X-ray observations of Mrk 231, an active galaxy of particular interest due to its large infrared luminosity and the presence of several blueshifted broad absorption line (BAL) systems, a phenomenon observed in a small fraction of QSOs. A ROSAT HRI image of Mrk 231 is presented, this shows an extended region of soft X-ray emission, covering several tens of kpc, consistent with the extent of the host galaxy. An ASCA observation of Mrk 231 is also presented. Hard X-rays are detected but the data show no significant variability in X-ray flux. The hard X-ray continuum is heavily attenuated and X-ray column estimates range from ~ 2 x 10^{22} - 10^{23} cm^{-2} depending on whether the material is assumed to be neutral or ionized, and on the model assumed for the extended X-ray component. These ASCA data provide only the second hard X-ray spectrum of a BAL AGN presented to date. The broad-band spectral-energy-distribution of the source is discussed. While Mrk 231 is X-ray weak compared to Seyfert 1 galaxies, it has an optical-to-X-ray spectrum typical of a QSO.

  13. Controlling X-rays With Light

    SciTech Connect (OSTI)

    Glover, Ernie; Hertlein, Marcus; Southworth, Steve; Allison, Tom; van Tilborg, Jeroen; Kanter, Elliot; Krassig, B.; Varma, H.; Rude, Bruce; Santra, Robin; Belkacem, Ali; Young, Linda

    2010-08-02

    Ultrafast x-ray science is an exciting frontier that promises the visualization of electronic, atomic and molecular dynamics on atomic time and length scales. A largelyunexplored area of ultrafast x-ray science is the use of light to control how x-rays interact with matter. In order to extend control concepts established for long wavelengthprobes to the x-ray regime, the optical control field must drive a coherent electronic response on a timescale comparable to femtosecond core-hole lifetimes. An intense field is required to achieve this rapid response. Here an intense optical control pulse isobserved to efficiently modulate photoelectric absorption for x-rays and to create an ultrafast transparency window. We demonstrate an application of x-ray transparencyrelevant to ultrafast x-ray sources: an all-photonic temporal cross-correlation measurement of a femtosecond x-ray pulse. The ability to control x-ray/matterinteractions with light will create new opportunities at current and next-generation x-ray light sources.

  14. Determining Relative f and d Orbital Contributions to M?Cl Covalency in MCl62– (M = Ti, Zr, Hf, U) and UOCl5 Using Cl K-Edge X-ray Absorption Spectroscopy and Time-Dependent Density Functional Theory

    SciTech Connect (OSTI)

    Minasian, Stefan G.; Keith, Jason M.; Batista, Enrique R.; Boland, Kevin S.; Clark, David L.; Conradson, Steven D.; Kozimor, Stosh A.; Martin, Richard L.; Schwarz, Daniel E.; Shuh, David K.; Wagner, Gregory L.; Wilkerson, Marianne P.; Wolfsberg, Laura E.; Yang, Ping

    2012-03-09

    Chlorine K-edge X-ray absorption spectroscopy (XAS) and ground-state and time-dependent hybrid density functional theory (DFT) were used to probe electronic structure for O{sub h}-MCl{sub 6}{sup 2-}(M = Ti, Zr, Hf, U) and C{sub 4v}-UOCl{sub 5}{sup -}, and to determine the relative contributions of valence 3d, 4d, 5d, 6d, and 5f orbitals in M-Cl bonding. Spectral interpretations were guided by time-dependent DFT calculated transition energies and oscillator strengths, which agree well with the experimental XAS spectra. The data provide new spectroscopic evidence for the involvement of both 5f and 6d orbitals in actinide-ligand bonding in UCl{sub 6}{sup 2-}. For the MCl{sub 6}{sup 2-}, where transitions into d orbitals of t{sub 2g} symmetry are spectroscopically resolved for all four complexes, the experimentally determined Cl 3p character per M-Cl bond increases from 8.3(4)% (TiCl{sub 6}{sup 2-}) to 10.3(5)% (ZrCl{sub 6}{sup 2-}), 12(1)% (HfCl{sub 6}{sup 2-}), and 26 18(1)% (UCl{sub 6}{sup 2-}). Chlorine K-edge XAS spectra of UOCl{sub 5}{sup -} provide additional insights into the transition assignments by 27 lowering the symmetry to C{sub 4v}, where five pre-edge transitions into both 5f and 6d orbitals are observed. For UCl{sub 6}{sup 2-}, the XAS data 28 suggest that orbital mixing associated with the U 5f orbitals is considerably lower than that of the U 6d orbitals. For both UCl{sub 6}{sup 2-}29 and UOCl{sub 5}{sup -}, the ground-state DFT calculations predict a larger 5f contribution to bonding than is determined experimentally. 30 These findings are discussed in the context of conventional theories of covalent bonding for d- and f-block metal complexes.

  15. X-ray transmissive debris shield

    DOE Patents [OSTI]

    Spielman, Rick B. (Albuquerque, NM)

    1994-01-01

    A composite window structure is described for transmitting x-ray radiation and for shielding radiation generated debris. In particular, separate layers of different x-ray transmissive materials are laminated together to form a high strength, x-ray transmissive debris shield which is particularly suited for use in high energy fluences. In one embodiment, the composite window comprises alternating layers of beryllium and a thermoset polymer.

  16. An unresolved X-ray source inside the supernova remnant RCW 86

    E-Print Network [OSTI]

    Jacco Vink; Fabrizio Bocchino; Francesco Damiani; Jelle S. Kaastra

    2000-08-29

    We report on the discovery of an unresolved X-ray source inside the supernova remnant G315.4-2.3 (RCW 86). The source is located 7' to the Southwest of the geometrical centre and may be close to the actual explosion centre of the supernova, which makes this a candidate for the stellar remnant associated with RCW 86. However, the presence of a possible optical counterpart with $V \\sim 14$ at 3" from the X-ray position and evidence for long term variability means that the source is probably an active star. A better X-ray position and better X-ray spectroscopy along with an identification of the optical source are needed to exclude the X-ray source as a neutron star candidate.

  17. X-ray microscopy. Beyond ensemble averages

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ice, Gene E.; Budai, John D.

    2015-06-23

    This work exemplifies emerging tools to characterize local materials structure and dynamics, made possible by powerful X-ray synchrotron and transmission electron microscopy methods.

  18. X-ray laser microscope apparatus

    DOE Patents [OSTI]

    Suckewer, Szymon (Princeton, NJ); DiCicco, Darrell S. (Plainsboro, NJ); Hirschberg, Joseph G. (Coral Gables, FL); Meixler, Lewis D. (East Windsor, NJ); Sathre, Robert (Princeton, NJ); Skinner, Charles H. (Lawrenceville, NJ)

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  19. Compound refractive X-ray lens

    DOE Patents [OSTI]

    Nygren, David R. (Berkeley, CA); Cahn, Robert (Walnut Creek, CA); Cederstrom, Bjorn (Traellborg, SE); Danielsson, Mats (Stocksund, SE); Vestlund, Jonas (Stockholm, SE)

    2000-01-01

    An apparatus and method for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point.

  20. X-Ray Nanoimaging: Instruments and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0PhotosPresentationsWorld's largestX-RayX-RayX-RayX-Ray

  1. Phased Contrast X-Ray Imaging

    ScienceCinema (OSTI)

    Erin Miller

    2012-12-31

    The Pacific Northwest National Laboratory is developing a range of technologies to broaden the field of explosives detection. Phased contrast X-ray imaging, which uses silicon gratings to detect distortions in the X-ray wave front, may be applicable to mail or luggage scanning for explosives; it can also be used in detecting other contraband, small-parts inspection, or materials characterization.

  2. X-rays from Hot Subdwarfs

    E-Print Network [OSTI]

    Mereghetti, Sandro

    2015-01-01

    Thanks to the high sensitivity of the instruments on board the XMM-Newton and Chandra satellites, it has become possible to explore the properties of the X-ray emission from hot subdwarfs. The small but growing sample of hot subdwarfs detected in X-rays includes binary systems, in which the X-rays result from wind accretion onto a compact companion (white dwarf or neutron star), as well as isolated sdO stars in which X-rays are probably due to shock instabilities in the wind. X-ray observations of these low mass stars provide information which can be useful also for our understanding of the winds of more luminous and massive early-type stars and can lead to the discovery of particularly interesting binary systems.

  3. High Energy Vision: Processing X-rays

    E-Print Network [OSTI]

    DePasquale, Joseph; Edmonds, Peter

    2015-01-01

    Astronomy is by nature a visual science. The high quality imagery produced by the world's observatories can be a key to effectively engaging with the public and helping to inspire the next generation of scientists. Creating compelling astronomical imagery can, however, be particularly challenging in the non-optical wavelength regimes. In the case of X-ray astronomy, where the amount of light available to create an image is severely limited, it is necessary to employ sophisticated image processing algorithms to translate light beyond human vision into imagery that is aesthetically pleasing while still being scientifically accurate. This paper provides a brief overview of the history of X-ray astronomy leading to the deployment of NASA's Chandra X-ray Observatory, followed by an examination of the specific challenges posed by processing X-ray imagery. The authors then explore image processing techniques used to mitigate such processing challenges in order to create effective public imagery for X-ray astronomy. ...

  4. Trends in Covalency for d- and f-Element Metallocene Dichlorides Identified Using Chlorine K-Edge X-Ray Absorption Spectroscopy and Time Dependent-Density Functional Theory

    SciTech Connect (OSTI)

    Kozimor, Stosh A.; Yang, Ping; Batista, Enrique R.; Boland, Kevin S.; Burns, Carol J.; Clark, David L.; Conradson, Steven D.; Martin, Richard L.; Wikerson, Marianne P.; Wolfsberg, Laura E.

    2009-09-02

    We describe the use of Cl K-edge X-ray Absorption Spectroscopy (XAS) and both ground state and time-dependent hybrid density functional theory (DFT) to probe electronic structure and determine the degree of orbital mixing in M-Cl bonds for (C5Me5)2MCl2 (M = Ti, 1; Zr, 2; Hf, 3; Th, 4; and U, 5), where we can directly compare a class of structurally similar compounds for d- and f-elements. We report direct experimental evidence for covalency in M-Cl bonding, including actinides, and offer insight into the relative roles of the valence f- and dorbitals in these systems. The Cl K-edge XAS data for the group IV transition metals, 1 – 3, show slight decreases in covalency in M-Cl bonding with increasing principal quantum number, in the order Ti > Zr > Hf. The percent Cl 3p character per M-Cl bond was experimentally determined to be 25, 23, and 22% per M-Cl bond for 1-3, respectively. For actinides, we find a shoulder on the white line for (C5Me5)2ThCl2, 4, and distinct, but weak pre-edge features for 2 (C5Me5)2UCl2, 5. The percent Cl 3p character in Th-Cl bonds in 4 was determined to be 14 %, with high uncertainty, while the U-Cl bonds in 5 contains 9 % Cl 3p character. The magnitudes of both values are approximately half what was observed for the transition metal complexes in this class of bent metallocene dichlorides. Using the hybrid DFT calculations as a guide to interpret the experimental Cl K-edge XAS, these experiments suggest that when evaluating An- Cl bonding, both 5f- and 6d-orbitals should be considered. For (C5Me5)2ThCl2, the calculations and XAS indicate that the 5f- and 6d-orbitals are nearly degenerate and heavily mixed. In contrast, the 5f- and 6d-orbitals in (C5Me5)2UCl2 are no longer degenerate, and fall in two distinct energy groupings. The 5f-orbitals are lowest in energy and split into a 5-over-2 pattern with the high lying U 6d-orbitals split in a 4-over-1 pattern, the latter of which is similar to the dorbital splitting in group IV transition metal (C5R5)2MCl2 (R = H, Me) compounds. Time dependent-DFT (TD-DFT) was used to calculate the energies and intensities of Cl 1s transitions into empty metal based orbitals containing Cl 3p character, and provide simulated Cl K-edge XAS spectra for 1 - 4. However, for 5, which has two unpaired electrons, analogous information was obtained from transition dipole calculations using ground state Kohn-Sham orbitals. The simulations provide additional confidence in the interpretation of spectra based on ground state calculations. Overall, this study demonstrates that Cl K-edge XAS and DFT calculations represent powerful tools that can be used to evaluate electronic structure and covalency in actinide metal-ligand bonding. In addition, these results provide a framework that can be used in future studies to evaluate actinide covalency in compounds that contain transuranic elements.

  5. ELECTRON FLUX SPECTRAL IMAGING OF SOLAR FLARES THROUGH REGULARIZED ANALYSIS OF HARD X-RAY SOURCE VISIBILITIES

    E-Print Network [OSTI]

    Piana, Michele

    ELECTRON FLUX SPECTRAL IMAGING OF SOLAR FLARES THROUGH REGULARIZED ANALYSIS OF HARD X-RAY SOURCE a new method for imaging spectroscopy analysis of hard X-ray emission during solar flares. The method the method to a solar flare observed on 2002 February 20 by the RHESSI instrument. The event is characterized

  6. X-ray diffraction and EXAFS analysis of materials for lithium-based rechargeable batteries

    SciTech Connect (OSTI)

    Sharkov, M. D., E-mail: mischar@mail.ioffe.ru; Boiko, M. E.; Bobyl, A. V.; Ershenko, E. M.; Terukov, E. I. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Zubavichus, Y. V. [National Research Centre “Kurchatov Institute” (Russian Federation)

    2013-12-15

    Lithium iron phosphate LiFePO{sub 4} (triphylite) and lithium titanate Li{sub 4}Ti{sub 5}O{sub 12} are used as components of a number of active materials in modern rechargeable batteries. Samples of these materials are studied by X-ray diffraction and extended X-ray absorption fine structure (EXAFS) spectroscopy. Hypotheses about the phase composition of the analyzed samples are formulated.

  7. Maskelynite formation via solid-state transformation: Evidence of infrared and x-ray anisotropy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jaret, Steven J.; Ehm, Lars; Woerner, William R.; Phillips, Brian L.; Nekvasil, Hanna; Wright, Shawn P.; Glotch, Timothy D.

    2015-03-24

    We present optical microscopy, micro-Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, high-energy X-ray total scattering experiments, and micro-Fourier transform infrared (micro-FTIR) spectroscopy on shocked labradorite from the Lonar Crater, India. We show that maskelynite of shock class 2 is structurally more similar to fused glass than to crystalline plagioclase. However, there are slight but significant differences – preservation of original pre-impact igneous zoning, anisotropy at Infrared wavelengths, X-ray anisotropy, and preservation of some intermediate range order – which are all consistent with a solid-state transformation formation of maskelynite.

  8. X-ray phase-contrast methods

    SciTech Connect (OSTI)

    Lider, V. V., E-mail: lider@ns.crys.ras.ru; Kovalchuk, M. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)] [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2013-11-15

    This review is devoted to a comparative description of the methods for forming X-ray phase-contrast images of weakly absorbing (phase) objects. These include the crystal interferometer method, the Talbot interferometer method, diffraction-enhanced X-ray imaging, and the in-line method. The potential of their practical application in various fields of science and technology is discussed. The publications on the development and optimization of X-ray phase-contrast methods and the experimental study of phase objects are analyzed.

  9. X-rays Illuminate Ancient Archimedes Text

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single goldWindX-RayX-RayX-ray

  10. Small Angle X-Ray Scattering Detector

    DOE Patents [OSTI]

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

  11. X-Ray Nanoimaging: Instruments and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instruments and Methods X-Ray Nanoimaging: Instruments and Methods Print To be held as part of SPIE. http:spie.orgOP318 August 28-29, 2013; San Diego, California, USA...

  12. X-ray source for mammography

    DOE Patents [OSTI]

    Logan, Clinton M. (Pleasanton, CA)

    1994-01-01

    An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

  13. X-ray source for mammography

    DOE Patents [OSTI]

    Logan, C.M.

    1994-12-20

    An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.

  14. Applications of x-ray synchrotron radiation techniques to the study of dispersed electrocatalysts in high area materials

    SciTech Connect (OSTI)

    McBreen, J.

    1991-12-31

    This report discusses work demonstrating that X-Ray Absorption Spectroscopy is a very powerful technique for the study of electrocatalysts. Results for a prototech catalyst, and platinum are presented. (JL)

  15. Applications of x-ray synchrotron radiation techniques to the study of dispersed electrocatalysts in high area materials

    SciTech Connect (OSTI)

    McBreen, J.

    1991-01-01

    This report discusses work demonstrating that X-Ray Absorption Spectroscopy is a very powerful technique for the study of electrocatalysts. Results for a prototech catalyst, and platinum are presented. (JL)

  16. X-ray Microspectroscopy and Chemical Reactions in Soil Microsites

    SciTech Connect (OSTI)

    D Hesterberg; M Duff; J Dixon; M Vepraskas

    2011-12-31

    Soils provide long-term storage of environmental contaminants, which helps to protect water and air quality and diminishes negative impacts of contaminants on human and ecosystem health. Characterizing solid-phase chemical species in highly complex matrices is essential for developing principles that can be broadly applied to the wide range of notoriously heterogeneous soils occurring at the earth's surface. In the context of historical developments in soil analytical techniques, we describe applications of bulk-sample and spatially resolved synchrotron X-ray absorption spectroscopy (XAS) for characterizing chemical species of contaminants in soils, and for determining the uniqueness of trace-element reactivity in different soil microsites. Spatially resolved X-ray techniques provide opportunities for following chemical changes within soil microsites that serve as highly localized chemical micro- (or nano-)reactors of unique composition. An example of this microreactor concept is shown for micro-X-ray absorption near edge structure analysis of metal sulfide oxidation in a contaminated soil. One research challenge is to use information and principles developed from microscale soil chemistry for predicting macroscale and field-scale behavior of soil contaminants.

  17. Compton backscattered collmated X-ray source

    DOE Patents [OSTI]

    Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

    2000-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  18. Compton backscattered collimated x-ray source

    DOE Patents [OSTI]

    Ruth, R.D.; Huang, Z.

    1998-10-20

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  19. Compton backscattered collimated x-ray source

    DOE Patents [OSTI]

    Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

    1998-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  20. X-ray laser driven gold targets

    SciTech Connect (OSTI)

    Petrova, Tz. B., E-mail: lina.petrova@nrl.navy.mil; Whitney, K. G.; Davis, J. [Plasma Physics Division, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375 (United States)] [Plasma Physics Division, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375 (United States)

    2014-03-15

    The femtosecond population dynamics of gold irradiated by a coherent high-intensity (>10{sup 17}?W/cm{sup 2}) x-ray laser pulse is investigated theoretically. There are two aspects to the assembled model. One is the construction of a detailed model of platinum-like gold inclusive of all inner-shell states that are created by photoionization of atomic gold and decay either by radiative or Auger processes. Second is the computation of the population dynamics that ensues when an x-ray pulse is absorbed in gold. The hole state generation depends on the intensity and wavelength of the driving x-ray pulse. The excited state populations reached during a few femtosecond timescales are high enough to generate population inversions, whose gain coefficients are calculated. These amplified lines in the emitted x-ray spectrum provide important diagnostics of the radiation dynamics and also suggest a nonlinear way to increase the frequency of the coherent output x-ray pulses relative to the frequency of the driver input x-ray pulse.

  1. Molecular orientation in soft matter thin films studied by resonant soft x-ray reflectivity

    SciTech Connect (OSTI)

    Mezger, Markus; Jerome, Blandine; Kortright, Jeffrey B; Valvidares, Manuel; Gullikson, Eric M; Giglia, Angelo; Mahne, Nicola; Nannarone, Stefano

    2011-04-05

    We present a technique to study depth profiles of molecular orientation in soft matter thin films with nanometer resolution. The method is based on dichroism in resonant soft x-ray reflectivity using linear s and p polarization. It combines the chemical sensitivity of near-edge x-ray absorption fine structure spectroscopy to specific molecular bonds and their orientation relative to the polarization of the incident beam with the precise depth profiling capability of x-ray reflectivity. We demonstrate these capabilities on side chain liquid crystalline polymer thin films with soft x-ray reflectivity data at the carbon K edge. Optical constants of the anisotropic refractive index ellipsoid were obtained from a quantitative analysis using the Berreman formalism. For films up to 50 nm thickness we find that the degree of orientation of the long axis exhibits no depth variation and is independent of the film thickness.

  2. Molecular orientation in soft matter thin films studied by resonant soft X-ray reflectivity

    SciTech Connect (OSTI)

    Mezger, Markus; Jerome, Blandine; Kortright, Jeffrey B.; Valvidares, Manuel; Gullikson, Eric; Giglia, Angelo; Mahne, Nicola; Nannarone, Stefano

    2011-01-12

    We present a technique to study depth profiles of molecular orientation in soft matter thin films with nanometer resolution. The method is based on dichroism in resonant soft X-ray reflectivity using linear s- and p-polarization. It combines the chemical sensitivity of Near-Edge X-ray Absorption Fine Structure spectroscopy to specific molecular bonds and their orientation relative to the polarization of the incident beam with the precise depth profiling capability of X-ray reflectivity. We demonstrate these capabilities on side chain liquid crystalline polymer thin films with soft X-ray reflectivity data at the carbon K edge. Optical constants of the anisotropic refractive index ellipsoid were obtained from a quantitative analysis using the Berreman formalism. For films up to 50 nm thickness we find that the degree of orientation of the long axis exhibits no depth variation and isindependent of the film thickness.

  3. Transient x-ray diffraction and its application to materials science and x-ray optics

    SciTech Connect (OSTI)

    Hauer, A.A.; Kopp, R.; Cobble, J.; Kyrala, G.; Springer, R.

    1997-12-01

    Time resolved x-ray diffraction and scattering have been applied to the measurement of a wide variety of physical phenomena from chemical reactions to shock wave physics. Interest in this method has heightened in recent years with the advent of versatile, high power, pulsed x-ray sources utilizing laser plasmas, electron beams and other methods. In this article, we will describe some of the fundamentals involved in time resolved x-ray diffraction, review some of the history of its development, and describe some recent progress in the field. In this article we will emphasize the use of laser-plasmas as the x-ray source for transient diffraction.

  4. Miniature lightweight x-ray optics (MiXO) for surface elemental composition mapping of asteroids and comets

    E-Print Network [OSTI]

    Hong, Jaesub

    2016-01-01

    The compositions of diverse planetary bodies are of fundamental interest to planetary science, providing clues to the formation and evolutionary history of the target bodies and the Solar system as a whole. Utilizing the X-ray fluorescence unique to each atomic element, X-ray imaging spectroscopy is a powerful diagnostic tool of the chemical and mineralogical compositions of diverse planetary bodies. Until now the mass and volume of focusing X-ray optics have been too large for resource-limited in-situ missions, so near-target X-ray observations of planetary bodies have been limited to simple collimator-type X-ray instruments. We introduce a new Miniature lightweight Wolter-I focusing X-ray Optics (MiXO) using metal-ceramic hybrid X-ray mirrors based on electroformed nickel replication and plasma thermal spray processes. MiXO can enable compact, powerful imaging X-ray telescopes suitable for future planetary missions. We illustrate the need for focusing X-ray optics in observing relatively small planetary bod...

  5. Proposed new accelerator design for homeland security x-ray applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Clayton, James; Shedlock, Daniel; Langeveld, Willem G.J.; Bharadwaj, Vinod; Nosochkov, Yuri

    2015-01-01

    Two goals for security scanning of cargo and freight are the ability to determine the type of material that is being imaged, and to do so at low radiation dose. One commonly used technique to determine the effective Z of the cargo is dual-energy imaging, i.e. imaging with different x-ray energy spectra. Another technique uses the fact that the transmitted x-ray spectrum itself also depends on the effective Z. Spectroscopy is difficult because the energy of individual x rays needs to be measured in a very high count-rate environment. Typical accelerators for security applications offer large but short bursts ofmore »x-rays, suitable for current-mode integrated imaging. In order to perform x-ray spectroscopy, a new accelerator design is desired that has the following features: 1) increased duty factor in order to spread out the arrival of x-rays at the detector array over time; 2) x-ray intensity modulation from one delivered pulse to the next by adjusting the accelerator electron beam instantaneous current so as to deliver adequate signal without saturating the spectroscopic detector; and 3) the capability to direct the (forward peaked) x-ray intensity towards high-attenuation areas in the cargo (“fan-beam-steering”). Current sources are capable of 0.1% duty factor, although usually they are operated at significantly lower duty factors (~0.04%), but duty factors in the range 0.4-1.0% are desired. The higher duty factor can be accomplished, e.g., by moving from 300 pulses per second (pps) to 1000 pps and/or increasing the pulse duration from a typical 4 ?s to 10 ?s. This paper describes initial R&D to examine cost effective modifications that could be performed on a typical accelerator for these purposes, as well as R&D for fan-beam steering.« less

  6. Proposed new accelerator design for homeland security x-ray applications

    SciTech Connect (OSTI)

    Clayton, James; Shedlock, Daniel; Langeveld, Willem G.J.; Bharadwaj, Vinod; Nosochkov, Yuri

    2015-01-01

    Two goals for security scanning of cargo and freight are the ability to determine the type of material that is being imaged, and to do so at low radiation dose. One commonly used technique to determine the effective Z of the cargo is dual-energy imaging, i.e. imaging with different x-ray energy spectra. Another technique uses the fact that the transmitted x-ray spectrum itself also depends on the effective Z. Spectroscopy is difficult because the energy of individual x rays needs to be measured in a very high count-rate environment. Typical accelerators for security applications offer large but short bursts of x-rays, suitable for current-mode integrated imaging. In order to perform x-ray spectroscopy, a new accelerator design is desired that has the following features: 1) increased duty factor in order to spread out the arrival of x-rays at the detector array over time; 2) x-ray intensity modulation from one delivered pulse to the next by adjusting the accelerator electron beam instantaneous current so as to deliver adequate signal without saturating the spectroscopic detector; and 3) the capability to direct the (forward peaked) x-ray intensity towards high-attenuation areas in the cargo (“fan-beam-steering”). Current sources are capable of 0.1% duty factor, although usually they are operated at significantly lower duty factors (~0.04%), but duty factors in the range 0.4-1.0% are desired. The higher duty factor can be accomplished, e.g., by moving from 300 pulses per second (pps) to 1000 pps and/or increasing the pulse duration from a typical 4 ?s to 10 ?s. This paper describes initial R&D to examine cost effective modifications that could be performed on a typical accelerator for these purposes, as well as R&D for fan-beam steering.

  7. X-ray/UV variability and the origin of soft X-ray excess emission from II Zw 177

    E-Print Network [OSTI]

    Pal, Main; Misra, Ranjeev; Pawar, Pramod K

    2016-01-01

    We study X-ray and UV emission from the narrow-line Seyfert 1 galaxy II~Zw~177 using a $137\\ks$ long and another $13\\ks$ short \\xmm{} observation performed in 2012 and 2001, respectively. Both observations show soft X-ray excess emission contributing $76.9\\pm4.9\\%$ in 2012 and $58.8\\pm10.2\\%$ in 2001 in the $0.3-2\\kev$ band. We find that both blurred reflection from an ionized disc and Comptonized disc emission describe the observed soft excess well. Time-resolved spectroscopy on scales of $\\sim20\\ks$ reveals strong correlation between the soft excess and the powerlaw components. The fractional variability amplitude $F_{var}$ derived from EPIC-pn lightcurves at different energy bands is nearly constant ($F_{var} \\sim20\\%$). This is in contrast to other AGNs where the lack of short term variation in soft X-ray excess emission has been attributed to intense light bending in the framework of the "lamppost" model. Thus, the variations in powerlaw emission are most likely intrinsic to corona rather than just due t...

  8. X-ray Detection from Bona-fide and Candidate Brown Dwarfs in the Rho Ophiuchi Cloud with Chandra

    E-Print Network [OSTI]

    Kensuke Imanishi; Masahiro Tsujimoto; Katsuji Koyama

    2001-08-06

    We present results of an X-ray search from bona-fide and candidate brown dwarfs in the Rho Ophiuchi cloud cores with the Chandra X-ray Observatory. The selected areas are two fields near the cloud center and are observed with the ACIS-I array of a 17'x17' size and a ~100 ks exposure. Among 18 bona-fide and candidate brown dwarfs listed by the infrared spectroscopy, we find X-ray emission from 7 sources above 99.9% confidence level. Therefore ~40% of the infrared-selected brown dwarfs in this cloud emit X-rays. For the brightest 4 sources, the X-ray spectra are made and are fitted with a thin-thermal plasma model of a temperature 1-2.5 keV. The X-rays are also time variable with rapid flares from 2 of the brown dwarfs. Assuming 2 keV temperature and using the empirical relation of Av vs. NH, we estimate the X-ray luminosity or its upper limit of the other faint or non-X-ray sources. The X-ray luminosity (Lx) of the X-ray-detected sources is in the range of 0.3-90x10^28 ergs s^-1, while the luminosity ratio of X-ray to bolometric (Lx/Lbol) is 10^-3 - 10^-5, similar to those of low-mass pre-main-sequence and dMe stars. All these results suggest that the X-ray origin of brown dwarfs is the same as low-mass stars; strong magnetic activity at the stellar surface.

  9. Differential phase contrast X-ray imaging system and components

    DOE Patents [OSTI]

    Stutman, Daniel; Finkenthal, Michael

    2014-07-01

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  10. Pyroelectric crystal-based X-ray diffractometer

    E-Print Network [OSTI]

    Fernandes, Louis Edward

    2007-01-01

    We investigate the use of an Amptek Cool-X X-ray Generator for an instructional tool in the physics of x-rays, as well as a source for x-rays for crystal diffraction experiments. The x-ray source is a solid-state two-phase ...

  11. Ultrafast X-Ray Coherent Control

    SciTech Connect (OSTI)

    Reis, David

    2009-05-01

    This main purpose of this grant was to develop the nascent #12;eld of ultrafast x-ray science using accelerator-based sources, and originally developed from an idea that a laser could modulate the di#11;racting properties of a x-ray di#11;racting crystal on a fast enough time scale to switch out in time a shorter slice from the already short x-ray pulses from a synchrotron. The research was carried out primarily at the Advanced Photon Source (APS) sector 7 at Argonne National Laboratory and the Sub-Picosecond Pulse Source (SPPS) at SLAC; in anticipation of the Linac Coherent Light Source (LCLS) x-ray free electron laser that became operational in 2009 at SLAC (all National User Facilities operated by BES). The research centered on the generation, control and measurement of atomic-scale dynamics in atomic, molecular optical and condensed matter systems with temporal and spatial resolution . It helped develop the ultrafast physics, techniques and scienti#12;c case for using the unprecedented characteristics of the LCLS. The project has been very successful with results have been disseminated widely and in top journals, have been well cited in the #12;eld, and have laid the foundation for many experiments being performed on the LCLS, the world's #12;rst hard x-ray free electron laser.

  12. Oscillations During Thermonuclear X-ray Bursts

    E-Print Network [OSTI]

    Tod E. Strohmayer

    2001-01-12

    High amplitude, nearly coherent X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries, a long sought goal of X-ray astronomy. Studies carried out over the past year have led to the discovery of burst oscillations in four new sources, bringing to ten the number with confirmed burst oscillations. I review the status of our knowledge of these oscillations and indicate how they can be used to probe the physics of neutron stars. For a few burst oscillation sources it has been proposed that the strongest and most ubiquitous frequency is actually the first overtone of the spin frequency and hence that two nearly antipodal hot spots are present on the neutron star. This inference has important implications for both the physics of thermonuclear burning as well as the mass - radius relation for neutron stars, so its confirmation is crucial. I discuss recent attempts to confirm this hypothesis for 4U 1636-53, the source for which a signal at the putative fundamental (290 Hz) has been claimed.

  13. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, M.S.; Jacobsen, C.

    1997-03-18

    Methods for forming X-ray images having 0.25 {micro}m minimum line widths on X-ray sensitive material are presented. A holographic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required. 15 figs.

  14. In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries

    E-Print Network [OSTI]

    Cui, Yi

    In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries Johanna Information ABSTRACT: Rechargeable lithium-sulfur (Li-S) batteries hold great potential for high not well understood. In this Article, these changes in Li-S batteries are studied in operando by X

  15. X-Ray Data from the X-Ray Data Booklet Online

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thompson, Albert C.; Attwood, David T.; Gullikson, Eric M.; Howells, Malcolm R.; Kortright, Jeffrey B.; Robinson, Arthur L.; Underwood, James H.; Kim, Kwang-Je; Kirz, Janos; Lindau, Ingolf; Pianetta, Piero; Winick, Herman; Williams, Gwyn P.; Scofield, James H.

    The original X-Ray Data Booklet, published in 1985, became a classic reference source. The online version has been significantly revised and updated to reflect today's science. Hundreds of pages of authoritative data provide the x-ray properties of elements, information on synchrotron radiation, scattering processes, optics and detectors, and other related calculations, formulas, and data tables.

  16. X-ray Point Source Populations Constituting the Galactic Ridge X-ray Emission

    E-Print Network [OSTI]

    Morihana, Kumiko; Yoshida, Tessei; Ebisawa, Ken

    2013-01-01

    Apparently diffuse X-ray emission has been known to exist along the central quarter of the Galactic Plane since the beginning of the X-ray astronomy, which is referred to as the Galactic Ridge X-ray emission (GRXE). Recent deep X-ray observations have shown that numerous X-ray point sources account for a large fraction of the GRXE in the hard band (2-8 keV). However, the nature of these sources is poorly understood. Using the deepest X-ray observations made in the Chandra Bulge Field (Revnivtsev et al., 2009,2011), we present the result of a coherent photometric and spectroscopic analysis of individual X-ray point sources for the purpose of constraining their nature and deriving their fractional contributions to the hard band continuum and Fe K\\alpha line emission of the GRXE. Based on the X-ray color-color diagram, we divided the point sources into three groups: A (hard), B (soft and broad spectrum), and C (soft and peaked spectrum). The group A sources are further decomposed spectrally into thermal and non-...

  17. Boron carbide coatings for neutron detection probed by x-rays, ions, and neutrons to determine thin film quality

    SciTech Connect (OSTI)

    Nowak, G. Störmer, M.; Horstmann, C.; Kampmann, R.; Höche, D.; Lorenz, U.; Müller, M.; Schreyer, A.; Becker, H.-W.; Haese-Seiller, M.; Moulin, J.-F.; Pomm, M.; Randau, C.; Hall-Wilton, R.

    2015-01-21

    Due to the present shortage of {sup 3}He and the associated tremendous increase of its price, the supply of large neutron detection systems with {sup 3}He becomes unaffordable. Alternative neutron detection concepts, therefore, have been invented based on solid {sup 10}B converters. These concepts require development in thin film deposition technique regarding high adhesion, thickness uniformity and chemical purity of the converter coating on large area substrates. We report on the sputter deposition of highly uniform large-area {sup 10}B{sub 4}C coatings of up to 2??m thickness with a thickness deviation below 4% using the Helmholtz-Zentrum Geesthacht large area sputtering system. The {sup 10}B{sub 4}C coatings are x-ray amorphous and highly adhesive to the substrate. Material analysis by means of X-ray-Photoelectron Spectroscopy, Secondary-Ion-Mass-Spectrometry, and Rutherford-Back-Scattering (RBS) revealed low impurities concentration in the coatings. The isotope composition determined by Secondary-Ion-Mass-Spectrometry, RBS, and inelastic nuclear reaction analysis of the converter coatings evidences almost identical {sup 10}B isotope contents in the sputter target and in the deposited coating. Neutron conversion and detection test measurements with variable irradiation geometry of the converter coating demonstrate an average relative quantum efficiency ranging from 65% to 90% for cold neutrons as compared to a black {sup 3}He-monitor. Thus, these converter coatings contribute to the development of {sup 3}He-free prototype detectors based on neutron grazing incidence. Transferring the developed coating process to an industrial scale sputtering system can make alternative {sup 3}He-free converter elements available for large area neutron detection systems.

  18. X-ray Clusters at High Redshift

    E-Print Network [OSTI]

    I. M. Gioia

    1997-11-30

    As the largest gravitationally bound structures known, clusters provide clear constraints on the formation of structure and on the composition of the universe. Despite their extreme importance for cosmology the number of clusters at high redshift (z > 0.75) is rather small. There are only a few X-ray emitting examples reported and a handful of optically-selected ones. These clusters can provide stringent constrains on theories of large scale structure formation, if they are massive enough. I will review the status of these distant X-ray selected clusters. These objects are of special importance because their X-ray emission implies that they are massive, comparable to low redshift examples, and their existence is problematic for some theories of structure formation.

  19. A Chandra X-ray Study of NGC 1068 - I. Observations of Extended Emission

    E-Print Network [OSTI]

    A. J. Young; A. S. Wilson; P. L. Shopbell

    2001-04-02

    We report sub arc-second resolution X-ray imaging-spectroscopy of the archetypal type 2 Seyfert galaxy NGC 1068 with the Chandra X-ray Observatory. The observations reveal the detailed structure and spectra of the 13 kpc-extent nebulosity previously imaged at lower resolution with ROSAT. The Chandra image shows a bright, compact source coincident with the brightest radio and optical emission; this source is extended by \\simeq 1.5 arcsec (165 pc) in the same direction as the nuclear optical line and radio continuum emission. Bright X-ray emission extends \\simeq 5 arcsec (550 pc) to the NE and coincides with the NE radio lobe and gas in the narrow line region. The large-scale emission shows trailing spiral arms and other structures. Numerous point sources associated with NGC 1068 are seen. There is a very strong correlation between the X-ray emission and the high excitation ionized gas seen in HST and ground-based [O III] \\lambda 5007 images. The X-rays to the NE of the nucleus are absorbed by only the Galactic column density and thus originate from the near side of the disk of NGC 1068. In contrast the X-rays to the SW are more highly absorbed and must come from gas in the disk or on the far side of it. This geometry is similar to that inferred for the narrow line region and radio lobes. (Abstract truncated).

  20. A table-top femtosecond time-resolved soft x-ray transient absorption spectrometer

    SciTech Connect (OSTI)

    Leone, Stephen; Loh, Zhi-Heng; Khalil, Munira; Correa, Raoul E.; Leone, Stephen R.

    2008-05-21

    A laser-based, table-top instrument is constructed to perform femtosecond soft x-ray transient absorption spectroscopy. Ultrashort soft x-ray pulses produced via high-order harmonic generation of the amplified output of a femtosecond Ti:sapphire laser system are used to probe atomic core-level transient absorptions in atoms and molecules. The results provide chemically specific, time-resolved dynamics with sub-50-fs time resolution. In this setup, high-order harmonics generated in a Ne-filled capillary waveguide are refocused by a gold-coated toroidal mirror into the sample gas cell, where the soft x-ray light intersects with an optical pump pulse. The transmitted high-order harmonics are spectrally dispersed with a home-built soft x-ray spectrometer, which consists of a gold-coated toroidal mirror, a uniform-line spaced plane grating, and a soft x-ray CCD camera. The optical layout of the instrument, design of the soft x-ray spectrometer, and spatial and temporal characterization of the high-order harmonics are described. Examples of static and time-resolved photoabsorption spectra collected on this apparatus are presented.

  1. Near-Infrared and X-Ray Observations of XSS J12270-4859

    E-Print Network [OSTI]

    Saitou, Kei; Ebisawa, Ken; Ishida, Manabu; Mukai, Koji; Nagayama, Takahiro; Nishiyama, Shogo; Gandhi, Poshak

    2011-01-01

    XSS J12270-4859 (J12270) is an enigmatic source of unknown nature. Previous studies revealed that the source has unusual X-ray temporal characteristics, including repetitive short-term flares followed by spectral hardening, non-periodic dips, and dichotomy in activity; i.e. intervals filled with flares and those without. Together with a power-law X-ray spectrum, it is suggested to be a low-mass X-ray binary (LMXB). In order to better understand the object, we present the results of our near-infrared (NIR) photometry and linear polarimetry observations as well as X-ray spectroscopy observations, which overlap with each other partially in time, taken respectively with the InfraRed Survey Facility (IRSF) and the Rossi X-ray Timing Explorer (RXTE). We detected several simultaneous NIR and X-ray flares for the first time. No significant NIR polarization was obtained. We assembled data taken with IRSF, RXTE, Suzaku, Swift, and other missions in the literature and compared the flare profile and the spectral energy d...

  2. Radiobiological studies using gamma and x rays.

    SciTech Connect (OSTI)

    Potter, Charles Augustus; Longley, Susan W.; Scott, Bobby R. [Lovelace Respiratory Research Institute, Albuquerque, NM; Lin, Yong [Lovelace Respiratory Research Institute, Albuquerque, NM; Wilder, Julie [Lovelace Respiratory Research Institute, Albuquerque, NM; Hutt, Julie A. [Lovelace Respiratory Research Institute, Albuquerque, NM; Padilla, Mabel T. [Lovelace Respiratory Research Institute, Albuquerque, NM; Gott, Katherine M. [Lovelace Respiratory Research Institute, Albuquerque, NM

    2013-02-01

    There are approximately 500 self-shielded research irradiators used in various facilities throughout the U.S. These facilities use radioactive sources containing either 137Cs or 60Co for a variety of biological investigations. A report from the National Academy of Sciences[1] described the issues with security of particular radiation sources and the desire for their replacement. The participants in this effort prepared two peer-reviewed publications to document the results of radiobiological studies performed using photons from 320-kV x rays and 137Cs on cell cultures and mice. The effectiveness of X rays was shown to vary with cell type.

  3. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp GraduateResidentialLensless Imaging of WholeX-Ray Imaging inX-Ray

  4. Electronic structure of the heavy-fermion caged compound Ce?Pd??X? (X = Si, Ge) studied by density functional theory and photoelectron spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yamaoka, Hitoshi; Jarrige, Ignace; Schwier, Eike F.; Arita, Masashi; Shimada, Kenya; Tsujii, Naohito; Jiang, Jian; Hayashi, Hirokazu; Iwasawa, Hideaki; Namatame, Hirofumi; et al

    2015-03-30

    The electronic structure of Ce?Pd??X? (X = Si, Ge) has been studied using detailed density functional theory (DFT) calculations and high-resolution photoelectron spectroscopy (PES) measurements. The orbital decomposition of the electronic structure by DFT calculations indicates that Ce atoms at the (8c) site surrounded by 16 Pd atoms have a more localized nature and a tendency to be magnetic. Ce atoms in the (4a) site surrounded by 12 Pd and 6 X atoms, on the other, show only a negligible magnetic moment. In the photoemission valence-band spectra we observe a strong f? (Ce??) component with a small fraction of f¹more »(Ce³?) component. The spectral weight of f¹ component near the Fermi level Ce?Pd??Si? is stronger than that for Ce?Pd??Ge? at the 4d-4f resonance, suggesting stronger c-f hybridization in the former. This may hint to the origin of the large electronic specific coefficient of Ce?Pd??Si? compared to Ce?Pd??Ge?.« less

  5. Electronic structure of the heavy-fermion caged compound Ce3Pd20X6(X=Si,Ge) studied by density functional theory and photoelectron spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yamaoka, Hitoshi; Schwier, Eike F.; Arita, Masashi; Shimada, Kenya; Tsujii, Naohito; Jarrige, Ignace; Jiang, Jian; Hayashi, Hirokazu; Iwasawa, Hideaki; Namatame, Hirofumi; et al

    2015-03-30

    The electronic structure of Ce?Pd??X? (X = Si, Ge) has been studied using detailed density functional theory (DFT) calculations and high-resolution photoelectron spectroscopy (PES) measurements. The orbital decomposition of the electronic structure by DFT calculations indicates that Ce atoms at the (8c) site surrounded by 16 Pd atoms have a more localized nature and a tendency to be magnetic. Ce atoms in the (4a) site surrounded by 12 Pd and 6 X atoms, on the other, show only a negligible magnetic moment. In the photoemission valence-band spectra we observe a strong f? (Ce??) component with a small fraction of f¹more »(Ce³?) component. The spectral weight of f¹ component near the Fermi level Ce?Pd??Si? is stronger than that for Ce?Pd??Ge? at the 4d-4f resonance, suggesting stronger c-f hybridization in the former. This may hint to the origin of the large electronic specific coefficient of Ce?Pd??Si? compared to Ce?Pd??Ge?.« less

  6. Electronic states of thiophene/phenylene co-oligomers: Extreme-ultra violet excited photoelectron spectroscopy observations and density functional theory calculations

    SciTech Connect (OSTI)

    Kawaguchi, Yoshizo; Sasaki, Fumio; Mochizuki, Hiroyuki; Ishitsuka, Tomoaki; Tomie, Toshihisa; Ootsuka, Teruhisa; Watanabe, Shuji; Shimoi, Yukihiro; Yamao, Takeshi; Hotta, Shu

    2013-02-28

    We have investigated electronic states in the valence electron bands for the thin films of three thiophene/phenylene co-oligomer (TPCO) compounds, 2,5-bis(4-biphenylyl)thiophene (BP1T), 1,4-bis(5-phenylthiophen-2-yl)benzene (AC5), and 1,4-bis{l_brace}5-[4-(trifluoromethyl)phenyl]thiophen-2-yl{r_brace}benzene (AC5-CF{sub 3}), by using extreme-UV excited photoelectron spectroscopy (EUPS). By comparing both EUPS spectra and secondary electron spectra between AC5 and AC5-CF{sub 3}, we confirm that CF{sub 3} substitution to AC5 deepens valence states by 2 eV, and increases the ionization energy by 3 eV. From the cut-off positions of secondary electron spectra, the work functions of AC5, AC5-CF{sub 3}, and BP1T are evaluated to be 3.8 eV, 4.8 eV, and 4.0 eV, respectively. We calculate molecular orbital (MO) energy levels by the density functional theory and compare results of calculations with those of experiments. Densities of states obtained by broadening MO levels well explain the overall features of experimental EUPS spectra of three TPCOs.

  7. Photoelectron spectroscopy investigation of the temperature-induced deprotonation and substrate-mediated hydrogen transfer in a hydroxyphenyl-substituted porphyrin

    E-Print Network [OSTI]

    Smykalla, Lars; Mende, Carola; Lang, Heinrich; Knupfer, Martin; Hietschold, Michael

    2015-01-01

    The temperature dependent stepwise deprotonation of 5,10,15,20-tetra(p-hydroxyphenyl)porphyrin is investigated using photoelectron spectroscopy. An abundance of pyrrolic relative to iminic nitrogen and a decrease in the ratio of the amount of -NH- to -N= with increasing annealing temperature is found. In contrast to the molecules adsorbed on Au(111), on the more reactive Ag(110) surface, partial dissociation of the hydroxyl groups and subsequent diffusion and rebonding of hydrogen to the central nitrogen atoms resulting in a zwitterionic molecule was clearly observed. Moreover, partial C-H bond cleavage and the formation of new covalent bonds with adjacent molecules or the surface starts at a relatively high annealing temperature of 300{\\deg}C. This reaction is identified to occur at the carbon atoms of the pyrrole rings, which leads also to a shift in the N 1s signal and changes in the valence band of the molecules. Our results show that annealing can significantly alter the molecules which were deposited de...

  8. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dell'Angela, M.; Anniyev, T.; Beye, M.; Coffee, R.; Föhlisch, A.; Gladh, J.; Kaya, S.; Katayama, T.; Krupin, O.; Nilsson, A.; et al

    2015-03-01

    Vacuum space charge-induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  9. Spectroscopy of the transition state: Elementary reactions of the hydroxyl radical studied by photoelectron spectroscopy of O (H2O) and H3O2

    E-Print Network [OSTI]

    Neumark, Daniel M.

    Spectroscopy of the transition state: Elementary reactions of the hydroxyl radical studied to study the unstable neutral complexes involved in two fundamental re- actions of the hydroxyl radical OH H2OH2O OH, 1 OH OHO 3 P H2O. 2 The role of the hydroxyl radical as a propagator of chain reactions

  10. Catalog of supersoft X-ray sources

    E-Print Network [OSTI]

    J. Greiner

    2000-05-11

    This catalog comprises an up-to-date (December 1999) list of luminous (>10^36 erg/s), binary supersoft X-ray sources. This electronic version (including the accompannying Web-pages) supersedes the printed version of Greiner (1996).

  11. Multiple wavelength X-ray monochromators

    DOE Patents [OSTI]

    Steinmeyer, P.A.

    1992-11-17

    An improved apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined first distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focusing the separate first and second output x-ray radiation wavelengths into separate focal points. 3 figs.

  12. Multiple wavelength X-ray monochromators

    DOE Patents [OSTI]

    Steinmeyer, Peter A. (Arvada, CO)

    1992-11-17

    An improved apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined first distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focussing the separate first and second output x-ray radiation wavelengths into separate focal points.

  13. SLAC All Access: X-ray Microscope

    ScienceCinema (OSTI)

    Nelson, Johanna; Liu, Yijin

    2014-06-13

    SLAC physicists Johanna Nelson and Yijin Liu give a brief overview of the X-ray microscope at the Stanford Synchrotron Radiation Lightsource (SSRL) that is helping improve rechargeable-battery technology by letting researchers peek into the inner workings of batteries as they operate.

  14. A High Resolution Intergalactic Explorer for the Soft X-ray/FUV

    E-Print Network [OSTI]

    Martin Elvis; Fabrizio Fiore; the CWE Team

    2003-03-19

    We present a mission concept for high resolution X-ray spectroscopy with a resolving power, R~6000, (c.f. R=Web'. The Cosmic Web is predicted to contain most of the normal matter (baryons) in the nearby Universe.

  15. SEMI-AUTOMATIC SUPERVISED CLASSIFICATION OF MINERALS FROM X-RAY MAPPING IMAGES

    E-Print Network [OSTI]

    in siliciclastic and car- bonate rocks. Twelve chemical elements are mapped from thin sections by energy dispersive or energy dispersive spectroscopy (EDS) in a scanning electron microscope (SEM). Here, an x-ray spectrum, long image acquisition times has made use of EDS images for mineral classification difficult. #12;New

  16. Three-dimensional mapping of nickel oxidation states using full field x-ray absorption near edge structure nanotomography

    SciTech Connect (OSTI)

    Nelson, George J.; Harris, William M.; Izzo, John R. Jr.; Grew, Kyle N.; Chiu, Wilson K. S. [HeteroFoaM Center, a DOE Energy Frontier Research Center, Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Rd., Storrs, Connecticut 06269-3139 (United States); Chu, Yong S. [National Synchrotron Light Source II, Brookhaven National Laboratory, Bldg. 703 Upton, New York 11973-5000 (United States); Yi, Jaemock [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Bldg. 438-B007 Argonne, Illinois 60439 (United States); Andrews, Joy C.; Liu Yijin; Pianetta, Piero [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., MS 69 Menlo Park, California 94025 (United States)

    2011-04-25

    The reduction-oxidation cycling of the nickel-based oxides in composite solid oxide fuel cells and battery electrodes is directly related to cell performance. A greater understanding of nickel redox mechanisms at the microstructural level can be achieved in part using transmission x-ray microscopy (TXM) to explore material oxidation states. X-ray nanotomography combined with x-ray absorption near edge structure (XANES) spectroscopy has been applied to study samples containing distinct regions of nickel and nickel oxide (NiO) compositions. Digitally processed images obtained using TXM demonstrate the three-dimensional chemical mapping and microstructural distribution capabilities of full-field XANES nanotomography.

  17. Anisotropic orbital occupation and Jahn-Teller distortion of orthorhombic YMnO{sub 3} epitaxial films: A combined experimental and theoretical study on polarization-dependent x-ray absorption spectroscopy

    SciTech Connect (OSTI)

    Haw, Shu-Chih; Chen, Shin-Ann [Department of Engineering and System Science, National Tsing Hua University, 30013 Hsinchu, Taiwan (China) [Department of Engineering and System Science, National Tsing Hua University, 30013 Hsinchu, Taiwan (China); National Synchrotron Radiation Research Center (NSRRC), 101 HsinAnn Road, 30076 Hsinchu, Taiwan (China); Lee, Jenn-Min; Lu, Kueih-Tzu; Lee, Ming-Tao; Pi, Tun-Wen; Chen, Jin-Ming, E-mail: jmchen@nsrrc.org.tw, E-mail: Zhiwei.Hu@cpfs.mpg.de [National Synchrotron Radiation Research Center (NSRRC), 101 HsinAnn Road, 30076 Hsinchu, Taiwan (China)] [National Synchrotron Radiation Research Center (NSRRC), 101 HsinAnn Road, 30076 Hsinchu, Taiwan (China); Lin, Pao-An [Department of Physics, National Tsing Hua University, 30013 Hsinchu, Taiwan (China)] [Department of Physics, National Tsing Hua University, 30013 Hsinchu, Taiwan (China); Lee, Chih-Hao [Department of Engineering and System Science, National Tsing Hua University, 30013 Hsinchu, Taiwan (China)] [Department of Engineering and System Science, National Tsing Hua University, 30013 Hsinchu, Taiwan (China); Hu, Zhiwei, E-mail: jmchen@nsrrc.org.tw, E-mail: Zhiwei.Hu@cpfs.mpg.de [Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden (Germany)] [Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden (Germany)

    2014-04-21

    The b-axis oriented orthorhombic YMnO{sub 3} (o-YMnO{sub 3}) epitaxial films on a YAlO{sub 3} (010) substrate were fabricated with pulsed-laser deposition. The anisotropic orbital occupation and Jahn-Teller (JT) distortion of an o-YMnO{sub 3} film were investigated with polarization-dependent x-ray absorption spectra and configuration-interaction multiplet-cluster calculations. A significant energy difference, ?3.8 eV, for the main white line along E//b and E//a in polarization-dependent Mn K-edge spectra of o-YMnO{sub 3} indicates an extraordinary JT distortion and significant anisotropic Mn–O bonding within the ab plane in the o-YMnO{sub 3} film. Most importantly, although the orbital occupation of 3d electrons in o-YMnO{sub 3} films is almost the same as that in single crystalline o-DyMnO{sub 3}, the JT distortion of o-YMnO{sub 3} films is larger than that of single crystalline o-DyMnO{sub 3}, deduced from the multiplet calculations. We speculate that this JT distortion predominantly contributes to the origin of the cycloidal spin deformation in bulk o-YMnO{sub 3}, because of a suppressed nearest-neighbor superexchange interaction and an enhanced next-nearest-neighbor superexchange interaction. These complementary results provide insight into the origin of the E-type magnetic configuration of o-YMnO{sub 3}.

  18. Rise Time Measurement for Ultrafast X-Ray Pulses

    DOE Patents [OSTI]

    Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

    2005-04-05

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  19. X-ray imaging crystal spectrometer for extended X-ray sources

    DOE Patents [OSTI]

    Bitter, Manfred L. (Princeton, NJ); Fraenkel, Ben (Jerusalem, IL); Gorman, James L. (Bordentown, NJ); Hill, Kenneth W. (Lawrenceville, NJ); Roquemore, A. Lane (Cranbury, NJ); Stodiek, Wolfgang (Princeton, NJ); von Goeler, Schweickhard E. (Princeton, NJ)

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  20. X-RAY POINT-SOURCE POPULATIONS CONSTITUTING THE GALACTIC RIDGE X-RAY EMISSION

    SciTech Connect (OSTI)

    Morihana, Kumiko [Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)] [Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tsujimoto, Masahiro; Ebisawa, Ken [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)] [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Yoshida, Tessei, E-mail: morihana@crab.riken.jp [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)] [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2013-03-20

    Apparently diffuse X-ray emission has been known to exist along the central quarter of the Galactic Plane since the beginning of X-ray astronomy; this is referred to as the Galactic Ridge X-ray emission (GRXE). Recent deep X-ray observations have shown that numerous X-ray point sources account for a large fraction of the GRXE in the hard band (2-8 keV). However, the nature of these sources is poorly understood. Using the deepest X-ray observations made in the Chandra bulge field, we present the result of a coherent photometric and spectroscopic analysis of individual X-ray point sources for the purpose of constraining their nature and deriving their fractional contributions to the hard-band continuum and Fe K line emission of the GRXE. Based on the X-ray color-color diagram, we divided the point sources into three groups: A (hard), B (soft and broad spectrum), and C (soft and peaked spectrum). The group A sources are further decomposed spectrally into thermal and non-thermal sources with different fractions in different flux ranges. From their X-ray properties, we speculate that the group A non-thermal sources are mostly active galactic nuclei and the thermal sources are mostly white dwarf (WD) binaries such as magnetic and non-magnetic cataclysmic variables (CVs), pre-CVs, and symbiotic stars, whereas the group B and C sources are X-ray active stars in flares and quiescence, respectively. In the log N-log S curve of the 2-8 keV band, the group A non-thermal sources are dominant above Almost-Equal-To 10{sup -14} erg cm{sup -2} s{sup -1}, which is gradually taken over by Galactic sources in the fainter flux ranges. The Fe K{alpha} emission is mostly from the group A thermal (WD binaries) and the group B (X-ray active stars) sources.

  1. X-ray Spectral Diagnostics of Gamma-Ray Burst Environments

    E-Print Network [OSTI]

    Frits Paerels; Erik Kuulkers; John Heise; Duane A. Liedahl

    2000-04-13

    Recently, the detection of discrete features in the X-ray afterglow spectra of GRB970508 and GRB970828 was reported. The most natural interpretation of these features is that they are redshifted Fe K emission complexes. The identification of the line emission mechanism has drastic implications for the inferred mass of radiating material, end hence the nature of the burst site. X-ray spectroscopy provides a direct observational constraint on these properties of gamma-ray bursters. We briefly discuss how these constraints arise, in the context of an application to the spectrum of GRB970508.

  2. NASA's Future Missions in X-ray Astronomy

    E-Print Network [OSTI]

    Nicholas E. White

    2002-02-19

    The NASA program in X-ray astronomy has two long term goals: 1) to achieve sufficient angular resolution to image the event horizon of a black hole (0.1 micro arc sec) and 2) to achieve sufficient collecting area (50-150 sq m) and angular resolution (0.1-1.0 arc sec) to observe in detail the first black holes and galaxies at high redshift. These ambitous goals can be used to map out a series of missions and a technology program. The next major mission will be Constellation-X which will be dedicated to high resolution X-ray spectroscopy for launch in ~2010. This mission is a critical step in the roadmap to achieve these goals. Following Constellation-X NASA is considering two very ambitious vision missions: MAXIM and Generation-X that will achieve the ultimate capabilities. The modest missions Astro-E2 and Swift address more focussed science goals on a rapid development cycle and provide important pathfinders to the larger missions.

  3. An HST Search for Supernovae Accompanying X-ray Flashes

    E-Print Network [OSTI]

    A. M. Soderberg; S. R. Kulkarni; D. B. Fox; E. Berger; P. A. Price; S. B. Cenko; D. A. Howell; A. Gal-Yam; D. C. Leonard; D. A. Frail; D. Moon; R. A. Chevalier; M. Hamuy; K. C. Hurley; D. Kelson; K. Koviak; W. Krzeminski; P. Kumar; A. MacFadyen; P. J. McCarthy; H. S. Park; B. A. Peterson; M. M. Phillips; M. Rauch; M. Roth; B. P. Schmidt; S. Shectman

    2005-02-25

    We present the results from an Hubble Space Telescope/ACS search for supernovae associated with X-ray flashes 020903, 040701, 040812 and 040916. We find strong evidence that XRF 020903 (z=0.25) was associated with a SN 1998bw-like supernova and confirm this using optical spectroscopy at t ~ 25 days. We find no evidence, however, for SN 1998bw-like supernovae associated with the other three events. In the case of XRF 040701 (z=0.21), we rule out even a faint supernova similar to SN 2002ap, using template light-curves for several local Type Ic supernovae. For the two cases in which the redshift is not known, XRFs 040812 and 040916, we derive robust redshift limits assuming they were accompanied by supernovae similar to SN 1998bw and compare these limits with photometric redshift constraints provided by their host galaxies. We supplement this analysis with results for three additional events (XRFs 011030, 020427 and 030723) and discuss the observed diversity of supernovae associated with X-ray flashes and gamma-ray bursts. We conclude that XRF-SNe exist, but can be significantly fainter than SN 1998bw, possibly consistent with the observed spread in local Type Ibc supernovae.

  4. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing...

  5. ALS X-Rays Shine a New Light on Catalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    times science has used high-brilliance x-rays to look so closely at these reactions. Lead author Dr. David Mueller at the ALS using x-rays to characterize working fuel cells....

  6. Using Light to Control How X Rays Interact with Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Light to Control How X Rays Interact with Matter Using Light to Control How X Rays Interact with Matter Print Wednesday, 27 January 2010 00:00 Schemes that use one light...

  7. A World's Top-10 X-ray Crystal Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A World's Top-10 X-ray Crystal Structure October 7, 2014 Bookmark and Share Philip Coppens An x-ray crystal structure solved by Philip Coppens has been chosen as one of the world's...

  8. Dawn of x-ray nonlinear optics | Stanford Synchrotron Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dawn of x-ray nonlinear optics Wednesday, July 8, 2015 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: David Reis, PULSE Program Description X-ray free electron lasers...

  9. Soft x-ray generation in gases with an ultrashort pulse laser

    SciTech Connect (OSTI)

    Ditmire, T.R.

    1996-01-08

    An experimental investigation of soft x-ray production resulting from the interaction of intense near infra-red laser radiation with gases is presented in this thesis. Specifically, soft x-ray generation through high order harmonic generation or exploiting intense inverse bremsstrahlung heating is examined. Most of these studies are conducted with femtosecond, terawatt class Cr:LiSrAlF{sub 6} (LiSAF) laser, though results derived from studies with other laser systems are presented as well. The majority of this work is devoted to experimental investigations, however, theoretical and computational models are developed to interpret the data. These studies are motivated by the possibility of utilizing the physics of intense laser/matter interactions as a potential compact source of bright x-rays. Consequently, the thrust of many of the experiments conducted is aimed at characterizing the x-rays produced for possible use in applications. In general, the studies of this manuscript fall into three categories. First, a unique 130 fs, 8 TW laser that is based on chirped pulse amplification, is described, and its performance is evaluated. The generation of x-rays through high order harmonics is then discussed with emphasis on characterizing and optimizing harmonic generation. Finally, the generation of strong, incoherent x-ray radiation by the intense irradiation of large (>1,000 atom) clusters in gas jets, is explored. The physics of laser energy absorption by clusters illuminated with intensities of 10{sup 15} to 10{sup 17} W/cm{sup 2} is considered in detail. X-ray spectroscopy of the hot plasmas that result from the irradiation of the clusters is conducted, and energy transport and kinetics issues in these plasmas are discussed.

  10. X-ray mammography with synchrotron radiation

    SciTech Connect (OSTI)

    Burattini, E. (CNR and INFN-Laboratori Nazionali di Frascati, Frascati, Rome (Italy)); Gambaccini, M.; Marziani, M.; Rimondi, O. (Dipartimento di Fisica dell'Universita and Sezione INFN di Ferrara, Ferrara (Italy)); Indovina, P.L. (Dipartimento di Scienze Fisiche dell'Universita and Sezione INFN di Napoli, Naples (Italy)); Pocek, M.; Simonetti, G. (Istituto di Radiologia, Ospedale Sant'Eugenio, Universita di Tor Vergata, Rome (Italy)); Benassi, M.; Tirelli, C. (Istituto Nazionale del Cancro, Regina Elena, Rome (Italy)); Passariello, R. (Cattedra di Radiologia, Universita dell'Aquila, L'Aquila (Italy))

    1992-01-01

    For the first time in the literature, radiographs of breast phantoms were obtained using several monochromatic synchrotron radiation x-ray beams of selected energy in the range from 14 to 26 keV. In addition, after optimization of the photon energy as a function of the phantom thickness, several mammographs were obtained on surgically removed human breast specimens containing cancer nodules. Comparison between radiographs using a conventional x-ray unit and those obtained of the same specimens utilizing synchrotron monochromatic beams clearly shows that higher contrast and better resolution can be achieved with synchrotron radiation. These results demonstrate the possibility of obtaining radiographs of excised human breast tissue containing a greater amount of radiological information using synchrotron radiation.

  11. X-ray radiography for container inspection

    DOE Patents [OSTI]

    Katz, Jonathan I. (Clayton, MO); Morris, Christopher L. (Los Alamos, NM)

    2011-06-07

    Arrangements of X-ray inspection systems are described for inspecting high-z materials in voluminous objects such as containers. Inspection methods may involve generating a radiographic image based on detected attenuation corresponding to a pulsed beams of radiation transmitted through a voluminous object. The pulsed beams of radiation are generated by a high-energy source and transmitted substantially downward along an incident angle, of approximately 1.degree. to 30.degree., to a vertical axis extending through the voluminous object. The generated radiographic image may be analyzed to detect on localized high attenuation representative of high-z materials and to discriminate high-z materials from lower and intermediate-z materials on the basis of the high density and greater attenuation of high-z material for higher energy (3-10 MeV) X-rays, and the compact nature of threatening masses of fissionable materials.

  12. Method and apparatus for analog signal conditioner for high speed, digital x-ray spectrometer

    DOE Patents [OSTI]

    Warburton, W.K.; Hubbard, B.

    1999-02-09

    A signal processing system which accepts input from an x-ray detector-preamplifier and produces a signal of reduced dynamic range for subsequent analog-to-digital conversion is disclosed. The system conditions the input signal to reduce the number of bits required in the analog-to-digital converter by removing that part of the input signal which varies only slowly in time and retaining the amplitude of the pulses which carry information about the x-rays absorbed by the detector. The parameters controlling the signal conditioner`s operation can be readily supplied in digital form, allowing it to be integrated into a feedback loop as part of a larger digital x-ray spectroscopy system. 13 figs.

  13. Method and apparatus for analog signal conditioner for high speed, digital x-ray spectrometer

    DOE Patents [OSTI]

    Warburton, William K. (1300 Mills St., Menlo Park, CA 94025); Hubbard, Bradley (Santa Cruz, CA)

    1999-01-01

    A signal processing system which accepts input from an x-ray detector-preamplifier and produces a signal of reduced dynamic range for subsequent analog-to-digital conversion. The system conditions the input signal to reduce the number of bits required in the analog-to-digital converter by removing that part of the input signal which varies only slowly in time and retaining the amplitude of the pulses which carry information about the x-rays absorbed by the detector. The parameters controlling the signal conditioner's operation can be readily supplied in digital form, allowing it to be integrated into a feedback loop as part of a larger digital x-ray spectroscopy system.

  14. The X-ray synchrotron emission of RCW 86 and the implications for its age

    E-Print Network [OSTI]

    Jacco Vink; Johan Bleeker; Kurt van der Heyden; Andrei Bykov; Aya Bamba; Ryo Yamazaki

    2006-07-13

    We report here X-ray imaging spectroscopy observations of the northeastern shell of the supernova remnant RCW 86 with Chandra and XMM-Newton. Along this part of the shell the dominant X-ray radiation mechanism changes from thermal to synchrotron emission. We argue that both the presence of X-ray synchrotron radiation and the width of the synchrotron emitting region suggest a locally higher shock velocity of V_s = 2700 km/s and a magnetic field of B = 24+/-5 microGauss. Moreover, we also show that a simple power law cosmic ray electron spectrum with an exponential cut-off cannot explain the broad band synchrotron emission. Instead a concave electron spectrum is needed, as predicted by non-linear shock acceleration models. Finally, we show that the derived shock velocity strengthens the case that RCW 86 is the remnant of SN 185.

  15. In Situ X-Ray Probing Reveals Fingerprints of Surface Platinum Oxide

    SciTech Connect (OSTI)

    Friebel, Daniel

    2011-08-24

    In situ x-ray absorption spectroscopy (XAS) at the Pt L{sub 3} edge is a useful probe for Pt-O interactions at polymer electrolyte membrane fuel cell (PEMFC) cathodes. We show that XAS using the high energy resolution fluorescence detection (HERFD) mode, applied to a well-defined monolayer Pt/Rh(111) sample where the bulk penetrating hard x-rays probe only surface Pt atoms, provides a unique sensitivity to structure and chemical bonding at the Pt-electrolyte interface. Ab initio multiple-scattering calculations using the FEFF8 code and complementary extended x-ray absorption fine structure (EXAFS) results indicate that the commonly observed large increase of the white-line at high electrochemical potentials on PEMFC cathodes originates from platinum oxide formation, whereas previously proposed chemisorbed oxygen-containing species merely give rise to subtle spectral changes.

  16. X-rays from Supernova Remnants

    E-Print Network [OSTI]

    B. Aschenbach

    2002-08-28

    A summary of X-ray observations of supernova remnants is presented including the explosion fragment A of the Vela SNR, Tycho, N132D, RX J0852-4622, the Crab Nebula and the 'bulls eye', and SN 1987A, high-lighting the progress made with Chandra and XMM-Newton and touching upon the questions which arise from these observations and which might inspire future research.

  17. The X-ray Telescope of CAST

    E-Print Network [OSTI]

    M. Kuster; H. Bräuninger; S. Cébrian; M. Davenport; C. Elefteriadis; J. Englhauser; H. Fischer; J. Franz; P. Friedrich; R. Hartmann; F. H. Heinsius; D. H. H. Hoffmann; G. Hoffmeister; J. N. Joux; D. Kang; K. Königsmann; R. Kotthaus; T. Papaevangelou; C. Lasseur; A. Lippitsch; G. Lutz; J. Morales; A. Rodríguez; L. Strüder; J. Vogel; K. Zioutas

    2007-05-10

    The Cern Axion Solar Telescope (CAST) is in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting X-ray photons are expected to be thermally distributed between 1 and 7 keV. The most sensitive detector system of CAST is a pn-CCD detector combined with a Wolter I type X-ray mirror system. With the X-ray telescope of CAST a background reduction of more than 2 orders off magnitude is achieved, such that for the first time the axion photon coupling constant g_agg can be probed beyond the best astrophysical constraints g_agg < 1 x 10^-10 GeV^-1.

  18. Portable Parallel Beam X-Ray Diffraction System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    than 50 pounds, and uses about 50 watts of power. The X-Beam uses polycapillary x-ray optics to collect x-rays over a large solid angle from a low-power x-ray source and to form...

  19. Small Angle X-ray Scattering (SAXS) Laboratory Learning Experiences

    E-Print Network [OSTI]

    Meagher, Mary

    .A. & Svergun D.I. (1987). Structure Analysis by Small-Angle X-Ray and Neutron Scattering. NY: Plenum PressSmall Angle X-ray Scattering (SAXS) Laboratory Learning Experiences o - Use of small angle X-ray scattering instrumentation o - Programs that you will use SAXS (BRUKER AXS) PRIMUS (Konarev, Volkov, Koch

  20. Femtosecond laser-electron x-ray source

    DOE Patents [OSTI]

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  1. ASCA Observations of the Sgr B2 Cloud: An X-Ray Reflection Nebula

    E-Print Network [OSTI]

    H. Murakami; K. Koyama; M. Sakano; M. Tsujimoto; Y. Maeda

    1999-08-20

    We present the ASCA results of imaging spectroscopy of the giant molecular cloud Sgr B2. The X-ray spectrum is found to be very peculiar; it exhibits a strong emission line at 6.4 keV, a low energy cutoff below about 4 keV and a pronounced edge-structure at 7.1 keV. The X-ray image is extended and its peak position is shifted from the core of the molecular cloud toward the Galactic center by about 1--2 arcminute. The X-ray spectrum and the morphology are well reproduced by a scenario that X-rays from an external source located in the Galactic center direction are scattered by the molecular cloud Sgr B2, and come into our line of sight. Thus Sgr B2 may be called an X-ray reflection nebula. Possible implications of the Galactic center activity related to this unique source are presented.

  2. Monitoring x-ray beam damage on lipid films by an integrated Brewster angle microscope/x-ray diffractometer

    E-Print Network [OSTI]

    Lee, Ka Yee C.

    Polyunsaturated lipids with conjugated tails are easily dam- aged by x-ray irradiation in the presence of oxygen samples and thin films has been detected since the beginning of x-ray studies. Dam- age to lipid samples

  3. Femtosecond X-ray Absorption Spectroscopy at a Hard X-ray Free Electron

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) |production at aSciTech Connect Fe AtomicSciTechLaser: Application

  4. Hard x-ray delay line for x-ray photon correlation spectroscopy and

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article)lasers (Journal Article) |different scalesTHEScalejitter-free

  5. Laser photoelectron spectroscopy of ions

    SciTech Connect (OSTI)

    Ellison, G.B. [Univ. of Colorado, Boulder (United States)

    1993-12-01

    During the last year the author has (a) completed a review article that critically contrasts three methods to measure R-H bond energies, (b) finished a spectroscopic study of the phenylnitrene anion, and (c) successfully completed an overhaul of the light source of the photodetachment spectrometer. The new light source is based on an Ar III laser that provides approximately 100 W of 3.531 eV photons.

  6. X-Ray Interactions with Matter from the Center for X-Ray Optics (CXRO)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Henke, B. L.; Gullikson, E. M.; Davis, J. C.

    The primary interactions of low-energy x-rays within condensed matter, viz. photoabsorption and coherent scattering, are described for photon energies outside the absorption threshold regions by using atomic scattering factors. The atomic scattering factors may be accurately determined from the atomic photoabsorption cross sections using modified Kramers-Kronig dispersion relations. From a synthesis of the currently available experimental data and recent theoretical calculations for photoabsorption, the angle-independent, forward-scattering components of the atomic scattering factors have been thus semiempirically determined and tabulated here for 92 elements and for the region 50-30,000 eV. Atomic scattering factors for all angles of coherent scattering and at the higher photon energies are obtained from these tabulated forward-scattering values by adding a simple angle-dependent form-factor correction. The incoherent scattering contributions that become significant for the light elements at the higher photon energies are similarly determined. The basic x-ray interaction relations that are used in applied x-ray physics are presented here in terms of the atomic scattering factors. The bulk optical constants are also related to the atomic scattering factors. These atomic and optical relations are applied to the detailed calculation of the reflectivity characteristics of a series of practical x-ray mirror, multilayer, and crystal monochromators. Comparisons of the results of this semiempirical,"atom-like", description of x-ray interactions for the low-energy region with those of experiment and ab initio theory are presented.

  7. Experimental investigation of beam heating in a soft X-ray scanning transmission X-ray microscope

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    Experimental investigation of beam heating in a soft X-ray scanning transmission X-ray microscope and an accuracy of Æ1 C has been fabricated for scanning transmission X-ray microscopes (STXM). Here we describe at temperatures near their respective melting points as a means of checking for possible sample heating caused

  8. Apparatus for monitoring X-ray beam alignment

    DOE Patents [OSTI]

    Steinmeyer, P.A.

    1991-10-08

    A self-contained, hand-held apparatus is provided for monitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency. 2 figures.

  9. HgMn Stars as apparent X-ray emitters

    E-Print Network [OSTI]

    Hubrig, S; Mathys, G

    1998-01-01

    In the ROSAT all-sky survey 11 HgMn stars were detected as soft X-ray emitters (Berghoefer, Schmitt & Cassinelli 1996). Prior to ROSAT, X-ray observations with the Einstein Observatory had suggested that stars in the spectral range B5-A7 are devoid of X-ray emission. Since there is no X-ray emitting mechanism available for these stars (also not for HgMn stars), the usual argument in the case of an X-ray detected star of this spectral type is the existence of an unseen low-mass companion which is responsible for the X-ray emission. The purpose of the present work is to use all available data for our sample of X-ray detected HgMn stars and conclude on the nature of possible companions.

  10. X-Ray Imaging Crystal Spectrometer for Extended X-Ray Sources

    SciTech Connect (OSTI)

    Bitter, Manfred L.; Fraekel, Benjamin; Gorman, James L.; Hill, Kenneth W.; Roquemore, Lane A.; Stodiek, Wolfgang; Goeler, Schweickhard von

    1999-05-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokamak fusion experiment to provide spatially and temporally resolved data on plasma parameters such as ion temperature, toroidal and poloidal rotation, electron temperature, impurity ion charge-state distributions, and impurity transport. The imaging properties of these spherically or toroidally curved crystals provide both spectrally and spatially resolved X-ray data from the plasma using only one small spherically or toroidally curved crystal, thus eliminating the requirement for a large array of crystal spectrometers and the need to cross-calibrate the various crystals.

  11. X-ray emission properties of galaxies in Abell 3128

    E-Print Network [OSTI]

    Russell J. Smith

    2003-07-15

    We use archival Chandra X-ray Observatory data to investigate X-ray emission from early-type galaxies in the rich z=0.06 cluster Abell 3128. By combining the X-ray count-rates from an input list of optically-selected galaxies, we obtain a statistical detection of X-ray flux, unbiased by X-ray selection limits. Using 87 galaxies with reliable Chandra data, X-ray emission is detected for galaxies down to M_B ~ -19.0, with only an upper limit determined for galaxies at M_B ~ -18.3. The ratio of X-ray to optical luminosities is consistent with recent determinations of the low-mass X-ray binary content of nearby elliptical galaxies. Taken individually, in contrast, we detect significant (3sigma) flux for only six galaxies. Of these, one is a foreground galaxy, while two are optically-faint galaxies with X-ray hardness ratios characteristic of active galactic nuclei. The remaining three detected galaxies are amongst the optically-brightest cluster members, and have softer X-ray spectra. Their X-ray flux is higher than that expected from X-ray binaries, by a factor 2-10; the excess suggests these galaxies have retained their hot gaseous haloes. The source with the highest L_X / L_B ratio is of unusual optical morphology with prominent sharp-edged shells. Notwithstanding these few exceptions, the cluster population overall exhibits X-ray properties consistent with their emission being dominated by X-ray binaries. We conclude that in rich cluster environments, interaction with the ambient intra-cluster medium acts to strip most galaxies of their hot halo gas.

  12. Metrology for the advancement of x-ray optics at the ALS

    E-Print Network [OSTI]

    Goldberg, Kenneth

    2014-01-01

    S. Yuan et al. , X-ray Optics and Instrumentation 2010,in X-ray and Neutron Optics, Springer, Berlin S. G. AlcockX-ray beam metrology and X-ray optic alignment by Hartmann

  13. X-ray Selected Clusters of Galaxies

    E-Print Network [OSTI]

    Isabella M. Gioia

    1996-01-21

    This paper given at the meeting on "Mapping, Measuring and Modelling the Universe" presents three topics: 1) the study of the clusters and groups of galaxies found serendipitously in the North Ecliptic Pole (NEP) region of the ROSAT all-sky survey; 2) the highest redshift clusters found in the EMSS (up to z=0.82) and the cosmological implications of their very existence; 3) the gravitational lensing in the EMSS X-ray selected clusters of galaxies observed by the Hubble Space Telescope.

  14. SMB, Small Angle X-Ray Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis of Protein1-0845*RV 14800Small Angle X-Ray Scattering Home »

  15. SMB, X-ray Fluorescence Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis of Protein1-0845*RV 14800Small Angle X-Ray

  16. X-Ray Microscopy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single goldWindX-Ray ImagingIn the

  17. X-ray Microscopy and Imaging: FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single goldWindX-Ray

  18. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp GraduateResidentialLensless Imaging of WholeX-Ray Imaging in

  19. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp GraduateResidentialLensless Imaging of WholeX-Ray Imaging

  20. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H N I CLensless X-Ray Imaging in

  1. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H N I CLensless X-Ray Imaging

  2. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H N I CLensless X-Ray ImagingLensless

  3. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H N I CLensless X-Ray

  4. Chandra Imaging of the X-ray Core of the Virgo Cluster

    E-Print Network [OSTI]

    A. J. Young; A. S. Wilson; C. G. Mundell

    2002-07-15

    We report sub-arcsecond X-ray imaging spectroscopy of M87 and the core of the Virgo cluster with the Chandra X-ray Observatory. The X-ray morphology shows structure on arcsecond (~100 pc) to ten arcminute (~50 kpc) scales, the most prominent feature being an "arc" running from the east, across the central region of M87 and off to the southwest. A ridge in the radio map, ending in an "ear"-shaped structure, follows the arc to the east. Depressions in the X-ray surface brightness correspond to the inner radio lobes and there is no evidence of shock-heated gas surrounding them. There are also at least two approximately circular (centered near the nucleus) "edges" in the X-ray brightness distribution, the radii of which are slightly larger than the nuclear distances of the inner radio lobes and intermediate radio ridges, respectively. We speculate that these discontinuities may be spherical pulses or "fronts" driven by the same jet activity as is responsible for the radio structure; such pulses are found in recent numerical simulations. All these results provide good evidence that the nuclear activity affects the intra-cluster medium. We present a temperature map of the intra-cluster medium, and obtain the temperature, pressure and cooling time as a function of nuclear distance for the arcs and the ambient intra-cluster medium. We show that the gas in the arcs is cooler than, and probably over-pressured with respect to, the ambient intra-cluster medium. The metal abundances of the cooler gas in the arc are somewhat enhanced relative to the ambient intra-cluster medium, favoring a ``buoyant plume'' origin for the X-ray arc, in which ambient gas near the nucleus is entrained by buoyant radio plasma and carried to larger nuclear distances. (Abstract truncated).

  5. Results from the NSTX X-ray Crystal Spectrometer

    SciTech Connect (OSTI)

    M. Bitter; K. Hill; L. Roquemore; P. Beiersdorfer; D. Thorn; Ming Feng Gu

    2003-01-14

    A high-resolution X-ray crystal spectrometer has recently been installed at the National Spherical Torus Experiment to record the satellite spectra of helium-like argon, ArXVII, in the wavelength range from 3.94 to 4.00 {angstrom} for measurements of ion and electron temperatures, and measurements of the ionization equilibrium of argon, which is of interest for studies of ion transport. The instrument presently consists of a spherically bent quartz crystal and a conventional one-dimensional position-sensitive multi-wire proportional counter, but it will soon be upgraded to a new type of X-ray imaging crystal spectrometer by the installation of a large size (10 cm x 30 cm) two-dimensional position-sensitive detector that will allow us to obtain temporally and spatially resolved spectra from an 80 cm high cross-section of the plasma. In its present configuration, the spectrometer has been optimized for high throughput so that it is possible to record spectra with small statistical errors with a time resolution of 10 ms by adding only small, nonperturbing amounts of argon to the plasma. The spectrometer is most valuable for measurements of the ion temperature in the absence of a neutral beam in ohmically heated and radio-frequency heated discharges, when charge exchange recombination spectroscopy does not function. Electron temperature measurements from the satellite-to-resonance line ratios have been important for a quantitative comparison with (and verification of) the Thomson scattering data. The paper will describe the instrumental details of the present and future spectrometer configurations, and present recent experimental results.

  6. Soft x-ray reduction camera for submicron lithography

    DOE Patents [OSTI]

    Hawryluk, Andrew M. (2708 Rembrandt Pl., Modesto, CA 95356); Seppala, Lynn G. (7911 Mines Rd., Livermore, CA 94550)

    1991-01-01

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm.sup.2. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics.

  7. Fabrication process for a gradient index x-ray lens

    DOE Patents [OSTI]

    Bionta, Richard M. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA); Skulina, Kenneth M. (Livermore, CA)

    1995-01-01

    A process for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments m the soft x-ray region.

  8. Fabrication process for a gradient index x-ray lens

    DOE Patents [OSTI]

    Bionta, R.M.; Makowiecki, D.M.; Skulina, K.M.

    1995-01-17

    A process is disclosed for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments in the soft x-ray region. 13 figures.

  9. Density gradient free electron collisionally excited x-ray laser

    DOE Patents [OSTI]

    Campbell, E.M.; Rosen, M.D.

    1984-11-29

    An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.

  10. Density gradient free electron collisionally excited X-ray laser

    DOE Patents [OSTI]

    Campbell, Edward M. (Pleasanton, CA); Rosen, Mordecai D. (Berkeley, CA)

    1989-01-01

    An operational X-ray laser (30) is provided that amplifies 3p-3s transition X-ray radiation along an approximately linear path. The X-ray laser (30) is driven by a high power optical laser. The driving line focused optical laser beam (32) illuminates a free-standing thin foil (34) that may be associated with a substrate (36) for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the X-ray laser gain medium. The X-ray laser (30) may be driven by more than one optical laser beam (32, 44). The X-ray laser (30) has been successfully demonstrated to function in a series of experimental tests.

  11. Hydrogen deficient donors in low-mass X-ray binaries

    E-Print Network [OSTI]

    Gijs Nelemans

    2007-11-05

    A number of X-ray binaries (neutron stars or black holes accreting from a companion star) have such short orbital periods that ordinary, hydrogen rich, stars do not fit in. Instead the mass-losing star must be a compact, evolved star, leading to the transfer of hydrogen deficient material to the neutron star. I discuss the current knowledge of these objects, with focus on optical spectroscopy.

  12. ISOCAM Photometry of Narrow-Line X-ray Galaxies

    E-Print Network [OSTI]

    J. D. Law-Green; A. Zezas; M. J. Ward; C. Boisson

    1998-12-23

    Mid-infrared photometry of the hosts of Narrow-Line X-ray Galaxies at 6 microns and 12 microns has been attempted with ISOCAM. No conclusive detections have been made. This implies that these are quiescent objects with little or no active star-formation. Neither X-ray binaries nor starburst-driven superwinds are consistent explanations for the X-ray emission in these objects. We conclude that these NLXGs are predominantly AGN-powered.

  13. X-ray transmission movies of spontaneous dynamic events

    SciTech Connect (OSTI)

    Smilowitz, L.; Henson, B. F.; Holmes, M.; Novak, A.; Oschwald, D.; Dolgonos, P.; Qualls, B.

    2014-11-15

    We describe a new x-ray radiographic imaging system which allows for continuous x-ray transmission imaging of spontaneous dynamic events. We demonstrate this method on thermal explosions in three plastic bonded formulations of the energetic material octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. We describe the x-ray imaging system and triggering developed to enable the continuous imaging of a thermal explosion.

  14. X-ray interferometry with spherically bent crystals (abstract)

    SciTech Connect (OSTI)

    Koch, Jeffrey A.

    2001-01-01

    Recent progress in manufacturing high-quality spherically bent crystals allows highly monochromatic x-ray beams to be produced, and allows efficient x-ray imaging with {mu}m-scale resolution. This article explores some of the constraints for x-ray interferometry utilizing spherically bent crystals and laser-produced plasma sources, and discusses several shearing interferometer concepts that might be experimentally investigated.

  15. Legacy of the X-Ray Laser Program

    SciTech Connect (OSTI)

    Nilsen, J.

    1993-08-06

    The X-Ray Laser Program has evolved from a design effort focusing on developing a Strategic Defense Initiative weapon that protects against Soviet ICBMs to a scientific project that is producing new technologies for industrial and medical research. While the great technical successes and failures of the X-ray laser itself cannot be discussed, this article presents the many significant achievements made as part of the X-ray laser effort that are now being used for other applications at LLNL.

  16. Ultra-short wavelength x-ray system

    DOE Patents [OSTI]

    Umstadter, Donald (Ann Arbor, MI); He, Fei (Ann Arbor, MI); Lau, Yue-Ying (Potomac, MD)

    2008-01-22

    A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.

  17. TOF Electron Energy Analyzer for Spin and Angular Resolved Photoemission Spectroscopy

    SciTech Connect (OSTI)

    Lebedev, Gennadi; Jozwiak, Chris; Andresen, Nord; Lanzara, Alessandra; Hussain, Zahid

    2008-07-09

    Current pulsed laser and synchrotron x-ray sources provide new opportunities for Time-Of- Flight (TOF) based photoemission spectroscopy to increase photoelectron energy resolution and efficiency compared to current standard techniques. The principals of photoelectron timing front formation, temporal aberration minimization, and optimization of electron beam transmission are presented. We have developed these concepts into a high resolution Electron Optical Scheme (EOS) of a TOF Electron Energy Analyzer (TOF-EEA) for photoemission spectroscopy. The EOS of the analyzer includes an electrostatic objective lens, three columns of transport lenses and a 90 degree energy band pass filter (BPF). The analyzer has two modes of operation: Spectrometer Mode (SM) with straight passage of electrons through the EOS undeflected by the BPF, allowing the entire spectrum to be measured, and Monochromator Mode (MM) in which the BPF defines a certain energy window inside the scope of the electron energy spectrum.

  18. 3D Imaging of Nickel Oxidation States using Full Field X-ray Absorption Near Edge Structure Nanotomography

    SciTech Connect (OSTI)

    Nelson, George; Harris, William; Izzo, John; Grew, Kyle N.

    2012-01-20

    Reduction-oxidation (redox) cycling of the nickel electrocatalyst phase in the solid oxide fuel cell (SOFC) anode can lead to performance degradation and cell failure. A greater understanding of nickel redox mechanisms at the microstructural level is vital to future SOFC development. Transmission x-ray microscopy (TXM) provides several key techniques for exploring oxidation states within SOFC electrode microstructure. Specifically, x-ray nanotomography and x-ray absorption near edge structure (XANES) spectroscopy have been applied to study samples of varying nickel (Ni) and nickel oxide (NiO) compositions. The imaged samples are treated as mock SOFC anodes containing distinct regions of the materials in question. XANES spectra presented for the individual materials provide a basis for the further processing and analysis of mixed samples. Images of composite samples obtained are segmented, and the distinct nickel and nickel oxide phases are uniquely identified using full field XANES spectroscopy. Applications to SOFC analysis are discussed.

  19. X-ray micromodulated luminescence tomography in dual-cone ...

    E-Print Network [OSTI]

    2014-07-01

    Jul 16, 2014 ... source, a polycapillary lens, and an electron multiplying charge coupled device ... sources generate x-rays by accelerating electrons into high-z.

  20. X-Ray Characterization of Diesel Sprays | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sprays X-Ray Characterization of Diesel Sprays 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerpowell.pdf More Documents & Publications...

  1. Probing Spatial, Electronic Structures with X-ray Scattering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Spatial, Electronic Structures with X-ray Scattering, Spectroscopic Techniques Wednesday, September 5, 2012 - 10:45am SLAC, Bldg. 137, Room 226 Gang Chen Seminar:...

  2. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of...

  3. In situ X-ray Characterization of Energy Storage Materials |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scholar, SSRL MSD Hard X-ray Department A key factor in the global move towards clean, renewable energy is the electrification of the automobile. Current battery technology...

  4. Simulating Wavefront Correction via Deformable Mirrors at X-Ray...

    Office of Scientific and Technical Information (OSTI)

    Resource Type: Conference Resource Relation: Conference: Presented at: X-ray Adaptive Optics, San Diego, CA, United States, Aug 14 - Aug 14, 2012 Research Org: Lawrence Livermore...

  5. A Record Run for the APS X-ray Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    signals that comprise radiation interlock systems protecting personnel and equipment; * Beam diagnostics controlling multiple x-ray beams simultaneously while utilizing more than...

  6. Insight into obscure transition uncovered by X-rays | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of X-ray techniques. This transition has ramifications for material design for electronics and sensors. The transition between being electrically conductive (metallic) at...

  7. Advances in X-Ray Diagnostics of Diesel Fuel Sprays

    Broader source: Energy.gov [DOE]

    Recent advances in high-speed X-ray imaging has shown several distinct behaviors of commercial fuel injectors that cannot be seen with more conventional techniques.

  8. X-ray image reconstruction from a diffraction pattern alone

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Marchesini, Stefano

    X-ray diffraction pattern of a sample of 50 nm colloidal gold particles, recorded at a wavelength of 2.1 nm.

  9. Electronic structure of titania aerogels: Soft x-ray absorption...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Electronic structure of titania aerogels: Soft x-ray absorption study Citation Details In-Document Search Title: Electronic structure of titania aerogels: Soft...

  10. X-ray compass for determining device orientation

    DOE Patents [OSTI]

    Da Silva, L.B.; Matthews, D.L.; Fitch, J.P.; Everett, M.J.; Colston, B.W.; Stone, G.F.

    1999-06-15

    An apparatus and method for determining the orientation of a device with respect to an x-ray source are disclosed. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source. 25 figs.

  11. X-ray Emission from Isolated Be Stars

    E-Print Network [OSTI]

    David H. Cohen

    2000-08-22

    I discuss the X-ray observations of Be stars, and how their properties compare to non-emission B stars. I focus on several specific stars that show high flux levels and variability but also report on several interesting survey results. The Be X-ray properties are discussed in the context of wind-shock X-ray emission from normal OB stars as well as in the context of general mechanisms that have been proposed to explain the Be phenomenon. Finally, I conclude with a discussion of the spectral diagnostics that will be available from the new generation of X-ray telescopes.

  12. X-ray compass for determining device orientation

    DOE Patents [OSTI]

    Da Silva, Luiz B. (Danville, CA); Matthews, Dennis L. (Moss Beach, CA); Fitch, Joseph P. (Livermore, CA); Everett, Matthew J. (Pleasanton, CA); Colston, Billy W. (Livermore, CA); Stone, Gary F. (Livermore, CA)

    1999-01-01

    An apparatus and method for determining the orientation of a device with respect to an x-ray source. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source.

  13. Characterization of spatially resolved high resolution x-ray...

    Office of Scientific and Technical Information (OSTI)

    Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments Citation Details In-Document Search Title:...

  14. X-ray microscopy at CNM | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single goldWindX-RayX-Ray ScienceX-RayX-ray

  15. Workshops on Science Enabled by a Coherent, CW, Synchrotron X-ray Source, June 2011

    SciTech Connect (OSTI)

    Brock, Joel

    2012-01-03

    In June of 2011 we held six two-day workshops called "XDL-2011: Science at the Hard X-ray Diffraction Limit". The six workshops covered (1) Diffraction-based imaging techniques, (2) Biomolecular structure from non-crystalline materials, (3) Ultra-fast science, (4) High-pressure science, (5) Materials research with nano-beams and (6) X-ray photon correlation spectroscopy (XPCS), In each workshop, invited speaker from around the world presented examples of novel experiments that require a CW, diffraction-limited source. During the workshop, each invited speaker provided a one-page description of the experiment and an illustrative graphic. The experiments identified by the workshops demonstrate the broad and deep scientific case for a CW coherent synchrotron x-ray source. The next step is to perform detailed simulations of the best of these ideas to test them quantitatively and to guide detailed x-ray beam-line designs. These designs are the first step toward developing detailed facility designs and cost estimates.

  16. Constraints on jet X-ray emission in low/hard state X-ray binaries

    E-Print Network [OSTI]

    Thomas J. Maccarone

    2005-03-31

    We show that the combination of the similarities between the X-ray properties of low luminosity accreting black holes and accreting neutron stars, combined with the differences in their radio properties argues that the X-rays from these systems are unlikely to be formed in the relativistic jets. Specifically, the spectra of extreme island state neutron stars and low/hard state black holes are known to be indistinguishable, while the power spectra from these systems are known to show only minor differences beyond what would be expected from scaling the characteristic variability frequencies by the mass of the compact object. The spectral and temporal similarities thus imply a common emission mechanism that has only minor deviations from having all key parameters scaling linearly with the mass of the compact object, while we show that this is inconsistent with the observations that the radio powers of neutron stars are typically about 30 times lower than those of black holes at the same X-ray luminosity. We also show that an abrupt luminosity change would be expected when a system makes a spectral state transition from a radiatively inefficient jet dominated accretion flow to a thin disk dominated flow, but that such a change is not seen.

  17. X-rays from magnetically channeled winds of OB stars

    E-Print Network [OSTI]

    David H. Cohen

    2008-01-30

    OB stars with strong radiation-driven stellar winds and large-scale magnetic fields generate strong and hard X-ray emission via the Magnetically Channeled Wind Shock (MCWS) mechanism. In this brief paper, I describe four separate X-ray diagnostics of the MCWS mechanism in OB stars, with applications to the prototype young O star, theta-1 Ori C.

  18. Electromagnetic Application: X-RAY Alawi H. Ba-Surrah

    E-Print Network [OSTI]

    Masoudi, Husain M.

    , Pulyui published high-quality x-ray images in journals in Paris and London. · Nikola Tesla In April 1887, Nikola Tesla began to investigate X-rays using high voltages and tubes of his own design, as well. The principle behind Tesla's device is called the Bremsstrahlung process, in which a high-energy secondary X

  19. X-rays from Hot Stars: Stellar Astronomy Research with

    E-Print Network [OSTI]

    Cohen, David

    emission lines Hot stars*: massive outflows ("stellar winds") ­ are the x-rays associated with these winds can actually take an image of its "wind nebula" ­ in all other cases, we infer the presence of a wind a model for fitting the detailed shapes of x-ray emission line profiles from hot star winds The very hot

  20. National School on Neutron and X-ray Scattering

    E-Print Network [OSTI]

    15th National School on Neutron and X-ray Scattering August 10 - 24, 2013 at Argonne National of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major Ridge National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang

  1. Thirteenth National School on Neutron and X-ray Scattering

    E-Print Network [OSTI]

    Thirteenth National School on Neutron and X-ray Scattering June 11 ­ June 25, 2011 at Argonne of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang, Suzanne

  2. Sixteenth National School on Neutron and X-ray Scattering

    E-Print Network [OSTI]

    Pennycook, Steve

    Sixteenth National School on Neutron and X-ray Scattering June 14-28, 2014 at Argonne National of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major's Neutron Scattering Science Division. Scientific Directors: Suzanne G.E. te Velthuis, Esen Ercan Alp

  3. Neutron and X-ray Scattering Study of Magnetic Manganites

    E-Print Network [OSTI]

    Boothroyd, Andrew

    Neutron and X-ray Scattering Study of Magnetic Manganites Graeme Eoin Johnstone A Thesis submitted are performed using a variety of neutron scattering and x-ray scattering techniques. The electronic ground for analysing the results of the polarised neutron scattering experiment. There are a large number of people who

  4. National School on Neutron and X-ray Scattering

    E-Print Network [OSTI]

    Pennycook, Steve

    National School on Neutron and X-ray Scattering May 30 ­ June 13, 2009 at Argonne National of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang, Suzanne

  5. Fourteenth National School on Neutron and X-ray Scattering

    E-Print Network [OSTI]

    Pennycook, Steve

    Fourteenth National School on Neutron and X-ray Scattering August 12 - 25, 2012 at Argonne National of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major Ridge National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang

  6. Twelfth National School on Neutron and X-ray Scattering

    E-Print Network [OSTI]

    Pennycook, Steve

    Twelfth National School on Neutron and X-ray Scattering June 12 ­ June 26, 2010 at Argonne National of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang, Suzanne

  7. Tenth National School on Neutron and X-ray Scattering

    E-Print Network [OSTI]

    Pennycook, Steve

    Tenth National School on Neutron and X-ray Scattering September 24 - October 11, 2008 at Argonne of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang, Suzanne

  8. Millisecond oscillations during thermonuclear X-ray bursts

    E-Print Network [OSTI]

    Muno, Michael Patrick, 1975-

    2002-01-01

    I analyze 68 oscillation trains detected in a search of 159 thermonuclear bursts from eight neutron star X-ray binaries observed with the Rossi X-ray Timing Explorer. I use all data that were public as of September 2001. ...

  9. Microwave and hard X-ray imaging observations of

    E-Print Network [OSTI]

    White, Stephen

    Microwave and hard X-ray imaging observations of energetic electrons in solar flares: event of 2003 to nonthermal energies are seen via microwave and hard X-ray emission from the solar corona. Imaging sophisticated and fully dedicated solar radio telescope operating at microwave frequencies (17 & 34 GHz) capable

  10. Characterization of Gas Shales by X-ray Raman Spectroscopy |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    137-322 Drew Pomerantz, Schlumberger Unconventional hydrocarbon resources such as gas shale and oil-bearing shale have emerged recently as economically viable sources of energy,...

  11. New concepts for x-ray spectroscopy of tokamak plasmas

    SciTech Connect (OSTI)

    Fraenkel, B.S.; Bitter, M.

    1999-01-01

    The throughput of Bragg crystal spectrometers with two-dimensionally curved crystals has been computed and is found to be much larger than the throughput of conventional Johann spectrometers with cylindrically bent crystals. Special attention was given to spectrometers with spherically and toroidally bent crystals which provide, in addition to a high throughput, good spectral and spatial resolution. These spectrometers should meet the growing diagnostic requirements for present and future large tokamaks. {copyright} {ital 1999 American Institute of Physics.}

  12. X-ray transient absorption and picosecond IR spectroscopy of...

    Office of Scientific and Technical Information (OSTI)

    2 ; Lawrence Livermore National Laboratory) 2 less + Show Author Affiliations (Chemical Sciences and Engineering Division) ( Publication Date: 2012-07-27 OSTI...

  13. X-ray Spectroscopy and Pulse Radiolysis of Aqueous Solutions

    E-Print Network [OSTI]

    England, Alice Heller

    2011-01-01

    interest in characterizing hydroxyl radicals with NEXAFSK-absorption edge of hydroxyl radicals in water. Second, an3.2 Radicals Introduction Hydroxyl Radical Production NEXAFS

  14. X-ray Absorption Spectroscopy of Biologically Relevant Systems

    E-Print Network [OSTI]

    Uejio, Janel Sunayo

    2010-01-01

    sodium acetate, and lithium acetate revealing distinctpotassium, and lithium with acetate and formate anions informate and acetate solutions containing lithium, sodium,

  15. X-ray Absorption Spectroscopy: a Powerful Tool for Investigating

    E-Print Network [OSTI]

    Morante, Silvia

    Indore D 0.45 61 INDUS II Indore D 2. 3.9 Ring & Location Status E [GeV] C [Å] 7. ITALY ELETTRA Trieste D

  16. X-ray Spectroscopy and Pulse Radiolysis of Aqueous Solutions

    E-Print Network [OSTI]

    England, Alice Heller

    2011-01-01

    Chair The interaction of radiation and matter plays aof the interaction of ionizing radiation with matter. Typesradiation sources prompted extensive research to characterize their interactions with different types of matter.

  17. Characterization of Gas Shales by X-ray Raman Spectroscopy |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Room 137-322 Drew Pomerantz, Schlumberger Unconventional hydrocarbon resources such as gas shale and oil-bearing shale have emerged recently as economically viable sources of...

  18. Staff Research Physicist (X-Ray Spectroscopy) | Princeton Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C.3 SpecialSponsor GuidelinesPlasmaPhysics LabLab

  19. X-ray transient absorption and picosecond IR spectroscopy of

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaonfor DirectSciTechConnect Conference:(Journal(Journal2

  20. ZAP! The X-Ray Laser is Born

    SciTech Connect (OSTI)

    Ratner, Daniel

    2009-11-17

    SLAC has converted its giant particle accelerator into the world's first X-ray laser. By a billion fold the world's brightest X-ray source, the laser packs a trillion photons into pulses as short as a millionth of a billionth of a second. The ultra-bright, ultra-short X-ray pulses will drive a wide range of new experiments, as scientists strip electrons from atoms, photograph single molecules and make movies of chemical reactions. How has SLAC accomplished such feats of X-ray wizardry? Attend this public lecture to learn about the basics of an X-ray laser, the technologies at SLAC that make it possible, and the exciting new experiments now underway.

  1. Bent Crystal X-Ray Mirrors for Time-Resolved Experiments with Femtosecond Laser-Produced X-ray Pulses

    E-Print Network [OSTI]

    von der Linde, D.

    Bent Crystal X-Ray Mirrors for Time-Resolved Experiments with Femtosecond Laser-Produced X@iep.physik.uni-essen.de Abstract. In the last few years, bent crystal X-ray mirrors have played an important role in time, for example, with the help of toroidally bent crystals which allow a monochromatic point-to-point imaging

  2. X-RAY EMISSION FROM PLANETS AND COMETS: RELATIONSHIP WITH SOLAR X-RAYS AND SOLAR WIND

    E-Print Network [OSTI]

    Bergen, Universitetet i

    X-RAY EMISSION FROM PLANETS AND COMETS: RELATIONSHIP WITH SOLAR X-RAYS AND SOLAR WIND ANIL BHARDWAJ extraterrestrische Physik, Garching, Germany 6 Applied Physics Laboratory, John Hopkins University, Laurel, MD 20723 planets Jupiter and Saturn in the energy range of 0.2-2 keV. These flares are found to occur in tandem

  3. Millimeter, Microwave, Hard X--ray and Soft X--ray Observations of Energetic Electron Populations in Solar Flares

    E-Print Network [OSTI]

    White, Stephen

    Millimeter, Microwave, Hard X--ray and Soft X--ray Observations of Energetic Electron Populations in Solar Flares M. R. Kundu 1 , S. M. White 1 , N. Gopalswamy 1 and J. Lim 1,2 1 Dept. of Astronomy, Univ. of Maryland, College Park MD 20742 2 Solar Astronomy 264--33, Caltech, Pasadena CA 91125 Submitted

  4. Deep x-ray lithography for micromechanics

    SciTech Connect (OSTI)

    Christenson, T.R. [Sandia National Labs., Albuquerque, NM (United States); Guckel, H. [Wisconsin Univ., Madison, WI (United States). Dept. of Electrical and Computer Engineering

    1995-08-01

    Extensions of the German LIGA process have brought about fabrication capability suitable for cost effective production of precision engineered components. The process attributes allow fabrication of mechanical components which are not capable of being made via conventional subtractive machining methods. Two process improvements have been responsible for this extended capability which involve the areas of thick photoresist application and planarization via precision lapping. Application of low-stress x-ray photoresist has been achieved using room temperature solvent bonding of a preformed photoresist sheet. Precision diamond lapping and polishing has provided a flexible process for the planarization of a wide variety of electroplated metals in the presence of photoresist. Exposure results from the 2.5 GeV National Synchrotron Light Source storage ring at Brookhaven National Laboratory have shown that structural heights of several millimeter and above are possible. The process capabilities are also well suited for microactuator fabrication. Linear and rotational magnetic microactuators have been constructed which use coil winding technology with LIGA fabricated coil forms. Actuator output forces of 1 milliNewton have been obtained with power dissipation on the order of milliWatts. A rotational microdynamometer system which is capable of measuring torque-speed data is also discussed.

  5. X-ray spectral states of microquasars

    E-Print Network [OSTI]

    Julien Malzac; Renaud Belmont

    2008-10-25

    We discuss the origin of the dramatically different X-ray spectral shapes observed in the Low Hard State (LHS: dominated by thermal comptonisation) and the High Soft State (HSS: dominated by the accretion disc thermal emission and non-thermal comptonisation in the corona). We present numerical simulations using a new code accounting for the so-called synchrotron boiler effect. These numerical simulations when compared to the data allow us to constrain the magnetic field and temperature of the hot protons in the corona. For the hard state of Cygnus X-1 we find a magnetic field below equipartition with radiation, suggesting that the corona is not powered through magnetic field dissipation (as assumed in most accretion disc corona models). On the other hand, our results also point toward proton temperatures that are substantially lower than typical temperatures of the ADAF models. Finally, we show that in both spectral states Comptonising plasma could be powered essentially through power-law acceleration of non-thermal electrons, which are then partly thermalised by the synchrotron and Coulomb boiler. This suggests that, contrary to current beliefs, the corona of the HSS and that of the LHS could be of very similar nature. The differences between the LHS and HSS coronal spectra would then be predominantly caused by the strong disc soft cooling emission which is present in the HSS and absent in the LHS.

  6. Interfacial Magnetism in Complex Oxide Heterostructures Probed by Neutrons and X-rays

    SciTech Connect (OSTI)

    Liu, Yaohua; Ke, Xianglin

    2015-01-01

    Magnetic complex-oxide heterostructures are of keen interest because a wealth of phenomena at the interface of dissimilar materials can give rise to fundamentally new physics and potentially valuable functionalities. Altered magnetization, novel magnetic coupling and emergent interfacial magnetism at the epitaxial layered-oxide interfaces have all been intensively investigated, which shapes our understanding on how to utilize those materials, particularly for spintronics. Neutron and x-ray based techniques have played a decisive role in characterizing interfacial magnetic structures and clarifying the underlying physics in this rapidly developing field. Here we review some recent experimental results, with an emphasis on those studied via polarized neutron reflectometery and polarized x-ray absorption spectroscopy. We conclude with some perspectives.

  7. FIRST IMAGES FROM THE FOCUSING OPTICS X-RAY SOLAR IMAGER

    SciTech Connect (OSTI)

    Krucker, Säm; Glesener, Lindsay; Turin, Paul; McBride, Stephen; Glaser, David; Fermin, Jose; Lin, Robert; Christe, Steven; Ishikawa, Shin-nosuke; Ramsey, Brian; Gubarev, Mikhail; Kilaru, Kiranmayee; Takahashi, Tadayuki; Watanabe, Shin; Saito, Shinya; Tanaka, Takaaki; White, Stephen

    2014-10-01

    The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload flew for the first time on 2012 November 2, producing the first focused images of the Sun above 5 keV. To enable hard X-ray (HXR) imaging spectroscopy via direct focusing, FOXSI makes use of grazing-incidence replicated optics combined with fine-pitch solid-state detectors. On its first flight, FOXSI observed several targets that included active regions, the quiet Sun, and a GOES-class B2.7 microflare. This Letter provides an introduction to the FOXSI instrument and presents its first solar image. These data demonstrate the superiority in sensitivity and dynamic range that is achievable with a direct HXR imager with respect to previous, indirect imaging methods, and illustrate the technological readiness for a spaceborne mission to observe HXRs from solar flares via direct focusing optics.

  8. A versatile medium-resolution x-ray emission spectrometer for diamond anvil cell applications

    SciTech Connect (OSTI)

    Mortensen, D. R.; Seidler, G. T.; Bradley, J. A.; Lipp, M. J.; Evans, W. J.; Chow, P.; Xiao, Y.-M.; Boman, G.; Bowden, M. E.

    2013-08-15

    We present design and performance details for a polycapillary-coupled x-ray spectrometer that provides very high collection efficiency at a moderate energy resolution suitable for many studies of nonresonant x-ray emission spectroscopy, especially for samples of heavy elements under high pressures. Using a single Bragg analyzer operating close to backscattering geometry so as to minimize the effect of the weak divergence of the quasicollimated exit beam from the polycapillary optic, this instrument can maintain a typical energy resolution of 5 eV over photon energies from 5 keV to 10 keV. We find dramatically improved count rates as compared to a traditional higher-resolution instrument based on a single spherically bent crystal analyzer.

  9. X-ray Polarimetry - a Tool for the Galactic center diagnosis

    E-Print Network [OSTI]

    Marin, F

    2015-01-01

    Was the Milky Way galaxy a low-luminosity active galactic nucleus (AGN) in the past? Can we find traces of remnant structures supporting this idea? What is the three-dimensional arrangement of matter around our central supermassive black hole? A number of fundamental questions concerning our own Galactic center remain controversial. To reveal the structure of the high-energy sky around our galactic core, a technique more sensitive to the morphology of the emitters than spectroscopy is needed. In this lecture note, I describe how X-ray polarimetry can open a new observational window by precisely measuring the three-dimensional position of the scattering material in the Galactic center. The observed polarization degree and polarization position angle would also determine unambiguously the primary source of emission and trace the centennial history of our supermassive black hole by detecting echoes of its past activity thanks to astrophysical mirrors. Finally, the synergy between X-ray polarimetry and infrared a...

  10. X-ray absorption study of the electronic structure of Mn-doped amorphous Si

    SciTech Connect (OSTI)

    Arenholz, Elke; Zeng, Li; Huegel, A.; Helgren, E.; Hellman, F.; Piamonteze, C.; Arenholz, E.

    2008-03-08

    The electronic structure of Mn in amorphous Si (a-Mn{sub x}Si{sub 1?x}) is studied by X-ray absorption spectroscopy at the Mn L{sub 3,2} edges for x = 0.005-0.18. Except the x = 0.005 sample, which shows a slight signature of Mn{sup 2+} atomic multiplets associated with a local Mn moment, all samples have broad and featureless L{sub 3,2} absorption peaks, corresponding to an itinerant state for all 3d electrons. The broad X-ray absorption spectra exclude the possibility of a localized 3d moment and explain the unexpectedly quenched Mn moment in this magnetically-doped amorphous semiconductor. Such a fully delocalized d state of Mn dopant in Si has not been previously suggested.

  11. MICROANALYSIS OF NY/NJ HARBOR SEDIMENTS USING SYNCHROTRON X-RAY BEAMS.

    SciTech Connect (OSTI)

    JONES,K.W.FENG,H.LANZIROTTI,A.MARINKOVIC,N.ET AL.

    2003-12-31

    Sediments found in the New York/New Jersey Harbor are widely contaminated with organic and inorganic compounds of anthropogenic origin. As a result, the environmental health of the Harbor has deteriorated and the efficient operation of the Port compromised by difficulties in disposing of sediments resulting from maintenance and improvements of navigational channels. Knowledge of the properties of the sediments on a micro-scale is useful in understanding the transport of contaminants through the environment, for developing effective methods for sediment decontamination, and for subsequent beneficial use of the cleaned sediments. We have investigated several properties of these sediments using synchrotron radiation techniques. These include computed microtomography using absorption and fluorescence contrast mechanisms, x-ray microscopy, microbeam x-ray fluorescence, and Fourier Transform Infrared Spectroscopy (FTIR) for measurements of microstructure, distribution of metals on individual sediment particles, and chemical forms of the contaminants on a micrometer scale. Typical results obtained with these techniques are presented.

  12. Revealing a hard X-ray spectral component reverberating within one light hour of the central Supermassive Black Hole in Ark 564

    E-Print Network [OSTI]

    Giustini, M; Reeves, J N; Miller, L; Legg, E; Kraemer, S B; George, I M

    2015-01-01

    Ark 564 (z=0.0247) is an X-ray bright NLS1. By using advanced X-ray timing techniques, Legg et al. (2012) discovered an excess of "delayed" emission in the hard X-ray band (4-7.5 keV) following about 1000 seconds after "flaring" light in the soft X-ray band (0.4-1 keV). We report on the X-ray spectral analysis of eight XMM-Newton and one Suzaku observation of Ark 564. High-resolution spectroscopy was performed with the RGS in the soft X-ray band, while broad-band spectroscopy was performed with the EPIC-pn and XIS/PIN instruments. We analysed time-averaged, flux-selected, and time-resolved spectra. Despite the large variability in flux, the broad band spectral shape of Ark 564 is not dramatically varying and can be reproduced either by a superposition of a power law and a blackbody emission, or by a Comptonized power law emission model. High resolution spectroscopy revealed the presence of ionised gas along the line of sight at the systemic redshift of the source, with a low column density and a range of ioni...

  13. Laser wakefield generated X-ray probe for femtosecond time-resolved measurements of ionization states of warm dense aluminum

    SciTech Connect (OSTI)

    Mo, M. Z.; Chen, Z.; Tsui, Y. Y.; Fedosejevs, R. [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada)] [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada); Fourmaux, S.; Saraf, A.; Otani, K.; Kieffer, J. C. [INRS-EMT, Université du Québec, 1650 Lionel Boulet, Varennes, Québec J3X 1S2 (Canada)] [INRS-EMT, Université du Québec, 1650 Lionel Boulet, Varennes, Québec J3X 1S2 (Canada); Ng, A. [Department of Physics and Astronomy, University of British Columbia, British Columbia V6T 1Z1 (Canada)] [Department of Physics and Astronomy, University of British Columbia, British Columbia V6T 1Z1 (Canada)

    2013-12-15

    We have developed a laser wakefield generated X-ray probe to directly measure the temporal evolution of the ionization states in warm dense aluminum by means of absorption spectroscopy. As a promising alternative to the free electron excited X-ray sources, Betatron X-ray radiation, with femtosecond pulse duration, provides a new technique to diagnose femtosecond to picosecond transitions in the atomic structure. The X-ray probe system consists of an adjustable Kirkpatrick-Baez (KB) microscope for focusing the Betatron emission to a small probe spot on the sample being measured, and a flat Potassium Acid Phthalate Bragg crystal spectrometer to measure the transmitted X-ray spectrum in the region of the aluminum K-edge absorption lines. An X-ray focal spot size of around 50 ?m was achieved after reflection from the platinum-coated 10-cm-long KB microscope mirrors. Shot to shot positioning stability of the Betatron radiation was measured resulting in an rms shot to shot variation in spatial pointing on the sample of 16 ?m. The entire probe setup had a spectral resolution of ?1.5 eV, a detection bandwidth of ?24 eV, and an overall photon throughput efficiency of the order of 10{sup ?5}. Approximately 10 photons were detected by the X-ray CCD per laser shot within the spectrally resolved detection band. Thus, it is expected that hundreds of shots will be required per absorption spectrum to clearly observe the K-shell absorption features expected from the ionization states of the warm dense aluminum.

  14. Soft X-Ray Spectroscopic Study of Dense Strontium-Doped Lanthanum Manganite Cathodes for Solid Oxide Fuel Cell Applications

    SciTech Connect (OSTI)

    L Piper; A Preston; S Cho; A DeMasi; J Laverock; K Smith; L Miara; J Davis; S Basu; et al.

    2011-12-31

    The evolution of the Mn charge state, chemical composition, and electronic structure of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSMO) cathodes during the catalytic activation of solid oxide fuel cell (SOFC) has been studies using X-ray spectroscopy of as-processed, exposed, and activated dense thin LSMO films. Comparison of O K-edge and Mn L{sub 3,2}-edge X-ray absorption spectra from the different stages of LSMO cathodes revealed that the largest change after the activation occurred in the Mn charge state with little change in the oxygen environment. Core-level X-ray photoemission spectroscopy and Mn L{sub 3} resonant photoemission spectroscopy studies of exposed and as-processed LSMO determined that the SOFC environment (800 C ambient pressure of O{sub 2}) alone results in La deficiency (severest near the surface with Sr doping >0.55) and a stronger Mn{sup 4+} contribution, leading to the increased insulating character of the cathode prior to activation. Meanwhile, O K-edge X-ray absorption measurements support Sr/La enrichment nearer the surface, along with the formation of mixed Sr{sub x}Mn{sub y}O{sub z} and/or passive MnO{sub x} and SrO species.

  15. NEW X-RAY DETECTIONS OF WNL STARS

    SciTech Connect (OSTI)

    Skinner, Stephen L.; Zhekov, Svetozar A.; Guedel, Manuel; Schmutz, Werner; Sokal, Kimberly R.

    2012-05-15

    Previous studies have demonstrated that putatively single nitrogen-type Wolf-Rayet stars (WN stars) without known companions are X-ray sources. However, almost all WN star X-ray detections so far have been of earlier WN2-WN6 spectral subtypes. Later WN7-WN9 subtypes (also known as WNL stars) have proved more difficult to detect, an important exception being WR 79a (WN9ha). We present here new X-ray detections of the WNL stars WR 16 (WN8h) and WR 78 (WN7h). These new results, when combined with previous detections, demonstrate that X-ray emission is present in WN stars across the full range of spectral types, including later WNL stars. The two WN8 stars observed to date (WR 16 and WR 40) show unusually low X-ray luminosities (L{sub x} ) compared to other WN stars, and it is noteworthy that they also have the lowest terminal wind speeds (v{sub {infinity}}). Existing X-ray detections of about a dozen WN stars reveal a trend of increasing L{sub x} with wind luminosity L{sub wind} = (1/2)M-dot v{sup 2}{sub {infinity}}, suggesting that wind kinetic energy may play a key role in establishing X-ray luminosity levels in WN stars.

  16. NSLS-II X-Ray Diagnostics Development

    SciTech Connect (OSTI)

    ILINSKI, P.

    2011-03-28

    NSLS-II x-ray diagnostics will provide continuous online data of electron beam dimensions, which will be used to derive electron beam emittance and energy spread. It will also provide information of electron beam tilt for coupling evaluation. X-ray diagnostics will be based on imaging of bending magnet and three-pole wiggler synchrotron radiation sources. Diagnostics from three-pole wiggler source will be used to derive particles energy spread. Beta and dispersion functions will have to be evaluated for emittance and particles energy spread calculations. Due to small vertical source sizes imaging need to be performed in x-ray energy range. X-ray optics with high numerical aperture, such as compound refractive lens, will be used to achieve required spatial resolution. Optical setups with different magnifications in horizontal and vertical directions fill be employed to deal with large aspect ratio of the source. X-ray diagnostics setup will include x-ray imaging optics, monochromatization, x-ray imaging and recording components.

  17. A doubly curved elliptical crystal spectrometer for the study of localized x-ray absorption in hot plasmas

    SciTech Connect (OSTI)

    Cahill, Adam D. Hoyt, Cad L.; Pikuz, Sergei A.; Shelkovenko, Tania; Hammer, David A.

    2014-10-15

    X-ray absorption spectroscopy is a powerful tool for the diagnosis of plasmas over a wide range of both temperature and density. However, such a measurement is often limited to probing plasmas with temperatures well below that of the x-ray source in order to avoid object plasma emission lines from obscuring important features of the absorption spectrum. This has excluded many plasmas from being investigated by this technique. We have developed an x-ray spectrometer that provides the ability to record absorption spectra from higher temperature plasmas than the usual approach allows without the risk of data contamination by line radiation emitted by the plasma under study. This is accomplished using a doubly curved mica crystal which is bent both elliptically and cylindrically. We present here the foundational work in the design and development of this spectrometer along with initial results obtained with an aluminum x-pinch as the object plasma.

  18. Automated Chemical Analysis of Internally Mixed Aerosol Particles Using X-ray Spectromicroscopy at the Carbon K-Edge

    SciTech Connect (OSTI)

    Moffet, Ryan C.; Henn, Tobias R.; Laskin, Alexander; Gilles, Marry K.

    2010-10-01

    We have developed an automated data analysis method for atmospheric particles using scanning transmission X-ray microscopy coupled with near edge X-ray fine structure spectroscopy (STXM/NEXAFS). This method is applied to complex internally mixed submicron particles containing organic and inorganic material. Several algorithms were developed to exploit NEXAFS spectral features in the energy range from 278-320 eV for quantitative mapping of the spatial distribution of elemental carbon, organic carbon, potassium, and non-carbonaceous elements in particles of mixed composition. This energy range encompasses the carbon K-edge and potassium L2 and L3 edges. STXM/NEXAFS maps of different chemical components were complemented with a subsequent analysis using elemental maps obtained by scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM/EDX). We demonstrate application of the automated mapping algorithms for data analysis and the statistical classification of particles.

  19. Apparatus for generating x-ray holograms

    DOE Patents [OSTI]

    Rhodes, C.K.; Boyer, K.; Solem, J.C.; Haddad, W.S.

    1990-09-11

    Apparatus for x-ray microholography of living biological materials. A Fourier transform holographic configuration is described as being most suitable for the 3-dimensional recording of the physical characteristics of biological specimens. The use of a spherical scatterer as a reference and a charge-coupled device two-dimensional detector array placed in the forward direction relative to the incident x-radiation for viewing electromagnetic radiation simultaneously scattered from both the specimen and the reference scatterer permits the ready reconstruction of the details of the specimen from the fringe pattern detected by the charge-coupled device. For example, by using a nickel reference scatter at 4.5 nm, sufficient reference illumination is provided over a wide enough angle to allow similar resolution in both transverse and longitudinal directions. Both laser and synchrotron radiation sources are feasible for generating microholographs. Operation in the water window (2.4 to 4.5 nm) should provide maximum contrast for features of the specimen and spatial resolution on the order of the wavelength of x-radiation should be possible in all three dimensions, which is sufficient for the visualization of many biological features. It is anticipated that the present apparatus will find utility in other areas as well where microscopic physical details of a specimen are important. A computational procedure which enables the holographic data collected by the detector to be used to correct for misalignments introduced by inexact knowledge of the relative positions of the spherical reference scatterer and the sample under investigation has been developed. If the correction is performed prior to reconstruction, full compensation can be achieved and a faithfully reconstructed image produced. 7 figs.

  20. Apparatus for generating x-ray holograms

    DOE Patents [OSTI]

    Rhodes, Charles K. (Chicago, IL); Boyer, Keith (Los Alamos, NM); Solem, Johndale C. (Los Alamos, NM); Haddad, Waleed S. (Chicago, IL)

    1990-01-01

    Apparatus for x-ray microholography of living biological materials. A Fourier transform holographic configuration is described as being most suitable for the 3-dimensional recording of the physical characteristics of biological specimens. The use of a spherical scatterer as a reference and a charge-coupled device two-dimensional detector array placed in the forward direction relative to the incident x-radiation for viewing electromagnetic radiation simultaneously scattered from both the specimen and the reference scatterer permits the ready reconstruction of the details of the specimen from the fringe pattern detected by the charge-coupled device. For example, by using a nickel reference scatter at 4.5 nm, sufficient reference illumination is provided over a wide enough angle to allow similar resolution in both transverse and longitudinal directions. Both laser and synchrotron radiation sources are feasible for generating microholographs. Operation in the water window (2.4 to 4.5 nm) should provide maximum contrast for features of the specimen and spatial resolution on the order of the wavelength of x-radiation should be possible in all three dimensions, which is sufficient for the visualization of many biological features. It is anticipated that the present apparatus will find utility in other areas as well where microscopic physical details of a specimen are important. A computational procedure which enables the holographic data collected by the detector to be used to correct for misalignments introduced by inexact knowledge of the relative positions of the spherical reference scatterer and the sample under investigation has been developed. If the correction is performed prior to reconstruction, full compensation can be achieved and a faithfully reconstructed image produced.

  1. Resonant x-ray magnetic scattering in holmium

    SciTech Connect (OSTI)

    Gibbs, D.

    1991-01-01

    We review the results of resonant x-ray magnetic scattering experiments on the rare earth metal holmium. When the incident incident x-ray energy is tuned near the L{sub III} absorption edge, large resonant enhancements of the magnetic scattering and resonant integer harmonics are observed. These results are analyzed within the theory of x-ray resonance exchange scattering assuming electric dipole (2p {yields} 5d) and quadrupole (2p {yields} 4f) transitions among atomic orbitals. 30 refs., 5 figs.

  2. Characterization of X-ray generator beam profiles.

    SciTech Connect (OSTI)

    Mitchell, Dean J; Harding, Lee T.; Thoreson, Gregory G.; Theisen, Lisa Anne; Parmeter, John Ethan; Thompson, Kyle Richard

    2013-07-01

    T to compute the radiography properties of various materials, the flux profiles of X-ray sources must be characterized. This report describes the characterization of X-ray beam profiles from a Kimtron industrial 450 kVp radiography system with a Comet MXC-45 HP/11 bipolar oil-cooled X-ray tube. The empirical method described here uses a detector response function to derive photon flux profiles based on data collected with a small cadmium telluride detector. The flux profiles are then reduced to a simple parametric form that enables computation of beam profiles for arbitrary accelerator energies.

  3. X-ray backscatter imaging of nuclear materials

    DOE Patents [OSTI]

    Chapman, Jeffrey Allen; Gunning, John E; Hollenbach, Daniel F; Ott, Larry J; Shedlock, Daniel

    2014-09-30

    The energy of an X-ray beam and critical depth are selected to detect structural discontinuities in a material having an atomic number Z of 57 or greater. The critical depth is selected by adjusting the geometry of a collimator that blocks backscattered radiation so that backscattered X-ray originating from a depth less than the critical depth is not detected. Structures of Lanthanides and Actinides, including nuclear fuel rod materials, can be inspected for structural discontinuities such as gaps, cracks, and chipping employing the backscattered X-ray.

  4. Optical and X-ray Variability of Blazars

    E-Print Network [OSTI]

    Gupta, A C

    2015-01-01

    Here we report our recent results of variability studies in optical and X-ray bands of three blazars namely 3C 273, PKS 2155 - 304 and BL Lacertae with XMM-Newton. We found large amplitude optical to X-rays variability in 3C 273, and PKS 2155 - 304 on year time scale. In 3C 273, we noticed that synchrotron cooling and particle acceleration are at work at different epoch of observations. In PKS 2155 - 304, spectral energy distribution from optical to X-ray is fitted with LPPL (log parabolic + power law) model. In BL Lacertae, optical flux and degree of polarization were anti-correlated.

  5. Spatiotemporal focusing dynamics in plasmas at X-ray wavelength

    SciTech Connect (OSTI)

    Sharma, A., E-mail: a-physics2001@yahoo.com; Tibai, Z. [Institute of Physics, University of Pecs, Pecs–7624 (Hungary)] [Institute of Physics, University of Pecs, Pecs–7624 (Hungary); Hebling, J. [Institute of Physics, University of Pecs, Pecs–7624 (Hungary) [Institute of Physics, University of Pecs, Pecs–7624 (Hungary); Szentagothai Research Centre, University of Pecs, Pecs-7624 (Hungary); Mishra, S. K. [Institute for Plasma Research, Gandhinagar (India)] [Institute for Plasma Research, Gandhinagar (India)

    2014-03-15

    Using a finite curvature beam, we investigate here the spatiotemporal focusing dynamics of a laser pulse in plasmas at X-ray wavelength. We trace the dependence of curvature parameter on the focusing of laser pulse and recognize that the self-focusing in plasma is more intense for the X-ray laser pulse with curved wavefront than with flat wavefront. The simulation results demonstrate that spatiotemporal focusing dynamics in plasmas can be controlled with the appropriate choice of beam-plasma parameters to explore the high intensity effects in X-ray regime.

  6. X-ray afterglows from gamma-ray bursts

    E-Print Network [OSTI]

    M. Tavani

    1997-03-24

    We consider possible interpretations of the recently detected X- ray afterglow from the gamma-ray burst source GRB 970228. Cosmological and Galactic models of gamma-ray bursts predict different flux and spectral evolution of X-ray afterglows. We show that models based on adiabatic expansion of relativistic forward shocks require very efficient particle energization or post-burst re-acceleration during the expansion. Cooling neutron star models predict a very distinctive spectral and flux evolution that can be tested in current X-ray data.

  7. Laser-Produced Coherent X-Ray Sources

    SciTech Connect (OSTI)

    Donald Umstadter

    2007-01-31

    We study the generation of x-rays from the interaction of relativistic electrons with ultra-intense laser pulse either directly or via laser generated ion channels. The laser pulse acts as the accelerator and wiggler leading to an all-optical synchrotron-like x-ray source. The mm sized accelerator and micron-sized wiggler leads to a compact source of high brightness, ultrafast x-rays with applications in relativistic nonlinear optics, ultrafast chemistry, biology, inner-shell electronic processes and phase transitions.

  8. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single goldWind Power >X-RayX-RayX-Ray

  9. Radiation exposure in X-ray-based imaging techniques used in osteoporosis

    E-Print Network [OSTI]

    Damilakis, John; Adams, Judith E.; Guglielmi, Giuseppe; Link, Thomas M.

    2010-01-01

    and nonradiologists in dual-energy X-ray absorptiometrymorphometry studies using dual-energy X-ray absorptiometry.dose measurements in dual energy X-ray absorptiometry (DXA).

  10. X-ray optics metrology limited by random noise, instrumental drifts, and systematic errors

    E-Print Network [OSTI]

    Yashchuk, Valeriy V.

    2010-01-01

    X-ray optics metrology limited by random noise, instrumentalUSA Center for X-ray Optics, Lawrence Berkeley Nationaland reflecting x-ray optics suitable for micro- and nano-

  11. Beyond 3-D X-ray Imaging: Methodology Development and Applications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the availability of the new generation of X-ray sources and the advanced X-ray optics. The advanced X-ray Optics along with novel methodology has made it possible to...

  12. Automated suppression of errors in LTP-II slope measurements with x-ray optics

    E-Print Network [OSTI]

    Ali, Zulfiqar

    2011-01-01

    slope measurements with x-ray optics Zulfiqar Ali, Curtis L.with state-of-the-art x-ray optics. Significant suppressionscanning, metrology of x-ray optics, deflectometry Abstract

  13. Synchrotron X-ray Scattering Studies of Rapidly Evolving Nanoscale Interfacial Systems /

    E-Print Network [OSTI]

    Dai, Yeling

    2013-01-01

    Stanley. X-ray and neutron scattering from rough surfaces.Stanley. X-ray and neutron scattering from rough surfaces.grazing incidence x-ray and neutron scattering from ordered

  14. Analysis of Order Formation in Block Copolymer Thin Films Using Resonant Soft X-Ray Scattering

    E-Print Network [OSTI]

    Virgili, Justin M.; Tao, Yuefei; Kortright, Jeffrey B.; Balsara, Nitash P.; Segalman, Rachel A.

    2006-01-01

    Methods of X-Ray and Neutron Scattering in Polymer Science.µ t for X-ray and neutron scattering experiments is unity;18 In classical scattering of light, X-rays or neutrons the

  15. X-ray scattering studies of structure and dynamics of surfaces and interfaces of polymeric liquids

    E-Print Network [OSTI]

    Jiang, Zhang

    2007-01-01

    Evanescent X-ray and Neutron Scattering. Springer-Verlag,Methods of X-ray and neutron scattering in polymer science.Stanley. X-ray and neutron scattering from rough surfaces.

  16. Imaging nanoscale magnetic structures with polarized soft x-ray photons

    E-Print Network [OSTI]

    Fischer, P.

    2010-01-01

    with polarized soft X-ray photons Peter Fischer and Mi -polarized soft X-ray photons which provide a strong X-rayhigh intense soft X-ray photon pulses hold the promise of

  17. A New Scheme for Stigmatic X-ray Imaging with Large Magnification...

    Office of Scientific and Technical Information (OSTI)

    F; Beiersdorfer, P; Wang, E; Sanchez del Rio, M; Caughey, T A 70 PLASMA PHYSICS AND FUSION TECHNOLOGY X-ray Imaging X-ray Imaging This paper describes a new x-ray scheme for...

  18. The mass and the radius of the neutron star in the transient low mass X-ray binary SAX J1748.9-2021

    E-Print Network [OSTI]

    Yanikoglu, Berrin

    .9-2021 Tolga G¨uver1 , Feryal ¨Ozel2,3 ABSTRACT We use time resolved spectroscopy of thermonuclear X-ray bursts of thermonuclear flashes on the neutron star surface (Galloway et al. 2008). In this paper, we use the time-resolved spectroscopy of a subsample of these thermonuclear bursts to determine the mass and radius of the neutron star

  19. Achieving hard X-ray nanofocusing using a wedged multilayer Laue...

    Office of Scientific and Technical Information (OSTI)

    anticipate that continuous development on wedged MLLs will advance x-ray nanofocusing optics to new frontiers and enrich capabilities and opportunities for hard X-ray microscopy....

  20. VOLUME 89, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 22 JULY 2002 Coherent X-Ray Raman Spectroscopy: A Nonlinear Local Probe for Electronic Excitations

    E-Print Network [OSTI]

    Mukamel, Shaul

    - wave mixing process involving three incoming beams k1, v1 , (k2, v2), and k3, v3 to generate a signal, Osaka Prefecture University, Sakai 599-8531, Japan (Received 27 November 2001; published 9 July 2002) Nonlinear x-ray four-wave mixing experiments are becoming feasible due to rapid advances in high harmonic

  1. Phase Tomography Using X-ray Talbot Interferometer

    SciTech Connect (OSTI)

    Momose, A.; Yashiro, W.; Moritake, M. [Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Takeda, Y. [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Uesugi, K.; Suzuki, Y. [SPring-8/JASRI, 1-1-1 Kouto, Mikazuki, Hyogo 679-5198 (Japan); Hattori, T. [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigori, Hyogo 678-1205 (Japan)

    2007-01-19

    A biological tomography result obtained with an X-ray Talbot interferometer is reported. An X-ray Talbot interferometer was constructed using an amplitude grating fabricated by X-ray lithography at the LIGA beamline of NewSUBARU and gold electroplating. The pitch and pattern thickness of the grating were 8 {mu}m and 30 {mu}m, respectively. The effective area was 20 x 20 mm2, which was entirely illuminated with a wide beam available at the medium-length beamline 20B2 of SPring-8, allowing the acquisition of a three-dimensional tomogram of almost the whole body of a fish. The resulting image obtained with 17.7 keV X-rays revealed organs with bones in the same view.

  2. Performance enhancement approaches for a dual energy x-ray

    E-Print Network [OSTI]

    Fu, Kenneth

    2010-01-01

    Evans, J.P.O. , “Stereoscopic dual energy imaging for targetCrawford, C.R. , “Dual Energy Volumetric X-ray Tomographicimages in 4–10 MeV Dual- energy customs system for material

  3. X-ray emission from the terrestrial magnetosheath

    E-Print Network [OSTI]

    Robertson, Ina Picket; Cravens, Thomas Edward

    2003-04-29

    [1] X-rays are generated throughout the terrestrial magnetosheath as a consequence of charge transfer collisions between heavy solar wind ions and geocoronal neutrals. The solar wind ions resulting from these collisions are left in highly excited...

  4. Active pixel sensors for X-ray astronomy

    E-Print Network [OSTI]

    Cohen, Matthew (Matthew L.)

    2005-01-01

    An active pixel sensor array, APS-1, has been fabricated for the purpose of scientific x-ray detection. This thesis presents the results of testing the device. Alternate design architectures are explored. Recommendations ...

  5. Accreting X-ray millisecond pulsars observed with INTEGRAL

    E-Print Network [OSTI]

    Maurizio Falanga

    2007-11-07

    I review the properties of three X-ray accreting millisecond pulsars observed with INTEGRAL. Out of seven recently discovered accretion-powered pulsars (one discovered by INTEGRAL), three were observed with the INTEGRAL satellite up to 300 keV. Detailed timing and spectral results will be presented, including data obtained during the most recent outburst of the pulsar HETE J1900.1-2455. Accreting X-ray millisecond pulsars are key systems to understand the spin and accretion history of neutron stars. They are also a good laboratory in which to study the source spectra, pulse profile, and phase shift between X-ray pulses in different energy ranges which give additional information of the X-ray production processes and emission environment.

  6. Magnetically Confined Wind Shocks in X-rays - a Review

    E-Print Network [OSTI]

    ud-Doula, Asif

    2015-01-01

    A subset (~ 10%) of massive stars present strong, globally ordered (mostly dipolar) magnetic fields. The trapping and channeling of their stellar winds in closed magnetic loops leads to magnetically confined wind shocks (MCWS), with pre-shock flow speeds that are some fraction of the wind terminal speed. These shocks generate hot plasma, a source of X-rays. In the last decade, several developments took place, notably the determination of the hot plasma properties for a large sample of objects using XMM-Newton and Chandra, as well as fully self-consistent MHD modelling and the identification of shock retreat effects in weak winds. Despite a few exceptions, the combination of magnetic confinement, shock retreat and rotation effects seems to be able to account for X-ray emission in massive OB stars. Here we review these new observational and theoretical aspects of this X-ray emission and envisage some perspectives for the next generation of X-ray observatories.

  7. Systems and methods for detecting x-rays

    DOE Patents [OSTI]

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-05-02

    Systems and methods for detecting x-rays are disclosed herein. One or more x-ray-sensitive scintillators can be configured from a plurality of heavy element nano-sized particles and a plastic material, such as polystyrene. As will be explained in greater detail herein, the heavy element nano-sized particles (e.g., PbWO4) can be compounded into the plastic material with at least one dopant that permits the plastic material to scintillate. X-rays interact with the heavy element nano-sized particles to produce electrons that can deposit energy in the x-ray sensitive scintillator, which in turn can produce light.

  8. X-ray obscuration in local Universe AGN

    E-Print Network [OSTI]

    Matteo Guainazzi

    2006-10-31

    I review the constraints that X-ray observations impose on the physical properties and the geometrical distribution of cold absorbing gas in nearby obscured Active Galactic Nuclei (AGN), as well as their implications for AGN structure models.

  9. Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interpretation of XMLD data. Magnetism and X Rays The ancient Greeks and also the Chinese knew about strange and rare stones with the power to attract iron. Moreover, when...

  10. The Ulysses Catalog of Solar Hard X-Ray Flares

    E-Print Network [OSTI]

    Tranquille, C.; Hurley, K.; Hudson, H. S.

    2009-01-01

    Sturrock, P.A. (ed. ) Solar Flares: A Monograph from SkylabSmith E.V.P. : 1963, Solar Flares, Macmillan, New York.Catalog of Solar Hard X-Ray Flares Table 1 (Continued. )

  11. Using Light to Control How X Rays Interact with Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Light to Control How X Rays Interact with Matter Print Schemes that use one light pulse to manipulate interactions of another with matter are well developed in the...

  12. X-Ray Propagation in Tapered Waveguides: Simulation and Optimization

    E-Print Network [OSTI]

    Peinke, Joachim

    [1,2]. X-ray waveguides (WG) have been designed and fabricated as planar layered systems (1D-WG) [3. The propagation in the stuctures is studied by numerical solution of the parabolic wave equation (PWE), as used

  13. Generation of Coherent X-Ray Radiation through Modulation Compression...

    Office of Scientific and Technical Information (OSTI)

    In this paper, we propose a scheme to generate tunable coherent X-ray radiation for future light source applications. This scheme uses an energy chirped electron beam, a laser...

  14. Towards attosecond X-ray pulses from the FEL

    E-Print Network [OSTI]

    Zholents, Alexander A.; Fawley, William M.

    2004-01-01

    can be used instead of HC FEL. In the following illustra-UM is now tuned for resonant FEL interaction with the 32-nmAttosecond X-Ray Pulses from the FEL Alexander A. Zholents,

  15. High performance x-ray anti-scatter grid

    DOE Patents [OSTI]

    Logan, C.M.

    1995-05-23

    Disclosed are an x-ray anti-scatter grid for x-ray imaging, particularly for screening mammography, and method for fabricating same, x-rays incident along a direct path pass through a grid composed of a plurality of parallel or crossed openings, microchannels, grooves, or slots etched in a substrate, such as silicon, having the walls of the microchannels or slots coated with a high opacity material, such as gold, while x-rays incident at angels with respect to the slots of the grid, arising from scatter, are blocked. The thickness of the substrate is dependent on the specific application of the grid, whereby a substrate of the grid for mammography would be thinner than one for chest radiology. Instead of coating the walls of the slots, such could be filed with an appropriate liquid, such as mercury. 4 Figs.

  16. Vitreous carbon mask substrate for X-ray lithography

    DOE Patents [OSTI]

    Aigeldinger, Georg (Livermore, CA); Skala, Dawn M. (Fremont, CA); Griffiths, Stewart K. (Livermore, CA); Talin, Albert Alec (Livermore, CA); Losey, Matthew W. (Livermore, CA); Yang, Chu-Yeu Peter (Dublin, CA)

    2009-10-27

    The present invention is directed to the use of vitreous carbon as a substrate material for providing masks for X-ray lithography. The new substrate also enables a small thickness of the mask absorber used to pattern the resist, and this enables improved mask accuracy. An alternative embodiment comprised the use of vitreous carbon as a LIGA substrate wherein the VC wafer blank is etched in a reactive ion plasma after which an X-ray resist is bonded. This surface treatment provides a surface enabling good adhesion of the X-ray photoresist and subsequent nucleation and adhesion of the electrodeposited metal for LIGA mold-making while the VC substrate practically eliminates secondary radiation effects that lead to delamination of the X-ray resist form the substrate, the loss of isolated resist features, and the formation of a resist layer adjacent to the substrate that is insoluble in the developer.

  17. High order reflectivity of graphite (HOPG) crystals for x ray...

    Office of Scientific and Technical Information (OSTI)

    (22.1 keV) x-rays, produced by petawatt class laser pulses interacting with a Kr gas jet and a silver foil, to measure the integrated crystal reflectivity of flat Highly...

  18. X-ray imaging reveals secrets in battery materials | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-ray imaging reveals secrets in battery materials June 22, 2015 Tweet EmailPrint Imaging and data analysis techniques offer new approach to probing material properties In a new...

  19. Dose optimization in cardiac x-ray imaging

    SciTech Connect (OSTI)

    Gislason-Lee, Amber J.; McMillan, Catherine; Cowen, Arnold R.; Davies, Andrew G.

    2013-09-15

    Purpose: The aim of this research was to optimize x-ray image quality to dose ratios in the cardiac catheterization laboratory. This study examined independently the effects of peak x-ray tube voltage (kVp), copper (Cu), and gadolinium (Gd) x-ray beam filtration on the image quality to radiation dose balance for adult patient sizes.Methods: Image sequences of polymethyl methacrylate (PMMA) phantoms representing two adult patient sizes were captured using a modern flat panel detector based x-ray imaging system. Tin and copper test details were used to simulate iodine-based contrast medium and stents/guide wires respectively, which are used in clinical procedures. Noise measurement for a flat field image and test detail contrast were used to calculate the contrast to noise ratio (CNR). Entrance surface dose (ESD) and effective dose measurements were obtained to calculate the figure of merit (FOM), CNR{sup 2}/dose. This FOM determined the dose efficiency of x-ray spectra investigated. Images were captured with 0.0, 0.1, 0.25, 0.4, and 0.9 mm Cu filtration and with a range of gadolinium oxysulphide (Gd{sub 2}O{sub 2}S) filtration.Results: Optimum x-ray spectra were the same for the tin and copper test details. Lower peak tube voltages were generally favored. For the 20 cm phantom, using 2 Lanex Fast Back Gd{sub 2}O{sub 2}S screens as x-ray filtration at 65 kVp provided the highest FOM considering ESD and effective dose. Considering ESD, this FOM was only marginally larger than that from using 0.4 mm Cu at 65 kVp. For the 30 cm phantom, using 0.25 mm copper filtration at 80 kVp was most optimal; considering effective dose the FOM was highest with no filtration at 65 kVp.Conclusions: These settings, adjusted for x-ray tube loading limits and clinically acceptable image quality, should provide a useful option for optimizing patient dose to image quality in cardiac x-ray imaging. The same optimal x-ray beam spectra were found for both the tin and copper details, suggesting that iodine contrast based imaging and visualization of interventional devices could potentially be optimized for dose using similar x-ray beam spectra.

  20. X-ray tube with magnetic electron steering

    DOE Patents [OSTI]

    Reed, Kim W. (Albuquerque, NM); Turman, Bobby N. (Albuquerque, NM); Kaye, Ronald J. (Albuquerque, NM); Schneider, Larry X. (Albuquerque, NM)

    2000-01-01

    An X-ray tube uses a magnetic field to steer electrons. The magnetic field urges electrons toward the anode, increasing the proportion of electrons emitted from the cathode that reach desired portions of the anode and consequently contribute to X-ray production. The magnetic field also urges electrons reflected from the anode back to the anode, further increasing the efficiency of the tube.