Powered by Deep Web Technologies
Note: This page contains sample records for the topic "x-ray laser pulse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

SLAC National Accelerator Laboratory - X-ray Laser Pulses in...  

NLE Websites -- All DOE Office Websites (Extended Search)

SLAC researchers have demonstrated for the first time how to produce pairs of X-ray laser pulses in slightly different wavelengths, or colors, with finely adjustable intervals...

2

Method and apparatus for producing durationally short ultraviolet or X-ray laser pulses  

DOE Patents (OSTI)

A method and apparatus is disclosed for producing ultraviolet or X-ray laser pulses of short duration (32). An ultraviolet or X-ray laser pulse of long duration (12) is progressively refracted, across the surface of an opaque barrier (28), by a streaming plasma (22) that is produced by illuminating a solid target (16, 18) with a pulse of conventional line focused high power laser radiation (20). The short pulse of ultraviolet or X-ray laser radiation (32), which may be amplified to high power (40, 42), is separated out by passage through a slit aperture (30) in the opaque barrier (28).

MacGowan, Brian J. (Livermore, CA); Matthews, Dennis L. (El Granada, CA); Trebes, James E. (Livermore, CA)

1988-01-01T23:59:59.000Z

3

Femtosecond X-Ray Free Electron Laser Pulse Duration Measurement from Spectral Correlation Function  

SciTech Connect

We present a novel method for measuring the duration of femtosecond x-ray pulses from self-amplified spontaneous emission free electron lasers by performing statistical analysis in the spectral domain. Analytical expressions of the spectral correlation function were derived in the linear regime to extract both the pulse duration and the spectrometer resolution. Numerical simulations confirmed that the method can be also used in the nonlinear regime. The method was demonstrated experimentally at the Linac Coherent Light Source by measuring pulse durations down to 13 fs FWHM.

Lutman, A. A

2012-04-17T23:59:59.000Z

4

Influence of diffraction in crystals on the coherence properties of X-ray free-electron laser pulses  

SciTech Connect

The spatial and temporal evolution of the field of random X-ray femtosecond pulses and their coherent properties upon pulse propagation in free space and under dynamical diffraction in perfect crystals in the Bragg and Laue geometries has been analyzed on the basis of the formalism developed in statistical optics. Particular attention is paid to the influence of large pulse propagation distances, which are characteristic of lengthy channels of X-ray free-electron lasers.

Bushuev, V. A., E-mail: vabushuev@yandex.ru [Moscow State University (Russian Federation); Samoylova, L. [European XFEL GmbH (Germany)

2011-09-15T23:59:59.000Z

5

Effect of plasma density scale length on the properties of bremsstrahlung x-ray sources created by picosecond laser pulses  

Science Conference Proceedings (OSTI)

Results of an experimental study of multi-MeV bremsstrahlung x-ray sources created by picosecond laser pulses are presented. The x-ray source is created by focusing the short pulse in an expanding plasma obtained by heating a solid target with a time-delayed nanosecond laser beam. The high-energy part of the x-ray spectrum and emission lobe are inferred from photonuclear activation techniques. The x-ray dose is measured with silicon diodes. Two-dimensional images of the source are reconstructed from a penumbral imaging technique. These results indicate the creation of a relatively small source, below 200 {mu}m diameter, delivering doses up to 12 mrad in air at 1 m with x-ray temperature up to 2.8 MeV. The diagnostics used give access to a whole set of coherent experimental results on the x-ray source properties which are compared to extensive numerical simulations. X-ray intensity and temperature are found to increase with the size of the preplasma.

Courtois, C.; Compant La Fontaine, A.; Landoas, O.; Lidove, G.; Meot, V.; Morel, P.; Nuter, R.; Lefebvre, E. [CEA, DAM, DIF, F-91297 Arpajon (France); Boscheron, A.; Grenier, J. [CEA, DAM, CESTA, F-33114 Le Barp (France); Aleonard, M. M.; Gerbaux, M.; Gobet, F.; Hannachi, F.; Malka, G.; Scheurer, J. N.; Tarisien, M. [Universite de Bordeaux, Centre d'Etudes Nucleaires Bordeaux Gradignan, UMR 5797 CNRS/IN2P3, Gradignan F-33175 (France)

2009-01-15T23:59:59.000Z

6

Analysis of neon soft x-ray spectra from short-pulse laser-produced plasmas  

Science Conference Proceedings (OSTI)

We report preliminary results from the analysis of streaked soft x-ray neon spectra obtained from the interaction of a picosecond Nd:glass laser with a gas jet target. In these experiments streaked spectra show prompt harmonic emission followed by longer time duration soft x-ray line emission. The majority of the line emission observed was found to originate from Li- and Be-like Ne and the major transitions in the observed spectra have been identified. Li-like emission lines were observed to decay faster in time than Be-like transitions, suggesting that recombination is taking place. Line ratios of n=4-2 and n=3-2 transitions supported the view that these lines were optically thin and thick, respectively. The time history of Li-like Ne 2p-4d and 2p-3d lines is in good agreement with a simple adiabatic expansion model coupled to a time dependent collisional-radiative code. Further x-ray spectroscopic analysis is underway which is aimed at diagnosing plasma conditions and assessing the potential of this recombining neon plasma as a quasi-steady-state recombination x-ray laser medium.

Abare, A.C. [Florida Univ., Gainesville, FL (United States); Keane, C.J.; Crane, J.K.; DaSilva, L.B.; Lee, R.W.; Perry, M.D. [Lawrence Livermore National Lab., CA (United States); Falcone, R.W. [California Univ., Berkeley, CA (United States). Dept. of Physics

1993-04-01T23:59:59.000Z

7

Hydrogen-like recombination x-ray laser experiments using a 20 picosecond laser pulse at the Nova facility  

SciTech Connect

Hydrogen-like recombination X-ray lasers are currently under investigation as an alternative candidate to collisional pumped soft X-ray amplifiers. Efforts are being concentrated on the n = 3 to n = 2 transitions in H-like Mg and NaF. 5 refs., 1 fig.

Shephard, R.; Fields, D.; DaSilva, L.; Keane, C.; MacGowen, B.; Matthews, D.; Shimkaveg, G.; Stone, G.; Eder, D.; Osterheld, A.; Walling, R.; Young, B.K.F.; Fry, A.; Eckart, M.; Goldstein, W.; Stewart, R. (Lawrence Livermore National Lab., CA (USA)); Charatis, G.; Busch, G. (KMS Fusion, Inc., Ann Arbor, MI (USA))

1991-01-07T23:59:59.000Z

8

Electron spectra of xenon clusters irradiated with a laser-driven plasma soft-x-ray laser pulse  

Science Conference Proceedings (OSTI)

Xenon clusters were irradiated with plasma soft-x-ray laser pulses (having a wavelength of 13.9 nm, time duration of 7 ps, and intensities of up to 10 GW/cm{sup 2}). The laser photon energy was high enough to photoionize 4d core electrons. The cross section is large due to a giant resonance. The interaction was investigated by measuring the electron energy spectra. The photoelectron spectra for small clusters indicate that the spectral width due to the 4d hole significantly broadens with increasing cluster size. For larger clusters, the electron energy spectra evolve into a Maxwell-Boltzmann distribution, as a strongly coupled cluster nanoplasma is generated.

Namba, S.; Takiyama, K. [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527 (Japan); Hasegawa, N.; Kishimoto, M.; Nishikino, M.; Kawachi, T. [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215 (Japan)

2011-11-15T23:59:59.000Z

9

Obtaining attosecond X-ray pulses using a self-amplified spontaneous emission free electron laser  

E-Print Network (OSTI)

1369 (2004). [10] W. B. Colson, in Laser Handbook, Volume 6:Free Elec- tron Lasers (North-Holland, Amsterdam, 1990),B. Murphy and C. Pellegrini, in Laser Handbook, Vol- ume 6:

Zholents, A.A.; Penn, G.

2005-01-01T23:59:59.000Z

10

Radiation from laser accelerated electron bunches: Coherent terahertz and femtosecond X-rays  

E-Print Network (OSTI)

by an intense ultrashort laser pulse,” Science, vol. 298,generated from intense laser-plasma interactions,” Appl.monochromatic x-rays in the laser synchrotron source

2004-01-01T23:59:59.000Z

11

Modeling energy dependence of the inner-shell x-ray emission produced by femtosecond-pulse laser irradiation of xenon clusters  

Science Conference Proceedings (OSTI)

We employ the Los Alamos suite of atomic physics codes to model the inner-shell x-ray emission spectrum of xenon and compare results with those obtained via high-resolution x-ray spectroscopy of xenon clusters irradiated by 30 fs Ti:Sa laser pulses. We find that the commonly employed configuration average approximation breaks down and significant spin-orbit splitting necessitates a detailed level accounting. Additionally, we reproduce an interesting spectral trend for a series of experimental spectra taken with varying pulse energy for fixed pulse duration. To simulate the experimental measurements at increasing beam energies, we find that spectral modeling requires an increased hot electron fraction, but decreased atomic density and bulk electron temperature. We believe these latter conditions to be a result of partial cluster destruction due to the increased energy in the laser prepulse.

Colgan, James P [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

12

Radiographic X-Ray Pulse Jitter  

Science Conference Proceedings (OSTI)

The Dual Beam Radiographic Facility consists of two identical radiographic sources. Major components of the machines are: Marx generator, water-filled pulse-forming line (PFL), water-filled coaxial transmission line, three-cell inductive voltage adder, and rod-pinch diode. The diode pulse has the following electrical specifications: 2.25-MV, 60-kA, 60-ns. Each source has the following x-ray parameters: 1-mm-diameter spot size, 4-rad at 1 m, 50-ns full width half max. The x-ray pulse is measured with PIN diode detectors. The sources were developed to produce high resolution images on single-shot, high-value experiments. For this application it is desirable to maintain a high level of reproducibility in source output. X-ray pulse jitter is a key metric for analysis of reproducibility. We will give measurements of x-ray jitter for each machine. It is expected that x-ray pulse jitter is predominantly due to PFL switch jitter, and therefore a correlation of the two will be discussed.

Mitton, C. V., Good, D. E., Henderson, D. J., Hogge, K. W.

2011-01-15T23:59:59.000Z

13

Laser assisted Compton scattering of X-ray photons  

E-Print Network (OSTI)

The Compton scattering of X-ray photons, assisted by a short intense optical laser pulse is discussed. The differential scattering cross section reveals the interesting feature that the main Klein-Nishina line is accompanied by a series of side-lines forming a broad plateau where up to ${\\cal O} (10^3)$ laser photons participate simultaneously in a single scattering event. Due to the non-linear mixing of X-ray and laser photons a frequency dependent rotation of the polarization of the final state photons relative to the scattering plane emerges. A consistent description of the scattering process with short laser pulses requires to work with X-ray pulses. An experimental investigation can be accomplished, e.g., at LCLS or the European XFEL in the near future.

D. Seipt; B. Kampfer

2013-09-09T23:59:59.000Z

14

X?ray Fluorescence (XRF) Assay Using Laser Compton Scattered (LCS) X?rays  

Science Conference Proceedings (OSTI)

Laser Compton Scattered (LCS) X?rays are produced as a result of the interaction between accelerated electrons and a laser beam. The yield of LCS X?rays is dependent on the laser power

Syed F. Naeem; Khalid Chouffani; Douglas P. Wells

2009-01-01T23:59:59.000Z

15

World's First Hard X-ray Laser  

NLE Websites -- All DOE Office Websites (Extended Search)

LCLS is the world's most powerful X-ray laser. Its highly focused beam, which arrives in staccato bursts a few quadrillionths of a second long, allows researchers to probe complex,...

16

Rise time measurement for ultrafast X-ray pulses  

Science Conference Proceedings (OSTI)

A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

Celliers, Peter M. (Berkeley, CA); Weber, Franz A. (Oakland, CA); Moon, Stephen J. (Tracy, CA)

2005-04-05T23:59:59.000Z

17

Rise Time Measurement for Ultrafast X-Ray Pulses  

DOE Patents (OSTI)

A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

2005-04-05T23:59:59.000Z

18

X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator  

Science Conference Proceedings (OSTI)

We show that x-rays from a recently demonstrated table top source of bright, ultrafast, coherent synchrotron radiation [Kneip et al., Nat. Phys. 6, 980 (2010)] can be applied to phase contrast imaging of biological specimens. Our scheme is based on focusing a high power short pulse laser in a tenuous gas jet, setting up a plasma wakefield accelerator that accelerates and wiggles electrons analogously to a conventional synchrotron, but on the centimeter rather than tens of meter scale. We use the scheme to record absorption and phase contrast images of a tetra fish, damselfly and yellow jacket, in particular highlighting the contrast enhancement achievable with the simple propagation technique of phase contrast imaging. Coherence and ultrafast pulse duration will allow for the study of various aspects of biomechanics.

Kneip, S. [Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom); Center for Ultrafast Optical Science, University of Michigan, Ann Arbor 48109 (United States); McGuffey, C.; Dollar, F.; Chvykov, V.; Kalintchenko, G.; Krushelnick, K.; Maksimchuk, A.; Mangles, S. P. D.; Matsuoka, T.; Schumaker, W.; Thomas, A. G. R.; Yanovsky, V. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor 48109 (United States); Bloom, M. S.; Najmudin, Z.; Palmer, C. A. J.; Schreiber, J. [Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom)

2011-08-29T23:59:59.000Z

19

Bright High Average Power Table-top Soft X-Ray Lasers  

Science Conference Proceedings (OSTI)

We have demonstrated the generation of bright soft x-ray laser pulses with record-high average power from compact plasma amplifiers excited by ultrafast solid state lasers. These lasers have numerous applications in nanoscience and nanotechnology.

Rocca, Jorge [Colorado State University, Fort Collins; Reagan, Brendon [Colorado State University, Fort Collins; Wernsing, Keith [Colorado State University, Fort Collins; Luther, Brad [Colorado State University, Fort Collins; Curtis, Alden [Colorado State University, Fort Collins; Nichols,, Anthony [Colorado State University, Fort Collins; Wang, Yong [Colorado State University, Fort Collins; Alessi, David [Colorado State University, Fort Collins; Martz, Dale [Colorado State University, Fort Collins; Yin, Liang [Colorado State University, Fort Collins; Wang, Shoujun [Colorado State University, Fort Collins; Berrill, Mark A [ORNL; Furch, Federico [Colorado State University, Fort Collins; Woolston, Mark [Colorado State University, Fort Collins; Patel, Dinesh [Colorado State University, Fort Collins; Marconi, Mario [Colorado State University, Fort Collins; Menoni, Carmen [Colorado State University, Fort Collins

2012-01-01T23:59:59.000Z

20

Sub-Picosecond X-Ray Pulses Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

International Workshop on the Interactions of Intense Sub-Picosecond X-Ray International Workshop on the Interactions of Intense Sub-Picosecond X-Ray Pulses with Matter (SLAC, January 23-24, 1997) During the last five years studies have been conducted at the Stanford Linear Accelerator Center (SLAC) and the Deutsches Elektronen-Synchrotron (DESY) in Hamburg concerning the feasibility of driving an Angstrom-wavelength Free-Electron Laser (FEL) with a high energy rf linac. Recent promising advances in linac, rf gun, and insertion device technologies make it seem likely that such a device can be constructed. The output radiation predicted for this type of source will be characterized by full transverse coherence, extreme pulse brevity (~50-100 fs), high peak power (10-100 GW), and very high unfocused peak power density (0.4-4.1013

Note: This page contains sample records for the topic "x-ray laser pulse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Soft x-ray laser microscope  

Science Conference Proceedings (OSTI)

The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL's 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si[sub 3]N[sub 4]) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

Suckewer, P.I.

1990-10-01T23:59:59.000Z

22

Ultrafast x-ray diagnostics for laser fusion experiments  

SciTech Connect

Temporally, spectrally, and spatially resolved x-ray emission diagnostics are important tools in the study of the heating and compression of laser fusion targets by sub-nanosecond laser pulses. The use of the Livermore 15 psec resolution x-ray streak camera to make such measurements is reviewed. Temporal histories of spectrally resolved x-ray emission in the 1 to 10 keV range have been obtained. These data have served to further define the x-ray streak camera as a quantative diagnostic tool and have also provided data relating to the absorption and compression phases of laser heating. The x-ray streak camera has been used in conjunction with a specially designed pinhole imaging system to temporally record images of laser compressed targets with a spatial resolution of approximately 6 ..mu..m. Implosion characteristics are presented for experiments with glass microshell targets. The concept, development, and testing of an ultrafast framing camera for full two-dimensional time resolved imaging is discussed. A prototype camera, based on the image dissection-restoration concept, has achieved an approximately 200 psec frame period with a resolution of 50 ..mu..m.

Coleman, L.W.

1976-08-16T23:59:59.000Z

23

The History of X-ray Free-Electron Lasers  

Science Conference Proceedings (OSTI)

The successful lasing at the SLAC National Accelerator Laboratory of the Linear Coherent Light Source (LCLS), the first X-ray free-electron laser (X-ray FEL), in the wavelength range 1.5 to 15 {angstrom}, pulse duration of 60 to few femtoseconds, number of coherent photons per pulse from 10{sup 13} to 10{sup 11}, is a landmark event in the development of coherent electromagnetic radiation sources. Until now electrons traversing an undulator magnet in a synchrotron radiation storage ring provided the best X-ray sources. The LCLS has set a new standard, with a peak X-ray brightness higher by ten orders of magnitudes and pulse duration shorter by three orders of magnitudes. LCLS opens a new window in the exploration of matter at the atomic and molecular scales of length and time. Taking a motion picture of chemical processes in a few femtoseconds or less, unraveling the structure and dynamics of complex molecular systems, like proteins, are some of the exciting experiments made possible by LCLS and the other X-ray FELs now being built in Europe and Asia. In this paper, we describe the history of the many theoretical, experimental and technological discoveries and innovations, starting from the 1960s and 1970s, leading to the development of LCLS.

Pellegrini, C.; /UCLA /SLAC

2012-06-28T23:59:59.000Z

24

The First Angstrom X-Ray Free-Electron Laser  

SciTech Connect

The Linac Coherent Light Source produced its first x-ray laser beam on 10 April 2009. Today it is routinely producing x-ray pulses with energy >2 mJ across the operating range from 820-8,200 eV. The facility has begun operating for atomic/molecular/optical science experiments. Performance of the facility in its first user run (1 October - 21 December) and current machine development activities will be presented. Early results from the preparations for the start of the second user run is also reported.

Galayda, John; /SLAC

2012-08-24T23:59:59.000Z

25

SLAC National Accelerator Laboratory - SLAC's X-ray Laser Explores...  

NLE Websites -- All DOE Office Websites (Extended Search)

X-ray Laser Explores Big Data Frontier By Glenn Roberts Jr. June 12, 2013 It's no surprise that the data systems for SLAC's Linac Coherent Light Source X-ray laser have drawn...

26

Secretary Chu Dedicates World's Most Powerful X-ray Laser | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dedicates World's Most Powerful X-ray Laser Dedicates World's Most Powerful X-ray Laser Secretary Chu Dedicates World's Most Powerful X-ray Laser August 16, 2010 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today dedicated the Linac Coherent Light Source (LCLS), the world's first and most powerful X-ray laser, at the Department of Energy's SLAC National Accelerator Laboratory. The LCLS will play an essential role in addressing the scientific needs of the 21st century by exploring new ways to create better energy sources and enabling advances in a range of scientific fields. The LCLS produces pulses of X-rays more than a billion times brighter than the most powerful existing sources. The ultrafast X-ray pulses are used much like flashes from a high-speed strobe light, enabling scientists to take

27

Performance study of a soft X-ray harmonic generation FEL seeded with an EUV laser pulse  

E-Print Network (OSTI)

28th International Free Electron Laser Conference (FEL06),26th International Free Electron Laser Conference (FEL04),on the Free Electron Laser Theory and Related Topics, World

Gullans, M.; Wurtele, J.S.; Penn, G.; Zholents, A.A.

2007-01-01T23:59:59.000Z

28

LCLS - The X-ray Laser Has Turned On  

SciTech Connect

On April 10, 2009 the Linac Coherent Light Source (LCLS), the world's first hard x-ray free electron laser, was brought to lasing. Producing an x-ray beam with over a billion times higher peak brightness that then most powerful existing syncrotron sources, it marked the beginning of a new era of science. The LCLS pulses arrive at a rate of 60 - 120 Hz in an energy range from 480 eV to 10 keV, with pulse lengths as short as a few fs to about 300 fs. Since October 2009, users have been performing experiments at the LCLS, and currently three of the six planned instruments are available. Although we stand only at the beginning of LCLS science, there is no doubt about the strong sense of early excitement.

Bergmann, Uwe [Linac Coherent Light Source

2010-11-03T23:59:59.000Z

29

Time-domain sampling of x-ray pulses using an ultrafast sample response  

Science Conference Proceedings (OSTI)

We employ the ultrafast response of a 15.4 nm thin SrRuO{sub 3} layer grown epitaxially on a SrTiO{sub 3} substrate to perform time-domain sampling of an x-ray pulse emitted from a synchrotron storage ring. Excitation of the sample with an ultrashort laser pulse triggers coherent expansion and compression waves in the thin layer, which turn the diffraction efficiency on and off at a fixed Bragg angle during 5 ps. This is significantly shorter than the duration of the synchrotron x-ray pulse of 100 ps. Cross-correlation measurements of the ultrafast sample response and the synchrotron x-ray pulse allow to reconstruct the x-ray pulse shape.

Gaal, P.; Shayduk, R. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Wilhelm-Conrad-Roentgen Campus, BESSY II, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Schick, D.; Herzog, M.; Bojahr, A.; Goldshteyn, J.; Navirian, H. A.; Leitenberger, W. [Institut fuer Physik und Astronomie, Universitaet Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam (Germany); Vrejoiu, I. [Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany); Khakhulin, D.; Wulff, M. [European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz, 38000 Grenoble (France); Bargheer, M. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Wilhelm-Conrad-Roentgen Campus, BESSY II, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Institut fuer Physik und Astronomie, Universitaet Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam (Germany)

2012-12-10T23:59:59.000Z

30

Density gradient free electron collisionally excited x-ray laser  

DOE Patents (OSTI)

An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.

Campbell, E.M.; Rosen, M.D.

1984-11-29T23:59:59.000Z

31

Particle Formation from Pulsed Laser Irradiation of SootAggregates studied with scanning mobility particle sizer, transmissionelectron microscope and near-edge x-ray absorption fine structure.  

Science Conference Proceedings (OSTI)

We investigated the physical and chemical changes induced in soot aggregates exposed to laser radiation using a scanning mobility particle sizer, a transmission electron microscope, and a scanning transmission x-ray microscope to perform near-edge x-ray absorption fine structure spectroscopy. Laser-induced nanoparticle production was observed at fluences above 0.12 J/cm(2) at 532 nm and 0.22 J/cm(2) at 1064 nm. Our results indicate that new particle formation proceeds via (1) vaporization of small carbon clusters by thermal or photolytic mechanisms, followed by homogeneous nucleation, (2) heterogeneous nucleation of vaporized carbon clusters onto material ablated from primary particles, or (3) both processes.

Michelsen, Hope A.; Tivanski, Alexei V.; Gilles, Mary K.; vanPoppel, Laura H.; Dansson, Mark A.; Buseck, Peter R.; Buseck, Peter R.

2007-02-20T23:59:59.000Z

32

ANALYSIS AND MITIGATION OF X-RAY HAZARD GENERATED FROM HIGH INTENSITY LASER-TARGET INTERACTIONS  

SciTech Connect

Interaction of a high intensity laser with matter may generate an ionizing radiation hazard. Very limited studies have been made, however, on the laser-induced radiation protection issue. This work reviews available literature on the physics and characteristics of laser-induced X-ray hazards. Important aspects include the laser-to-electron energy conversion efficiency, electron angular distribution, electron energy spectrum and effective temperature, and bremsstrahlung production of X-rays in the target. The possible X-ray dose rates for several femtosecond Ti:sapphire laser systems used at SLAC, including the short pulse laser system for the Matter in Extreme Conditions Instrument (peak power 4 TW and peak intensity 2.4 x 10{sup 18} W/cm{sup 2}) were analysed. A graded approach to mitigate the laser-induced X-ray hazard with a combination of engineered and administrative controls is also proposed.

Qiu, Rui

2011-03-21T23:59:59.000Z

33

Inner-Shell Photon-Ionized X-Ray Laser at 45(Angstrom)  

Science Conference Proceedings (OSTI)

This report summarizes the major accomplishments of this three-year Laboratory Directed Research and Development (LDRD) Lab Wide (LW) project entitled, ''An Inner-Shell Photo-Ionized X-Ray Laser at 45 {angstrom}'', tracking code 99-LW-042. The most significant accomplishments of this project include the design of a suitable x-ray laser target, the invention of a measurement technique for the determination of rise times of x-ray pulses on the order of 50 femtoseconds, and a novel setup for generating a traveling wave with an ultrashort optical laser pulse. The pump probe technique for rise time measurement will allow us to detect ultrashort x-ray pulses, whose generation by means of a variety of 4th generation light sources is currently under planning elsewhere.

Weber, F; Celliers, P; Moon, S; Snavely, R; Da Silva, L

2002-02-01T23:59:59.000Z

34

Electron beam-based sources of ultrashort x-ray pulses.  

Science Conference Proceedings (OSTI)

A review of various methods for generation of ultrashort x-ray pulses using relativistic electron beam from conventional accelerators is presented. Both spontaneous and coherent emission of electrons is considered. The importance of the time-resolved studies of matter at picosecond (ps), femtosecond (fs), and atttosecond (as) time scales using x-rays has been widely recognized including by award of a Nobel Prize in 1999 [Zewa]. Extensive reviews of scientific drivers can be found in [BES1, BES2, BES3, Lawr, Whit]. Several laser-based techniques have been used to generate ultrashort x-ray pulses including laser-driven plasmas [Murn, Alte, Risc, Rose, Zamp], high-order harmonic generation [Schn, Rund, Wang, Arpi], and laser-driven anode sources [Ande]. In addition, ultrafast streak-camera detectors have been applied at synchrotron sources to achieve temporal resolution on the picosecond time scale [Wulf, Lind1]. In this paper, we focus on a different group of techniques that are based on the use of the relativistic electron beam produced in conventional accelerators. In the first part we review several techniques that utilize spontaneous emission of electrons and show how solitary sub-ps x-ray pulses can be obtained at existing storage ring based synchrotron light sources and linacs. In the second part we consider coherent emission of electrons in the free-electron lasers (FELs) and review several techniques for a generation of solitary sub-fs x-ray pulses. Remarkably, the x-ray pulses that can be obtained with the FELs are not only significantly shorter than the ones considered in Part 1, but also carry more photons per pulse by many orders of magnitude.

Zholents, A.; Accelerator Systems Division (APS)

2010-09-30T23:59:59.000Z

35

X-ray emission from laser-produced plasmas  

SciTech Connect

The intensity and spectral characteristics of x-ray emitted from laser-produced plasmas have been investigated computatinoally and experimentally. a two-dimensional implosi code was used successfully to calculate laser-plasma radiation characteristics and to aid in the design of laser targets for high-yield x-ray production. Other computer codes, in use or under development predict lime strengths and energies for laser-plasma x-ray emission. An experimental effort is aimed at reliable measurements of x-ray yields and spectra. a wide variety of x-ray detection methods have been evaluated, and x-ray yields have been measured from plasmas produced with two dissimilar laser systems. The high energy x-ray spectrum, from about 10 to 140 keV, has been studied using high-gain scintillatino detectors and thick K-edge filters. Various supplementary measurements have provided information concerning characteristics of the target-reflected laser light, the ion energies, and the laser intensity patterns.

Violet, C.E. [ed.

1974-07-01T23:59:59.000Z

36

Lab Breakthrough: X-ray Laser Captures Atoms and Molecules in Action |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

X-ray Laser Captures Atoms and Molecules in X-ray Laser Captures Atoms and Molecules in Action Lab Breakthrough: X-ray Laser Captures Atoms and Molecules in Action July 18, 2012 - 12:51pm Addthis The Linac Coherent Light Source at SLAC is the world's most powerful X-ray laser, which helps researchers understand the extreme conditions found in the hearts of stars and giant planets guiding research into nuclear fusion, the mechanism that powers the sun. View the entire Lab Breakthrough playlist. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs How is the LCLS different? Rather than accelerate particles to collide them, it accelerates particles in a special way to create extremely bright bunches of photons. These pulses are about 10 billion times brighter and one thousand

37

X-ray Free-Electron Lasers - Present and Future Capabilities [Invited  

SciTech Connect

The Linac Coherent Light Source is now in operation as an X-ray free-electron laser (FEL) user facility. It produces coherent pulses of 550-10,000 eV X-rays of duration adjustable from <10 fsto500 fs. Typical peak power is in excess of 20 GW. The facility will soon be joined by several X-ray FELs under construction around the world. This article will provide an abridged history of free-electron lasers, a description of some basic physics regarding free-electron laser light amplification, and an overview of the rapidly growing list of examples in which lasers will be used in the control and operation of X-ray FELs.

Galayda, John; Ratner, John Arthur:a Daniel F.; White, William E.; /SLAC

2011-11-16T23:59:59.000Z

38

SLAC National Accelerator Laboratory - X-ray Laser Takes Aim...  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Takes Aim at Cosmic Mystery December 12, 2012 Menlo Park, Calif. - Scientists have used powerful X-rays from the Linac Coherent Light Source (LCLS) at the U.S. Department of...

39

SLAC National Accelerator Laboratory - X-ray Laser Sees Photosynthesis...  

NLE Websites -- All DOE Office Websites (Extended Search)

new window on the way plants generate the oxygen we breathe, researchers used an X-ray laser at the Department of Energy's (DOE) SLAC National Accelerator Laboratory to...

40

SLAC National Accelerator Laboratory - X-ray Laser Brings Cellular...  

NLE Websites -- All DOE Office Websites (Extended Search)

a March experiment indicates it has, for the first time, used an X-ray free-electron laser - SLAC's Linac Coherent Light Source - to reconstitute the structure of a G...

Note: This page contains sample records for the topic "x-ray laser pulse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

SLAC National Accelerator Laboratory - X-ray Laser Research Ranks...  

NLE Websites -- All DOE Office Websites (Extended Search)

selected science "Breakthrough of the Year": the discovery of what appears to be the Higgs boson. Scientists aimed the Linac Coherent Light Source X-ray laser at thousands of tiny...

42

The Wakefield Effects of Pulsed Crab Cavities at the Advanced Photon Source for Short-X-ray Pulse Generation  

E-Print Network (OSTI)

The Wakefield Effects of Pulsed Crab Cavities at the Advanced Photon Source for Short-X-ray Pulse Generation

Chae, Y C; Dolgashev, V

2007-01-01T23:59:59.000Z

43

DEVELOPMENT OF NEW MID-INFRARED ULTRAFAST LASER SOURCES FOR COMPACT COHERENT X-RAY SOURCES  

SciTech Connect

In this project, we proposed to develop laser based mid-infrared lasers as a potentially robust and reliable source of ultrafast pulses in the mid-infrared region of the spectrum, and to apply this light source to generating bright, coherent, femtosecond-to-attosecond x-ray beams.

Sterling Backus

2012-05-14T23:59:59.000Z

44

Soft x-ray diagnostics for pulsed power machines  

SciTech Connect

A variety of soft x-ray diagnostics are being fielded on the Los Alamos National Laboratory Pegasus and Procyon pulsed power systems and also being fielded on joint US/Russian magnetized target fusion experiments known as MAGO (Magnitoye Obzhatiye). The authors have designed a low-cost modular photoemissive detector designated the XRD-96 that uses commercial 1100 series aluminum for the photocathode. In addition to photocathode detectors a number of designs using solid state silicon photodiodes have been designed and fielded. They also present a soft x-ray time-integrated pinhole camera system that uses standard type TMAX-400 photographic film that obviates the need for expensive and no longer produced zero-overcoat soft x-ray emulsion film. In a typical experiment the desired spectral energy cuts, signal intensity levels, and desired field of view will determine diagnostic geometry and x-ray filters selected. The authors have developed several computer codes to assist in the diagnostic design process and data deconvolution. Examples of the diagnostic design process and data analysis for a typical pulsed power experiment are presented.

Idzorek, G.C.; Coulter, W.L.; Walsh, P.J.; Montoya, R.R.

1995-08-01T23:59:59.000Z

45

Photoionization-pumped, Ne II, x-ray laser studies project. Final report  

SciTech Connect

The energetics of this pumping scheme are shown. Short-pulse (50 to 100 ps) laser irradiation of an appropriate x-ray flashlamp medium generates broad-band emission in the range of 300 to 800 eV which preferentially photoionizes Ne to the /sup 2/S state of Ne II creating an inversion at approximately 27 eV. Although this approach does not depend on precise spectral overlap between the x-ray pump radiation and the medium to be pumped, it does require that the x-ray medium remain un-ionized prior to photoionization by the soft x-ray emission. Well-controlled focus conditions are required to ensure that the x-ray medium is not subjected to electron or x-ray preheat prior to irradiation by the soft x-ray source. The magnitude of the population inversion is predicted to be critically dependent upon rapid photoionization of the two states; therefore, ultra-short pulse irradiation of the laser flashlamps is required.

Richardson, M.C.; Hagelstein, P.L.; Eckart, M.J.; Forsyth, J.M.; Gerrassimenko, M.; Soures, J.M.

1984-01-01T23:59:59.000Z

46

X-ray pulse preserving single-shot optical cross-correlation method for improved experimental temporal resolution  

Science Conference Proceedings (OSTI)

We measured the relative arrival time between an optical pulse and a soft x-ray pulse from a free-electron laser. This femtosecond cross-correlation measurement was achieved by observing the change in optical reflectivity induced through the absorption of a fraction of the x-ray pulse. The main x-ray pulse energy remained available for an independent pump-probe experiment where the sample may be opaque to soft x-rays. The method was employed to correct the two-pulse delay data from a canonical pump-probe experiment and demonstrate 130 {+-} 20 fs (FWHM) temporal resolution. We further analyze possible timing jitter sources and point to future improvements.

Beye, M. [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, 12489 Berlin (Germany); Krupin, O. [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); European XFEL GmbH, 22607 Hamburg (Germany); Hays, G.; Jong, S. de; Lee, S.; Coffee, R.; Holmes, M. R.; Fry, A. R.; White, W. E.; Bostedt, C.; Schlotter, W. F. [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Reid, A. H. [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Radboud University Nijmegen, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands); Rupp, D. [Technische Universitaet Berlin, 10623 Berlin (Germany); LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Lee, W.-S.; Scherz, A. O. [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Chuang, Y.-D. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Cryan, J. P.; Glownia, J. M. [PULSE, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Foehlisch, A. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, 12489 Berlin (Germany); Durr, H. A. [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); PULSE, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

2012-03-19T23:59:59.000Z

47

X-ray emission from colliding laser plasmas  

SciTech Connect

Colliding Au, CD and Ti-Cr plasmas have been generated by illuminating two opposing foils each with a {approximately} 100J, 0.5 nsec, 2{omega} Nd-glass laser beam from the Trident laser facility at Los Alamos. The plasmas are being used to study plasma interactions which span the parameter regime from interpenetrating to collisional stagnation. X-ray emission during the laser target interaction and the subsequent collision is used to diagnose the initial plasma conditions and the colliding plasma properties. X-ray instrumentation consists of a 100 ps gated x-ray pinhole imager, a time-integratcd bremsstrahlung x-ray spectrograph and a gated x-ray spectrograph used to record isoelectronic spectra from the Ti-Cr plasmas. The imager has obtained multi-frame images of the collision and therefore, a measure of the stagnation length which is a function of the ion charge state and density and a strong function of the electron temperature. Other instrumentation includes a Thomson scattering spectrometer with probe beam, neutron detectors used to monitor the CD coated foil collisions and an ion spectrometer. We will describe the current status of the experiments and current results with emphasis on the x-ray emission diagnostics. We will also briefly describe the modeling using Lasnex and ISIS, a particle-in-cell code with massless fluid electrons and inter particle (classical) collisions.

Wilke, M.; Obst, A.W.; Winske, D. [and others

1995-09-01T23:59:59.000Z

48

Vanadium-pumped titanium x-ray laser  

DOE Patents (OSTI)

A resonantly photo-pumped x-ray laser (10) is formed of a vanadium (12) and titanium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state neon-like titanium ions (34) are resonantly photo-pumped by line emission from fluorine-like vanadium ions (32).

Nilsen, Joseph (Livermore, CA)

1992-01-01T23:59:59.000Z

49

Vanadium-pumped titanium x-ray laser  

DOE Patents (OSTI)

A resonantly photo-pumped x-ray laser is formed of a vanadium and titanium foil combination that is driven by two beams of intense line focused optical laser radiation. Ground state neon-like titanium ions are resonantly photo-pumped by line emission from fluorine-like vanadium ions.

Nilsen, J.

1991-02-13T23:59:59.000Z

50

A bright point source of ultrashort hard x-rays from laser bioplasmas  

E-Print Network (OSTI)

Micro and nano structures scatter light and amplify local electric fields very effectively. Energy incident as intense ultrashort laser pulses can be converted to x-rays and hot electrons more efficiently with a substrate that suitably modifies the local fields. Here we demonstrate that coating a plain glass surface with a few micron thick layer of an ubiquitous microbe, {\\it Escherichia coli}, catapults the brightness of hard x-ray bremsstrahlung emission (up to 300 keV) by more than two orders of magnitude at an incident laser intensity of 10$^{16}$ W cm$^{-2}$. This increased yield is attributed to the local enhancement of electric fields around individual {\\it E. coli} cells and is reproduced by detailed particle-in-cell (PIC) simulations. This combination of laser plasmas and biological targets can lead to turnkey, multi-kilohertz and environmentally safe sources of hard x-rays.

Krishnamurthy, M; Lad, Amit D; Ahmad, Saima; Narayanan, V; Rajeev, R; Kundu, M; Kumar, G Ravindra; Ray, Krishanu

2010-01-01T23:59:59.000Z

51

Soft x-ray laser microscope. Final report  

Science Conference Proceedings (OSTI)

The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL`s 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si{sub 3}N{sub 4}) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

Suckewer, P.I.

1990-10-01T23:59:59.000Z

52

High gain x-ray lasers pumped by transient collisional excitation  

Science Conference Proceedings (OSTI)

We present recent results of x-ray laser amplification of spontaneous emission in Ne-like and Ni-like transient collisional excitation schemes. The plasma formation, ionization and collisional excitation can be optimized using two laser pulses of 1 ns and 1 ps duration at table-top energies of 5 J in each beam. High gain of 35 cm{sup -1} has been measured on the 147 {Angstrom} 4d{r_arrow}4p J=0{r_arrow}1 transition of Ni-like Pd and is a direct consequence of the nonstationary population inversion produced by the high intensity picosecond pulse. We report the dependence of the x-ray laser line intensity on the laser plasma conditions and compare the experimental measurements with hydrodynamic and atomic kinetics simulations for Ne-like and Ni-like lasing.

Dunn, J., LLNL

1998-06-16T23:59:59.000Z

53

Mode-Locked Multichromatic X-Rays in a Seeded Free-Electron Laser for Single-Shot X-Ray Spectroscopy  

SciTech Connect

We present the promise of generating gigawatt mode-locked multichromatic x rays in a seeded free-electron laser (FEL). We show that, by using a laser to imprint periodic modulation in electron beam phase space, a single-frequency coherent seed can be amplified and further translated to a mode-locked multichromatic output in an FEL. With this configuration the FEL output consists of a train of mode-locked ultrashort pulses which span a wide frequency gap with a series of equally spaced sharp lines. These gigawatt multichromatic x rays may potentially allow one to explore the structure and dynamics of a large number of atomic states simultaneously. The feasibility of generating mode-locked x rays ranging from carbon K edge ({approx}284 eV) to copper L{sub 3} edge ({approx}931 eV) is confirmed with numerical simulation using the realistic parameters of the linac coherent light source (LCLS) and LCLS-II. We anticipate that the mode-locked multichromatic x rays in FELs may open up new opportunities in x-ray spectroscopy (i.e. resonant inelastic x-ray scattering, time-resolved scattering and spectroscopy, etc.).

Xiang, Dao; Ding, Yuantao; Raubenheimer, Tor; Wu, Juhao; /SLAC

2012-05-10T23:59:59.000Z

54

Highly efficient pulsed power supply system with a two-stage LC generator and a step-up transformer for fast capillary discharge soft x-ray laser at shorter wavelength  

SciTech Connect

Highly efficient and compact pulsed power supply system for a capillary discharge soft x-ray laser (SXRL) has been developed. The system consists of a 2.2 {mu}F two-stage LC inversion generator, a 2:54 step-up transformer, a 3 nF water capacitor, and a discharge section with a few tens of centimeter length capillary. Adoption of the pulsed transformer in combination with the LC inversion generator enables us to use only one gap switch in the circuit for charging the water capacitor up to about 0.5 MV. Furthermore, step-up ratio of a water capacitor voltage to a LC inversion generator initial charging voltage is about 40 with energy transfer efficiency of about 50%. It also leads to good reproducibility of a capillary discharge which is necessary for lasing a SXRL stably. For the study of the possibility of lasing a SXRL at shorter wavelength in a small laboratory scale, high-density and high-temperature plasma column suitable for the laser can be generated relatively easily with this system.

Sakai, Yusuke; Takahashi, Shnsuke; Komatsu, Takanori; Song, Inho; Watanabe, Masato; Hotta, Eiki [Department of Energy Sciences, Tokyo Institute of Technology, 4259-J2-35, Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)

2010-01-15T23:59:59.000Z

55

Short Pulse X-rays at the APS  

NLE Websites -- All DOE Office Websites (Extended Search)

Short Pulse X-rays at the APS Workshop Summary Friday, May 9, 2008 Building 401, Room A5000 Organizers: Jin Wang (Argonne National Laboratory), Lin Chen (Argonne National Laboratory), David Reis ( University of Michigan ), Paul Evans ( University of Wisconsin ), Ali Nassiri (Argonne National Laboratory), and Linda Young ( Argonne National Laboratory) Agenda Registration - complete the visitor registration form. For "purpose of visit," please enter "APS SPX Workshop" https://www.aps.anl.gov/About/Visiting/visitor_registration.php On-site lodging is at the Argonne Guest House http://www.anlgh.org/ Travel to Argonne National Laboratory http://www.aps.anl.gov/About/Visiting/Directions/ Fees There is no charge for this workshop. Since the 2004 Lake Geneva Workshop, the APS has performed three years of

56

Proposed Laser-driven, Dielectric Microstructure Few-cm Long Undulator for Attosecond Coherent X-rays  

SciTech Connect

This article presents the concept of an all-dielectric laser-driven undulator for the generation of coherent X-rays. The proposed laser-driven undulator is expected to produce internal deflection forces equivalent to a several-Tesla magnetic field acting on a speed-of-light particle. The key idea for this laser-driven undulator is its ability to provide phase synchronicity between the deflection force and the electron beam for a distance that is much greater than the laser wavelength. The potential advantage of this undulator is illustrated with a possible design example that assumes a small laser accelerator which delivers a 2 GeV, 1 pC, 1 kHz electron bunch train to a 10 cm long, 1/2 mm period laser-driven undulator. Such an undulator could produce coherent X-ray pulses with {approx}10{sup 9} photons of 64 keV energy. The numerical modeling for the expected X-ray pulse shape was performed with GENESIS, which predicts X-ray pulse durations in the few-attosecond range. Possible applications for nonlinear electromagnetic effects from these X-ray pulses are briefly discussed.

Plettner, T; Byer, R.L.; /Stanford U., Ginzton Lab.

2011-09-16T23:59:59.000Z

57

Aerosol Imaging with a Soft X-ray Free Electron Laser  

SciTech Connect

Lasers have long played a critical role in the advancement of aerosol science. A new regime of ultrafast laser technology has recently be realized, the world's first soft xray free electron laser. The Free electron LASer in Hamburg, FLASH, user facility produces a steady source of 10 femtosecond pulses of 7-32 nm x-rays with 10{sub 12} photons per pulse. The high brightness, short wavelength, and high repetition rate (>500 pulses per second) of this laser offers unique capabilities for aerosol characterization. Here we use FLASH to perform the highest resolution imaging of single PM2.5 aerosol particles in flight to date. We resolve to 35 nm the morphology of fibrous and aggregated spherical carbonaceous nanoparticles that existed for less than two milliseconds in vacuum. Our result opens the possibility for high spatialand time-resolved single particle aerosol dynamics studies, filling a critical technological need in aerosol science.

Bogan, Michael J.; /SLAC /LLNL, Livermore; Boutet, Sebastien; /SLAC; Chapman, Henry N.; /DESY /Hamburg U.; Marchesini, Stefano; /LBL, Berkeley; Barty, Anton; Benner, W.Henry /LLNL, Livermore; Rohner, Urs; /LLNL, Livermore /TOFWERK AG; Frank, Matthias; Hau-Riege, Stefan P.; /LLNL, Livermore; Bajt, Sasa; /DESY; Woods, Bruce; /LLNL, Livermore; Seibert, M.M.; Iwan, Bianca; Timneanu, Nicusor; Hajdu, Janos; /Uppsala U.; Schulz, Joachim; /DESY

2011-08-22T23:59:59.000Z

58

X-ray lasers and methods utilizing two component driving illumination provided by optical laser means of relatively low energy and small physical size  

DOE Patents (OSTI)

An X-ray laser (10), and related methodology, are disclosed wherein an X-ray laser target (12) is illuminated with a first pulse of optical laser radiation (14) of relatively long duration having scarcely enough energy to produce a narrow and linear cool plasma of uniform composition (38). A second, relatively short pulse of optical laser radiation (18) is uniformly swept across the length, from end to end, of the plasma (38), at about the speed of light, to consecutively illuminate continuously succeeding portions of the plasma (38) with optical laser radiation having scarcely enough energy to heat, ionize, and invert them into the continuously succeeding portions of an X-ray gain medium. This inventive double pulse technique results in a saving of more than two orders of magnitude in driving optical laser energy, when compared to the conventional single pulse approach.

Rosen, Mordecai D. (Berkeley, CA); Matthews, Dennis L. (El Granada, CA)

1991-01-01T23:59:59.000Z

59

Toward TW-Level, Hard X-Ray Pulses at LCLS  

Science Conference Proceedings (OSTI)

Coherent diffraction imaging of complex molecules such as proteins requires a large number (e.g., {approx} 10{sup 13}/pulse) of hard X-ray photons within a time scale of {approx} 10 fs or less. This corresponds to a peak power of {approx} 1 TW, much larger than that currently generated by LCLS or other proposed X-ray free electron lasers (FELs). We study the feasibility of producing such pulses using a LCLS-like, low charge electron beam, as will be possible in the LCLS-II upgrade project, employing a configuration beginning with a SASE amplifier, followed by a 'self-seeding' crystal monochromator, and finishing with a long tapered undulator. Our results suggest that TW-level output power at 8.3 keV is possible from a total undulator system length around 200 m. In addition power levels larger than 100 GW are generated at the third harmonic. We present a tapering strategy that extends the original 'resonant particle' formalism by optimizing the transport lattice to maximize optical guiding and enhance net energy extraction. We discuss the transverse and longitudinal coherence properties of the output radiation pulse and the expected output pulse energy sensitivity, both to taper errors and to power fluctuations on the monochromatized SASE seed.

Fawley, W.M.; Frisch, J.; Huang, Z.; Jiao, Y.; Nuhn, H.-D.; /SLAC; Pellegrini, C.; /SLAC /UCLA; Reiche, S.; /PSI, Villigen; Wu, J,; /SLAC

2011-12-13T23:59:59.000Z

60

Time Integrated Soft X-ray Imaging in High Intensity Laser Experiments (thesis)  

Science Conference Proceedings (OSTI)

2009 marks a significant achievement and the dawn of a new era in high intensity laser research with the final commissioning of all 192 beams at the National Ignition Facility (NIF). NIF is a department of energy (DOE) funded project more than 10 years in the making located at the Lawrence Livermore National Laboratory (LLNL). The following research was done as one of many preliminary experiments done to prepare for these historic events. The primary focus of the experimental campaign this paper addresses is to test and develop a thermal x-radiation source using a short pulse laser. This data is hoped to provide information about the thermal transport mechanisms important in the development of prediction models in High Energy Density (HED) science. One of several diagnostics fielded was a soft x-ray imager (SXRI) which is detailed in this paper. The SXRI will be used to measure the relative size of the heated region and also the relative level of specific x-ray emissions among several shot and target configurations. The laser system used was the Titan laser located in the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). Titan uses the JLF Janus Nd:glass laser west frontend system with a Optical Parametric Chirped Pulse Amplification (OPCPA) in place of the nanosecond oscillator. The system is capable of producing laser intensities of over a petawatt with several tens of joules delivered in the beam.

Stafford, D

2009-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray laser pulse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Phase-matched generation of coherent soft and hard X-rays using IR lasers  

DOE Patents (OSTI)

Phase-matched high-order harmonic generation of soft and hard X-rays is accomplished using infrared driving lasers in a high-pressure non-linear medium. The pressure of the non-linear medium is increased to multi-atmospheres and a mid-IR (or higher) laser device provides the driving pulse. Based on this scaling, also a general method for global optimization of the flux of phase-matched high-order harmonic generation at a desired wavelength is designed.

Popmintchev, Tenio V.; Chen, Ming-Chang; Bahabad, Alon; Murnane, Margaret M.; Kapteyn, Henry C.

2013-06-11T23:59:59.000Z

62

Simulation Studies of the X-Ray Free-Electron Laser Oscillator  

SciTech Connect

Simulations of the x-ray free-electron laser (FEL) oscillator are presented that include transverse effects and realistic Bragg crystal properties with the two-dimensional code GINGER. In the present cases considered the radiation divergence is much narrower than the crystal acceptance, and the numerical algorithm can be simplified by ignoring the finite angular bandwidth of the crystal. In this regime GINGER shows that the saturated x-ray pulses have 109 photons and are nearly Fourier-limited with peak powers in excess of 1 MW. Wealso include preliminary results for a four-mirror cavity that can be tuned in wavelength over a few percent, with future plans to incorporate the full transverse response of the Bragg crystals into GINGER to more accurately model this tunable source.

Lindberg, R. R.; Shyd'ko, Y.; Kim, K.-J; Fawley, W. M.

2009-08-14T23:59:59.000Z

63

Observation of Laser Induced Magnetization Dynamics in Co/Pd Multilayers with Coherent X-ray Scattering  

SciTech Connect

We report on time-resolved coherent x-ray scattering experiments of laser induced magnetization dynamics in Co/Pd multilayers with a high repetition rate optical pump x-ray probe setup. Starting from a multi-domain ground state, the magnetization is uniformly reduced after excitation by an intense 50 fs laser pulse. Using the normalized time correlation, we study the magnetization recovery on a picosecond timescale. The dynamic scattering intensity is separated into an elastic portion at length scales above 65 nm which retains memory of the initial domain magnetization, and a fluctuating portion at smaller length scales corresponding to domain boundary motion during recovery.

Wu, Benny

2012-04-05T23:59:59.000Z

64

Generation of strongly coupled Xe cluster nanoplasmas by low intensive soft x-ray laser irradiation  

Science Conference Proceedings (OSTI)

A seeding gas jet including Xe clusters was irradiated with a laser-driven plasma soft x-ray laser pulse ({lambda}=13.9 nm, {approx}7 ps, {<=}5 Multiplication-Sign 10{sup 9} W/cm{sup 2}), where the laser photon energy is high enough to ionize 4d core electrons. In order to clarify how the innershell ionization followed by the Auger electron emission is affected under the intense laser irradiation, the electron energy distribution was measured. Photoelectron spectra showed that the peak position attributed to 4d hole shifted to lower energy and the spectral width was broadened with increasing cluster size. Moreover, the energy distribution exhibited that a strongly coupled cluster nanoplasma with several eV was generated.

Namba, S.; Hasegawa, N.; Kishimoto, M.; Nishikino, M.; Kawachi, T. [Graduate School of Engineering, Hiroshima University,Kagamiyama 1-4-1, Higashi-Hiroshima, Hiroshima, 739-8527 (Japan); Quantum Beam Science Directorate, Japan Atomic Energy Agency, Umemidai 8-1, Kizugawa, Kyoto, 619-0215 (Japan)

2012-07-11T23:59:59.000Z

65

X-ray backlight measurement of preformed plasma by kJ-class petawatt LFEX laser  

Science Conference Proceedings (OSTI)

Foot and pedestal pulses that precede the main pulse from a high-intensity laser greatly affect laser-plasma interactions. Especially in fast ignition schemes, preceding pulses generate a plasma prior to irradiation by the main pulse. This results in a too energetic and divergent electron beam being generated in the preformed plasma, which reduces the energy coupling efficiency from the heating laser to the dense fuel core. A preformed plasma with a density scale length of 40-60 {mu}m was observed by a time- and space-resolved x-ray backlight technique using the LFEX laser system at the Institute of Laser Engineering, Osaka University. Preceding pulses (i.e., the foot and pedestal) of the LFEX were characterized by comparing observations with calculations results obtained using a two-dimension (2D) radiation-hydrodynamic simulation code. In a separate experiment, the 2D code was benchmarked with the experimentally observed hydrodynamic behavior of a gold plasma produced by a nanosecond laser pulse that mimicked foot and pedestal pulses (intensity: 1 Multiplication-Sign 10{sup 11}-1 Multiplication-Sign 10{sup 12}W/cm{sup 2}). The preceding pulses were estimated to have an intensity of 1 Multiplication-Sign 10{sup 12}-10{sup 13}W/cm{sup 2}, a duration of 2.0 ns, and a spot diameter at the target of 200-600 {mu}m by comparing the measured hydrodynamics of the preformed plasma with that calculated by the 2D hydrodynamic simulation code.

Ohira, Shinji; Fujioka, Shinsuke; Nagatomo, Hideo; Matsuo, Satoshi; Morio, Noboru; Kawanaka, Jyunji; Nakata, Yoshiki; Miyanaga, Noriaki; Shiraga, Hiroyuki; Nishimura, Hiroaki; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita Osaka 565-0871 (Japan); Sunahara, Atsushi [Institute for Laser Technology, 2-6 Yamada-oka, Suita Osaka 565-0871 (Japan); Johzaki, Tomoyuki [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima 739-8527 (Japan)

2012-09-15T23:59:59.000Z

66

Interaction of ultrashort X-ray pulses with B4C, SiC and Si  

E-Print Network (OSTI)

The interaction of 32.5 and 6 nm ultrashort X-ray pulses with the solid materials B4C, SiC and Si is simulated with a non-local thermodynamic equilibrium (NLTE) radiation transfer code. We study the ionization dynamics as function of depth in the material, modifications of the opacity during irradiation and estimate crater depth. Furthermore, we compare the estimated crater depth with experimental data, for fluences up to 2.2 J/cm2. Our results show that at 32.5 nm irradiation, the opacity changes with less than a factor of 2 for B4C and Si and a factor of 3 for SiC, for fluences up to 200 J/cm2. At a laser wavelength of 6 nm, the model predicts a dramatic decrease in opacity due to the weak inverse bremsstrahlung, increasing the crater depth for high fluences.

Bergh, M; Hau-Riege, S P; Scott, H A

2007-01-01T23:59:59.000Z

67

X-ray-optical cross-correlator for gas-phase experiments at the Linac Coherent Light Source free-electron laser  

Science Conference Proceedings (OSTI)

X-ray-optical pump-probe experiments at the Linac Coherent Light Source (LCLS) have so far been limited to a time resolution of 280 fs fwhm due to timing jitter between the accelerator-based free-electron laser (FEL) and optical lasers. We have implemented a single-shot cross-correlator for femtosecond x-ray and infrared pulses. A reference experiment relying only on the pulse arrival time information from the cross-correlator shows a time resolution better than 50 fs fwhm (22 fs rms) and also yields a direct measurement of the maximal x-ray pulse length. The improved time resolution enables ultrafast pump-probe experiments with x-ray pulses from LCLS and other FEL sources.

Schorb, S.; Cryan, J. P.; Glownia, J. M.; Bionta, M. R.; Coffee, R. N.; Swiggers, M.; Carron, S.; Castagna, J.-C.; Bozek, J. D.; Messerschmidt, M.; Schlotter, W. F.; Bostedt, C. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, P.O. Box 20450, Stanford, California 94309 (United States); Gorkhover, T. [Institut fuer Optik und Atomare Physik, Technische Universitaet Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Erk, B.; Boll, R.; Schmidt, C.; Rudenko, A. [Max-Planck Advanced-Study-Group at CFEL, Notkestr. 85, 22607 Hamburg (Germany); Max-Planck-Institut f. Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Rolles, D. [Max-Planck Advanced-Study-Group at CFEL, Notkestr. 85, 22607 Hamburg (Germany); Max-Planck-Institut f. med. Forschung, Jahnstr. 29, 69120 Heidelberg (Germany); Rouzee, A. [Max-Born-Institut, Max-Born-Str. 2, 12489 Berlin (Germany)

2012-03-19T23:59:59.000Z

68

The World's First Free-Electron X-ray Laser | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Free-Electron X-ray Laser First Free-Electron X-ray Laser The World's First Free-Electron X-ray Laser August 17, 2010 - 6:19pm Addthis The World's First Free-Electron X-ray Laser John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Yesterday, Secretary Chu participated in the dedication of the world's first free-electron and most powerful X-ray laser, the Linac Coherent Light Source (LCLS). In light of this occasion (pun intended), we posted an in-depth look at the innovative nature of this new instrument and its potential to tackle some of life's biggest mysteries. The Secretary seemed just as geeked about the possibilities of the LCLS, stating that "this is a new instrument that will enable us to see the structure of materials that we could not determine by any other means ... Knowing those

69

Thermal Acoustic Sensor for High Pulse Energy X-ray FEL Beams  

SciTech Connect

The pulse energy density of X-ray FELs will saturate or destroy conventional X-ray diagnostics, and the use of large beam attenuation will result in a beam that is dominated by harmonics. We present preliminary results at the LCLS from a pulse energy detector based on the thermal acoustic effect. In this type of detector an X-ray resistant material (boron carbide in this system) intercepts the beam. The pulse heating of the target material produces an acoustic pulse that can be detected with high frequency microphones to produce a signal that is linear in the absorbed energy. The thermal acoustic detector is designed to provide first- and second-order calorimetric measurement of X-ray FEL pulse energy. The first-order calorimetry is a direct temperature measurement of a target designed to absorb all or most of the FEL pulse power with minimal heat leak. The second-order measurement detects the vibration caused by the rapid thermoelastic expansion of the target material each time it absorbs a photon pulse. Both the temperature change and the amplitude of the acoustic signal are directly related to the photon pulse energy.

Smith, T.J.; Frisch, J.C.; Kraft, E.M.; Loos, J.; /SLAC; Bentsen, G.S.; /Rochester U.

2011-12-13T23:59:59.000Z

70

Uv Thomson scattering from x-ray laser plasmas  

SciTech Connect

Plasmas produced by irradiating massive carbon targets with a 1.064 {mu}m, 1.5 ns laser pulse at incident energies of {approximately}100 J have been investigated. UV thermal Thomson scattering was used to obtain the electron and ion temperatures, as well as drift velocities. The electron density was obtained by optical interferometry. The results are compared to hydrodynamic computer modeling. 6 refs., 6 figs.

La Fontaine, B.; Baldis, H.A.; Villeneuve, D.M.; Bernard, J.E.; Enright, G.D. (National Research Council of Canada, Ottawa, ON (Canada)); Rosen, M.D.; Young, P.E.; Matthews, D.L. (Lawrence Livermore National Lab., CA (USA))

1991-01-03T23:59:59.000Z

71

Two-dimensional stimulated resonance Raman spectroscopy of molecules with broadband x-ray pulses  

Science Conference Proceedings (OSTI)

Expressions for the two-dimensional stimulated x-ray Raman spectroscopy (2D-SXRS) signal obtained using attosecond x-ray pulses are derived. The 1D- and 2D-SXRS signals are calculated for trans-N-methyl acetamide (NMA) with broad bandwidth (181 as, 14.2 eV FWHM) pulses tuned to the oxygen and nitrogen K-edges. Crosspeaks in 2D signals reveal electronic Franck-Condon overlaps between valence orbitals and relaxed orbitals in the presence of the core-hole.

Biggs, Jason D.; Zhang Yu; Healion, Daniel; Mukamel, Shaul [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States)

2012-05-07T23:59:59.000Z

72

Two-Dimensional Stimulated Resonance Raman Spectroscopy of Molecules with Broadband X-ray Pulses  

E-Print Network (OSTI)

Expressions for the two-dimensional Stimulated x-ray Raman Spectroscopy (2D-SXRS) signal obtained using attosecond x-ray pulses are derived. The 1D- and 2D-SXRS signals are calculated for trans-N-methyl acetamide (NMA) with broad bandwidth (FWHM ~14.2eV, 181 as) pulses tuned to the oxygen and nitrogen K-edges. Crosspeaks in 2D signals reveal electronic Franck-Condon overlaps between valence orbitals and relaxed orbitals in the presence of the core hole.

Jason D. Biggs; Yu Zhang; Daniel Healion; Shaul Mukamel

2012-04-26T23:59:59.000Z

73

Subpicosecond 41.8-nm X-ray laser in the plasma produced by femtosecond laser irradiation of a xenon cluster jet  

SciTech Connect

Model calculations are performed of the radiation gain for the 4d5d (J = 0) - 4d5p (J = 1) transition with a wavelength of 41.8 nm in Pd-like xenon ions in the plasma produced by femtosecond laser irradiation of a xenon cluster jet. Conditions for the excitation of an ultrashort-pulse ({approx}1 ps) X-ray laser are discussed. (lasers)

Ivanova, E P [Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow region (Russian Federation)

2012-12-31T23:59:59.000Z

74

A High-Energy, Ultrashort-Pulse X-Ray System for the Dynamic Study of Heavy, Dense Materials  

Science Conference Proceedings (OSTI)

Thomson-scattering based x-ray radiation sources, in which a laser beam is scattered off a relativistic electron beam resulting in a high-energy x-ray beam, are currently being developed by several groups around the world to enable studies of dynamic material properties which require temporal resolution on the order of tens of femtoseconds to tens of picoseconds. These sources offer pulses that are shorter than available from synchrotrons, more tunable than available from so-called Ka sources, and more penetrating and more directly probing than ultrafast lasers. Furthermore, Thomson-scattering sources can scale directly up to x-ray energies in the few MeV range, providing peak brightnesses far exceeding any other sources in this regime. This dissertation presents the development effort of one such source at Lawrence Livermore National Laboratory, the Picosecond Laser-Electron InterAction for the Dynamic Evaluation of Structures (PLEIADES) project, designed to target energies from 30 keV to 200 keV, with a peak brightness on the order of 10{sup 18} photons {center_dot} s{sup -1} {center_dot} mm{sup -2} {center_dot} mrad{sup -2} {center_dot} 0.01% bandwidth{sup -1}. A 10 TW Ti:Sapphire based laser system provides the photons for the interaction, and a 100 MeV accelerator with a 1.6 cell S-Band photoinjector at the front end provides the electron beam. The details of both these systems are presented, as is the initial x-ray production and characterization, validating the theory of Thomson scattering. In addition to the systems used to enable PLEIADES, two alternative systems are discussed. An 8.5 GHz X-Band photoinjector, capable of sustaining higher accelerating gradients and producing lower emittance electron beams in a smaller space than the S-Band gun, is presented, and the initial operation and commissioning of this gun is presented. Also, a hybrid chirped-pulse amplification system is presented as an alternative to the standard regenerative amplifier technology in high-power ultrafast laser systems. This system combines an optical-parametric chirped-pulse amplification (OPCPA) system with a titanium:sapphire-based four-pass amplifier to provide the high pre-pulse contrast and ease of assembly of an OPCPA using a commercial pump laser while avoiding the loss of efficiency such a system would normally entail.

Gibson, D J

2004-09-17T23:59:59.000Z

75

Real-time Studies of Shocked Polycrystalline Materials with Single-Pulse X-ray Diffraction  

Science Conference Proceedings (OSTI)

Characteristic K-? x-rays used for single-pulse XRD are conventionally produced by a 37-stage high-voltage Marx pulse generator coupled to a vacuum needle-and-washer x-ray diode via coaxial transmission line. A large field-of-view x-ray image plate detection system typically enables observation of several Debye-Scherrer rings. Recently, we have developed a fiber-optic reducer, coupled to a CCD camera, to obtain low-noise, large field-of-view images. The direct beam spot is produced by bremsstrahlung radiation attenuated by a twomillimeter tungsten beam stop. Determination of the direct beam position is necessary to perform the ring integration.

Dane V. Morgan

2011-05-25T23:59:59.000Z

76

The European X-ray Free-Electron Laser: A Progress Report | Stanford...  

NLE Websites -- All DOE Office Websites (Extended Search)

The European X-ray Free-Electron Laser: A Progress Report Friday, December 2, 2011 - 2:00pm SLAC, Redtail Conference Room (901-108) M. Altarelli, European XFEL GmbH, Hamburg,...

77

Alcator C-Mod soft X-ray pulse height analysis system  

E-Print Network (OSTI)

A pulse height analysis (PHA) system has been installed on the Alcator C-Mod magnetic confinement fusion experiment. The PHA utilizes a Si(Li) detector to measure soft X-rays in the 1-30 keV range with an energy resolution ...

Gamboa, Eliseo (Eliseo J.)

2007-01-01T23:59:59.000Z

78

The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser  

Science Conference Proceedings (OSTI)

The soft x-ray materials science instrument is the second operational beamline at the linac coherent light source x-ray free electron laser. The instrument operates with a photon energy range of 480-2000 eV and features a grating monochromator as well as bendable refocusing mirrors. A broad range of experimental stations may be installed to study diverse scientific topics such as: ultrafast chemistry, surface science, highly correlated electron systems, matter under extreme conditions, and laboratory astrophysics. Preliminary commissioning results are presented including the first soft x-ray single-shot energy spectrum from a free electron laser.

Schlotter, W. F.; Turner, J. J.; Rowen, M.; Holmes, M.; Messerschmidt, M.; Moeller, S.; Krzywinski, J.; Lee, S.; Coffee, R.; Hays, G. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States); Heimann, P. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Krupin, O. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States); European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Soufli, R.; Fernandez-Perea, M.; Hau-Riege, S. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Kelez, N. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Beye, M.; Gerken, N.; Sorgenfrei, F.; Wurth, W. [Institute for Experimental Physics and CFEL, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); and others

2012-04-15T23:59:59.000Z

79

X-RAY NONLINEAR OPTICAL PROCESSES IN ATOMS USING A SELF-AMPLIFIED SPONTANEOUS EMISSION FREE-ELECTRON LASER  

SciTech Connect

X-ray free electron lasers (xFEL) will open new avenues to the virtually unexplored territory of non-linear interactions of x rays with matter. Initially xFELs will be based on the principle of self-amplified spontaneous emission (SASE). Each SASE pulse consists of a number of coherent intensity spikes of random amplitude, i.e. the process is chaotic and pulses are irreproducible. The coherence time of SASE xFELs will be a few femtoseconds for a photon energy near 1 keV. The importance of coherence properties of light in non-linear optical processes was theoretically discovered in the early 1960s. In this contribution we will illustrate the impact of field chaoticity on x-ray non-linear optical processes on neon for photon energies around 1 keV and intensities up to 10{sup 18} W/cm{sup 2}. Resonant and non-resonant processes are discussed. The first process to be addressed is the formation of a double-core hole in neon by photoionization with x rays above 1.25 keV energy. In contrast to the long-wavelength regime, non-linear optical processes in the x-ray regime are characterized in general by sequential single-photon single-electron interactions. Despite this fact, the sequential absorption of multiple x-ray photons depends on the statistical properties of the radiation field. Treating the x rays generated by a SASE FEL as fully chaotic, a quantum-mechanical analysis of inner-shell two-photon absorption is performed. By solving a system of time-dependent rate equations, we demonstrate that double-core hole formation in neon via x-ray two-photon absorption is enhanced by chaotic photon statistics. At an intensity of 10{sup 16} W/cm{sup 2}, the statistical enhancement is about 30%, much smaller than typical values in the optical regime. The second part of this presentation discusses the resonant Auger effect of atomic neon at the 1s-3p transition (at 867.1 eV). For low X-ray intensity, the excitation process 1s {yields} 3p in Neon can be treated perturbatively. The core-hole excited 1s{sup -1} 3p state is embedded in the continuum and decays via Auger-process on the timescale of approximately 5 fs. Increasing the x-ray intensity above 1.5 x 10{sup 18} W/cm{sup 2}, a peak intensity accessible with xFEL sources in the near future, x-ray induced emission from 3p back to 1s becomes possible, i.e. Rabi oscillations between these two levels can be induced. For the numerical analysis of this process, an effective two-level model, including a description of the resonant Auger decay process, is employed. The observation of x-ray-driven atomic populations dynamics in the time domain is challenging for chaotic xFEL pulses. In addition to requiring single-shot measurements, sub-femtosecond temporal resolution would be needed. The Rabi oscillations will, however, be imprinted on the kinetic energy distribution of the resonant Auger electron (see Fig. 1). Measuring the resonant Auger-electron line profile will provide information on both atomic population dynamics and x-ray pulse properties.

Rohringer, N

2008-08-08T23:59:59.000Z

80

Spectral analysis of x-ray emission created by intense laser irradiation of copper materials  

Science Conference Proceedings (OSTI)

We have measured the x-ray emission, primarily from K{sub {alpha}},K{sub {beta}}, and He{sub {alpha}} lines, of elemental copper foil and 'foam' targets irradiated with a mid-10{sup 16} W/cm{sup 2} laser pulse. The copper foam at 0.1 times solid density is observed to produce 50% greater He{sub {alpha}} line emission than copper foil, and the measured signal is well-fit by a sum of three synthetic spectra generated by the atomic physics code FLYCHK. Additionally, spectra from both targets reveal characteristic inner shell K{sub {alpha}} transitions from hot electron interaction with the bulk copper. However, only the larger-volume foam target produced significant K{sub {beta}} radiation, confirming a lower bulk temperature in the higher volume sample.

Huntington, C. M.; Kuranz, C. C.; Drake, R. P. [Atmospheric, Oceanic, Space Science, University of Michigan, Ann Arbor, Michigan 48103 (United States); Malamud, G. [Atmospheric, Oceanic, Space Science, University of Michigan, Ann Arbor, Michigan 48103 (United States); Department of Physics, Nuclear Research Center - Negev, 84190 Beer-Sheva (Israel); Park, H.-S.; Maddox, B. R. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

2012-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray laser pulse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

X-ray emission from a nanosecond-pulse discharge in an inhomogeneous electric field at atmospheric pressure  

Science Conference Proceedings (OSTI)

This paper describes experimental studies of the dependence of the X-ray intensity on the anode material in nanosecond high-voltage discharges. The discharges were generated by two nanosecond-pulse generators in atmospheric air with a highly inhomogeneous electric field by a tube-plate gap. The output pulse of the first generator (repetitive pulse generator) has a rise time of about 15 ns and a full width at half maximum of 30-40 ns. The output of the second generator (single pulse generator) has a rise time of about 0.3 ns and a full width at half maximum of 1 ns. The electrical characteristics and the X-ray emission of nanosecond-pulse discharge in atmospheric air are studied by the measurement of voltage-current waveforms, discharge images, X-ray count and dose. Our experimental results showed that the anode material rarely affects electrical characteristics, but it can significantly affect the X-ray density. Comparing the density of X-rays, it was shown that the highest x-rays density occurred in the diffuse discharge in repetitive pulse mode, then the spark discharge with a small air gap, and then the corona discharge with a large air gap, in which the X-ray density was the lowest. Therefore, it could be confirmed that the bremsstrahlung at the anode contributes to the X-ray emission from nanosecond-pulse discharges.

Zhang Cheng; Shao Tao; Ren Chengyan; Zhang Dongdong [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); Tarasenko, Victor; Kostyrya, Igor D. [Institute of High Current Electronics, Russian Academy of Science, Tomsk 634055 (Russian Federation); Ma Hao [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Yan Ping [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 (China)

2012-12-15T23:59:59.000Z

82

Attosecond x-ray pulses in the LCLS using the slotted foil method  

E-Print Network (OSTI)

A proposal has been made to generate femtosecond and sub-femtosecond x-ray pulses in the Linac Coherent Light Source (LCLS) SASE FEL by using a slotted spoiler foil located at the center of the second bunch compressor chicane. This previous study highlighted a simple case, using the nominal LCLS parameters, to produce a 2-fsec fwhm, 8-keV x-ray pulse. The study also pointed out the possibility of attaining sub-femtosecond pulses by somewhat modifying the LCLS compression parameters, but did not undertake a full tracking simulation for this more aggressive case. We take the opportunity here to study this `attosecond' case in detail, including a full tracking simulation, pushing the limit of the technique.

Emma, P; Huang, Z

2004-01-01T23:59:59.000Z

83

Shielding Calculations for the Hard X-Rays Generated by LCLS Mec Laser System  

Science Conference Proceedings (OSTI)

Linac Coherent Light Source (LCLS) Matter in Extreme Conditions (MEC) Instrument is an X-ray instrument that will be able to create and diagnose High Energy Density (HED) matter. The MEC laser system can generate hard X-ray due to the interaction of the laser and the plasma. This paper summarizes results of the shielding calculations performed to evaluate the radiation hazards induced by this hard X-ray source with Monte Carlo code FLUKA. The dose rates and photon spectra due to this X-ray source are calculated at different locations with different shielding. The influence of the electron temperature on the source terms and the shielding effectiveness was also investigated.

Not Available

2011-06-02T23:59:59.000Z

84

R&D for a Soft X-Ray Free Electron Laser Facility  

Science Conference Proceedings (OSTI)

Several recent reports have identified the scientific requirements for a future soft x-ray light source, and a high-repetition-rate free-electron laser (FEL) facility that is responsive to these requirements is now on the horizon. R&D in some critical areas is needed, however, to demonstrate technical performance, thus reducing technical risks and construction costs. Such a facility most likely will be based on a CW superconducting linear accelerator with beam supplied by a high-brightness, high-repetition-rate photocathode electron gun operating in CW mode, and on an array of FELs to which the accelerated beam is distributed, each operating at high repetition rate and with even pulse spacing. Dependent on experimental requirements, the individual FELs can be configured for either self-amplified spontaneous emission (SASE), seeded, or oscillator mode of operation, including the use of high-gain harmonic generation (HGHG), echo-enhanced harmonic generation (EEHG), harmonic cascade, or other configurations. In this White Paper we identify the overall accelerator R&D needs, and highlight the most important pre-construction R&D tasks required to value-engineer the design configuration and deliverables for such a facility. In Section 1.4 we identify the comprehensive R&D ultimately needed. We identify below the highest-priority requirements for understanding machine performance and reduce risk and costs at this pre-conceptual design stage. Details of implementing the required tasks will be the subject of future evaluation. Our highest-priority R&D program is the injector, which must be capable of delivering a beam with bunches up to a nanocoulomb at MHz repetition rate and with normalized emittance {le} 1 mm {center_dot} mrad. This will require integrated accelerating structure, cathode, and laser systems development. Cathode materials will impact the choice of laser technology in wavelength and energy per pulse, as well as vacuum requirements in the accelerating structure. Demonstration experiments in advanced seeding techniques, such as EEHG, and other optical manipulations to enhance the FEL process are required to reduce technical risk in producing temporally coherent and ultrashort x-ray output using optical seed lasers. Success of EEHG in particular would result in reduced development and cost of laser systems and accelerator hardware for seeded FELs. With a 1.5-2.5 GeV linac, FELs could operate in the VUV-soft x-ray range, where the actual beam energy will be determined by undulator technology; for example, to use the lower energy would require the use of advanced designs for which undulator R&D is needed. Significant reductions in both unit costs and accelerator costs resulting from the lower electron beam energy required to achieve lasing at a particular wavelength could be obtained with undulator development. Characterization of the wakefields of the vacuum chambers in narrow-gap undulators will be needed to minimize risk in ability to deliver close to transform limited pulses. CW superconducting RF technology for an FEL facility with short bunches at MHz rate and up to mA average current will require selection of design choices in cavity frequency and geometry, higher order mode suppression and power dissipation, RF power supply and distribution, accelerating gradient, and cryogenics systems. R&D is needed to define a cost and performance optimum. Developments in laser technology are proceeding at rapid pace, and progress in high-power lasers, harmonic generation, and tunable sources will need to be tracked.

Corlett, John; Attwood, David; Byrd, John; Denes, Peter; Falcone, Roger; Heimann, Phil; Leemans, Wim; Padmore, Howard; Prestemon, Soren; Sannibale, Fernando; Schlueter, Ross; Schroeder, Carl; Staples, John; Venturini, Marco; Warwick, Tony; Wells, Russell; Wilcox, Russell; Zholent, Alexander; Adolphsen, Chris; Arthur, John; Bergmann, Uwe; Cai, Yunhai; Colby, Eric; Dowell, David; Emma, Paul; Fox, John; Frisch, Josef; Galayda, John; Hettel, Robert; Huang, Zhirong; Phinney, Nan; Rabedeau, Tom; Raubenheimer, Tor; Reis, David; Schmerge, John; Stöhr, Joachim; Stupakov, Gennady; White, Bill; Xiang, Dao

2009-06-08T23:59:59.000Z

85

Efficient Excitation of Gain-Saturated Sub-9-nm-Wavelength Tabletop Soft-X-Ray Lasers and Lasing Down to 7.36 nm  

Science Conference Proceedings (OSTI)

We have demonstrated the efficient generation of sub-9-nm-wavelength picosecond laser pulses of microjoule energy at 1-Hz repetition rate with a tabletop laser. Gain-saturated lasing was obtained at =8.85 nm in nickel-like lanthanum ions excited by collisional electron-impact excitation in a precreated plasma column heated by a picosecond optical laser pulse of 4-J energy. Furthermore, isoelectronic scaling along the lanthanide series resulted in lasing at wavelengths as short as =7.36 nm. Simulations show that the collisionally broadened atomic transitions in these dense plasmas can support the amplification of subpicosecond soft-x-ray laser pulses.

Alessi, David [Colorado State University, Fort Collins; Wang, Yong [Colorado State University, Fort Collins; Luther, Brad [Colorado State University, Fort Collins; Yin, Liang [Colorado State University, Fort Collins; Martz, Dale [Colorado State University, Fort Collins; Woolston, Mark [Colorado State University, Fort Collins; Liu, Yanwei [University of California, Berkeley & LBNL; Berrill, Mark A [ORNL; Jorge, Rocca [Colorado State University, Fort Collins

2011-01-01T23:59:59.000Z

86

SLAC National Accelerator Laboratory - X-ray Laser Helps Fight...  

NLE Websites -- All DOE Office Websites (Extended Search)

human health. "This is the first new biological structure solved with a free-electron laser," said Henry Chapman of the Center for Free-Electron Laser Science in Hamburg,...

87

Overview of the program on soft x-ray lasers and their applications at Princeton  

Science Conference Proceedings (OSTI)

In the last several years, rapid progress in the development of soft x-ray lasers (SXL) has been observed at a number of laboratories worldwide. Although SXLs are very young'' devices they have already been used for microscopy and holography, and new ideas emerging for broader application of SXLs to microscopy, holography and lithography. This paper describes the work at Princeton University on the development of a soft x-ray imaging transmission microscopy using a SXL as a radiation source and work on the development of a novel soft x-ray reflection microscope and its application to biological cell studies and lithography. Progress in the development of a photopumped VUV laser (60 nm), and programs for the development of a small scale SXL and for the application of a powerful subpicosecond KrF laser system are also discussed. 35 refs., 9 figs., 1 tab.

Suckewer, S.; Ilcisin, K. (Princeton Univ., NJ (USA). Plasma Physics Lab. Princeton Univ., NJ (USA). Dept. of Mechanical and Aerospace Engineering)

1991-05-01T23:59:59.000Z

88

A Search for Pulsed and Bursty Radio Emission from X-ray Dim Isolated Neutron Stars  

E-Print Network (OSTI)

We have carried out a search for radio emission from six X-ray dim isolated neutron stars (XDINSs) observed with the Robert C. Byrd Green Bank Radio Telescope (GBT) at 820 MHz. No bursty or pulsed radio emission was found down to a 4sigma significance level. The corresponding flux limit is 0.01-0.04 mJy depending on the integration time for the particular source and pulse duty cycle of 2%. These are the most sensitive limits yet on radio emission from these objects.

V. I. Kondratiev; M. Burgay; A. Possenti; M. A. McLaughlin; D. R. Lorimer; R. Turolla; S. Popov; S. Zane

2007-10-08T23:59:59.000Z

89

SLAC National Accelerator Laboratory - X-ray Laser Explores How...  

NLE Websites -- All DOE Office Websites (Extended Search)

How to Write Data with Light By Glenn Roberts Jr. March 19, 2013 Using laser light to read and write magnetic data by quickly flipping tiny magnetic domains could help keep pace...

90

Single mimivirus particles intercepted and imaged with an X-ray laser  

DOE Data Explorer (OSTI)

These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 1 are the pattern and configuration files for the pattern showed in Figure 2a in the paper.

Seibert, M. Marvin; Ekeberg, Tomas; Maia, Filipe R.N.C.

91

Single mimivirus particles intercepted and imaged with an X-ray laser  

DOE Data Explorer (OSTI)

These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 2 are the pattern and configuration files for the pattern showed in Figure 2b in the paper.

Seibert, M. Marvin; Ekeberg, Tomas

92

X-ray line broadening as a compression diagnostic for laser-induced implosions  

SciTech Connect

It is suggested that the best way to measure maximum compressions in laser-induced implosion experiments may be to measure the line profiles of x-ray lines due to impurities in the compressed material. The experimental difficulties in making such measurements and the theoretical problems of interpreting these measurements are discussed.

Chapline, G.F.; DeWitt, H.E.; Hooper, C.F. Jr.

1974-12-01T23:59:59.000Z

93

Hidden explosives detector employing pulsed neutron and x-ray interrogation  

DOE Green Energy (OSTI)

Methods and systems for the detection of small amounts of modern, highly-explosive nitrogen-based explosives, such as plastic explosives, hidden in airline baggage. Several techniques are employed either individually or combined in a hybrid system. One technique employed in combination is X-ray imaging. Another technique is interrogation with a pulsed neutron source in a two-phase mode of operation to image both nitrogen and oxygen densities. Another technique employed in combination is neutron interrogation to form a hydrogen density image or three-dimensional map. In addition, deliberately-placed neutron-absorbing materials can be detected.

Schultz, Frederick J. (Oak Ridge, TN); Caldwell, John T. (Los Alamos, NM)

1993-01-01T23:59:59.000Z

94

Hidden explosives detector employing pulsed neutron and x-ray interrogation  

DOE Patents (OSTI)

Methods and systems for the detection of small amounts of modern, highly-explosive nitrogen-based explosives, such as plastic explosives, hidden in airline baggage. Several techniques are employed either individually or combined in a hybrid system. One technique employed in combination is X-ray imaging. Another technique is interrogation with a pulsed neutron source in a two-phase mode of operation to image both nitrogen and oxygen densities. Another technique employed in combination is neutron interrogation to form a hydrogen density image or three-dimensional map. In addition, deliberately-placed neutron-absorbing materials can be detected.

Schultz, F.J.; Caldwell, J.T.

1993-04-06T23:59:59.000Z

95

Applications and source development for high-repetition rate x-ray lasers  

Science Conference Proceedings (OSTI)

Many applications in material science, chemistry, and atomic physics require an x-ray source that has a repetition rate of 1 Hz to a few kHz. In these fields, a very wide range of photon energies is of interest. One application is time-resolved surface photoelectron spectroscopy and microscopy where low energy (energies below 100 eV are very good with higher energy capabilities expected in the future. In addition, prospects of table-top size x-ray lasers with kHz repetition rates are presented.

Eder, D.C.; Amendt, P.; Bolton, P.R. [and others

1993-07-30T23:59:59.000Z

96

Proton- and x-ray beams generated by ultra-fast CO(2) lasers for medical applications  

DOE Green Energy (OSTI)

Recent progress in using picosecond CO{sub 2} lasers for Thomson scattering and ion-acceleration experiments underlines their potentials for enabling secondary radiation- and particle-sources. These experiments capitalize on certain advantages of long-wavelength CO{sub 2} lasers, such as higher number of photons per energy unit, and favorable scaling of the electrons ponderomotive energy and critical plasma density. The high-flux x-ray bursts produced by Thomson scattering of the CO{sub 2} laser off a counter-propagating electron beam enabled high-contrast, time-resolved imaging of biological objects in the picosecond time frame. In different experiments, the laser, focused on a hydrogen jet, generated monoenergetic proton beams via the radiation-pressure mechanism. The strong power-scaling of this regime promises realization of proton beams suitable for laser-driven proton cancer therapy after upgrading the CO{sub 2} laser to sub-PW peak power. This planned improvement includes optimizing the 10-{mu}m ultra-short pulse generation, assuring higher amplification in the CO{sub 2} gas under combined isotopic- and power-broadening effects, and shortening the postamplification pulse to a few laser cycles (150-200 fs) via chirping and compression. These developments will move us closer to practical applications of ultra-fast CO{sub 2} lasers in medicine and other areas.

Pogorelsky, I.; Polyanskiy, M.; Yakimenko, V.; Ben-Zvi, I.; Shkolnikov, P. Najmudin, Z.; Palmer, C.A.J.; Dover, N.P.; Oliva, P; Carpinelli, M.

2011-07-01T23:59:59.000Z

97

Ultra-short wavelength x-ray system  

DOE Patents (OSTI)

A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.

Umstadter, Donald (Ann Arbor, MI); He, Fei (Ann Arbor, MI); Lau, Yue-Ying (Potomac, MD)

2008-01-22T23:59:59.000Z

98

Hard x-ray or gamma ray laser by a dense electron beam  

SciTech Connect

A dense electron beam propagating through a laser undulator can radiate a coherent x-ray or gamma ray. This lasing scheme is studied with the Landau damping theory. The analysis suggests that, with currently available physical parameters, coherent gamma rays of up to 50 keV can be generated. The electron quantum diffraction suppresses the free electron laser action, which limits the maximum radiation.

Son, S. [18 Caleb Lane, Princeton, New Jersey 08540 (United States); Joon Moon, Sung [8 Benjamin Rush Ln., Princeton, New Jersey 08540 (United States)

2012-06-15T23:59:59.000Z

99

Pulsed X-ray Characterization of Stripline Micro-Channel Plate Gated Imager  

Science Conference Proceedings (OSTI)

We report on characterization of x-ray imaging arrays developed by National Security Technologies, LLC. These devices are based on a microchannel plate (MCP) with a conventional glass microchannel structure, but the top and bottom conductive coatings, rather than covering the entire area, are configured into several (4 to 8) parallel strips. Since the bias voltage is a pulse launched from one end, these operate as striplines; relative delays between these pulses give different active exposure times. Unlike the case of a static bias voltage, non-uniformities in impedance along a stripline will produce spatial fluctuations in the bias voltage. These are expected to be slight, but the very sensitive dependence of gain on voltage - approximately like Vl/4d, where l and d are the length and diameter of the channel - means there may be very significant spatial non-uniformities in gain. Flat-field calibrations are therefore required so that such effects can be unfolded from the raw images if quantitative data is required. Such flat-field and other characterization measurements, e.g. responsivity and linearity, have therefore been done with a flash X-ray radiographic system. The maximum endpoint energy is 500 keV. The duration is {approx}40 ns, and so is essentially flat (temporally) during the MCP stripline transit time, which is a maximum of 600 ps. Spatial variations are significant, but the data are corrected using independent flat-field measurements. A monochromator selects a particular X-ray transition line (typically K{alpha}) of the anode material, so that characterizations can be done for various well-defined input photon energies.

F. J. Goldin, D. V. Morgan, K. J. Moy

2011-03-30T23:59:59.000Z

100

Photopumped x-ray laser research on Saturn  

SciTech Connect

Using Saturn as a driver, we are pursuing both photoresonantly pumped and photoionization/recombination lasers. Our lasing targets are gas cells with thin windows that are pumped by a z pinch 2 cm away radiating 10 TW. In both schemes the lasant and gas fill is neon. We will present evidence for inversion in the sodium/neon photoresonant scheme but we have yet to detect the lasing transition itself. To increase our chances of measuring this line we have introduced potassium into a sodium z-pinch and have eliminated oxygen from the gas cell windows. We have measured the spatial dependence of ionization balance across the gas cell, and this measurement is consistent with propagation of a shock front across the gas cell target. We have measured the Li-like neon 5f-3d transition to increase more rapidly with fill pressure than all other measured lines. Based on this result we have performed experiments emphasizing the photoionization/recombination laser scheme that use a flat-field grazing incidence spectrometer to provide good spatial resolution of the 4f-3d, 4d-3p, and 5f-3d lines of Li-like neon. We have attempted a gain length measurement by imaging parallel to a baffle that varies the length of the target illuminated.

Nash, T.J.; Spielman, R.B.; Vargas, M.; Ruggles, L.

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray laser pulse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Resonantly photo-pumped nickel-like erbium x-ray laser  

DOE Patents (OSTI)

A resonantly photo-pumped x-ray laser (10) that enhances the gain of several laser lines that also lase because of collisional excitations and recombination processes, is described. The laser comprises an aluminum (12) and erbium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like erbium ions (34) are resonantly photo-pumped by line emission from hydrogen-like aluminum ions (32). 3 figs., 1 tab.

Nilsen, J.

1990-03-29T23:59:59.000Z

102

Femtosecond diffractive imaging with a soft-X-ray free-electron...  

NLE Websites -- All DOE Office Websites (Extended Search)

diffractive imaging with a soft-X-ray free-electron laser We have demonstrated flash diffractive imaging of nanostructures using pulses from the first soft-X-ray free-electron...

103

X-ray microscopy of laser fusion targets in four energy bands from 0.7 to 4.0 keV  

SciTech Connect

A grazing x-ray microscope was shown to be able to photograph the x-ray emission from laser-produced plasmas between 0.8 and 4.0 keV with a spatial resolution of approximately 3 microns. The calibration of the x-ray mirror energy response functions and the x-ray film allow absolute measurements of the spatial and spectral distribution of the x-ray emission from laser fusion targets. (MOW)

Boyle, M.J.; Seward, F.D.; Harper, T.L.; Koppel, L.N.; Pettipiece, K.J.; Ahlstrom, H.G.

1975-10-15T23:59:59.000Z

104

Transient x-ray diffraction and its application to materials science and x-ray optics  

SciTech Connect

Time resolved x-ray diffraction and scattering have been applied to the measurement of a wide variety of physical phenomena from chemical reactions to shock wave physics. Interest in this method has heightened in recent years with the advent of versatile, high power, pulsed x-ray sources utilizing laser plasmas, electron beams and other methods. In this article, we will describe some of the fundamentals involved in time resolved x-ray diffraction, review some of the history of its development, and describe some recent progress in the field. In this article we will emphasize the use of laser-plasmas as the x-ray source for transient diffraction.

Hauer, A.A.; Kopp, R.; Cobble, J.; Kyrala, G.; Springer, R. [and others

1997-12-01T23:59:59.000Z

105

A proposal for a generation of two-color ultra-short x-ray pulses  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 A proposal for a generation of two-color ultra-short x-ray pulses * Alexander Zholents Advanced Photon Source, Argonne National Laboratory Argonne, IL 60439 * Work supported by the U. S. Department of Energy, Office of Science, under Contract No. DE- AC02-06CH11357. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare

106

Generation of iodine L-shell X-rays under excitation of large CF{sub 3}I clusters by femtosecond laser radiation  

Science Conference Proceedings (OSTI)

The use of clusters of polyatomic molecules with a relatively low ionisation energy ({approx}10 eV) is proposed for the efficient production of X-ray radiation. We have observed for the first time the generation of characteristic X-ray radiation due to L transitions in iodine atoms under the high-intensity femtosecond laser irradiation of molecular CF{sub 3}I clusters, which were a small admixture to Ar carrier gas. The X-ray conversion efficiency amounts to {approx}10{sup -6} (for a yield of {approx}10{sup 7} photons per pulse), which is an order of magnitude higher than the efficiency we obtained in the case of argon clusters under comparable conditions. (letters)

Gordienko, Vyacheslav M; Dzhidzhoev, M S; Zhvaniya, I A; Pribytkov, Andrei V; Trubnikov, Dmitrii N; Fedorov, D O

2012-11-30T23:59:59.000Z

107

Measurements of the LCLS Laser Heater and its impact on the x-ray FEL Performance  

Science Conference Proceedings (OSTI)

The very bright electron beam required for an x-ray free-electron laser (FEL), such as the Linac Coherent Light Source (LCLS), is susceptible to a microbunching instability in the magnetic bunch compressors, prior to the FEL undulator. The uncorrelated electron energy spread in the LCLS can be increased by an order of magnitude to provide strong Landau damping against the instability without degrading the FEL performance. To this end, a 'laser-heater' system has been installed in the LCLS injector, which modulates the energy of a 135-MeV electron bunch with an IR laser beam in a short undulator, enclosed within a four-dipole chicane. In this paper, we report detailed measurements of laser heater-induced energy spread, including the unexpected self-heating phenomenon when the laser energy is very low. We discuss the suppression of the microbunching instability with the laser heater and its impact on the x-ray FEL performance. We also present the analysis of these experimental results and develop a three-dimensional longitudinal space charge model to explain the self-heating effect.

Huang, Zhirong; Brachmann, A.; Decker, F.-J.; Ding, Y.; Dowell, D.; Emma, P.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Iverson, R.; Loos, H.; Miahnahri, A.; Nuhn, H.-D.; Ratner, D.; Stupakov, G.; Turner, J.; Welch, J.; White, W.; Wu, J.; Xiang, D.

2009-12-17T23:59:59.000Z

108

Single-shot Time-resolved X-ray Scattering Measurements in ...  

Science Conference Proceedings (OSTI)

We will describe detailed new measurement system and their results. ... Induced and Observed by Interaction with an Intense Femtosecond X-ray Laser Pulse.

109

Relationship between pulse width and energy in GRB 060124: from X-ray to gamma-ray bands  

E-Print Network (OSTI)

GRB 060124 is the first event that both prompt and afterglow emission were observed simultaneously by the three \\emph{Swift} instruments. Its main peak also triggered Konus-Wind and HETE-II. Therefore, investigation on both the temporal and spectral properties of the prompt emission can be extended to X-ray bands. We perform a detailed analysis on the two well identified pulses of this burst, and find that the pulses are narrower at higher energies, and both X-rays and gamma-rays follow the same $w - E$ relation for an individual pulse. However, there is no a universal power-law index of the $w - E$ relation among pulses. We find also that the rise-to-decay ratio $r/d$ seems not to evolve with $E$ and the $r/d$ values are well consistent with that observed in typical GRBs. The broadband spectral energy distribution also suggest that the X-rays are consistent with the spectral behavior of the gamma-rays. These results indicates that the X-ray emission tracks the gamma-ray emission and the emissions in the two energy bands are likely to be originated from the same physical mechanism.

Fu-Wen Zhang; Yi-Ping Qin

2008-06-07T23:59:59.000Z

110

Resonant Auger decay of the core-excited C{sup *}O molecule in intense x-ray laser fields  

SciTech Connect

The dynamics of the resonant Auger (RA) process of the core-excited C*O(1s{sup -1}{pi}*,v{sub r}=0) molecule in an intense x-ray laser field is studied theoretically. The theoretical approach includes the analog of the conical intersections of the complex potential energy surfaces of the ground and 'dressed' resonant states due to intense x-ray pulses, taking into account the decay of the resonance and the direct photoionization of the ground state, both populating the same final ionic states coherently, as well as the direct photoionization of the resonance state itself. The light-induced nonadiabatic effect of the analog of the conical intersections of the resulting complex potential energy surfaces gives rise to strong coupling between the electronic, vibrational, and rotational degrees of freedom of the diatomic CO molecule. The interplay of the direct photoionization of the ground state and of the decay of the resonance increases dramatically with the field intensity. The coherent population of a final ionic state via both the direct photoionization and the resonant Auger decay channels induces strong interference effects with distinct patterns in the RA electron spectra. The individual impact of these physical processes on the total electron yield and on the CO{sup +}(A {sup 2}{Pi}) electron spectrum are demonstrated.

Demekhin, Philipp V.; Chiang, Ying-Chih; Cederbaum, Lorenz S. [Theoretische Chemie, Physikalisch-Chemisches Institut, Universitaet Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)

2011-09-15T23:59:59.000Z

111

MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design  

SciTech Connect

The proposed Matter-Radiation Interactions in Extremes (MaRIE) facility at the Los Alamos National Laboratory will include a 50-keV X-Ray Free-Electron Laser (XFEL), a significant extension from planned and existing XFEL facilities. To prevent an unacceptably large energy spread arsing from energy diffusion, the electron beam energy should not exceed 20 GeV, which puts a significant constraint on the beam emittance. A 100-pC baseline design is presented along with advanced technology options to increase the photon flux and to decrease the spectral bandwidth through pre-bunching the electron beam.

Carlsten, Bruce E. [Los Alamos National Laboratory; Barnes, Cris W. [Los Alamos National Laboratory; Bishofberger, Kip A. [Los Alamos National Laboratory; Duffy, Leanne D. [Los Alamos National Laboratory; Heath, Cynthia E. [Los Alamos National Laboratory; Marksteiner, Quinn R. [Los Alamos National Laboratory; Nguyen, Dinh Cong [Los Alamos National Laboratory; Russell, Steven J. [Los Alamos National Laboratory; Ryne, Robert D. [Los Alamos National Laboratory; Sheffield, Richard L. [Los Alamos National Laboratory; Simakov, Evgenya I. [Los Alamos National Laboratory; Yampolsky, Nikolai A. [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

112

A New Gated X-Ray Detector for the Orion Laser Facility  

Science Conference Proceedings (OSTI)

Gated X-Ray Detectors (GXD) are considered the work-horse target diagnostic of the laser based inertial confinement fusion (ICF) program. Recently, Los Alamos National Laboratory (LANL) has constructed three new GXDs for the Orion laser facility at the Atomic Weapons Establishment (AWE) in the United Kingdom. What sets these three new instruments apart from the what has previously been constructed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is: improvements in detector head microwave transmission lines, solid state embedded hard drive and updated control software, and lighter air box design and other incremental mechanical improvements. In this paper we will present the latest GXD design enhancements and sample calibration data taken on the Trident laser facility at Los Alamos National Laboratory using the newly constructed instruments.

Clark, David D. [Los Alamos National Laboratory; Aragonez, Robert J. [Los Alamos National Laboratory; Archuleta, Thomas N. [Los Alamos National Laboratory; Fatherley, Valerie E. [Los Alamos National Laboratory; Hsu, Albert H. [Los Alamos National Laboratory; Jorgenson, H. J. [Los Alamos National Laboratory; Mares, Danielle [Los Alamos National Laboratory; Oertel, John A. [Los Alamos National Laboratory; Oades, Kevin [Atomic Weapons Establishment; Kemshall, Paul [Atomic Weapons Establishment; Thomas, Philip [Atomic Weapons Establishment; Young, Trevor [Atomic Weapons Establishment; Pederson, Neal [VI Control Systems

2012-08-08T23:59:59.000Z

113

Fatigue expectations in a molybdenum/silicon multilayer under pulsed soft X-ray radiation  

Science Conference Proceedings (OSTI)

The temperature rise in a Mo/a-Si multilayer x-ray reflective film due to radiation absorption is modeled for the first condenser mirror in a projection lithography system such as the one designed by the Advanced Microtechnology Program at LLNL. The radiation load is pulsed at 1000 Hz with a time average intensity of 500mW/cm{sup 2}. This intensity is the expected maximum on the first condenser mirror. The temperature rise is calculated using the integral transform technique. The film is assumed to have the thermal properties of its poorly conducting substrate, yielding a more conservative (higher) temperature estimate. The surface temperature rise is found to range between 35.6{degrees}C and 76.3{degrees}C. The stress due to this rise is greatest in the molybdenum film and ranges between 73MPa and 166MPa compressive. This fluctuating stress level, however, is believed to be insufficient, by a factor of five or so, to cause fatigue failure of the film.

Weber, F.J.; Kassner, M.E. [Oregon State Univ., Corvallis, OR (United States); Stearns, D.G. [Lawrence Livermore National Lab., CA (United States)

1995-01-19T23:59:59.000Z

114

Efficient laser-induced 6-8 keV x-ray production from iron oxide aerogel and foil-lined cavity targets  

SciTech Connect

The performance of new iron-based laser-driven x-ray sources has been tested at the OMEGA laser facility for production of x rays in the 6.5-8.5 keV range. Two types of targets were experimentally investigated: low-density iron oxide aerogels (density 6-16 mg/cm{sup 3}) and stainless steel foil-lined cavity targets (steel thickness 1-5 {mu}m). The targets were irradiated by 40 beams of the OMEGA laser (500 J/beam, 1 ns pulse, wavelength 351 nm). All targets showed good coupling with the laser, with <5% of the incident laser light backscattered by the resulting plasma in all cases (typically <2.5%). The aerogel targets produced T{sub e}=2 to 3 keV, n{sub e}=0.12-0.2 critical density plasmas yielding a 40%-60% laser-to-x-ray total conversion efficiency (CE) (1.2%-3% in the Fe K-shell range). The foil cavity targets produced T{sub e}{approx} 2 keV, n{sub e}{approx} 0.15 critical density plasmas yielding a 60%-75% conversion efficiency (1.6%-2.2% in the Fe K-shell range). Time-resolved images illustrate that the volumetric heating of low-density aerogels allow them to emit a higher K-shell x-ray yield even though they contain fewer Fe atoms. However, their challenging fabrication process leads to a larger shot-to-shot variation than cavity targets.

Perez, F.; Kay, J. J.; Patterson, J. R.; Kane, J.; May, M.; Emig, J.; Colvin, J.; Gammon, S.; Satcher, J. H. Jr.; Fournier, K. B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Villette, B.; Girard, F.; Reverdin, C. [CEA DAM DIF, F-91297 Arpajon (France); Sorce, C. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); University of Rochester - Laboratory for Laser Energetics, 250 E. River Rd, Rochester, New York 14623-1299 (United States); Jaquez, J. [General Atomics, San Diego, California 92121 (United States)

2012-08-15T23:59:59.000Z

115

Resonant Auger Decay of Molecules in Intense X-Ray Laser Fields: Light-Induced Strong Nonadiabatic Effects  

Science Conference Proceedings (OSTI)

The resonant Auger process is studied in intense x-ray laser fields. It is shown that the dressing of the initial and decaying states by the field leads to coupled complex potential surfaces which, even for diatomic molecules, possess intersections at which the nonadiabatic couplings are singular. HCl is studied as an explicit showcase example. The exact results differ qualitatively from those without rotations. A wealth of nonadiabatic phenomena is expected in decay processes in intense x-ray fields.

Cederbaum, Lorenz S.; Chiang, Ying-Chih; Demekhin, Philipp V. [Theoretische Chemie, Universitaet Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg (Germany); Moiseyev, Nimrod [Schulich Faculty of Chemistry and Minerva Center, Technion--Israel Institute of Technology, Haifa 32000 (Israel)

2011-03-25T23:59:59.000Z

116

Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources  

DOE Patents (OSTI)

Method and apparatus for producing extreme ultraviolet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10{sup 11}--10{sup 12} watts/cm{sup 2}) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10--30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle. 5 figs.

Kublak, G.D.; Richardson, M.C.

1996-11-19T23:59:59.000Z

117

Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources  

DOE Patents (OSTI)

Method and apparatus for producing extreme ultra violet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10.sup.11 -10.sup.12 watts/cm.sup.2) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10-30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle.

Kublak, Glenn D. (124 Turquoise Way, Livermore, Alameda County, CA 94550); Richardson, Martin C. (CREOL

1996-01-01T23:59:59.000Z

118

Pulse pileup statistics for energy discriminating photon counting x-ray detectors  

SciTech Connect

Purpose: Energy discriminating photon counting x-ray detectors can be subject to a wide range of flux rates if applied in clinical settings. Even when the incident rate is a small fraction of the detector's maximum periodic rate N{sub 0}, pulse pileup leads to count rate losses and spectral distortion. Although the deterministic effects can be corrected, the detrimental effect of pileup on image noise is not well understood and may limit the performance of photon counting systems. Therefore, the authors devise a method to determine the detector count statistics and imaging performance. Methods: The detector count statistics are derived analytically for an idealized pileup model with delta pulses of a nonparalyzable detector. These statistics are then used to compute the performance (e.g., contrast-to-noise ratio) for both single material and material decomposition contrast detection tasks via the Cramer-Rao lower bound (CRLB) as a function of the detector input count rate. With more realistic unipolar and bipolar pulse pileup models of a nonparalyzable detector, the imaging task performance is determined by Monte Carlo simulations and also approximated by a multinomial method based solely on the mean detected output spectrum. Photon counting performance at different count rates is compared with ideal energy integration, which is unaffected by count rate. Results: The authors found that an ideal photon counting detector with perfect energy resolution outperforms energy integration for our contrast detection tasks, but when the input count rate exceeds 20%N{sub 0}, many of these benefits disappear. The benefit with iodine contrast falls rapidly with increased count rate while water contrast is not as sensitive to count rates. The performance with a delta pulse model is overoptimistic when compared to the more realistic bipolar pulse model. The multinomial approximation predicts imaging performance very close to the prediction from Monte Carlo simulations. The monoenergetic image with maximum contrast-to-noise ratio from dual energy imaging with ideal photon counting is only slightly better than with dual kVp energy integration, and with a bipolar pulse model, energy integration outperforms photon counting for this particular metric because of the count rate losses. However, the material resolving capability of photon counting can be superior to energy integration with dual kVp even in the presence of pileup because of the energy information available to photon counting. Conclusions: A computationally efficient multinomial approximation of the count statistics that is based on the mean output spectrum can accurately predict imaging performance. This enables photon counting system designers to directly relate the effect of pileup to its impact on imaging statistics and how to best take advantage of the benefits of energy discriminating photon counting detectors, such as material separation with spectral imaging.

Wang, Adam S.; Harrison, Daniel; Lobastov, Vladimir; Tkaczyk, J. Eric [Departments of Electrical Engineering and Radiology, Stanford University, Stanford, California 94305 (United States); GE Global Research Center, Niskayuna, New York 12309 (United States)

2011-07-15T23:59:59.000Z

119

Multilayers for next generation x-ray sources  

Science Conference Proceedings (OSTI)

Multilayers are artificially layered structures that can be used to create optics and optical elements for a broad range of x-ray wavelengths, or can be optimized for other applications. The development of next generation x-ray sources (synchrotrons and x-ray free electron lasers) requires advances in x-ray optics. Newly developed multilayer-based mirrors and optical elements enabled efficient band-pass filtering, focusing and time resolved measurements in recent FLASH (Free Electron LASer in Hamburg) experiments. These experiments are providing invaluable feedback on the response of the multilayer structures to high intensity, short pulsed x-ray sources. This information is crucial to design optics for future x-ray free electron lasers and to benchmark computer codes that simulate damage processes.

Bajt, S; Chapman, H N; Spiller, E; Hau-Riege, S; Alameda, J; Nelson, A J; Walton, C C; Kjornrattanawanich, B; Aquila, A; Dollar, F; Gullikson, E; Tarrio, C

2007-05-04T23:59:59.000Z

120

Compact X-ray Free Electron Laser from a Laser-plasma Accelerator using a Transverse Gradient Undulator  

SciTech Connect

Compact laser-plasma accelerators can produce high energy electron beams with low emittance, high peak current but a rather large energy spread. The large energy spread hinders the potential applications for coherent FEL radiation generation. In this paper, we discuss a method to compensate the effects of beam energy spread by introducing a transverse field variation into the FEL undulator. Such a transverse gradient undulator together with a properly dispersed beam can greatly reduce the effects of electron energy spread and jitter on FEL performance. We present theoretical analysis and numerical simulations for SASE and seeded extreme ultraviolet and soft x-ray FELs based on laser plasma accelerators.

Huang, Zhirong; Ding, Yuantao; /SLAC; Schroeder, Carl B.; /LBL, Berkeley

2012-09-13T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray laser pulse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

High Flux Water Window X-rays Driven by Ultrashort 1.8mm Laser ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Optical and X-ray Imaging Techniques for Material Characterization.

122

Laser stand for irradiation of targets by laser pulses from the Iskra-5 facility at a repetition rate of 100 MHz  

SciTech Connect

A train of a few tens of high-power subnanosecond laser pulses with a repetition period of 10 ns is generated in the Iskra-5 facility. The laser pulse train has an energy of up to 300 J and contains up to 40 pulses (by the 0.15 intensity level), the single pulse duration in the train being {approx}0.5 ns. The results of experiments on conversion of a train of laser pulses to a train of X-ray pulses are presented. Upon irradiation of a tungsten target, a train of X-ray pulses is generated with the shape of an envelope in the spectral band from 0.18 to 0.28 keV similar to that of the envelope of the laser pulse train. The duration of a single X-ray pulse in the train is equal to that of a single laser pulse. (lasers)

Annenkov, V I; Garanin, Sergey G; Eroshenko, V A; Zhidkov, N V; Zubkov, A V; Kalipanov, S V; Kalmykov, N A; Kovalenko, V P; Krotov, V A; Lapin, S G; Martynenko, S P; Pankratov, V I; Faizullin, V S; Khrustalev, V A; Khudikov, N M; Chebotar, V S [Russian Federal Nuclear Center 'All-Russian Research Institute of Experimental Physics', Sarov, Nizhnii Novgorod Region (Russian Federation)

2009-08-31T23:59:59.000Z

123

An experiment to demonstrate a nitrogen recombination X-ray amplifier using high-density planar gas jet laser target. Final report  

Science Conference Proceedings (OSTI)

The results of an experiment to search for lasing in atomic transitions at x-ray energies in N{sub 2} gas target plasmas using ultra-short laser pulses is presented. Particular emphasis was placed on a search for a predicted 24.7 nm optical-field-ionization (OFI) induced lasing line from the Li-like nitrogen (N{sup 4+}, 3d {yields} 2p) transition. The excitation laser was a multi-terawatt Cr:LiSrAlF{sub 6} laser system operating at a wavelength of 825 nm and a pulse duration of 135 fs located at the Lawrence Livermore National Laboratory. Experimental conditions were optimized and a series of Li-like (including the 24.7 rm N{sup 4+} 3d {yields} 2p) lines were observed and identified. Further experimental studies are required before an attempt at measurement of any potential lasing gain can be made.

Pronko, J.G.; Kohler, D.

1996-03-31T23:59:59.000Z

124

In-line phase-contrast imaging of a biological specimen using a compact laser-Compton scattering-based x-ray source  

SciTech Connect

Laser-Compton scattering (LCS) x-ray sources have recently attracted much attention for their potential use at local medical facilities because they can produce ultrashort pulsed, high-brilliance, and quasimonochromatic hard x rays with a small source size. The feasibility of in-line phase-contrast imaging for a 'thick' biological specimens of rat lumbar vertebrae using the developed compact LCS-X in AIST was investigated for the promotion of clinical imaging. In the higher-quality images, anatomical details of the spinous processes of the vertebrae are more clearly observable than with conventional absorption radiography. The results demonstrate that phase-contrast radiography can be performed using LCS-X.

Ikeura-Sekiguchi, H.; Kuroda, R.; Yasumoto, M.; Toyokawa, H.; Koike, M.; Yamada, K. [National Institute of Advanced Industrial Science and Technology (AIST), Central 2-5, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Sakai, F. [Sumitomo Heavy Industries, Ltd. (SHI), 2-1-1, Yatocho, Nishitokyo, Tokyo 188-8585 (Japan); Mori, K.; Maruyama, K. [Ibaraki Prefectural University of Health Sciences, 4669-2, Ami, Inashiki, Ibaraki 300-0394 (Japan); Oka, H.; Kimata, T. [St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki City 216-8512 (Japan)

2008-03-31T23:59:59.000Z

125

Enhanced inner-shell x-ray emission by femtosecond-laser irradiation of solid cone targets  

Science Conference Proceedings (OSTI)

The possibility of enhancing inner-shell x-ray emission, especially K{alpha} emission, by femtosecond-laser irradiation of solid cones instead of foils was investigated theoretically. In a model for hot electron (HE) transport and K{alpha} x-ray generation, K{alpha} emission from laser-irradiated solid cones and foils is investigated. As a complementarity to the model, the contributions from electric and magnetic fields generated by the HE current in solid cones and foils are discussed. The results indicate that the efficiency of HE energy conversion to K{alpha} photons is improved and the optimum HE temperature is increased.

Li Xiaoya; Zhu Wenjun; Ye Yan; Li Jun; Yu Yong [National Key Laboratory of Shock Wave and Detonation Physics, Mianyang, 621900 Sichuan (China); Wang Jiaxiang [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China)

2011-04-15T23:59:59.000Z

126

X-ray lasers and methods utilizing two component driving illumination provided by optical laser means of relatively low energy and small physical size  

DOE Patents (OSTI)

It is an object of this invention to provide an X-ray laser that is driven by an optical laser or lasers of relatively low energy and small physical size. Another object of this invention is to provide a method of driving an X-ray laser with an optical laser or lasers of relatively low energy and small physical size. Additional objects, advantages and novel features of the invention are set forth in part in the description included in this report. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims. 8 figs.

Rosen, M.D.; Matthews, D.L.

1989-10-18T23:59:59.000Z

127

THE 5 hr PULSE PERIOD AND BROADBAND SPECTRUM OF THE SYMBIOTIC X-RAY BINARY 3A 1954+319  

SciTech Connect

We present an analysis of the highly variable accreting X-ray pulsar 3A 1954+319 using 2005-2009 monitoring data obtained with INTEGRAL and Swift. This considerably extends the pulse period history and covers flaring episodes in 2005 and 2008. In 2006 the source was identified as one of only a few known symbiotic X-ray binaries (SyXBs), i.e., systems composed of a neutron star accreting from the inhomogeneous medium around an M-giant star. The extremely long pulse period of {approx}5.3 hr is directly visible in the 2008 INTEGRAL-ISGRI outburst light curve. The pulse profile is double peaked and generally not significantly energy dependent although there is an indication of possible softening during the main pulse. During the outburst a strong spin-up of -1.8 Multiplication-Sign 10{sup -4} hr hr{sup -1} occurred. Between 2005 and 2008 a long-term spin-down trend of 2.1 Multiplication-Sign 10{sup -5} hr hr{sup -1} was observed for the first time for this source. The 3-80 keV pulse peak spectrum of 3A 1954+319 during the 2008 flare could be well described by a thermal Comptonization model. We interpret the results within the framework of a recently developed quasi-spherical accretion model for SyXBs.

Marcu, Diana M.; Pottschmidt, Katja [NASA Goddard Space Flight Center, Astrophysics Science Division, Code 661, Greenbelt, MD 20771 (United States); Fuerst, Felix; Grinberg, Victoria; Mueller, Sebastian; Wilms, Joern [Dr. Karl Remeis-Observatory and ECAP, University of Erlangen-Nuremberg, 96049 Bamberg (Germany); Postnov, Konstantin A. [Sternberg Astronomical Institute, 119992 Moscow (Russian Federation); Corbet, Robin H. D. [CRESST and University of Maryland Baltimore County, Baltimore, MD 21250 (United States); Markwardt, Craig B. [NASA Goddard Space Flight Center, Astrophysics Science Division, Code 662, Greenbelt, MD 20771 (United States); Cadolle Bel, Marion [European Space Agency, European Space Astronomy Centre, 28691 Villanueva de la Canada, 28692 Madrid (Spain)

2011-11-20T23:59:59.000Z

128

X-ray generator  

DOE Patents (OSTI)

Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

Dawson, John M. (Los Angeles, CA)

1976-01-01T23:59:59.000Z

129

Fluctuation X-Ray Scattering  

SciTech Connect

The work supported by the grant was aimed at developing novel methods of finding the structures of biomolecules using x-rays from novel sources such as the x-ray free electron laser and modern synchrotrons

Saldin, PI: D. K.; Co-I's: J. C. H. Spence and P. Fromme

2013-01-25T23:59:59.000Z

130

Laser pulse stacking method  

DOE Patents (OSTI)

A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

Moses, E.I.

1992-12-01T23:59:59.000Z

131

Laser pulse stacking method  

DOE Patents (OSTI)

A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter.

Moses, Edward I. (Livermore, CA)

1992-01-01T23:59:59.000Z

132

Characterization of LiNi?.?Mn?.?O? Thin Film Cathode Prepared by Pulsed Laser Deposition  

E-Print Network (OSTI)

LiNi?.?Mn?.?O? thin films have been grown by pulsed laser deposition (PLD) on stainless steel (SS) substrates. The crystallinity and structure of thin films were investigated by X-ray diffraction (XRD). Microstructure and ...

Xia, Hui

133

Laser fusion pulse shape controller  

DOE Patents (OSTI)

An apparatus for controlling the pulse shape, i.e., the pulse duration and intensity pattern, of a pulsed laser system, and which is particularly well adapted for controlling the pellet ignition pulse in a laser-driven fusion reaction system. The apparatus comprises a laser generator for providing an optical control pulse of the shape desired, a pulsed laser triggered by the control pulse, and a plurality of optical Kerr-effect gates serially disposed at the output of the pulsed laser and selectively triggered by the control pulse to pass only a portion of the pulsed laser output generally corresponding in shape to the control pulse.

Siebert, Larry D. (Ann Arbor, MI)

1977-01-01T23:59:59.000Z

134

LUX - A design study for a linac/laser-based ultrafast X-ray source  

E-Print Network (OSTI)

comparable to third generation light sources, to multipleexisting third generation light sources. The x-ray pulseof existing 3 rd generation light sources. The position of

2004-01-01T23:59:59.000Z

135

A setup for resonant inelastic soft x-ray scattering on liquids at free electron laser light sources  

SciTech Connect

We present a flexible and compact experimental setup that combines an in vacuum liquid jet with an x-ray emission spectrometer to enable static and femtosecond time-resolved resonant inelastic soft x-ray scattering (RIXS) measurements from liquids at free electron laser (FEL) light sources. We demonstrate the feasibility of this type of experiments with the measurements performed at the Linac Coherent Light Source FEL facility. At the FEL we observed changes in the RIXS spectra at high peak fluences which currently sets a limit to maximum attainable count rate at FELs. The setup presented here opens up new possibilities to study the structure and dynamics in liquids.

Kunnus, Kristjan; Schreck, Simon; Foehlisch, Alexander [Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin GmbH, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Institut fuer Physik und Astronomie, Universitaet Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam (Germany); Rajkovic, Ivan; Quevedo, Wilson; Gruebel, Sebastian; Scholz, Mirko [IFG Structural Dynamics of (Bio)chemical Systems, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37070 Goettingen (Germany); Eckert, Sebastian; Beye, Martin; Suljoti, Edlira; Weniger, Christian; Wernet, Philippe [Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin GmbH, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Kalus, Christian [Abteilung Betrieb Beschleuniger BESSYII, Helmholtz-Zentrum Berlin GmbH, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Nordlund, Dennis [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Zhang, Wenkai; Hartsock, Robert W.; Gaffney, Kelly J. [PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Schlotter, William F.; Turner, Joshua J. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kennedy, Brian [MAX-lab, PO Box 118, 221 00 Lund (Sweden); and others

2012-12-15T23:59:59.000Z

136

Femtosecond Time-Delay X-ray Holography  

NLE Websites -- All DOE Office Websites (Extended Search)

Time-Delay X-ray Holography Time-Delay X-ray Holography X-ray free-electron lasers (XFELs) will produce photon pulses with a unique and desirable combination of properties. Their short X-ray wavelengths allow penetration into materials and the ability to probe structure at and below the nanometer scale. Their ultra-short duration gives information about this structure at the fundamental time-scales of atoms and molecules. The extreme intensity of the pulses will allow this information to be acquired in a single shot, so that these studies can be carried out on non-repeatable processes or on weakly-scattering objects that will be modified by the pulse. A fourth property of XFEL pulses is their high transverse coherence, which brings the promise of decades of innovation in visible optics to the X-ray regime, such as holography, interferometry, and laser-based imaging. Making an effective use of XFEL pulses, however, will benefit from innovations that are new to both X-ray science and coherent optics. One such innovation is the new method of time-delay X-ray holography [i], recently demonstrated at the FLASH FEL at DESY in Hamburg, to measure the evolution of objects irradiated by intense pulses.

137

Compton backscattered collimated x-ray source  

SciTech Connect

A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

1998-01-01T23:59:59.000Z

138

Compton backscattered collmated X-ray source  

SciTech Connect

A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

2000-01-01T23:59:59.000Z

139

Tunable X-ray source  

DOE Patents (OSTI)

A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

Boyce, James R. (Williamsburg, VA)

2011-02-08T23:59:59.000Z

140

Low-Charge, Hard X-Ray Free Electron Laser Driven with an X-Band Injector and Accelerator  

Science Conference Proceedings (OSTI)

After the successful operation of the Free Electron Laser in Hamburg (FLASH) and the Linac Coherent Light Source (LCLS), soft and hard x-ray free electron lasers (FELs) are being built, designed, or proposed at many accelerator laboratories. Acceleration employing lower frequency rf cavities, ranging from L-band to C-band, is usually adopted in these designs. In the first stage bunch compression, higher-frequency harmonic rf system is employed to linearize the beam's longitudinal phase space, which is nonlinearly chirped during the lower frequency rf acceleration process. In this paper, a hard x-ray FEL design using an all X-band accelerator at 11.424 GHz (from photocathode rf gun to linac end) is presented, without the assistance of any harmonic rf linearization. It achieves LCLS-like performance at low charge using X-band linac drivers, which is more versatile, efficient, and compact than ones using S-band or C-band rf technology. It employs initially 42 microns long (rms), low-charge (10 pC) electron bunches from an X-band photoinjector. An overall bunch compression ratio of roughly 100 times is proposed in a two stage bunch compressor system. The start-to-end macroparticle 3D simulation employing several computer codes is presented in this paper, where space charge, wakefields, and incoherent and coherent synchrotron radiation effects are included. Employing an undulator with a short period of 1.5 cm, a Genesis FEL simulation shows successful lasing at a wavelength of 0.15 nm with a pulse length of 2 fs and a power saturation length as short as 20 meters, which is equivalent to LCLS low-charge mode. Its overall length of both accelerators and undulators is 180 meters (much shorter than the effective LCLS overall length of 1230 meters, including an accelerator length of 1100 meters and an undulator length of 130 meters), which makes it possible to be built in places where only limited space is available.

Sun, Yipeng; Adolphsen, Chris; Limborg-Deprey, Cecile; Raubenheimer, Tor; Wu, Juhao; /SLAC

2012-04-17T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray laser pulse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

THE RELATIONSHIP BETWEEN HARD X-RAY PULSE TIMINGS AND THE LOCATIONS OF FOOTPOINT SOURCES DURING SOLAR FLARES  

SciTech Connect

The cause of quasi-periodic pulsations in solar flares remains the subject of debate. Recently, Nakariakov and Zimovets proposed a new model suggesting that, in two-ribbon flares, such pulsations could be explained by propagating slow waves. These waves may travel obliquely to the magnetic field, reflect in the chromosphere, and constructively interfere at a spatially separate site in the corona, leading to quasi-periodic reconnection events progressing along the flaring arcade. Such a slow wave regime would have certain observational characteristics. We search for evidence of this phenomenon during a selection of two-ribbon flares observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager, Solar and Heliospheric Observatory, and Transition Region and Coronal Explorer; the flares of 2002 November 9, 2005 January 19, and 2005 August 22. We were not able to observe a clear correlation between hard X-ray footpoint separations and pulse timings during these events. Also, the motion of hard X-ray footpoints is shown to be continuous within the observational error, whereas a discontinuous motion might be anticipated in the slow wave model. Finally, we find that for a preferential slow wave propagation angle of 25 Degree-Sign -28 Degree-Sign that is expected for the fastest waves, the velocities of the hard X-ray footpoints lead to estimated pulse periods and ribbon lengths significantly larger than the measured values. Hence, for the three events studied, we conclude that the observational characteristics cannot be easily explained via the Nakariakov and Zimovets propagating slow wave model when only angles of 25 Degree-Sign -28 Degree-Sign are considered. We provide suggested flare parameters to optimize future studies of this kind.

Inglis, A. R.; Dennis, B. R. [Solar Physics Laboratory, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2012-04-01T23:59:59.000Z

142

A Switch in Time: A New Path to Subpicosecond X-ray Pulses  

NLE Websites -- All DOE Office Websites (Extended Search)

is currently a very active research topic. Several different approaches utilizing ultrafast lasers are being investigated. These include laser-plasma sources that produce short...

143

Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source  

Science Conference Proceedings (OSTI)

The highly transient nature of shock loading and pronounced microstructure effects on dynamic materials response call for in situ, temporally and spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction under dynamic loading, due to their high photon fluxes, high coherency, and high pulse repetition rates. The feasibility of bulk-scale gas gun shock experiments with dynamic x-ray PCI and diffraction measurements was investigated at the beamline 32ID-B of the Advanced Photon Source. The x-ray beam characteristics, experimental setup, x-ray diagnostics, and static and dynamic test results are described. We demonstrate ultrafast, multiframe, single-pulse PCI measurements with unprecedented temporal (dynamic Laue diffraction. The results not only substantiate the potential of synchrotron-based experiments for addressing a variety of shock physics problems, but also allow us to identify the technical challenges related to image detection, x-ray source, and dynamic loading.

Luo, S. N.; Jensen, B. J.; Hooks, D. E.; Ramos, K. J.; Yeager, J. D.; Kwiatkowski, K.; Shimada, T. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Fezzaa, K. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

2012-07-15T23:59:59.000Z

144

X-ray beamsplitter  

DOE Patents (OSTI)

An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

Ceglio, Natale M. (Livermore, CA); Stearns, Daniel S. (Mountain View, CA); Hawryluk, Andrew M. (Modesto, CA); Barbee, Jr., Troy W. (Palo Alto, CA)

1989-01-01T23:59:59.000Z

145

LUX - A design study for a linac/laser-based ultrafast X-ray source  

E-Print Network (OSTI)

from the start as a user facility for femtosecond x-rayusers simultaneously, while the whole spectrum of already-available x-ray determinations, long a staple at existing synchrotron facilities,

2004-01-01T23:59:59.000Z

146

X-Ray Studies of Structural Effects Induced by Pulsed (30 Tesla)  

Science Conference Proceedings (OSTI)

Abstract Scope, A portable 30 Tesla pulsed-magnet system for materials studies in high magnetic fields is presented. A split-pair magnet (Tohoku design) cooled

147

A dual-channel, curved-crystal spectrograph for petawatt laser, x-ray backlighter source studies  

Science Conference Proceedings (OSTI)

A dual-channel, curved-crystal spectrograph was designed to measure time-integrated x-ray spectra in the {approx}1.5 to 2 keV range (6.2-8.2 A wavelength) from small-mass, thin-foil targets irradiated by the VULCAN petawatt laser focused up to 4x10{sup 20} W/cm{sup 2}. The spectrograph consists of two cylindrically curved potassium-acid-phthalate crystals bent in the meridional plane to increase the spectral range by a factor of {approx}10 compared to a flat crystal. The device acquires single-shot x-ray spectra with good signal-to-background ratios in the hard x-ray background environment of petawatt laser-plasma interactions. The peak spectral energies of the aluminum He{sub {alpha}} and Ly{sub {alpha}} resonance lines were {approx}1.8 and {approx}1.0 mJ/eV sr ({approx}0.4 and 0.25 J/A sr), respectively, for 220 J, 10 ps laser irradiation.

Theobald, W.; Stoeckl, C.; Jaanimagi, P. A.; Nilson, P. M.; Storm, M.; Meyerhofer, D. D.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Hey, D.; MacKinnon, A. J.; Park, H.-S.; Patel, P. K.; Shepherd, R.; Snavely, R. A.; Key, M. H. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550-9234 (United States); King, J. A.; Zhang, B. [Department of Applied Sciences, University of California, Davis, Davis, California 95616 (United States); Stephens, R. B.; Akli, K. U. [General Atomics, San Diego, California 92186 (United States); Highbarger, K.; Daskalova, R. L. [College of Mathematical and Physical Sciences, Ohio State University, Columbus, Ohio 43210 (United States); and others

2009-08-15T23:59:59.000Z

148

Using the X-FEL to photo-pump X-ray laser transitions in He-like Ne  

SciTech Connect

Nearly four decades ago H-like and He-like resonantly photo-pumped laser schemes were proposed for producing X-ray lasers. However, demonstrating these schemes in the laboratory has proved to be elusive because of the difficulty of finding a strong resonant pump line. With the advent of the X-ray free electron laser (X-FEL) at the SLAC Linac Coherent Light Source (LCLS) we now have a tunable X-ray laser source that can be used to replace the pump line in previously proposed laser schemes and allow researchers to study the physics and feasibility of resonantly photo-pumped laser schemes. In this paper we use the X-FEL at 1174 eV to photo-pump the singly excited 1s2p state of He-like Ne to the doubly excited 2p3p state and model gain on the 2p3p-2p2s transition at 175 eV and the 2p3p-1s3p transition at 1017 eV. One motivation for studying this scheme is to explore possible quenching of the gain due to strong non-linear coupling effects from the intense X-FEL beam We compare this scheme with photo-pumping the He-like Ne ground state to the 1s3p singly excited state followed by lasing on the 3p-2s and 3d-2p transitions at 158 and 151 eV. Experiments are being planned at LCLS to study these laser processes and coherent quantum effects.

Nilsen, J; Rohringer, N

2011-08-30T23:59:59.000Z

149

High-power Waveguide Dampers for the Short-Pulse X-Ray Project at the Advanced Photon Source  

Science Conference Proceedings (OSTI)

High-power waveguide dampers have been designed and prototyped for the Short-Pulse X-ray (SPX) cavities at the Advanced Photon Source. The cavities will operate at 2.815 GHz and utilize the TM110 dipole mode. As a result, higher-order (HOM) and lower-order mode (LOM) in-vacuum dampers have been designed to satisfy the demanding broadband damping requirements in the APS storage ring. The SPX single-cell cavity consists of two WR284 waveguides for damping the HOMs and one WR284 waveguide for primarily damping the LOM where up to 2kW will be dissipated in the damping material. The damper designs and high-power experimental results will be discussed in this paper.

Waldschmidt, G J; Liu, J; Middendorf, M E; Nassiri, A; Smith, T L; Wu, G; Henry, J; Mammosser, J D; Rimmer, R A

2012-07-01T23:59:59.000Z

150

Novel x-ray imaging methods at the Nova Laser Facility  

Science Conference Proceedings (OSTI)

We are pursuing several novel x-ray imaging schemes to measure plasma parameters in inertial-confinement fusion experiments. This paper will review two quite successful approaches, the soft x-ray moire deflectometer, and the annular (ring) coded-aperture microscope. The deflectometer is the newer diagnostic, and this paper will concentrate on this topic. We will describe the operating principles of moire deflectometry, give the motivations for soft x-ray probing, describe the physical apparatus in detail, and present some sample images and results. The ring coded-aperture microscope has been described previously, so here we will only briefly review the principle of the instrument. We will concentrate on the signal-to-noise ratio calculations that motivate the use of annular coded apertures, and describe recent work to predict and measure the resolution of the instrument.

Ress, D.; DaSilva, L.B.; London, R.A.; Trebes, J.E.; Lerche, R.A. [Lawrence Livermore National Lab., CA (United States); Bradley, D.K. [Rochester Univ., NY (United States). Lab. for Laser Energetics

1994-06-06T23:59:59.000Z

151

Resonant Auger Effect at High X-Ray Intensity  

SciTech Connect

The resonant Auger effect of atomic neon exposed to high-intensity x-ray radiation in resonance with the 1s {yields} 3p transition is discussed. High intensity here means that the x-ray peak intensity is sufficient ({approx} 10{sup 18} W/cm{sup 2}) to induce Rabi oscillations between the neon ground state and the 1s{sup -1}3p ({sup 1}P) state within the relaxation lifetime of the inner-shell vacancy. For the numerical analysis presented, an effective two-level model, including a description of the resonant Auger decay process, is employed. Both coherent and chaotic x-ray pulses are treated. The latter are used to simulate radiation from x-ray free-electron lasers based on the principle of self-amplified spontaneous emission. Observing x-ray-driven atomic population dynamics in the time domain is challenging for chaotic pulse ensembles. A more practical option for experiments using x-ray free-electron lasers is to measure the line profiles in the kinetic energy distribution of the resonant Auger electron. This provides information on both atomic population dynamics and x-ray pulse properties.

Rohringer, N; Santra, R

2008-03-27T23:59:59.000Z

152

Optimizing pulse-pileup detection for soft-x-ray spectroscopy  

SciTech Connect

The problem of optimizing detection of the pileup of randomly occurring exponential tail pulses in white noise is considered. An attempt is made to reduce the process to an algorithm that could practically be performed in real time. Quantitative estimates are made for the performance of such an optimum detector. The relation to a more general pattern recognition problem is mentioned.

Greenberger, A.J.

1981-04-01T23:59:59.000Z

153

Pulsed gas laser  

DOE Patents (OSTI)

A pulsed gas laser is constituted by Blumlein circuits wherein space metal plates function both as capacitors and transmission lines coupling high frequency oscillations to a gas filled laser tube. The tube itself is formed by spaced metal side walls which function as connections to the electrodes to provide for a high frequency, high voltage discharge in the tube to cause the gas to lase. Also shown is a spark gap switch having structural features permitting a long life.

Anderson, Louis W. (Madison, WI); Fitzsimmons, William A. (Madison, WI)

1978-01-01T23:59:59.000Z

154

Scaling of Pressure with Intensity in Laser-Driven Shocks and Effects of Hot X-ray Preheat  

SciTech Connect

To drive shocks into solids with a laser we either illuminate the material directly, or to get higher pressures, illuminate a plastic ablator that overlays the material of interest. In both cases the illumination intensity is low, <<10{sup 13} W/cm{sup 2}, compared to that for traditional laser fusion targets. In this regime, the laser beam creates and interacts with a collisional, rather than a collisionless, plasma. We present scaling relationships for shock pressure with intensity derived from simulations for this low-intensity collisional plasma regime. In addition, sometimes the plastic-ablator targets have a thin flashcoating of Al on the plastic surface as a shine-through barrier; this Al layer can be a source of hot x-ray preheat. We discuss how the preheat affects the shock pressure, with application to simulating VISAR measurements from experiments conducted on various lasers on shock compression of Fe.

Colvin, J D; Kalantar, D H

2005-08-29T23:59:59.000Z

155

Microscopic linear liquid streams in vacuum: Injection of solvated biological samples into X-ray free electron lasers  

SciTech Connect

Microscopic linear liquid free-streams offer a means of gently delivering biological samples into a probe beam in vacuum while maintaining the sample species in a fully solvated state. By employing gas dynamic forces to form the microscopic liquid stream (as opposed to a conventional solid-walled convergent nozzle), liquid free-streams down to 300 nm diameter have been generated. Such 'Gas Dynamic Virtual Nozzles' (GDVN) are ideally suited to injecting complex biological species into an X-ray Free Electron Laser (XFEL) to determine the structure of the biological species via Serial Femtosecond Crystallography (SFX). GDVN injector technology developed for this purpose is described.

Doak, R. B.; DePonte, D. P.; Nelson, G.; Camacho-Alanis, F.; Ros, A.; Spence, J. C. H.; Weierstall, U. [Arizona State University, Tempe, AZ 85287-1504 (United States); Centre for Free-Electron Laser Science, DESY, D-22607 Hamburg (Germany); Arizona State University, Tempe, AZ 85287-1504 (United States)

2012-11-27T23:59:59.000Z

156

A high-repetition rate scheme for synchrotron-based picosecond laser pump/x-ray probe experiments on chemical and biological systems in solution  

SciTech Connect

We present the extension of time-resolved optical pump/x-ray absorption spectroscopy (XAS) probe experiments towards data collection at MHz repetition rates. The use of a high-power picosecond laser operating at an integer fraction of the repetition rate of the storage ring allows exploitation of up to two orders of magnitude more x-ray photons than in previous schemes based on the use of kHz lasers. Consequently, we demonstrate an order of magnitude increase in the signal-to-noise of time-resolved XAS of molecular systems in solution. This makes it possible to investigate highly dilute samples at concentrations approaching physiological conditions for biological systems. The simplicity and compactness of the scheme allows for straightforward implementation at any synchrotron beamline and for a wide range of x-ray probe techniques, such as time-resolved diffraction or x-ray emission studies.

Lima, Frederico A.; Milne, Christopher J.; Amarasinghe, Dimali C. V.; Rittmann-Frank, Mercedes Hannelore; Veen, Renske M. van der; Reinhard, Marco; Pham, Van-Thai; Karlsson, Susanne; Mourik, Frank van; Chergui, Majed [Laboratoire de Spectroscopie Ultrarapide, Ecole Polytechnique Federale de Lausanne, ISIC, FSB, 1015 Lausanne (Switzerland); Johnson, Steven L.; Grolimund, Daniel; Borca, Camelia; Huthwelker, Thomas; Janousch, Markus [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen (Switzerland); Abela, Rafael [SwissFEL, Paul Scherrer Institut, 5232 Villigen (Switzerland)

2011-06-15T23:59:59.000Z

157

Dilation x-ray imager a new/faster gated x-ray imager for the NIF  

SciTech Connect

As the yield on implosion shots increases it is expected that the peak x-ray emission reduces to a duration with a FWHM as short as 20 ps for {approx}7 Multiplication-Sign 10{sup 18} neutron yield. However, the temporal resolution of currently used gated x-ray imagers on the NIF is 40-100 ps. We discuss the benefits of the higher temporal resolution for the NIF and present performance measurements for dilation x-ray imager, which utilizes pulse-dilation technology [T. J. Hilsabeck et al., Rev. Sci. Instrum. 81, 10E317 (2010)] to achieve x-ray imaging with temporal gate times below 10 ps. The measurements were conducted using the COMET laser, which is part of the Jupiter Laser Facility at the Lawrence Livermore National Laboratory.

Nagel, S. R.; Bell, P. M.; Bradley, D. K.; Ayers, M. J.; Barrios, M. A.; Felker, B.; Smith, R. F.; Collins, G. W.; Jones, O. S.; Piston, K.; Raman, K. S. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Hilsabeck, T. J.; Kilkenny, J. D.; Chung, T.; Sammuli, B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Hares, J. D.; Dymoke-Bradshaw, A. K. L. [Kentech Instruments Ltd., Wallingford, Oxfordshire OX10 (United Kingdom)

2012-10-15T23:59:59.000Z

158

Design Optimization for an X-Ray Free Electron Laser Driven by SLAC Linac  

E-Print Network (OSTI)

FREE ELECTRON LASER DRIVEN BY SLAC LINAC Ming Xie, LawrenceLaser (FEL) driven by the SLAC linac. The study assumes theis carried out for the SLAC FEL over all independent system

Xie, Ming

1994-01-01T23:59:59.000Z

159

K-alpha conversion efficiency measurments for x-ray scattering in inertial confinement fusion plasmas  

SciTech Connect

The conversion efficiency of ultra short-pulse laser radiation to K-{alpha} x-rays has been measured for various chlorine-containing targets to be used as x-ray scattering probes of dense plasmas. The spectral and temporal properties of these sources will allow spectrally-resolved x-ray scattering probing with picosecond temporal resolution required for measuring the plasma conditions in inertial confinement fusion experiments. Simulations of x-ray scattering spectra from these plasmas show that fuel capsule density, capsule ablator density, and shock timing information may be inferred.

Kritcher, A L; Neumayer, P; Urry, M K; Robey, H; Niemann, C; Landen, O L; Morse, E; Glenzer, S H

2006-11-21T23:59:59.000Z

160

Using Light to Control How X Rays Interact with Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Light to Control How X Rays Interact with Matter Print Using Light to Control How X Rays Interact with Matter Print Schemes that use one light pulse to manipulate interactions of another with matter are well developed in the visible-light regime where an optical control pulse influences how an optical probe pulse interacts with a medium. This approach has opened new research directions in fields like quantum computing and nonlinear optics, while also spawning entirely new research areas, such as electromagnetically induced transparency and slow light. However, it has been unclear whether similar optical control schemes could be used to modify how x rays interact with matter. In a dramatic breakthrough demonstration at the ALS, a Berkeley Lab-Argonne National Laboratory group has now used powerful visible-light lasers to render a nominally opaque material transparent to x rays. While x-ray transparency will have immediate applications at x-ray light sources, the important result is that the findings lay a foundation for a broader spectrum of applications.

Note: This page contains sample records for the topic "x-ray laser pulse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Using Light to Control How X Rays Interact with Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Light to Control How X Rays Interact with Matter Print Using Light to Control How X Rays Interact with Matter Print Schemes that use one light pulse to manipulate interactions of another with matter are well developed in the visible-light regime where an optical control pulse influences how an optical probe pulse interacts with a medium. This approach has opened new research directions in fields like quantum computing and nonlinear optics, while also spawning entirely new research areas, such as electromagnetically induced transparency and slow light. However, it has been unclear whether similar optical control schemes could be used to modify how x rays interact with matter. In a dramatic breakthrough demonstration at the ALS, a Berkeley Lab-Argonne National Laboratory group has now used powerful visible-light lasers to render a nominally opaque material transparent to x rays. While x-ray transparency will have immediate applications at x-ray light sources, the important result is that the findings lay a foundation for a broader spectrum of applications.

162

Using Light to Control How X Rays Interact with Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Light to Control How X Using Light to Control How X Rays Interact with Matter Using Light to Control How X Rays Interact with Matter Print Wednesday, 27 January 2010 00:00 Schemes that use one light pulse to manipulate interactions of another with matter are well developed in the visible-light regime where an optical control pulse influences how an optical probe pulse interacts with a medium. This approach has opened new research directions in fields like quantum computing and nonlinear optics, while also spawning entirely new research areas, such as electromagnetically induced transparency and slow light. However, it has been unclear whether similar optical control schemes could be used to modify how x rays interact with matter. In a dramatic breakthrough demonstration at the ALS, a Berkeley Lab-Argonne National Laboratory group has now used powerful visible-light lasers to render a nominally opaque material transparent to x rays. While x-ray transparency will have immediate applications at x-ray light sources, the important result is that the findings lay a foundation for a broader spectrum of applications.

163

The Turn-on of LCLS: the X-Ray Free Electron Laser at SLAC ( Keynote - 2011 JGI User Meeting)  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. SLAC National Laboratory Director Persis Drell gives a keynote talk on "The Turn-on of LCLS: the X-Ray Free-Electron Laser at SLAC" at the 6th Genomics of Energy & Environment Meeting on March 22, 2011

Drell, Persis [SLAC Director

2011-03-22T23:59:59.000Z

164

Radiation from laser accelerated electron bunches: Coherent terahertz and femtosecond X-rays  

E-Print Network (OSTI)

of coherent transition radiation generated at a plasma-and G. Fubiani, “Terahertz radiation from laser acceleratedW. P. Leemans, “Synchrotron radiation from electron beams in

2004-01-01T23:59:59.000Z

165

Laser system using ultra-short laser pulses  

DOE Patents (OSTI)

A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

Dantus, Marcos (Okemos, MI); Lozovoy, Vadim V. (Okemos, MI); Comstock, Matthew (Milford, MI)

2009-10-27T23:59:59.000Z

166

X-ray Line Profile Analysis  

Science Conference Proceedings (OSTI)

... Magnetic Composite Materials · X-Ray Studies of Structural Effects Induced by Pulsed (30 Tesla), High Magnetic Fields at the Advanced Photon Source ...

167

Demonstration of an 8.85 nm Gain-Saturated Table-Top Soft X-Ray Laser and Lasing down to 7.4 nm  

Science Conference Proceedings (OSTI)

We report the efficient generation of a gain-saturated 8.85 nm wavelength table-top soft x-ray laser operating at 1 Hz repetition rate and the observation of lasing at wavelengths as short as 7.36 nm in lanthanide ions.

Wang, Yong [Colorado State University, Fort Collins; Alessi, David [Colorado State University, Fort Collins; Luther, Brad [Colorado State University, Fort Collins; Yin, Liang [Colorado State University, Fort Collins; Martz, Dale [Colorado State University, Fort Collins; Berrill, Mark A [ORNL; Jorge, Rocca [Colorado State University, Fort Collins

2012-01-01T23:59:59.000Z

168

Tailored Terahertz Pulses from a Laser-Modulated Electron Beam  

NLE Websites -- All DOE Office Websites (Extended Search)

100 femtoseconds, synchronization to another ultrafast source ranging from infrared to x-ray wavelengths, and the ability to shape the time envelope of the pulse. Among the...

169

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray...

170

Soft X-ray laser using pumping of 3P and 4P levels of He-like and H-like ions  

DOE Patents (OSTI)

X-ray laser method and apparatus for producing coherent radiation at, for example, energies of at least 40 eV, using Be-like Cr, N-like Ni, He-like Na, B-like Cr, Be-like Mn or similar multiply ionized species to pump appropriate high energy transitions in He-like or H-like N, O, F, C or rare gases, with associated laser transition gains of 4-50 cm.sup.-1.

Hagelstein, Peter L. (Livermore, CA)

1987-01-01T23:59:59.000Z

171

Soft x-ray laser using pumping of 3p and 4p levels of He-like and H-like ions  

DOE Patents (OSTI)

X-ray laser method and apparatus for producing coherent radiation at, for example, energies of at least 40 eV, using Be-like Cr, N-like Ni, He-like Na, B-like Cr, Be-like Mn or similar multiply ionized species to pump appropriate high energy transitions in He-like or H-like N, O, F, C or rare gases, with associated laser transition gains of 4 to 50 cm/sup -1/.

Hagelstein, P.L.

1985-07-05T23:59:59.000Z

172

Ultra hard x rays from krypton clusters heated by intense laser fields R. C. Issac,a)  

E-Print Network (OSTI)

with gas-phase targets, x-ray sources derived from solid tar- gets have superior x-ray yields in the hard x. Hulin, P. Mono, J. Abdallah, Jr., A. Y. Faenov, I. Y. Skobelev, A. I. Magunov, and T. A. Pikuz, JETP

Strathclyde, University of

173

Soft x-ray scattering using FEL radiation for probing near-solid density plasmas at few electronvolt temperatures  

DOE Green Energy (OSTI)

We report on soft x-ray scattering experiments on cryogenic hydrogen and simple metal targets. As a source of intense and ultrashort soft x-ray pulses we have used free-electron laser radiation at 92 eV photon energy from FLASH at DESY, Hamburg. X-ray pulses with energies up to 100 {micro}J and durations below 50 fs provide interaction with the target leading simultaneously to plasma formation and scattering. Experiments exploiting both of these interactions have been carried out, using the same experimental setup. Firstly, recording of soft x-ray inelastic scattering from near-solid density hydrogen plasmas at few electronvolt temperatures confirms the feasibility of this diagnostics technique. Secondly, the soft x-ray excitation of few electronvolt solid-density plasmas in simple metals could be studied by recording soft x-ray line and continuum emission integrated over emission times from fs to ns.

Toleikis, S; Faustlin, R R; Cao, L; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gode, S; Gregori, G; Irsig, R; Laarmann, T; Lee, H J; Li, B; Meiwes-Broer, K; Przystawik, A; Radcliffe, P; Redmer, R; Tavella, F; Thiele, R; Tiggesbaumker, J; Truong, N X; Uschmann, I; Zastrau, U; Tschentscher, T

2009-03-03T23:59:59.000Z

174

High-efficiency high-energy Ka source for the critically-required maximum illumination of x-ray optics on Z using Z-petawatt-driven laser-breakout-afterburner accelerated ultrarelativistic electrons LDRD .  

Science Conference Proceedings (OSTI)

Under the auspices of the Science of Extreme Environments LDRD program, a <2 year theoretical- and computational-physics study was performed (LDRD Project 130805) by Guy R Bennett (formally in Center-01600) and Adam B. Sefkow (Center-01600): To investigate novel target designs by which a short-pulse, PW-class beam could create a brighter K{alpha} x-ray source than by simple, direct-laser-irradiation of a flat foil; Direct-Foil-Irradiation (DFI). The computational studies - which are still ongoing at this writing - were performed primarily on the RedStorm supercomputer at Sandia National Laboratories Albuquerque site. The motivation for a higher efficiency K{alpha} emitter was very clear: as the backlighter flux for any x-ray imaging technique on the Z accelerator increases, the signal-to-noise and signal-to-background ratios improve. This ultimately allows the imaging system to reach its full quantitative potential as a diagnostic. Depending on the particular application/experiment this would imply, for example, that the system would have reached its full design spatial resolution and thus the capability to see features that might otherwise be indiscernible with a traditional DFI-like x-ray source. This LDRD began FY09 and ended FY10.

Sefkow, Adam B.; Bennett, Guy R.

2010-09-01T23:59:59.000Z

175

Importance of secondary-electron collisional ionization (avalanche) for x-ray pulses incident on missiles-in-flight. Technical report, 1 February 1984-14 May 1985  

Science Conference Proceedings (OSTI)

This report present a series of contour plots for both strong and moderate avalanche on the electric field-pressure plane. Plots are given for effective electric field durations from 0.1 to 100 ns, consistent with times corresponding to x-ray pulse widths of interest in nuclear weapon effects. The computations were carried out with special concern for accuracy. The adequacy of the air-chemistry data set is confirmed by comparison with experimental swarm data. The effect of the delay for the avalanche frequency to reach its steady-state value is included in the calculations.

Bloomberg, H.W.

1985-05-14T23:59:59.000Z

176

X-ray polarization spectroscopy to study anisotropic velocity distribution of hot electrons produced by an ultra-high-intensity laser  

SciTech Connect

The anisotropy of the hot-electron velocity distribution in ultra-high-intensity laser produced plasma was studied with x-ray polarization spectroscopy using multilayer planar targets including x-ray emission tracer in the middle layer. This measurement serves as a diagnostic for hot-electron transport from the laser-plasma interaction region to the overdense region where drastic changes in the isotropy of the electron velocity distribution are observed. These polarization degrees are consistent with analysis of a three-dimensional polarization spectroscopy model coupled with particle-in-cell simulations. Electron velocity distribution in the underdense region is affected by the electric field of the laser and that in the overdense region becomes wider with increase in the tracer depth. A full-angular spread in the overdense region of 22.4 deg.{sub -2.4}{sup +5.4} was obtained from the measured polarization degree.

Inubushi, Y. [Institute of Laser Engineering, Osaka University, Suita, Osaka (Japan); Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Okano, Y.; Nishimura, H.; Cai, H.; Nagatomo, H.; Kai, T.; Fujioka, S.; Nakamura, T.; Johzaki, T.; Mima, K. [Institute of Laser Engineering, Osaka University, Suita, Osaka (Japan); Kawamura, T. [Tokyo Institute of Technology, Yokohama, Kanagawa (Japan); Batani, D.; Morace, A.; Redaelli, R. [Dipartmento di Fisica 'G. Occhialini', University of Milano-Bicocca, Milan (Italy); Fourment, C.; Santos, J. J.; Malka, G. [CELIA, Universite de Bordeaux/CNRS/CEA, Talence (France); Boscheron, A.; Bonville, O.; Grenier, J. [CEA/CESTA, Le Barp (France)

2010-03-15T23:59:59.000Z

177

Tokamak x ray diagnostic instrumentation  

SciTech Connect

Three classes of x-ray diagnostic instruments enable measurement of a variety of tokamak physics parameters from different features of the x-ray emission spectrum. (1) The soft x-ray (1 to 50 keV) pulse-height-analysis (PHA) diagnostic measures impurity concentrations from characteristic line intensities and the continuum enhancement, and measures the electron temperature from the continuum slope. (2) The Bragg x-ray crystal spectrometer (XCS) measures the ion temperature and neutral-beam-induced toroidal rotation velocity from the Doppler broadening and wavelength shift, respectively, of spectral lines of medium-Z impurity ions. Impurity charge state distributions, precise wavelengths, and inner-shell excitation and recombination rates can also be studied. X rays are diffracted and focused by a bent crystal onto a position-sensitive detector. The spectral resolving power E/..delta..E is greater than 10/sup 4/ and time resolution is 10 ms. (3) The x-ray imaging system (XIS) measures the spatial structure of rapid fluctuations (0.1 to 100 kHZ) providing information on MHD phenomena, impurity transport rates, toroidal rotation velocity, plasma position, and the electron temperature profile. It uses an array of silicon surface-barrier diodes which view different chords of the plasma through a common slot aperture and operate in current (as opposed to counting) mode. The effectiveness of shields to protect detectors from fusion-neutron radiation effects has been studied both theoretically and experimentally.

Hill, K.W.; Beiersdorfer, P.; Bitter, M.; Fredrickson, E.; Von Goeler, S.; Hsuan, H.; Johnson, L.C.; Liew, S.L.; McGuire, K.; Pare, V.

1987-01-01T23:59:59.000Z

178

Tokamak physics studies using x-ray diagnostic methods  

SciTech Connect

X-ray diagnostic measurements have been used in a number of experiments to improve our understanding of important tokamak physics issues. The impurity content in TFTR plasmas, its sources and control have been clarified through soft x-ray pulse-height analysis (PHA) measurements. The dependence of intrinsic impurity concentrations and Z/sub eff/ on electron density, plasma current, limiter material and conditioning, and neutral-beam power have shown that the limiter is an important source of metal impurities. Neoclassical-like impurity peaking following hydrogen pellet injection into Alcator C and a strong effect of impurities on sawtooth behavior were demonstrated by x-ray imaging (XIS) measurements. Rapid inward motion of impurities and continuation of m = 1 activity following an internal disruption were demonstrated with XIS measurements on PLT using injected aluminum to enhance the signals. Ion temperatures up to 12 keV and a toroidal plasma rotation velocity up to 6 x 10/sup 5/ m/s have been measured by an x-ray crystal spectrometer (XCS) with up to 13 MW of 85-keV neutral-beam injection in TFTR. Precise wavelengths and relative intensities of x-ray lines in several helium-like ions and neon-like ions of silver have been measured in TFTR and PLT by the XCS. The data help to identify the important excitation processes predicted in atomic physics. Wavelengths of n = 3 to 2 silver lines of interest for x-ray lasers were measured, and precise instrument calibration techniques were developed. Electron thermal conductivity and sawtooth dynamics have been studied through XIS measurements on TFTR of heat-pulse propagation and compound sawteeth. A non-Maxwellian electron distribution function has been measured, and evidence of the Parail-Pogutse instability identified by hard x-ray PHA measurements on PLT during lower-hybrid current-drive experiments.

Hill, K.W.; Bitter, M.; von Goeler, S.; Beiersdorfer, P.; Fredrickson, E.; Hsuan, H.; McGuire, K.; Sauthoff, N.R.; Sesnic, S.; Stevens, J.E.

1987-03-01T23:59:59.000Z

179

Short pulse free electron laser amplifier  

DOE Patents (OSTI)

Method and apparatus for amplification of a laser pulse in a free electron laser amplifier where the laser pulse duration may be a small fraction of the electron beam pulse duration used for amplification. An electron beam pulse is passed through a first wiggler magnet and a short laser pulse to be amplified is passed through the same wiggler so that only the energy of the last fraction, f, (f<1) of the electron beam pulse is consumed in amplifying the laser pulse. After suitable delay of the electron beam, the process is repeated in a second wiggler magnet, a third, . . . , where substantially the same fraction f of the remainder of the electron beam pulse is consumed in amplification of the given short laser pulse in each wiggler magnet region until the useful electron beam energy is substantially completely consumed by amplification of the laser pulse.

Schlitt, Leland G. (Livermore, CA); Szoke, Abraham (Fremont, CA)

1985-01-01T23:59:59.000Z

180

Coaxial short pulsed laser  

DOE Patents (OSTI)

This invention relates to a laser system of rugged design suitable for use in a field environment. The laser itself is of coaxial design with a solid potting material filling the space between components. A reservoir is employed to provide a gas lasing medium between an electrode pair, each of which is connected to one of the coaxial conductors. (auth)

Nelson, M.A.; Davies, T.J.

1975-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray laser pulse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Relative x-ray backlighter intensity comparison of ti and ti/sc combination foils driven in double-sided and single-sided laser configuration  

SciTech Connect

Use of multiple backlighter foils and/or double-sided laser interaction geometry with backlit imaging can result in improved backlighter efficiency. An experimental comparison of backlighter intensity for Ti foils and Ti/Sc combination foils in both the one-sided and double-sided laser-interaction configuration is presented. Spectrally-integrated framing camera images show intensity contributions of front and rear backlighter surfaces for both foil types. Analysis of time-resolved x-ray spectra collected from foil targets show the relative contribution of Ti and Sc 2-1 He-like resonance lines to the total backlighter intensity.

Bullock, A B; Landen, O L; Bradley, D K

2000-06-05T23:59:59.000Z

182

Soft x-ray laser using pumping of 3P and 4P levels of He-like and H-like ions  

DOE Patents (OSTI)

X-ray laser method and apparatus for producing coherent radiation at, for example, energies of 40 to 189 eV, using Be-like Cr, N-like Ni, He-like Na, B-like Cr, Be-like Mn or similar multiply ionized species to pump appropriate high energy transitions in He-like or H-like rare gases or N, O, F, or C gases, with associated laser transition gains of 20 to 50 cm/sup -1/.

Hagelstein, P.

1982-03-26T23:59:59.000Z

183

Soft X-ray laser using pumping of 3P and 4P levels of He-like and H-like ions  

DOE Patents (OSTI)

X-ray laser method and apparatus are disclosed for producing coherent radiation at, for example, energies of at least 40 eV, using Be-like Cr, N-like Ni, He-like Na, B-like Cr, Be-like Mn or similar multiply ionized species to pump appropriate high energy transitions in He-like or H-like N, O, F, C or rare gases, with associated laser transition gains of 4-50 cm[sup [minus]1]. 8 figs.

Hagelstein, P.L.

1987-04-21T23:59:59.000Z

184

X-ray grating spectrometer for opacity measurements in the 50 eV to 250 eV spectral range at the LULI 2000 laser facility  

SciTech Connect

An x-ray grating spectrometer was built in order to measure opacities in the 50 eV to 250 eV spectral range with an average spectral resolution {approx} 50. It has been used at the LULI-2000 laser facility at Ecole Polytechnique (France) to measure the {Delta}n = 0, n = 3 transitions of several elements with neighboring atomic number: Cr, Fe, Ni, and Cu in the same experimental conditions. Hence a spectrometer with a wide spectral range is required. This spectrometer features one line of sight looking through a heated sample at backlighter emission. It is outfitted with one toroidal condensing mirror and several flat mirrors cutting off higher energy photons. The spectral dispersion is obtained with a flatfield grating. Detection consists of a streak camera sensitive to soft x-ray radiation. Some experimental results showing the performance of this spectrometer are presented.

Reverdin, Charles; Caillaud, T.; Gilleron, F.; Pain, J. C.; Silvert, V.; Soullie, G.; Villette, B. [CEA, DAM, DIF, 91297 Arpajon (France); Thais, Frederic; Loisel, Guillaume; Blenski, T.; Poirier, M. [CEA, DSM, IRAMIS, Service Photons, Atomes et Molecules, 91191 Gif-sur-Yvette (France); Busquet, M. [ARTEP Inc, Ellicott City, Maryland 21042 (United States); Bastiani-Ceccotti, S.; Serres, F. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, route de Saclay, 91128 Palaiseau (France); Ducret, J. E. [CELIA, UMR5107, CEA, CNRS, Universite de Bordeaux, 33400 Talence (France); Foelsner, W. [Max Planck Instituet fuer Quantum Optik, 85748 Garching (Germany); Gilles, D.; Turck-Chieze, S. [CEA, DSM, IRFU, Service d'astrophysique, 91191 Gif-sur-Yvette (France)

2012-10-15T23:59:59.000Z

185

Computational Simulations of High Intensity X-Ray Matter Interaction  

SciTech Connect

Free electron lasers have the promise of producing extremely high-intensity short pulses of coherent, monochromatic radiation in the 1-10 keV energy range. For example, the Linac Coherent Light Source at Stanford is being designed to produce an output intensity of 2 x 10{sup 14} W/cm{sup 2} in a 230 fs pulse. These sources will open the door to many novel research studies. However, the intense x-ray pulses may damage the optical components necessary for studying and controlling the output. At the full output intensity, the dose to optical components at normal incidence ranges from 1-10 eV/atom for low-Z materials (Z < 14) at photon energies of 1 keV. It is important to have an understanding of the effects of such high doses in order to specify the composition, placement, and orientation of optical components, such as mirrors and monochromators. Doses of 10 eV/atom are certainly unacceptable since they will lead to ablation of the surface of the optical components. However, it is not precisely known what the damage thresholds are for the materials being considered for optical components for x-ray free electron lasers. In this paper, we present analytic estimates and computational simulations of the effects of high-intensity x-ray pulses on materials. We outline guidelines for the maximum dose to various materials and discuss implications for the design of optical components.

London, R A; Rionta, R; Tatchyn, R; Roessler, S

2001-08-02T23:59:59.000Z

186

SLAC National Accelerator Laboratory - SLAC X-rays Help Discover...  

NLE Websites -- All DOE Office Websites (Extended Search)

which pulses 120 times a second. In the instant before the intense X-rays destroy a nanocrystal, detectors record a flash of X-ray diffraction information. Finally, scientists use...

187

High resolution soft x-ray spectroscopy of low Z K-shell emission from laser-produced plasmas  

SciTech Connect

A large radius, R = 44.3 m, High Resolution Grating Spectrometer (HRGS) with 2400 line/mm variable line spacing has been designed for laser-produced plasma experiments conducted at the Lawrence Livermore National Laboratory Jupiter Laser Facility. The instrument has been run with a low-noise, charge-coupled device detector to record high signal-to-noise spectra in the 10-50 {angstrom} wavelength range. The instrument can be run with a 10-20 {micro}m wide slit to achieve the best spectral resolving power, approaching 1000 and similar to crystal spectrometers at 12-20 {angstrom}, or in slitless operation with a small symmetrical emission source. We describe preliminary spectra emitted from various H-like and He-like low Z ion plasmas heated by 100-500 ps (FWHM), 527 nm wavelength laser pulses. This instrument can be developed as a useful spectroscopy platform relevant to laboratory-based astrophysics as well as high energy density plasma studies.

Dunn, J; Magee, E W; Shepherd, R; Chen, H; Hansen, S B; Moon, S J; Brown, G V; Gu, M; Beiersdorfer, P; Purvis, M A

2008-05-21T23:59:59.000Z

188

Electron acceleration & laser pulse compression using a laser...  

NLE Websites -- All DOE Office Websites (Extended Search)

acceleration & laser pulse compression using a laser-plasma accelerator Wednesday, August 14, 2013 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Andreas Walker, Oxford...

189

Nanosecond component in a femtosecond laser pulse  

Science Conference Proceedings (OSTI)

Experimental and computational results show that the coherent microwave scattering from a laser-induced plasma can be used for measuring the quality of a fs laser pulse. The temporal dynamics of the microwave scattered signal from the fs-laser induced plasma can be related to the effect of nanosecond tail of the fs laser pulse.

Shneider, M. N. [Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Semak, V. V. [ARL, Pennsylvania State University, University Park, Pennsylvania 16801 (United States); Zhang Zhili [Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States)

2012-11-15T23:59:59.000Z

190

Single mode pulsed dye laser oscillator  

DOE Patents (OSTI)

A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability. 6 figs.

Hackel, R.P.

1992-11-24T23:59:59.000Z

191

Modeling Pulsed Laser Melting of Embedded Nanoparticles  

E-Print Network (OSTI)

2 Model of Pulsed Laser Melting 2.1 Experimental Systemto be Modeled 2.2 Laser Absorption . . . . . . . . . . .a prototypical 0.3 J/cm 2 laser ?uence PLM at 0.5 J/m 2 Ge-

Sawyer, Carolyn Anne

2013-01-01T23:59:59.000Z

192

Short wavelength laser  

DOE Patents (OSTI)

A short wavelength laser is provided that is driven by conventional-laser pulses. A multiplicity of panels, mounted on substrates, are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path. When the panels are illuminated by the conventional-laser pulses, single pass EUV or soft x-ray laser pulses are produced.

Hagelstein, P.L.

1984-06-25T23:59:59.000Z

193

Four Crazy Uses for Lasers in the National Labs | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

crystal spectrometer is installed to measure the shot-by-shot characteristics of X-ray laser pulses. | SLAC National Accelerator Photo by Matt Beardsley SLAC staff scientist...

194

Time-resolved x-ray imaging of high-power laser-irradiated under-dense silica aerogels and agar foams  

SciTech Connect

This paper presents the results of experiments in which a high-power laser was used to irradiate low density (4 - 9 mg/cm{sup 3}) silica aerogel and agar foam targets. The laser-solid interaction and energy transport through the material were monitored with time-resolved imaging diagnostics, and the data show the production and propagation of an x-ray emission front in the plasma. The emission-front trajectory data are found to be in significant disagreement with detailed simulations, which predict a much more rapid heating of the cold material, and the data suggest that this discrepancy is not explainable by target inhomogeneities. Evidence suggests that energy transport into the cold material may be dominated by thermal conduction; however, no completely satisfactory explanation for the discrepancies is identified, and further experimental and theoretical research is necessary in order to resolve this important problem in laser-plasma interaction physics.

Koch, J.A.; Estabrook, K.G.; Bauer, J.D. [and others

1995-08-01T23:59:59.000Z

195

Three XMM-Newton observations of the Anomalous X-ray Pulsar 1E 1048.1-5937: long term variations in spectrum and pulsed fraction  

E-Print Network (OSTI)

We report the results of a recent (July 2004) XMM-Newton Target of Opportunity observation of the Anomalous X-ray pulsar 1E 1048.1-5937, together with a detailed re-analysis of previous observations carried out in 2000 and 2003. In July 2004 the source had a 2-10 keV flux of 6.2$\\times10^{-12}$ erg cm$^{-2}$ s$^{-1}$ and a pulsed fraction P$_F$=0.68. The comparison of the three data sets shows the presence of an anti-correlation between flux and pulsed fraction, implying that previous estimates of the source energetics based on the assumption of a large and constant pulsed fraction might be significantly underestimated. The source spectrum is well described by a power law plus blackbody model (kT~0.63 keV, photon index $\\Gamma$~2.7-3.5) or, alternatively, by the sum of two blackbodies of which the hotter is Comptonized by relativistic electrons. In this case the temperatures are kT${_1}$~0.2-0.3 keV and kT${_2}$~0.4-0.5 keV and the emitting area of the cooler component is consistent with the whole neutron star surface. The long term luminosity variation of a factor >~2 is accompanied by relatively small variations in the spectral shape. Phase resolved spectroscopy indicates a harder spectrum in correspondence of the pulse maximum. No spectral features have been detected with 4$\\sigma$ limits on the equivalent width in the range ~10-220 eV, depending on line energy and width.

A. Tiengo; S. Mereghetti; R. Turolla; S. Zane; N. Rea; L. Stella; G. L. Israel

2005-03-17T23:59:59.000Z

196

X-Ray Topography  

Science Conference Proceedings (OSTI)

Sep 17, 2009 ... Stress Mapping Analysis by Ray Tracing (SMART): A New Technique ... technique of synchrotron X-ray topography, where a grid made out of ...

197

Theme Article - Time-Resolved X-Ray Scattering from Coherent Excitations in Solids  

SciTech Connect

Recent advances in pulsed x-ray sources have opened up new opportunities to study the dynamics of matter directly in the time domain with picosecond to femtosecond resolution. In this article, we present recent results from a variety of ultrafast sources on time-resolved x-ray scattering from elementary excitations in periodic solids. A few representative examples are given on folded acoustic phonons, coherent optical phonons, squeezed phonons, and polaritons excited by femtosecond lasers. Next-generation light sources, such as the x-ray-free electron laser, will lead to improvements in coherence, flux, and pulse duration. These experiments demonstrate potential opportunities for studying matter far from equilibrium on the fastest time scales and shortest distances that will be available in the coming years.

Trigo, Mariano; Reis, David (SLAC)

2010-10-22T23:59:59.000Z

198

Computer analysis of four channel x-ray microscopy images to obtain source and spectral emission data on laser fusion  

SciTech Connect

It is possible to analyze the images obtained from the four- channel x- ray microscope to obtain reasonable estimates of source spatial and energy emission. The technique shown here is particularly useful when relative comparisons are desired in which, from shot to shot, few parameters are changed. These data are of use in fuel pellet design and in checking design code predictions. The technique should also apply to pinhole camera data. Largest uncertainties appear to be due to film energy/handling calibration and mirror efficiency measurements. (auth)

Harper, T.L.

1975-10-01T23:59:59.000Z

199

Nonlinear Thomson scattering of an ultrashort laser pulse  

SciTech Connect

The nonlinear scattering of an ultrashort laser pulse by free electrons is considered. The pulse is described in the 'Mexican hat' wavelet basis. The equation of motion for a charged particle in the field of a plane electromagnetic wave has an exact solution allowing, together with the instant spectrum approximation, the calculation of the intensity of nonlinear Thomson scattering for a high-intensity laser pulse. The spectral distribution of scattered radiation for the entire pulse duration is found by integrating with respect to time. The maximum of the emission spectrum of a free electron calculated in 10{sup 19}-10{sup 21} W/cm{sup 2} fields lies in the UV spectral region between 3 and 12 eV. A part of the continuous spectrum achieves high photon energies. One percent of the scattered energy for the field intensity 10{sup 20} W/cm{sup 2} is concentrated in the range h{omega} > 2.7 Multiplication-Sign 10{sup 2} eV, for a field intensity of 10{sup 21} W/cm{sup 2} in the range h{Omega} > 7.9 Multiplication-Sign 10{sup 2} eV, and for an intensity of 10{sup 22} W/cm{sup 2} in the range h{Omega} > 2.45 Multiplication-Sign 10{sup 5} eV. These results allow us to estimate nonlinear scattering as a source of hard X-rays.

Golovinski, P. A., E-mail: golovinski@bk.ru; Mikhin, E. A. [Voronezh State Architectural-Building University (Russian Federation)

2011-10-15T23:59:59.000Z

200

Spectral linewidth of a Ne-like Ar capillary discharge soft x-ray laser and its dependence on amplification beyond gain-saturation  

Science Conference Proceedings (OSTI)

We report the measurement of the linewidth and temporal coherence of a = 46.9 nm neon-like argon capillary discharge soft x-ray laser and its variation with plasma column length. A wavefront division interferometer was used to resolve the 3p 1S0-3s 1P1 laser line, resulting in a measured relative linewidths of / = 3-4 10 -5. The measurements do not observe saturation re-broadening as this clearly dominantly Doppler-broadened inhomogeneous line is amplified beyond the intensity corresponding to gain saturation. Model simulations indicate that this is the result of comparatively small collisional broadening that homogenizes the line profile to practically eliminate inhomogeneous saturation re-broadening. Collisional re-distribution is computed to only play a minor role in homogenizing the line profile.

Urbanski, Lukasz [Colorado State University, Fort Collins; Marconi, Mario [Colorado State University, Fort Collins; Meng, L. M. [Colorado State University, Fort Collins; Berrill, Mark A [ORNL; Guilbaud, O. [Universite Paris Sud, Orsay, France; Klisnick, Annie [Universite Paris Sud, Orsay, France; Rocca, Jorge [Colorado State University, Fort Collins

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray laser pulse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Obtaining attosecond X-ray pulses using a self-amplified spontaneous emission free electron laser  

E-Print Network (OSTI)

A 429, 243 (1999). [18] LCLS Design Study Group, ReportLinac Coherent Light Source (LCLS) [18], except the electron

Zholents, A.A.; Penn, G.

2005-01-01T23:59:59.000Z

202

Laser Seeding Yields High-Power Coherent Terahertz Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

is generated in electron storage rings when femtosecond lasers are used to carve out ultrafast x-ray pulses by femtoslicing (see "Tailored Terahertz Pulses from a Laser-Modulated...

203

Generation of Coherent X-Ray Radiation through Modulation Compression  

Science Conference Proceedings (OSTI)

In this paper, we propose a scheme to generate tunable coherent X-ray radiation for future light source applications. This scheme uses an energy chirped electron beam, a laser modulator, a laser chirper and two bunch compressors to generate a prebunched kilo-Ampere current electron beam from a few tens Ampere electron beam out of a linac. The initial modulation energy wavelength can be compressed by a factor of 1 + h{sub b}R{sub 56}{sup a} in phase space, where h{sub b} is the energy bunch length chirp introduced by the laser chirper, R{sub 56}{sup a} is the momentum compaction factor of the first bunch compressor. As an illustration, we present an example to generate more than 400 MW, 170 attoseconds pulse, 1 nm coherent X-ray radiation using a 60 A electron beam out of the linac and 200 nm laser seed. Both the final wavelength and the radiation pulse length in the proposed scheme are tunable by adjusting the compression factor and the laser parameters.

Qiang, Ji; /LBL, Berkeley; Wu, Juhao; /SLAC

2012-06-12T23:59:59.000Z

204

A recirculating linac-based facility for ultrafast X-ray science  

SciTech Connect

We present an updated design for a proposed source of ultra-fast synchrotron radiation pulses based on a recirculating superconducting linac, in particular the incorporation of EUV and soft x-ray production. The project has been named LUX - Linac-based Ultrafast X-ray facility. The source produces intense x-ray pulses with duration of 10-100 fs at a 10 kHz repetition rate, with synchronization of 10 s fs, optimized for the study of ultra-fast dynamics. The photon range covers the EUV to hard x-ray spectrum by use of seeded harmonic generation in undulators, and a specialized technique for ultra-short-pulse photon production in the 1-10 keV range. High-brightness rf photocathodes produce electron bunches which are optimized either for coherent emission in free-electron lasers, or to provide a large x/y emittance ration and small vertical emittance which allows for manipulation to produce short-pulse hard x-rays. An injector linac accelerates the beam to 120 MeV, and is followed by four passes through a 600-720 MeV recirculating linac. We outline the major technical components of the proposed facility.

Corlett, J.N; Barletta, W.A.; DeSantis, S.; Doolittle, L.; Fawley, W.M.; Green, M.A.; Heimann, P.; Leone, S.; Lidia, S.; Li, D.; Ratti, A.; Robinson, K.; Schoenlein, R.; Staples, J.; Wan, W.; Wells, R.; Wolski, A.; Zholents, A.; Placidi, M.; Pirkl, W.; Parmigiani, F.

2003-05-06T23:59:59.000Z

205

X-ray crystal spectrometer for opacity measurements in the 8-18 A spectral range at the LULI laser facility  

SciTech Connect

An x-ray crystal spectrometer was built in order to measure opacities in the 8-18 A spectral range with an average spectral resolution of <{lambda}/{delta}{lambda}>{approx}400. It has been successfully used at the LULI-2000 laser facility (See C. Sauteret, rapport LULI 2001, 88 (2002) at Ecole Polytechnique (France) to measure in the same experimental conditions the 2p-3d transitions of several elements with the neighboring atomic number Z: Fe, Ni, Cu, and Ge [G. Loisel et al., High Energy Density Phys. 5, 173 (2009)]. Hence, a spectrometer with a wide spectral range is needed. This spectrometer features two lines of sight. In this example, one line of sight looks through the sample and the other one is looking directly at the backlighter emission. Both are outfitted with a spherical condensing mirror. A TlAP crystal is used for spectral dispersion. Detection is made with an image plate Fuji BAS TR2025, which is sensitive to x rays. We present some experimental results showing the performances of this spectrometer.

Reverdin, C. [CEA-DAM-DIF, F-91297 Arpajon (France); Thais, F.; Loisel, G.; Bougeard, M. [CEA-DSM-IRAMIS, F-91191 Gif-sur-Yvette (France)

2010-10-15T23:59:59.000Z

206

Feasibility Study on Laser Microwelding and Laser Shock Peening using Femtosecond Laser Pulses.  

E-Print Network (OSTI)

??Ultrafast lasers of sub-picosecond pulse duration have thus far been investigated for ablation, drilling and cutting processes. Ultrafast lasers also have the potential for laser… (more)

Lee, Dongkyun

2008-01-01T23:59:59.000Z

207

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Lensless X-Ray Imaging in Reflection Lensless X-Ray Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

208

Optimization for Single-Spike X-Ray FELs at LCLS with a Low Charge Beam  

Science Conference Proceedings (OSTI)

The Linac Coherent Light Source is an x-ray free-electron laser at the SLAC National Accelerator Laboratory, which is operating at x-ray wavelengths of 20-1.2 Angstrom with peak brightness nearly ten orders of magnitude beyond conventional synchrotron radiation sources. At the low charge operation mode (20 pC), the x-ray pulse length can be LCLS), the world's first hard x-ray Free electron laser (FEL), has started operation since 2009. With nominal operation charge of 250 pC, the generated x-ray pulse length is from 70 fs to a few hundred fs. This marks the beginning of a new era of ultrashort x-ray sciences. In addition, a low charge (20pC) operation mode has also been established. Since the collective effects are reduced at the low charge mode, we can increase the compression factor and still achieve a few kA peak current. The expected electron beam and x-ray pulses are less than 10 fs. There are growing interests in even shorter x-ray pulses, such as fs to sub-fs regime. One of the simple solutions is going to even lower charge. As discussed, single-spike x-ray pulses can be generated using 1 pC charge. However, this charge level is out of the present LCLS diagnostic range. 20 pC is a reasonable operation charge at LCLS, based on the present diagnostic system. At 20 pC in the soft x-ray wavelength regime, we have experimentally demonstrated that FEL can work at undercompression or over-compression mode, such as 1 degree off the full-compression; at full-compression, however, there is almost no lasing. In hard x-ray wavelength regime, we observed that there are reasonable photons generated even at full-compression mode, although the photon number is less than that from under-compression or over-compression mode. Since we cannot measure the x-ray pulse length at this time scale, the machine is typically optimized for generating maximum photons, not minimum pulse length. In this paper, we study the methods of producing femtosecond (or single-spike) x-ray pulses at LCLS with 20 pC charge, based on start-to-end simulations. Figure 1 shows a layout of LCLS. The compression in the second bunch compressor (BC2) determines the final e-beam bunch length. However, the laser heater, dog-leg after the main linac (DL2) and collective effects also affect the final bunch length. To adjust BC2 compression, we can either change the L2 phase or BC2 R{sub 56}. In this paper we only tune L2 phase while keep BC2 R{sub 56} fixed. For the start-to-end simulations, we used IMPACT-T and ELEGANT tracking from the photocathode to the entrance of the undulator, after that the FEL radiation was simulated with GENESIS. IMPACT-T tracks about 10{sup 6} particles in the injector part until 135 MeV, including 3D space charge force. The output particles from IMPACT-T are smoothed and increased to 12 x 10{sup 6} to reduce high-frequency numerical noise for subsequent ELEGANT simulations, which include linear and nonlinear transport effects, a 1D transient model of CSR, and longitudinal space charge effects, as well as geometric and resistive wake fields in the accelerator. In GENESIS part, the longitudinal wake field from undulator chamber and longitudinal space field are also included.

Wang, L.; Ding, Y.; Huang, Z.; /SLAC

2011-12-14T23:59:59.000Z

209

Response Time Measurements of the NIF DANTE XRD-31 X-Ray Diodes (Pre-print)  

SciTech Connect

The XRD-31 is a fast, windowless X-ray vacuum photodiode developed by EG&G. It is currently the primary fast X-ray detector used to diagnose the X-rays on NIF and OMEGA on the multichannel DANTE spectrometer. The XRD-31 has a dynamic range of less than 1e-12 amps to more than 10 amps. A technique is described to measure the impulse response of the diodes to a 150 fs pulse of 200 nm laser light and a method to calculate the “risetime” for a square pulse and compare it with the computed electron transit time from the photocathode to the anode. Measured response time for 5 XRD-31s assembled in early 2004 was 149.7 ps +-2.75 ps.

Don Pellinen and Michael Griffin

2009-01-23T23:59:59.000Z

210

High Average Power, 100 Hz Repetition Rate, Table-top EUV/Soft X-ray Lasers  

Science Conference Proceedings (OSTI)

Compact =13.9 nm and =18.9 nm lasers with >0.1 mW average power at 100 Hz repetition rate driven by a diode-pumped, 1 J, CPA laser were demonstrated. Wavelength scaling to =10.9 nm will be discussed.

Reagan, Brendon [Colorado State University, Fort Collins; Wernsing, Keith [Colorado State University, Fort Collins; Baumgarten, Cory [Colorado State University, Fort Collins; Durivage, Leon [Colorado State University, Fort Collins; Berrill, Mark A [ORNL; Furch, Federico [Colorado State University, Fort Collins; Curtis, Alden [Colorado State University, Fort Collins; Salsbury, Chase [Colorado State University, Fort Collins; Luther, Brad [Colorado State University, Fort Collins; Patel, Dinesh [Colorado State University, Fort Collins; Menoni, Carmen [Colorado State University, Fort Collins; Rocca, Jorge [Colorado State University, Fort Collins

2013-01-01T23:59:59.000Z

211

Cross calibration of AGFA-D7 x-ray film against direct exposure film from 2 to 8.5 keV using laser generated x-rays  

SciTech Connect

Direct exposure film (DEF) is being discontinued. DEF film has been the workhorse in inertial confinement fusion (ICF) research and is used to record x-ray images and spectra. A previous search for a replacement [K. M. Chandler et al., Rev. Sci. Instrum. 76, 113111 (2005)] did not consider AGFA film. We present comparisons using the results of measurements using AGFA-D7 film, XAR, TMG, and Biomax-MS films in the same spectrometer recording a gold spectrum in the 2-4 keV range and the iron spectrum in the 5-8.5 keV range. AGFA film was found to have some unique properties useful in x-ray spectroscopy and imaging, especially when signal strength is not a concern.

Kyrala, George A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2006-05-15T23:59:59.000Z

212

X-ray preheating of window materials in direct-drive shock-wave timing experiments  

Science Conference Proceedings (OSTI)

The optical properties of x-ray preheated planar-window materials relevant for shock-wave timing experiments were studied on the OMEGA Laser System. The x-ray radiation was generated by 100 ps, 1x10{sup 15} W/cm{sup 2} laser pulses incident on planar plastic targets, instantaneously affecting samples located {approx}0.7 mm away. An abrupt onset of strong absorption of an optical probe beam ({lambda}=532 nm) and a temporally varying refractive index were measured in polystyrene and diamond windows. The behavior of diamond windows exposed to x rays is consistent with a simple model based on the generation of free charge carriers. Polystyrene windows showed indications of optical transitions due to molecular states that are created by the ionizing radiation.

Theobald, W.; Miller, J. E.; Boehly, T. R.; Vianello, E.; Meyerhofer, D. D.; Sangster, T. C.; Eggert, J.; Celliers, P. M. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2006-12-15T23:59:59.000Z

213

Gamma Radiation & X-Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Gamma Radiation and X-Rays 1. Gamma radiation and X-rays are electromagnetic radiation like visible light, radio waves, and ultraviolet light. These electromagnetic radiations...

214

THz Pump and X-Ray Probe Development at LCLS  

Science Conference Proceedings (OSTI)

We report on measurements of broadband, intense, coherent transition radiation at terahertz frequencies, generated as the highly compressed electron bunches in Linear Coherent Light Source (LCLS) pass through a thin metal foil. The foil is inserted at 45{sup o} to the electron beam, 31 m downstream of the undulator. The THz emission passes downward through a diamond window to an optical table below the beamline. A fully compressed 350-pC bunch produces up to 0.5 mJ in a nearly half-cycle pulse of 50 fs FWHM with a spectrum peaking at 10 THz. We estimate a peak field at the focus of over 2.5 GV/m. A 20-fs Ti:sapphire laser oscillator has recently been installed for electro-optic measurements. We are developing plans to add an x-ray probe to this THz pump, by diffracting FEL x rays onto the table with a thin silicon crystal. The x rays would arrive with an adjustable time delay after the THz. This will provide a rapid start to user studies of materials excited by intense single-cycle pulses and will serve as a step toward a THz transport line for LCLS-II.

Fisher, Alan S; /SLAC, LCLS; Durr, Hermann; /SIMES, Stanford /SLAC, PULSE; Lindenberg, Aaron; Stanford U., Materials Sci.Dept.; /SIMES, Stanford /SLAC, PULSE; Reis, David; /SIMES, Stanford /SLAC, PULSE /Stanford U., Dept. Appl. Phys.; Frisch, Josef; Loos, Henrik; Petree, Mark; /SLAC, LCLS; Daranciang, Dan; /Stanford U., Chem. Dept.; Fuchs, Matthias; /SLAC, PULSE; Ghimire, Shambhu; /SLAC, PULSE; Goodfellow, John; /Stanford U., Materials Sci. Dept.

2011-11-08T23:59:59.000Z

215

Accelerator Design Study for a Soft X-Ray Free Electron Laser at the Lawrence Berkeley National Laboratory  

E-Print Network (OSTI)

and Phase Diagnostics, SLAC Report LCLS-TN-00-12. Emma P.al. 2009, First Results of the LCLS Laser-Heater System, PACLinac Coherent Light Source (LCLS) Conceptual Design Report,

Kur, E.

2010-01-01T23:59:59.000Z

216

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Reflection Print Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

217

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging in Reflection Print X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

218

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging in Reflection Print X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

219

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Reflection Print Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

220

Apparatus for monitoring x-ray beam alignment  

DOE Patents (OSTI)

A self-contained, hand-held apparatus is provided for monitoring alignment of an x-ray beam in an instrument employing an x-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of x-ray beam intensities from the x-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low x-ray beam intensity. Another portion of the audible range corresponds to high x-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of x-ray fluorescent material, and a filter layer transparent to x-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the x-ray beam is aligned to a complete alignment by adjusting the x-ray beam to produce an audible sound of the maximum frequency.

Steinmeyer, P.A.

1989-09-12T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray laser pulse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Injection locked oscillator system for pulsed metal vapor lasers  

SciTech Connect

An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

Warner, Bruce E. (Livermore, CA); Ault, Earl R. (Dublin, CA)

1988-01-01T23:59:59.000Z

222

X-ray microtomography  

SciTech Connect

In this tutorial, we describe X-ray microtomography as a technique to nondestructively characterize material microstructure in three dimensions at a micron level spatial resolution. While commercially available laboratory scale instrumentation is available, we focus our attention on synchrotron-based systems, where we can exploit a high flux, monochromatic X-ray beam to produce high fidelity three-dimensional images. A brief description of the physics and the mathematical analysis behind the technique is followed by example applications to specific materials characterization problems, with a particular focus on the utilization of three-dimensional image processing that can be used to extract a wide range of useful information.

Landis, Eric N., E-mail: landis@maine.edu [Department of Civil and Environmental Engineering, University of Maine, 5711 Boardman Hall, Orono, Maine 04469 (United States); Keane, Denis T., E-mail: dtkeane@northwestern.edu [Department of Materials Science and Engineering, Northwestern University (United States); DND-CAT, Advanced Photon Source, Argonne National Laboratory, Bldg. 432/A002, 9700 S. Cass Ave, Argonne, Illinois 60439 (United States)

2010-12-15T23:59:59.000Z

223

Wolter-like high resolution x-ray imaging microscope for Rayleigh Taylor instabilities studies  

SciTech Connect

In the context of the inertial confinement fusion, experiments have been carried out on the Phebus laser facility to study the Rayleigh-Taylor instabilities (RTIs) at the ablation front. Premodulated brominated plastic targets (25 {mu}m thick) with a modulation wavelength between 12 and 50 {mu}m were accelerated with a temporally shaped soft x-ray pulse emitted from a hohlraum with a maximum radiation temperature of about 115 eV. The RTI growth was measured by face-on radiography using a microscope coupled with an x-ray streak camera, which has spatial and temporal resolutions of about 5 {mu}m and 50 ps, respectively. The acceleration was derived from side-on velocity measurements. The microscope we have developed is a Wolter-like microscope which consists of two toroiedal mirrors. We will present the experimental and theoretical potentialities of this microscope: characterization with an x-ray generator and plasma laser x-ray source (Phebus facility) for two-dimensional (2D) and 1D time-resolved imaging studies. Spatial resolution of about 4 {mu}m was achieved in the 1-5 keV range. The Wolter-like constitutes an interesting device for laser plasma diagnostics and will be very useful in the Laser Megajoules experiments conducted with more powerful lasers.

Troussel, Ph.; Meyer, B.; Reverdin, R.; Angelier, B.; Lidove, G.; Salvatore, P.; Richard, A. [Commissariat a l'Energie Atomique, DAM-Ile de France, BP 12, 91680 Bruyeres-les-Chatel (France); Commissariat a l'Energie Atomique, Saclay 91191 (France); Commissariat a l'Energie Atomique, CESTA, BP2, 33114 Le Barp (France)

2005-06-15T23:59:59.000Z

224

Fiber Laser Front Ends for High Energy, Short Pulse Lasers  

SciTech Connect

We are developing a fiber laser system for short pulse (1-10ps), high energy ({approx}1kJ) glass laser systems. Fiber lasers are ideal for these systems as they are highly reliable and enable long term stable operation.

Dawson, J; Messerly, M; Phan, H; Siders, C; Beach, R; Barty, C

2007-06-21T23:59:59.000Z

225

Review of long-pulse laser development  

Science Conference Proceedings (OSTI)

A brief review of some present techniques to obtain long-pulse laser action in excimer discharge devices will be presented. An attempt will be made to point out the strengths and weaknesses of these techniques. 18 refs., 15 figs.

Sze, R.C.

1989-01-01T23:59:59.000Z

226

High-performance laser processing using manipulated ultrafast laser pulses  

Science Conference Proceedings (OSTI)

We employ manipulated ultrafast laser pulses to realize microprocessing with high-performance. Efficient microwelding of glass substrates by irradiation by a double-pulse train of ultrafast laser pulses is demonstrated. The bonding strength of two photostructurable glass substrates welded by double-pulse irradiation was evaluated to be 22.9 MPa, which is approximately 22% greater than that of a sample prepared by conventional irradiation by a single pulse train. Additionally, the fabrication of hollow microfluidic channels with a circular cross-sectional shape embedded in fused silica is realized by spatiotemporally focusing the ultrafast laser beam. We show both theoretically and experimentally that the spatiotemporal focusing of ultrafast laser beam allows for the creation of a three-dimensionally symmetric spherical peak intensity distribution at the focal spot.

Sugioka, Koji; Cheng Ya; Xu Zhizhan; Hanada, Yasutaka; Midorikawa, Katsumi [RIKEN - Advanced Science Institute, Wako, Saitama 351-0198 (Japan); State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (China); RIKEN - Advanced Science Institute, Wako, Saitama 351-0198 (Japan)

2012-07-30T23:59:59.000Z

227

Kinematics of Compton backscattering x-ray source for angiography  

SciTech Connect

Calculations of X-Ray production rates, energy spread, and spectrum of Compton-backscattered photons from a Free Electron Laser on an electron beam in a low energy (136-MeV) compact (8.5-m circumference) storage ring indicate that an X-Ray intensity of 34.6 10{sup 7} X-Ray photons per 0.5-mm {times} 0.5-mm pixel for Coronary Angiography near the 33.169-keV iodine K-absorption edge can be achieved in a 4-msec pulse within a scattering cone of 1-mrad half angle. This intensity, at 10-m from the photon-electron interaction point to the patient is about a factor of 10 larger than presently achieved from a 4.5-T superconducting wiggler source in the NSLS 2.5-GeV storage ring and over an area about 5 times larger. The 2.2-keV energy spread of the Compton-backscattered beam is, however, much larger than the 70-eV spread presently attained form the wiggler source and use of a monochromator. The beam spot at the 10-m interaction point-to-patient distance is 20-mm diameter; larger spots are attainable at larger distances but with a corresponding reduction in X-Ray flux. Such a facility could be an inexpensive clinical alternative to present methods of non-invasive Digital Subtraction Angiography (DSA), small enough to be deployed in an urban medical center, and could have other medical, industrial and aerospace applications. Problems with the Compton backscattering source include laser beam heating of the mirror in the FEL oscillator optical cavity, achieving a large enough X-Ray beam spot at the patient, and obtaining radiation damping of the transverse oscillations and longitudinal emittance dilution of the storage ring electron beam resulting from photon-electron collisions without going to higher electron energy where the X-Ray energy spread becomes excessive for DSA. 38 refs.

Blumberg, L.N.

1992-05-01T23:59:59.000Z

228

Pulsed Power Technology at Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

largest pulsed laser in the world. It provides x-ray images of imploding capsules and wire-array dynamics on Z experiments. Saturn Accelerator Saturn is a modular,...

229

Multiple laser pulse ignition method and apparatus  

DOE Patents (OSTI)

Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures. 18 figs.

Early, J.W.

1998-05-26T23:59:59.000Z

230

Multiple laser pulse ignition method and apparatus  

DOE Patents (OSTI)

Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures.

Early, James W. (Los Alamos, NM)

1998-01-01T23:59:59.000Z

231

Operation of a Single-Photon-Counting X-Ray Charge-Coupled Device Camera Spectrometer in a Petawatt Environment  

Science Conference Proceedings (OSTI)

The use of a single-photon-counting x-ray CCD (charge-coupled device) camera as an x-ray spectrometer is a well-established technique in ultrashort-pulse laser experiments. In single-photon-counting mode, the pixel value of each readout pixel is proportional to the energy deposited from the incident x-ray photon. For photons below 100 keV, a significant fraction of the events deposits all the energy in a single pixel. A histogram of the pixel readout values gives a good approximation of the x-ray spectrum. This technique requires almost no alignment, but it is very sensitive to signal-to-background issues, especially in a high-energy petawatt environment.

Stoeckl, C.; Theobald, W.; Sangster, T.C.; Key, M.H.; Patel, P.; Zhang, B.B.; Clarke, R.; Karsch, S.; Norreys, P.

2004-10-12T23:59:59.000Z

232

Pulsed LASER for testing silicon strip detectors  

SciTech Connect

This DO Note describes a pulsed LASER setup for testing silicon strip detectors at the Silicon Detector Facility (SiDet) of Fermilab supporting the related projects and, in particular, the DO Silicon Tracker Upgrade. It will be used in the measurements of the efficiency of individual strips and their coupling. The LASER wavelength is 1060 nm, at which the absorption length in silicon is about 2 mm. The LASER setup is capable of producing light pulses with rise time of less than 1 ns, allowing the measurement of charge pulse shaping at individual strips and their capacitive couplings. Due to the high power output of the LASER, safety considerations are included. Also discussed are precautions for the safety of the LASER itself, and how to limit the light to an area smaller than 50,pm of diameter.

Vaz, M.; Cihangir, S.; Rapidis, P.

1993-07-01T23:59:59.000Z

233

Frontiers in X-Ray Science  

Science Conference Proceedings (OSTI)

The year 2010 marked the fiftieth anniversary of the optical laser and the first anniversary of the world's first hard x-ray free-electron laser, the Linac Coherent Light Source (LCLS) at SLAC. This exciting, new accelerator-based source of x-rays provides peak brilliances roughly a billion times greater than currently available from synchrotron sources such as the Advanced Photon Source at Argonne, and thus explores a qualitatively different parameter space. This talk will describe the first experiments at the LCLS aimed at understanding the nature of high intensity x-ray interactions, related applications in ultrafast imaging on the atomic scale and sketch nascent plans for the extension of both linac and storage-ring based photon sources.

Linda Young

2011-02-23T23:59:59.000Z

234

X-ray Security Screening  

Science Conference Proceedings (OSTI)

National and International Standards for X-ray Security Screening Applications. Summary: The primary objective of this ...

2013-03-13T23:59:59.000Z

235

Inductive gas line for pulsed lasers  

DOE Patents (OSTI)

A gas laser having a metal inlet gas feed line assembly shaped as a coil, to function as an electrical inductance and therefore high impedance to pulses of electric current applied to electrodes at opposite ends of a discharge tube of a laser, for example. This eliminates a discharge path for the laser through the inlet gas feed line. A ferrite core extends through the coil to increase the inductance of the coil and provide better electric isolation. By elimination of any discharge breakdown through the gas supply, efficiency is increased and a significantly longer operating lifetime of the laser is provided.

Benett, W.J.; Alger, T.W.

1982-09-29T23:59:59.000Z

236

Soft X-Ray Thomson Scattering in Warm Dense Hydrogen at FLASH  

DOE Green Energy (OSTI)

We present collective Thomson scattering with soft x-ray free electron laser radiation as a method to track the evolution of warm dense matter plasmas with {approx}200 fs time resolution. In a pump-probe scheme an 800 nm laser heats a 20 {micro}m hydrogen droplet to the plasma state. After a variable time delay in the order of ps the plasma is probed by an x-ray ultra violet (XUV) pulse which scatters from the target and is recorded spectrally. Alternatively, in a self-Thomson scattering experiment, a single XUV pulse heats the target while a portion of its photons are being scattered probing the target. From such inelastic x-ray scattering spectra free electron temperature and density can be inferred giving insight on relaxation time scales in plasmas as well as the equation of state. We prove the feasibility of this method in the XUV range utilizing the free electron laser facility in Hamburg, FLASH. We recorded Thomson scattering spectra for hydrogen plasma, both in the self-scattering and in the pump-probe mode using optical laser heating.

Faustlin, R R; Toleikis, S; Bornath, T; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gode, S; Gregori, G; Irsig, R; Laarmann, T; Lee, H J; Li, B; Meiwes-Broer, K; Mithen, J; Przystawik, A; Redlin, H; Redmer, R; Reinholz, H; Ropke, G; Tavella, F; Thiele, R; Tiggesbaumker, J; Uschmann, I; Zastrau, U; Tschentscher, T

2009-07-15T23:59:59.000Z

237

The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into  

NLE Websites -- All DOE Office Websites (Extended Search)

The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print Studying the world of the ultrasmall and the ultrafast is at the frontier of scientific research. Two x-ray approaches can be used for ultrafast examinations. The first entails developing sources that have short x-ray pulses such as free-electron lasers and slicing sources, which will provide the ultrafast temporal information. The other approach is to develop a detector that is fast enough to resolve the ultrafast details of the dynamical processes. ALS researchers are taking the second path but adding a spatial resolution capability; that is, they are developing a high-speed x-ray streak camera with high spatial resolution to watch, in real time, the motion of the atoms in materials. So far, a temporal resolution of 233 fs and a spatial resolution of 10 mm have been demonstrated. This is the first time that such a high temporal resolution has been combined with high spatial resolution in a streak camera.

238

The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into  

NLE Websites -- All DOE Office Websites (Extended Search)

The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print Studying the world of the ultrasmall and the ultrafast is at the frontier of scientific research. Two x-ray approaches can be used for ultrafast examinations. The first entails developing sources that have short x-ray pulses such as free-electron lasers and slicing sources, which will provide the ultrafast temporal information. The other approach is to develop a detector that is fast enough to resolve the ultrafast details of the dynamical processes. ALS researchers are taking the second path but adding a spatial resolution capability; that is, they are developing a high-speed x-ray streak camera with high spatial resolution to watch, in real time, the motion of the atoms in materials. So far, a temporal resolution of 233 fs and a spatial resolution of 10 mm have been demonstrated. This is the first time that such a high temporal resolution has been combined with high spatial resolution in a streak camera.

239

The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into  

NLE Websites -- All DOE Office Websites (Extended Search)

The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print Studying the world of the ultrasmall and the ultrafast is at the frontier of scientific research. Two x-ray approaches can be used for ultrafast examinations. The first entails developing sources that have short x-ray pulses such as free-electron lasers and slicing sources, which will provide the ultrafast temporal information. The other approach is to develop a detector that is fast enough to resolve the ultrafast details of the dynamical processes. ALS researchers are taking the second path but adding a spatial resolution capability; that is, they are developing a high-speed x-ray streak camera with high spatial resolution to watch, in real time, the motion of the atoms in materials. So far, a temporal resolution of 233 fs and a spatial resolution of 10 mm have been demonstrated. This is the first time that such a high temporal resolution has been combined with high spatial resolution in a streak camera.

240

Scanning x-ray microscope  

Science Conference Proceedings (OSTI)

A scanning x-ray microscope is described including: an x-ray source capable of emitting a beam of x-rays; a collimator positioned to receive the beam of x-rays and to collimate this beam, a focusing cone means to focus the beam of x-rays, directed by the collimator, onto a focal plane, a specimen mount for supporting a specimen in the focal plane to receive the focused beam of x-rays, and x-ray beam scanning means to relatively move the specimen and the focusing cone means and collimator to scan the focused x-ray beam across the specimen. A detector is disposed adjacent the specimen to detect flourescent photons emitted by the specimen upon exposure to the focused beam of x-rays to provide an electrical output representative of this detection. Means are included for displaying and/or recording the information provided by the output from the detector, as are means for providing information to the recording and/or display means representative of the scan rate and position of the focused x-ray beam relative to the specimen whereby the recording and/or display means can correlate the information received to record and/or display quantitive and distributive information as to the quantity and distribution of elements detected in the specimen. Preferably there is provided an x-ray beam modulation means upstream, relative to the direction of emission of the xray beam, of the focusing cone means.

Wang, C.

1982-02-23T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray laser pulse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

X-ray lithography source  

SciTech Connect

A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

Piestrup, Melvin A. (Woodside, CA); Boyers, David G. (Mountain View, CA); Pincus, Cary (Sunnyvale, CA)

1991-01-01T23:59:59.000Z

242

X-ray lithography source  

DOE Patents (OSTI)

A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

Piestrup, M.A.; Boyers, D.G.; Pincus, C.

1991-12-31T23:59:59.000Z

243

Applications of Diagnostic X-ray Spectrometers  

Science Conference Proceedings (OSTI)

... produced plasmas, terawatt pulsed accelerators, electron cyclotron resonance ion sources, electron-beam ion traps, intense ultrafast laser sources ...

2012-06-26T23:59:59.000Z

244

Laser breakdown in air at ultrahigh laser pulse repetition rates  

SciTech Connect

Some specific features of interaction of intense femtosecond laser pulses with air at ultrahigh pulse repetition rates have been experimentally studied. Data on the dynamics of plasma cloud expansion and the plasma electron density on time intervals no longer than 10 ns are obtained by femtosecond interferometry. These data are interpreted in terms of the most likely mechanisms of ionised gas recombination. The effect of ultrahigh-frequency laser radiation on a medium was modelled by double-pulse irradiation with a short delay {Delta}t between the pulses: from 1 ps to 11 ns. A nonmonotonic dependence of the degree of air ionisation by the second pulse on the delay time {Delta}t is found; possible mechanisms of these dependences are discussed in terms of the processes of femtosecond radiation absorption in the residual plasma. (extreme light fields and their applications)

Kononenko, Vitalii V; Kononenko, Taras V; Pashinin, V P; Gololobov, V M; Konov, Vitalii I [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

2013-04-30T23:59:59.000Z

245

Ultrashort pulse laser deposition of thin films  

DOE Patents (OSTI)

Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

Perry, Michael D. (Livermore, CA); Banks, Paul S. (Livermore, CA); Stuart, Brent C. (Fremont, CA)

2002-01-01T23:59:59.000Z

246

Ultra-Short Electron Bunch and X-Ray Temporal Diagnostics with an X-Band Transverse Deflector  

Science Conference Proceedings (OSTI)

The measurement of ultra-short electron bunches on the femtosecond time scale constitutes a very challenging problem. In X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS), generation of sub-ten femtosecond X-ray pulses is possible, and some efforts have been put into both ultra-short electron and X-ray beam diagnostics. Here we propose a single-shot method using a transverse rf deflector (X-band) after the undulator to reconstruct both the electron bunch and X-ray temporal profiles. Simulation studies show that about 1 fs (rms) time resolution may be achievable in the LCLS and is applicable to a wide range of FEL wavelengths and pulse lengths. The jitter, resolution and other related issues will be discussed. The successful operation of the Linac Coherent Light Source (LCLS), with its capability of generating free-electron laser (FEL) X-ray pulses from a few femtoseconds (fs) up to a few hundred fs, opens up vast opportunities for studying atoms and molecules on this unprecedented ultrashort time scale. However, tremendous challenges remain in the measurement and control of these ultrashort pulses with femtosecond precision, for both the electron beam (e-beam) and the X-ray pulses. For ultrashort e-beam bunch length measurements, a standard method has been established at LCLS using an S-band radio-frequency (rf) deflector, which works like a streak camera for electrons and is capable of resolving bunch lengths as short as {approx} 10 fs rms. However, the e-beam with low charges of 20 pC at LCLS, which is expected to be less than 10 fs in duration, is too short to be measured using this transverse deflector. The measurement of the electron bunch length is helpful in estimating the FEL X-ray pulse duration. However, for a realistic beam, such as that with a Gaussian shape or even a spiky profile, the FEL amplification varies along the bunch due to peak current or emittance variation. This will cause differences between the temporal shape or duration of the electron bunch and the X-ray pulse. Initial experiments at LCLS have revealed that characterization of the X-ray pulse duration on a shot-by-shot basis is critical for the interpretation of the data. However, a reliable x-ray pulse temporal diagnostic tool is not available so far at the LCLS. We propose a novel method in this paper to characterize the FEL X-ray pulse duration and shape. A transverse rf deflector is used in conjunction with an e-beam energy spectrometer, located after the FEL undulator. By measuring the difference in the e-beam longitudinal phase space between FEL-on and FEL-off, we can obtain the time-resolved energy loss and energy spread induced from the FEL radiation, allowing the FEL X-ray temporal shape to be reconstructed.

Ding, Y.; Emma, P.; Frisch, J.; Huang, Z.; Loos, H.; Krejcik, P.; Wang, M-H.; /SLAC; Behrens, C.; /DESY

2011-12-13T23:59:59.000Z

247

Using Light to Control How X Rays Interact with Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Light to Control How X Rays Interact with Matter Print Schemes that use one light pulse to manipulate interactions of another with matter are well developed in the...

248

Ultrafast pulsed laser utilizing broad bandwidth laser glass  

DOE Patents (OSTI)

An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P{sub 2}O{sub 5}, Al{sub 2}O{sub 3} and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules. 7 figs.

Payne, S.A.; Hayden, J.S.

1997-09-02T23:59:59.000Z

249

Ultrafast pulsed laser utilizing broad bandwidth laser glass  

DOE Patents (OSTI)

An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P.sub.2 O.sub.5, Al.sub.2 O.sub.3 and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules.

Payne, Stephen A. (Castro Valley, CA); Hayden, Joseph S. (Clarks Summit, PA)

1997-01-01T23:59:59.000Z

250

Tailored Terahertz Pulses from a Laser-Modulated Electron Beam  

NLE Websites -- All DOE Office Websites (Extended Search)

Tailored Terahertz Pulses from a Tailored Terahertz Pulses from a Laser-Modulated Electron Beam Tailored Terahertz Pulses from a Laser-Modulated Electron Beam Print Wednesday, 29 November 2006 00:00 Researchers at the ALS have demonstrated a new method to generate tunable, coherent, broadband terahertz radiation from a relativistic electron beam modulated by a femtosecond laser. Interaction of the ALS electron beam with a femtosecond laser pulse as they co-propagate through a wiggler modulates the electron energies within a short slice of the electron bunch with about the same duration as the laser pulse. This causes a dispersion of the electron trajectories, and the bunch develops a hole that emits short pulses of temporally and spatially coherent terahertz pulses synchronized to the laser. The technique allows tremendous flexibility in shaping the terahertz pulses by appropriate modulation of the laser pulse.

251

Chemically-Assisted Pulsed Laser-Ramjet  

SciTech Connect

A preliminary study of a chemically-assisted pulsed laser-ramjet was conducted, in which chemical propellant such as a gaseous hydrogen/air mixture was utilized and detonated with a focused laser beam in order to obtain a higher impulse compared to the case only using lasers. CFD analysis of internal conical-nozzle flows and experimental measurements including impulse measurement were conducted to evaluate effects of chemical reaction on thrust performance improvement. From the results, a significant improvement in the thrust performances was confirmed with addition of a small amount of hydrogen to propellant air, or in chemically-augmented operation.

Horisawa, Hideyuki; Kaneko, Tomoki; Tamada, Kazunobu [Department of Aeronautics and Astronautics, Tokai University, Hiratsuka, Kanagawa, 259-1292 (Japan)

2010-10-13T23:59:59.000Z

252

Thomson scattering in short pulse laser experiments  

SciTech Connect

Thomson scattering is well used as a diagnostic in many areas of high energy density physics. In this paper, we quantitatively demonstrate the practicality of using Thomson scattering as a diagnostic of short-pulse laser-plasma experiments in the regime, where the plasmas probed are at solid density and have temperatures of many hundreds of eV using a backlighter produced with an optical laser. This method allows a diagnosis both spatially and temporally of the density and temperature distributions in high energy density laser-plasma interactions which is independent from, and would act as a useful complement to, the existing spectroscopic methods.

Hill, E. G.; Rose, S. J. [Plasma Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom)

2012-08-15T23:59:59.000Z

253

Matrix-assisted pulsed laser thin film deposition by using Nd: YAG laser  

Science Conference Proceedings (OSTI)

Matrix-Assisted Pulsed Laser Evaporation (MAPLE) is a deposition technique, developed from Pulsed Laser Deposition (PLD) especially well suited for producing organic/polymeric thin films, which can take advantage from using Nd:YAG laser. Depending on ...

Francesco Bloisi; Mario Barra; Antonio Cassinese; Luciano Rosario Maria Vicari

2012-01-01T23:59:59.000Z

254

Miniature x-ray source  

DOE Patents (OSTI)

A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

Trebes, James E. (Livermore, CA); Stone, Gary F. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA); Chornenky, Victor I. (Minnetonka, MN)

2002-01-01T23:59:59.000Z

255

SLAC National Accelerator Laboratory - Fifth X-ray Instrument...  

NLE Websites -- All DOE Office Websites (Extended Search)

and more.) The technique has been used for years to probe materials with visible-light lasers, and more recently with X-ray light from synchrotrons. But the LCLS is the first...

256

SLAC National Accelerator Laboratory - X-ray Vision Exposes Aerosol...  

NLE Websites -- All DOE Office Websites (Extended Search)

up exciting possibilities in the study of aerosol dynamics using highly focused X-ray lasers, such as SLAC's Linac Coherent Light Source (LCLS). "Our study shows that LCLS can...

257

Magnetism studies using resonant, coherent, x-ray scattering...  

NLE Websites -- All DOE Office Websites (Extended Search)

10:00am SLAC, Bldg. 137, Room 226 Keoki Seu Seminar: With the advent of free electron lasers there has been interest in using coherent x-rays to probe condensed matter systems....

258

Lensless Imaging of Magnetic Nanostructures by X-ray Spectro...  

NLE Websites -- All DOE Office Websites (Extended Search)

F. Schlotter and J. Sthr (SSRL) The unprecedented properties of X-ray free electron lasers (X-FELs) under development world wide will open the door for entirely new classes of...

259

Science Challenges & Opportunities for an Advanced X-ray Free...  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Challenges & Opportunities for an Advanced X-ray Free-electron Laser Wednesday, October 2, 2013 - 3:00pm SLAC, Kavli 3rd Floor Conference Room Robert Schoenlein, Lawrence...

260

Group velocity and pulse lengthening of mismatched laser pulses in plasma channels  

SciTech Connect

Analytic solutions are presented to the non-paraxial wave equation describing an ultra-short, low-power, laser pulse propagating in aplasma channel. Expressions for the laser pulse centroid motion and laser group velocity are derived, valid for matched and mismatchedpropagation in a parabolic plasma channel, as well as in vacuum, for an arbitrary Laguerre-Gaussian laser mode. The group velocity of amismatched laser pulse, for which the laser spot size is strongly oscillating, is found to be independent of propagation distance andsignificantly less than that of a matched pulse. Laser pulse lengthening of a mismatched pulse owing to laser mode slippage isexamined and found to dominate over that due to dispersive pulse spreading for sufficiently long pulses. Analytic results are shown tobe in excellent agreement with numerical solutions of the full Maxwell equations coupled to the plasma response. Implications for plasmachannel diagnostics are discussed.

Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; van Tilborg, Jeroen; Leemans, Wim

2011-07-07T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray laser pulse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Tailored Terahertz Pulses from a Laser-Modulated Electron Beam  

NLE Websites -- All DOE Office Websites (Extended Search)

Tailored Terahertz Pulses from a Laser-Modulated Electron Beam Print Tailored Terahertz Pulses from a Laser-Modulated Electron Beam Print Researchers at the ALS have demonstrated a new method to generate tunable, coherent, broadband terahertz radiation from a relativistic electron beam modulated by a femtosecond laser. Interaction of the ALS electron beam with a femtosecond laser pulse as they co-propagate through a wiggler modulates the electron energies within a short slice of the electron bunch with about the same duration as the laser pulse. This causes a dispersion of the electron trajectories, and the bunch develops a hole that emits short pulses of temporally and spatially coherent terahertz pulses synchronized to the laser. The technique allows tremendous flexibility in shaping the terahertz pulses by appropriate modulation of the laser pulse.

262

Tailored Terahertz Pulses from a Laser-Modulated Electron Beam  

NLE Websites -- All DOE Office Websites (Extended Search)

Tailored Terahertz Pulses from a Laser-Modulated Electron Beam Print Tailored Terahertz Pulses from a Laser-Modulated Electron Beam Print Researchers at the ALS have demonstrated a new method to generate tunable, coherent, broadband terahertz radiation from a relativistic electron beam modulated by a femtosecond laser. Interaction of the ALS electron beam with a femtosecond laser pulse as they co-propagate through a wiggler modulates the electron energies within a short slice of the electron bunch with about the same duration as the laser pulse. This causes a dispersion of the electron trajectories, and the bunch develops a hole that emits short pulses of temporally and spatially coherent terahertz pulses synchronized to the laser. The technique allows tremendous flexibility in shaping the terahertz pulses by appropriate modulation of the laser pulse.

263

Tailored Terahertz Pulses from a Laser-Modulated Electron Beam  

NLE Websites -- All DOE Office Websites (Extended Search)

Tailored Terahertz Pulses from a Laser-Modulated Electron Beam Print Tailored Terahertz Pulses from a Laser-Modulated Electron Beam Print Researchers at the ALS have demonstrated a new method to generate tunable, coherent, broadband terahertz radiation from a relativistic electron beam modulated by a femtosecond laser. Interaction of the ALS electron beam with a femtosecond laser pulse as they co-propagate through a wiggler modulates the electron energies within a short slice of the electron bunch with about the same duration as the laser pulse. This causes a dispersion of the electron trajectories, and the bunch develops a hole that emits short pulses of temporally and spatially coherent terahertz pulses synchronized to the laser. The technique allows tremendous flexibility in shaping the terahertz pulses by appropriate modulation of the laser pulse.

264

Synchrotron X-ray Measurements  

Science Conference Proceedings (OSTI)

... fine structure (EXAFS) spectroscopy; (3) variable kinetic energy X-ray ... advanced materials is critical to the development and optimization of products ...

2012-10-04T23:59:59.000Z

265

X-ray Absorption Spectroscopy  

SciTech Connect

This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

Yano, Junko; Yachandra, Vittal K.

2009-07-09T23:59:59.000Z

266

Pulsed Power for Solid-State Lasers  

SciTech Connect

Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL annual reports. One of the goals of this book is to gather this information into a single useable format, such that it is easily accessed and understood by other engineers and physicists for use with future designs. It can also serve as a primer, which when seriously studied, makes the subsequent reading of original work and follow-up references considerably easier. While this book deals only with the solid-state laser pulsed power systems, in the bibliography we have included a representative cross section of papers and references from much of the very fine work carried out at other institutions in support of different laser approaches. Finally, in recent years, there has been a renewed interest in high-average-power solid-state glass lasers. Much of the prime power technology developed in support of this has definite applications in the long term for fusion power plant scenarios.

Gagnon, W; Albrecht, G; Trenholme, J; Newton, M

2007-04-19T23:59:59.000Z

267

#LabChat: Particle Accelerators, Lasers and Discovery Science, May 17 at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Particle Accelerators, Lasers and Discovery Science, May Particle Accelerators, Lasers and Discovery Science, May 17 at 1pm EST #LabChat: Particle Accelerators, Lasers and Discovery Science, May 17 at 1pm EST May 15, 2012 - 2:03pm Addthis SLAC’s linac accelerates very short pulses of electrons to 99.9999999 percent the speed of light through a slalom that causes the electrons to emit X-rays, which become synchronized as they interact with the electron pulses and create the world’s brightest X-ray laser pulse. | Photo by Brad Plummer, SLAC. SLAC's linac accelerates very short pulses of electrons to 99.9999999 percent the speed of light through a slalom that causes the electrons to emit X-rays, which become synchronized as they interact with the electron pulses and create the world's brightest X-ray laser pulse. | Photo by

268

Broadband high resolution X-ray spectral analyzer  

DOE Patents (OSTI)

A broad bandwidth high resolution x-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces x-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available x-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for x-ray microanalysis or in research applications such as laboratory and astrophysical x-ray and particle spectroscopy.

Silver, Eric H. (Berkeley, CA); Legros, Mark (Berkeley, CA); Madden, Norm W. (Livermore, CA); Goulding, Fred (Lafayette, CA); Landis, Don (Pinole, CA)

1998-01-01T23:59:59.000Z

269

Broadband high resolution X-ray spectral analyzer  

DOE Patents (OSTI)

A broad bandwidth high resolution X-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces X-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available X-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for X-ray microanalysis or in research applications such as laboratory and astrophysical X-ray and particle spectroscopy. 6 figs.

Silver, E.H.; Legros, M.; Madden, N.W.; Goulding, F.; Landis, D.

1998-07-07T23:59:59.000Z

270

Short-pulse Laser Capability on the Mercury Laser System  

Science Conference Proceedings (OSTI)

Applications using high energy ''petawatt-class'' laser drivers operating at repetition rates beyond 0.01 Hz are only now being envisioned. The Mercury laser system is designed to operate at 100 J/pulse at 10 Hz. We investigate the potential of configuring the Mercury laser to produce a rep-rated, ''petawatt-class'' source. The Mercury laser is a prototype of a high energy, high repetition rate source (100 J, 10 Hz). The design of the Mercury laser is based on the ability to scale in energy through scaling in aperture. Mercury is one of several 100 J, high repetition rate (10 Hz) lasers sources currently under development (HALNA, LUCIA, POLARIS). We examine the possibility of using Mercury as a pump source for a high irradiance ''petawatt-class'' source: either as a pump laser for an average power Ti:Sapphire laser, or as a pump laser for OPCPA based on YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB), ideally producing a source approaching 30 J /30 fs /10 Hz--a high repetition rate petawatt. A comparison of the two systems with nominal configurations and efficiencies is shown in Table 1.

Ebbers, C; Armstrong, P; Bayramian, A; Barty, C J; Bibeau, C; Britten, J; Caird, J; Campbell, R; Chai, B; Crane, J; Cross, R; Erlandson, A; Fei, Y; Freitas, B; Jovanovic, I; Liao, Z; Molander, B; Schaffers, K; Stuart, B; Sutton, S; Ladran, T; Telford, S; Thelin, P; Utterback, E

2006-06-22T23:59:59.000Z

271

X-Ray Emission Spectrometer Design with Single-Shot Pump-Probe and Resonant Excitation Capabilities  

Science Conference Proceedings (OSTI)

Core-level spectroscopy in the soft X-ray regime is a powerful tool for the study of chemical bonding processes. The ultrafast, ultrabright X-ray pulses generated by the Linac Coherent Light Source (LCLS) allow these reactions to be studied in greater detail than ever before. In this study, we investigated a conceptual design of a spectrometer for the LCLS with imaging in the non-dispersive direction. This would allow single-shot collection of X-ray emission spectroscopy (XES) measurements with varying laser pump X-ray probe delay or a variation of incoming X-ray energy over the illuminated area of the sample. Ray-tracing simulations were used to demonstrate how the components of the spectrometer affect its performance, allowing a determination of the optimal final design. These simulations showed that the spectrometer's non-dispersive focusing is extremely sensitive to the size of the sample footprint; the spectrometer is not able to image a footprint width larger than one millimeter with the required resolution. This is compatible with a single shot scheme that maps out the laser pump X-ray probe delay in the non-dispersive direction as well as resonant XES applications at normal incidence. However, the current capabilities of the Soft X-Ray (SXR) beamline at the LCLS do not produce the required energy range in a small enough sample footprint, hindering the single shot resonant XES application at SXR for chemical dynamics studies at surfaces. If an upgraded or future beamline at LCLS is developed with lower monochromator energy dispersion the width can be made small enough at the required energy range to be imaged by this spectrometer design.

Spoth, Katherine; /SUNY, Buffalo /SLAC

2012-08-28T23:59:59.000Z

272

Three Dimensional X-Ray Scanning Micro/Nano-Diffraction Probe ...  

Science Conference Proceedings (OSTI)

... Magnetic Composite Materials · X-Ray Studies of Structural Effects Induced by Pulsed (30 Tesla), High Magnetic Fields at the Advanced Photon Source ...

273

Using High Energy X-ray Experiments and Crystal-Based ...  

Science Conference Proceedings (OSTI)

... Magnetic Composite Materials · X-Ray Studies of Structural Effects Induced by Pulsed (30 Tesla), High Magnetic Fields at the Advanced Photon Source ...

274

Bragg diffraction using a 100ps 17.5 keV x-ray backlighter and the Bragg Diffraction Imager  

Science Conference Proceedings (OSTI)

A new diagnostic for measuring Bragg diffraction from a laser-driven crystal using a 100ps 17.5 kV x-ray backlighter source is designed and tested successfully at the Omega EP laser facility on static Mo and Ta single crystal samples using a Mo Ka backlighter. The Bragg Diffraction Imager (BDI) consists of a heavily shielded enclosure and a precisely positioned beam block, attached to the main enclosure by an Aluminum arm. Image plate is used as the x-ray detector. The diffraction lines from Mo and Ta planes are clearly detected with a high signal-to-noise using the 17.5 keV and 19.6 keV characteristic lines generated by a petawatt-driven Mo foil. This technique will be applied to shock and ramp-loaded single crystals on the Omega EP laser. Pulsed x-ray diffraction of shock- and ramp-compressed materials is an exciting new technique that can give insight into the dynamic behavior of materials at ultra-high pressure not achievable by any other means to date. X-ray diffraction can be used to determine not only the phase and compression of the lattice at high pressure, but by probing the lattice compression on a timescale equal to the 3D relaxation time of the material, information about dislocation mechanics, including dislocation multiplication rate and velocity, can also be derived. Both Bragg, or reflection, and Laue, or transmission, diffraction have been developed for shock-loaded low-Z crystalline structures such as Cu, Fe, and Si using nano-second scale low-energy implosion and He-{alpha} x-ray backlighters. However, higher-Z materials require higher x-ray probe energies to penetrate the samples, such as in Laue, or probe deep enough into the target, as in the case of Bragg diffraction. Petawatt laser-generated K{alpha} x-ray backlighters have been developed for use in high-energy radiography of dense targets and other HED applications requiring picosecond-scale burst of hard x-rays. While short pulse lasers are very efficient at producing high-energy x-rays, the characteristic x-rays produced in these thin foil targets are superimposed on a broad bremsstrahlung background and can easily saturate a detector if careful diagnostic shielding and experimental geometry are not implemented. A new diagnostic has been designed to measure Bragg diffraction from laser-driven crystal targets using characteristic x-rays from a short-pulse laser backlighter on the Omega EP laser. The Bragg Diffraction Imager, or BDI, is a TIM-mounted instrument consisting of a heavily shielded enclosure made from 3/8-inch thick Heavymet (W-Fe-Ni alloy) and a precisely positioned beam bock, attached to the main enclosure by an Aluminum arm. The beam block is made of 1-inch thick, Al-coated Heavymet and serves to block the x-rays directly from the petawatt backlight, while allowing the diffraction x-rays from the crystal to pass to the enclosure. A schematic of the BDI is shown in Fig. 1a. Image plates are used as the x-ray detector and are loaded through the top of the diagnostic in an Aluminum, light-tight cartridge. The front of the enclosure can be fitted with various filters to maximize the diffraction signal-to-noise.

Maddox, B R; Park, H; Hawreliak, J; Comley, A; Elsholz, A; Van Maren, R; Remington, B A; Wark, J

2010-05-13T23:59:59.000Z

275

Numerical simulation of copper ablation by ultrashort laser pulses  

E-Print Network (OSTI)

Using a modified self-consistent one-dimensional hydrodynamic lagrangian fluid code, laser ablation of solid copper by ultrashort laser pulses in vacuum was simulated to study fundamental mechanisms and to provide a guide for drilling periodic microholes or microgratings on the metal surface. The simulated laser ablation threshold is a approximate constancy in femtosecond regime and increases as the square root of pulse duration in picosecond regime. The ablation depth as a function of pulse duration shows four different regimes and a minimum for a pulse duration of ~ 12ps for various laser fluences. The influence of laser-induced plasma shielding on ablation depth is also studied.

Ding, PengJi; Li, YuHong

2011-01-01T23:59:59.000Z

276

Electron beam switched discharge for rapidly pulsed lasers  

DOE Patents (OSTI)

Method and apparatus for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

Pleasance, Lyn D. (Livermore, CA); Murray, John R. (Danville, CA); Goldhar, Julius (Walnut Creek, CA); Bradley, Laird P. (Livermore, CA)

1981-01-01T23:59:59.000Z

277

The Next Challenge in X-Ray Science: Control of Resonant Electronic...  

NLE Websites -- All DOE Office Websites (Extended Search)

and the implications for future scientific opportunities with x-ray free electron lasers (X-FELs). The historical journey starts with the development of radar microwave...

278

Reliable before-fabrication forecasting of expected surface slope distributions for x-ray optics  

E-Print Network (OSTI)

of x-ray optics for the LCLS free-electron laser,” Proc.beamlines and diagnostics at LCLS,” Nucl. Instrum. Methods A

Yashchuk, Yekaterina V.

2013-01-01T23:59:59.000Z

279

SURFACE SEGREGATION STUDIES OF SOFC CATHODES: COMBINING SOFT X-RAYS AND ELECTROCHEMICAL IMPEDENCE SPECTROSCOPY  

DOE Green Energy (OSTI)

A system to grow heteroepitaxial thin-films of solid oxide fuel cell (SOFC) cathodes on single crystal substrates was developed. The cathode composition investigated was 20% strontium-doped lanthanum manganite (LSM) grown by pulsed laser deposition (PLD) on single crystal (111) yttria-stabilized zirconia (YSZ) substrates. By combining electrochemical impedance spectroscopy (EIS) with x-ray photoemission spectroscopy (XPS) and x-ray absorption spectroscopy XAS measurements, we conclude that electrically driven cation migration away from the two-phase gas-cathode interface results in improved electrochemical performance. Our results provide support to the premise that the removal of surface passivating phases containing Sr2+ and Mn2+, which readily form at elevated temperatures even in O2 atmospheric pressures, is responsible for the improved cathodic performance upon application of a bias.

Miara, Lincoln J.; Piper, L.F.J.; Davis, Jacob N.; Saraf, Laxmikant V.; Kaspar, Tiffany C.; Basu, Soumendra; Smith, K. E.; Pal, Uday B.; Gopalan, Srikanth

2010-12-01T23:59:59.000Z

280

X-ray Imaging Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging and Spectro-microscopy: Imaging and Spectro-microscopy: the Present and the Future Stanford Synchrotron Radiation Laboratory October 8-9, 2002 Organizers: John Miao & Keith Hodgson A workshop on "X-ray Imaging and Spectro-microscopy: the Present and the Future" was held on October 8-9, 2002. This workshop, organized by John Miao (SSRL) and Keith Hodgson (SSRL) provided a forum to discuss the scientific applications of a variety of imaging and spectro-microscopic techniques, including photoemission electron microscopy (PEEM), angle resolved photoemission spectroscopy (ARPES), coherent diffraction imaging, x-ray microscopy, micro-tomography, holographic imaging, and x-ray micro-probe. Twelve invited speakers discussed the important scientific applications of these techniques, and also predicted the future scientific directions with the advance of instrumentation and x-ray sources. The workshop was well attended with over fifty registered attendees.

Note: This page contains sample records for the topic "x-ray laser pulse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Miniature x-ray source  

DOE Patents (OSTI)

A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

Trebes, James E. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA)

2000-01-01T23:59:59.000Z

282

X-ray spectroscopy of buried layer foils irradiated with an ultra high intensity short pulse laser  

E-Print Network (OSTI)

The image plate, FujiFilm BAS-TR, was wrapped in 5 µm of Alwere read using the FujiFilm BAS-1800 II with 50 µm scanningThe image plate, FujiFilm BAS-MS, was fully enclosed 18 µm

Chen, Sophia Nan

2009-01-01T23:59:59.000Z

283

Measurement Issues In Pulsed Laser Propulsion  

SciTech Connect

Various measurement techniques have been used throughout the over 40-year history of laser propulsion. Often, these approaches suffered from inconsistencies in definitions of the key parameters that define the physics of laser ablation impulse generation. Such parameters include, but are not limited to the pulse energy, spot area, imparted impulse, and ablated mass. The limits and characteristics of common measurement techniques in each of these areas will be explored as they relate to laser propulsion. The idea of establishing some standardization system for laser propulsion data is introduced in this paper, so that reported results may be considered and studied by the general community with more certain understanding of particular merits and limitations. In particular, it is the intention to propose a minimum set of requirements a literature study should meet. Some international standards for measurements are already published, but modifications or revisions of such standards may be necessary for application to laser ablation propulsion. Issues relating to development of standards will be discussed, as well as some examples of specific experimental circumstances in which standardization would have prevented misinterpretation or misuse of past data.

Sinko, John E. [Micro-Nano Global Center of Excellence, Nagoya University (Niue), Nagoya, Aichi (Japan); Scharring, Stefan; Eckel, Hans-Albert [Institute of Technical Physics, German Aerospace Center (DLR), D-70569 Stuttgart, Pfaffenwaldring 38-40 (Germany); Roeser, Hans-Peter [Institute of Space Systems, University of Stuttgart, D-70569 Stuttgart, Pfaffenwaldring 31 (Germany); Sasoh, Akihiro [Department of Aerospace Engineering, Nagoya University, Nagoya, Aichi (Japan)

2010-05-06T23:59:59.000Z

284

Evolution of ultrashort laser pulse in large amplitude plasma waves  

Science Conference Proceedings (OSTI)

The propagation and evolution of an ultrashort laser pulse in a large amplitude plasma wave are investigated based on the photon kinetic theory. The photon number distribution function for a laser pulse in the phase space is analytically obtained by solving the photon kinetic equation in the background plasma wave. And then, the behavior of the laser pulse can be described by combining the single photon dynamics and the photon number distribution function. The evolutions of the photon number density in the coordinate and frequency domain space are discussed, and broadening or compressing of the laser pulse is also displayed in this paper. In particular, the frequency shift of the entire laser pulse is analyzed, which reflects a way of energy transformation between the laser pulse and the plasma wave.

Bu Zhigang [Department of Physics, Shanghai University, Shanghai 200444 (China); Ji Peiyong [Department of Physics, Shanghai University, Shanghai 200444 (China); The Shanghai Key Lab of Astrophysics, Shanghai 200234 (China)

2012-11-15T23:59:59.000Z

285

Advances Toward Inner-Shell Photo-Ionization X-Ray Lasing at 45 (Angstrom)  

Science Conference Proceedings (OSTI)

The inner-shell photo-ionization (ISPI) scheme requires photon energies at least high enough to photo-ionize the K-shell. {approx}286 eV, in the case of carbon. As a consequence of the higher cross-section, the inner-shell are selectively knocked out, leaving a hole state 1s2s{sup 2}2p{sup 2} in the singly charged carbon ion. This generates a population inversion to the radiatively connected state 1s{sup 2}2s{sup 2}2p in C+, leading to gain on the 1s-2p transition at 45 {angstrom}. The resonant character of the lasing transition in the single ionization state intrinsically allows much higher quantum efficiency compared to other schemes. Competing processes that deplete the population inversion include auto-ionization, Auger decay, and in particular collisional ionization of the outer-shell electrons by electrons generated during photo-ionization. These competing processes rapidly quench the gain. Consequently, the pump method must be capable of populating the inversion at a rate faster than the competing processes. This can be achieved by an ultra-fast, high intensity laser that is able to generate an ultra-fast, bright x-ray source. With current advances in the development of high-power, ultra-short pulse lasers it is possible to realize fast x-ray sources based that can deliver powerful pulses of light in the multiple hundred terawatt regime and beyond. They will discuss in greater detail concept, target design and a series of x-ray spectroscopy investigations they have conducted in order to optimize the absorber/x-ray converter--filter package.

Moon, S J; Weber, F A; Celliers, P M; Eder, D C

2002-07-18T23:59:59.000Z

286

X-ray Transition Energies Search Form  

Science Conference Proceedings (OSTI)

[skip navigation] X-ray Transition Energies Database Main Page Search for X-ray transition energies by element(s), transition ...

287

Tailored Terahertz Pulses from a Laser-Modulated Electron Beam  

NLE Websites -- All DOE Office Websites (Extended Search)

Tailored Terahertz Pulses from a Laser-Modulated Electron Beam Print Researchers at the ALS have demonstrated a new method to generate tunable, coherent, broadband terahertz...

288

Optical penetration sensor for pulsed laser welding  

SciTech Connect

An apparatus and method for determining the penetration of the weld pool created from pulsed laser welding and more particularly to an apparatus and method of utilizing an optical technique to monitor the weld vaporization plume velocity to determine the depth of penetration. A light source directs a beam through a vaporization plume above a weld pool, wherein the plume changes the intensity of the beam, allowing determination of the velocity of the plume. From the velocity of the plume, the depth of the weld is determined.

Essien, Marcelino (Albuquerque, NM); Keicher, David M. (Albuquerque, NM); Schlienger, M. Eric (Albuquerque, NM); Jellison, James L. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

289

Long pulse chemical laser. Final technical report  

Science Conference Proceedings (OSTI)

This report covers the technical effort through February, 1989. This effort was directed towards the technology associated with the development of a large scale, long pulse DF-CO{sub 2} chemical laser. Optics damage studies performed under Task 1 assessed damage thresholds for diamond-turned salt windows. Task 2 is a multi-faceted task involving the use of PHOCL-50 for laser gain measurements, LTI experiments, and detector testing by LANL personnel. To support these latter tests, PHOCL-50 was upgraded with Boeing funding to incorporate a full aperture outcoupler that increased its energy output by over a factor of 3, to a full kilojoule. The PHOCL-50 carbon block calorimeter was also recalibrated and compared with the LANL Scientech meter. Cloud clearing studies under Task 3 initially concentrated on delivering a Boeing built Cloud Simulation Facility to LANL, and currently involves design of a Cold Cloud Simulation Facility. A Boeing IRAD funded theoretical study on cold cloud clearing revealed that ice clouds may be easier to clear then warm clouds. Task 4 involves the theoretical and experimental study of flow system design as related to laser beam quality. Present efforts on this task are concentrating on temperature gradients induced by the gas filling process. General support for the LPCL field effort is listed under Task 5, with heavy emphasis on assuring reliable operation of the Boeing built Large Slide Valve and other device related tests. The modification of the PHOCL-50 system for testing long pulse DF (4{mu}m only) chemical laser operation is being done under Task 6.

Bardon, R.L.; Breidenthal, R.E.; Buonadonna, V.R. [and others] [Boeing Aerospace Co., Seattle, WA (United States)

1989-02-01T23:59:59.000Z

290

Production of Picosecond, Kilojoule, and Petawatt Laser Pulses via Raman Amplification of Nanosecond Pulses  

Science Conference Proceedings (OSTI)

Raman amplification in plasma has been promoted as a means of compressing picosecond optical laser pulses to femtosecond duration to explore the intensity frontier. Here we show for the first time that it can be used, with equal success, to compress laser pulses from nanosecond to picosecond duration. Simulations show up to 60% energy transfer from pump pulse to probe pulse, implying that multikilojoule ultraviolet petawatt laser pulses can be produced using this scheme. This has important consequences for the demonstration of fast-ignition inertial confinement fusion.

Trines, R. M. G. M.; Bingham, R.; Norreys, P. A. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, Oxon, OX11 0QX (United Kingdom); Fiuza, F.; Fonseca, R. A.; Silva, L. O. [GoLP/Instituto de Plasmas e Fusao Nuclear--Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisbon (Portugal); Cairns, R. A. [University of St. Andrews, St. Andrews, Fife KY16 9AJ (United Kingdom)

2011-09-02T23:59:59.000Z

291

Influence of nitrogen background pressure on structure of niobium nitride films grown by pulsed laser deposition  

SciTech Connect

Depositions of niobium nitride thin films on Nb using pulsed laser deposition (PLD) with different nitrogen background pressures (10.7 to 66.7 Pa) have been performed. The effect of nitrogen pressure on NbN formation in this process was examined. The deposited films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), and energy dispersive X-ray (EDX) analysis. Hexagonal {beta}-Nb{sub 2}N and cubic {delta}-NbN phases resulted when growth was performed in low nitrogen background pressures. With an increase in nitrogen pressure, NbN films grew in single hexagonal {beta}-Nb{sub 2}N phase. The formation of the hexagonal texture during the film growth was studied. The c/a ratio of the hexagonal {beta}-Nb{sub 2}N unit cell parameter increases with increasing nitrogen pressure. Furthermore, the N:Nb ratio has a strong influence on the lattice parameter of the {delta}-NbN, where the highest value was achieved for this ratio was 1.19. It was found that increasing nitrogen background pressure leads to change in the phase structure of the NbN film. With increasing nitrogen pressure, the film structure changes from hexagonal to a mixed phase and then back to a hexagonal phase.

Ashraf H. Farha, Ali O. Er, Yüksel Ufuktepe, Ganapati Myneni, Hani E. Elsayed-Ali

2011-12-01T23:59:59.000Z

292

Towards hard x-ray imaging at GHz frame rate  

SciTech Connect

Gigahertz (GHz) imaging using hard x-rays ( Greater-Than-Or-Equivalent-To 10 keV) can be useful to high-temperature plasma experiments, as well as research and applications using coherent photons from synchrotron radiation and x-ray free electron lasers. GHz framing rate can be achieved by using multiple cameras through multiplexing. The advantages and trade-offs of single-photon detection mode, when no more than one x-ray photon is detected per pixel, are given. Two possible paths towards x-ray imaging at GHz frame rates using a single camera are: (a) avalanche photodiode arrays of high-Z materials and (b) microchannel plate photomultipliers in conjunction with materials with large indices of refraction.

Wang Zhehui; Morris, C. L.; Kapustinsky, J. S.; Kwiatkowski, K.; Luo, S.-N. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2012-10-15T23:59:59.000Z

293

Towards hard X-ray imaging at GHz frame rate  

Science Conference Proceedings (OSTI)

Gigahertz (GHz) imaging using hard X-rays ({approx}> 10 keV) can be useful to high-temperature plasma experiments, as well as research using coherent photons from synchrotron radiation and X-ray free electron lasers. GHz framing rate can be achieved by using multiple cameras through multiplexing. The advantages and trade-offs of single-photon detection mode, when no more than one X-ray photon is detected per pixel, are given. Two possible paths towards X-ray imaging at GHz frame rates using a single camera are (a) Avalanche photodiode arrays of high-Z materials and (b) Microchannel plate photomultipliers in conjunction with materials with large indices of refraction.

Wang, Zhehui [Los Alamos National Laboratory; Morris, Christopher [Los Alamos National Laboratory; Luo, Shengnian [Los Alamos National Laboratory; Kwiatkowski, Kris K. [Los Alamos National Laboratory; Kapustinsky, Jon S. [Los Alamos National Laboratory

2012-05-02T23:59:59.000Z

294

Feedback stabilization system for pulsed single-frequency tunable lasers  

DOE Patents (OSTI)

A feedback stabilization system for pulse single-frequency tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an optical element, including detection of angular deviation in the output laser beam, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.

Esherick, P.; Raymond, T.D.

1989-04-20T23:59:59.000Z

295

Generator of pumping pulses for powerful semiconductor lasers  

Science Conference Proceedings (OSTI)

The generator of electric and optic pulses are built using powerful MOS transistors and an ILPI-103 semiconductor laser generates pumping pulses with an amplitude of 15 A and optic pulses with a duration of 9 to 30 nsec at a repetition rate of up to 90 kHz. The output signal is TTL. The device is designed for open optic communication lines.

An, V.I.; Kolesnikov, Yu.Yu. [Voronezh Scientific Research Institute of Communications, Voronezh (Russian Federation)

1995-06-01T23:59:59.000Z

296

Compact x-ray source and panel  

SciTech Connect

A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

Sampayon, Stephen E. (Manteca, CA)

2008-02-12T23:59:59.000Z

297

First time nuclear material detection by one short-pulse-laser...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Articles First time nuclear material detection by one short-pulse-laser-driven neutron source First time nuclear material detection by one short-pulse-laser-driven...

298

Electron beam-switched discharge for rapidly pulsed lasers  

DOE Patents (OSTI)

A method and apparatus are designed for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

Pleasance, L.D.; Murray, J.R.; Goldhar, J.; Bradley, L.P.

1979-12-11T23:59:59.000Z

299

CO{sub 2} laser pulse shortening by laser ablation of a metal target  

Science Conference Proceedings (OSTI)

A repeatable and flexible technique for pulse shortening of laser pulses has been applied to transversely excited atmospheric (TEA) CO{sub 2} laser pulses. The technique involves focusing the laser output onto a highly reflective metal target so that plasma is formed, which then operates as a shutter due to strong laser absorption and scattering. Precise control of the focused laser intensity allows for timing of the shutter so that different temporal portions of the pulse can be reflected from the target surface before plasma formation occurs. This type of shutter enables one to reduce the pulse duration down to {approx}2 ns and to remove the low power, long duration tails that are present in TEA CO{sub 2} pulses. The transmitted energy is reduced as the pulse duration is decreased but the reflected power is {approx}10 MW for all pulse durations. A simple laser heating model verifies that the pulse shortening depends directly on the plasma formation time, which in turn is dependent on the applied laser intensity. It is envisaged that this plasma shutter will be used as a tool for pulse shaping in the search for laser pulse conditions to optimize conversion efficiency from laser energy to useable extreme ultraviolet (EUV) radiation for EUV source development.

Donnelly, T.; Mazoyer, M.; Lynch, A.; O'Sullivan, G.; O'Reilly, F.; Dunne, P.; Cummins, T. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland)

2012-03-15T23:59:59.000Z

300

The potential for extending the spectral range accessible to the european X-ray free electron laser in the direction of longer wavelengths  

E-Print Network (OSTI)

The baseline specifications of European XFEL give a range of wavelengths between 0.1 nm and 2 nm. This wavelength range at fixed electron beam energy 17.5 GeV can be covered by operating the SASE FEL with three undulators which have different period and tunable gap. A study of the potential for the extending the spectral range accessible to the XFEL in the direction of longer wavelengths is presented. The extension of the wavelength range to 6 nm would be cover the water window in the VUV region, opening the facility to a new class of experiments. There are at least two possible sources of VUV radiation associated with the X-ray FEL; the "low (2.5 GeV) energy electron beam dedicated" and the " 17.5 GeV spent beam parasitic" (or "after-burner") source modes. The second alternative, "after-burner undulator" is the one we regard as most favorable. It is possible to place an undulator as long as 80 meters after 2 nm undulator. Ultimately, VUV undulator would be able to deliver output power approaching 100 GW. A b...

Saldin, E L; Yurkov, M V

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray laser pulse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Imaging X-ray Thomson Scattering Spectrometer Design and Demonstration  

SciTech Connect

In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally-curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

Gamboa, E.J. [University of Michigan; Huntington, C.M. [University of Michigan; Trantham, M.R. [University of Michigan; Keiter, P.A [University of Michigan; Drake, R.P. [University of Michigan; Montgomery, David [Los Alamos National Laboratory; Benage, John F. [Los Alamos National Laboratory; Letzring, Samuel A. [Los Alamos National Laboratory

2012-05-04T23:59:59.000Z

302

The Coherent X-ray Imaging (CXI) Instrument at the Linac Coherent Light Source (LCLS)  

Science Conference Proceedings (OSTI)

The Linac Coherent Light Source (LCLS) has become the first ever operational hard X-ray Free Electron Laser in 2009. It will operate as a user facility capable of delivering unique research opportunities in multiple fields of science. The LCLS and the LCLS Ultrafast Science Instruments (LUSI) construction projects are developing instruments designed to make full use of the capabilities afforded by the LCLS beam. One such instrument is being designed to utilize the LCLS coherent beam to image with high resolution any sub-micron object. This instrument is called the Coherent X-ray Imaging (CXI) instrument. This instrument will provide a flexible optical system capable of tailoring key beam parameters for the users. A suite of shot-to-shot diagnostics will also be provided to characterize the beam on every pulse. The provided instrumentation will include multi-purpose sample environments, sample delivery and a custom detector capable of collecting 2D data at 120 Hz. In this article, the LCLS will be briefly introduced along with the technique of Coherent X-ray Diffractive Imaging (CXDI). A few examples of scientific opportunities using the CXI instrument will be described. Finally, the conceptual layout of the instrument will be presented along with a description of the key requirements for the overall system and specific devices required.

Boutet, Sebastien

2011-08-16T23:59:59.000Z

303

Recent Measurements And Plans for the SLAC Compton X-Ray Source  

Science Conference Proceedings (OSTI)

A compact source of monoenergetic X-rays, generated via Compton backscattering, has been developed in a collaboration between U.C Davis and SLAC. The source consists of a 5.5 cell X-band photoinjector, a 1.05 m long high gradient accelerator structure and an interaction chamber where a high power (TW), short pulse (sub-ps) infrared laser beam is brought into a nearly head-on collision with a high quality focused electron beam. Successful completion of this project will result in the capability of generating a monoenergetic X-ray beam, continuously tunable from 20 - 85 keV. We have completed a series of measurements leading up to the generation of monoenergetic X-rays. Measurements of essential electron beam parameters and the techniques used in establishing electron/photon collisions will be presented. We discuss the design of an improved interaction chamber, future electro-optic experiments using this chamber and plans for expanding the overall program to the generation of Terahertz radiation.

Vlieks, A.E.; Akre, R.; Caryotakis, G.; DeStefano, C.; Frederick, W.J.; Heritage, J.P.; Luhmann, N.C.; Martin, D.; Pellegrini, C.; /SLAC /UC, Davis /UCLA

2006-02-14T23:59:59.000Z

304

Efficient photoassociation with a train of asymmetric laser pulses  

SciTech Connect

The photoassociation (PA) dynamics implemented by a train of asymmetric slowly turned-on and rapidly turned-off (STRT) laser pulses is investigated theoretically with Cs{sub 2} as an example. A higher PA efficiency is achieved by optimizing the parameters of the STRT pulse train. The PA reaction goes partly beyond the scope of the PA window. Numerical calculations show that an efficient population accumulation in the PA process can be realized with the STRT laser-pulse train which is available in the current experiment based on laser mode-lock and shaping technology.

Zhang Wei; Wang Gaoren; Cong Shulin [School of Physics and Optoelectronic Technology, Dalian University of Technology, 116024 Dalian (China)

2011-04-15T23:59:59.000Z

305

Microgap x-ray detector  

DOE Patents (OSTI)

An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

Wuest, Craig R. (Danville, CA); Bionta, Richard M. (Livermore, CA); Ables, Elden (Livermore, CA)

1994-01-01T23:59:59.000Z

306

Flat Field Anomalies in an X-ray CCD Camera Measured Using a Manson X-ray Source  

SciTech Connect

The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 ?m square pixels, and 15 ?m thick. A multi-anode Manson X-ray source, operating up to 10kV and 10W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/?E?10. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within ±1% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager.

M. J. Haugh and M. B. Schneider

2008-10-31T23:59:59.000Z

307

Synchronization of sub-picosecond electron and laser pulses  

SciTech Connect

Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail. (AIP) {copyright} {ital 1999 American Institute of Physics.}

Rosenzweig, J.B. [UCLA Department of Physics and Astronomy, 405 Hilgard Ave., Los Angeles, California 90095 (United States); Le Sage, G.P. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)

1999-07-01T23:59:59.000Z

308

Synchronization of sub-picosecond electron and laser pulses  

SciTech Connect

Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail.

Rosenzweig, J. B.; Le Sage, G. P. [UCLA Department of Physics and Astronomy, 405 Hilgard Ave., Los Angeles, California 90095 (United States); Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)

1999-07-12T23:59:59.000Z

309

Chest x-Rays | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chest x-Rays Chest x-Rays Chest x-Rays Chest X-ray B-Reading The B-reading is a special reading of a standard chest x-ray film performed by a physician certified by the National Institute for Occupational Safety and Health (NIOSH). The reading looks for changes on the chest x-ray that may indicate exposure and disease caused by agents such as asbestos or silica. The B-reading is considered a special reading because doctors who are certified by NIOSH to perform B-readings use a specific protocol to read and record the findings as developed by the International Labour Organization (ILO). The ILO's protocol provides rules for systematically examining the x-ray in a step-by-step method and recording certain abnormalities or changes on the chest x-ray that can be attributable to

310

Spectral analysis of X-ray binaries  

E-Print Network (OSTI)

In this thesis, I present work from three separate research projects associated with observations of X-ray binaries. Two of those revolve around spectral characteristics of neutron star low-mass X-ray binaries (NS-LMXBs), ...

Fridriksson, Joel Karl

2011-01-01T23:59:59.000Z

311

X-Ray Diffraction on NIF  

SciTech Connect

The National Ignition Facility (NIF) is currently a 192 beam, 1.6 MJ laser. NIF Ramp-Compression Experiments have already made the relevant exo-planet pressure range from 1 to 50 Mbar accessible. We Proposed to Study Carbon Phases by X-Ray Diffraction on NIF. Just a few years ago, ultra-high pressure phase diagrams for materials were very 'simple'. New experiments and theories point out surprising and decidedly complex behavior at the highest pressures considered. High pressures phases of aluminum are also predicted to be complex. Recent metadynamics survey of carbon proposed a dynamic pathway among multiple phases. We need to develop diagnostics and techniques to explore this new regime of highly compressed matter science. X-Ray Diffraction - Understand the phase diagram/EOS/strength/texture of materials to 10's of Mbar. Strategy and physics goals: (1) Powder diffraction; (2) Begin with diamond; (3) Continue with metals etc.; (4) Explore phase diagrams; (5) Develop liquid diffraction; and (6) Reduce background/improve resolution.

Eggert, J H; Wark, J

2012-02-15T23:59:59.000Z

312

Chirped pulse inverse free-electron laser vacuum accelerator  

SciTech Connect

A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

Hartemann, Frederic V. (Dublin, CA); Baldis, Hector A. (Pleasanton, CA); Landahl, Eric C. (Walnut Creek, CA)

2002-01-01T23:59:59.000Z

313

Schwinger Vacuum Pair Production in Chirped Laser Pulses  

E-Print Network (OSTI)

The recent developments of high intensity ultra-short laser pulses have raised the hopes of observing Schwinger vacuum pair production which is one of the important non-perturbative phenomena in Quantum electrodynamics (QED). The quantitative analysis of realistic high intensity laser pulses is vital for understanding the effect of the field parameters on the momentum spectrum of the produced particles. In this study, we analyze chirped laser pulses with a sub-cycle structure, and investigate the effects of the chirp parameter on the momentum spectrum of the produced particles. The combined effect of the chirp and carrier phase of the laser pulse is also analyzed. These effects are qualitatively explained by investigating the turning point structure of the potential within the framework of the complex WKB scattering approach to pair production.

Cesim K. Dumlu

2010-06-19T23:59:59.000Z

314

A-26: Nanoindentation Investigation of the Reactive Pulsed Laser ...  

Science Conference Proceedings (OSTI)

... of the Reactive Pulsed Laser Deposited Superconducting Niobium Nitride Thin Films. Author(s) ... A-33: Modeling of a Displacive Transformation within Continuous ... Dye-Sensitized Solar Cells by Introducing a TiN Nanocrystalline Thin Film.

315

Development of extreme ultraviolet and soft x-ray multilayer optics for scientific studies with femtosecond/attosecond sources  

E-Print Network (OSTI)

132] J. Arthur. Status of the LCLS x-ray FEL program. Reviewelectron lasers(such as LCLS at Stanford[132]) are expected

Aquila, Andrew Lee

2009-01-01T23:59:59.000Z

316

Cryotomography x-ray microscopy state  

Science Conference Proceedings (OSTI)

An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

Le Gros, Mark (Berkeley, CA); Larabell, Carolyn A. (Berkeley, CA)

2010-10-26T23:59:59.000Z

317

Imaging a laser pulse propagation trough an image acquisition system  

Science Conference Proceedings (OSTI)

The goal of this paper is to generate a laser pulse and to capture it by an image acquisition system. We use a confocal resonator to generate a laser pulse; then the generate light is focused in to an optical fiber using an achromatic doublet; the light ... Keywords: Hermite Gaussian polynomial, Laplacian filter, MTF, PSF, achromatic doublet, amplitude filter, bilateral filter, fixed pattern noise, photon shot noise

Toadere Florin; Nikos E. Mastorakis

2009-12-01T23:59:59.000Z

318

X-ray absorption spectroscopy of aluminum z-pinch plasma with tungsten backlighter planar wire array source  

Science Conference Proceedings (OSTI)

Absorption features from K-shell aluminum z-pinch plasmas have recently been studied on Zebra, the 1.7 MA pulse power generator at the Nevada Terawatt Facility. In particular, tungsten plasma has been used as a semi-backlighter source in the generation of aluminum K-shell absorption spectra by placing a single Al wire at or near the end of a single planar W array. All spectroscopic experimental results were recorded using a time-integrated, spatially resolved convex potassium hydrogen phthalate (KAP) crystal spectrometer. Other diagnostics used to study these plasmas included x-ray detectors, optical imaging, laser shadowgraphy, and time-gated and time-integrated x-ray pinhole imagers. Through comparisons with previous publications, Al K-shell absorption lines are shown to be from much lower electron temperature ({approx}10-40 eV) plasmas than emission spectra ({approx}350-500 eV).

Osborne, G. C.; Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Weller, M. E.; Shrestha, I.; Shlyaptseva, V. V. [Physics Department, University of Nevada, Reno, Reno, Nevada 89557 (United States); Ouart, N. D. [Naval Research Laboratory, Washington, D.C. 20375 (United States)

2012-10-15T23:59:59.000Z

319

High-energy x-ray backlighter spectrum measurements using calibrated image plates  

Science Conference Proceedings (OSTI)

The x-ray spectrum between 18 and 88 keV generated by a petawatt laser driven x-ray backlighter target was measured using a 12-channel differential filter pair spectrometer. The spectrometer consists of a series of filter pairs on a Ta mask coupled with an x-ray sensitive image plate. A calibration of Fuji{trademark} MS and SR image plates was conducted using a tungsten anode x-ray source and the resulting calibration applied to the design of the Ross pair spectrometer. Additionally, the fade rate and resolution of the image plate system were measured for quantitative radiographic applications. The conversion efficiency of laser energy into silver K{alpha} x rays from a petawatt laser target was measured using the differential filter pair spectrometer and compared to measurements using a single photon counting charge coupled device.

Maddox, B.R.; Park, H.S.; Remington, B.A.; Izumi, N.; Chen, S.; Chen, C.; Kimminau, G.; Ali, Z.; Haugh, M.J.; Ma, Q. (LLNL); (NWU); (Oxford); (NSTec)

2012-10-10T23:59:59.000Z

320

High-energy x-ray backlighter spectrum measurements using calibrated image plates  

Science Conference Proceedings (OSTI)

The x-ray spectrum between 18 and 88 keV generated by a petawatt laser driven x-ray backlighter target was measured using a 12-channel differential filter pair spectrometer. The spectrometer consists of a series of filter pairs on a Ta mask coupled with an x-ray sensitive image plate. A calibration of Fuji MS and SR image plates was conducted using a tungsten anode x-ray source and the resulting calibration applied to the design of the Ross pair spectrometer. Additionally, the fade rate and resolution of the image plate system were measured for quantitative radiographic applications. The conversion efficiency of laser energy into silver K{alpha} x rays from a petawatt laser target was measured using the differential filter pair spectrometer and compared to measurements using a single photon counting charge coupled device.

Maddox, B. R.; Park, H. S.; Remington, B. A.; Izumi, N.; Chen, S.; Chen, C. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Kimminau, G. [Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Ali, Z.; Haugh, M. J. [National Security Technologies, LLC, Livermore, California 94550 (United States); Ma, Q. [DND-CAT, Argonne National Laboratory, Argonne, Illinois 60439-4857 (United States)

2011-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray laser pulse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Nonclassical hydrodynamic behavior of Sn plasma irradiated with a long duration CO2 laser pulse  

E-Print Network (OSTI)

with a long duration CO 2 laser pulse Y. Tao · M.S. Tillackwith a long duration CO 2 laser pulse is much shorter thanmass and makes a CO 2 -laser-produced Sn plasma suitable as

Tao, Y.; Tillack, M. S.; Yuseph, S.; Burdt, R.; Najmabadi, F.

2010-01-01T23:59:59.000Z

322

Synchronization of Sub-Picosecond Electron and Laser Pulses  

SciTech Connect

Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is subpicosecond, with tens of femtosecond synchronization implied for next-generation experiments. Typically, an RF electron accelerator is synchronized to a short pulse laser system by detecting the repetition signal of a laser oscillator, adjusted to an exact subharmonic of the linac RF frequency, and multiplying or phase locking this signal to produce the master RF clock. Pulse-to-pulse jitter characteristic of self-mode-locked laser oscillators represents a direct contribution to the ultimate timing jitter between a high intensity laser focus and electron beam at the interaction point, or a photocathode drive laser in an RF photoinjector. This timing jitter problem has been addressed most seriously in the context of the RF photoinjector, where the electron beam properties are sensitive functions of relative timing jitter. The timing jitter achieved in synchronized photocathode drive laser systems is near, or slightly below one picosecond. The ultimate time of arrival jitter of the beam at the photoinjector exit is typically a bit smaller than the photocathode drive-laser jitter due to velocity compression effects in the first RF cell of the gun. This tendency of the timing of the electron beam arrival at a given spatial point to lock to the RF lock is strongly reinforced by use of magnetic compression.

Rosenzweig, J.B.; Le Sage G.P.

2000-08-15T23:59:59.000Z

323

X-ray transmissive debris shield  

DOE Patents (OSTI)

An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

Spielman, R.B.

1996-05-21T23:59:59.000Z

324

X-ray transmissive debris shield  

DOE Patents (OSTI)

An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

Spielman, Rick B. (Albuquerque, NM)

1996-01-01T23:59:59.000Z

325

Nuclear Collective Excitation by a Short Strong Laser Pulse  

E-Print Network (OSTI)

We derive the conditions on the average laser energy and the mean photon number such that a short strong laser pulse causes collective nuclear excitation. We use the Giant Dipole Resonance as a representative example, and a random-matrix description of the fine-structure states and perturbation theory as tools.

Weidenmueller, Hans A

2010-01-01T23:59:59.000Z

326

A multi-crystal wavelength dispersive x-ray spectrometer  

Science Conference Proceedings (OSTI)

A multi-crystal wavelength dispersive hard x-ray spectrometer with high-energy resolution and large solid angle collection is described. The instrument is specifically designed for time-resolved applications of x-ray emission spectroscopy (XES) and x-ray Raman scattering (XRS) at X-ray Free Electron Lasers (XFEL) and synchrotron radiation facilities. It also simplifies resonant inelastic x-ray scattering (RIXS) studies of the whole 2d RIXS plane. The spectrometer is based on the Von Hamos geometry. This dispersive setup enables an XES or XRS spectrum to be measured in a single-shot mode, overcoming the scanning needs of the Rowland circle spectrometers. In conjunction with the XFEL temporal profile and high-flux, it is a powerful tool for studying the dynamics of time-dependent systems. Photo-induced processes and fast catalytic reaction kinetics, ranging from femtoseconds to milliseconds, will be resolvable in a wide array of systems circumventing radiation damage.

Alonso-Mori, Roberto; Montanez, Paul; Delor, James; Bergmann, Uwe [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kern, Jan [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8099 (United States); Sokaras, Dimosthenis; Weng, Tsu-Chien; Nordlund, Dennis [SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Tran, Rosalie; Yachandra, Vittal K.; Yano, Junko [Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8099 (United States)

2012-07-15T23:59:59.000Z

327

Pulsed CO laser for isotope separation of uranium  

SciTech Connect

This article proposes a technical solution for using a CO laser facility for the industrial separation of uranium used in the production of fuel for nuclear power plants, employing a method of laser isotope separation of uranium with condensation repression in a free jet. The laser operation with nanosecond pulse irradiation can provide an acceptable efficiency in the separating unit and a high efficiency of the laser with the wavelength of 5.3 {mu}m. In the present work we also introduce a calculation model and define the parameters of a mode-locked CO laser with a RF discharge in the supersonic stream. The average pulsed CO laser power of 3 kW is sufficient for efficient industrial isotope separation of uranium in one stage.

Baranov, Igor Y.; Koptev, Andrey V. [Rocket-Space Technics Department, Baltic State Technical University, 1, 1st Krasnoarmeyskaya st.,St. Petersburg, 190005 (Russian Federation)

2012-07-30T23:59:59.000Z

328

Slow Electrons Generated by Intense High-Frequency Laser Pulses  

Science Conference Proceedings (OSTI)

A very slow electron is shown to emerge when an intense high-frequency laser pulse is applied to a hydrogen negative ion. This counterintuitive effect cannot be accounted for by multiphoton or tunneling ionization mechanisms. We explore the effect and show that in the high-frequency regime the atomic electron is promoted to the continuum via a nonadiabatic transition caused by slow deformation of the dressed potential that follows a variation of the envelope of the laser pulse. This is a general mechanism, and a slow electron peak should always appear in the photoelectron spectrum when an atom is irradiated by a high-frequency pulse of finite length.

Toyota, Koudai; Watanabe, Shinichi [Department of Applied Physics and Chemistry, University of Electro-Communications, 1-5-1, Chofu-ga-oka, Chofu-shi, Tokyo (Japan); Tolstikhin, Oleg I. [Russian Research Center 'Kurchatov Institute', Kurchatov Square 1, Moscow 123182 (Russian Federation); Morishita, Toru [Department of Applied Physics and Chemistry, University of Electro-Communications, 1-5-1, Chofu-ga-oka, Chofu-shi, Tokyo (Japan); PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan)

2009-10-09T23:59:59.000Z

329

Propagation of Nd-laser pulses through crystalline silicon wafers  

SciTech Connect

Propagation of pulses from an Nd:YAG laser (wavelength, 1.064 {mu}m; pulse duration, 270 ns; pulse energy, 225 {mu}J) through crystalline silicon wafers is studied experimentally. Mathematical modelling of the process is performed: the heat conduction equation is solved numerically, the temperature dependences of the absorption and refraction of a substance, as well as generation of nonequilibrium carriers by radiation are taken into account. The constructed model satisfactorily explains the experimentally observed intensity oscillations of transmitted radiation. (interaction of laser radiation with matter)

Kirichenko, N A; Kuzmin, P G; Shcherbina, M E [Wave Research Center, A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

2011-07-31T23:59:59.000Z

330

Lessening X-ray damage is healthy for protein discovery data too | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

The brightness and energy of X-ray beams are critical properties for The brightness and energy of X-ray beams are critical properties for research. The APS Upgrade will make our X-ray beams brighter, meaning more X-rays can be focused onto a smaller, laser-like spot, allowing researchers to gather more data in greater detail in less time. Lessening X-ray damage is healthy for protein discovery data too December 16, 2013 Tweet EmailPrint New recommendations for using X-rays promise to speed investigations aimed at understanding the structure and function of biologically important proteins - information critical to the development of new drugs. Scientists from two U.S. Department of Energy national laboratories, Argonne and Brookhaven, and the University of Washington, Seattle, evaluated options to remedy problems affecting data collection in their new

331

Plasma impedance and electron density in a pulsed laser channel  

Science Conference Proceedings (OSTI)

The representation of plasma impedance of gas laserdischarge and spark gap channels by an inductance–capacitance (L p ?C p ) tank circuit has been useful in describing the frequency response of a pulsed superradiant laser charging circuit. The impedance matching of these plasma channels can lead to resonant narrowing of the laser pulsewidth in superradiant nitrogen lasers. Using fluid equations to model the electron and ion plasmas

K. H. Tsui; G. H. Cavalcanti; A. S. Farias; M. D. S. Marinha; L. M. Soares; C. A. Massone

1996-01-01T23:59:59.000Z

332

Development of pulse laser processing for mounting fiber Bragg grating  

SciTech Connect

Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 8-1-7 Umebidai Kidugawa Kyoto 619-0215 (Japan); Applied Laser Technology Institute, Tsuruga Head Office, Japan Atomic Energy Agency, 65-20 Kizaki Tsuruga Fukui 914-8585 (Japan); Technical Research and Development Institute, Kumagai Gumi Co., Ltd., 2-1 Tsukudo, Shinjuku Tokyo 162-8557 (Japan)

2012-07-11T23:59:59.000Z

333

Laser Phase Errors in Seeded Free Electron Lasers  

SciTech Connect

Harmonic seeding of free electron lasers has attracted significant attention as a method for producing transform-limited pulses in the soft x-ray region. Harmonic multiplication schemes extend seeding to shorter wavelengths, but also amplify the spectral phase errors of the initial seed laser, and may degrade the pulse quality and impede production of transform-limited pulses. In this paper we consider the effect of seed laser phase errors in high gain harmonic generation and echo-enabled harmonic generation. We use simulations to confirm analytical results for the case of linearly chirped seed lasers, and extend the results for arbitrary seed laser envelope and phase.

Ratner, D.; Fry, A.; Stupakov, G.; White, W.; /SLAC

2012-04-17T23:59:59.000Z

334

Envelope evolution of a laser pulse in an active medium  

Science Conference Proceedings (OSTI)

The authors show that the envelope velocity, v{sub env}, of a short laser pulse can, via propagation in an active medium, be made less than, equal to, or even greater than c, the vacuum phase velocity of light. Simulation results, based on moving frame propagation equations coupling the laser pulse, active medium and plasma, are presented, as well as equations that determines the design value of super- and sub-luminous v{sub env}. In this simulation the laser pulse evolves in time in a moving frame as opposed to their earlier work where the profile was fixed. The elimination of phase slippage and pump depletion effects in the laser wakefield accelerator is discussed as a particular application. Finally they discuss media properties necessary for an experimental realization of this technique.

Fisher, D.L.; Tajima, T.; Downer, M.C.; Siders, C.W.

1994-11-01T23:59:59.000Z

335

Development of soft x-ray time-resolved photoemission spectroscopy system with a two-dimensional angle-resolved time-of-flight analyzer at SPring-8 BL07LSU  

Science Conference Proceedings (OSTI)

We have developed a soft x-ray time-resolved photoemission spectroscopy system using synchrotron radiation (SR) at SPring-8 BL07LSU and an ultrashort pulse laser system. Two-dimensional angle-resolved measurements were performed with a time-of-flight-type analyzer. The photoemission spectroscopy system is synchronized to light pulses of SR and laser using a time control unit. The performance of the instrument is demonstrated by mapping the band structure of a Si(111) crystal over the surface Brillouin zones and observing relaxation of the surface photo-voltage effect using the pump (laser) and probe (SR) method.

Ogawa, Manami; Yamamoto, Susumu; Nakamura, Fumitaka; Yukawa, Ryu; Fukushima, Akiko; Harasawa, Ayumi; Kakizaki, Akito; Matsuda, Iwao [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8581 (Japan); Kousa, Yuka; Kondoh, Hiroshi [Department of Chemistry, Keio University, Yokohama 223-8522 (Japan); Tanaka, Yoshihito [RIKEN/SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

2012-02-15T23:59:59.000Z

336

A NEW CORRELATION BETWEEN GRB X-RAY FLARES AND THE PROMPT EMISSION  

Science Conference Proceedings (OSTI)

From a sample of gamma-ray bursts (GRBs) detected by the Fermi and Swift missions, we have extracted the minimum variability timescales for temporal structures in the light curves associated with the prompt emission and X-ray flares. A comparison of this variability timescale with pulse parameters such as rise times, determined via pulse-fitting procedures, and spectral lags, extracted via the cross-correlation function, indicates a tight correlation between these temporal features for both the X-ray flares and the prompt emission. These correlations suggest a common origin for the production of X-ray flares and the prompt emission in GRBs.

Sonbas, E. [Department of Physics, University of Adiyaman, 02040 Adiyaman (Turkey); MacLachlan, G. A.; Shenoy, A.; Dhuga, K. S.; Parke, W. C., E-mail: edasonbas@yahoo.com [Department of Physics, George Washington University, Washington, DC 20052 (United States)

2013-04-20T23:59:59.000Z

337

Laser Safety for the Experimental Halls at SLAC_s Linac Coherent Light Source (LCLS)  

SciTech Connect

The LCLS at the SLAC National Accelerator Laboratory will be the world's first source of an intense hard x-ray laser beam, generating x-rays with wavelengths of 1nm and pulse durations less than 100fs. The ultrafast x-ray pulses will be used in pump-probe experiments to take stop-motion pictures of atoms and molecules in motion, with pulses powerful enough to take diffraction images of single molecules, enabling scientists to elucidate fundamental processes of chemistry and biology. Ultrafast conventional lasers will be used as the pump. In 2009, LCLS will deliver beam to the Atomic Molecular and Optical (AMO) Experiment, located in one of 3 x-ray Hutches in the Near Experimental Hall (NEH). The NEH includes a centralized Laser Hall, containing up to three Class 4 laser systems, three x-ray Hutches for experiments and vacuum transport tubes for delivering laser beams to the Hutches. The main components of the NEH laser systems are a Ti:sapphire oscillator, a regen amplifier, green pump lasers for the oscillator and regen, a pulse compressor and a harmonics conversion unit. Laser safety considerations and controls for the ultrafast laser beams, multiple laser controlled areas, and user facility issues are discussed.

Woods, Michael; Anthony, Perry; /SLAC; Barat, Ken; /LBL, Berkeley; Gilevich, Sasha; Hays, Greg; White, William E.; /SLAC

2009-01-15T23:59:59.000Z

338

Double pulse laser induced breakdown spectroscopy; experimental study of  

NLE Websites -- All DOE Office Websites (Extended Search)

Double pulse laser induced breakdown spectroscopy; experimental study of Double pulse laser induced breakdown spectroscopy; experimental study of lead emission intensity dependence on the wavelengths and sample matrix Title Double pulse laser induced breakdown spectroscopy; experimental study of lead emission intensity dependence on the wavelengths and sample matrix Publication Type Journal Article Year of Publication 2009 Authors Piscitelli, Vincent, Mauro A. Martinez, Alberto J. Fernandez, Jhanis J. Gonzalez, Xianglei Mao, and Richard E. Russo Journal Spectrochimica Acta Part B Volume 64 Issue 2 Pagination 147-154 Date Published 02/2009 Keywords Double pulse LIBS, laser induced breakdown spectroscopy, lead Abstract Lead (Pb) emission intensity (atomic line 405.78 nm) dependence on the sample matrix (metal alloy) was studied by means of collinear double pulse (DP)-laser induced breakdown spectroscopy (LIBS). The measurement of the emission intensity produced by three different wavelength combinations (i.e. I:532 nm-II:1064 nm, I:532 nm-II:532 nm, and I:532 nm-II:355 nm) from three series of standard reference materials showed that the lead atomic line 405.78 nm emission intensity was dependent on the sample matrix for all the combination of wavelengths, however reduced dependency was found for the wavelength combination I:532 nm-II:355 nm.

339

Scientific Needs for Future X-ray Sources in the U.S. -- A White Paper  

E-Print Network (OSTI)

scientific user program at LCLS, the first x-ray laser, toERL SPring-8 Ring ELETTRA LCLS II & III Ring Upgrade SDL SRFERMI FEL ALS Ring Ring FEL LCLS SPARC Upgrade SSRF FEL PAL-

Falcone, Roger

2008-01-01T23:59:59.000Z

340

Efficient multi?keV x?ray sources from Ti?doped aerogel targets  

Science Conference Proceedings (OSTI)

We have measured the production of hv ? 4.7 keV x?rays from low?density Ti?doped aerogel (? ? 3 mg/cc) targets at the OMEGA laser facility (University of Rochester)

K. B. Fournier; C. Constantin; G. Gregori; M. C. Miller; C. A. Back; L. J. Suter; J. Davis; J. Grun

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray laser pulse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Operation of beam line facilities for real-time x-ray studies at Sector 7 of the advanced photon source. Final Report  

SciTech Connect

This Final Report documents the research accomplishments achieved in the first phase of operations of a new Advanced Photon Source beam line (7-ID MHATT-CAT) dedicated to real-time x-ray studies. The period covered by this report covers the establishment of a world-class facility for time-dependent x-ray studies of materials. During this period many new and innovative research programs were initiated at Sector 7 with support of this grant, most notably using a combination of ultrafast lasers and pulsed synchrotron radiation. This work initiated a new frontier of materials research: namely, the study of the dynamics of materials under extreme conditions of high intensity impulsive laser irradiation.

Clarke, Roy

2003-09-10T23:59:59.000Z

342

Specific energy for pulsed laser rock drilling  

Science Conference Proceedings (OSTI)

Application of advanced high power laser technology to oil and gas well drilling has been attracting significant research interests recently among research institutes

Z. Xu; C. B. Reed; G. Konercki; R. A. Parker; B. C. Gahan; S. Batarseh; R. M. Graves; H. Figueroa; N. Skinner

2003-01-01T23:59:59.000Z

343

X-ray data booklet. Revision  

SciTech Connect

A compilation of data is presented. Included are properties of the elements, electron binding energies, characteristic x-ray energies, fluorescence yields for K and L shells, Auger energies, energy levels for hydrogen-, helium-, and neonlike ions, scattering factors and mass absorption coefficients, and transmission bands of selected filters. Also included are selected reprints on scattering processes, x-ray sources, optics, x-ray detectors, and synchrotron radiation facilities. (WRF)

Vaughan, D. (ed.)

1986-04-01T23:59:59.000Z

344

X-ray transmissive debris shield  

DOE Patents (OSTI)

A composite window structure is described for transmitting x-ray radiation and for shielding radiation generated debris. In particular, separate layers of different x-ray transmissive materials are laminated together to form a high strength, x-ray transmissive debris shield which is particularly suited for use in high energy fluences. In one embodiment, the composite window comprises alternating layers of beryllium and a thermoset polymer.

Spielman, Rick B. (Albuquerque, NM)

1994-01-01T23:59:59.000Z

345

NIST X-Ray Transition Energies  

Science Conference Proceedings (OSTI)

... with the International System of measurement ... titled "X-ray transition energies: new approach ... and by NIST's Systems Integration for Manufacturing ...

2011-12-09T23:59:59.000Z

346

NIST: X-Ray Mass Attenuation Coefficients  

Science Conference Proceedings (OSTI)

... NIST reserves the right to charge for these data in the ... ?/? and the mass energy-absorption coefficient ... The tables cover energies of the photon (x-ray ...

2011-12-09T23:59:59.000Z

347

Hard X-Ray Quad Collimator  

Technology Development and Commercialization Division One of the best ways to obtain small?size x?ray beams for structural biology research is to ...

348

Optimized laser pulse profile for efficient radiation pressure acceleration of ions  

SciTech Connect

The radiation pressure acceleration regime of laser ion acceleration requires high intensity laser pulses to function efficiently. Moreover the foil should be opaque for incident radiation during the interaction to ensure maximum momentum transfer from the pulse to the foil, which requires proper matching of the target to the laser pulse. However, in the ultrarela-tivistic regime, this leads to large acceleration distances, over which the high laser intensity for a Gaussian laser pulse must be maintained. It is shown that proper tailoring of the laser pulse profile can significantly reduce the acceleration distance, leading to a compact laser ion accelerator, requiring less energy to operate.

Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P. [University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States) and University of California, Berkeley, California 94720 (United States)

2012-12-21T23:59:59.000Z

349

Optimized laser pulse profile for efficient radiation pressure acceleration of ions  

Science Conference Proceedings (OSTI)

The radiation pressure acceleration regime of laser ion acceleration requires high intensity laser pulses to function efficiently. Moreover, the foil should be opaque for incident radiation during the interaction to ensure maximum momentum transfer from the pulse to the foil, which requires proper matching of the target to the laser pulse. However, in the ultrarelativistic regime, this leads to large acceleration distances, over which the high laser intensity for a Gaussian laser pulse must be maintained. It is shown that proper tailoring of the laser pulse profile can significantly reduce the acceleration distance, leading to a compact laser ion accelerator, requiring less energy to operate.

Bulanov, S. S. [University of California, Berkeley, California 94720 (United States); Schroeder, C. B.; Esarey, E. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Leemans, W. P. [University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

2012-09-15T23:59:59.000Z

350

Guiding of high intensity ultrashort laser pulses in plasma channels produced with the dual laser pulse ignitor-heater technique  

DOE Green Energy (OSTI)

The authors present results of experimental investigations of laser guiding in plasma channels. A new technique for plasma channel creation, the Ignitor-Heater scheme is proposed and experimentally tested in hydrogen and nitrogen. It makes use of two laser pulses. The Ignitor, an ultrashort (< 100 fs) laser pulse, is brought to a line focus using a cylindrical lens to ionize the gas. The Heater pulse (160 ps long) is used subsequently to heat the existing spark via inverse Bremsstrahlung. The hydrodynamic shock expansion creates a partially evacuated plasma channel with a density minimum on axis. Such a channel has properties of an optical waveguide. This technique allows creation of plasma channels in low atomic number gases, such as hydrogen, which is of importance for guiding of highly intense laser pulses. The channel density was diagnosed with time resolved longitudinal interferometry. From these measurements the plasma temperature was inferred. The guiding properties of the channels were tested by injecting a > 5 {times} 10{sup 17} W/cm{sup 2}, 75 fs laser pulse.

Volfbeyn, P.; Leemans, W.P.

1998-07-01T23:59:59.000Z

351

Structure and giant magnetoresistance of granular Co-Cu nanolayers prepared by cross-beam pulsed laser deposition  

Science Conference Proceedings (OSTI)

A series of Co{sub x}Cu{sub 100-x} (x=0, 40-75, 100) layers with thicknesses between 13 and 55 nm were prepared on silicon substrates using cross-beam pulsed laser deposition. Wide-angle x-ray diffraction (WAXRD), transmission electron microscopy (TEM), and electrical transport measurements revealed a structure consisting of decomposed cobalt and copper grains with grain sizes of about 10 nm. The influence of cobalt content and layer thickness on the grain size is discussed. Electron diffraction indicates the presence of an intermetallic Co-Cu phase of Cu{sub 3}Au structure type. Thermal treatment at temperatures between 525 and 750 K results in the progressive decomposition of Co and Cu, with an increase of the grain sizes up to about 100 nm. This is tunable by controlling the temperature and duration of the anneal, and is directly observable in WAXRD patterns and TEM images. A careful analysis of grain size and the coherence length of the radiation used allows for an accurate interpretation of the x-ray diffraction patterns, by taking into account coherent and noncoherent scattering. The alloy films show a giant magnetoresistance of 1%-2.3% with the maximum obtained after annealing at around 725 K.

Jesche, A.; Stoecker, H.; Levin, A. A.; Meyer, D. C. [Institut fuer Strukturphysik, Technische Universitaet Dresden, D-01062 Dresden (Germany); Gorbunoff, A. [Hochschule fuer Technik und Wirtschaft Dresden, D-01069 Dresden (Germany); Mensch, A. [Institut fuer Werkstoffwissenschaft, Technische Universitaet Dresden, D-01062 Dresden (Germany)

2010-01-15T23:59:59.000Z

352

Long-pulse-width narrow-bandwidth solid state laser  

DOE Patents (OSTI)

A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications.

Dane, C. Brent (Livermore, CA); Hackel, Lloyd A. (Livermore, CA)

1997-01-01T23:59:59.000Z

353

Laser bandwidth interlock capable of single pulse detection and rejection  

SciTech Connect

A pulse of laser light is switched out of a pulse train and spatially dispersed into its constituent wavelengths. The pulse is collimated to a suitable size and then diffracted by high groove density multilayer dielectric gratings. This imparts a different angle to each individual wavelength so that, when brought to the far field with a lens, the colors have spread out in a linear arrangement. The distance between wavelengths (resolution) can be tailored for the specific laser and application by altering the number of times the beam strikes the diffraction gratings, the groove density of the gratings and the focal length of the lens. End portions of the linear arrangement are each directed to a respective detector, which converts the signal to a 1 if the level meets a set-point, and a 0 if the level does not. If both detectors produces a 1, then the pulse train is allowed to propagate into an optical system.

Armstrong, James P; Telford, Steven James; Lanning, Rodney Kay; Bayramian, Andrew James

2012-10-09T23:59:59.000Z

354

Silicon structuring by etching with liquid chlorine and fluorine precursors using femtosecond laser pulses  

SciTech Connect

The aim of this study is to investigate the micrometer and submicrometer scale structuring of silicon by liquid chlorine and fluorine precursors with 200 fs laser pulses working at both fundamental (775 nm) and frequency doubled (387 nm) wavelengths. The silicon surface was irradiated at normal incidence by immersing the Si (111) substrates in a glass container filled with liquid chlorine (CCl{sub 4}) and fluorine (C{sub 2}Cl{sub 3}F{sub 3}) precursors. We report that silicon surfaces develop an array of spikes with single step irradiation processes at 775 nm and equally at 387 nm. When irradiating the Si surface with 400 pulses at 330 mJ/cm{sup 2} laser fluence and a 775 nm wavelength, the average height of the formed Si spikes in the case of fluorine precursors is 4.2 {mu}m, with a full width at half maximum of 890 nm. At the same irradiation wavelength chlorine precursors develop Si spikes 4 {mu}m in height and with a full width at half maximum of 2.3 {mu}m with irradiation of 700 pulses at 560 mJ/cm{sup 2} laser fluence. Well ordered areas of submicrometer spikes with an average height of about 500 nm and a width of 300 nm have been created by irradiation at 387 nm by chlorine precursors, whereas the fluorine precursors fabricate spikes with an average height of 700 nm and a width of about 200 nm. Atomic force microscopy and scanning electron microscopy of the surface show that the formation of the micrometer and sub-micrometer spikes involves a combination of capillary waves on the molten silicon surface and laser-induced etching of silicon, at both 775 nm and 387 nm wavelength irradiation. The energy-dispersive x-ray measurements indicate the presence of chlorine and fluorine precursors on the structured surface. The fluorine precursors create a more ordered area of Si spikes at both micrometer and sub-micrometer scales. The potential use of patterned Si substrates with gradient topography as model scaffolds for the systematic exploration of the role of 3D micro/nano morphology on cell adhesion and growth is envisaged.

Radu, C.; Simion, S.; Zamfirescu, M.; Ulmeanu, M. [Laser Department, National Institute for Laser, Plasma and Radiation Physics, Atomistilor Str. 409, P.O. Box MG-36, 077125 Magurele-Bucharest (Romania); Enculescu, M. [National Institute of Material Physics, Atomistilor Str. 105 bis, P.O. Box MG-7, 077125 Magurele-Bucharest (Romania); Radoiu, M. [SAIREM SAS, 12 porte du Grand Lyon, P.O. Box 80214, 01700 Neyron (France)

2011-08-01T23:59:59.000Z

355

X-ray spectroscopy of neutron star low-mass X-ray binaries  

E-Print Network (OSTI)

In this thesis, I present work spanning a variety of topics relating to neutron star lowmass X-ray binaries (LMXBs) and utilize spectral information from X-ray observations to further our understanding of these sources. ...

Krauss, Miriam Ilana

2007-01-01T23:59:59.000Z

356

X-Ray Multilayer Database from the LBL Center for X-Ray Optics (CXRO)  

DOE Data Explorer (OSTI)

An important activity of the Center for X-ray Optics (CXRO) is research on x-ray mirrors and their use in optical devices to focus and deflect x-ray beams. The two kinds of mirrors most widely used are glancing incidence reflectors and multilayer coatings. The X-Ray Multilayer Database is based on the results of surveys taken at the biennial Physics of X-Ray Multilayer Structures conferences. It contains measured x-ray reflectances reported for various multilayers. The database is provided as a service to the x-ray and multilayer research communities and is intended to reflect the state-of-the-art in multilayer x-ray mirrors. (Specialized Interface)

357

Tunable and collimated terahertz radiation generation by femtosecond laser pulses  

Science Conference Proceedings (OSTI)

A mechanism is proposed for the generation of tunable terahertz (THz) radiation under the application of two femtosecond laser pulses and an external magnetic field, where quick tunnel ionization is achieved that leads to higher plasma density evolution and large residual current for the efficient THz radiation generation. With the optimization of magnetic field, phase difference, and amplitudes of lasers' fields, a THz source can be obtained with tunable frequency and power along with a control on the direction of radiation emission.

Malik, Hitendra K.; Malik, Anil K.

2011-12-19T23:59:59.000Z

358

Materials Analysis by Soft x-ray Scanning Transmission X-ray ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Optical and X-ray Imaging Techniques for Material Characterization.

359

SPECTRAL AMPLITUDE AND PHASE EVOLUTION IN PETAWATT LASER PULSES  

Science Conference Proceedings (OSTI)

The influence of the active gain medium on the spectral amplitude and phase of amplified pulses in a CPA system is studied. Results from a 10-PW example based on Nd-doped mixed glasses are presented. In conclusion, this study shows that, by using spectral shaping and gain saturation in a mixed-glass amplifier, it is possible to produce 124 fs, 1.4 kJ laser pulses. One detrimental effect, the pulse distortion due to resonant amplification medium, has been investigated and its magnitude as well as its compensation calculated.

Filip, C V

2010-11-22T23:59:59.000Z

360

Imaging nanoscale magnetic structures with polarized soft x-ray photons  

SciTech Connect

Imaging nanoscale magnetic structures and their fast dynamics is scientifically interesting and technologically of highest relevance. The combination of circularly polarized soft X-ray photons which provide a strong X-ray magnetic circular dichroism effect at characteristic X-ray absorption edges, with a high resolution soft X-ray microscope utilizing Fresnel zone plate optics allows to study in a unique way the stochastical behavior in the magnetization reversal process of thin films and the ultrafast dynamics of magnetic vortices and domain walls in confined ferromagnetic structures. Future sources of fsec short and high intense soft X-ray photon pulses hold the promise of magnetic imaging down to fundamental magnetic length and time scales.

Fischer, P.; Im, M.-Y.

2010-01-18T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray laser pulse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Epitaxial Fe{sub 3-x}Ti{sub x}O{sub 4} films from magnetite to ulvöspinel by pulsed laser deposition  

SciTech Connect

Epitaxial films along the Fe{sub 3-x}Ti{sub x}O{sub 4} (titanomagnetite) compositional series from pure end-members magnetite (Fe{sub 3}O{sub 4}) to ulvöspinel (Fe{sub 2}TiO{sub 4}) were successfully grown by pulsed laser deposition on MgO(100) substrates. Spectroscopic characterization including high resolution x-ray diffraction, x-ray photoelectron spectroscopy, and synchrotron-based x-ray absorption and magnetic circular dichroism consistently shows that Ti(IV) substitutes for Fe(III) in the inverse spinel lattice with a proportional increase in lattice Fe(II) concentration. No evidence of Ti interstitials, spinodal decomposition, or secondary phases was found in the bulk of the grown films. At the uppermost few nanometers of the Ti-bearing film surfaces, evidence suggests that Fe(II) is susceptible to facile oxidation, and that an associated lower Fe/Ti ratio in this region is consistent with surface compositional incompleteness or alteration to a titanomaghemite-like composition and structure. The surface of these films nonetheless appear to remain highly ordered and commensurate with the underlying structure despite facile oxidation, a surface condition that is found to be reversible to some extent by heating in low oxygen environments.

Droubay, T.C.; Pearce, C.I.; Ilton, E.S.; Engelhard, M.H.; Engelhard, M.H.; Heald, S.M.; Arenholz, E.; Rosso, K.M.

2011-07-21T23:59:59.000Z

362

Ultra-fast image converter streak cameras for laser fusion diagnostics  

SciTech Connect

The design and operation of a 10-ps resolution optical streak camera used to characterize laser pulses and other transient optical signals in fusion research is discussed. Performance characteristics are presented. The design, operation, and application of an x-ray streak camera used to study laser-produced plasmas in the x-ray spectral region of 1 to 10 keV with temporal and spatial resolutions of approximately 20 ps and approximately 10 $mu$m is also discussed. (auth)

Houghton, J.W.; Thomas, S.W.; Attwood, D.T.; Coleman, L.W.

1975-11-14T23:59:59.000Z

363

Dual microchannel plate module for a gated monochromatic x-ray imager  

SciTech Connect

Development and testing of a dual microchannel plate (MCP) module to be used in the national Inertial Confinement Fusion (ICF) program has recently been completed. The MCP module is a key component of a new monochromatic x-ray imaging diagnostic which is designed around a 4 channel Kirkpatrick-Baez microscope and diffraction crystals which is located at University of Rochester`s Omega laser system. The MCP module has two separate MCP regions with centers spaced 53 mm apart. Each region contains a 25 mm MCP proximity focused to a P-11 phosphor coated fiberoptic faceplate. The two L/D = 40, MCPs have a 10.2 mm wide, 8 ohm stripline constructed of 500 nm Copper overcoated with 100 nm Gold. A 4 kV, 150 ps electrical pulse provides an optical gatewidth of 80 ps and spatial resolution has been measured at 20 1p/mm.

Oertel, J.A.; Archuleta, T.; Peterson, C.G. [and others

1996-06-01T23:59:59.000Z

364

Absorbed XFEL Dose in the Components of the LCLS X-Ray Optics  

Science Conference Proceedings (OSTI)

There is great concern that the short, intense XFEL pulse of the LCLS will damage the optics that will be placed into the beam. We have analyzed the extent of the problem by considering the anticipated materials and position of the optical components in the beam path, calculated the absorbed dose as a function of photon energy, and compared these doses with the expected doses required (i) to observe rapid degradation due to thermal fatigue, (ii) to reach the melting temperature, or (iii) to actually melt the material. We list the materials that are anticipated to be placed into the Linac Coherent Light Source (LCLS) x-ray free electron laser (XFEL) beam line, their positions, and the absorbed dose, and compare this dose with anticipated damage thresholds.

Hau-Riege, Stefan

2010-12-03T23:59:59.000Z

365

Development of laser-plasma diagnostics using ultrafast atomic-scale dynamics. 96-ERD-046 final report  

Science Conference Proceedings (OSTI)

Ultrashort laser pulse systems allow examination of intense, ultrafast laser-plasma interactions. More specifically, intense laser irradiation can induce short xuv/x-ray bursts from the surface of condensed phase targets. Ultrafast xuv/x-ray detection is needed to understand laser-plasma interactions in this dynamic regime. Support of the Stockpile Stewardship and Management Program requires this critical understanding. Our effort here has been to extend understanding of atomic-scale dynamics in such environments with the goal of developing next generation ultrafast xuv/x-ray diagnostics where the sensors will be the atoms and ions themselves and the time resolution will approach that of the induced atomic transitions ({approx} a few femtoseconds). Pivotal contributions to the rapidly developing field of highly nonperturbative interactions of ultrashort pulse lasers with atoms/ions have been made at this laboratory. In the visible/infrared wavelength regions the temporal and spectral content of ultrashort laser pulses are now reliably monitored within a single pulse using frequency resolved optical gating (FROG) which is based on rapid nonlinear optical processes such as the Kerr effect. New applications of this basic concept are still being developed. Corresponding detection for the xuv/x-ray wavelengths does not exist and is urgently needed in many laboratory programs. The FROG technique cannot be applied in the xuv/x-ray region. Current x-ray streak camera technology is limited to {approx}0.5 picosecond resolution.

Bolton, P.R.; Kulander, K.C. [Lawrence Livermore National Lab., CA (United States); Boreham, B.W. [Central Queensland Univ., Rockhampton, QLD (Australia). Dept. of Applied Physics

1997-03-01T23:59:59.000Z

366

ORION laser target diagnostics  

SciTech Connect

The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

Bentley, C. D.; Edwards, R. D.; Andrew, J. E.; James, S. F.; Gardner, M. D.; Comley, A. J.; Vaughan, K.; Horsfield, C. J.; Rubery, M. S.; Rothman, S. D.; Daykin, S.; Masoero, S. J.; Palmer, J. B.; Meadowcroft, A. L.; Williams, B. M.; Gumbrell, E. T.; Fyrth, J. D.; Brown, C. R. D.; Hill, M. P.; Oades, K. [Plasma Physics Department, Atomic Weapons Establishment, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); and others

2012-10-15T23:59:59.000Z

367

Efficient laser amplifier using sequential pulses of different wavelengths  

SciTech Connect

A laser oscillator output pulse is separated into a plurality of separate beams which are temporally or spatially individually amplified by a power amplifier. The beams may then be recombined to provide a more powerful output than conventional single beam amplification.

Stark, Jr., Eugene E. (Los Alamos, NM); Kephart, John F. (Los Alamos, NM); Leland, Wallace T. (Los Alamos, NM); Reichelt, Walter H. (Los Alamos, NM)

1980-01-01T23:59:59.000Z

368

Long-laser-pulse method of producing thin films  

DOE Patents (OSTI)

The invention described herein arose in the course of, or under, Contract No. DE-C03-76SF0098 between the United States Department of Energy and the University of California. This invention relates in general to techniques for producing thin films, and in particular to a method of using pulsed laser to deposit high temperature supercoducting thin films. 5 figs.

Balooch, M.; Olander, D.R.; Russo, R.E.

1990-02-20T23:59:59.000Z

369

Tailoring the air plasma with a double laser pulse  

SciTech Connect

We present a comprehensive model of plasma dynamics that enables a detailed understanding of the ways the air plasma induced in the atmosphere in the wake of a laser-induced filament can be controlled by an additional laser pulse. Our model self-consistently integrates plasma-kinetic, Navier-Stokes, electron heat conduction, and electron-vibration energy transfer equations, serving to reveal laser-plasma interaction regimes where the plasma lifetime can be substantially increased through an efficient control over plasma temperature, as well as suppression of attachment and recombination processes. The model is used to quantify the limitations on the length of uniform laser-filament heating due to the self-defocusing of laser radiation by the radial profile of electron density. The envisaged applications include sustaining plasma guides for long-distance transmission of microwaves, standoff detection of impurities and potentially hazardous agents, as well as lightning control and protection.

Shneider, M. N.; Miles, R. B. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263 (United States); Zheltikov, A. M. [Physics Department, International Laser Center, M. V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843-4242 (United States)

2011-06-15T23:59:59.000Z

370

Super-strong laser field generation and their interaction with solid target in vacuum  

Science Conference Proceedings (OSTI)

We consider interaction of superstrong laser fields with condensed targets in vacuum. Our experiments were made on our laser system for the picosecond pulse generation, its recompression with chirp introduction and regeneration amplification. The results of laser radiation absorption and conversion efficiency into fast particles and X-ray are presented for a broad range of parameters. {copyright} {ital 1996 American Institute of Physics.}

Andreev, A.A.; Bayanov, V.I.; Vankov, A.B.; Kozlov, A.A.; Komarov, V.A.; Kurnin, I.V.; Solovyev, N.A.; Chizhov, S.A.; Yashin, V.E. [Institute for Laser Physics, SC ``Vavilov State Optical Institute`` 2, Birzhevaya line, 199034, SSt. Petersburg (Russia)

1996-05-01T23:59:59.000Z

371

Making Relativistic Positrons Using Ultra-Intense Short Pulse Lasers  

Science Conference Proceedings (OSTI)

This paper describes a new positron source produced using ultra-intense short pulse lasers. Although it has been studied in theory since as early as the 1970s, the use of lasers as a valuable new positron source was not demonstrated experimentally until recent years, when the petawatt-class short pulse lasers were developed. In 2008 and 2009, in a series of experiments performed at Lawrence Livermore National Laboratory, a large number of positrons were observed after shooting a millimeter thick solid gold target. Up to 2 x 10{sup 10} positrons per steradian ejected out the back of {approx}mm thick gold targets were detected. The targets were illuminated with short ({approx}1 ps) ultra-intense ({approx}1 x 10{sup 20} W/cm{sup 2}) laser pulses. These positrons are produced predominantly by the Bethe-Heitler process, and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. For a wide range of applications, this new laser based positron source with its unique characteristics may complements the existing sources using radioactive isotopes and accelerators.

Chen, H; Wilks, S; Bonlie, J; Chen, C; Chen, S; Cone, K; Elberson, L; Gregori, G; Liang, E; Price, D; Van Maren, R; Meyerhofer, D D; Mithen, J; Murphy, C V; Myatt, J; Schneider, M; Shepherd, R; Stafford, D; Tommasini, R; Beiersdorfer, P

2009-08-24T23:59:59.000Z

372

Making relativistic positrons using ultraintense short pulse lasers  

Science Conference Proceedings (OSTI)

This paper describes a new positron source using ultraintense short pulse lasers. Although it has been theoretically studied since the 1970s, the use of lasers as a valuable new positron source was not demonstrated experimentally until recent years, when the petawatt-class short pulse lasers were developed. In 2008 and 2009, in a series of experiments performed at the Lawrence Livermore National Laboratory, a large number of positrons were observed after shooting a millimeter thick solid gold target. Up to 2x10{sup 10} positrons/s ejected at the back of approximately millimeter thick gold targets were detected. The targets were illuminated with short (approx1 ps) ultraintense (approx1x10{sup 20} W/cm{sup 2}) laser pulses. These positrons are produced predominantly by the Bethe-Heitler process and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. For a wide range of applications, this new laser-based positron source with its unique characteristics may complement the existing sources based on radioactive isotopes and accelerators.

Chen Hui; Wilks, S. C.; Bonlie, J. D.; Chen, S. N.; Cone, K. V.; Elberson, L. N.; Price, D. F.; Schneider, M. B.; Shepherd, R.; Stafford, D. C.; Tommasini, R.; Van Maren, R.; Beiersdorfer, P. [Lawrence Livermore National Laboratory, Livermore, California 94550-9234 (United States); Gregori, G. [Clarendon Laboratory, University of Oxford, Oxford OX1 3PU (United Kingdom); Meyerhofer, D. D.; Myatt, J. [Laser Laboratory for Energetics, University of Rochester, Rochester, New York 14623 (United States)

2009-12-15T23:59:59.000Z

373

Dissociative ionization of H{sub 2} in an attosecond pulse train and delayed laser pulse  

SciTech Connect

The ionization of H{sub 2} in a single attosecond extreme ultraviolet (XUV) pulse generates a nuclear wave packet in H{sub 2}{sup +}, which is entangled with the emitted photoelectron wave packet. The nuclear wave-packet dynamics can be observed by dissociating H{sub 2}{sup +} in a delayed IR laser pulse. If H{sub 2} is ionized by a sequence of XUV pulses of an attosecond pulse train, whether or not the corresponding sequence of nuclear wave packets in H{sub 2}{sup +} is detected as a coherent or incoherent superposition depends on whether and how the photoelectrons are observed. We simulate the nuclear dynamics in this XUV-pump-IR-probe scenario and analyze our numerical results for both single attosecond pump pulses and pump-pulse trains of different lengths and temporal spacings between individual XUV pulses. By superimposing nuclear wave packets in H{sub 2}{sup +} generated by individual pulses in the pump-pulse train incoherently, we calculate proton kinetic energy release spectra that are in good qualitative agreement with the recent experiment of Kelkensberg et al. [Phys. Rev. Lett. 103, 123005 (2009)].

He Feng; Thumm, Uwe [James R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas 66506-2604 (United States)

2010-05-15T23:59:59.000Z

374

X-ray Streak Camera Cathode Development and Timing Accuracy of the 4w UV Fiducial System at the National Ignition Facility  

SciTech Connect

The convergent ablator experiments at the National Ignition Facility (NIF) are designed to measure the peak velocity and remaining ablator mass of an indirectly driven imploding capsule. Such a measurement can be performed using an x-ray source to backlight the capsule and an x-ray streak camera to record the capsule as it implodes. The ultimate goal of this experiment is to achieve an accuracy of 2% in the velocity measurement, which translates to a {+-}2 ps temporal accuracy over any 300 ps interval for the streak camera. In order to achieve this, a 4-{omega} (263nm) temporal fiducial system has been implemented for the x-ray streak camera at NIF. Aluminum, Titanium, Gold and Silver photocathode materials have been tested. Aluminum showed the highest quantum efficiency, with five times more peak signal counts per fiducial pulse when compared to Gold. The fiducial pulse data was analyzed to determine the centroiding a statistical accuracy for incident laser pulse energies of 1 and 10 nJ, showing an accuracy of {+-}1.6 ps and {+-}0.7 ps respectively.

Opachich, Y P; Palmer, N; Homoelle, D; Hatch, B W; Bell, P; Bradley, D; Kalantar, D; Browning, D; Landen, O

2012-05-02T23:59:59.000Z

375

X-ray streak camera cathode development and timing accuracy of the 4{omega} ultraviolet fiducial system at the National Ignition Facility  

Science Conference Proceedings (OSTI)

The convergent ablator experiments at the National Ignition Facility (NIF) are designed to measure the peak velocity and remaining ablator mass of an indirectly driven imploding capsule. Such a measurement can be performed using an x-ray source to backlight the capsule and an x-ray streak camera to record the capsule as it implodes. The ultimate goal of this experiment is to achieve an accuracy of 2% in the velocity measurement, which translates to a {+-}2 ps temporal accuracy over any 300 ps interval for the streak camera. In order to achieve this, a 4{omega} (263 nm) temporal fiducial system has been implemented for the x-ray streak camera at NIF. Aluminum, titanium, gold, and silver photocathode materials have been tested. Aluminum showed the highest relative quantum efficiency, with five times more peak signal counts per fiducial pulse when compared to Gold. The fiducial pulse data were analyzed to determine the centroiding statistical accuracy for incident laser pulse energies of 1 and 10 nJ, showing an accuracy of {+-}1.6 ps and {+-}0.7 ps, respectively.

Opachich, Y. P.; Palmer, N.; Homoelle, D.; Hatch, B.; Bell, P.; Bradley, D.; Kalantar, D.; Browning, D.; Landen, O. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Zuegel, J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

2012-10-15T23:59:59.000Z

376

X-ray Diffraction Crystal Calibration and Characterization  

SciTech Connect

National Security Technologies’ X-ray Laboratory is comprised of a multi-anode Manson type source and a Henke type source that incorporates a dual goniometer and XYZ translation stage. The first goniometer is used to isolate a particular spectral band. The Manson operates up to 10 kV and the Henke up to 20 kV. The Henke rotation stages and translation stages are automated. Procedures have been developed to characterize and calibrate various NIF diagnostics and their components. The diagnostics include X-ray cameras, gated imagers, streak cameras, and other X-ray imaging systems. Components that have been analyzed include filters, filter arrays, grazing incidence mirrors, and various crystals, both flat and curved. Recent efforts on the Henke system are aimed at characterizing and calibrating imaging crystals and curved crystals used as the major component of an X-ray spectrometer. The presentation will concentrate on these results. The work has been done at energies ranging from 3 keV to 16 keV. The major goal was to evaluate the performance quality of the crystal for its intended application. For the imaging crystals we measured the laser beam reflection offset from the X-ray beam and the reflectivity curves. For the curved spectrometer crystal, which was a natural crystal, resolving power was critical. It was first necessary to find sources of crystals that had sufficiently narrow reflectivity curves. It was then necessary to determine which crystals retained their resolving power after being thinned and glued to a curved substrate.

Michael J. Haugh; Richard Stewart; Nathan Kugland

2009-06-05T23:59:59.000Z

377

The Gated X-ray Detector for the National Ignition Facility  

Science Conference Proceedings (OSTI)

Two new gated x-ray imaging cameras have recently been designed, constructed and delivered to the National Ignition Facility in Livermore, CA. These Gated X-ray Detectors are each designed to fit within an aluminum airbox with a large capacity cooling plane and are fitted with an array of environmental housekeeping sensors. These instruments are significant different from earlier generations of gated x-ray images due in parts to an innovative impendence matching scheme, advanced phosphor screens, pulsed phosphor circuits, precision assembly fixturing, unique system monitoring and complete remote computer control. Preliminary characterization has shown repeatable uniformity between imaging strips, improved spatial resolution and no detectable impendence reflections.

Oertel, J A; Barnes, C; Archuleta, T; Casper, L; Fatherley, V; Heinrichs, T; King, R; Landers, D; Lopez, F; Sanchez, P; Sandoval, G; Schrank, L; Walsh, P; Bell, P; Brown, M; Costa, R; Holder, J; Montalongo, S; Pederson, N

2006-05-18T23:59:59.000Z

378

Frequency conversion of high-intensity, femtosecond laser pulses  

SciTech Connect

Almost since the invention of the laser, frequency conversion of optical pulses via non- linear processes has been an area of active interest. However, third harmonic generation using ~(~1 (THG) in solids is an area that has not received much attention because of ma- terial damage limits. Recently, the short, high-intensity pulses possible with chirped-pulse amplification (CPA) laser systems allow the use of intensities on the order of 1 TW/cm2 in thin solids without damage. As a light source to examine single-crystal THG in solids and other high field inter- actions, the design and construction of a Ti:sapphire-based CPA laser system capable of ultimately producing peak powers of 100 TW is presented. Of special interest is a novel, all-reflective pulse stretcher design which can stretch a pulse temporally by a factor of 20,000. The stretcher design can also compensate for the added material dispersion due to propagation through the amplifier chain and produce transform-limited 45 fs pulses upon compression. A series of laser-pumped amplifiers brings the peak power up to the terawatt level at 10 Hz, and the design calls for additional amplifiers to bring the power level to the 100 TW level for single shot operation. The theory for frequency conversion of these short pulses is presented, focusing on conversion to the third harmonic in single crystals of BBO, KD*P, and d-LAP (deuterated I-arginine phosphate). Conversion efficiencies of up to 6% are obtained with 500 fs pulses at 1053 nm in a 3 mm thick BBO crystal at 200 GW/cm 2. Contributions to this process by unphasematched, cascaded second harmonic generation and sum frequency generation are shown to be very significant. The angular relationship between the two orders is used to measure the tensor elements of C = xt3)/4 with Crs = -1.8 x 1O-23 m2/V2 and .15Cri + .54Crs = 4.0 x 1O-23 m2/V2. Conversion efficiency in d-LAP is about 20% that in BBO and conversion efficiency in KD*P is 1% that of BBO. It is calculated that conversion efficiencies of 30-40% are possible at intensities of 600-800 GW/cm2, which is the operating level of the Petawatt laser at LLNL. The main limiting factors are phase modulation and material damage.

Banks, P S

1997-06-01T23:59:59.000Z

379

Aberration-free, all-reflective laser pulse stretcher  

DOE Patents (OSTI)

An all-reflective pulse stretcher for laser systems employing chirped-pulse amplification enables on-axis use of the focusing mirror which results in ease of use, significantly decreased sensitivity to alignment and near aberration-free performance. By using a new type of diffraction grating which contains a mirror incorporated into the grating, the stretcher contains only three elements: 1) the grating, 2) a spherical or parabolic focusing mirror, and 3) a flat mirror. Addition of a fourth component, a retro-reflector, enables multiple passes of the same stretcher resulting in stretching ratios beyond the current state of the art in a simple and compact design. The pulse stretcher has been used to stretch pulses from 20 fsec to over 600 psec (a stretching ratio in excess of 30,000).

Perry, Michael D. (Livermore, CA); Banks, Paul S. (Livermore, CA); Stuart, Brent C. (Fremont, CA); Fochs, Scott N. (Livermore, CA)

1999-09-28T23:59:59.000Z

380

Pulsed laser microbeams for cellular manipulation : applications in cell biology and microfluidics  

E-Print Network (OSTI)

130 xiii Figure 7.4: Laser microbeam-induced axotomy of ratx’ marking the location of laser microbeam pulse delivery. (Biophysical Response to Laser Microbeam-Induced Cell Lysis

Hellman, Amy Noel Stacy

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray laser pulse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Entangled valence electron-hole dynamics revealed by stimulated attosecond x-ray Raman scattering  

SciTech Connect

We show that broadband x-ray pulses can create wavepackets of valence electrons and holes localized in the vicinity of a selected atom (nitrogen, oxygen or sulfur in cysteine) by resonant stimulated Raman scattering. The subsequent dynamics reveals highly correlated motions of entangled electrons and hole quasiparticles. This information goes beyond the time-dependent total charge density derived from x-ray diffraction.

Healion, Daniel; Zhang, Yu; Biggs, Jason D.; Govind, Niranjan; Mukamel, Shaul

2012-09-06T23:59:59.000Z

382

Fine-tuning molecular energy levels by nonresonant laser pulses  

E-Print Network (OSTI)

We evaluate the shifts imparted to vibrational and rotational levels of a linear molecule by a nonresonant laser field at intensities of up to 10^12 W/cm^2. Both types of shift are found to be either positive or negative, depending on the initial rotational state acted upon by the field. An adiabatic field-molecule interaction imparts a rotational energy shift which is negative and exceeds the concomitant positive vibrational shift by a few orders of magnitude. The rovibrational states are thus pushed downward in such a field. A nonresonant pulsed laser field that interacts nonadiabatically with the molecule is found to impart rotational and vibrational shifts of the same order of magnitude. The nonadiabatic energy transfer occurs most readily at a pulse duration which amounts to about a tenth of the molecule's rotational period, and vanishes when the sudden regime is attained for shorter pulses. We applied our treatment to the much studied 87Rb_2 molecule in the last bound vibrational levels of its lowest singlet and triplet electronic states. Our calculations indicate that 15 ns and 1.5 ns laser pulses of an intensity in excess of 5x10^9 W/cm^2 are capable of dissociating the molecule due to the vibrational shift. Lesser shifts can be used to fine tune the rovibrational levels and thereby to affect collisional resonances by the nonresonant light. The energy shifts may be discernible spectroscopically, at a 10 MHz resolution.

Mikhail Lemeshko; Bretislav Friedrich

2010-04-10T23:59:59.000Z

383

UV laser ablation of parylene films from gold substrates  

SciTech Connect

Parylene films, coating gold substrates, were removed by laser ablation using 248 nm light from an excimer laser. Each sample was processed by a different number of pulses in one of three different environments: air at atmospheric pressure, nitrogen at atmospheric pressure, and vacuum. The laser-induced craters were analyzed by optical microscopy and x-ray photoelectron spectroscopy. Multi-pulse ablation thresholds of gold and parylene were estimated.

O. R. Musaev, P. Scott, J. M. Wrobel, and M. B. Kruger

2009-11-19T23:59:59.000Z

384

Electromagnetic pulse generation within a petawatt laser target chamber  

Science Conference Proceedings (OSTI)

Recent work has been undertaken to characterize the electromagnatic pulse (EMP) generated by the high temperature high density plasma produced by a petawatt laser. This was to evaluate the susceptibility to malfunction and damage of equipment and diagnostics for the new Orion laser. EMP measurement were made using moebius loop antennas fitted inside the target chamber of the Vulcan petawatt laser at the Rutherford Appleton Laboratory. These show the EMP as a 63 MHz transient which decays from a peak magnetic field of around 4.3 A/m. A theoretical model presented assumes the EMP is produced by an impulse of 10{sup 12} electron emanating from the target, which charge the chamber wall causing it to ring at natural frequency. The theoretical model provides an estimate of the EMP measured in the Vulcan petawatt target chamber and will be used for the design of the Orion laser.

Mead, M.J.; Neely, D.; Gauoin, J.; Heathcote, R.; Patel, P. [Atomic Weapons Establishment, Aldermaston, Reading, RG7 4PR (United Kingdom); CLRC Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX (United Kingdom); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2004-10-01T23:59:59.000Z

385

X-ray spectroscopic study of the charge state and local orderingof room-temperature ferromagnetic Mn oped ZnO  

Science Conference Proceedings (OSTI)

The charge state and local ordering of Mn doped into a pulsed laser deposited single-phase thin film of ZnO are investigated by using X-ray absorption spectroscopy at the O K-, Mn K- and L-edges, and X-ray emission spectroscopy at the O K- and Mn L-edge. This film is found to be ferromagnetic at room temperature. EXAFS measurement shows that Mn{sup 2+} replaces Zn site in tetrahedral symmetry, and there is no evidence for either metallic Mn or MnO in the film. Upon Mn doping, the top of O 2p valence band extends into the bandgap indicating additional charge carries being created.

Guo, J.-H.; Gupta, Amita; Sharma, Parmanand; Rao, K.V.; Marcus,M.A.; Dong, C.L.; Guillen, J.M.O.; Butorin, S.M.; Mattesini, M.; Glans,P.A.; Smith, K.E.; Chang, C.L.; Ahuja, R.

2007-08-07T23:59:59.000Z

386

APS Bending Magnet X-rays and  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiation of Nd-Fe-B Permanent Magnets with Irradiation of Nd-Fe-B Permanent Magnets with APS Bending Magnet X-rays and 60 Co Îł-rays J. Alderman and P.K. Job APS Operations Division Advanced Photon Source J. Puhl Ionizing Radiation Division National Institute of Standards and Technology June 2000 Table of Contents Introduction Radiation-Induced Demagnetization of Permanent Magnets Resources Required Îł-ray Irradiation Results and Analysis of Îł-ray Irradiation X-ray Irradiation Results and Analysis of X-ray Irradiation Summary and Conclusions Acknowledgements References Tables and Figures Introduction The Advanced Photon Source (APS), as well as other third-generation synchrotron light sources, uses permanent magnets in the insertion devices to produce x-rays for scientific

387

High-Resolution X-ray Spectroscopy  

Science Conference Proceedings (OSTI)

... In support of these efforts, we also maintain laboratory x-ray sources from 1 keV to 300 keV, energy and intensity calibration facilities, and a vacuum ...

2013-02-26T23:59:59.000Z

388

X-ray image intensifier phosphor  

DOE Patents (OSTI)

Y/sub 1-x/Gd/sub x/.PO$sub 4$:Tb$sup 3+$ is an effective phosphor for use in X-ray intensifier screens and in nuclear radiation detection systems.

D' Silva, A.P.; Fassel, V.A.

1975-12-01T23:59:59.000Z

389

Kaonic Atom X?ray Spectra  

Science Conference Proceedings (OSTI)

In kaonic atoms energy displacement and broadening of states result from the strong interaction. The most simple kaonic atoms like kaonic hydrogen and deuterium open the possibility to measure this strong interaction induced shift and width by x?ray spectroscopy. In the SIDDHARTA experiment al LNF (Frascati) the DA?NE electron?positron collider delivers nearly mono?energetic negatively charged kaons from ? meson decay. This unique kaon source is used to form kaonic atoms. New high performance x?ray detectors (silicon drift detectors) arranged in an array allow x?ray spectroscopy with high energy resolution combined with timing capability. High precision x?ray measurements like SIDDHARTA at LNF will open the way to study the low energy regime of the strong force in the antikaon?nucleon interaction. The experiment and its current status is presented in this talk.

J. Marton; on behalf of the SIDDHARTA Collaboration

2009-01-01T23:59:59.000Z

390

X-ray grid-detector apparatus  

DOE Patents (OSTI)

A hybrid grid-detector apparatus for x-ray systems wherein a microchannel plate structure has an air-interspaced grid portion and a phosphor/optical fluid-filled grid portion. The grids are defined by multiple adjacent channels separated by lead-glass septa. X-rays entering the air-interspaced grid portion at an angle of impingement upon the septa are attenuated, while non-impinging x-rays pass through to the phosphor/fluid filled portion. X-ray energy is converted to luminescent energy in the phosphor/fluid filled portion and the resultant beams of light are directed out of the phosphor/optical fluid filled portion to an imaging device.

Boone, John M. (Folsom, CA); Lane, Stephen M. (Oakland, CA)

1998-01-27T23:59:59.000Z

391

X-Ray Nanoimaging: Instruments and Methods  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Nanoimaging: Instruments and Methods To be held as part of SPIE. http:spie.orgOP318 August 28-29, 2013; San Diego, California, USA...

392

Fabrication of polycrystalline thin films by pulsed laser processing  

DOE Patents (OSTI)

A method for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells.

Mitlitsky, Fred (Livermore, CA); Truher, Joel B. (San Rafael, CA); Kaschmitter, James L. (Pleasanton, CA); Colella, Nicholas J. (Livermore, CA)

1998-02-03T23:59:59.000Z

393

Fabrication of polycrystalline thin films by pulsed laser processing  

DOE Patents (OSTI)

A method is disclosed for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells. 1 fig.

Mitlitsky, F.; Truher, J.B.; Kaschmitter, J.L.; Colella, N.J.

1998-02-03T23:59:59.000Z

394

X-Ray Scattering Group, Condensed Matter Physics & Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

- Brookhaven National Laboratory, Upton, NY Beamline X1A2 - Soft x-ray diffraction and nano-imaging Beamline X17 - X-ray powder diffraction Beamline X22C - Resonant x-ray...

395

X-Ray Preheating of Window Materials in Direct-Drive Shock-Wave Timing Experiments  

Science Conference Proceedings (OSTI)

The optical properties of x-ray preheated planar-window materials relevant for shock-wave timing experiments were studied on the OMEGA Laser System. The behavior of diamond windows exposed to x rays is consistent with a simple model based on the generation of free charge carriers. Polystyrene windows showed indications of optical transitions due to molecular states that are created by the ionizing radiation.

Theobald, W.; Miller, J. E.; Boehly, T.R.; Vianello, E, Meyerhofer, D.D.; Sangster, T.C.; Eggert, J.; Celliers, P.M.

2007-01-24T23:59:59.000Z

396

X-Ray Emission from Compact Sources  

SciTech Connect

This paper presents a review of the physical parameters of neutron stars and black holes that have been derived from X-ray observations. I then explain how these physical parameters can be used to learn about the extreme conditions occurring in regions of strong gravity, and present some recent evidence for relativistic effects seen in these systems. A glossary of commonly used terms and a short tutorial on the names of X-ray sources are also included.

Cominsky, L

2004-03-23T23:59:59.000Z

397

Nuclear Excitation by a Strong Short Laser Pulse  

Science Conference Proceedings (OSTI)

We derive the conditions on laser energy and photon number under which a short strong laser pulse excites a collective nuclear mode. We use the Giant Dipole Resonance as a representative example, and a random-matrix description of the fine-structure states and perturbation theory as tools. We identify the relevant observable as the nuclear time-decay function. That function is the Fourier transform of the autocorrelation function of the associated scattering matrix and contains information not otherwise available. We evaluate that function in specific cases and show that it may deviate significantly from an exponential.

Weidenmueller, Hans A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

2011-05-06T23:59:59.000Z

398

Argonne CNM: X-Ray Microscopy Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Microscopy Facilities X-Ray Microscopy Facilities The Hard X-Ray Nanoprobe (HXN) facility provides scanning fluorescence, scanning diffraction, and full-field transmission and tomographic imaging capabilities with a spatial resolution of 30 nm over a spectral range of 6-12 keV. Modes of Operation Full-Field Transmission Imaging and Nanotomography X-ray transmission imaging uses both the absorption and phase shift of the X-ray beam by the sample as contrast mechanisms. Absorption contrast is used to map the sample density. Elemental constituents can be located by using differential edge contrast in this mode. Phase contrast can be highly sensitive to edges and interfaces even when the X-ray absorption is weak. These contrast mechanisms are exploited to image samples rapidly in full-field transmission mode under various environmental conditions, or combined with nanotomography methods to study the three-dimensional structure of complex and amorphous nanomaterials with the HXN.

399

Plasmon-enhanced photocathode for high brightness and high repetition rate x-ray sources  

SciTech Connect

High brightness electron sources are at the heart of anew generation of x-ray sources based on the Free ElectronLaser (FEL) as well as in Energy Recovery Linac (ERL) and Inverse Compton Scattering (ICS) sources.The source of electrons consists of a photoinjector, comprised of a laser-driven photocathode in a high gradient electric field produced by an rf cavity. The function of the rf cavity is to provide a field sufficient for acceleration of electrons to relativistic velocity over a small distance, thus minimizing effects of the space-charge. Even so, the dense electron beam required for high brightness suffers from a space charge field that chirps and reshapes the electron pulse increasing beam emittance and thus reducing the overall brightness. This emittance growth can be avoided if the initial distribution of electrons is pancake shaped, with a semicircular transverse intensity profile. In this case, the electron distribution develops under its space charge field from a pancake into a uniformly filled ellipsoidal beam. This condition, referred to as the blowout regime, requires ultrashort pulses less than 100 fs long and has been successfully demonstrated recently in a high gradient photoinjector.

Polyakov, Aleksandr; Senft, Christoph; Thompson, K. F.; Feng, J.; Cabrini, S.; Schuck, P. J.; Padmore, Howard; Peppernick, Samuel J.; Hess, Wayne P.

2013-02-11T23:59:59.000Z

400

Pulse radiolysis of liquid water using picosecond electron pulses produced by a table-top terawatt laser system  

E-Print Network (OSTI)

Pulse radiolysis of liquid water using picosecond electron pulses produced by a table-top terawatt into a supersonic helium gas jet are used to ionize liquid water. The decay of the hydrated electrons produced of liquid water using electron pulses produced by a table-top terawatt laser system (T3 ). The results

Umstadter, Donald

Note: This page contains sample records for the topic "x-ray laser pulse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Copper Ridges Nearly Double X-ray Sensor Performance  

Science Conference Proceedings (OSTI)

... Physics Letters,* can measure X-ray energies with an ... X-rays and measure the energy based on ... by NASA and the NIST Office of Microelectronics ...

2011-10-03T23:59:59.000Z

402

Sandia National Laboratories X-ray Tube with Magnetic Electron ...  

... for the U.S. Department of Energy’s National ... high average power large area X-ray tube provides increased X-ray generation efficiency through ...

403

Inelastic X-ray and Nuclear Resonant Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamlines Divisions Argonne Home > Advanced Photon Source > Inelastic X-ray and Nuclear Resonant Scattering The Inelastic X-ray and Nuclear Resonant Scattering group...

404

Experimental Investigation of the Reflection Mode Micro Laser Propulsion under Highly Frequent and Multi Pulse Laser  

SciTech Connect

Micro laser propulsion used for some space tasks of micro-satellites are preferred to providing small thrust and high specific impulse while keeping power consumption low. Most previous work on micro laser propulsion are about transmission mode (T-mode) using a CW laser. In this article, a pulsed fiber laser is used to study the micro laser propulsion performance under reflection mode. Multi pulse (ranged from 100 to 2000) tests are conducted on a double base propellant with the vacuum less than 10 Pa. The laser frequency is 20 kHz and two kinds of instantaneous power density 4.77x10{sup 6} W/cm{sup 2} and 2.39x10{sup 7} W/cm{sup 2} are used. It is found that the momentum coupling coefficient C{sub m} and the mean thrust F increases with the increasing pulse numbers, which is different to the previous work. By adjusting the irradiation time T, it is easy to get a large mean thrust, up to mN. When the energy density is the same, C{sub m}, I{sub sp}, F and {eta} increase with the increasing power density. Also I{sub sp} and {eta} are very low, laser ablation is insufficiently under the current condition. 3D Morphology of the ablation hole is obtained by confocal microscope for the first time.

Zhang Xinghua; Cai Jian [Microelectronic Equipment Technology Department, Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 (China); Li Long [Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 (China)

2011-11-10T23:59:59.000Z

405

X-ray Synchrotron Radiation in a Plasma Wiggler  

SciTech Connect

A relativistic electron beam can radiate due to its betatron motion inside an ion channel. The ion channel is induced by the electron bunch as it propagates through an underdense plasma. In the theory section of this thesis the formation of the ion channel, the trajectories of beam electrons inside the ion channel, the radiation power and the radiation spectrum of the spontaneous emission are studied. The comparison between different plasma wiggler schemes is made. The difficulties in realizing stimulated emission as the beam traverses the ion channel are investigated, with particular emphasis on the bunching mechanism, which is important for the ion channel free electron laser. This thesis reports an experiment conducted at the Stanford Linear Accelerator Center (SLAC) to measure the betatron X-ray radiations for the first time. They first describe the construction and characterization of the lithium plasma source. In the experiment, the transverse oscillations of the SLAC 28.5 GeV electron beam traversing through a 1.4 meter long lithium plasma source are clearly seen. These oscillations lead to a quadratic density dependence of the spontaneously emitted betatron X-ray radiation. The divergence angle of the X-ray radiation is measured. The absolute photon yield and the spectral brightness at 14.2 KeV photon energy are estimated and seen to be in reasonable agreement with theory.

Wang, Shuoquin; /UCLA /SLAC, SSRL

2005-09-27T23:59:59.000Z

406

PULSE: Palomar Ultraviolet Laser for the Study of Exoplanets  

E-Print Network (OSTI)

PULSE is a new concept to augment the currently operating 5.1-m Hale PALM-3000 exoplanet adaptive optics system with an ultraviolet Rayleigh laser and associated wavefront sensor. By using an ultraviolet laser to measure the high spatial and temporal order turbulence near the telescope aperture, where it dominates, one can extend the faintness limit of natural guide stars needed by PALM-3000. Initial simulations indicate that very-high infrared contrast ratios and good visible-light adaptive optics performance will be achieved by such an upgraded system on stars as faint as mV = 16-17 using an optimized low-order NGS sensor. This will enable direct imaging searches for, and subsequent characterization of, companions around cool, low-mass stars for the first time, as well as routine visible-light imaging twice as sharp as HST for fainter targets. PULSE will reuse the laser and wavefront sensor technologies developed for the automated Robo-AO laser system currently operating at the Palomar 60-inch telescope, as...

Baranec, Christoph; van Dam, Marcos; Burruss, Rick

2013-01-01T23:59:59.000Z

407

Pulsed laser processing of high temperature superconducting thin films  

SciTech Connect

Systematic studies of the effects of pulsed laser deposition processing parameters on plume dynamics and resultant film properties have been performed. Plume angular distributions, cos{sup m}({theta}), were observed to be variable between 1 > m > 10 depending on laser energy density and spot size. Under optimized conditions, epitaxial, superconducting thin films could be grown in-situ on a variety of single-crystal substrates. High quality, 200 nm thick films were obtained at deposition rates approaching 15 nm/sec. Additionally, the patterning of YBa{sub 2}Cu{sub 3}O{sub 7-x} thin films has been achieved by a process which combines thermal oxygen diffusion and laser annealing. This process is performed under relatively mild conditions which allows the structural integrity of the films to be preserved. 9 refs., 6 figs.

Muenchausen, R.E.; Dye, R.C.; Estler, R.C.; Foltyn, S.; Garcia, A.R.; Hubbard, K.M.; Nogar, N.S.; Wu, X.D. (Los Alamos National Lab., NM (USA)); Carim, A.; Mukherjee, A.; Brueck, S.R.J. (New Mexico Univ., Albuquerque, NM (USA))

1990-01-01T23:59:59.000Z

408

Nonlinear pulse propagation and phase velocity of laser-driven plasma waves  

Science Conference Proceedings (OSTI)

Laser evolution and plasma wave excitation by a relativistically-intense short-pulse laser in underdense plasma are investigated in the broad pulse limit, including the effects of pulse steepening, frequency red-shifting, and energy depletion. The nonlinear plasma wave phase velocity is shown to be significantly lower than the laser group velocity and further decreases as the pulse propagates owing to laser evolution. This lowers the thresholds for trapping and wavebreaking, and reduces the energy gain and efficiency of laser-plasma accelerators that use a uniform plasma profile.

Schroeder, Carl B.; Benedetti, Carlo; Esarey, Eric; Leemans, Wim

2011-03-25T23:59:59.000Z

409

Multidimensional X-Ray Spectroscopy of Valence and Core Excitations in Cysteine  

E-Print Network (OSTI)

Several nonlinear spectroscopy experiments which employ broadband x-ray pulses to probe the coupling between localized core and delocalized valence excitation are simulated for the amino acid cysteine at the K-edges of oxygen and nitrogen and the K and L-edges of sulfur. We focus on two dimensional (2D) and 3D signals generated by two- and three-pulse stimulated x-ray Raman spectroscopy (SXRS) with frequency-dispersed probe. We show how the four-pulse x-ray signals $\\boldsymbol{k}_\\mathrm{I}=-\\boldsymbol{k}_1+\\boldsymbol{k}_2+\\boldsymbol{k}_3$ and $\\boldsymbol{k}_\\mathrm{II}=\\boldsymbol{k}_1-\\boldsymbol{k}_2+\\boldsymbol{k}_3$ can give new 3D insight into the SXRS signals. The coupling between valence- and core-excited states can be visualized in three dimensional plots, revealing the origin of the polarizability that controls the simpler pump-probe SXRS signals.

Jason D. Biggs; Yu Zhang; Daniel Healion; Shaul Mukamel

2013-03-19T23:59:59.000Z

410

Femtosecond Synchronization of Laser Systems for the LCLS  

SciTech Connect

The scientific potential of femtosecond x-ray pulses at linac-driven free-electron lasers such as the Linac Coherent Light Source is tremendous. Time-resolved pump-probe experiments require a measure of the relative arrival time of each x-ray pulse with respect to the experimental pump laser. An optical timing system based on stabilized fiber links has been developed for the LCLS to provide this synchronization. Preliminary results show synchronization of the installed stabilized links at the sub-20-femtosecond level. We present details of the implementation at LCLS and potential for future development.

Byrd, John; /LBL, Berkeley; Doolittle, Lawrence; /LBL, Berkeley; Huang, Gang; /LBL, Berkeley; Staples, John; /LBL, Berkeley; Wilcox, Russell; /LBL, Berkeley; Arthur, John; /SLAC; Frisch, Josef; /SLAC; White, William; /SLAC

2012-08-24T23:59:59.000Z

411

Effect of pulse profile and chirp on a laser wakefield generation  

SciTech Connect

A laser wakefield driven by an asymmetric laser pulse with/without chirp is investigated analytically and through two-dimensional particle-in-cell simulations. For a laser pulse with an appropriate pulse length compared with the plasma wavelength, the wakefield amplitude can be enhanced by using an asymmetric un-chirped laser pulse with a fast rise time; however, the growth is small. On the other hand, the wakefield can be greatly enhanced for both positively chirped laser pulse having a fast rise time and negatively chirped laser pulse having a slow rise time. Simulations show that at the early laser-plasma interaction stage, due to the influence of the fast rise time the wakefield driven by the positively chirped laser pulse is more intense than that driven by the negatively chirped laser pulse, which is in good agreement with analytical results. At a later time, since the laser pulse with positive chirp exhibits opposite evolution to the one with negative chirp when propagating in plasma, the wakefield in the latter case grows more intensely. These effects should be useful in laser wakefield acceleration experiments operating at low plasma densities.

Zhang Xiaomei; Shen Baifei; Ji Liangliang; Wang Wenpeng; Xu Jiancai; Yu Yahong; Yi Longqing; Wang Xiaofeng [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Hafz, Nasr A. M. [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Kulagin, V. [Sternberg Astronomical Institute of Moscow State University, Moscow 119992 (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, 141700 (Russian Federation)

2012-05-15T23:59:59.000Z

412

Scheme for simultaneous generation of three-color ten GW-level X-ray pulses from baseline XFEL undulator and multi-user distribution system for XFEL laboratory  

E-Print Network (OSTI)

The baseline design of present XFEL projects only considers the production of a single photon beam at fixed wavelength from each baseline undulator. At variance, the scheme described in this paper considers the simultaneous production of high intensity SASE FEL radiation at three different wavelengths. We present a feasibility study of our scheme, and we make exemplifications with parameters of the baseline SASE2 line of the European XFEL operating in simultaneous mode at 0.05 nm, 0.15 nm and 0.4 nm. Our technique for generating the two colors at 0.05 nm and 0.15 nm is based in essence on a "fresh bunch" technique. For the generation of radiation at 0.4 nm we propose to use an "afterburner" technique. Implementation of these techniques does not perturb the baseline mode of operation of the SASE2 undulator. The present paper also describes an efficient way to obtain a multi-user facility. It is shown that, although the XFEL photon beam from a given undulator is meant for a single user, movable multilayer X-ray...

Geloni, Gianluca; Saldin, Evgeni

2010-01-01T23:59:59.000Z

413

Workshop: Time Resolved X-Ray Science at High Repetition Rate | Stanford  

NLE Websites -- All DOE Office Websites (Extended Search)

Time Resolved X-Ray Science at High Repetition Rate Time Resolved X-Ray Science at High Repetition Rate Saturday, October 22, 2011 - 8:30am SSRL Conference Room 137-322 In conjunction with the 2011 LCLS/SSRL User Meeting, SSRL and the APS will jointly host a two-day workshop focused on opportunities with short-pulse, high-repetition rate X-ray Science. The workshop will feature international speakers and panel experts presenting the scientific basis, preliminary results and future potential of high rep-rate picosecond x-rays beams from storage rings. The workshop will be broadly focused on topics in materials science, chemistry, biology and catalysis. The workshop agenda will also include presentations on accelerator operational modes, precision timing issues, detector challenges and the relation of storage ring science with

414

Ultrafast conversions between hydrogen bonded structures in liquid water observed by femtosecond x-ray spectroscopy  

DOE Green Energy (OSTI)

We present the first femtosecond soft x-ray spectroscopy in liquids, enabling the observation of changes in hydrogen bond structures in water via core-hole excitation. The oxygen K-edge of vibrationally excited water is probed with femtosecond soft x-ray pulses, exploiting the relation between different water structures and distinct x-ray spectral features. After excitation of the intramolecular OH stretching vibration, characteristic x-ray absorption changes monitor the conversion of strongly hydrogen-bonded water structures to more disordered structures with weaker hydrogen-bonding described by a single subpicosecond time constant. The latter describes the thermalization time of vibrational excitations and defines the characteristic maximum rate with which nonequilibrium populations of more strongly hydrogen-bonded water structures convert to less-bonded ones. On short time scales, the relaxation of vibrational excitations leads to a transient high-pressure state and a transient absorption spectrum different from that of statically heated water.

Wen, Haidan; Huse, Nils; Schoenlein, Robert W.; Lindenberg, Aaron M.

2010-05-01T23:59:59.000Z

415

Critical evaluation of the pulsed laser method for single event effects testing and fundamental studies  

Science Conference Proceedings (OSTI)

In this paper the authors present an evaluation of the pulsed laser as a technique for single events effects (SEE) testing. They explore in detail the important optical effects, such as laser beam propagation, surface reflection, and linear and nonlinear absorption, which determine the nature of laser-generated charge tracks in semiconductor materials. While there are differences in the structure of laser- and ion-generated charge tracks, they show that in many cases the pulsed laser remains an invaluable tool for SEE testing. Indeed, for several SEE applications, they show that the pulsed laser method represents a more practical approach than conventional accelerator-based methods.

Melinger, J.S.; Buchner, S.; McMorrow, D.; Stapor, W.J.; Weatherford, T.R.; Campbell, A.B. [Naval Research Lab., Washington, DC (United States); Eisen, H. [Army Research Lab., Adelphi, MD (United States)

1994-12-01T23:59:59.000Z

416

X-Ray Data from the X-Ray Data Booklet Online  

DOE Data Explorer (OSTI)

The original X-Ray Data Booklet, published in 1985, became a classic reference source. The online version has been significantly revised and updated to reflect today's science. Hundreds of pages of authoritative data provide the x-ray properties of elements, information on synchrotron radiation, scattering processes, optics and detectors, and other related calculations, formulas, and data tables.

Thompson, Albert C.; Attwood, David T.; Gullikson, Eric M.; Howells, Malcolm R.; Kortright, Jeffrey B.; Robinson, Arthur L.; Underwood, James H.; Kim, Kwang-Je; Kirz, Janos; Lindau, Ingolf; Pianetta, Piero; Winick, Herman; Williams, Gwyn P.; Scofield, James H.

417

Laser Phase Errors in Seeded FELs  

Science Conference Proceedings (OSTI)

Harmonic seeding of free electron lasers has attracted significant attention from the promise of transform-limited pulses in the soft X-ray region. Harmonic multiplication schemes extend seeding to shorter wavelengths, but also amplify the spectral phase errors of the initial seed laser, and may degrade the pulse quality. In this paper we consider the effect of seed laser phase errors in high gain harmonic generation and echo-enabled harmonic generation. We use simulations to confirm analytical results for the case of linearly chirped seed lasers, and extend the results for arbitrary seed laser envelope and phase.

Ratner, D.; Fry, A.; Stupakov, G.; White, W.; /SLAC

2012-03-28T23:59:59.000Z

418

Lag-luminosity relation in gamma-ray burst X-ray flares  

Science Conference Proceedings (OSTI)

In strict analogy to prompt pulses, X-ray flares observed by Swift-XRT in long Gamma-Ray Bursts define a lag-luminosity relation: L{sub p,iso}{sup 0.3-10} k{sup eV} {infinity}t{sub lag}{sup -0.95{+-}0.23}. The lag-luminosity is proven to be a fundamental law extending {approx}5 decades in time and {approx}5 in energy. This is direct evidence that GRB X-ray flares and prompt gamma-ray pulses are produced by the same mechanism.

Margutti, R.

2010-10-15T23:59:59.000Z

419

Absolute, soft x-ray calorimetry on the Z facility at Sandia National Laboratories  

SciTech Connect

Simple and reliable x-ray fluence measurements, in addition to time-resolved diagnostics, are needed to understand the physics of hot Z-pinch plasmas. A commercially available laser calorimeter has been modified for measuring soft x-ray fluence from the Z facility at Sandia National Laboratories. The x-ray absorber of this calorimeter is an aluminum disk, attached to a two-dimensional thermopile and surrounded by an isoperibol shroud. The time-integral and the maximum of the thermopile voltage signal are both proportional to the x-ray energy deposited. Data are collected for 90 seconds, and the instrument has, thus far, been used in the 1--25 mJ range. A wider dynamic measuring range for x-ray fluence (energy/area) can be achieved by varying the area of the defining aperture. The calorimeter is calibrated by an electrical substitution method. Calibrations are performed before and after each x-ray experiment on the Z facility. The calibration of the time-integral of the thermopile voltage vs. energy deposited (or the peak of thermopile voltage vs. energy deposited) is linear with zero offset at the 95% confidence level. The irreproducibility of the calibration is <2%, and the imprecision in the measurement of the incident x-ray energy (inferred from signal noise and the calibration) is estimated to be {approximately}0.9 mJ (95% confidence level). The inaccuracy is estimated at {+-}10%, due to correctable systematic errors (e.g., baseline shifts). Comparisons have been made of the calorimeter to time-resolved x-ray diagnostics, e.g., bolometers and XRD (x-ray diode) arrays, by integrating the flux measured by these instruments over time.

Fehl, D.L.; Muron, D.J.; Leeper, R.J.; Chandler, G.A.; Deeney, C.; Spielman, R.B.

1998-05-01T23:59:59.000Z

420

Heteroepitaxy of Nd{sub 0.67}Sr{sub 0.33}MnO{sub 3} on silicon for bolometric x-ray detector application  

Science Conference Proceedings (OSTI)

We have recently reported the design concept and sensor fabrication for a novel bolometric x-ray detector based on a rare earth manganite material for application as a total energy monitor for the Linac Coherent Light Source (LCLS) free electron laser at the Stanford Linear Accelerator Center (SLAC). The detector employs epitaxial thin films of Nd{sub 0.67}Sr{sub 0.33}MnO{sub 3} grown on Si by pulsed laser deposition. In this paper we report details of the fabrication of the actual detector, its response characteristics under photon illumination from LCLS, and improvements in the growth scheme of the sensor material on Si using a buffer/template layer scheme that employs yttria-stabilized zirconia, cerium oxide (CeO{sub 2}), and bismuth titanate (Bi{sub 4}Ti{sub 3}O{sub 12}). The thermal sensor response changes linearly with the energy of an optical calibration laser as expected, and the signals from optical and x-ray pulses at LCLS are very similar, thereby validating the design concept. To the best of our knowledge, the LCLS detector application reported here is the first practical use of colossal magnetoresistive manganite bolometers.

Yong, G. J.; Kolagani, Rajeswari M.; Adhikari, S. [Department of Physics, Astronomy and Geosciences, Towson University, Towson, Maryland 21252 (United States); Drury, O. B.; Gardner, C.; Bionta, R. M.; Friedrich, S. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550 (United States)

2010-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray laser pulse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Bendable Focusing X-Ray Optics for the ALS and the LCLS/FEL: Design, Metrology, and Performance  

E-Print Network (OSTI)

Optics for the ALS and the LCLS/FEL: Design, Metrology, andwas performed in support of the AMO/LCLS project at SLAC. *Coherent Light Source (LCLS) x-ray free electron laser (FEL)

Yashchuk, V. V.

2010-01-01T23:59:59.000Z

422

Radiobiological studies using gamma and x rays.  

Science Conference Proceedings (OSTI)

There are approximately 500 self-shielded research irradiators used in various facilities throughout the U.S. These facilities use radioactive sources containing either 137Cs or 60Co for a variety of biological investigations. A report from the National Academy of Sciences[1] described the issues with security of particular radiation sources and the desire for their replacement. The participants in this effort prepared two peer-reviewed publications to document the results of radiobiological studies performed using photons from 320-kV x rays and 137Cs on cell cultures and mice. The effectiveness of X rays was shown to vary with cell type.

Potter, Charles Augustus; Longley, Susan W.; Scott, Bobby R. [Lovelace Respiratory Research Institute, Albuquerque, NM; Lin, Yong [Lovelace Respiratory Research Institute, Albuquerque, NM; Wilder, Julie [Lovelace Respiratory Research Institute, Albuquerque, NM; Hutt, Julie A. [Lovelace Respiratory Research Institute, Albuquerque, NM; Padilla, Mabel T. [Lovelace Respiratory Research Institute, Albuquerque, NM; Gott, Katherine M. [Lovelace Respiratory Research Institute, Albuquerque, NM

2013-02-01T23:59:59.000Z

423

X-ray Science Division: Groups  

NLE Websites -- All DOE Office Websites (Extended Search)

Division: Groups Division: Groups Atomic, Molecular and Optical Physics (AMO) Primary Contact: Stephen Southworth Work focuses on understanding how strong optical and x-ray fields interact with matter, with an emphasis on photonic control of electronic, atomic and molecular motion. Chemical and Materials Science (CMS) Primary Contact: Randy Winans Research Disciplines: Chemistry, Materials Science Detectors (DET) Primary Contact: Antonino Miceli GMCA Structural Biology Facility (MX) Primary Contact: Robert Fischetti Research Disciplines: Biology, Life Sciences Imaging (IMG) Primary Contact: Francesco DeCarlo Research Disciplines: Materials Science, Biology, Physics, Life Sciences Inelastic X-ray & Nuclear Resonant Scattering (IXN) Primary Contact: Thomas Gog Research Disciplines: Condensed Matter Physics, Geophysics, Materials

424

Cluster Generation Under Pulsed Laser Ablation Of Compound Semiconductors  

SciTech Connect

A comparative experimental study of pulsed laser ablation in vacuum of two binary semiconductors, zinc oxide and indium phosphide, has been performed using IR- and visible laser pulses with particular attention to cluster generation. Neutral and cationic Zn{sub n}O{sub m} and In{sub n}P{sub m} particles of various stoichiometry have been produced and investigated by time-of-flight mass spectrometry. At ZnO ablation, large cationic (n>9) and all neutral clusters are mainly stoichiometric in the ablation plume. In contrast, indium phosphide clusters are strongly indium-rich with In{sub 4}P being a magic cluster. Analysis of the plume composition upon laser exposure has revealed congruent vaporization of ZnO and a disproportionate loss of phosphorus by the irradiated InP surface. Plume expansion conditions under ZnO ablation are shown to be favorable for stoichiometric cluster formation. A delayed vaporization of phosphorus under InP ablation has been observed that results in generation of off-stoichiometric clusters.

Bulgakov, Alexander V.; Evtushenko, Anton B.; Shukhov, Yuri G. [Institute of Thermophysics SB RAS, Lavrentyev Ave. 1, 630090 Novosibirsk (Russian Federation); Ozerov, Igor; Marine, Wladimir [Universite de la Mediterranee, CINaM, UPR CNRS 3118, 13288 Marseille (France)

2010-10-08T23:59:59.000Z

425

Effect of Pulsed Nd: YAG Laser Powers On 304 Stainless Steel Welding  

Science Conference Proceedings (OSTI)

In this study, optimum welding parameters are obtained for 1mm thickness type 304 stainless steel welding using the Lumonics JK760TR pulsed Nd:YAG laser. The influences of laser welding parameters such as pulse duration, focal position, frequency, laser power, welding speed, and shielding gas (N2) pressure on penetration defining welding quality are investigated. Also comparisons of overlap ratios are presented between theory and experiment for pulse duration, frequency and welding speed.

Candan, L.; Demir, A.; Akman, E. [University of Kocaeli, Laser Technologies Research and Application Center, Kocaeli (Turkey)

2007-04-23T23:59:59.000Z

426

The mechanism of thin film Si nanomachining using femtosecond laser pulses  

E-Print Network (OSTI)

Femtosecond (fs) laser ablation has been the subject of intense recent research. The pulse time ('width') is shorter than the electronic relaxation time, resulting in a decoupling of the period of laser illumination and ...

Jia, Jimmy Yi-Jie, 1980-

2004-01-01T23:59:59.000Z

427

Evaluation of the sensitivity and fading characteristics of an image plate system for x-ray diagnostics  

SciTech Connect

Image plates (IPs) are a reusable recording media capable of detecting ionizing radiation, used to diagnose x-ray emission from laser-plasma experiments. Due to their superior performance characteristics in x-ray applications [C. C. Bradford, W. W. Peppler, and J. T. Dobbins III, Med. Phys. 26, 27 (1999) and J. Digit. Imaging. 12, 54 (1999)], the Fuji Biological Analysis System (BAS) IPs are fielded on x-ray diagnostics for the HELEN laser by the Plasma Physics Department at AWE. The sensitivities of the Fuji BAS IPs have been absolutely calibrated for absolute measurements of x-ray intensity in the energy range of 0-100 keV. In addition, the Fuji BAS IP fading as a function of time was investigated. We report on the characterization of three Fuji BAS IP responses to x-rays using a radioactive source, and discrete x-ray line energies generated by the Excalibur soft x-ray facility and the Defense Radiological Standards Centre filter-fluorescer hard x-ray system at AWE.

Meadowcroft, A. L.; Bentley, C. D.; Stott, E. N. [Plasma Physics Department, AWE Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom)

2008-11-15T23:59:59.000Z

428

Relativistic Positron Creation Using Ultraintense Short Pulse Lasers  

Science Conference Proceedings (OSTI)

We measure up to 2x10{sup 10} positrons per steradian ejected out the back of {approx}mm thick gold targets when illuminated with short ({approx}1 ps) ultraintense ({approx}1x10{sup 20} W/cm{sup 2}) laser pulses. Positrons are produced predominately by the Bethe-Heitler process and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. Modeling based on the measurements indicate the positron density to be {approx}10{sup 16} positrons/cm{sup 3}, the highest ever created in the laboratory.

Chen Hui; Wilks, Scott C.; Bonlie, James D.; Price, Dwight F.; Beiersdorfer, Peter [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Liang, Edison P. [Rice University, Houston, Texas 77005 (United States); Myatt, Jason; Meyerhofer, David D. [University of Rochester, Rochester, New York 14623 (United States)

2009-03-13T23:59:59.000Z

429

Pulsed laser deposition of ITO thin films and their characteristics  

SciTech Connect

The indium tin oxide (ITO) thin films are grown on quartz glass substrates by the pulsed laser deposition method. The structural, electrical, and optical properties of ITO films are studied as a function of the substrate temperature, the oxygen pressure in the vacuum chamber, and the Sn concentration in the target. The transmittance of grown ITO films in the visible spectral region exceeds 85%. The minimum value of resistivity 1.79 Multiplication-Sign 10{sup -4} {Omega} cm has been achieved in the ITO films with content of Sn 5 at %.

Zuev, D. A., E-mail: zuewda@yandex.ru; Lotin, A. A.; Novodvorsky, O. A.; Lebedev, F. V.; Khramova, O. D. [Russian Academy of Sciences, Institute on Laser and Information Technologies (Russian Federation); Petuhov, I. A.; Putilin, Ph. N.; Shatohin, A. N.; Rumyanzeva, M. N.; Gaskov, A. M. [Moscow State University, Faculty of Chemistry (Russian Federation)

2012-03-15T23:59:59.000Z

430

Entanglement creation in cold molecular gases using strong laser pulses  

E-Print Network (OSTI)

While many-particle entanglement can be found in natural solids and strongly interacting atomic and molecular gases, generating highly entangled states between weakly interacting particles in a controlled and scalable way presents a significant challenge. We describe here a one-step method to generate entanglement in a dilute gas of cold polar molecules. For molecules in optical traps separated by a few micrometers, we show that maximally entangled states can be created using the strong off-resonant pulses that are routinely used in molecular alignment experiments. We show that the resulting alignment-mediated entanglement can be detected by measuring laser-induced fluorescence with single-site resolution and that signatures of this molecular entanglement also appear in the microwave absorption spectra of the molecular ensemble. We analyze the robustness of these entangled molecular states with respect to intensity fluctuations of the trapping laser and discuss possible applications of the system for quantum information processing.

Felipe Herrera; Sabre Kais; K. Birgitta Whaley

2013-02-26T23:59:59.000Z

431

Monitoring interfacial dynamics by pulsed laser techniques. Final report  

DOE Green Energy (OSTI)

The research is aimed at understanding the structural, electronic, and reactive properties of semiconductors in solutions. Focus is on Si and GaAs surfaces because they are used in photovoltaic devices, etc. The pulsed laser techniques used included surface second harmonic generation in Si and laser induced photoluminescence in GaAs. SHG can measure space charge effects in the semiconductor under various conditions, ie, immersed in electrolyte, in presence of oxide overlayers, and under UHV conditions. The Si studies demonstrated the sensitivity of the phase of the SH response to space charge effects. With GaAs, time-correlated single photon counting methods were used in the picosecond time regime to examine the recombination luminescence following above band gap excitation (surface trapping velocities).

Richmond, G.

1995-12-31T23:59:59.000Z

432

Inverse Faraday Effect with Linearly Polarized Laser Pulses  

Science Conference Proceedings (OSTI)

The inverse Faraday effect is usually associated with circularly polarized radiation; here, we show that it can also occur for linearly polarized radiation. The quasistatic axial magnetic field generated by a laser propagating in plasma can be calculated by considering both the spin and the orbital angular momenta of the laser pulse. A net spin is present when the radiation is circularly polarized and a net orbital angular momentum is present if there is any deviation from perfect rotational symmetry. The orbital angular momentum gives an additional contribution to the axial magnetic field that can enhance or reduce the effect usually attributed to circular polarization and strongly depends on the intensity profile of the Laguerre-Gaussian modes involving the azimuthal and radial mode numbers.

Ali, S. [Instituto de Plasmas e Fusao Nuclear--Laboratorio Associado, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Davies, J. R.; Mendonca, J. T. [Instituto de Plasmas e Fusao Nuclear-Laboratorio Associado, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal)

2010-07-16T23:59:59.000Z

433

The Soft-X-Ray Spectral Shape of X-Ray-Weak Seyferts  

E-Print Network (OSTI)

(I) We observed eight Seyfert~2s and two X--ray--weak Seyfert~1/QSOs with the ROSAT PSPC, and one Seyfert~2 with the ROSAT HRI. These targets were selected from the Extended 12\\um\\ Galaxy Sample. (II) Both Seyfert~1/QSOs vary by factors of 1.5---2. The photon indices steepen in the more luminous state, consistent with the variability being mainly due to the softest X--rays, which are confined to a size of less than a parsec. (III) Both the Seyfert~2s and Seyfert~1/QSOs are best fit with a photon index of $\\Gamma\\sim3$, which is steeper than the canonical value of $\\Gamma\\sim1.7$ measured for X--ray--strong Seyferts by ROSAT and at higher energies. Several physical explanations are suggested for the steeper slopes of X--ray--weak objects. (IV) We observed one Seyfert~2, NGC~5005, with the ROSAT HRI, finding about 13\\% of the soft X--rays to come from an extended component. This and other observations suggest that different components to the soft X--ray spectrum of some, if not all, X--ray--weak Seyferts may come from spatially distinct regions.

Brian Rush; Matthew A. Malkan

1995-07-27T23:59:59.000Z

434

Sharper Focusing of Hard X-rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Sharper Focusing of Hard X-rays FROM: Physics News Update Number 773 #1, April 12, 2006, by Phil Schewe and Ben Stein Note: This text has been slightly modified from the original. Sharper focusing of hard x-rays has been achieved with a device developed at Argonne National Lab. Because of their high energy, x-rays are hard to focus: they can be reflected from a surface but only at a glancing angle (less than a tenth of a degree); they can be refracted but the index of refraction is very close to 1, so that making efficient lenses becomes a problem; and they can be diffracted, but the relatively thick, variable pitch grating required for focusing is tricky to achieve. The Argonne device is of the diffraction type, and it consists of a stack of alternating layers of metal and silicon, made by depositing progressively thicker layers. When the x-rays fall on such a structure, nearly edge-on, what they see is a grating (called a linear zone plate) consisting of a sort of bar-code pattern.

435

Multiple wavelength x-ray monochromators  

DOE Patents (OSTI)

An apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined second distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focussing the separate first and second output x-ray radiation wavelengths into separate focal points.

Steinmeyer, P.A.

1991-01-01T23:59:59.000Z

436

Multiple wavelength x-ray monochromators  

DOE Patents (OSTI)

An apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined second distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focussing the separate first and second output x-ray radiation wavelengths into separate focal points.

Steinmeyer, P.A.

1991-12-31T23:59:59.000Z

437

Massively parallel X-ray scattering simulations  

Science Conference Proceedings (OSTI)

Although present X-ray scattering techniques can provide tremendous information on the nano-structural properties of materials that are valuable in the design and fabrication of energy-relevant nano-devices, a primary challenge remains in the analyses ...

Abhinav Sarje; Xiaoye S. Li; Slim Chourou; Elaine R. Chan; Alexander Hexemer

2012-11-01T23:59:59.000Z

438