Powered by Deep Web Technologies
Note: This page contains sample records for the topic "x-ray imaging shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

X-ray Imaging Shows Feather Patterns of First Birds | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

X-ray Imaging Shows Feather Patterns of First Birds X-ray Imaging Shows Feather Patterns of First Birds X-ray Imaging Shows Feather Patterns of First Birds June 30, 2011 - 2:56pm Addthis A collage of images. Top, optical images of: blue jay feather, squid, and fossil fish with feather. Bottom: x-ray images showing the distribution of copper (red) in the same organisms. | Photo Courtesy of Gregory Stewart, SLAC National Accelerator Laboratory A collage of images. Top, optical images of: blue jay feather, squid, and fossil fish with feather. Bottom: x-ray images showing the distribution of copper (red) in the same organisms. | Photo Courtesy of Gregory Stewart, SLAC National Accelerator Laboratory Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What are the key facts? Through x-ray fluorescent imaging techniques developed at the

2

X-ray Imaging Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging and Spectro-microscopy: Imaging and Spectro-microscopy: the Present and the Future Stanford Synchrotron Radiation Laboratory October 8-9, 2002 Organizers: John Miao & Keith Hodgson A workshop on "X-ray Imaging and Spectro-microscopy: the Present and the Future" was held on October 8-9, 2002. This workshop, organized by John Miao (SSRL) and Keith Hodgson (SSRL) provided a forum to discuss the scientific applications of a variety of imaging and spectro-microscopic techniques, including photoemission electron microscopy (PEEM), angle resolved photoemission spectroscopy (ARPES), coherent diffraction imaging, x-ray microscopy, micro-tomography, holographic imaging, and x-ray micro-probe. Twelve invited speakers discussed the important scientific applications of these techniques, and also predicted the future scientific directions with the advance of instrumentation and x-ray sources. The workshop was well attended with over fifty registered attendees.

3

SMB, X-Ray Spectroscopy & Imaging  

NLE Websites -- All DOE Office Websites (Extended Search)

Home X-Ray Spectroscopy & Imaging X-Ray Spectroscopy & Imaging SSRL has five hard X-ray Spectroscopy beamlines and three Microfocus Imaging beamlines dedicated to Biological and...

4

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Reflection Lensless X-Ray Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has...

5

SMB, X-ray Fluorescence Imaging  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluorescence Imaging X-ray Fluorescence Imaging X-ray fluorescence imaging utilizes the high brightness of SPEAR3 and focused beam generated by the uses of K-B optics, capillaries...

6

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs...

7

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities...

8

X-ray lithography using holographic images  

DOE Patents (OSTI)

A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

Howells, Malcolm R. (Berkeley, CA); Jacobsen, Chris (Sound Beach, NY)

1995-01-01T23:59:59.000Z

9

Hard x-ray imaging from explorer  

SciTech Connect

Coded aperture X-ray detectors were applied to obtain large increases in sensitivity as well as angular resolution. A hard X-ray coded aperture detector concept is described which enables very high sensitivity studies persistent hard X-ray sources and gamma ray bursts. Coded aperture imaging is employed so that approx. 2 min source locations can be derived within a 3 deg field of view. Gamma bursts were located initially to within approx. 2 deg and X-ray/hard X-ray spectra and timing, as well as precise locations, derived for possible burst afterglow emission. It is suggested that hard X-ray imaging should be conducted from an Explorer mission where long exposure times are possible.

Grindlay, J.E.; Murray, S.S.

1981-11-01T23:59:59.000Z

10

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Lensless X-Ray Imaging in Reflection Lensless X-Ray Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

11

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging in Reflection Print X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

12

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging in Reflection Print X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

13

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Reflection Print Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

14

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Reflection Print Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

15

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Biological Imaging by Soft X-Ray Diffraction Microscopy Print Wednesday, 30 November 2005 00:00 Electron and x-ray...

16

X-ray lithography using holographic images  

DOE Patents (OSTI)

Methods for forming X-ray images having 0.25 {micro}m minimum line widths on X-ray sensitive material are presented. A holographic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required. 15 figs.

Howells, M.S.; Jacobsen, C.

1997-03-18T23:59:59.000Z

17

X-ray lithography using holographic images  

DOE Patents (OSTI)

Methods for forming X-ray images having 0.25 .mu.m minimum line widths on X-ray sensitive material are presented. A holgraphic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required.

Howells, Malcolm S. (Berkeley, CA); Jacobsen, Chris (Sound Beach, NY)

1997-01-01T23:59:59.000Z

18

Differential phase contrast X-ray imaging system and components  

DOE Patents (OSTI)

A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

Stutman, Daniel; Finkenthal, Michael

2014-07-01T23:59:59.000Z

19

High-Energy Diffraction-Enhanced X-ray Imaging  

SciTech Connect

In order to apply the diffraction-enhanced X-ray imaging (DEI) method for much wider variety of samples, we have developed the high-energy DEI system. The energy of X-ray was increased up to 70 keV to achieve high permeability for heavy elements. The diffraction of Si(440) was used to keep large field of view. Demonstrative observation of an electrical cable was performed using the X-ray emitted from the vertical wiggler. The obtained images visualized not only the core and ground wire made of copper but also the isolator and outer jacket made of polymer clearly. The comparison of images obtained by the DEI and the absorption-contrast imaging showed that the sensitivity of DEI is about 10 times higher than that of the absorption method for light elements, and 3 times for heavy elements.

Yoneyama, Akio; Ueda, Kazuhiro [Advanced Research Laboratory, Hitachi Ltd., 2520, Akanuma, Hatoyama, Saitama, 350-0395 (Japan); Takeda, Tohoru [Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa 228-8555 (Japan); Yamazaki, Takanori [Research and Development Laboratory, Hitachi Cable, Ltd., 5-1-1, Hidakacho, Hitachi, Ibaraki, 319-1414 (Japan); Hyodo, Kazuyuki [Institute of Materials Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan)

2010-06-23T23:59:59.000Z

20

Is linear response to x-rays suitable for digital dental x-ray imaging systems? —Theoretical and experimental considerations  

Science Journals Connector (OSTI)

The purpose of this study was to consider theoretically and experimentally the suitability of linear response to x-rays for digital dental x-ray imaging systems.

Keiichi Nishikawa PhD; Mamoru Wakoh DDS; PhD; Kinya Kuroyanagi DDS; PhD

2003-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray imaging shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Novel X-Ray Imaging Opportunities for the RPI Linear Accelerator's Tunable, Quasi-monochromatic X-ray Source  

E-Print Network (OSTI)

Novel X-Ray Imaging Opportunities for the RPI Linear Accelerator's Tunable, Quasi-monochromatic X-ray of an intense, tunable, polarized, and quasi-monochromatic X-ray source has been ongoing at Rensselaer Polytechnic Institute since 2001 [1, 2, 3, 4, 5, 6]. This X-ray source, known as Parametric X-rays (PXR

Danon, Yaron

22

Quantitative x-ray imager (abstract)  

SciTech Connect

We report on development of a quantitative x-ray imager (QXI) for the national Inertial Confinement Fusion Program. Included in this development is a study of photocathode response as a function of photon energy, 2--17.5 keV, which is related to diagnostic development on the National Ignition Facility (NIF). The QXI is defined as being a quantative imager due to the repeated characterization. This instrument is systematically checked out, electronically as well as its photocathode x-ray response, both on a direct current and pulsed x-ray sources, before and after its use on a shot campaign. The QXI is a gated x-ray imager1 used for a variety of experiments conducted in the Inertial Confinement Fusion and Radiation Physics Program. The camera was assembled in Los Alamos and has been under development since 1997 and has now become the workhorse framing camera by the program. The electronics were built by Grant Applied Physics of San Fransisco, CA.2 The QXI has been used at the LANL Trident, LLNL Nova, and University of Rochester Laboratory OMEGA laser facilities. The camera consists of a grated microchannel plate (MCP), a phosphor coated fiberoptic faceplate coupled to film for data readout, along with high speed electronic pulsers to drive the x-ray detector. The QXI has both a two-strip and a four-strip detection head and has the ability to individually bias the gain of each of the strips. The timing of the QXI was done at the Trident short pulse laboratory, using 211 nm light. Single strip jitter was looked at as well and determined to be <25 ps. Flatfielding of the photocathode across the MCP was done with the Trident main laser with 150 J on a gold disk with a 1 ns. Spatial resolution was determined to be <5 {mu}m by using the same laser conditions as before and a backlit 1000 lp/in. grid. The QXI has been used on cylindrical implosion work at the Nova Laser Facility, and on direct-drive cylinder mix and indirect-drive high convergence implosion experiments at OMEGA. Its two-strip module has provided the capability to look at point backlighters, as part of technique development for experiments on the NIF. Its next use will be in March 2000 with its off axis viewer nose at Omega, providing a perpendicular view of Rayleigh--Taylor spike dissipation.

Evans, Scott C.; Archuleta, Tom N.; Oertel, John A.; Walsh, Peter J.

2001-01-01T23:59:59.000Z

23

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in...

24

Applications of holography to x-ray imaging  

SciTech Connect

In this paper we consider various applications of holographic techniques to the problem of soft x-ray imaging. We give special attention to imaging biological material using x-rays in the wavelength range 24 to 45A. We describe some experiments on formation and reconstruction of x-ray holograms and propose some ways in which holographic techniques might contribute to the difficult problem of fabricating optical elements for use in the soft x-ray region.

Howells, M.; Iarocci, M.; Kenney, J.; Rarback, H.; Rosser, R.; Yun, W.

1985-03-01T23:59:59.000Z

25

Applications of holography to X-ray imaging  

SciTech Connect

In this paper the authors consider various applications of holographic techniques to the problem of soft x-ray imaging. Special attention is given to imaging biological material using x-rays in the wavelength range 24-45A. The authors describe some experiments on formation and reconstruction of x-ray holograms and propose some ways in which holographic techniques might contribute to the difficult problem of fabricating optical elements for use in the soft x-ray region.

Howells, M.; Iarocci, M.; Kenney, J.; Rarback, H.; Rosser, R.; Yun, W.

1985-01-01T23:59:59.000Z

26

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

27

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

28

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

29

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

30

X-ray Method Shows How Frog Embryos Could Help Thwart Disease  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanocrystals Grow from Liquid Interface Nanocrystals Grow from Liquid Interface Eleventh Arthur H. Compton Award Announced Borland Awarded ACFA-IPAC'13 Prize for Accelerator Science President Obama at the Advanced Photon Source Von Dreele Receives Hanawalt Award APS News Archives: 2012 | 2011 | 2010 | 2009 2008 | 2007 | 2006 | 2005 2004 | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed X-ray Method Shows How Frog Embryos Could Help Thwart Disease MAY 20, 2013 Bookmark and Share X-ray phase-contrast tomography: Early frog embryo in cellular resolution (left) and cell and tissue motion captured and visualized using flow analysis (right). Image: Alexey Ershov/KIT From R&D Magazine online: An international team of scientists using a new X-ray method recorded the internal structure and cell movement inside a living frog embryo in greater

31

Calibrating X-ray Imaging Devices for Accurate Intensity Measurement  

SciTech Connect

The purpose of the project presented is to develop methods to accurately calibrate X-ray imaging devices. The approach was to develop X-ray source systems suitable for this endeavor and to develop methods to calibrate solid state detectors to measure source intensity. NSTec X-ray sources used for the absolute calibration of cameras are described, as well as the method of calibrating the source by calibrating the detectors. The work resulted in calibration measurements for several types of X-ray cameras. X-ray camera calibration measured efficiency and efficiency variation over the CCD. Camera types calibrated include: CCD, CID, back thinned (back illuminated), front illuminated.

Haugh, M. J.

2011-07-28T23:59:59.000Z

32

Improvement of YOHKOH Hard X-Ray Imaging  

Science Journals Connector (OSTI)

......Figure la shows the X-ray penetration rate through a single, 0.5 mm...index Fig. 1. (a) X-ray penetration rate through a single tung- sten...the K-escape. (b) X-ray penetration rates averaged over the HXT M2 and......

Jun Sato; Takeo Kosugi; Kazuo Makishima

1999-02-01T23:59:59.000Z

33

X-ray imaging crystal spectrometer for extended X-ray sources  

DOE Patents (OSTI)

Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

Bitter, Manfred L. (Princeton, NJ); Fraenkel, Ben (Jerusalem, IL); Gorman, James L. (Bordentown, NJ); Hill, Kenneth W. (Lawrenceville, NJ); Roquemore, A. Lane (Cranbury, NJ); Stodiek, Wolfgang (Princeton, NJ); von Goeler, Schweickhard E. (Princeton, NJ)

2001-01-01T23:59:59.000Z

34

New intraoral x-ray fluorographic imaging for dentistry  

SciTech Connect

A new dental x-ray fluorographic unit has been developed. This unit is composed of small intraoral x-ray tube, a compact x-ray image intensifier, and a high-resolution TV system. The purposes for developing this equipment were to (1) directly observe the tooth during endodontic procedures and (2) reduce x-ray exposure to the patient and the dentist. The radiation exposure can be reduced to about 1/600 the exposure used with conventional dental film. In clinical trials, a satisfactory fluorographic dental image for endodontic treatment was obtained with this new device.

Higashi, T.; Osada, T.; Aoyama, W.; Iguchi, M.; Suzuki, S.; Kanno, M.; Moriya, K.; Yoshimura, M.; Tusuda, M.

1983-06-01T23:59:59.000Z

35

Energy weighted x-ray dark-field imaging  

Science Journals Connector (OSTI)

The dark-field image obtained in grating-based x-ray phase-contrast imaging can provide information about the objects’ microstructures on a scale smaller than the pixel size...

Pelzer, Georg; Zang, Andrea; Anton, Gisela; Bayer, Florian; Horn, Florian; Kraus, Manuel; Rieger, Jens; Ritter, Andre; Wandner, Johannes; Weber, Thomas; Fauler, Alex; Fiederle, Michael; Wong, Winnie S; Campbell, Michael; Meiser, Jan; Meyer, Pascal; Mohr, Jürgen; Michel, Thilo

2014-01-01T23:59:59.000Z

36

Incoherent x-ray scattering in single molecule imaging  

E-Print Network (OSTI)

Imaging of the structure of single proteins or other biomolecules with atomic resolution would be enormously beneficial to structural biology. X-ray free-electron lasers generate highly intense and ultrashort x-ray pulses, providing a route towards imaging of single molecules with atomic resolution. The information on molecular structure is encoded in the coherent x-ray scattering signal. In contrast to crystallography there are no Bragg reflections in single molecule imaging, which means the coherent scattering is not enhanced. Consequently, a background signal from incoherent scattering deteriorates the quality of the coherent scattering signal. This background signal cannot be easily eliminated because the spectrum of incoherently scattered photons cannot be resolved by usual scattering detectors. We present an ab initio study of incoherent x-ray scattering from individual carbon atoms, including the electronic radiation damage caused by a highly intense x-ray pulse. We find that the coherent scattering pa...

Slowik, Jan Malte; Dixit, Gopal; Jurek, Zoltan; Santra, Robin

2014-01-01T23:59:59.000Z

37

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Biological Imaging by Soft X-Ray Diffraction Microscopy Biological Imaging by Soft X-Ray Diffraction Microscopy Print Wednesday, 30 November 2005 00:00 Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

38

Human genome sequencing with direct x-ray holographic imaging  

SciTech Connect

Direct holographic imaging of biological materials is widely applicable to the study of the structure, properties and action of genetic material. This particular application involves the sequencing of the human genome where prospective genomic imaging technology is composed of three subtechnologies, name an x-ray holographic camera, suitable chemistry and enzymology for the preparation of tagged DNA samples, and the illuminator in the form of an x-ray laser. We report appropriate x-ray camera, embodied by the instrument developed by MCR, is available and that suitable chemical and enzymatic procedures exist for the preparation of the necessary tagged DNA strands. Concerning the future development of the x-ray illuminator. We find that a practical small scale x-ray light source is indeed feasible. This outcome requires the use of unconventional physical processes in order to achieve the necessary power-compression in the amplifying medium. The understanding of these new physical mechanisms is developing rapidly. Importantly, although the x-ray source does not currently exist, the understanding of these new physical mechanisms is developing rapidly and the research has established the basic scaling laws that will determine the properties of the x-ray illuminator. When this x-ray source becomes available, an extremely rapid and cost effective instrument for 3-D imaging of biological materials can be applied to a wide range of biological structural assays, including the base-pair sequencing of the human genome and many questions regarding its higher levels of organization.

Rhodes, C.K.

1993-06-08T23:59:59.000Z

39

X-Ray Imaging Crystal Spectrometer for Extended X-Ray Sources  

SciTech Connect

Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokamak fusion experiment to provide spatially and temporally resolved data on plasma parameters such as ion temperature, toroidal and poloidal rotation, electron temperature, impurity ion charge-state distributions, and impurity transport. The imaging properties of these spherically or toroidally curved crystals provide both spectrally and spatially resolved X-ray data from the plasma using only one small spherically or toroidally curved crystal, thus eliminating the requirement for a large array of crystal spectrometers and the need to cross-calibrate the various crystals.

Bitter, Manfred L.; Fraekel, Benjamin; Gorman, James L.; Hill, Kenneth W.; Roquemore, Lane A.; Stodiek, Wolfgang; Goeler, Schweickhard von

1999-05-01T23:59:59.000Z

40

Spectroscopic imaging, diffraction, and holography with x-ray photoemission  

SciTech Connect

X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over length scales from about a micron all the way down to atomic resolution. Examples of these probes include photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity, and length scales can be very different, these X-ray techniques share a common goal of combining a capability for structure determination with chemical-state specificity. This workshop will address recent advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both theoretical and experimental fronts. A particular emphasis will be on novel structure determinations with atomic resolution using photoelectrons.

Not Available

1992-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray imaging shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Towards hard x-ray imaging at GHz frame rate  

SciTech Connect

Gigahertz (GHz) imaging using hard x-rays ( Greater-Than-Or-Equivalent-To 10 keV) can be useful to high-temperature plasma experiments, as well as research and applications using coherent photons from synchrotron radiation and x-ray free electron lasers. GHz framing rate can be achieved by using multiple cameras through multiplexing. The advantages and trade-offs of single-photon detection mode, when no more than one x-ray photon is detected per pixel, are given. Two possible paths towards x-ray imaging at GHz frame rates using a single camera are: (a) avalanche photodiode arrays of high-Z materials and (b) microchannel plate photomultipliers in conjunction with materials with large indices of refraction.

Wang Zhehui; Morris, C. L.; Kapustinsky, J. S.; Kwiatkowski, K.; Luo, S.-N. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2012-10-15T23:59:59.000Z

42

Towards hard X-ray imaging at GHz frame rate  

SciTech Connect

Gigahertz (GHz) imaging using hard X-rays ({approx}> 10 keV) can be useful to high-temperature plasma experiments, as well as research using coherent photons from synchrotron radiation and X-ray free electron lasers. GHz framing rate can be achieved by using multiple cameras through multiplexing. The advantages and trade-offs of single-photon detection mode, when no more than one X-ray photon is detected per pixel, are given. Two possible paths towards X-ray imaging at GHz frame rates using a single camera are (a) Avalanche photodiode arrays of high-Z materials and (b) Microchannel plate photomultipliers in conjunction with materials with large indices of refraction.

Wang, Zhehui [Los Alamos National Laboratory; Morris, Christopher [Los Alamos National Laboratory; Luo, Shengnian [Los Alamos National Laboratory; Kwiatkowski, Kris K. [Los Alamos National Laboratory; Kapustinsky, Jon S. [Los Alamos National Laboratory

2012-05-02T23:59:59.000Z

43

Dilation x-ray imager a new/faster gated x-ray imager for the NIF  

SciTech Connect

As the yield on implosion shots increases it is expected that the peak x-ray emission reduces to a duration with a FWHM as short as 20 ps for {approx}7 Multiplication-Sign 10{sup 18} neutron yield. However, the temporal resolution of currently used gated x-ray imagers on the NIF is 40-100 ps. We discuss the benefits of the higher temporal resolution for the NIF and present performance measurements for dilation x-ray imager, which utilizes pulse-dilation technology [T. J. Hilsabeck et al., Rev. Sci. Instrum. 81, 10E317 (2010)] to achieve x-ray imaging with temporal gate times below 10 ps. The measurements were conducted using the COMET laser, which is part of the Jupiter Laser Facility at the Lawrence Livermore National Laboratory.

Nagel, S. R.; Bell, P. M.; Bradley, D. K.; Ayers, M. J.; Barrios, M. A.; Felker, B.; Smith, R. F.; Collins, G. W.; Jones, O. S.; Piston, K.; Raman, K. S. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Hilsabeck, T. J.; Kilkenny, J. D.; Chung, T.; Sammuli, B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Hares, J. D.; Dymoke-Bradshaw, A. K. L. [Kentech Instruments Ltd., Wallingford, Oxfordshire OX10 (United Kingdom)

2012-10-15T23:59:59.000Z

44

Pixel detectors for x-ray imaging spectroscopy in space  

Science Journals Connector (OSTI)

Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 ? 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

J Treis; R Andritschke; R Hartmann; S Herrmann; P Holl; T Lauf; P Lechner; G Lutz; N Meidinger; M Porro; R H Richter; F Schopper; H Soltau; L Strüder

2009-01-01T23:59:59.000Z

45

X-ray Microscopy and Imaging (XSD-XMI)  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging (XMI) Imaging (XMI) About XMI Science and Research Beamlines Highlights Software and Tools Intranet Search APS... Argonne Home > Advanced Photon Source > Contacts FAQs Beamlines News Publications APS Email Portal APS Intranet APS Phonebook APS Quick Links for Users APS Safety and Training Welcome to the X-ray Microscopy and Imaging group (XMI)! X-ray Microscopy and Imaging is part of the X-ray Science Division at the Advanced Photon Source. We develop and support a diverse and multidisciplinary user research program at Sectors 2 and 32 of the APS, with the overall goal to image and study materials structures at spatial and temporal resolutions that are most scientifically relevant to the cutting-edge advances in materials, biological, environmental, and biomedical sciences. To achieve this goal, we actively engage in various research activities including

46

Theory of angular dispersive imaging hard x-ray spectrographs  

E-Print Network (OSTI)

A spectrograph is an optical instrument that disperses photons of different energies into distinct directions and space locations, and images photon spectra on a position-sensitive detector. Spectrographs consist of collimating, angular dispersive, and focusing optical elements. Bragg reflecting crystals arranged in an asymmetric scattering geometry are used as the dispersing elements. A ray-transfer matrix technique is applied to propagate x-rays through the optical elements. Several optical designs of hard x-ray spectrographs are proposed and their performance is analyzed. Spectrographs with an energy resolution of 0.1 meV and a spectral window of imaging up to a few tens of meVs are shown to be feasible for inelastic x-ray scattering (IXS) spectroscopy applications. In another example, a spectrograph with a 1-meV spectral resolution and 85-meV spectral window of imaging is considered for Cu K-edge resonant IXS (RIXS).

Shvyd'ko, Yuri

2015-01-01T23:59:59.000Z

47

3D View Inside the Skeleton with X-ray Microscopy: Imaging Bone at the  

NLE Websites -- All DOE Office Websites (Extended Search)

3D View Inside the Skeleton with X-ray Microscopy: Imaging Bone 3D View Inside the Skeleton with X-ray Microscopy: Imaging Bone at the Nanoscale Scientists studying osteoporosis and other skeletal diseases are interested in the 3D structure of bone and its responses to conditions such as weightlessness, radiation (of particular interest to astronauts) and vitamin D deficiency. The current gold standard, micro-computed tomography (micro-CT), provides 3D images of trabeculae, the small interior struts of bone tissue, and electron microscopy can provide nanometer resolution of thin tissue slices. Hard X-ray transmission microscopy has provided the first 3D view of bone structure within individual trabeculae on the nanoscale. figure 1 Figure 1 Micro-CT (left) shows trabecular structure inside of bone. Transmission X-ray microscopy (TXM; center and right) can reveal localized details of osteocyte lacunae and their processes.

48

Single molecule imaging with longer x-ray laser pulses  

E-Print Network (OSTI)

In serial femtosecond crystallography, x-ray laser pulses do not need to outrun all radiation damage processes because Bragg diffraction exceeds the damage-induced background scattering for longer pulses ($\\sim$ 50--100 fs). This is due to a "self-gating pulse" effect whereby damage terminates Bragg diffraction prior to the pulse completing its passage through the sample, as if that diffraction were produced by a shorter pulse of equal fluence. We show here that a similar gating effect applies to single molecule diffraction with respect to spatially uncorrelated damage processes like ionization and ion diffusion. The effect is clearly seen in calculations of the diffraction contrast, by calculating the diffraction of average structure separately to the diffraction from statistical fluctuations of the structure due to damage ("damage noise"). Our results suggest that sub-nanometer single molecule imaging with longer pulses, like those produced at currently operating facilities, should not yet be ruled out. The...

Martin, Andrew V; Caleman, Carl; Quiney, Harry M

2015-01-01T23:59:59.000Z

49

‘Taking X-ray phase contrast imaging into mainstream applications’ and its satellite workshop ‘Real and reciprocal space X-ray imaging  

Science Journals Connector (OSTI)

...presented Femtosecond X-ray lasers for imaging atomic structure...which he described X-ray laser-induced electronic ordering...characterization of targets for laser fusion experiments. Krist. Tech...1205396109 ) 20 Talbot, HF . 1836 Facts relating to...

2014-01-01T23:59:59.000Z

50

Assessment of image quality in x-ray radiography imaging using a small plasma focus device  

Science Journals Connector (OSTI)

Abstract This paper offers a comprehensive investigation of image quality parameters for a small plasma focus as a pulsed hard x-ray source for radiography applications. A set of images were captured from some metal objects and electronic circuits using a low energy plasma focus at different voltages of capacitor bank and different pressures of argon gas. The x-ray source focal spot of this device was obtained to be about 0.6 mm using the penumbra imaging method. The image quality was studied by several parameters such as image contrast, line spread function (LSF) and modulation transfer function (MTF). Results showed that the contrast changes by variations in gas pressure. The best contrast was obtained at a pressure of 0.5 mbar and 3.75 kJ stored energy. The results of x-ray dose from the device showed that about 0.6 mGy is sufficient to obtain acceptable images on the film. The measurements of LSF and MTF parameters were carried out by means of a thin stainless steel wire 0.8 mm in diameter and the cut-off frequency was obtained to be about 1.5 cycles/mm.

A. Kanani; B. Shirani; I. Jabbari; J. Mokhtari

2014-01-01T23:59:59.000Z

51

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Wednesday, 25 November 2009 00:00 Magnetic...

52

X-ray Image Bank Open for Business - NERSC Center News, Feb 22...  

NLE Websites -- All DOE Office Websites (Extended Search)

X-ray Image Bank Open for Business X-ray Image Bank Open for Business February 22, 2011 Filipe Maia is building a data bank where scientists from around the world can deposit and...

53

Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 1)  

DOE Data Explorer (OSTI)

These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 1 are the pattern and configuration files for the pattern showed in Figure 2a in the paper.

Seibert, M. Marvin; Ekeberg, Tomas; Maia, Filipe R.N.C.

54

Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 2)  

DOE Data Explorer (OSTI)

These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 2 are the pattern and configuration files for the pattern showed in Figure 2b in the paper.

Seibert, M. Marvin; Ekeberg, Tomas

55

Water Window Ptychographic Imaging with Characterized Coherent X-rays  

E-Print Network (OSTI)

We report on a ptychographical coherent diffractive imaging experiment in the water window with focused soft X-rays at $500~\\mathrm{eV}$. An X-ray beam with high degree of coherence was selected for ptychography at the P04 beamline of the PETRA III synchrotron radiation source. We measured the beam coherence with the newly developed non-redundant array method. A pinhole $2.6~\\mathrm{\\mu m}$ in size selected the coherent part of the beam and was used for ptychographic measurements of a lithographically manufactured test sample and fossil diatom. The achieved resolution was $53~\\mathrm{nm}$ for the test sample and only limited by the size of the detector. The diatom was imaged at a resolution better than $90~\\mathrm{nm}$.

Rose, Max; Dzhigaev, Dmitry; Gorobtsov, Oleg; Senkbeil, Tobias; von Gundlach, Andreas; Gorniak, Thomas; Shabalin, Anatoly; Viefhaus, Jens; Rosenhahn, Axel; Vartanyants, Ivan

2015-01-01T23:59:59.000Z

56

Beyond 3-D X-ray Imaging: Methodology Development and Applications in  

NLE Websites -- All DOE Office Websites (Extended Search)

Beyond 3-D X-ray Imaging: Methodology Development and Applications in Beyond 3-D X-ray Imaging: Methodology Development and Applications in Material Science Thursday, September 6, 2012 - 10:45am SLAC, Bldg. 137, Room 226 Yijin Liu Seminar There was a revolutionary development of X-ray imaging over the past few decades. The most substantial advancements in this field are closely related to the availability of the new generation of X-ray sources and the advanced X-ray optics. The advanced X-ray Optics along with novel methodology has made it possible to extract information that is related to different interactions between the X-rays and the specimen at very fine spatial resolution. The energy tunability of the X-rays has made it possible to combine the energy scan with imaging technique. And the brilliance of the X-ray source has made it practical for many sophisticated

57

Final report: high resolution lensless 3D imaging of nanostructures with coherent x-rays  

SciTech Connect

Final report on the project "High resolution lensless 3D imaging of nanostructures with coherent x-rays"

Jacobsen, Chris

2014-12-07T23:59:59.000Z

58

Fiber fed x-ray/gamma ray imaging apparatus  

DOE Patents (OSTI)

X-ray/gamma ray imaging apparatus is disclosed for detecting the position, energy, and intensity of x-ray/gamma ray radiation comprising scintillation means disposed in the path of such radiation and capable of generating photons in response to such radiation; first photodetection means optically bonded to the scintillation means and capable of generating an electrical signal indicative of the intensity, and energy of the radiation detected by the scintillation means; second photodetection means capable of generating an electrical signal indicative of the position of the radiation in the radiation pattern; and means for optically coupling the scintillation means to the second photodetection means. The photodetection means are electrically connected to control and storage means which may also be used to screen out noise by rejecting a signal from one photodetection means not synchronized to a signal from the other photodetection means; and also to screen out signals from scattered radiation.

Hailey, Charles J. (San Francisco, CA); Ziock, Klaus-Peter (Livermore, CA)

1992-01-01T23:59:59.000Z

59

Feasibility test of Z{sub eff} imaging using x-ray interferometry  

SciTech Connect

Elemental imaging using X-ray interferometry has been developed. Since the atomic number (Z) of a single-element sample (effective atomic number (Z{sub eff}) for a plural-element sample) corresponds to the ratio of the real to imaginary part of the complex refractive index, an elemental map is calculable with the ratio of an absorption and phase-contrast image. Several metal foils underwent feasibility observations by crystal X-ray interferometry, providing accurate detection of X-ray intensity and phase-shift. The obtained Z{sub eff} image shows that aluminum, iron, nickel, and copper foil were clearly distinguished, and nickel and copper's Z{sub eff} values coincide with ideal Z number within 1%.

Yoneyama, Akio [Central Research Laboratory, Hitachi Ltd., 2520 Akanuma, Hatoyama 350-0395 (Japan)] [Central Research Laboratory, Hitachi Ltd., 2520 Akanuma, Hatoyama 350-0395 (Japan); Hyodo, Kazuyuki [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801 (Japan)] [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801 (Japan); Takeda, Tohoru [Allied Health Sciences and Graduate School of Medical Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373 (Japan)] [Allied Health Sciences and Graduate School of Medical Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373 (Japan)

2013-11-11T23:59:59.000Z

60

THREE-DIMENSIONAL IMAGING OF NANOSCALE MATERIALS BY UISNG COHERENT X-RAYS  

SciTech Connect

X-ray crystallography is currently the primary methodology used to determine the 3D structure of materials and macromolecules. However, many nanostructures, disordered materials, biomaterials, hybrid materials and biological specimens are noncrystalline and, hence, their structures are not accessible by X-ray crystallography. Probing these structures therefore requires the employment of different approaches. A very promising technique currently under rapid development is X-ray diffraction microscopy (or lensless imaging), in which the coherent X-ray diffraction pattern of a noncrystalline specimen is measured and then directly phased to obtain a high-resolution image. Through the DOE support over the past three years, we have applied X-ray diffraction microscopy to quantitative imaging of GaN quantum dot particles, and revealed the internal GaN-Ga2O3 core shell structure in three dimensions. By exploiting the abrupt change in the scattering cross-section near electronic resonances, we carried out the first experimental demonstration of resonant X-ray diffraction microscopy for element specific imaging. We performed nondestructive and quantitative imaging of buried Bi structures inside a Si crystal by directly phasing coherent X-ray diffraction patterns acquired below and above the Bi M5 edge. We have also applied X-ray diffraction microscopy to nondestructive imaging of mineral crystals inside biological composite materials - intramuscular fish bone - at the nanometer scale resolution. We identified mineral crystals in collagen fibrils at different stages of mineralization and proposed a dynamic mechanism to account for the nucleation and growth of mineral crystals in the collagen matrix. In addition, we have also discovered a novel 3D imaging modality, denoted ankylography, which allows for complete 3D structure determination without the necessity of sample titling or scanning. We showed that when the diffraction pattern of a finite object is sampled at a sufficiently fine scale on the Ewald sphere, the 3D structure of the object is determined by the 2D spherical pattern. We confirmed the theoretical analysis by performing 3D numerical reconstructions of a sodium silicate glass structure at 2 Ã? resolution from a 2D spherical diffraction pattern alone. As X-ray free electron lasers are under rapid development worldwide, ankylography may open up a new horizon to obtain the 3D structure of a non-crystalline specimen from a single pulse and allow time-resolved 3D structure determination of disordered materials.

Jianwei Miao

2011-04-18T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray imaging shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Method and apparatus for producing sharp chromatic x-ray images of x-ray emitting objects  

SciTech Connect

Method and apparatus for producing sharp, chromatic, magnified images of X-ray emitting objects, are provided. The apparatus, which constitutes an X-ray microscope or telescope, comprises a connected collection of Bragg reflecting planes, comprised of either a bent crystal or a synthetic multilayer structure, disposed on and adjacent to a locus determined by a spherical surface. The individual Bragg planes are spatially oriented to Bragg reflect radiation from the object location toward the image location. This is accomplished by making the Bragg planes spatially coincident with the surfaces of either a nested series of prolate ellipsoids of revolution, or a nested series of spheres. The spacing between the Bragg reflecting planes can be tailored to control the wavelengths and the amount of the X-radiation that is Bragg reflected to form the X-ray image. 7 figs.

Thoe, R.S.

1990-01-09T23:59:59.000Z

62

Femtosecond diffractive imaging with a soft-X-ray free-electron laser  

E-Print Network (OSTI)

LETTERS Femtosecond diffractive imaging with a soft-X-ray free-electron laser HENRY N. CHAPMAN1 of this principle using the FLASH soft-X-ray free-electron laser. An intense 25 fs, 4 Ã? 1013 W cm-2 pulse by one10 . X-ray free-electron lasers (FELs) are expected to permit diffractive imaging at high

Loss, Daniel

63

X-ray dark-field imaging modeling * F. Pfeiffer,2  

E-Print Network (OSTI)

X-ray dark-field imaging modeling W. Cong,1, * F. Pfeiffer,2 M. Bech,2 and G. Wang1 1 Biomedical-field images are formed from x-ray small-angle scattering signals. The small-angle scattering signals to describe the relationship between x-ray small-angle scattering coefficients of an object and dark

Wang, Ge

64

X-ray imaging performance of scintillator-filled silicon pore arrays  

SciTech Connect

The need for fine detail visibility in various applications such as dental imaging, mammography, but also neurology and cardiology, is the driver for intensive efforts in the development of new x-ray detectors. The spatial resolution of current scintillator layers is limited by optical diffusion. This limitation can be overcome by a pixelation, which prevents optical photons from crossing the interface between two neighboring pixels. In this work, an array of pores was etched in a silicon wafer with a pixel pitch of 50 {mu}m. A very high aspect ratio was achieved with wall thicknesses of 4-7 {mu}m and pore depths of about 400 {mu}m. Subsequently, the pores were filled with Tl-doped cesium iodide (CsI:Tl) as a scintillator in a special process, which includes powder melting and solidification of the CsI. From the sample geometry and x-ray absorption measurement the pore fill grade was determined to be 75%. The scintillator-filled samples have a circular active area of 16 mm diameter. They are coupled with an optical sensor binned to the same pixel pitch in order to measure the x-ray imaging performance. The x-ray sensitivity, i.e., the light output per absorbed x-ray dose, is found to be only 2.5%-4.5% of a commercial CsI-layer of similar thickness, thus very low. The efficiency of the pores to transport the generated light to the photodiode is estimated to be in the best case 6.5%. The modulation transfer function is 40% at 4 lp/mm and 10%-20% at 8 lp/mm. It is limited most likely by the optical gap between scintillator and sensor and by K-escape quanta. The detective quantum efficiency (DQE) is determined at different beam qualities and dose settings. The maximum DQE(0) is 0.28, while the x-ray absorption with the given thickness and fill factor is 0.57. High Swank noise is suspected to be the reason, mainly caused by optical scatter inside the CsI-filled pores. The results are compared to Monte Carlo simulations of the photon transport inside the pore array structure. In addition, some x-ray images of technical and anatomical phantoms are shown. This work shows that scintillator-filled pore arrays can provide x-ray imaging with high spatial resolution, but are not suitable in their current state for most of the applications in medical imaging, where increasing the x-ray doses cannot be tolerated.

Simon, Matthias; Engel, Klaus Juergen; Menser, Bernd; Badel, Xavier; Linnros, Jan [Philips Research Europe, Weisshausstr. 2, 52080 Aachen (Germany); Royal Institute of Technology, Electrum 229, 16440 Kista (Sweden)

2008-03-15T23:59:59.000Z

65

Nanoscale chemical imaging using synchrotron x-ray enhanced scanning tunneling microscopy  

SciTech Connect

The combination of synchrotron radiation with scanning tunneling microscopy provides a promising new concept for chemical imaging of nanoscale structures. It employs detection of local x-ray absorption, which directly yields chemical, electronic, and magnetic sensitivity. The study of the tip current in the far field (800 nm tip/sample separation) shows that insulator-coated tips have to be considered in order to reduce the background from stray photoelectron. A picture of the different channels contributing to the x-ray enhanced STM process is proposed. If during electron tunneling the sample is illuminated with monochromatic x-rays, characteristic absorption will arise, and core electrons are excited, which might modulate the conventional tunnel current and facilitate chemical imaging at the nanoscale.

Rose, Volker; Freeland, John W. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

2010-06-23T23:59:59.000Z

66

X-ray Microscopy and Imaging: 2-BM  

NLE Websites -- All DOE Office Websites (Extended Search)

BM BM Introduction The 2-BM beamline offers measurement capabilities for x-ray microtomography, x-ray topography and x-ray microdiffraction. X-ray microtomography and x-ray diffraction instruments are installed on separate optical tables for independent operation with fast switch over time. Optically-coupled high-resolution CCD system is used for microtomography and topography with up to 1 micron spatial resolution. X-ray microdiffraction setup consists of KB microfocussing mirrors (~3 micron minimum spot), four-circle Huber diffractometer, high-precision translation sample stage, two orthogonally-mounted video cameras for viewing sample, fluorescence detector (Si-drift diode) and diffraction detector (a scintillation detector or a CCD). Three different levels of monochromaticity are available. Conventional monochromatic x-rays from a double-bounced Si (111) crystal monochromator (DCM, D E/E=1E-4), wide band-pass monochromatic x-rays from a double multilayer monochromator (DMM, D E/E=1~4E-2) and pink beam. The available x-ray range is from 5 keV to 30 keV. The lower limit is due to the x-ray windows and the upper limit is due to the critical angle of the x-ray mirror. Two different coatings (Cr and Pt) for the x-ray mirror allow either 20 keV or 30 keV energy cutoff.

67

High-Speed X-ray Phase Imaging with Grating Interferometer and White Synchrotron Light  

SciTech Connect

Taking advantage of the fact that an X-ray Talbot interferometer functions with X-rays of a broad energy band width, high-speed X-ray phase imaging and tomography have been achieved by using white synchrotron light. An X-ray phase tomogram could be measured with a 0.25 s exposure. Furthermore, a series of X-ray phase tomograms, in other words, a four-dimensional X-ray phase tomogram, could be reconstructed with a tomogram frame rate of 25.5 fps. This achievement advances X-ray phase imaging/tomography from a technique for static imaging to one for dynamic imaging of weakly absorbing objects.

Momose, Atsushi; Yashiro, Wataru; Huang, Shaohua; Kuwabara, Hiroaki; Kawabata, Katsuyuki [Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoka, Kashiwa, Chiba 277-8561 (Japan)

2010-06-23T23:59:59.000Z

68

X-ray Image Bank Open for Business - NERSC Center News, Feb 22, 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

X-ray Image Bank Open X-ray Image Bank Open for Business X-ray Image Bank Open for Business February 22, 2011 Filipe Maia is building a data bank where scientists from around the world can deposit and share images generated by coherent x-ray light sources. A post-doctoral researcher with the National Energy Research Scientific Computing Center (NERSC), Maia hopes the Coherent X-ray Imaging Data Bank, or CXIDB (http://www.cxidb.org) can help researchers make the most of their valuable data. Scientists use light sources to shoot intense x-ray beams into molecules, such as proteins, in order to understand their shapes and structures. The resulting diffraction patterns are painstakingly reconstructed to deduce an image. "It kind of works like a microscope, but it has no lens," Maia says.

69

Monochromatic x-ray sampling streak imager for fast-ignitor plasma observation  

SciTech Connect

Ultrafast two-dimensional (2D) x-ray imaging is required to investigate the dynamics of fast-heated core plasma in inertial confinement fusion research. A novel x-ray imager, consisting of two toroidally bent Bragg crystals and an ultrafast 2D x-ray imaging camera, has been demonstrated. Sequential and 2D monochromatic x-ray images of laser-imploded core plasma were obtained with a temporal resolution of 20 ps, a spatial resolution of 31 {mu}m, and a spectral resolution of over 200, simultaneously.

Tanabe, Minoru; Fujiwara, Takashi; Fujioka, Shinsuke; Nishimura, Hiroaki; Shiraga, Hiroyuki; Azechi, Hiroshi; Mima, Kunioki [Institute of Laser Engineering, Osaka University, 2-6 Yamada-Oka, Suita, Osaka 565-0871 (Japan)

2008-10-15T23:59:59.000Z

70

Diffraction with a coherent X-ray beam: dynamics and imaging  

Science Journals Connector (OSTI)

Techniques for coherent X-ray scattering measurements are detailed. Applications in the study of the dynamics of fluctuations and in lensless high-resolution imaging are described.

Livet, F.

2007-02-15T23:59:59.000Z

71

E-Print Network 3.0 - advanced x-ray imaging Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

new... reconstruction technique (SART) algorithm for image reconstruction from projection data generated by an x-ray... discuss relevant issues and conclude the paper. II....

72

A Combinational Approach to the Fusion, De-noising and Enhancement of Dual-Energy X-Ray Luggage Images  

E-Print Network (OSTI)

density materials such as metal are dark in both low and high-energy X-ray images, but areas of lighter of materials in luggage. They fuse a low-energy X-ray image and a high-energy X-ray image into a single image buildings. These systems utilize X-rays of two different energies. The high-energy X-ray is generated

Abidi, Mongi A.

73

X-ray backscatter imaging of nuclear materials  

DOE Patents (OSTI)

The energy of an X-ray beam and critical depth are selected to detect structural discontinuities in a material having an atomic number Z of 57 or greater. The critical depth is selected by adjusting the geometry of a collimator that blocks backscattered radiation so that backscattered X-ray originating from a depth less than the critical depth is not detected. Structures of Lanthanides and Actinides, including nuclear fuel rod materials, can be inspected for structural discontinuities such as gaps, cracks, and chipping employing the backscattered X-ray.

Chapman, Jeffrey Allen; Gunning, John E; Hollenbach, Daniel F; Ott, Larry J; Shedlock, Daniel

2014-09-30T23:59:59.000Z

74

Lensless Imaging of Magnetic Nanostructures by X-ray Spectro...  

NLE Websites -- All DOE Office Websites (Extended Search)

co-workers. Their implementation of the technique is an extension of lensless Fourier transform holography to the x-ray regime, which detects the far field diffraction pattern of a...

75

High-Resolution X-ray Imaging of the Colliding Wind Shock in WR147  

E-Print Network (OSTI)

We analyze new high-resolution Chandra X-ray images of the Wolf-Rayet binary system WR147. This system contains a WN8 star with an early-type companion located 0.6'' to its north, and is the only known early-type binary with a separation on the sky large enough for the wind-wind collision between the stars to currently be resolved at X-ray energies. The 5 ksec Chandra HRC-I image provides the first direct evidence for spatially extended X-ray emission in an early-type binary system. The X-ray emission peaks close to the position of the radio bow shock and north of the WN8 star. A deeper X-ray image is needed to accurately determine the degree of spatial extension, to exactly align the X-ray and optical/radio frames, and to determine whether part of the detected X-ray emission arises in the individual stellar winds. Simulated X-ray images of the wind-wind collision have a FWHM consistent with the data, and maximum likelihood fits suggest that a deeper observation may also constrain the inclination and wind momentum ratio of this system. However, as the WR wind dominates the colliding wind X-ray emission it appears unlikely that the mass-loss rate and the terminal velocity of the companion wind can be separately determined from X-ray observations. We also note an inconsistency between numerical and analytical estimates of the X-ray luminosity ratio of the stronger and weaker wind components, and conclude that the analytical results are in error.

J. M. Pittard; I. R. Stevens; P. M. Williams; A. M. T. Pollock; S. L. Skinner; M. F. Corcoran; A. F. J. Moffat

2002-04-12T23:59:59.000Z

76

Radiation-induced melting in coherent X-ray diffractive imaging at the nanoscale  

Science Journals Connector (OSTI)

Coherent X-ray diffraction techniques play an increasingly significant role in imaging nanoscale structures which range from metallic and semiconductor samples to biological objects. The conventional knowledge about radiation damage effects caused by ever higher brilliance X-ray sources has to be critically revised while studying nanostructured materials.

Ponomarenko, O.

2011-05-26T23:59:59.000Z

77

Reduction imaging with soft x rays for projection lithography A. A. MacDowell  

E-Print Network (OSTI)

experiments with a 20X reduction Schwarzschild optic produced features as small as 50 nm. It is considered multilayer coated mirrors to image soft x rays at/or near the diffraction limit on to resist coated wafers with projection x-ray lithography. This paper will describe our experimental work using a Schwarzschild camera

Bokor, Jeffrey

78

Human genome sequencing with direct x-ray holographic imaging. Final report  

SciTech Connect

Direct holographic imaging of biological materials is widely applicable to the study of the structure, properties and action of genetic material. This particular application involves the sequencing of the human genome where prospective genomic imaging technology is composed of three subtechnologies, name an x-ray holographic camera, suitable chemistry and enzymology for the preparation of tagged DNA samples, and the illuminator in the form of an x-ray laser. We report appropriate x-ray camera, embodied by the instrument developed by MCR, is available and that suitable chemical and enzymatic procedures exist for the preparation of the necessary tagged DNA strands. Concerning the future development of the x-ray illuminator. We find that a practical small scale x-ray light source is indeed feasible. This outcome requires the use of unconventional physical processes in order to achieve the necessary power-compression in the amplifying medium. The understanding of these new physical mechanisms is developing rapidly. Importantly, although the x-ray source does not currently exist, the understanding of these new physical mechanisms is developing rapidly and the research has established the basic scaling laws that will determine the properties of the x-ray illuminator. When this x-ray source becomes available, an extremely rapid and cost effective instrument for 3-D imaging of biological materials can be applied to a wide range of biological structural assays, including the base-pair sequencing of the human genome and many questions regarding its higher levels of organization.

Rhodes, C.K.

1993-06-08T23:59:59.000Z

79

Calibration of X-ray Imaging Devices for Accurate Intensity Measurement  

SciTech Connect

National Security Technologies (NSTec) has developed calibration procedures for X-ray imaging systems using NIST traceable sources. The X-ray sources that are used for calibration are both diode type and diode/fluorescer combinations. Calibrating the X-ray detectors is the key to accurate calibration of the X-ray sources. Both energy dispersive detectors and photodiodes measuring total flux were used. We have developed calibration techniques for the detectors using radioactive sources that are traceable to the National Institute of Standards and Technology (NIST). The German synchrotron at Physikalische Technische Bundestalt (PTB) is used to calibrate silicon photodiodes over the energy range from 50 eV to 60 keV. The measurements on X-ray cameras made using the NSTec X-ray sources have included the quantum efficiency averaged over all pixels, the camera counts per photon per pixel, and response variation across the sensor. The instrumentation required to accomplish the calibrations is described. X-ray energies ranged from 720 eV to 22.7 keV. The X-ray sources produce narrow energy bands, allowing us to determine the properties as a function of X-ray energy. The calibrations were done for several types of imaging devices. There were back illuminated and front illuminated CCD (charge coupled device) sensors, and a CID (charge injection device) type camera. The CCD and CID camera types differ significantly in some of their properties that affect the accuracy of X-ray intensity measurements. All cameras discussed here are silicon based. The measurements of quantum efficiency variation with X-ray energy are compared to models for the sensor structure. Cameras that are not back-thinned are compared to those that are.

Haugh, M. J., Charest, M., Ross, P., Lee, J. Schneider, M., Palmer, N., Teruya,

2012-06-01T23:59:59.000Z

80

High-resolution imaging with soft x-rays  

Science Journals Connector (OSTI)

...concave surface of the larger mirror, where a second reflection...the surface of the spherical mirrors is the main limitation, and...achievable and will permit a Schwarzschild x-ray microscope to have...be able to test spherical mirrors to within 6 angstroms by next...

AL Robinson

1982-01-08T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray imaging shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Tamper to delay motion and decrease ionization of a sample during short pulse x-ray imaging  

DOE Patents (OSTI)

A system for x-ray imaging of a small sample comprising positioning a tamper so that it is operatively connected to the sample, directing short intense x-ray pulses onto the tamper and the sample, and detecting an image from the sample. The tamper delays the explosive motion of the sample during irradiation by the short intense x-ray pulses, thereby extending the time to obtain an x-ray image of the original structure of the sample.

London, Richard A. (Orinda, CA); Szoke; Abraham (Fremont, CA), Hau-Riege; Stefan P. (Fremont, CA), Chapman; Henry N. (Livermore, CA)

2007-06-26T23:59:59.000Z

82

X-ray imaging crystal spectroscopy for use in plasma transport research  

E-Print Network (OSTI)

This research describes advancements in the spectral analysis and error propagation techniques associated with x-ray imaging crystal spectroscopy (XICS) that have enabled this diagnostic to be used to accurately constrain ...

Bitter, M.

83

Beyond 3-D X-ray Imaging: Methodology Development and Applications...  

NLE Websites -- All DOE Office Websites (Extended Search)

Beyond 3-D X-ray Imaging: Methodology Development and Applications in Material Science Thursday, September 6, 2012 - 10:45am SLAC, Bldg. 137, Room 226 Yijin Liu Seminar There was a...

84

Tailoring a plasma focus as hard x-ray source for imaging  

Science Journals Connector (OSTI)

An investigation on temporal and spatial properties of hard x-rays (15–88 keV) emitted in a 5.3 kJ plasma focus using Si pin diodes and a pinhole camera is reported. The maximum yield of hard x-rays of 15–88 keV range is estimated about 4.7 J and corresponding efficiency for x-ray generation is 0.09%. The x-rays with energy > 15 ? keV have 15–20 ns pulse duration and ? 1 ? mm source size. This radiation is used for contact x-ray imaging of biological and compound objects and spatial resolution of ? 50 ? ? m is demonstrated.

S. Hussain; M. Shafiq; M. Zakaullah

2010-01-01T23:59:59.000Z

85

Model-based image reconstruction for dual-energy X-ray CT with fast KVP switching  

Science Journals Connector (OSTI)

The most recent generation of X-ray CT systems can collect dual energy (DE) sinograms by rapidly switching the X-ray tube voltage between two levels for alternate projection views. This reduces motion artifacts in DE imaging, but yields sinograms that ... Keywords: dualenergy X-ray computed tomography, model-based image reconstruction, penalized likelihood

Wonseok Huh; Jeffrey A. Fessler

2009-06-01T23:59:59.000Z

86

X-ray tomographic image magnification process, system and apparatus therefor  

DOE Patents (OSTI)

A computerized three-dimensional x-ray tomographic microscopy system is disclosed, comprising: a) source means for providing a source of parallel x-ray beams, b) staging means for staging and sequentially rotating a sample to be positioned in the path of the c) x-ray image magnifier means positioned in the path of the beams downstream from the sample, d) detecting means for detecting the beams after being passed through and magnified by the image magnifier means, and e) computing means for analyzing values received from the detecting means, and converting the values into three-dimensional representations. Also disclosed is a process for magnifying an x-ray image, and apparatus therefor.

Kinney, John H. (Danville, CA); Bonse, Ulrich K. (Dortmund, DE); Johnson, Quintin C. (Livermore, CA); Nichols, Monte C. (Livermore, CA); Saroyan, Ralph A. (Livermore, CA); Massey, Warren N. (Livermore, CA); Nusshardt, Rudolph (Waltrop, DE)

1993-01-01T23:59:59.000Z

87

X-ray tomographic image magnification process, system and apparatus therefor  

DOE Patents (OSTI)

A computerized three-dimensional x-ray tomographic microscopy system is disclosed, comprising: (a) source means for providing a source of parallel x-ray beams, (b) staging means for staging and sequentially rotating a sample to be positioned in the path of the (c) x-ray image magnifier means positioned in the path of the beams downstream from the sample, (d) detecting means for detecting the beams after being passed through and magnified by the image magnifier means, and (e) computing means for analyzing values received from the detecting means, and converting the values into three-dimensional representations. Also disclosed is a process for magnifying an x-ray image, and apparatus therefor. 25 figures.

Kinney, J.H.; Bonse, U.K.; Johnson, Q.C.; Nichols, M.C.; Saroyan, R.A.; Massey, W.N.; Nusshardt, R.

1993-09-14T23:59:59.000Z

88

Toward the development of a soft x-ray reflection imaging microscope in the Schwarzschild configuration using a soft x-ray laser at 18. 2 nm  

SciTech Connect

We present the recent results obtained from a soft X-ray reflection imaging microscope in the Schwarzschild configuration. The microscope demonstrated a spatial resolution of 0.7 {mu}m with a magnification of 16 at 18.2 nm. The soft X-ray laser at 18.2 nm was used as an X-ray source. Mo/Si multilayers were coated on the Schwarzschild optics and the normal incidence reflectivity at 18.2 nm per surface was measured to be {approximately} 20 %. 18 refs., 6 figs.

Dicicco, D.; Rosser, R. (Princeton X-Ray Laser, Inc., Monmouth Junction, NJ (United States)); Kim, D.; Suckewer, S. (Princeton Univ., NJ (United States). Plasma Physics Lab.)

1991-12-01T23:59:59.000Z

89

Diffractive imaging at large Fresnel number: Challenge of dynamic mesoscale imaging with hard x rays  

Science Journals Connector (OSTI)

Real materials have structure at both the atomic or crystalline scale as well as at interfaces and defects at the larger scale of grains. There is a need for the study of materials at the “mesoscale,” the scale at which subgranular physical processes and intergranular organization couple to determine microstructure, crucially impacting constitutive response at the engineering macroscale. Diffractive imaging using photons that can penetrate multiple grains of material would be a transformative technique for the study of the performance of materials in dynamic extremes. Thicker samples imply higher energy photons of shorter wavelength, and imaging of multiple grains implies bigger spot sizes. Such imaging requires the use of future planned and proposed hard x-ray free electron lasers (such as the European XFEL) to provide both the spatial coherence transverse to the large spots and the peak brilliance to provide the short illumination times. The result is that the Fresnel number of the system becomes large and is no longer in the Fraunhofer far-field limit. The interrelated issues of diffractive imaging at large Fresnel number are analyzed, including proof that diffractive imaging is possible in this limit and estimates of the signal-to-noise possible. In addition, derivation of the heating rates for brilliant pulses of x rays are presented. The potential and limitations on multiple dynamic images are derived. This paper will present a study of x-ray interactions with materials in this new regime of spatially coherent but relatively large mesoscale spots at very hard energies. It should provide the theory and design background for the experiments and facilities required to control materials in extreme environments, in particular for the next generation of very-hard-x-ray free electron lasers.

John L. Barber; Cris W. Barnes; Richard L. Sandberg; Richard L. Sheffield

2014-05-12T23:59:59.000Z

90

X-ray Phase Imaging Microscopy using a Fresnel Zone Plate and a Transmission Grating  

SciTech Connect

We report on a hard X-ray phase imaging microscopy (a phase-difference microscopy) that consists of an objective and a transmission grating. The simple optical system provides a quantitative phase image, and does not need a wave field mostly coherent on the objective. Our method has a spatial resolution almost same as that of the absorption contrast microscope image obtained by removing the grating. We demonstrate how our approach provides a phase image from experimentally obtained images. Our approach is attractive for easily appending a quantitative phase-sensitive mode to normal X-ray microscopes, and has potentially broad applications in biology and material sciences.

Yashiro, Wataru; Momose, Atsushi [Department of Advanced Materials Science, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8561 (Japan); Takeuchi, Akihisa; Suzuki, Yoshio [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198 (Japan)

2010-06-23T23:59:59.000Z

91

Applying x-ray digital imaging to the verification of cadmium in fuel-storage components  

SciTech Connect

The High Flux Isotope Reactor utilizes large underwater fuel-storage arrays to stage irradiated fuel before it is shipped from the facility. Cadmium is required as a thermal neutron absorber in these fuel-storage arrays to produce an acceptable margin of nuclear subcriticality during both normal and off-normal operating conditions. Due to incomplete documentation from the time of their fabrication, the presence of cadmium within two stainless-steel parts of fuel-storage arrays must be experimentally verified before they are reused in new fuel-storage arrays. A cadmium-verification program has been developed in association with the Waste Examination and Assay Facility located at the Oak Ridge national Laboratory to nondestructively examine these older shroud assemblies. The program includes the following elements (1) x-ray analog imaging, (2) x-ray digital imaging, (3) prompt-gamma-ray spectroscopy measurements, and (4) neutron-transmission measurements. X-ray digital imaging utilizes an analog-to-digital convertor to record attenuated x-ray intensities observed on a fluorescent detector by a video camera. These x-ray intensities are utilized in expressions for cadmium thickness based upon x-ray attenuation theory.

Dabbs, R.D.; Cook, D.H.

1997-03-01T23:59:59.000Z

92

X-Ray Tomographic Imaging of Crystal Structure at the Atomic Level P. Korecki,1,* M. Tolkiehn,2  

E-Print Network (OSTI)

X-Ray Tomographic Imaging of Crystal Structure at the Atomic Level P. Korecki,1,* M. Tolkiehn,2 D of the crystal structure from real-space projections obtained by illuminating the sample with white x rays. This approach was applied to the pattern of the directional fine structure in absorption of white x rays

Korecki, Pawe³

93

High-throughput imaging of heterogeneous cell organelles with an X-ray laser  

DOE Data Explorer (OSTI)

Preprocessed detector images that were used for the paper "High-throughput imaging of heterogeneous cell organelles with an X-ray laser". The CXI file contains the entire recorded data - including both hits and blanks. It also includes down-sampled images and LCLS machine parameters. Additionally, the Cheetah configuration file is attached that was used to create the pre-processed data.

Hantke, Max, F.

94

Lensless Imaging of Whole Biological Cells with Soft X-Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Whole Lensless Imaging of Whole Biological Cells with Soft X-Rays Lensless Imaging of Whole Biological Cells with Soft X-Rays Print Wednesday, 26 May 2010 00:00 A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the highest resolution-11 to 13 nanometers (billionths of a meter)-ever obtained with this method for biological specimens. Their success indicates that full 3-D tomography of whole cells at equivalent resolution should soon be possible. The National Center for X-Ray Tomography at ALS Beamline 2.1 images whole, frozen hydrated cells in 3-D (see highlight "Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography"). Large numbers of cells can currently be processed in a short time at resolutions of 40 to 60 nanometers, but the ability to increase resolution to the 10-nanometer range would enhance research capabilities in both biology and materials sciences.

95

Lensless Imaging of Whole Biological Cells with Soft X-Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Whole Biological Cells with Soft X-Rays Print Lensless Imaging of Whole Biological Cells with Soft X-Rays Print A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the highest resolution-11 to 13 nanometers (billionths of a meter)-ever obtained with this method for biological specimens. Their success indicates that full 3-D tomography of whole cells at equivalent resolution should soon be possible. The National Center for X-Ray Tomography at ALS Beamline 2.1 images whole, frozen hydrated cells in 3-D (see highlight "Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography"). Large numbers of cells can currently be processed in a short time at resolutions of 40 to 60 nanometers, but the ability to increase resolution to the 10-nanometer range would enhance research capabilities in both biology and materials sciences.

96

Lensless Imaging of Whole Biological Cells with Soft X-Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Whole Biological Cells with Soft X-Rays Print Lensless Imaging of Whole Biological Cells with Soft X-Rays Print A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the highest resolution-11 to 13 nanometers (billionths of a meter)-ever obtained with this method for biological specimens. Their success indicates that full 3-D tomography of whole cells at equivalent resolution should soon be possible. The National Center for X-Ray Tomography at ALS Beamline 2.1 images whole, frozen hydrated cells in 3-D (see highlight "Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography"). Large numbers of cells can currently be processed in a short time at resolutions of 40 to 60 nanometers, but the ability to increase resolution to the 10-nanometer range would enhance research capabilities in both biology and materials sciences.

97

Lensless Imaging of Whole Biological Cells with Soft X-Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Whole Biological Cells with Soft X-Rays Print Lensless Imaging of Whole Biological Cells with Soft X-Rays Print A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the highest resolution-11 to 13 nanometers (billionths of a meter)-ever obtained with this method for biological specimens. Their success indicates that full 3-D tomography of whole cells at equivalent resolution should soon be possible. The National Center for X-Ray Tomography at ALS Beamline 2.1 images whole, frozen hydrated cells in 3-D (see highlight "Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography"). Large numbers of cells can currently be processed in a short time at resolutions of 40 to 60 nanometers, but the ability to increase resolution to the 10-nanometer range would enhance research capabilities in both biology and materials sciences.

98

Lensless Imaging of Whole Biological Cells with Soft X-Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Whole Biological Cells with Soft X-Rays Print Lensless Imaging of Whole Biological Cells with Soft X-Rays Print A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the highest resolution-11 to 13 nanometers (billionths of a meter)-ever obtained with this method for biological specimens. Their success indicates that full 3-D tomography of whole cells at equivalent resolution should soon be possible. The National Center for X-Ray Tomography at ALS Beamline 2.1 images whole, frozen hydrated cells in 3-D (see highlight "Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography"). Large numbers of cells can currently be processed in a short time at resolutions of 40 to 60 nanometers, but the ability to increase resolution to the 10-nanometer range would enhance research capabilities in both biology and materials sciences.

99

Lensless Imaging of Whole Biological Cells with Soft X-Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Whole Biological Cells with Soft X-Rays Print Lensless Imaging of Whole Biological Cells with Soft X-Rays Print A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the highest resolution-11 to 13 nanometers (billionths of a meter)-ever obtained with this method for biological specimens. Their success indicates that full 3-D tomography of whole cells at equivalent resolution should soon be possible. The National Center for X-Ray Tomography at ALS Beamline 2.1 images whole, frozen hydrated cells in 3-D (see highlight "Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography"). Large numbers of cells can currently be processed in a short time at resolutions of 40 to 60 nanometers, but the ability to increase resolution to the 10-nanometer range would enhance research capabilities in both biology and materials sciences.

100

Lensless Imaging of Whole Biological Cells with Soft X-Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Whole Biological Cells with Soft X-Rays Print Lensless Imaging of Whole Biological Cells with Soft X-Rays Print A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the highest resolution-11 to 13 nanometers (billionths of a meter)-ever obtained with this method for biological specimens. Their success indicates that full 3-D tomography of whole cells at equivalent resolution should soon be possible. The National Center for X-Ray Tomography at ALS Beamline 2.1 images whole, frozen hydrated cells in 3-D (see highlight "Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography"). Large numbers of cells can currently be processed in a short time at resolutions of 40 to 60 nanometers, but the ability to increase resolution to the 10-nanometer range would enhance research capabilities in both biology and materials sciences.

Note: This page contains sample records for the topic "x-ray imaging shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

High Quality Image of Biomedical Object by X-ray Refraction Based Contrast Computed Tomography  

SciTech Connect

Recently we have developed a new Computed Tomography (CT) algorithm for refraction contrast that uses the optics of diffraction-enhanced imaging. We applied this new method to visualize soft tissue which is not visualized by the current absorption based contrast. The meaning of the contrast that appears in refraction-contrast X-ray CT images must be clarified from a biologic or anatomic point of view. It has been reported that the contrast is made with the specific gravity map with a range of approximately 10 {mu}arc sec. However, the relationship between the contrast and biologic or anatomic findings has not been investigated, to our knowledge. We compared refraction-contrast X-ray CT images with microscopic X-ray images, and we evaluated refractive indexes of pathologic lesions on phase-contrast X-ray CT images. We focused our attenuation of breast cancer and lung cancer as samples. X-ray refraction based Computed Tomography was appeared to be a pathological ability to depict the boundary between cancer nest and normal tissue, and inner structure of the disease.

Hashimoto, E. [Department of Photon-Science, School of Advanced Studies, Graduate University for Advanced Studies (GUAS), Shonan Village, Hayama, Kanagawa 240-0193 (Japan); Maksimenko, A.; Hirano, K.; Hyodo, K. [Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Sugiyama, H. [Department of Photon-Science, School of Advanced Studies, Graduate University for Advanced Studies (GUAS), Shonan Village, Hayama, Kanagawa 240-0193 (Japan); Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Shimao, D. [Department of Health Sciences, Ibaraki prefectural University of Health Sciences, 4669-2Ami, Ami, Inashiki, Ibaraki, 300-0394 (Japan); Nishino, Y.; Ishikawa, T. [RIKEN Harima Institute, 1-1-1 Kouto, Mikazuki, Sayo, Hyogo, 679-5148 (Japan); Yuasa, T. [Department of Bio-system Engineering, Faculty of Engineering Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510 (Japan); Ichihara, S. [Dept. of Path., Nagoya Med. Center, Nat. Hospital Organization, Naka-ku, Nagoya 460-0001 (Japan); Arai, Y. [Matsumoto Dental University, 1980 Hirooka, Shiojiri, Nagano (Japan); Ando, M. [Department of Photon-Science, School of Advanced Studies, Graduate University for Advanced Studies (GUAS), Shonan Village, Hayama, Kanagawa 240-0193 (Japan); Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Inst. of Sci. and Tech., Tokyo Univ. of Science, Yamasaki 2641, Noda, Chiba 278-8510 (Japan)

2007-01-19T23:59:59.000Z

102

Lensless Imaging of Whole Biological Cells with Soft X-Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Whole Biological Cells with Soft X-Rays Print Lensless Imaging of Whole Biological Cells with Soft X-Rays Print A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the highest resolution-11 to 13 nanometers (billionths of a meter)-ever obtained with this method for biological specimens. Their success indicates that full 3-D tomography of whole cells at equivalent resolution should soon be possible. The National Center for X-Ray Tomography at ALS Beamline 2.1 images whole, frozen hydrated cells in 3-D (see highlight "Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography"). Large numbers of cells can currently be processed in a short time at resolutions of 40 to 60 nanometers, but the ability to increase resolution to the 10-nanometer range would enhance research capabilities in both biology and materials sciences.

103

Lensless Imaging of Whole Biological Cells with Soft X-Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Whole Biological Cells with Soft X-Rays Print Lensless Imaging of Whole Biological Cells with Soft X-Rays Print A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the highest resolution-11 to 13 nanometers (billionths of a meter)-ever obtained with this method for biological specimens. Their success indicates that full 3-D tomography of whole cells at equivalent resolution should soon be possible. The National Center for X-Ray Tomography at ALS Beamline 2.1 images whole, frozen hydrated cells in 3-D (see highlight "Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography"). Large numbers of cells can currently be processed in a short time at resolutions of 40 to 60 nanometers, but the ability to increase resolution to the 10-nanometer range would enhance research capabilities in both biology and materials sciences.

104

Source effects in analyzer-based X-ray phase contrast imaging with conventional sources  

SciTech Connect

Several recent papers have shown the implementation of analyzer based X-ray phase contrast imaging (ABI) with conventional X-ray sources. The high flux is always a requirement to make the technique useful for bio-medical applications. Here, we present and discuss three important parameters, which need to be taken into account, when searching for the high flux ABI: anisotropic magnification, double image, and source size spread due to intrinsic dispersive diffraction by asymmetrically cut crystals. These parameters, if not well optimized, may cause important features in the acquired images which can mislead the interpretation. A few ways to minimize these effects are implemented and discussed, including some experimental results.

Hoennicke, M. G. [Universidade Federal da Integracao Latino-Americana, 85867-970 Foz do Iguacu, PR (Brazil); Manica, J. [Universidade Estadual do Oeste do Parana, 85867-970 Foz do Iguacu, PR (Brazil); Mazzaro, I.; Cusatis, C. [LORXI, Departamento de Fisica, Universidade Federal do Parana, Caixa Postal 19091, 81531-990 Curitiba, PR (Brazil); Huang, X.-R. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

2012-11-15T23:59:59.000Z

105

X-ray imaging, spacecraft nuclear fission and cosmic ray contraband  

NLE Websites -- All DOE Office Websites (Extended Search)

R&D 100 Awards winners R&D 100 Awards winners X-ray imaging, spacecraft nuclear fission and cosmic ray contraband detection score R&D 100 awards R&D Magazine announced the winners and three technologies from Los Alamos National Laboratory and its partners are among the honorees. July 8, 2013 MiniMAX is a battery powered, digital x-ray imaging system that is completely self-contained, lightweight, compact and portable. MiniMAX is a battery powered, digital x-ray imaging system that is completely self-contained, lightweight, compact and portable. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "The innovation and creativity shown in this year's awards is truly inspiring. It gives me great confidence in the Laboratory's intellectual vitality and ongoing role in national security science. Congratulations to

106

Enhanced renal image contrast by ethanol fixation in phase-contrast X-ray computed tomography  

Science Journals Connector (OSTI)

To obtain higher image contrast in phase-contrast X-ray computed tomography, the fixation technique has been examined with 100% ethanol and the commonly used 10% formalin. Fine renal structure was depicted by the ethanol fixation, and the image was approximately three times higher in contrast in all renal areas due to the physical properties and strong dehydration by ethanol.

Shirai, R.

2014-06-12T23:59:59.000Z

107

Benchmarking the x-ray phase contrast imaging for ICF DT ice characterization using roughened surrogates  

SciTech Connect

We use x-ray phase contrast imaging to characterize the inner surface roughness of DT ice layers in capsules planned for future ignition experiments. It is therefore important to quantify how well the x-ray data correlates with the actual ice roughness. We benchmarked the accuracy of our system using surrogates with fabricated roughness characterized with high precision standard techniques. Cylindrical artifacts with azimuthally uniform sinusoidal perturbations with 100 um period and 1 um amplitude demonstrated 0.02 um accuracy limited by the resolution of the imager and the source size of our phase contrast system. Spherical surrogates with random roughness close to that required for the DT ice for a successful ignition experiment were used to correlate the actual surface roughness to that obtained from the x-ray measurements. When comparing average power spectra of individual measurements, the accuracy mode number limits of the x-ray phase contrast system benchmarked against surface characterization performed by Atomic Force Microscopy are 60 and 90 for surrogates smoother and rougher than the required roughness for the ice. These agreement mode number limits are >100 when comparing matching individual measurements. We will discuss the implications for interpreting DT ice roughness data derived from phase-contrast x-ray imaging.

Dewald, E; Kozioziemski, B; Moody, J; Koch, J; Mapoles, E; Montesanti, R; Youngblood, K; Letts, S; Nikroo, A; Sater, J; Atherton, J

2008-06-26T23:59:59.000Z

108

Soft x-ray imaging for spheromak-like plasmas (abstract)  

Science Journals Connector (OSTI)

A pinhole soft x-rayimagingcamera is being developed for use on the Caltech solar prominence simulation experiment and also the Caltech spheromak experiment. The camera is based upon a commercial gated intensifier which produces an image on a phosphor screen. Moderate signal level excellent time resolution and reasonable imaging have been obtained but there has not been any determination of the x-ray energy spectrum. An estimation of the spectrum is now underway using filtered AXUV diodes and it is expected that knowledge of the x-ray energy will enable further optimization of the camera.

P. M. Bellan; J. F. Hansen; S. Zweben; D. Stutman

2001-01-01T23:59:59.000Z

109

Phase imaging of magnetic nanostructures using resonant soft x-ray holography  

Science Journals Connector (OSTI)

We demonstrate phase imaging by means of resonant soft x-ray holography. Our holographic phase-contrast method utilizes the strong energy-dependence of the refractive index at a characteristic x-ray absorption resonance. The general concept is shown by using a Co?Pd multilayer sample which exhibits random nanosized magnetic domains. By tuning below the Co L-edge resonance, our quantitative and spectroscopic phase method allows high-contrast imaging of nanoscale electronic and magnetic order while increasing the probing depth and decreasing the radiation dose by an order of magnitude. The complex refractive index is quantitatively obtained through the interference between resonant and nonresonant scattering.

A. Scherz; W. F. Schlotter; K. Chen; R. Rick; J. Stöhr; J. Lüning; I. McNulty; Ch. Günther; F. Radu; W. Eberhardt; O. Hellwig; S. Eisebitt

2007-12-17T23:59:59.000Z

110

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print The quest to increase both computer data-storage density and the speed at which one can read and write the information remains unconsummated. One novel concept is based on the use of a local electric current to push magnetic domain walls along a thin nanowire. A German, Korean, Berkeley Lab team has used the x-ray microscope XM-1 at the ALS to demonstrate that magnetic domain walls in curved permalloy nanowires can be moved at high speed by injecting nanosecond pulses of spin-polarized currents into the wires, but the motion is largely stochastic. This result will have an impact on the current development of magnetic storage devices in which data is moved electronically rather than mechanically as in computer disk drives.

111

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print The quest to increase both computer data-storage density and the speed at which one can read and write the information remains unconsummated. One novel concept is based on the use of a local electric current to push magnetic domain walls along a thin nanowire. A German, Korean, Berkeley Lab team has used the x-ray microscope XM-1 at the ALS to demonstrate that magnetic domain walls in curved permalloy nanowires can be moved at high speed by injecting nanosecond pulses of spin-polarized currents into the wires, but the motion is largely stochastic. This result will have an impact on the current development of magnetic storage devices in which data is moved electronically rather than mechanically as in computer disk drives.

112

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print The quest to increase both computer data-storage density and the speed at which one can read and write the information remains unconsummated. One novel concept is based on the use of a local electric current to push magnetic domain walls along a thin nanowire. A German, Korean, Berkeley Lab team has used the x-ray microscope XM-1 at the ALS to demonstrate that magnetic domain walls in curved permalloy nanowires can be moved at high speed by injecting nanosecond pulses of spin-polarized currents into the wires, but the motion is largely stochastic. This result will have an impact on the current development of magnetic storage devices in which data is moved electronically rather than mechanically as in computer disk drives.

113

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print The quest to increase both computer data-storage density and the speed at which one can read and write the information remains unconsummated. One novel concept is based on the use of a local electric current to push magnetic domain walls along a thin nanowire. A German, Korean, Berkeley Lab team has used the x-ray microscope XM-1 at the ALS to demonstrate that magnetic domain walls in curved permalloy nanowires can be moved at high speed by injecting nanosecond pulses of spin-polarized currents into the wires, but the motion is largely stochastic. This result will have an impact on the current development of magnetic storage devices in which data is moved electronically rather than mechanically as in computer disk drives.

114

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print The quest to increase both computer data-storage density and the speed at which one can read and write the information remains unconsummated. One novel concept is based on the use of a local electric current to push magnetic domain walls along a thin nanowire. A German, Korean, Berkeley Lab team has used the x-ray microscope XM-1 at the ALS to demonstrate that magnetic domain walls in curved permalloy nanowires can be moved at high speed by injecting nanosecond pulses of spin-polarized currents into the wires, but the motion is largely stochastic. This result will have an impact on the current development of magnetic storage devices in which data is moved electronically rather than mechanically as in computer disk drives.

115

Soft x-ray images of the laser entrance hole of ignition hohlraums  

SciTech Connect

Hohlraums are employed at the national ignition facility to convert laser energy into a thermal x-radiation drive, which implodes a fusion capsule, thus compressing the fuel. The x-radiation drive is measured with a low spectral resolution, time-resolved x-ray spectrometer, which views the region around the hohlraum's laser entrance hole. This measurement has no spatial resolution. To convert this to the drive inside the hohlraum, the size of the hohlraum's opening ('clear aperture') and fraction of the measured x-radiation, which comes from this opening, must be known. The size of the clear aperture is measured with the time integrated static x-ray imager (SXI). A soft x-ray imaging channel has been added to the SXI to measure the fraction of x-radiation emitted from inside the clear aperture. A multilayer mirror plus filter selects an x-ray band centered at 870 eV, near the peak of the x-ray spectrum of a 300 eV blackbody. Results from this channel and corrections to the x-radiation drive are discussed.

Schneider, M. B.; Meezan, N. B.; Alvarez, S. S.; Alameda, J.; Baker, S.; Bell, P. M.; Bradley, D. K.; Callahan, D. A.; Celeste, J. R.; Dewald, E. L.; Dixit, S. N.; Doeppner, T.; Eder, D. C.; Edwards, M. J.; Fernandez-Perea, M.; Hau-Riege, S.; Hsing, W.; Izumi, N.; Jones, O. S.; Kalantar, D. H. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

2012-10-15T23:59:59.000Z

116

ELECTRON FLUX SPECTRAL IMAGING OF SOLAR FLARES THROUGH REGULARIZED ANALYSIS OF HARD X-RAY SOURCE VISIBILITIES  

E-Print Network (OSTI)

ELECTRON FLUX SPECTRAL IMAGING OF SOLAR FLARES THROUGH REGULARIZED ANALYSIS OF HARD X-RAY SOURCE a new method for imaging spectroscopy analysis of hard X-ray emission during solar flares. The method.e., the two-dimensional spatial Fourier transforms of the spectral image) to obtain smoothed (regularized

Piana, Michele

117

Single-Molecule Imaging with X-Ray Free-Electron Lasers: Dream or Reality?  

SciTech Connect

X-ray free-electron lasers (XFEL) are revolutionary photon sources, whose ultrashort, brilliant pulses are expected to allow single-molecule diffraction experiments providing structural information on the atomic length scale of nonperiodic objects. This ultimate goal, however, is currently hampered by several challenging questions basically concerning sample damage, Coulomb explosion, and the role of nonlinearity. By employing an original ab initio approach, we address these issues showing that XFEL-based single-molecule imaging will be only possible with a few-hundred long attosecond pulses, due to significant radiation damage and the formation of preferred multisoliton clusters which reshape the overall electronic density of the molecular system at the femtosecond scale.

Fratalocchi, A. [PRIMALIGHT, Faculty of Electrical Engineering, Applied Mathematics and Computational Science, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia)] [Department of Physics, Sapienza University of Rome, P.le A. Moro 2, 00185, Rome (Italy); Ruocco, G. [Department of Physics, Sapienza University of Rome, P.le A. Moro 2, 00185, Rome (Italy)] [IPCF-CNR, c/o Department of Physics, Sapienza University, P.le Aldo Moro 2, 00185, Rome (Italy)

2011-03-11T23:59:59.000Z

118

Method and apparatus for enhanced sensitivity filmless medical x-ray imaging, including three-dimensional imaging  

DOE Patents (OSTI)

A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z{sub 1} above upper collimator plane, distance z{sub 2} above the lower collimator plane, and distance z{sub 3} above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v{sub 1}, v{sub 2}, v{sub 3} proportional to z{sub 1}, z{sub 2} and z{sub 3}, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site. 5 figs.

Parker, S.

1995-10-24T23:59:59.000Z

119

Installation of soft X-ray array diagnostics and its application to tomography reconstruction using synthetic KSTAR X-ray images  

SciTech Connect

Four-array system of soft X-ray diagnostics was installed on KSTAR tokamak. Each array has 32 viewing chords of two photo-diode array detectors with spatial resolution of 2 cm. To estimate signals from the soft X-ray radiation power, typical n{sub e}, T{sub e}, and argon impurity line radiation profiles in KSTAR are chosen. The photo-diodes were absolutely calibrated as a function of the incident photon energy in 2–40 keV range with a portable X-ray tube. Two-dimensional T{sub e} image properties by multi-energy method were simulated and visualized with six combinations of beryllium filter sets within the dynamic range of signal ratio.

Lee, Seung Hun; Jang, Juhyeok; Hong, Joohwan; Jang, Siwon; Choe, Wonho, E-mail: wchoe@kaist.ac.kr [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Impurity and Edge Research Center, Daejeon 305-701 (Korea, Republic of); Pacella, D.; Romano, A.; Gabellieri, L. [Associazione Euratom-ENEA sulla Fusione, C.R. Frascati 00044 (Italy); Kim, Junghee [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Major of Nuclear Fusion and Plasma Science Department, Korea University of Science and Technology, Daejeon 305-350 (Korea, Republic of)

2014-11-15T23:59:59.000Z

120

Imaging single cells in a beam of live cyanobacteria with an X-ray laser  

DOE Data Explorer (OSTI)

This entry contains ten diffraction patterns, and reconstructions images, of individual living Cyanobium gracile cells, imaged using 517 eV X-rays from the LCLS XFEL. The Hawk software package was used for phasing. The Uppsala aerosol injector was used for sample injection, assuring very low noise levels. The cells come from various stages of the cell cycle, and were imaged in random orientations.

Schot, Gijs, vander

Note: This page contains sample records for the topic "x-ray imaging shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

High spatial resolution X-ray and gamma ray imaging system using diffraction crystals  

DOE Patents (OSTI)

A method and a device for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation are provided. The device comprises a plurality of arrays, with each array comprising a plurality of elements comprising a first collimator, a diffracting crystal, a second collimator, and a detector.

Smither, Robert K. (Hinsdale, IL)

2011-05-17T23:59:59.000Z

122

X-Ray CT Image Reconstruction via Wavelet Frame Based Regularization and Radon Domain  

E-Print Network (OSTI)

to reconstruct high quality CT images from limited and noisy projection data. One of the common CT systems Bin Dong Jia Li Zuowei Shen December 22, 2011 Abstract X-ray computed tomography (CT) has been,8]. Numerical simulations and comparisons will be presented at the end. Keywords: Computed tomography, wavelet

Zakharov, Vladimir

123

Passive Spectroscopy Bolometers, Grating- And X-Ray Imaging Crystal Spectrometers  

SciTech Connect

This tutorial gives a brief introduction into passive spectroscopy and describes the working principles of bolometers, a high-resolution grating spectrometer, and a novel X-ray imaging crystal spectrometer, which is of particular interest for profile measurements of the ion temperature and plasma rotation velocity on ITER and future burning plasma experiments.

Bitter, M; Hill, K W; Scott, S; Paul, S; Ince-Cushmann, A; Reinke, M; Rice, J; Beiersdorfer, P; Gu, M F; Lee, S G; Broennimann, C; Eikenberry, E F

2007-11-07T23:59:59.000Z

124

A convenient alignment approach for x-ray imaging experiments based on laser positioning devices  

SciTech Connect

This study presents a two-laser alignment approach for facilitating the precise alignment of various imaging and measuring components with respect to the x-ray beam. The first laser constantly pointed to the output window of the source, in a direction parallel to the path along which the components are placed. The second laser beam, originating from the opposite direction, was calibrated to coincide with the first laser beam. Thus, a visible indicator of the direction of the incident x-ray beam was established, and the various components could then be aligned conveniently and accurately with its help.

Zhang Da; Donovan, Molly; Wu Xizeng; Liu Hong [Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States); Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35233 (United States); Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States)

2008-11-15T23:59:59.000Z

125

Toward atomic resolution diffractive imaging of isolated molecules with x-ray free-electron lasers  

E-Print Network (OSTI)

We give a detailed account of the theoretical analysis and the experimental results of an x-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Coherent Light Source [Phys. Rev. Lett. 112, 083002 (2014)]. This experiment is the first step toward coherent diffractive imaging of structures and structural dynamics of isolated molecules at atomic resolution, i. e., picometers and femtoseconds, using x-ray free-electron lasers.

Stern, Stephan; Filsinger, Frank; Rouzée, Arnaud; Rudenko, Artem; Johnsson, Per; Martin, Andrew V; Barty, Anton; Bostedt, Christoph; Bozek, John D; Coffee, Ryan N; Epp, Sascha; Erk, Benjamin; Foucar, Lutz; Hartmann, Robert; Kimmel, Nils; Kühnel, Kai-Uwe; Maurer, Jochen; Messerschmidt, Marc; Rudek, Benedikt; Starodub, Dmitri G; Thøgersen, Jan; Weidenspointner, Georg; White, Thomas A; Stapelfeldt, Henrik; Rolles, Daniel; Chapman, Henry N; Küpper, Jochen

2014-01-01T23:59:59.000Z

126

X-ray intravital microscopy for functional imaging in rat hearts using synchrotron radiation coronary microangiography  

SciTech Connect

An X-ray intravital microscopy technique was developed to enable in vivo visualization of the coronary, cerebral, and pulmonary arteries in rats without exposure of organs and with spatial resolution in the micrometer range and temporal resolution in the millisecond range. We have refined the system continually in terms of the spatial resolution and exposure time. X-rays transmitted through an object are detected by an X-ray direct-conversion type detector, which incorporates an X-ray SATICON pickup tube. The spatial resolution has been improved to 6 {mu}m, yielding sharp images of small arteries. The exposure time has been shortened to around 2 ms using a new rotating-disk X-ray shutter, enabling imaging of beating rat hearts. Quantitative evaluations of the X-ray intravital microscopy technique were extracted from measurements of the smallest-detectable vessel size and detection of the vessel function. The smallest-diameter vessel viewed for measurements is determined primarily by the concentration of iodinated contrast material. The iodine concentration depends on the injection technique. We used ex vivo rat hearts under Langendorff perfusion for accurate evaluation. After the contrast agent is injected into the origin of the aorta in an isolated perfused rat heart, the contrast agent is delivered directly into the coronary arteries with minimum dilution. The vascular internal diameter response of coronary arterial circulation is analyzed to evaluate the vessel function. Small blood vessels of more than about 50 {mu}m diameters were visualized clearly at heart rates of around 300 beats/min. Vasodilation compared to the control was observed quantitatively using drug manipulation. Furthermore, the apparent increase in the number of small vessels with diameters of less than about 50 {mu}m was observed after the vasoactive agents increased the diameters of invisible small blood vessels to visible sizes. This technique is expected to offer the potential for direct investigation of mechanisms of vascular dysfunctions.

Umetani, K. [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Fukushima, K. [National Cerebral and Cardiovascular Center Hospital, Fujishirodai, Suita-shi, Osaka 565-8565 (Japan)

2013-03-15T23:59:59.000Z

127

Improvement of YOHKOH Hard X-Ray Imaging  

Science Journals Connector (OSTI)

......90 step) 1-2 126 840 210 0.5 mm thick tungsten electric discharge 48 (8 el. x 6 PAs*) 0 , 30 , 60 , 90 , 120 , 150...2 -2 2500 cts cm 10000 cts cm Model Source FWHM 24 arc sec Fig. 8. Numerical simulation of MEM imaging with......

Jun Sato; Takeo Kosugi; Kazuo Makishima

1999-02-01T23:59:59.000Z

128

Dark-field hyperspectral X-ray imaging  

Science Journals Connector (OSTI)

...or to studying static systems. Hyperspectral imaging...integrated circuitry. Systems, currently available...energy-dispersive XRD, defined by collimation through the pinhole...energy broadening from collimation is deltaE/E=9...achievable with our detector system and with large amounts...

2014-01-01T23:59:59.000Z

129

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging of the Dynamic X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Wednesday, 25 November 2009 00:00 Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic memories much more realistic, it also initiated investigation of the core switching mechanism itself. Now, a Belgian-German-ALS collaboration has used high-resolution, time-resolved, magnetic x-ray microscopy to experimentally reveal the first step of the reversal process: the dynamic deformation of the vortex core. The group also measured a critical vortex velocity above which reversal occurs. Both these observations provide the first experimental support for the postulated reversal mechanism.

130

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging Current-Driven X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print Wednesday, 26 September 2007 00:00 The quest to increase both computer data-storage density and the speed at which one can read and write the information remains unconsummated. One novel concept is based on the use of a local electric current to push magnetic domain walls along a thin nanowire. A German, Korean, Berkeley Lab team has used the x-ray microscope XM-1 at the ALS to demonstrate that magnetic domain walls in curved permalloy nanowires can be moved at high speed by injecting nanosecond pulses of spin-polarized currents into the wires, but the motion is largely stochastic. This result will have an impact on the current development of magnetic storage devices in which data is moved electronically rather than mechanically as in computer disk drives.

131

Soft x ray/extreme ultraviolet images of the solar atmosphere with normal incidence multilayer optics  

SciTech Connect

The first high resolution Soft X-Ray/Extreme Ultraviolet (XUV) images of the Sun with normal incidence multilayer optics were obtained by the Standford/MSFC Rocket X-Ray Spectroheliograph on 23 Oct. 1987. Numerous images at selected wavelengths from 8 to 256 A were obtained simultaneously by the diverse array of telescopes flown on-board the experiment. These telescopes included single reflection normal incidence multilayer systems (Herschelian), double reflection multilayer systems (Cassegrain), a grazing incidence mirror system (Wolter-Schwarzschild), and hybrid systems using normal incidence multilayer optics in conjunction with the grazing incidence primary (Wolter-Cassegrain). Filters comprised of approximately 1700{Angstrom} thick aluminum supported on a nickel mesh were used to transmit the soft x ray/EUV radiation while preventing the intense visible light emission of the Sun from fogging the sensitive experimental T-grain photographic emulsions. These systems yielded high resolution soft x ray/EUV images of the solar corona and transition region, which reveal magnetically confined loops of hot solar plasma, coronal plumes, polar coronal holes, supergranulation, and features associated with overlying cool prominences. The development, testing, and operation of the experiments, and the results from the flight are described. The development of a second generation experiment, the Multi-Spectral Solar Telescope Array, which is scheduled to fly in the summer of 1990, and a recently approved Space Station experiment, the Ultra-High Resolution XUV Spectroheliograph, which is scheduled to fly in 1996 are also described.

Lindblom, J.F.

1990-01-01T23:59:59.000Z

132

EXIST A High Sensitivity Hard X-ray Imaging Sky Survey Mission for ISS  

E-Print Network (OSTI)

A deep all-sky imaging hard x-ray survey and wide-field monitor is needed to extend soft (ROSAT) and medium (ABRIXAS2) x-ray surveys into the 10-100 keV band (and beyond) at comparable sensitivity (~0.05 mCrab). This would enable discovery and study of >3000 obscured AGN, which probably dominate the hard x-ray background; detailed study of spectra and variability of accreting black holes and a census of BHs in the Galaxy; Gamma-ray bursts and associated massive star formation (PopIII) at very high redshift and Soft Gamma-ray Repeaters throughout the Local Group; and a full galactic survey for obscured supernova remnants. The Energetic X-ray Imaging Survey Telescope (EXIST) is a proposed array of 8 x 1m^2 coded aperture telescopes fixed on the International Space Station (ISS) with 160deg x 40deg field of view which images the full sky each 90 min orbit. EXIST has been included in the most recent NASA Strategic Plan as a candidate mission for the next decade. An overview of the science goals and mission concep...

Grindlay, J; Chakraborty, D; Elvis, M; Fabian, A C; Fiore, F; Gehrels, N; Hailey, C J; Harrison, F; Hartmann, D; Prince, T A; Ramsey, B; Rothschild, R; Skinner, G K; Woosley, S

1999-01-01T23:59:59.000Z

133

Medical Physics, Volume 11, No. 3 1984 , Pages 303310 A photodiode array x-ray imaging system for digital  

E-Print Network (OSTI)

Medical Physics, Volume 11, No. 3 1984 , Pages 303­310 A photodiode array x-ray imaging system, self-scanning, photodiode array Reticon RL 1024S optically coupled to an x-ray image intensifier tube, SPATIAL RESOLUTION, PHOTODIODES, BLOOD VESSELS, BIOMEDICAL RADIOGRAPHY #12;

Cunningham, Ian

134

A Curved Image-Plate Detector System for High-Resolution Synchrotron X-ray Diffraction  

SciTech Connect

The developed curved image plate (CIP) is a one-dimensional detector which simultaneously records high-resolution X-ray diffraction (XRD) patterns over a 38.7 2{theta} range. In addition, an on-site reader enables rapid extraction, transfer and storage of X-ray intensity information in {le}30 s, and further qualifies this detector to study kinetic processes in materials science. The CIP detector can detect and store X-ray intensity information linearly proportional to the incident photon flux over a dynamical range of about five orders of magnitude. The linearity and uniformity of the CIP detector response is not compromised in the unsaturated regions of the image plate, regardless of saturation in another region. The speed of XRD data acquisition together with excellent resolution afforded by the CIP detector is unique and opens up wide possibilities in materials research accessible through X-ray diffraction. This article presents details of the basic features, operation and performance of the CIP detector along with some examples of applications, including high-temperature XRD.

Sarin, P.; Haggerty, R; Yoon, W; Knapp, M; Berghaeuser, A; Zschack, P; Karapetrova, E; Yang, N; Kriven, W

2009-01-01T23:59:59.000Z

135

High resolution biomedical imaging system with direct detection of x-rays via a charge coupled device  

DOE Patents (OSTI)

An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD. 13 figs.

Atac, M.; McKay, T.A.

1998-04-21T23:59:59.000Z

136

High resolution biomedical imaging system with direct detection of x-rays via a charge coupled device  

DOE Patents (OSTI)

An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD.

Atac, Muzaffer (Wheaton, IL); McKay, Timothy A. (Ann Arbor, MI)

1998-01-01T23:59:59.000Z

137

CMOS Imaging Detectors as X-ray Detectors for Synchrotron Radiation Experiments  

SciTech Connect

CMOS imagers are matrix-addressed photodiode arrays, which have been utilized in devices such as commercially available digital cameras. The pixel size of CMOS imagers is usually larger than that of CCD and smaller than that of TFT, giving them a unique position. Although CMOS x-ray imaging devices have already become commercially available, they have not been used as an x-ray area detector in synchrotron radiation experiments. We tested performance of a CMOS detector from Rad-icon (Shad-o-Box1024) in medical imaging, small-angle scattering, and protein crystallography experiments. It has pixels of 0.048 mm square, read-out time of 0.45 sec, 12-bit ADC, and requires a frame grabber for image acquisition. The detection area is 5-cm square. It uses a Kodak Min-R scintillator screen as a phosphor. The sensitivity to x-rays with an energy less than 15 keV was low because of the thick window materials. Since the readout noise is high, the dynamic range is limited to 2000. The biggest advantages of this detector are cost-effectiveness (about 10,000 US dollars) and compactness (thickness < 3 cm, weight < 2 kg)

Yagi, Naoto; Uesugi, Kentaro; Inoue, Katsuaki [SPring-8/JASRI, Mikazuki, Sayo, Hyogo, 679-5198 (Japan); Yamamoto, Masaki [SPring-8/RIKEN, Mikazuki, Sayo, Hyogo, 679-5198 (Japan)

2004-05-12T23:59:59.000Z

138

A concept to collect neutron and x-ray images on the same line of sight at NIF  

SciTech Connect

Neutron and x-ray images are collected at the National Ignition Facility (NIF) to measure the size and shape of inertial confinement fusion implosions. The x-ray images provide a measure of the size and shape of the hot region of the deuterium-tritium fuel while the neutron images provide a measure of the size and shape of the burning plasma. Although these two types of images are collected simultaneously, they are not collected along the same line of sight (LOS). One 14 MeV neutron image is collected on the NIF equator, and two x-ray images are collected along the polar axis and nearly perpendicular to the neutron imaging line of sight on the equator. Both measurements use pinhole apertures to form the images, but existing x-ray imaging provides time-resolved measurements while the neutron images are time-integrated. Detailed comparisons of the x-ray and neutron images can provide information on the fuel assembly, but these studies have been limited because the implosions are not azimuthally symmetric and the images are collected along different LOS. We have developed a conceptual design of a time-integrated x-ray imaging system that could be added to the existing neutron imaging LOS. This new system would allow these detailed studies, providing important information on the fuel assembly of future implosions. Here we present this conceptual design and the expected performance characteristics.

Merrill, F. E., E-mail: fmerrill@lanl.gov; Danly, C. R.; Grim, G. P.; Volegov, P. L.; Wilde, C. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Izumi, N.; Jedlovec, D.; Fittinghoff, D. N.; Pak, A.; Park, H.-S. [Livermore National Laboratory, Livermore, California 94551 (United States)

2014-11-15T23:59:59.000Z

139

Two-dimensional Detector for High Resolution Soft X-ray Imaging  

SciTech Connect

A new two-dimensional (2D) detector for detecting soft X-ray (SX) images was developed. The detector has a scintillator plate to convert a SX image into a visible (VI) one, and a relay optics to magnify and detect the converted VI image. In advance of the fabrication of the detector, quantum efficiencies of scintillators were investigated. As a result, a Ce:LYSO single crystal on which Zr thin film was deposited was used as an image conversion plate. The spatial resolution of fabricated detector is 3.0 {mu}m, and the wavelength range which the detector has sensitivity is 30-6 nm region.

Ejima, Takeo; Ogasawara, Shodo; Hatano, Tadashi; Yanagihara, Mihiro; Yamamoto, Masaki [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University (Japan)

2010-06-23T23:59:59.000Z

140

Gated x-ray framing camera image of a direct-drive cylindrical implosion  

SciTech Connect

Gated X-ray images of laser-driven implosions can provide movies of typically 16 frames with {approximately} 80 ps time resolution and 10 {micro}m spatial resolution. Cylindrical implosions allow study of convergent hydrodynamics but with excellent diagnostic access down the axis of the cylinder. This example from a recent cylindrical implosion campaign on the OMEGA laser provides quantitative data on the growth of ablative Rayleigh-Taylor instabilities in convergent geometry.

Voss, S.A.; Barnes, C.W.; Oertel, J.A.; Watt, R.G. [Los Alamos National Lab., NM (United States)] [Los Alamos National Lab., NM (United States); Boehly, T.R.; Bradley, D.K.; Knauer, J.P.; Pien, G. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics] [Univ. of Rochester, NY (United States). Lab. for Laser Energetics

1999-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray imaging shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Taheri-Saramad x-ray detector (TSXD): A novel high spatial resolution x-ray imager based on ZnO nano scintillator wires in polycarbonate membrane  

SciTech Connect

A novel x-ray imager based on ZnO nanowires is designed and fabricated. The proposed architecture is based on scintillation properties of ZnO nanostructures in a polycarbonate track-etched membrane. Because of higher refractive index of ZnO nanowire compared to the membrane, the nanowire acts as an optical fiber that prevents the generated optical photons to spread inside the detector. This effect improves the spatial resolution of the imager. The detection quantum efficiency and spatial resolution of the fabricated imager are 11% and <6.8 ?m, respectively.

Taheri, A., E-mail: at1361@aut.ac.ir; Saramad, S.; Ghalenoei, S.; Setayeshi, S. [Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of)] [Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of)

2014-01-15T23:59:59.000Z

142

Femtosecond Single-Shot Imaging of Nanoscale Ferromagnetic Order in Co/Pd Multilayers using Resonant X-ray Holography  

SciTech Connect

We present the first single-shot images of ferromagnetic, nanoscale spin order taken with femtosecond x-ray pulses. X-ray-induced electron and spin dynamics can be outrun with pulses shorter than 80 fs in the investigated fluence regime, and no permanent aftereffects in the samples are observed below a fluence of 25 mJ/cm{sup 2}. Employing resonant spatially-muliplexed x-ray holography results in a low imaging threshold of 5 mJ/cm{sup 2}. Our results open new ways to combine ultrafast laser spectroscopy with sequential snapshot imaging on a single sample, generating a movie of excited state dynamics.

Wang, Tianhan; Zhu, Diling; Benny Wu,; Graves, Catherine; Schaffert, Stefan; Rander, Torbjorn; Muller, leonard; Vodungbo, Boris; Baumier, Cedric; Bernstein, David P.; Brauer, Bjorn; Cros, Vincent; Jong, Sanne de; Delaunay, Renaud; Fognini, Andreas; Kukreja, Roopali; Lee, Sooheyong; Lopez-Flores, Victor; Mohanty, Jyoti; Pfau, Bastian; Popescu, 5 Horia

2012-05-15T23:59:59.000Z

143

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic memories much more realistic, it also initiated investigation of the core switching mechanism itself. Now, a Belgian-German-ALS collaboration has used high-resolution, time-resolved, magnetic x-ray microscopy to experimentally reveal the first step of the reversal process: the dynamic deformation of the vortex core. The group also measured a critical vortex velocity above which reversal occurs. Both these observations provide the first experimental support for the postulated reversal mechanism.

144

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic memories much more realistic, it also initiated investigation of the core switching mechanism itself. Now, a Belgian-German-ALS collaboration has used high-resolution, time-resolved, magnetic x-ray microscopy to experimentally reveal the first step of the reversal process: the dynamic deformation of the vortex core. The group also measured a critical vortex velocity above which reversal occurs. Both these observations provide the first experimental support for the postulated reversal mechanism.

145

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic memories much more realistic, it also initiated investigation of the core switching mechanism itself. Now, a Belgian-German-ALS collaboration has used high-resolution, time-resolved, magnetic x-ray microscopy to experimentally reveal the first step of the reversal process: the dynamic deformation of the vortex core. The group also measured a critical vortex velocity above which reversal occurs. Both these observations provide the first experimental support for the postulated reversal mechanism.

146

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic memories much more realistic, it also initiated investigation of the core switching mechanism itself. Now, a Belgian-German-ALS collaboration has used high-resolution, time-resolved, magnetic x-ray microscopy to experimentally reveal the first step of the reversal process: the dynamic deformation of the vortex core. The group also measured a critical vortex velocity above which reversal occurs. Both these observations provide the first experimental support for the postulated reversal mechanism.

147

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic memories much more realistic, it also initiated investigation of the core switching mechanism itself. Now, a Belgian-German-ALS collaboration has used high-resolution, time-resolved, magnetic x-ray microscopy to experimentally reveal the first step of the reversal process: the dynamic deformation of the vortex core. The group also measured a critical vortex velocity above which reversal occurs. Both these observations provide the first experimental support for the postulated reversal mechanism.

148

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic memories much more realistic, it also initiated investigation of the core switching mechanism itself. Now, a Belgian-German-ALS collaboration has used high-resolution, time-resolved, magnetic x-ray microscopy to experimentally reveal the first step of the reversal process: the dynamic deformation of the vortex core. The group also measured a critical vortex velocity above which reversal occurs. Both these observations provide the first experimental support for the postulated reversal mechanism.

149

Sensitivity of Stacked Imaging Detectors to Hard X-Ray Polarization  

Science Journals Connector (OSTI)

The development of multi-layer optics which allow to focus photons up to 100 keV and more promises an enormous jump in sensitivity in the hard X-ray energy band. This technology is already planned to be exploited by future missions dedicated to spectroscopy and imaging at energies >10 keV, e.g., Astro-H and NuSTAR. Nevertheless, our understanding of the hard X-ray sky would greatly benefit from carrying out contemporaneous polarimetric measurements, because the study of hard spectral tails and of polarized emission are often two complementary diagnostics of the same non-thermal and acceleration processes. At energies above a few tens of keV, the preferred technique to detect polarization involves the determination of photon directions after a Compton scattering. Many authors have asserted that stacked detectors with imaging capabilities can be exploited for this purpose. If it is possible to discriminate those events which initially interact in the first detector by Compton scattering and are subsequently absorbed by the second layer, then the direction of scattering is singled out from the hit pixels in the two detectors. In this paper, we give the first detailed discussion of the sensitivity of such a generic design to the X-ray polarization. The efficiency and the modulation factor are calculated analytically from the geometry of the instruments and then compared with the performance as derived by means of Geant4 Monte Carlo simulations.

Fabio Muleri; Riccardo Campana

2012-01-01T23:59:59.000Z

150

Reflection nebulae in the Galactic Center: the case for soft X-ray imaging polarimetry  

E-Print Network (OSTI)

The origin of irradiation and fluorescence of the 6.4 keV bright giant molecular clouds surrounding Sgr A*, the central supermassive black hole of our Galaxy, remains enigmatic. Testing the theory of a past active period of Sgr A* requires X-ray polarimetry. In this paper, we show how modern imaging polarimeters could revolutionize our understanding of the Galactic Center. Through Monte Carlo modeling, we produce a 4-8 keV polarization map of the Galactic Center, focusing on the polarimetric signature produced by Sgr B1, Sgr B2, G0.11-0.11, Bridge E, Bridge D, Bridge B2, MC2, MC1, Sgr C3, Sgr C2, and Sgr C1. We estimate the resulting polarization, include polarized flux dilution by the diffuse plasma emission detected toward the GC, and simulate the polarization map that modern polarimetric detectors would obtain assuming the performances of a mission prototype. The eleven reflection nebulae investigated in this paper present a variety of polarization signatures, ranging from nearly unpolarized to highly pola...

Marin, F; Soffitta, P; Karas, V; Kunneriath, D

2015-01-01T23:59:59.000Z

151

High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals  

DOE Patents (OSTI)

A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.

Smither, Robert K. (Hinsdale, IL)

2008-12-23T23:59:59.000Z

152

Usage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows  

Science Journals Connector (OSTI)

CO2 microbubbles as a contrast agent were fabricated and a velocity field of 40% hematocrit blood flows was acquired using the synchrotron X-ray particle image velocimetry technique.

Lee, S.J.

2014-07-31T23:59:59.000Z

153

Image stack alignment in full-field X-ray absorption spectroscopy using SIFT_PyOCL  

Science Journals Connector (OSTI)

An application of the Scale-Invariant Feature Transform (SIFT) algorithm for image stack alignment in full-field X-ray absorption spectroscopy is described and a Python-OpenCL implementation of this algorithm is presented.

Paleo, P.

2014-02-04T23:59:59.000Z

154

Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging Antifungal Drug Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Wednesday, 24 February 2010 00:00 Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in the intestines. In response to certain environmental conditions, C. albicans can switch to a pathogenic phenotype that causes infection. Yeast infections are commonplace, and in otherwise healthy individuals are usually treatable with over-the-counter medications; however, individuals with weakened immune systems can have very serious systemic consequences from a yeast infection. Treating systemic yeast infections is becoming increasingly difficult due to the growing number of yeast strains that have developed resistance to existing antimicrobial drugs. Consequently, there is a pressing need to develop new types of drugs capable of circumventing yeast drug-resistance mechanisms. To this end Stanford, University of California, San Francisco and LBNL researchers have used soft x-ray tomography to image the 3-D structure of both benign and infectious C. albicans yeast. They then imaged this yeast when treated with peptoids, a class of molecules that mimic the peptides our immune system uses as the first line of defense against microbial attack. Unlike conventional antimicrobials, microbes have yet to develop resistance mechanisms against peptides or peptoids, making them appealing candidates for pharmaceutical development.

155

X-ray Observations of Mrk 231  

E-Print Network (OSTI)

This paper presents new X-ray observations of Mrk 231, an active galaxy of particular interest due to its large infrared luminosity and the presence of several blueshifted broad absorption line (BAL) systems, a phenomenon observed in a small fraction of QSOs. A ROSAT HRI image of Mrk 231 is presented, this shows an extended region of soft X-ray emission, covering several tens of kpc, consistent with the extent of the host galaxy. An ASCA observation of Mrk 231 is also presented. Hard X-rays are detected but the data show no significant variability in X-ray flux. The hard X-ray continuum is heavily attenuated and X-ray column estimates range from ~ 2 x 10^{22} - 10^{23} cm^{-2} depending on whether the material is assumed to be neutral or ionized, and on the model assumed for the extended X-ray component. These ASCA data provide only the second hard X-ray spectrum of a BAL AGN presented to date. The broad-band spectral-energy-distribution of the source is discussed. While Mrk 231 is X-ray weak compared to Seyfert 1 galaxies, it has an optical-to-X-ray spectrum typical of a QSO.

T. J. Turner

1998-08-10T23:59:59.000Z

156

Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in the intestines. In response to certain environmental conditions, C. albicans can switch to a pathogenic phenotype that causes infection. Yeast infections are commonplace, and in otherwise healthy individuals are usually treatable with over-the-counter medications; however, individuals with weakened immune systems can have very serious systemic consequences from a yeast infection. Treating systemic yeast infections is becoming increasingly difficult due to the growing number of yeast strains that have developed resistance to existing antimicrobial drugs. Consequently, there is a pressing need to develop new types of drugs capable of circumventing yeast drug-resistance mechanisms. To this end Stanford, University of California, San Francisco and LBNL researchers have used soft x-ray tomography to image the 3-D structure of both benign and infectious C. albicans yeast. They then imaged this yeast when treated with peptoids, a class of molecules that mimic the peptides our immune system uses as the first line of defense against microbial attack. Unlike conventional antimicrobials, microbes have yet to develop resistance mechanisms against peptides or peptoids, making them appealing candidates for pharmaceutical development.

157

Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in the intestines. In response to certain environmental conditions, C. albicans can switch to a pathogenic phenotype that causes infection. Yeast infections are commonplace, and in otherwise healthy individuals are usually treatable with over-the-counter medications; however, individuals with weakened immune systems can have very serious systemic consequences from a yeast infection. Treating systemic yeast infections is becoming increasingly difficult due to the growing number of yeast strains that have developed resistance to existing antimicrobial drugs. Consequently, there is a pressing need to develop new types of drugs capable of circumventing yeast drug-resistance mechanisms. To this end Stanford, University of California, San Francisco and LBNL researchers have used soft x-ray tomography to image the 3-D structure of both benign and infectious C. albicans yeast. They then imaged this yeast when treated with peptoids, a class of molecules that mimic the peptides our immune system uses as the first line of defense against microbial attack. Unlike conventional antimicrobials, microbes have yet to develop resistance mechanisms against peptides or peptoids, making them appealing candidates for pharmaceutical development.

158

Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in the intestines. In response to certain environmental conditions, C. albicans can switch to a pathogenic phenotype that causes infection. Yeast infections are commonplace, and in otherwise healthy individuals are usually treatable with over-the-counter medications; however, individuals with weakened immune systems can have very serious systemic consequences from a yeast infection. Treating systemic yeast infections is becoming increasingly difficult due to the growing number of yeast strains that have developed resistance to existing antimicrobial drugs. Consequently, there is a pressing need to develop new types of drugs capable of circumventing yeast drug-resistance mechanisms. To this end Stanford, University of California, San Francisco and LBNL researchers have used soft x-ray tomography to image the 3-D structure of both benign and infectious C. albicans yeast. They then imaged this yeast when treated with peptoids, a class of molecules that mimic the peptides our immune system uses as the first line of defense against microbial attack. Unlike conventional antimicrobials, microbes have yet to develop resistance mechanisms against peptides or peptoids, making them appealing candidates for pharmaceutical development.

159

Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in the intestines. In response to certain environmental conditions, C. albicans can switch to a pathogenic phenotype that causes infection. Yeast infections are commonplace, and in otherwise healthy individuals are usually treatable with over-the-counter medications; however, individuals with weakened immune systems can have very serious systemic consequences from a yeast infection. Treating systemic yeast infections is becoming increasingly difficult due to the growing number of yeast strains that have developed resistance to existing antimicrobial drugs. Consequently, there is a pressing need to develop new types of drugs capable of circumventing yeast drug-resistance mechanisms. To this end Stanford, University of California, San Francisco and LBNL researchers have used soft x-ray tomography to image the 3-D structure of both benign and infectious C. albicans yeast. They then imaged this yeast when treated with peptoids, a class of molecules that mimic the peptides our immune system uses as the first line of defense against microbial attack. Unlike conventional antimicrobials, microbes have yet to develop resistance mechanisms against peptides or peptoids, making them appealing candidates for pharmaceutical development.

160

Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in the intestines. In response to certain environmental conditions, C. albicans can switch to a pathogenic phenotype that causes infection. Yeast infections are commonplace, and in otherwise healthy individuals are usually treatable with over-the-counter medications; however, individuals with weakened immune systems can have very serious systemic consequences from a yeast infection. Treating systemic yeast infections is becoming increasingly difficult due to the growing number of yeast strains that have developed resistance to existing antimicrobial drugs. Consequently, there is a pressing need to develop new types of drugs capable of circumventing yeast drug-resistance mechanisms. To this end Stanford, University of California, San Francisco and LBNL researchers have used soft x-ray tomography to image the 3-D structure of both benign and infectious C. albicans yeast. They then imaged this yeast when treated with peptoids, a class of molecules that mimic the peptides our immune system uses as the first line of defense against microbial attack. Unlike conventional antimicrobials, microbes have yet to develop resistance mechanisms against peptides or peptoids, making them appealing candidates for pharmaceutical development.

Note: This page contains sample records for the topic "x-ray imaging shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energetic electron precipitation in the aurora as determined by x-ray imaging  

SciTech Connect

This work examines two aspects of energetic-particle dynamics in the Earth's magnetosphere through the use of an x-ray imager flown from a stratospheric balloon in the auroral zone. The design and theory of this instrument is completely described, including the technique of image formation using an on-board microprocessor and a statistical analysis of the imaging process. Day-side energetic-electron precipitation is examined in the context of global energy dissipation during the substorm process. It is found that the relationship between events on the night side and the day side are considerably more complex that can be modeled with just a simple picture of drifting particles that induced instabilities, wave growth, and pitch-angle diffusion into the loss cone. The driving force for precipitation is probably not the presence of the energetic electrons (>30 keV) alone, but is influenced either by local effects or the less energetic component. The presence of small-scale structure, including gradients and complex motions in the precipitation region in the morning sector, suggests a local process influencing the rate of electron precipitation. The spatial and temporal evolution of a classic 5-15 second pulsating aurora during the post-breakup phase is also examined with the x-ray imager.

Werden, S.C.

1988-01-01T23:59:59.000Z

162

Robustness of phase retrieval methods in x-ray phase contrast imaging: A comparison  

SciTech Connect

Purpose: The robustness of the phase retrieval methods is of critical importance for limiting and reducing radiation doses involved in x-ray phase contrast imaging. This work is to compare the robustness of two phase retrieval methods by analyzing the phase maps retrieved from the experimental images of a phantom. Methods: Two phase retrieval methods were compared. One method is based on the transport of intensity equation (TIE) for phase contrast projections, and the TIE-based method is the most commonly used method for phase retrieval in the literature. The other is the recently developed attenuation-partition based (AP-based) phase retrieval method. The authors applied these two methods to experimental projection images of an air-bubble wrap phantom for retrieving the phase map of the bubble wrap. The retrieved phase maps obtained by using the two methods are compared. Results: In the wrap's phase map retrieved by using the TIE-based method, no bubble is recognizable, hence, this method failed completely for phase retrieval from these bubble wrap images. Even with the help of the Tikhonov regularization, the bubbles are still hardly visible and buried in the cluttered background in the retrieved phase map. The retrieved phase values with this method are grossly erroneous. In contrast, in the wrap's phase map retrieved by using the AP-based method, the bubbles are clearly recovered. The retrieved phase values with the AP-based method are reasonably close to the estimate based on the thickness-based measurement. The authors traced these stark performance differences of the two methods to their different techniques employed to deal with the singularity problem involved in the phase retrievals. Conclusions: This comparison shows that the conventional TIE-based phase retrieval method, regardless if Tikhonov regularization is used or not, is unstable against the noise in the wrap's projection images, while the AP-based phase retrieval method is shown in these experiments to be superior to the TIE-based method for the robustness in performing the phase retrieval.

Yan, Aimin; Wu, Xizeng; Liu, Hong [Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35233 (United States); Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States)

2011-09-15T23:59:59.000Z

163

A soft-X-ray imaging microscope with multilayer-coated Schwarzschild optics  

Science Journals Connector (OSTI)

We constructed a soft-X-ray imaging microscope based on a multilayer-coated Schwarzschild objective. The Schwarzschild objective was designed to have a 50 x magnification and a numerical aperture of 0.25. The mirrors of the objective were coated with a Mo/Si multilayer to reflect the Si L emission. The overall throughput of the objective was 14% at a peak wavelength of 13.3 nm. The 5-?m wide stripe of SiO 2 lithographically patterned was observed under irradiation with an electron beam of 1 ?A.

M. Toyoda; Y. Shitani; M. Yanagihara; T. Ejima; M. Yamamoto; M. Watanabe

2000-01-01T23:59:59.000Z

164

The High Resolution X-Ray Imaging Detector Planes for the MIRAX Mission  

E-Print Network (OSTI)

The MIRAX X-ray observatory, the first Brazilian-led astrophysics space mission, is designed to perform an unprecedented wide-field, wide-band hard X-ray (5-200 keV) survey of Galactic X-ray transient sources. In the current configuration, MIRAX will carry a set of four coded-mask telescopes with high spatial resolution Cadmium Zinc Telluride (CZT) detector planes, each one consisting of an array of 64 closely tiled CZT pixelated detectors. Taken together, the four telescopes will have a total detection area of 959 cm^2, a large field of view (60x60 degrees FWHM), high angular resolution for this energy range (6 arcmin) and very good spectral resolution (~2 keV @ 60 keV). A stratospheric balloon-borne prototype of one of the MIRAX telescopes has been developed, tested and flown by the Harvard-Smithsonian Center for Astrophysics (CfA) as part of the ProtoEXIST program. In this paper we show results of validation and calibration tests with individual CZT detectors of the ProtoEXIST second generation experiment ...

Rodrigues, Barbara H G; Allen, Branden; Hong, Jaesub; Barthelmy, Scott; Braga, Joao; D'Amico, Flavio; Rothschild, Richard E

2013-01-01T23:59:59.000Z

165

Extracting core shape from x-ray images at the National Ignition Facility  

SciTech Connect

Measuring the shape of implosions is critical to inertial confinement fusion experiments at the National Ignition Facility. We have developed techniques that have proven successful for extracting shape information from images of x-ray self-emission recorded by a variety of diagnostic instruments for both DT-filled targets and low-yield surrogates. These key results help determine optimal laser and target parameters leading to ignition. We have compensated for instrumental response and have employed a variety of image processing methods to remove artifacts from the images while retaining salient features. The implosion shape has been characterized by decomposing intensity contours into Fourier and Legendre modes for different lines of sight. We also describe procedures we have developed for estimating uncertainties in these measurements.

Glenn, S. M.; Benedetti, L. R.; Bradley, D. K.; Hammel, B. A.; Izumi, N.; Khan, S. F.; Ma, T.; Milovich, J. L.; Pak, A. E.; Smalyuk, V. A.; Tommasini, R.; Town, R. P. [Lawrence Livermore National Laboratory, Livermore, California 94555 (United States); Kyrala, G. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)

2012-10-15T23:59:59.000Z

166

A grating-based single-shot x-ray phase contrast and diffraction method for in vivo imaging  

SciTech Connect

Purpose: The purpose of this study is to develop a single-shot version of the grating-based phase contrast x-ray imaging method and demonstrate its capability of in vivo animal imaging. Here, the authors describe the principle and experimental results. They show the source of artifacts in the phase contrast signal and optimal designs that minimize them. They also discuss its current limitations and ways to overcome them. Methods: A single lead grid was inserted midway between an x-ray tube and an x-ray camera in the planar radiography setting. The grid acted as a transmission grating and cast periodic dark fringes on the camera. The camera had sufficient spatial resolution to resolve the fringes. Refraction and diffraction in the imaged object manifested as position shifts and amplitude attenuation of the fringes, respectively. In order to quantify these changes precisely without imposing a fixed geometric relationship between the camera pixel array and the fringes, a spatial harmonic method in the Fourier domain was developed. The level of the differential phase (refraction) contrast as a function of hardware specifications and device geometry was derived and used to guide the optimal placement of the grid and object. Both ex vivo and in vivo images of rodent extremities were collected to demonstrate the capability of the method. The exposure time using a 50 W tube was 28 s. Results: Differential phase contrast images of glass beads acquired at various grid and object positions confirmed theoretical predictions of how phase contrast and extraneous artifacts vary with the device geometry. In anesthetized rats, a single exposure yielded artifact-free images of absorption, differential phase contrast, and diffraction. Differential phase contrast was strongest at bone-soft tissue interfaces, while diffraction was strongest in bone. Conclusions: The spatial harmonic method allowed us to obtain absorption, differential phase contrast, and diffraction images, all from a single raw image and is feasible in live animals. Because the sensitivity of the method scales with the density of the gratings, custom microfabricated gratings should be superior to off-the-shelf lead grids.

Bennett, Eric E.; Kopace, Rael; Stein, Ashley F.; Wen Han [National Heart, Lung, and Blood Institute, National Institutes of Health, Imaging Physics Section, Translational Medicine Branch, 10 Center Drive, MSC 1061, Bethesda, Maryland 20892 (United States)

2010-11-15T23:59:59.000Z

167

A Fern Fatale - X-ray Absorption Spectroscopy Imaging an Arsenic-Loving  

NLE Websites -- All DOE Office Websites (Extended Search)

Fern Fatale - X-ray Absorption Spectroscopy Imaging of an Arsenic-Loving Fern Fatale - X-ray Absorption Spectroscopy Imaging of an Arsenic-Loving Fern For many people, arsenic is synonymous with poison, so it is perhaps a surprise that some plants, such as the fern Pteris vittata (Figure 1) seem to quite deliberately accumulate large amounts of it. What is more, the plant converts it to the most toxic inorganic form known. How does it do this? First some background; while there is some evidence that arsenic is required for health [1], this is debatable. On the other hand, the poisonous nature of arsenic compounds was understood by the ancient Greeks and Romans, and it has been used throughout history as a homicidal and suicidal agent. It is found in two environmentally common oxy acids; arsenous acid (H3AsO3), and arsenic acid (H3AsO4), whose salts are known as arsenites and arsenates, respectively. Of these, the trivalent arsenic species are the most toxic. The infamous agent of murder is arsenic trioxide (white arsenic or As2O3), which is simply the (reputedly tasteless) anhydride of arsenous acid.

168

Design and characterization of electron beam focusing for X-ray generation in novel medical imaging architecture  

SciTech Connect

A novel electron beam focusing scheme for medical X-ray sources is described in this paper. Most vacuum based medical X-ray sources today employ a tungsten filament operated in temperature limited regime, with electrostatic focusing tabs for limited range beam optics. This paper presents the electron beam optics designed for the first distributed X-ray source in the world for Computed Tomography (CT) applications. This distributed source includes 32 electron beamlets in a common vacuum chamber, with 32 circular dispenser cathodes operated in space charge limited regime, where the initial circular beam is transformed into an elliptical beam before being collected at the anode. The electron beam optics designed and validated here are at the heart of the first Inverse Geometry CT system, with potential benefits in terms of improved image quality and dramatic X-ray dose reduction for the patient.

Bogdan Neculaes, V., E-mail: neculaes@research.ge.com; Zou, Yun; Zavodszky, Peter; Inzinna, Louis; Zhang, Xi; Conway, Kenneth; Caiafa, Antonio; Frutschy, Kristopher; Waters, William; De Man, Bruno [GE Global Research, Niskayuna, New York 12309 (United States)] [GE Global Research, Niskayuna, New York 12309 (United States)

2014-05-15T23:59:59.000Z

169

A Comparison of Image Quality Evaluation Techniques for Transmission X-Ray Microscopy  

SciTech Connect

Beamline 6-2c at Stanford Synchrotron Radiation Lightsource (SSRL) is capable of Transmission X-ray Microscopy (TXM) at 30 nm resolution. Raw images from the microscope must undergo extensive image processing before publication. Since typical data sets normally contain thousands of images, it is necessary to automate the image processing workflow as much as possible, particularly for the aligning and averaging of similar images. Currently we align images using the 'phase correlation' algorithm, which calculates the relative offset of two images by multiplying them in the frequency domain. For images containing high frequency noise, this algorithm will align noise with noise, resulting in a blurry average. To remedy this we multiply the images by a Gaussian function in the frequency domain, so that the algorithm ignores the high frequency noise while properly aligning the features of interest (FOI). The shape of the Gaussian is manually tuned by the user until the resulting average image is sharpest. To automatically optimize this process, it is necessary for the computer to evaluate the quality of the average image by quantifying its sharpness. In our research we explored two image sharpness metrics, the variance method and the frequency threshold method. The variance method uses the variance of the image as an indicator of sharpness while the frequency threshold method sums up the power in a specific frequency band. These metrics were tested on a variety of test images, containing both real and artificial noise. To apply these sharpness metrics, we designed and built a MATLAB graphical user interface (GUI) called 'Blur Master.' We found that it is possible for blurry images to have a large variance if they contain high amounts of noise. On the other hand, we found the frequency method to be quite reliable, although it is necessary to manually choose suitable limits for the frequency band. Further research must be performed to design an algorithm which automatically selects these parameters.

Bolgert, Peter J; /Marquette U. /SLAC

2012-08-31T23:59:59.000Z

170

Note: Characterization of a high-photon-energy X-ray imager  

SciTech Connect

The Bragg angle, rocking curve, and reflection efficiency of a quartz crystal x-ray imager (Miller indices 234) were measured at photon energy of 15.6909 keV, corresponding to the K{sub ?2} line of Zr, using the X15A beamline at the National Synchrotron Light Source at Brookhaven National Laboratory. One flat and three spherically curved samples were tested. The peak reflectivity of the best-performing crystal was determined to be (3.6 ± 0.7) × 10{sup ?4} with a rocking-curve full width at half maximum of 0.09°. The Zr K{sub ?2} emission was imaged from a hot Zr plasma generated by a 10-J multiterawatt laser.

Storm, M.; Schiebel, P.; Freeman, R. R.; Akli, K. U. [Department of Physics, The Ohio State University, 191 West Woodruff Road, Columbus, Ohio 43210 (United States)] [Department of Physics, The Ohio State University, 191 West Woodruff Road, Columbus, Ohio 43210 (United States); Eichman, B.; Theobald, W.; Mileham, C.; Stoeckl, C.; Begishev, I. A.; Fiksel, G. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)] [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Zhong, Z. [The National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)] [The National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States); Stephens, R. B. [General Atomics, 3550 General Atomics Court, San Diego, California 92121-1200 (United States)] [General Atomics, 3550 General Atomics Court, San Diego, California 92121-1200 (United States)

2013-10-15T23:59:59.000Z

171

The high resolution X-ray imaging detector planes for the MIRAX mission  

Science Journals Connector (OSTI)

The MIRAX X-ray observatory, the first Brazilian-led astrophysics space mission, is designed to perform an unprecedented wide-field, wide-band hard X-ray (5–200 keV) survey of Galactic X-ray transient sources. In the current configuration, MIRAX will carry a set of four coded-masks telescopes with high spatial resolution Cadmium Zinc Telluride (CZT) detector planes, each one consisting of an array of 64 closely tiled CZT pixelated detectors. Taken together, the four telescopes will have a total detection area of 959 cm2, a large field of view (60° ? 60° FWHM), high angular resolution for this energy range (6 arcmin) and very good spectral resolution ( ~ 2 keV @ 60 keV). A stratospheric balloon-borne prototype of one of the MIRAX telescopes has been developed, tested and flown by the Harvard-Smithsonian Center for Astrophysics (CfA) as part of the ProtoEXIST program. In this paper we show results of validation and calibration tests with individual CZT detectors of the ProtoEXIST second generation experiment (P2). Each one of 64 detector units of the P2 detector plane consists of an ASIC, developed by Caltech for the NuSTAR telescope, hybridized to a CZT crystal with 0.6 mm pixel size. The performance of each detector was evaluated using radioactive sources in the laboratory. The calibration results show that the P2 detectors have average energy resolution of ~ 2.1 keV @ 60 keV and 2.3 @ 122 keV. P2 was also successfully tested on near-space environment on a balloon flight, demonstrating the detector unit readiness for integration on a space mission telescope, as well as satisfying all MIRAX mission requirements.

B H G Rodrigues; J E Grindlay; B Allen; J Hong; S Barthelmy; J Braga; F D'Amico; R E Rothschild

2013-01-01T23:59:59.000Z

172

The High Resolution X-Ray Imaging Detector Planes for the MIRAX Mission  

E-Print Network (OSTI)

The MIRAX X-ray observatory, the first Brazilian-led astrophysics space mission, is designed to perform an unprecedented wide-field, wide-band hard X-ray (5-200 keV) survey of Galactic X-ray transient sources. In the current configuration, MIRAX will carry a set of four coded-mask telescopes with high spatial resolution Cadmium Zinc Telluride (CZT) detector planes, each one consisting of an array of 64 closely tiled CZT pixelated detectors. Taken together, the four telescopes will have a total detection area of 959 cm^2, a large field of view (60x60 degrees FWHM), high angular resolution for this energy range (6 arcmin) and very good spectral resolution (~2 keV @ 60 keV). A stratospheric balloon-borne prototype of one of the MIRAX telescopes has been developed, tested and flown by the Harvard-Smithsonian Center for Astrophysics (CfA) as part of the ProtoEXIST program. In this paper we show results of validation and calibration tests with individual CZT detectors of the ProtoEXIST second generation experiment (P2). Each one of 64 detector units of the P2 detector plane consists of an ASIC, developed by Caltech for the NuSTAR telescope, hybridized to a CZT crystal with 0.6 mm pixel size. The performance of each detector was evaluated using radioactive sources in the laboratory. The calibration results show that the P2 detectors have average energy resolution of ~2.1 keV @ 60 keV and ~2.3 keV @ 122 keV. P2 was also successfully tested on near-space environment on a balloon flight, demonstrating the detector unit readiness for integration on a space mission telescope, as well as satisfying all MIRAX mission requirements.

Barbara H. G. Rodrigues; Jonathan E. Grindlay; Branden Allen; Jaesub Hong; Scott Barthelmy; Joao Braga; Flavio D'Amico; Richard E. Rothschild

2013-08-14T23:59:59.000Z

173

Superficial dosimetry imaging based on ?erenkov emission for external beam radiotherapy with megavoltage x-ray beam  

SciTech Connect

Purpose: ?erenkov radiation emission occurs in all tissue, when charged particles (either primary or secondary) travel at velocity above the threshold for the ?erenkov effect (about 220 KeV in tissue for electrons). This study presents the first examination of optical ?erenkov emission as a surrogate for the absorbed superficial dose for MV x-ray beams.Methods: In this study, Monte Carlo simulations of flat and curved surfaces were studied to analyze the energy spectra of charged particles produced in different regions near the surfaces when irradiated by MV x-ray beams. ?erenkov emission intensity and radiation dose were directly simulated in voxelized flat and cylindrical phantoms. The sampling region of superficial dosimetry based on ?erenkov radiation was simulated in layered skin models. Angular distributions of optical emission from the surfaces were investigated. Tissue mimicking phantoms with flat and curved surfaces were imaged with a time domain gating system. The beam field sizes (50 × 50–200 × 200 mm{sup 2}), incident angles (0°–70°) and imaging regions were all varied.Results: The entrance or exit region of the tissue has nearly homogeneous energy spectra across the beam, such that their ?erenkov emission is proportional to dose. Directly simulated local intensity of ?erenkov and radiation dose in voxelized flat and cylindrical phantoms further validate that this signal is proportional to radiation dose with absolute average discrepancy within 2%, and the largest within 5% typically at the beam edges. The effective sampling depth could be tuned from near 0 up to 6 mm by spectral filtering. The angular profiles near the theoretical Lambertian emission distribution for a perfect diffusive medium, suggesting that angular correction of ?erenkov images may not be required even for curved surface. The acquisition speed and signal to noise ratio of the time domain gating system were investigated for different acquisition procedures, and the results show there is good potential for real-time superficial dose monitoring. Dose imaging under normal ambient room lighting was validated, using gated detection and a breast phantom.Conclusions: This study indicates that ?erenkov emission imaging might provide a valuable way to superficial dosimetry imaging in real time for external beam radiotherapy with megavoltage x-ray beams.

Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 and Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States)] [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 and Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Glaser, Adam K. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States)] [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Gladstone, David J.; Fox, Colleen J. [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 and Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755 (United States)] [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 and Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755 (United States); Pogue, Brian W. [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States) [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States); Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States)

2013-10-15T23:59:59.000Z

174

X-ray imaging crystal spectroscopy for use in plasma transport research  

SciTech Connect

This research describes advancements in the spectral analysis and error propagation techniques associated with x-ray imaging crystal spectroscopy (XICS) that have enabled this diagnostic to be used to accurately constrain particle, momentum, and heat transport studies in a tokamak for the first time. Doppler tomography techniques have been extended to include propagation of statistical uncertainty due to photon noise, the effect of non-uniform instrumental broadening as well as flux surface variations in impurity density. These methods have been deployed as a suite of modeling and analysis tools, written in interactive data language (IDL) and designed for general use on tokamaks. Its application to the Alcator C-Mod XICS is discussed, along with novel spectral and spatial calibration techniques. Example ion temperature and radial electric field profiles from recent I-mode plasmas are shown, and the impact of poloidally asymmetric impurity density and natural line broadening is discussed in the context of the planned ITER x-ray crystal spectrometer.

Reinke, M. L.; Podpaly, Y. A.; Hutchinson, I. H.; Rice, J. E.; Gao, C.; Greenwald, M.; Howard, N. T.; Hubbard, A.; Hughes, J. W.; White, A. E.; Wolfe, S. M. [MIT-Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Bitter, M.; Delgado-Aparicio, L.; Hill, K.; Pablant, N. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

2012-11-15T23:59:59.000Z

175

KOTOBUKI-1 apparatus for cryogenic coherent X-ray diffraction imaging  

SciTech Connect

We have developed an experimental apparatus named KOTOBUKI-1 for use in coherent X-ray diffraction imaging experiments of frozen-hydrated non-crystalline particles at cryogenic temperature. For cryogenic specimen stage with small positional fluctuation for a long exposure time of more than several minutes, we here use a cryogenic pot cooled by the evaporation cooling effect for liquid nitrogen. In addition, a loading device is developed to bring specimens stored in liquid nitrogen to the specimen stage in vacuum. The apparatus allows diffraction data collection for frozen-hydrated specimens at 66 K with a positional fluctuation of less than 0.4 ?m and provides an experimental environment to easily exchange specimens from liquid nitrogen storage to the specimen stage. The apparatus was developed and utilized in diffraction data collection of non-crystalline particles with dimensions of ?m from material and biological sciences, such as metal colloid particles and chloroplast, at BL29XU of SPring-8. Recently, it has been applied for single-shot diffraction data collection of non-crystalline particles with dimensions of sub-?m using X-ray free electron laser at BL3 of SACLA.

Nakasako, Masayoshi; Takayama, Yuki; Oroguchi, Tomotaka; Sekiguchi, Yuki; Kobayashi, Amane [Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan) [Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Shirahama, Keiya [Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)] [Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Yamamoto, Masaki; Hikima, Takaaki; Yonekura, Koji; Maki-Yonekura, Saori; Kohmura, Yoshiki; Inubushi, Yuichi [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan)] [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Takahashi, Yukio; Suzuki, Akihiro [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan) [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Matsunaga, Sachihiro; Inui, Yayoi [Department of Applied Biological Science Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan)] [Department of Applied Biological Science Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan); Tono, Kensuke; Kameshima, Takashi; Joti, Yasumasa [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)] [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Hoshi, Takahiko [Kohzu Precision Co., Ltd., 2-6-15 Kurigi, Aso-ku, Kawasaki, Kanagawa 215-8521 (Japan)] [Kohzu Precision Co., Ltd., 2-6-15 Kurigi, Aso-ku, Kawasaki, Kanagawa 215-8521 (Japan)

2013-09-15T23:59:59.000Z

176

Wide-angle point-to-point x-ray imaging with almost arbitrarily large angles of incidence  

SciTech Connect

The paper describes a new scheme for wide-angle point-to-point x-ray imaging with almost arbitrarily large angles of incidence by a matched pair of spherically bent crystals to eliminate the astigmatism, which is a well-known imaging error of spherical mirrors. In addition to x rays, the scheme should be applicable to a very broad spectrum of the electromagnetic radiation, including microwaves, infrared and visible light, as well as UV and extreme UV radiation, if the crystals are replaced with appropriate spherical reflectors. The scheme may also be applicable to the imaging with ultrasound.

Bitter, M.; Hill, K. W.; Scott, S.; Feder, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Ko, Jinseok; Ince-Cushman, A.; Rice, J. E. [Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States)

2008-10-15T23:59:59.000Z

177

Center for X-Ray Optics, 1991  

SciTech Connect

This report discusses: Soft-X-Ray imaging with zone-plate lenses; multilayer reflective optics; and spectroscopy with x-rays.

Not Available

1992-03-01T23:59:59.000Z

178

Blue-enhanced thin-film photodiode for dual-screen x-ray imaging  

SciTech Connect

This article reports on a-Si:H-based low-leakage blue-enhanced photodiodes for dual-screen x-ray imaging detectors. Doped nanocrystalline silicon was incorporated in both the n- and p-type regions to reduce absorption losses for light incoming from the top and bottom screens. The photodiode exhibits a dark current density of 900 pA/cm{sup 2} and an external quantum efficiency up to 90% at a reverse bias of 5 V. In the case of illumination through the tailored p-layer, the quantum efficiency of 60% at a 400 nm wavelength is almost double that for the conventional a-Si:H n-i-p photodiode.

Vygranenko, Y.; Vieira, M. [Department of Electronics, Telecommunications and Computer Engineering, ISEL, Lisbon 1949-014 (Portugal); Sazonov, A. [Electrical and Computer Engineering, University of Waterloo, Waterloo N2L 3G1 (Canada); Heiler, G.; Tredwell, T. [Carestream Health, Inc., Rochester, New York 14652-3487 (United States); Nathan, A. [London Centre for Nanotechnology, University College London, London WC1H 0AH (United Kingdom)

2009-12-28T23:59:59.000Z

179

Dynamic synchrotron X-ray imaging study of effective temperature in a vibrated granular medium  

E-Print Network (OSTI)

We present a dynamic synchrotron X-ray imaging study of the effective temperature $T_{eff}$ in a vibrated granular medium. By tracking the directed motion and the fluctuation dynamics of the tracers inside, we obtained $T_{eff}$ of the system using Einstein relation. We found that as the system unjams with increasing vibration intensities $\\Gamma$, the structural relaxation time $\\tau$ increases substantially which can be fitted by an Arrhenius law using $T_{eff}$. And the characteristic energy scale of structural relaxation yielded by the Arrhenius fitting is $E = 0.21 \\pm 0.02$ $pd^3$, where $p$ is the pressure and $d$ is the background particle diameter, which is consistent with those from hard sphere simulations in which the structural relaxation happens via the opening up of free volume against pressure.

Yixin Cao; Xiaodan Zhang; Binquan Kou; Xiangting Li; Xianghui Xiao; Kamel Fezzaa; Yujie Wang

2014-03-21T23:59:59.000Z

180

Calculation of the Johann error for spherically bent x-ray imaging crystal spectrometers  

SciTech Connect

New x-ray imaging crystal spectrometers, currently operating on Alcator C-Mod, NSTX, EAST, and KSTAR, record spectral lines of highly charged ions, such as Ar{sup 16+}, from multiple sightlines to obtain profiles of ion temperature and of toroidal plasma rotation velocity from Doppler measurements. In the present work, we describe a new data analysis routine, which accounts for the specific geometry of the sightlines of a curved-crystal spectrometer and includes corrections for the Johann error to facilitate the tomographic inversion. Such corrections are important to distinguish velocity induced Doppler shifts from instrumental line shifts caused by the Johann error. The importance of this correction is demonstrated using data from Alcator C-Mod.

Wang, E.; Beiersdorfer, P.; Gu, M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Bitter, M.; Delgado-Aparicio, L.; Hill, K. W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Reinke, M.; Rice, J. E.; Podpaly, Y. [Plasma Fusion Center, MIT, Cambridge, Massachusetts 02139-4307 (United States)

2010-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray imaging shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Milestones and basic principles of grating-based x-ray and neutron phase-contrast imaging  

SciTech Connect

This is a review of the most important milestones in the last ten years of development in the field of grating-based x-ray and neutron imaging. It provides a description of the basic imaging principles of grating-based phase-contrast and dark-field radiography and present some exemplary multimodal radiography results obtained with x-rays and neutrons. Furthermore, it reviews the theory of grating-based quantitative transmission, phase-contrast, and dark-field scattering computed tomography.

Pfeiffer, Franz [Technical University Munich, 85748 Garching (Germany)

2012-07-31T23:59:59.000Z

182

Coherent X-ray Imaging Data Bank (CXIDB): An Open Repository for CXI Experimental Data  

DOE Data Explorer (OSTI)

Nowadays there are several groups around the world doing excellent work using different kinds of techniques all based on the physics of coherent X-ray imaging (CXI). Due to several reasons, including lack of a standard file format, there has been limited sharing of data which severely limits possible synergies inside the community. At the same time there is a population of researchers who do not have access to the facilities required to make such kinds of experiments, or do not have the expertise and resources necessary to carry them out. But many of them would be able to test new ideas and techniques if they would have access to the experimental data. The main goal of the Coherent X-ray Imaging Data Bank is to address these problems by creating an open repository for CXI experimental data. Such a repository provides several important benefits including: Expansion of the CXI community directly leading to an increase in the science output, the existence of an archival place for all the experimental data would ensure that such data does not gets lost forever when the group that did the experiment is no longer interested in the data, the availability of the experimental data to the entire community greatly facilitates reproducibility, leading to higher quality and more transparent science, the development of a well documented file format for CXI data facilitates data sharing and might one day lead to its emergence as a de facto standard. Current free electron laser facilities such as the LCLS are capable of producing very large amounts of data (20TB a day) and the coming European FEL is expected to increase this rate a factor of 500. The analyzes of such large bodies of data will have to be distributed through a large community to make it manageable, and this repository could be an important facilitator in this process.

183

E-Print Network 3.0 - arsenide x-ray imaging Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrons suffer from significant... collimated beams of X-rays (usually from a synchroton or storage ring). This has the advantage of producing... , proton-beam writing...

184

3D Imaging of Nickel Oxidation States using Full Field X-ray Absorption Near Edge Structure Nanotomography  

SciTech Connect

Reduction-oxidation (redox) cycling of the nickel electrocatalyst phase in the solid oxide fuel cell (SOFC) anode can lead to performance degradation and cell failure. A greater understanding of nickel redox mechanisms at the microstructural level is vital to future SOFC development. Transmission x-ray microscopy (TXM) provides several key techniques for exploring oxidation states within SOFC electrode microstructure. Specifically, x-ray nanotomography and x-ray absorption near edge structure (XANES) spectroscopy have been applied to study samples of varying nickel (Ni) and nickel oxide (NiO) compositions. The imaged samples are treated as mock SOFC anodes containing distinct regions of the materials in question. XANES spectra presented for the individual materials provide a basis for the further processing and analysis of mixed samples. Images of composite samples obtained are segmented, and the distinct nickel and nickel oxide phases are uniquely identified using full field XANES spectroscopy. Applications to SOFC analysis are discussed.

Nelson, George; Harris, William; Izzo, John; Grew, Kyle N. (Connecticut); (USARL)

2012-01-20T23:59:59.000Z

185

Simultaneous High-Resolution 2-Dimensional Spatial and 1-Dimensional Picosecond Streaked X-ray Pinhole Imaging  

SciTech Connect

A Kentech x-ray streak camera was run at the LLNL Compact Multipulse Terawatt (COMET) laser to record simultaneous space- and time-resolved measurements of picosecond laser-produced plasmas. Four different x-ray energy channels were monitored using broad-band filters to record the time history of Cu targets heated at irradiances of 10{sup 16} - 10{sup 19} W/cm{sup 2}. Through the Cu filter channel, a time-resolution below 3ps was obtained. Additionally, an array of 10 {micro}m diameter pinholes was placed in front of the camera to produce multiple time-resolved x-ray images on the photocathode and time-integrated images on the phosphor with 10 and 15 times magnification, respectively, with spatial resolution of <13 {micro}m.

Steel, A B; Nagel, S R; Dunn, J; Baldis, H A

2012-05-03T23:59:59.000Z

186

Two dimensionally space-resolved electron temperature measurement of fusion plasma by x-ray monochromatic imaging method  

SciTech Connect

Electron temperature distributions of laser created fusion plasma were measured by using toroidally bent Bragg crystals. A tiny amount of argon was seeded in deuterium fuel gas and monochromatic images of Ar{sup +17} (1{ital s}{minus}3{ital p}) Ly{beta} and Ar{sup +16} (1{ital s}{sup 2}{minus}1{ital s}3{ital p}) He{beta} lines were taken to provide temperature distribution of the compressed core from their intensity ratios. A fusion core created by laser-generated x rays in a micro-cavity showed the temperature structure corresponding to the illumination asymmetry caused by the cavity irradiation geometry. The experimental distribution of the line-ratio of Ly{beta} to He{beta} was compared with the postprocessed outputs from one dimensional simulation, assuming perfect spherical implosion, to discuss degradation of pellet implosion. {copyright} {ital 1996 American Institute of Physics.}

Fujita, K.; Nishimura, H.; Uschmann, I.; Foerster, E.; Takabe, H.; Kato, Y.; Nakai, S. [Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565 (Japan)

1996-05-01T23:59:59.000Z

187

Imaging x-ray crystal spectrometers for the National Spherical Torus Experiment  

SciTech Connect

A new type of high-resolution x-ray imaging crystal spectrometers is described for implementation on the National Spherical Torus Experiment (NSTX) to provide spatially and temporally resolved data on the ion temperature, toroidal and poloidal plasma rotation, electron temperature, impurity ion-charge state distributions, and impurity transport. These data are derived from observations of the satellite spectra of heliumlike argon, ArthinspXVII, which is the dominant charge state for electron temperatures in the range from 0.4 to 3.0 keV and which is accessible to NSTX. Experiments at the Torus Experiment for Technology Oriented Research (TEXTOR) demonstrate that a throughput of 2{times}10{sup 5}thinspphotons/s (corresponding to the count-rate limit of the present detectors) can easily be obtained with small, nonperturbing argon gas puffs of less than 1{times}10{sup {minus}3}thinspTorrthinspscr(l)/s, so that it is possible to record spectra with a small statistical error and a good time resolution (typically 50 and 1 ms in some cases). Employing a novel design, which is based on the imaging properties of spherically bent crystals, the spectrometers will provide spectrally and spatially resolved images of the plasma for all experimental conditions, which include ohmically heated discharges as well as plasmas with rf and neutral-beam heating. The conceptual design, experimental results on the focusing properties, and relevant spectral data from TEXTOR are presented. {copyright} {ital 1999 American Institute of Physics.}

Bitter, M.; Hill, K.W.; Roquemore, A.L. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Beiersdorfer, P. [Department of Physics, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Department of Physics, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Kahn, S.M. [Department of Physics, Columbia University, New York, New York 10027 (United States)] [Department of Physics, Columbia University, New York, New York 10027 (United States); Elliott, S.R. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States)] [Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Fraenkel, B. [Racah Institute of Physics, Hebrew University, Jerusalem (Israel)] [Racah Institute of Physics, Hebrew University, Jerusalem (Israel)

1999-01-01T23:59:59.000Z

188

Hard x-ray (>100 keV) imager to measure hot electron preheat for indirectly driven capsule implosions on the NIF  

SciTech Connect

We have fielded a hard x-ray (>100 keV) imager with high aspect ratio pinholes to measure the spatially resolved bremsstrahlung emission from energetic electrons slowing in a plastic ablator shell during indirectly driven implosions at the National Ignition Facility. These electrons are generated in laser plasma interactions and are a source of preheat to the deuterium-tritium fuel. First measurements show that hot electron preheat does not limit obtaining the fuel areal densities required for ignition and burn.

Doeppner, T.; Dewald, E. L.; Divol, L.; Thomas, C. A.; Burns, S.; Celliers, P. M.; Izumi, N.; LaCaille, G.; McNaney, J. M.; Prasad, R. R.; Robey, H. F.; Glenzer, S. H.; Landen, O. L. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Kline, J. L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2012-10-15T23:59:59.000Z

189

Masked-backlighter technique used to simultaneously image x-ray absorption and x-ray emission from an inertial confinement fusion plasma  

SciTech Connect

A method to simultaneously image both the absorption and the self-emission of an imploding inertial confinement fusion plasma has been demonstrated on the OMEGA Laser System. The technique involves the use of a high-Z backlighter, half of which is covered with a low-Z material, and a high-speed x-ray framing camera aligned to capture images backlit by this masked backlighter. Two strips of the four-strip framing camera record images backlit by the high-Z portion of the backlighter, while the other two strips record images aligned with the low-Z portion of the backlighter. The emission from the low-Z material is effectively eliminated by a high-Z filter positioned in front of the framing camera, limiting the detected backlighter emission to that of the principal emission line of the high-Z material. As a result, half of the images are of self-emission from the plasma and the other half are of self-emission plus the backlighter. The advantage of this technique is that the self-emission simultaneous with backlighter absorption is independently measured from a nearby direction. The absorption occurs only in the high-Z backlit frames and is either spatially separated from the emission or the self-emission is suppressed by filtering, or by using a backlighter much brighter than the self-emission, or by subtraction. The masked-backlighter technique has been used on the OMEGA Laser System to simultaneously measure the emission profiles and the absorption profiles of polar-driven implosions.

Marshall, F. J., E-mail: fredm@lle.rochester.edu; Radha, P. B. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

2014-11-15T23:59:59.000Z

190

Developments in limited data image reconstruction techniques for ultrahigh-resolution x-ray tomographic imaging of microchips  

SciTech Connect

The use of soft x-ray (about 1.8 KeV) nanotomography techniques for the evaluation and failure mode analysis of microchips was investigated. Realistic numerical simulations of the imaging process were performed and a specialized approach to image reconstruction from limited projection data was devised. Prior knowledge of the structure and its component materials was used to eliminate artifacts in the reconstructed images so that defects and deviations from the original design could be visualized. Simulated data sets were generated with a total of 21 projections over three different angular ranges: -50 to +50, - 80 to +80 and -90 to +90 degrees. In addition, a low level of illumination was assumed. It was shown that sub-micron defects within one cell of a microchip (< 10 pm3) could be imaged in 3-D using such an approach.

Haddad, W.S.; Trebes, J.E.

1997-08-20T23:59:59.000Z

191

A new method of observing weak extended x-ray sources with the Reuven Ramaty High-Energy Solar Spectroscopic Imager  

E-Print Network (OSTI)

A new method of observing weak extended x-ray sources with the Reuven Ramaty High-Energy Solar, for observing weak extended x-ray sources with the Reuven Ramaty High-Energy Solar Spectroscopic Imager RHESSI. INTRODUCTION The Reuven Ramaty High-Energy Solar Spectroscopic Imager, RHESSI,1 is a space-based solar x

California at Berkeley, University of

192

Experimental investigation of bright spots in broadband, gated x-ray images of ignition-scale implosions on the National Ignition Facility  

SciTech Connect

Bright spots in the hot spot intensity profile of gated x-ray images of ignition-scale implosions at the National Ignition Facility [G. H. Miller et al., Opt. Eng. 443, (2004)] are observed. X-ray images of cryogenically layered deuterium-tritium (DT) and tritium-hydrogen-deuterium (THD) ice capsules, and gas filled plastic shell capsules (Symcap) were recorded along the hohlraum symmetry axis. Heterogeneous mixing of ablator material and fuel into the hot spot (i.e., hot-spot mix) by hydrodynamic instabilities causes the bright spots. Hot-spot mix increases the radiative cooling of the hot spot. Fourier analysis of the x-ray images is used to quantify the evolution of bright spots in both x- and k-space. Bright spot images were azimuthally binned to characterize bright spot location relative to known isolated defects on the capsule surface. A strong correlation is observed between bright spot location and the fill tube for both Symcap and cryogenically layered DT and THD ice targets, indicating the fill tube is a significant seed for the ablation front instability causing hot-spot mix. The fill tube is the predominant seed for Symcaps, while other capsule non-uniformities are dominant seeds for the cryogenically layered DT and THD ice targets. A comparison of the bright spot power observed for Si- and Ge-doped ablator targets shows heterogeneous mix in Symcap targets is mostly material from the doped ablator layer.

Barrios, M. A.; Suter, L. J.; Glenn, S.; Benedetti, L. R.; Bradley, D. K.; Collins, G. W.; Hammel, B. A.; Izumi, N.; Ma, T.; Scott, H.; Smalyuk, V. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Regan, S. P.; Epstein, R. [Laboratory for Laser Energetics, University of Rochester 250 East River Road, Rochester, New York 14623-199 (United States)] [Laboratory for Laser Energetics, University of Rochester 250 East River Road, Rochester, New York 14623-199 (United States); Kyrala, G. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2013-07-15T23:59:59.000Z

193

Center for X-Ray Optics, 1992  

SciTech Connect

This report discusses the following topics: Center for X-Ray Optics; Soft X-Ray Imaging wit Zone Plate Lenses; Biological X-Ray microscopy; Extreme Ultraviolet Lithography for Nanoelectronic Pattern Transfer; Multilayer Reflective Optics; EUV/Soft X-ray Reflectometer; Photoemission Microscopy with Reflective Optics; Spectroscopy with Soft X-Rays; Hard X-Ray Microprobe; Coronary Angiography; and Atomic Scattering Factors.

Not Available

1993-08-01T23:59:59.000Z

194

Imaging Antifungal Drug Molecules in Action using Soft X-Ray...  

NLE Websites -- All DOE Office Websites (Extended Search)

a cell. This use of soft x-ray tomography is now generating considerable interest in the pharmaceutical industry as a potential method for reducing the cost and time it takes to...

195

Superbright/fast X-rays image single layer of proteins | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

which have been overlooked because of their inability to stack properly. EMSL Scientist James Evans and a team of researchers report their results with this unique form of X-ray...

196

Radiation exposure in X-ray-based imaging techniques used in osteoporosis  

E-Print Network (OSTI)

radiation dose compared with the X- ray examinations commonly used in routine clinical practice for the estimationradiation dose data and appropriate risk coef?cients provided by scienti?c committees. Risk estimation

Damilakis, John; Adams, Judith E.; Guglielmi, Giuseppe; Link, Thomas M.

2010-01-01T23:59:59.000Z

197

Upgrades of the high resolution imaging x-ray crystal spectrometers on experimental advanced superconducting tokamak  

SciTech Connect

Two imaging x-ray crystal spectrometers, the so-called 'poloidal' and 'tangential' spectrometers, were recently implemented on experimental advanced superconducting tokamak (EAST) to provide spatially and temporally resolved impurity ion temperature (T{sub i}), electron temperature (T{sub e}) and rotation velocity profiles. They are derived from Doppler width of W line for Ti, the intensity ratio of Li-like satellites to W line for Te, and Doppler shift of W line for rotation. Each spectrometer originally consisted of a spherically curved crystal and a two-dimensional multi-wire proportional counter (MWPC) detector. Both spectrometers have now been upgraded. The layout of the tangential spectrometer was modified, since it had to be moved to a different port, and the spectrometer was equipped with two high count rate Pilatus detectors (Model 100 K) to overcome the count rate limitation of the MWPC and to improve its time resolution. The poloidal spectrometer was equipped with two spherically bent crystals to record the spectra of He-like and H-like argon simultaneously and side by side on the original MWPC. These upgrades are described, and new results from the latest EAST experimental campaign are presented.

Lu, B.; Wang, F.; Fu, J.; Li, Y.; Wan, B. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Shi, Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); National Fusion Research Institute, 52 Eoeun-Dong, Yusung-Gu, Daejeon (Korea, Republic of); Bitter, M.; Hill, K. W. [Princeton Plasma Physics Laboratory, MS37-B332, Princeton, New Jersey 08543-0451 (United States); Lee, S. G. [National Fusion Research Institute, 52 Eoeun-Dong, Yusung-Gu, Daejeon (Korea, Republic of)

2012-10-15T23:59:59.000Z

198

Saturation and Dynamic Range of Microchannel Plate-Based X-Ray Imagers  

SciTech Connect

This paper describes recent advances in Monte Carlo simulations of microchannel plate (MCP)–based x-ray detectors, a continuation of ongoing work in this area. A Monte Carlo simulation model has been developed over the past several years by National Security Technologies, LLC (NSTec). The model simulates the secondary electron emission process in an MCP pore and includes the effects of gain saturation. In this work we focus on MCP gain saturation and dynamic range. We have performed modeling and experimental characterizations of L/D = 46, 10-micron diameter, MCP-based detectors. The detectors are typically operated by applying a subnanosecond voltage pulse, which gates the detector on. Agreement between the simulations and experiment is very good for a variety of voltage pulse waveforms ranging in width from 150 to 300 ps. The results indicate that such an MCP begins to show nonlinear gain around 5 × 10^4 electrons per pore and hard saturation around 105 electrons per pore. The simulations show a difference in MCP sensitivity vs voltage for high flux of photons producing large numbers of photoelectrons on a subpicosecond timescale. Simulations and experiments both indicate an MCP dynamic range of 1 to 10,000, and the dynamic range depends on how the voltage is applied.

,

2012-05-04T23:59:59.000Z

199

Production of wavelength-selective, time-resolved, x-ray images of a neon plasma in the SPEED 2 plasma focus  

Science Journals Connector (OSTI)

The dynamics of pinching of a neon plasma in the SPEED 2 facility has been investigated by recording wavelength-selective, x-ray images of the plasma with good space and time resolution. A series of images of the...

S. V. Bobashev; D. M. Simanovskii; G. Decker; W. Kies…

1997-04-01T23:59:59.000Z

200

X-ray grating interferometer for materials-science imaging at a low-coherent wiggler source  

Science Journals Connector (OSTI)

X-ray phase-contrast radiography and tomography enable to increase contrast for weakly absorbing materials. Recently x-raygratinginterferometers were developed that extend the possibility of phase-contrast imaging from highly brilliant radiation sources like third-generation synchrotron sources to non-coherent conventional x-ray tube sources. Here we present the first installation of a three gratingx-rayinterferometer at a low-coherence wigglersource at the beamline W2 (HARWI II) operated by the Helmholtz-Zentrum Geesthacht at the second-generation synchrotron storage ring DORIS (DESY Hamburg Germany). Using this type of the wiggler insertion device with a millimeter-sized source allows monochromatic phase-contrast imaging of centimeter sized objects with high photon flux. Thus biological and materials-science imaging applications can highly profit from this imaging modality. The specially designed gratinginterferometer currently works in the photon energy range from 22 to 30 keV and the range will be increased by using adapted x-ray optical gratings. Our results of an energy-dependent visibility measurement in comparison to corresponding simulations demonstrate the performance of the new setup.

Julia Herzen; Tilman Donath; Felix Beckmann; Malte Ogurreck; Christian David; Jürgen Mohr; Franz Pfeiffer; Andreas Schreyer

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray imaging shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The Focusing Optics x-ray Solar Imager: FOXSI Sam Kruckera,b, Steven Christec, Lindsay Glesenera,d, Shin-nosuke Ishikawaa, Stephen  

E-Print Network (OSTI)

. Today's leading solar HXR instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial, solar physics, solar flares, silicon strip detectors, grazing-incidence optics, high-energy x-ray optics

California at Berkeley, University of

202

Imaging of high-energy x-ray emission from cryogenic thermonuclear fuel implosions on the NIF  

SciTech Connect

Accurately assessing and optimizing the implosion performance of inertial confinement fusion capsules is a crucial step to achieving ignition on the NIF. We have applied differential filtering (matched Ross filter pairs) to provide broadband time-integrated absolute x-ray self-emission images of the imploded core of cryogenic layered implosions. This diagnostic measures the temperature- and density-sensitive bremsstrahlung emission and provides estimates of hot spot mass, mix mass, and pressure.

Ma, T.; Izumi, N.; Tommasini, R.; Bradley, D. K.; Bell, P.; Cerjan, C. J.; Dixit, S.; Doeppner, T.; Jones, O.; Landen, O. L.; LePape, S.; Mackinnon, A. J.; Park, H.-S.; Patel, P. K.; Prasad, R. R.; Ralph, J.; Smalyuk, V. A.; Springer, P. T.; Suter, L.; Town, R. P. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

2012-10-15T23:59:59.000Z

203

Modeling the imaging performance of prototype organic x-ray imagers  

SciTech Connect

A unified Monte Carlo and cascaded systems model for the simulation of active-matrix flat-panel imagers is presented. With few input parameters, the model simulated the imaging performance of previously measured flat-panel imagers with reasonable accuracy. The model is used to predict the properties of conceptual flat-panel imagers based on organic semiconductors on plastic substrates. The model suggests that significant improvements in resolution and detective quantum efficiency could be achieved by operating such a detector in a back-side illuminated configuration, or by employing two imaging arrays arranged face-to-face. The effect of semiconductor properties on the conceptual imagers is investigated. According to the model, a photodiode quantum efficiency of 25% and dark current of less than 100 pA mm{sup -2} would be satisfactory for a prototype imager, while a competitive imager would require a photodiode quantum efficiency of 40-50% with a dark current of less than 10 pA mm{sup -2} to be quantum limited over the radiographic exposure range.

Blakesley, J. C.; Speller, R. [Department of Medical Physics and Bioengineering, University College London, London WC1E 6BT, United Kingdom and Department of Physics, University of Cambridge, Cambridge CB3 OHE (United Kingdom); Department of Medical Physics and Bioengineering, University College London, London WC1E 6BT (United Kingdom)

2008-01-15T23:59:59.000Z

204

The electron distribution and SXT images of a coronal soft X-ray source  

Science Journals Connector (OSTI)

The soft X-ray emission may be thermal or non-thermal. The fact that the rise time remains constant as a function of energy points to the same acceleration process for electrons from 2 to 100 keV. For either ... ...

J. M. McTiernan; S. R. Kane; J. M. Loran

1991-01-01T23:59:59.000Z

205

Mapping the Ionization State of Laser-Irradiated Ar Gas Jets With Multi-Wavelength Monochromatic X-Ray Imaging  

SciTech Connect

Two-dimensional monochromatic images of fast-electron stimulated Ar K{alpha} and He-{alpha} x-ray self-emission have recorded a time-integrated map of the extent of Ar{sup {approx}6+} and Ar{sup 16+} ions, respectively, within a high density (10{sup 20} cm{sup -3} atomic density) Ar plasma. This plasma was produced by irradiating a 2 mm wide clustering Ar gas jet with an ultra-high intensity (10{sup 19} W/cm{sup 2}, 200 fs) Ti:Sapphire laser operating at 800 nm. Spherically bent quartz crystals in the 200 (for K{alpha}) and 201 (for He-{alpha}) planes were used as near-normal incidence reflective x-ray optics. We see that a large (830 {micro}m long) region of plasma emits K{alpha} primarily along the laser axis, while the He-{alpha} emission is confined to smaller hot spot (230 {micro}m long) region that likely corresponds to the focal volume of the f/8 laser beam. X-ray spectra from a Bragg spectrometer operating in the von Hamos geometry, which images in one dimension, indicate that the centroids of the K{alpha} and He-{alpha} emission regions are separated by approximately 330 {micro}m along the laser axis.

Kugland, N L; Doppner, T; Kemp, A; Schaeffer, D; Glenzer, S H; Niemann, C

2010-04-08T23:59:59.000Z

206

Simultaneous measurement of bubble size, velocity and void fraction in two-phase bubbly flows with time-resolved X-ray imaging  

Science Journals Connector (OSTI)

Key parameters of two-phase flows, such as void fraction and microscale bubble size, shape and velocity, were simultaneously measured using time-resolved X-ray imaging.

Jung, S.Y.

2014-01-30T23:59:59.000Z

207

3-Dimensional rotational X-ray imaging, 3D-RX: image quality and patient dose simulation for optimisation studies  

Science Journals Connector (OSTI)

......also affects the IQ. The influence of the basic 3D reconstruction processes on sharpness...1922). 8. Kramers, H. A. On the theory of X-ray absorption of the continuous...tank irradiated by X-rays. Arkiv fur Fysik 14 (32), 497-511 (1958). 14. Magalhaes......

J. N. Kroon

2005-05-01T23:59:59.000Z

208

A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility  

SciTech Connect

A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors (GXD) it records sixteen time-gated spectra between 250 and 1000eV with 100ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and VUV beamline at the National Synchrotron Light Source (NSLS), evidence a <100{micro}m spatial resolution in combination with a source-size limited spectral resolution that is <10eV at photon energies of 300eV.

Moore, A S; Guymer, T M; Kline, J L; Morton, J; Taccetti, M; Lanier, N E; Bentley, C; Workman, J; Peterson, B; Mussack, K; Cowan, J; Prasad, R; Richardson, M; Burns, S; Kalantar, D H; Benedetti, L R; Bell, P; Bradley, D; Hsing, W; Stevenson, M

2012-05-01T23:59:59.000Z

209

A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility  

SciTech Connect

A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors it records 16 time-gated spectra between 250 and 1000 eV with 100 ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300 eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and vacuum ultraviolet beamline at the National Synchrotron Light Source, evidence a <100 {mu}m spatial resolution in combination with a source-size limited spectral resolution that is <10 eV at photon energies of 300 eV.

Moore, A. S.; Guymer, T. M.; Morton, J.; Bentley, C.; Stevenson, M. [Directorate Science and Technology, AWE Aldermaston, Reading, RG7 4PR (United Kingdom); Kline, J. L.; Taccetti, M.; Lanier, N. E.; Workman, J.; Peterson, B.; Mussack, K.; Cowan, J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Prasad, R.; Richardson, M.; Burns, S.; Kalantar, D. H.; Benedetti, L. R.; Bell, P.; Bradley, D.; Hsing, W. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States)

2012-10-15T23:59:59.000Z

210

Development of a Microchannel Plate-Based Gated X-ray Imager for Imaging and Spectroscopy Experiments on Z  

SciTech Connect

This poster describes a microchannelplate (MCP)–based, gated x-ray imager developed by National Security Technologies, LLC (NSTec), and Sandia National Laboratories(SNL) over the past several years. The camera consists of a 40 mm × 40 mm MCP, coated with eight 4 mm wide microstrips. The camera is gated by sending subnanosecond high-voltage pulses across the striplines. We have performed an extensive characterization of the camera, the results of which we present here. The camera has an optical gate profile width (time resolution) as narrow as 150 ps and detector uniformity of better than 30% along the length of a strip, far superior than what was achieved in previous designs. The spatial resolution is on the order of 40 microns for imaging applications and a dynamic range of between ~100 and ~1000. We also present results from a Monte Carlo simulation code developed by NSTec over the last several years. Agreement between the simulation results and the experimental measurements is very good.

Wu, M., Kruschwitz, C. A., Tibbitts, A., Rochau, G.

2011-06-24T23:59:59.000Z

211

Cryogenic X-Ray Diffraction Microscopy for Biological Samples  

Science Journals Connector (OSTI)

X-ray diffraction microscopy (XDM) is well suited for nondestructive, high-resolution biological imaging, especially for thick samples, with the high penetration power of x rays and without limitations imposed by a lens. We developed nonvacuum, cryogenic (cryo-) XDM with hard x rays at 8 keV and report the first frozen-hydrated imaging by XDM. By preserving samples in amorphous ice, the risk of artifacts associated with dehydration or chemical fixation is avoided, ensuring the imaging condition closest to their natural state. The reconstruction shows internal structures of intact D. radiodurans bacteria in their natural contrast.

Enju Lima; Lutz Wiegart; Petra Pernot; Malcolm Howells; Joanna Timmins; Federico Zontone; Anders Madsen

2009-11-05T23:59:59.000Z

212

Cryogenic X-ray Diffraction Microscopy for Biological Samples  

SciTech Connect

X-ray diffraction microscopy (XDM) is well suited for nondestructive, high-resolution biological imaging, especially for thick samples, with the high penetration power of x rays and without limitations imposed by a lens. We developed nonvacuum, cryogenic (cryo-) XDM with hard x rays at 8 keV and report the first frozen-hydrated imaging by XDM. By preserving samples in amorphous ice, the risk of artifacts associated with dehydration or chemical fixation is avoided, ensuring the imaging condition closest to their natural state. The reconstruction shows internal structures of intact D. radiodurans bacteria in their natural contrast.

E Lima; L Wiegart; P Pernot; M Howells; J Timmins; F Zontone; A Madsen

2011-12-31T23:59:59.000Z

213

X-ray shearing interferometer  

DOE Patents (OSTI)

An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

Koch, Jeffrey A. (Livermore, CA)

2003-07-08T23:59:59.000Z

214

Nanoscale Imaging with Resonant Coherent X Rays: Extension of Multiple-Wavelength Anomalous Diffraction to Nonperiodic Structures  

Science Journals Connector (OSTI)

The methodology of multiple-wavelength anomalous diffraction, widely used for macromolecular structure determination, is extended to the imaging of nonperiodic nanostructures. We demonstrate the solution of the phase problem by a combination of two resonantly recorded coherent scattering patterns at the carbon K edge (285 eV). Our approach merges iterative phase retrieval and x-ray holography approaches, yielding unique and rapid reconstructions. The element, chemical, and magnetic state specificity of our method further renders it widely applicable to a broad range of nanostructures, providing a spatial resolution that is limited, in principle, by wavelength only.

A. Scherz; D. Zhu; R. Rick; W. F. Schlotter; S. Roy; J. Lüning; J. Stöhr

2008-08-13T23:59:59.000Z

215

Arraying compact pixels of transition-edge microcalorimeters for imaging x-ray spectroscopy  

Science Journals Connector (OSTI)

We are developing superconducting transition-edge sensor (TES) microcalorimeters for astronomical x-ray spectroscopy. We have obtained very high energy resolution (2.4 eV at 1.5 keV and 3.7 eV at 3.3 keV) in large isolated TES pixels using Mo/Au proximity-effect bilayers on silicon-nitride membranes several mm wide. In order to be truly suitable for use behind an x-ray telescope however such devices need to be arrayed with a pixel size and focal-plane coverage matched to the telescope focal length and spatial resolution. For the Constellation-X mission this requires fitting the TES its thermal link and contact wiring into a 0.25 mm square a far more compact geometry than has previously been investigated. We have demonstrated that the weak thermal link can be restricted to a narrow (?10 micron) perimeter of membrane around the TES and still provide a thermal conductance in the acceptable range. Varying the size and placement of slits in that nitride perimeter we can tune that value.

C. K. Stahle; M. A. Lindeman; E. Figueroa-Feliciano; M. J. Li; N. Tralshawala; F. M. Finkbeiner; R. P. Brekosky; J. A. Chervenak

2002-01-01T23:59:59.000Z

216

X-Ray Spectra for Bone Quality Assessment Using Energy Dispersive Counting and Imaging Detectors with Dual Energy Method  

Science Journals Connector (OSTI)

The aim of the present study was the optimization of dual energy x-ray spectra through the estimation of ... monoenergetic x-ray beams provides the optimum dual energy pairs minimizing the CV. Single and double ....

P. Sotiropoulou; G. Fountos; N. Martini…

2014-01-01T23:59:59.000Z

217

Analysis of the KROTOS KFC test by coupling X-Ray image analysis and MC3D calculations  

SciTech Connect

During a hypothetical severe accident sequence in a Pressurized Water Reactor (PWR), the hot molten materials (corium) issuing from the degraded reactor core may generate a steam explosion if they come in contact with water and may damage the structures and threaten the reactor integrity. The SERENA program is an international OECD project that aims at helping the understanding of this phenomenon also called Fuel Coolant Interaction (FCI) by providing data. CEA takes part in this program by performing tests in its KROTOS facility where steam explosions using prototypic corium can be triggered. Data about the different phases in the premixing are extracted from the KROTOS X-Ray radioscopy images by using KIWI software (KROTOS Image analysis of Water-corium Interaction) currently developed by CEA. The MC3D code, developed by IRSN, is a thermal-hydraulic multiphase code mainly dedicated to FCI studies. It is composed of two applications: premixing and explosion. An overall FCI calculation with MC3D requires a premixing calculation followed by an explosion calculation. The present paper proposes an alternative approach in which all the features of the premixing are extracted from the X-Ray pictures using the KIWI software and transferred to an MC3D dataset for a direct simulation of the explosion. The main hypothesis are discussed as well as the first explosion results obtained with MC3D for the KROTOS KFC test. These results are rather encouraging and are analyzed on the basis of comparisons with the experimental data. (authors)

Brayer, C.; Charton, A.; Grishchenko, D.; Fouquart, P.; Bullado, Y.; Compagnon, F.; Correggio, P.; Cassiaut-Louis, N.; Piluso, P. [Commissariat a l'Energie Atomique et Aux Energies Alternatives, CEA Cadarache, DEN, F-13108 Saint-Paul-Les-Durance (France)

2012-07-01T23:59:59.000Z

218

Chandra X-ray Observatory Center  

E-Print Network (OSTI)

Chandra X-ray Observatory Center Harvard-Smithsonian Center for Astrophysics 60 Garden St 200 million light years from Earth. (Credit: X-ray: NASA/CXC/UAH/M.Sun et al; Optical: NASA, ESA, & the Hubble Heritage Team (STScI/AURA) Caption: This composite image from the Chandra X-ray Observatory (blue

219

Chandra X-ray Observatory Center  

E-Print Network (OSTI)

Chandra X-ray Observatory Center Harvard-Smithsonian Center for Astrophysics 60 Garden St. Cambridge, MA 02138 USA http://chandra.harvard.edu Four Supernova Remnants: NASA's Chandra X-ray Observatory's Chandra X-ray Observatory, four newly processed images of supernova remnants dramatically illustrate

220

Automated X-ray image annotation: single versus ensemble of support vector machines  

Science Journals Connector (OSTI)

Advances in the medical imaging technology has lead to an exponential growth in the number of digital images that needs to be acquired, analyzed, classified, stored and retrieved in medical centers. As a result, medical image classification and retrieval ...

Devrim Unay; Octavian Soldea; Sureyya Ozogur-Akyuz; Mujdat Cetin; Aytul Ercil

2009-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray imaging shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

X-ray variability in M87  

E-Print Network (OSTI)

We present the evidence for X-ray variability from the core and from knot A in the M87 jet based on data from two observations with the Einstein Observatory High Resolution Imager (HRI) and three observations with the ROSAT HRI. The core intensity showed a 16% increase in 17 months ('79-'80); a 12% increase in the 3 years '92 to '95; and a 17% drop in the last half of 1995. The intensity of knot A appears to have decreased by 16% between 92Jun and 95Dec. Although the core variability is consistent with general expectations for AGN nuclei, the changes in knot A provide constraints on the x-ray emission process and geometry. Thus we predict that the x-ray morphology of knot A will differ significantly from the radio and optical structure.

D. E. Harris; J. A. Biretta; W. Junor

1996-12-05T23:59:59.000Z

222

Upgraded high time-resolved x-ray imaging crystal spectroscopy system for J-TEXT ohmic plasmas  

SciTech Connect

This paper presents the upgraded x-ray imaging crystal spectrometer (XICS) system on Joint Texas Experimental Tokamak (J-TEXT) tokamak and the latest experimental results obtained in last campaign. With 500 Hz frame rate of the new Pilatus detector and 5 cm × 10 cm spherically bent crystal, the XICS system can provide core electron temperature (T{sub e}), core ion temperature (T{sub i}), and plasma toroidal rotation (V{sub ?}) with a maximum temporal resolution of 2 ms for J-TEXT pure ohmic plasmas. These parameters with high temporal resolution are very useful in tokamak plasma research, especially for rapidly changed physical processes. The experimental results from the upgraded XICS system are presented.

Jin, W.; Chen, Z. Y., E-mail: zychen@hust.edu.cn; Huang, D. W.; Li, Q. L.; Yan, W.; Luo, Y. H.; Huang, Y. H.; Tong, R. H.; Yang, Z. J.; Rao, B.; Ding, Y. H.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)] [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Lee, S. G.; Shi, Y. J. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of)] [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of)

2014-02-15T23:59:59.000Z

223

High aspect ratio hard x-ray (> 100 keV) imager to measure hot electron preheat for indirectly driven capsule implosions on the National Ignition Facility  

SciTech Connect

We have fielded a multi-pinhole, hard x-ray (> 100 keV) imager to measure the spatially-resolved bremsstrahlung emission from energetic electrons slowing in a plastic ablator shell during indirectly driven implosions at the National Ignition Facility. These electrons are generated in laser plasma interactions, and are a source of preheat to the deuterium-tritium fuel that could limit the compressibility required for ignition and burn. Our hard x-ray imaging measurements allow to set an upper limit to the DT fuel preheat, which we find is acceptable in current capsule implosions on the NIF.

Doppner, T; Dewald, E; Divol, L; Burns, S; Izumi, N; Kline, J; LaCaille, G; McNaney, J; Prasad, R; Thomas, C A; Glenzer, S H; Landen, O; Author, A; Author, S G; Author, T

2012-05-01T23:59:59.000Z

224

X-Ray Source Based on the Parametric X-Rays  

E-Print Network (OSTI)

Prospects of parametric x-rays (PXR) application for the development of a tuneable quasi-monochromatic x-ray source for medical imaging are discussed. Analysis of basic requirements for electron accelerator shows that it must be relatively low-energy and high-current linac. In comparison with known ultra-relativistic cases, at low energies PXR properties will be modified to a great extent by multiple scattering of the electrons. PXR intensity dependence on target thickness and beam energy are calculated taking multiple scattering into account. It is concluded that PXR source based on real medical accelerators is feasible and can provide x-ray flux needful for obtaining high quality medical images.

Alexander Lobko; Olga Lugovskaya

2005-09-02T23:59:59.000Z

225

2D grating simulation for X-ray phase-contrast and dark-field imaging with a Talbot interferometer  

SciTech Connect

Talbot interferometry is a recently developed and an extremely powerful X-ray phase-contrast imaging technique. Besides giving access to ultra-high sensitivity differential phase contrast images, it also provides the dark field image, which is a map of the scattering power of the sample. In this paper we investigate the potentialities of an improved version of the interferometer, in which two dimensional gratings are used instead of standard line grids. This approach allows to overcome the difficulties that might be encountered in the images produced by a one dimensional interferometer. Among these limitations there are the phase wrapping and quantitative phase retrieval problems and the directionality of the differential phase and dark-field signals. The feasibility of the 2D Talbot interferometer has been studied with a numerical simulation on the performances of its optical components under different circumstances. The gratings can be obtained either by an ad hoc fabrication of the 2D structures or by a superposition of two perpendicular linear grids. Through this simulation it has been possible to find the best parameters for a practical implementation of the 2D Talbot interferometer.

Zanette, Irene; Weitkamp, Timm [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble (France); David, Christian; Rutishauser, Simon [Paul Scherrer Insitute, 5232 Villigen PSI (Switzerland)

2010-04-06T23:59:59.000Z

226

Coded aperture imaging system optimized for hard x-ray and gamma ray astronomy  

SciTech Connect

A coded aperture imaging system has been designed for the Gamma-Ray Imaging Spectrometer (GRIS). The system is optimized for imaging 511-keV positron-annihilation photons. For a galactic center 511-keV source strength of 10/sup -3/ cm/sup -2/s/sup -1/, the source location accuracy is expected to be +-0.2/sup 0/.

Gehrels, N.; Cline, T.L.; Huters, A.F.; Leventhal, M.; MacCallum, C.J.; Reber, J.D.; Stang, P.D.; Teegarden, B.J.; Tueller, J.

1985-01-01T23:59:59.000Z

227

Computer simulation study of Siemens star x?ray image artifacts  

Science Journals Connector (OSTI)

In the Siemens star image exact determination of the first disappearance frequency which is used to measure the focal spot size is difficult since the disappearance band has a finite width and the image also has other artifacts. The origin of these artifacts and their appearance was studied by Siemens star image simulation on a digital computer. The simulated images were manipulated by using many different modulation and phase transfer functions. It is shown that the bending of spokes is not related to zero contrast; exact triplet splitting can occur only at the disappearance frequency and therefore splitting is a valuable indicator of that frequency.

Sharad R. Amtey; Robert K. Tyson

1977-01-01T23:59:59.000Z

228

ROSAT All-Sky Survey observations of IRAS galaxies; I. Soft X-ray and far-infrared properties  

E-Print Network (OSTI)

The 120,000 X-ray sources detected in the RASS II processing of the ROSAT All-Sky Survey are correlated with the 14,315 IRAS galaxies selected from the IRAS Point Source Catalogue: 372 IRAS galaxies show X-ray emission within a distance of 100 arcsec from the infrared position. By inspecting the structure of the X-ray emission in overlays on optical images we quantify the likelihood that the X-rays originate from the IRAS galaxy. For 197 objects the soft X-ray emission is very likely associated with the IRAS galaxy. Their soft X-ray properties are determined and compared with their far-infrared emission. X-ray contour plots overlaid on Palomar Digitized Sky Survey images are given for each of the 372 potential identifications. All images and tables displayed here are also available in electronic form.

Th. Boller; F. Bertoldi; M. Dennefeld; W. Voges

1997-10-16T23:59:59.000Z

229

High energy resolution hard X-ray and gamma-ray imagers using CdTe diode devices  

E-Print Network (OSTI)

We developed CdTe double-sided strip detectors (DSDs or cross strip detectors) and evaluated their spectral and imaging performance for hard X-rays and gamma-rays. Though the double-sided strip configuration is suitable for imagers with a fine position resolution and a large detection area, CdTe diode DSDs with indium (In) anodes have yet to be realized due to the difficulty posed by the segmented In anodes. CdTe diode devices with aluminum (Al) anodes were recently established, followed by a CdTe device in which the Al anodes could be segmented into strips. We developed CdTe double-sided strip devices having Pt cathode strips and Al anode strips, and assembled prototype CdTe DSDs. These prototypes have a strip pitch of 400 micrometer. Signals from the strips are processed with analog ASICs (application specific integrated circuits). We have successfully performed gamma-ray imaging spectroscopy with a position resolution of 400 micrometer. Energy resolution of 1.8 keV (FWHM: full width at half maximum) was ob...

Watanabe, Shin; Aono, Hiroyuki; Takeda, Shin'ichiro; Odaka, Hirokazu; Kokubun, Motohide; Takahashi, Tadayuki; Nakazawa, Kazuhiro; Tajima, Hiroyasu; Onishi, Mitsunobu; Kuroda, Yoshikatsu

2008-01-01T23:59:59.000Z

230

3D printing in X-ray and gamma-ray imaging: A novel method for fabricating high-density imaging apertures  

Science Journals Connector (OSTI)

Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for cost-effective fabrication of custom components in gamma-ray and X-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum are presented.

Brian W. Miller; Jared W. Moore; Harrison H. Barrett; Teresa Fryé; Steven Adler; Joe Sery; Lars R. Furenlid

2011-01-01T23:59:59.000Z

231

X-ray tomography and three-dimensional image analysis of epoxy-glass syntactic foams  

Science Journals Connector (OSTI)

...voxels). The standard deviation of...the three-dimensional images at the interface between the...phase in three-dimensional was quite straightforward...value of the standard deviation...optical device measuring the diffraction...

2006-01-01T23:59:59.000Z

232

Application of synchrotron radiation X-ray fluorescence imaging combined with histochemical staining to the renal section of mercury-treated rats  

Science Journals Connector (OSTI)

A biomedical application of synchrotron radiation comprising X-ray fluorescence imaging and histochemical staining was employed to examine the detailed distribution of metal elements and morphological changes in the kidney section of mercury-treated rats. The spatial resolution was improved to 5 × 5 m2.

Homma-Takeda, S.

1998-01-01T23:59:59.000Z

233

RHESSI HARD X-RAY IMAGING SPECTROSCOPY OF EXTENDED SOURCES AND THE PHYSICAL PROPERTIES OF ELECTRON ACCELERATION REGIONS IN SOLAR FLARES  

E-Print Network (OSTI)

RHESSI HARD X-RAY IMAGING SPECTROSCOPY OF EXTENDED SOURCES AND THE PHYSICAL PROPERTIES OF ELECTRON of the acceleration region but also allows an empirical study of the physics of electron tran- sport within the source acceleration and propagation of bremsstrahlung- producing electrons in solar flares. The method involves

California at Berkeley, University of

234

Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode  

E-Print Network (OSTI)

-ray radiation can be generated using a carbon nanotube CNT -based field-emission cathode. The device can readilyGeneration of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode G. Z. Yue Department of Physics, University of North Carolina, Chapel Hill, North

235

X-ray Imaging of Shock Waves Generated by High-Pressure  

E-Print Network (OSTI)

-speed sprays are an es- sential technology for many applications, in- cluding fuel injection systems, thermal if not impossible with optical imaging. Under injection conditions similar to those found in operating engines of fuel injection, an under- standing of the structure and dynamics of the fuel sprays is critical

Gruner, Sol M.

236

Soft-x-ray projection imaging with a 1:1 ring-field optic  

E-Print Network (OSTI)

- fraction limit has recently been demonstrated with multilayer-coated Schwarzschild optics.1-3 Unfor- tunately, a Schwarzschild optic possesses a central obscuration and a small image field and hence the surfaces are spherical, so the requirements on mirror fabrication and alignment are not overly stringent

Bokor, Jeffrey

237

Reflection soft X-ray microscope and method  

DOE Patents (OSTI)

A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

Suckewer, Szymon (Princeton, NJ); Skinner, Charles H. (Lawrenceville, NJ); Rosser, Roy (Princeton, NJ)

1993-01-01T23:59:59.000Z

238

Imaging single cells in a beam of live cyanobacteria with an X-ray laser  

DOE Data Explorer (OSTI)

Diffraction pattern of a micron-sized S. elongatus cell at 1,100 eV photon energy (1.13 nm wavelength) with ~10^11 photons per square micron on the sample in ~70 fs. The signal to noise ratio at 4 nm resolution is 3.7 with 0.24 photons per Nyquist pixel. The cell was alive at the time of the exposure. The central region of the pattern (dark red) is saturated and this prevented reliable image reconstruction.

Schot, Gijs, vander

239

High-resolution chemical imaging of gold nanoparticles using hard x-ray ptychography  

SciTech Connect

We combine resonant scattering with (ptychographic) scanning coherent diffraction microscopy to determine the chemical state of gold nanoparticles with high spatial resolution. Ptychographic images of the sample are recorded for a series of energies around the gold L{sub 3} absorption edge. From these data, chemical information in the form of absorption and resonant scattering spectra is reconstructed at each location in the sample. For gold nanoparticles of about 100 nm diameter, a spatial resolution of about 20-30 nm is obtained. In the future, this microscopy approach will open the way to operando studies of heterogeneous catalysts on the nanometer scale.

Hoppe, R.; Patommel, J.; Schroer, C. G. [Institute of Structural Physics, Technische Universitaet Dresden, D-01062 Dresden (Germany)] [Institute of Structural Physics, Technische Universitaet Dresden, D-01062 Dresden (Germany); Reinhardt, J. [Institute of Structural Physics, Technische Universitaet Dresden, D-01062 Dresden (Germany) [Institute of Structural Physics, Technische Universitaet Dresden, D-01062 Dresden (Germany); Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany)] [Germany; Hofmann, G.; Grunwaldt, J.-D. [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany)] [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Damsgaard, C. D. [Center for Electron Nanoscopy and Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark)] [Center for Electron Nanoscopy and Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark); Wellenreuther, G.; Falkenberg, G. [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany)] [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany)

2013-05-20T23:59:59.000Z

240

Tokamak x ray diagnostic instrumentation  

SciTech Connect

Three classes of x-ray diagnostic instruments enable measurement of a variety of tokamak physics parameters from different features of the x-ray emission spectrum. (1) The soft x-ray (1 to 50 keV) pulse-height-analysis (PHA) diagnostic measures impurity concentrations from characteristic line intensities and the continuum enhancement, and measures the electron temperature from the continuum slope. (2) The Bragg x-ray crystal spectrometer (XCS) measures the ion temperature and neutral-beam-induced toroidal rotation velocity from the Doppler broadening and wavelength shift, respectively, of spectral lines of medium-Z impurity ions. Impurity charge state distributions, precise wavelengths, and inner-shell excitation and recombination rates can also be studied. X rays are diffracted and focused by a bent crystal onto a position-sensitive detector. The spectral resolving power E/..delta..E is greater than 10/sup 4/ and time resolution is 10 ms. (3) The x-ray imaging system (XIS) measures the spatial structure of rapid fluctuations (0.1 to 100 kHZ) providing information on MHD phenomena, impurity transport rates, toroidal rotation velocity, plasma position, and the electron temperature profile. It uses an array of silicon surface-barrier diodes which view different chords of the plasma through a common slot aperture and operate in current (as opposed to counting) mode. The effectiveness of shields to protect detectors from fusion-neutron radiation effects has been studied both theoretically and experimentally.

Hill, K.W.; Beiersdorfer, P.; Bitter, M.; Fredrickson, E.; Von Goeler, S.; Hsuan, H.; Johnson, L.C.; Liew, S.L.; McGuire, K.; Pare, V.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray imaging shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

High-energy radiation visualizer (HERV): A new system for imaging in x-ray and gamma-ray emission regions  

SciTech Connect

The authors present a description and results of the operation for {gamma}-ray and X-ray objects for the compact visualization system high-energy radiation visualizer (HERV). The imaging in this system is based on use of a conical collimator, scintillator plate, and image intensifier as a detector and CCD matrix as a readout device. The use of HERV as a two-dimensional X-ray image visualizer for the Compton scatter inspection system was considered and first results are discussed. The possibility of using different hexagonal-coded apertures imaging for HERV is discussed and results of Monte Carlo simulation and experiments with optical analog of coded aperture are presented.

Sudarkin, A.N.; Ivanov, O.P.; Stepanov, V.E.; Volkovich, A.G.; Turin, A.S.; Danilovich, A.S.; Rybakov, D.D.; Urutskoev, L.I. [RECOM Ltd., Moscow (Russian Federation)] [RECOM Ltd., Moscow (Russian Federation)

1996-08-01T23:59:59.000Z

242

Chromatic X-Ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC  

E-Print Network (OSTI)

An innovative X-ray imaging sensor with intrinsic digital characteristics is presented. It is based on Chromatic Photon Counting technology. The detector is able to count individually the incident X-ray photons and to separate them according to their energy (two 'color' images per exposure). The energy selection occurs in real time and at radiographic imaging speed (GHz global counting rate). Photon counting, color mode and a very high spatial resolution (more than 10 l.p./mm at MTF50) allow to obtain an optimal ratio between image quality and absorbed dose. The individual block of the imaging system is a two-side buttable semiconductor radiation detector made of a thin pixellated CdTe crystal (the sensor) coupled to a large area VLSI CMOS pixel ASIC. 1, 2, 4, 8 tile units have been built. The 8 tiles unit has 25cm x 2.5cm sensitive area. Results and images obtained from in depth testing of several configurations of the system are presented. The X-Ray imaging system is the technological platform of PIXIRAD Im...

Bellazzini, R; Brez, A; Minuti, M; Pinchera, M; Mozzo, P

2012-01-01T23:59:59.000Z

243

High energy resolution hard X-ray and gamma-ray imagers using CdTe diode devices  

E-Print Network (OSTI)

We developed CdTe double-sided strip detectors (DSDs or cross strip detectors) and evaluated their spectral and imaging performance for hard X-rays and gamma-rays. Though the double-sided strip configuration is suitable for imagers with a fine position resolution and a large detection area, CdTe diode DSDs with indium (In) anodes have yet to be realized due to the difficulty posed by the segmented In anodes. CdTe diode devices with aluminum (Al) anodes were recently established, followed by a CdTe device in which the Al anodes could be segmented into strips. We developed CdTe double-sided strip devices having Pt cathode strips and Al anode strips, and assembled prototype CdTe DSDs. These prototypes have a strip pitch of 400 micrometer. Signals from the strips are processed with analog ASICs (application specific integrated circuits). We have successfully performed gamma-ray imaging spectroscopy with a position resolution of 400 micrometer. Energy resolution of 1.8 keV (FWHM: full width at half maximum) was obtained at 59.54 keV. Moreover, the possibility of improved spectral performance by utilizing the energy information of both side strips was demonstrated. We designed and fabricated a new analog ASIC, VA32TA6, for the readout of semiconductor detectors, which is also suitable for DSDs. A new feature of the ASIC is its internal ADC function. We confirmed this function and good noise performance that reaches an equivalent noise charge of 110 e- under the condition of 3-4 pF input capacitance.

Shin Watanabe; Shin-nosuke Ishikawa; Hiroyuki Aono; Shin'ichiro Takeda; Hirokazu Odaka; Motohide Kokubun; Tadayuki Takahashi; Kazuhiro Nakazawa; Hiroyasu Tajima; Mitsunobu Onishi; Yoshikatsu Kuroda

2008-11-04T23:59:59.000Z

244

Caliste 64, a new CdTe micro-camera for hard X-ray spectro-imaging  

Science Journals Connector (OSTI)

In the frame of the Simbol-X mission of hard X-ray astrophysics, a prototype of micro-camera with 64 pixels called Caliste 64 has been designed and several samples have been tested. The device integrates ultra-low-noise IDeF-X V1.1 \\{ASICs\\} from CEA and a 1 cm2 Al Schottky CdTe detector from Acrorad because of its high uniformity and spectroscopic performance. The process of hybridization, mastered by the 3D Plus company, respects space applications standards. The camera is a spectro-imager with time-tagging capability. Each photon interacting in the semiconductor is tagged with a time, a position and an energy. Time resolution is better than 100 ns rms for energy deposits greater than 20 keV, taking into account electronic noise and technological dispersal of the front-end electronics. The spectrum summed across the 64 pixels results in an energy resolution of 664 eV fwhm at 13.94 keV and 842 eV fwhm at 59.54 keV, when the detector is cooled down to ?10 °C and biased at ?500 V.

A. Meuris; O. Limousin; F. Lugiez; O. Gevin; C. Blondel; F. Pinsard; M.C. Vassal; F. Soufflet; I. Le Mer

2009-01-01T23:59:59.000Z

245

Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas  

SciTech Connect

A new imaging high resolution x-ray crystal spectrometer (XCS) has been developed to measure continuous profiles of ion temperature and rotation velocity in fusion plasmas. Following proof-of-principle tests on the Alcator C-Mod tokamak and the NSTX spherical tokamak, and successful testing of a new silicon, pixilated detector with 1 MHz count rate capability per pixel, an imaging XCS is being designed to measure full profiles of Ti and v? on C-Mod. The imaging XCS design has also been adopted for ITER. Ion-temperature uncertainty and minimum measurable rotation velocity are calculated for the C-Mod spectrometer. The affects of x-ray and uclear-radiation background on the measurement uncertainties are calculated to predict performance on ITER.

Hill, K W; Broennimann, Ch; Eikenberry, E F; Ince-Cushman, A; Lee, S G; Rice, J E; Scott, S

2008-01-29T23:59:59.000Z

246

Near-Edge X-ray Absorption Fine Structure Imaging of Spherical and Flat Counterfaces of Ultrananocrystalline Diamond Tribological Contacts: A Correlation of Surface Chemistry and Friction  

SciTech Connect

A recently installed synchrotron radiation near-edge X-ray absorption fine structure (NEXAFS) full field imaging electron spectrometer was used to spatially resolve the chemical changes of both counterfaces from an ultra-nanocrystalline diamond (UNCD) tribological contact. A silicon flat and Si{sub 3}N{sub 4} sphere were both coated with UNCD, and employed to form two wear tracks on the flat in a linear reciprocating tribometer. The first wear track was produced using a new, unconditioned sphere whose surface was thus conditioned during this first experiment. This led to faster run-in and lower friction when producing a second wear track using the conditioned sphere. The large depth of field of the magnetically guided NEXAFS imaging detector enabled rapid, large area spectromicroscopic imaging of both the spherical and flat surfaces. Laterally resolved NEXAFS data from the tribological contact area revealed that both substrates had an as-grown surface layer that contained a higher fraction of sp{sup 2}-bonded carbon and oxygen which was mechanically removed. Unlike the flat, the film on the sphere showed evidence of having graphitic character, both before and after sliding. These results show that the graphitic character of the sphere is not solely responsible for low friction and short run-in. Rather, conditioning the sphere, likely by removing asperities and passivating dangling bonds, leads to lower friction with less chemical modification of the substrate in subsequent tests. The new NEXAFS imaging spectroscopy detector enabled a more complete understanding of the tribological phenomena by imaging, for the first time, the surface chemistry of the spherical counterface which had been in continual contact during wear track formation.

A Konicek; C Jaye; M Hamilton; W Sawyer; D Fischer; R Carpick

2011-12-31T23:59:59.000Z

247

Applications of soft x-ray lasers  

SciTech Connect

The high brightness and short pulse duration of soft x-ray lasers provide unique advantages for novel applications. Imaging of biological specimens using x-ray lasers has been demonstrated by several groups. Other applications to fields such as chemistry, material science, plasma diagnostics, and lithography are beginning to emerge. We review the current status of soft x-ray lasers from the perspective of applications, and present an overview of the applications currently being developed.

Skinner, C.H.

1993-08-01T23:59:59.000Z

248

Three-dimensional imaging of copper pillars using x-ray tomography within a scanning electron microscope: A simulation study based on synchrotron data  

SciTech Connect

While microelectronic devices are frequently characterized with surface-sensitive techniques having nanometer resolution, interconnections used in 3D integration require 3D imaging with high penetration depth and deep sub-micrometer spatial resolution. X-ray tomography is well adapted to this situation. In this context, the purpose of this study is to assess a versatile and turn-key tomographic system allowing for 3D x-ray nanotomography of copper pillars. The tomography tool uses the thin electron beam of a scanning electron microscope (SEM) to provoke x-ray emission from specific metallic targets. Then, radiographs are recorded while the sample rotates in a conventional cone beam tomography scheme that ends up with 3D reconstructions of the pillar. Starting from copper pillars data, collected at the European Synchrotron Radiation Facility, we build a 3D numerical model of a copper pillar, paying particular attention to intermetallics. This model is then used to simulate physical radiographs of the pillar using the geometry of the SEM-hosted x-ray tomography system. Eventually, data are reconstructed and it is shown that the system makes it possible the quantification of 3D intermetallics volume in copper pillars. The paper also includes a prospective discussion about resolution issues.

Martin, N.; Bertheau, J.; Charbonnier, J.; Hugonnard, P.; Lorut, F. [ST Microelectronics, 850 Rue Jean Monnet, 38920 Crolles (France); Bleuet, P.; Tabary, J. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Laloum, D. [ST Microelectronics, 850 Rue Jean Monnet, 38920 Crolles (France); CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

2013-02-15T23:59:59.000Z

249

Ultraluminous X-ray Sources: The most extreme X-ray binaries  

E-Print Network (OSTI)

1 Ultraluminous X-ray Sources: The most extreme X-ray binaries Luca Zampieri INAF ULXs ­ Lubiana ­ May 11, 2012- LZ #12;6 · X-ray observations of nearby galaxies show a population of pointlike, off-nuclear sources with L >> Ledd for 1 Msun (L>1.0e39 erg/s) UltraLuminous X-ray Sources (e

Â?umer, Slobodan

250

Monte Carlo study for optimal conditions in single-shot imaging with femtosecond x-ray laser pulses  

SciTech Connect

Intense x-ray pulses from x-ray free electron lasers (XFELs) enable the unveiling of atomic structure in material and biological specimens via ultrafast single-shot exposures. As the radiation is intense enough to destroy the sample, a new sample must be provided for each x-ray pulse. These single-particle delivery schemes require careful optimization, though systematic study to find such optimal conditions is still lacking. We have investigated two major single-particle delivery methods: particle injection as flying objects and membrane-mount as fixed targets. The optimal experimental parameters were searched for via Monte Carlo simulations to discover that the maximum single-particle hit rate achievable is close to 40%.

Park, Jaehyun; Ishikawa, Tetsuya; Song, Changyong [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan)] [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Joti, Yasumasa [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)] [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

2013-12-23T23:59:59.000Z

251

X-ray MicroCT Training Presentation  

E-Print Network (OSTI)

X-ray MicroCT Training Presentation T. Fettah Kosar, PhD Center for Nanoscale Systems Harvard) Model: HMXST225 (max. 225 kV) #12;Overview 3 Introduction to X-ray imaging and Computed Tomography (CT) · What are X-rays and how do we generate and image them? · How do we magnify X-ray images and keep them

252

Validity of Fusion Imaging of Hamster Heart obtained by Fluorescent and Phase-Contrast X-Ray CT with Synchrotron Radiation  

SciTech Connect

Fluorescent X-ray CT (FXCT) to depict functional information and phase-contrast X-ray CT (PCCT) to demonstrate morphological information are being developed to analyze the disease model of small animal. To understand the detailed pathological state, integration of both functional and morphological image is very useful. The feasibility of image fusion between FXCT and PCCT were examined by using ex-vivo hearts injected fatty acid metabolic agent (127I-BMIPP) in normal and cardiomyopathic hamsters. Fusion images were reconstructed from each 3D image of FXCT and PCCT. 127I-BMIPP distribution within the heart was clearly demonstrated by FXCT with 0.25 mm spatial resolution. The detailed morphological image was obtained by PCCT at about 0.03 mm spatial resolution. Using image integration technique, metabolic abnormality of fatty acid in cardiomyopathic myocardium was easily recognized corresponding to anatomical structures. Our study suggests that image fusion provides important biomedical information even in FXCT and PCCT imaging.

Wu, J.; Takeda, T.; Lwin, Thet Thet; Huo, Q.; Minami, M. [Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575 (Japan); Sunaguchi, N.; Murakami, T.; Mouri, S.; Nasukawa, S.; Fukami, T.; Yuasa, T.; Akatsuka, T. [Faculty of Engineering, Yamagata University, Yonezawa, Yamagata 992-8510 (Japan); Hyodo, K. [Institute of Material Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Hontani, H. [Department of Computer Science and Engineering, Nagoya Institute of Technology, Nagoya, Aichi 466-8555 (Japan)

2007-01-19T23:59:59.000Z

253

Patient dosimetry and image quality in digital radiology from online audit of the X-ray system  

Science Journals Connector (OSTI)

......initial step of operation of the audit system. Examproc Patient sample...europa.eu.int/comm/energy/nuclear/radioprotection...Real-time measurement and audit of radiation dose to patient...digital radiology from online audit of the X-ray system. | The......

E. Vano; J. M. Fernandez; J. I. Ten; L. Gonzalez; E. Guibelalde; C. Prieto

2005-12-01T23:59:59.000Z

254

Application of PILATUS II Detector Modules for High Resolution X-Ray Imaging Crystal Spectrometers on the Alcator C-Mod Tokamak  

SciTech Connect

A new type of X-ray imaging crystal spectrometer for Doppler measurements of the radial profiles of the ion temperature and plasma rotation velocity in tokamak plasmas is presently being developed in a collaboration between various laboratories. The spectrometer will consist of a spherically bent crystal and a two-dimensional position sensitive detector; and it will record temporally and spatially resolved X-ray line spectra from highly-charged ions. The detector must satisfy challenging requirements with respect to count rate and spatial resolution. The paper presents the results from a recent test of a PILATUS II detector module on Alcator C-Mod, which demonstrate that the PILATUS II detector modules will satisfy these requirements.

M.L. Bitter, Ch. Borennimann, E.F. Eikenberry, K.W. Hill, A. Ince-Chushman, S.G. Lee, J.E. Rice, and S. Scott.

2007-07-23T23:59:59.000Z

255

Development of x-ray laminography under an x-ray microscopic condition  

SciTech Connect

An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatial resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique.

Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa; Suzuki, Yoshio; Yagi, Naoto [Japan Synchrotron Radiation Research Institute JASRI/SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

2011-07-15T23:59:59.000Z

256

Colloid Coalescence with Focused X Rays  

SciTech Connect

We show direct evidence that focused x rays enable us to merge polymer colloidal particles at room temperature. This phenomenon is ascribed to the photochemical scission of colloids with x rays, reducing the molecular weight, glass transition temperature, surface tension, and viscosity of colloids. The observation of the neck bridge growth with time shows that the x-ray-induced colloid coalescence is analogous to viscoelastic coalescence. This finding suggests a feasible protocol of photonic nanofabrication by sintering or welding of polymers, without thermal damage, using x-ray photonics.

Weon, B. M.; Kim, J. T.; Je, J. H. [X-ray Imaging Center, Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Yi, J. M. [Samsung Advanced Institute of Technology, Yongin, Gyeonggi, 446-712 (Korea, Republic of); Wang, S.; Lee, W.-K. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

2011-07-01T23:59:59.000Z

257

Chest x-Rays  

Energy.gov (U.S. Department of Energy (DOE))

The B-reading is a special reading of a standard chest x-ray film performed by a physician certified by the National Institute for Occupational Safety and Health (NIOSH). The reading looks for changes on the chest x-ray that may indicate exposure and disease caused by agents such as asbestos or silica.

258

X-ray beamsplitter  

DOE Patents (OSTI)

An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

1987-08-07T23:59:59.000Z

259

X-ray beamsplitter  

DOE Patents (OSTI)

An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

Ceglio, Natale M. (Livermore, CA); Stearns, Daniel S. (Mountain View, CA); Hawryluk, Andrew M. (Modesto, CA); Barbee, Jr., Troy W. (Palo Alto, CA)

1989-01-01T23:59:59.000Z

260

X-ray binaries  

E-Print Network (OSTI)

We review the nuclear astrophysics aspects of accreting neutron stars in X-ray binaries. We summarize open astrophysical questions in light of recent observations and their relation to the underlying nuclear physics. Recent progress in the understanding of the nuclear physics, especially of X-ray bursts, is also discussed.

H. Schatz; K. E. Rehm

2006-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray imaging shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

X-ray microscopy using grazing-incidence reflection optics  

SciTech Connect

The Kirkpatrick-Baez microscopes are described along with their role as the workhorse of the x-ray imaging devices. This role is being extended with the development of a 22X magnification Kirkpatrick-Baez x-ray microscope with multilayer x-ray mirrors. These mirrors can operate at large angles, high x-ray energies, and have a narrow, well defined x-ray energy bandpass. This will make them useful for numerous experiments. However, where a large solid angle is needed, the Woelter microscope will still be necessary and the technology needed to build them will be useful for many other types of x-ray optics.

Price, R.H.

1981-08-06T23:59:59.000Z

262

X-ray laser  

DOE Patents (OSTI)

An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

Nilsen, Joseph (Livermore, CA)

1991-01-01T23:59:59.000Z

263

X-ray absorption spectroscopy  

E-Print Network (OSTI)

009-9473-8 REVIEW X-ray absorption spectroscopy Junko Yano Æand application of X-ray absorption spectroscopy, bothX-ray absorption near-edge structure (XANES) and extended X-

Yano, Junko; Yachandra, Vittal K.

2009-01-01T23:59:59.000Z

264

X-ray Absorption Spectroscopy  

E-Print Network (OSTI)

type: Review X-ray Absorption Spectroscopy Junko Yano andPhotosystem II; XAS, X-ray absorption spectroscopy; EXAFS,X-ray absorption fine structure; EPR, electron paramagnetic

Yano, Junko

2010-01-01T23:59:59.000Z

265

X-Ray Generators  

Science Journals Connector (OSTI)

There are many types of X-ray generators sold commercially. The following are some of ... that should be considered when selecting a particular generator for a particular purpose. All the companies listed below s...

Reuben Rudman

1972-01-01T23:59:59.000Z

266

First Results On Shear-Selected Clusters From the Deep Lens Survey: Optical Imaging, Spectroscopy, and X-ray Followup  

E-Print Network (OSTI)

We present the first sample of galaxy clusters selected on the basis of their weak gravitational lensing shear. The shear induced by a cluster is a function of its mass profile and its redshift relative to the background galaxies being sheared; in contrast to more traditional methods of selecting clusters, shear selection does not depend on the cluster's star formation history, baryon content, or dynamical state. Because mass is the property of clusters which provides constraints on cosmological parameters, the dependence on these other parameters could induce potentially important biases in traditionally-selected samples. Comparison of a shear-selected sample with optically and X-ray selected samples is therefore of great importance. Here we present the first step toward a new shear-selected sample: the selection of cluster candidates from the first 8.6 deg$^2$ of the 20 deg$^2$ Deep Lens Survey (DLS), and tabulation of their basic properties such as redshifts and optical and X-ray counterparts.

Wittman, D; Hughes, J P; Margoniner, V E; Tyson, J A; Cohen, J G; Norman, D

2006-01-01T23:59:59.000Z

267

First Results On Shear-Selected Clusters From the Deep Lens Survey: Optical Imaging, Spectroscopy, and X-ray Followup  

E-Print Network (OSTI)

We present the first sample of galaxy clusters selected on the basis of their weak gravitational lensing shear. The shear induced by a cluster is a function of its mass profile and its redshift relative to the background galaxies being sheared; in contrast to more traditional methods of selecting clusters, shear selection does not depend on the cluster's star formation history, baryon content, or dynamical state. Because mass is the property of clusters which provides constraints on cosmological parameters, the dependence on these other parameters could induce potentially important biases in traditionally-selected samples. Comparison of a shear-selected sample with optically and X-ray selected samples is therefore of great importance. Here we present the first step toward a new shear-selected sample: the selection of cluster candidates from the first 8.6 deg$^2$ of the 20 deg$^2$ Deep Lens Survey (DLS), and tabulation of their basic properties such as redshifts and optical and X-ray counterparts.

D. Wittman; I. P. Dell'Antonio; J. P. Hughes; V. E. Margoniner; J. A. Tyson; J. G. Cohen; D. Norman

2005-07-26T23:59:59.000Z

268

Speeding up the Raster Scanning Methods used in theX-Ray Fluorescence Imaging of the Ancient Greek Text of Archimedes  

SciTech Connect

Progress has been made at the Stanford Linear Accelerator Center (SLAC) toward deciphering the remaining 10-20% of ancient Greek text contained in the Archimedes palimpsest. The text is known to contain valuable works by the mathematician, including the ''Method of Mechanical Theorems, the Equilibrium of Planes, On Floating Bodies'', and several diagrams as well. The only surviving copy of the text was recycled into a prayer book in the Middle Ages. The ink used to write on the goat skin parchment is partly composed of iron, which is visible by x-ray radiation. To image the palimpsest pages, the parchment is framed and placed in a stage that moves according to the raster method. When an x-ray beam strikes the parchment, the iron in the ink is detected by a germanium detector. The resulting signal is converted to a gray-scale image on the imaging program, Rasplot. It is extremely important that each line of data is perfectly aligned with the line that came before it because the image is scanned in two directions. The objectives of this experiment were to determine the best parameters for producing well-aligned images and to reduce the scanning time. Imaging half a page of parchment during previous beam time for this project was achieved in thirty hours. Equations were produced to evaluate count time, shutter time, and the number of pixels in this experiment. On Beamline 6-2 at the Stanford Synchrotron Radiation Laboratory (SSRL), actual scanning time was reduced by one fourth. The remaining pages were successfully imaged and sent to ancient Greek experts for translation.

Turner, Manisha; /Norfolk State U.

2006-08-24T23:59:59.000Z

269

X-ray holography at Lawrence Livermore National Laboratory  

SciTech Connect

The x-ray holography program at the Lawrence Livermore National Laboratory has two principal goals: (1) the development of x-ray diffraction techniques for DNA sequence analysis and (2) the development of x-ray laser holography for structural analysis of intact biological cells and organelles. DNA sequence analysis will be accomplished by applying x-ray diffraction techniques to determine the ensemble average of the sequence of labels along the individual elements of crystalline DNA. X-ray laser holographic imaging will be accomplished by applying three dimensional x-ray holography to elucidate the structure of few hundred angstrom objects such as 300 {Angstrom} chromatin fibers, nuclear pores and nucleic acid replication complexes in living cells. Existing laboratory x-ray lasers will be utilized to produce flash x-ray holograms of the biological structures.

Trebes, J.; Annese, C.; Birdsall, D.; Brase, J.; Gray, J.; Lane, S.; London, R.; Matthews, D.; Peters, D.; Pinkel, D.; Stone, G.; Rapp, D.; Rosen, M.; Weier, U.; Yorkey, T.

1990-10-11T23:59:59.000Z

270

Argonne CNM: X-Ray Microscopy Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Microscopy Facilities X-Ray Microscopy Facilities The Hard X-Ray Nanoprobe (HXN) facility provides scanning fluorescence, scanning diffraction, and full-field transmission and tomographic imaging capabilities with a spatial resolution of 30 nm over a spectral range of 6-12 keV. Modes of Operation Full-Field Transmission Imaging and Nanotomography X-ray transmission imaging uses both the absorption and phase shift of the X-ray beam by the sample as contrast mechanisms. Absorption contrast is used to map the sample density. Elemental constituents can be located by using differential edge contrast in this mode. Phase contrast can be highly sensitive to edges and interfaces even when the X-ray absorption is weak. These contrast mechanisms are exploited to image samples rapidly in full-field transmission mode under various environmental conditions, or combined with nanotomography methods to study the three-dimensional structure of complex and amorphous nanomaterials with the HXN.

271

X-ray imaging of dispersive charge modes in a doped Mott insulator near the antiferromagnetic/superconductor transition  

SciTech Connect

Momentum-resolved inelastic resonant x-ray scattering is used to map the doping evolution of bulk electronic modes in the doped Mott insulator class Nd{sub 2-x}Ce{sub x}CuO{sub 4}. As the doping induced antiferromagnet/superconductor (AFM/SC) transition is approached, we observe an anisotropic redistribution of the spectral weight of collective excitations over a large energy scale along the {Gamma} {yields} ({pi},{pi}) direction, whereas the modes exhibit broadening (-1 eV) with relatively little softening along {Gamma} {yields} ({pi},0) with respect to the parent Mott state (x=0). Our study reveals a closing of the charge gap in the vicinity of the zone center even though the mode softening and spectral redistribution involve an unusually large energy scale over the full Brillouin zone. The collective behavior of modes in the vicinity of the AFM/SC critical transition is demonstrated.

Li, Y.W.; Qian, D.; Wray, L.; Hsieh, D.; Xia, Y.; Kaga, Y.; Sasagawa, T.; Takagi, H.; Markiewicz, R.S.; Bansil, A.; Eisaki, H.; Uchida, S.; Hasan, M.Z. (U of Tokyo); (AIST); (Princeton); (NEU)

2009-01-12T23:59:59.000Z

272

Structure Analyses of Artificial Methane Hydrate Sediments by Microfocus X-ray Computed Tomography  

Science Journals Connector (OSTI)

The structure of natural gas hydrate sediments was characterized by microfocus X-ray computed tomography (CT). The obtained two-dimensional (2-D) and three-dimensional (3-D) images clearly showed the spatial distribution of the free-gas spaces, sand particles, and hydrates or ices. The estimated porosity from the X-ray CT data was consistent with the value that was obtained from the sample mass and volume. These results indicate that microfocus X-ray CT can be very useful for researching natural samples of hydrate sediments.

Shigeki Jin; Satoshi Takeya; Junko Hayashi; Jiro Nagao; Yasushi Kamata; Takao Ebinuma; Hideo Narita

2004-01-01T23:59:59.000Z

273

X-ray beam finder  

DOE Patents (OSTI)

An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

Gilbert, H.W.

1983-06-16T23:59:59.000Z

274

Advances in X-Ray Diagnostics of Diesel Fuel Sprays  

Energy.gov (U.S. Department of Energy (DOE))

Recent advances in high-speed X-ray imaging has shown several distinct behaviors of commercial fuel injectors that cannot be seen with more conventional techniques.

275

X-ray source for mammography  

DOE Patents (OSTI)

An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

Logan, Clinton M. (Pleasanton, CA)

1994-01-01T23:59:59.000Z

276

X-ray source for mammography  

DOE Patents (OSTI)

An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.

Logan, C.M.

1994-12-20T23:59:59.000Z

277

X-ray Spectrometry  

Science Journals Connector (OSTI)

These provide excellent energy resolution for a wide range of X-ray energies, from the optical range up to several kiloelectronvolts. ... The Astro-E2 launched in 2005 was the first mission that contained a low-temperature microcalorimeter-based observatory, and three more low-temperature detector-based observatories are being developed (NeXT, Constellation-X, ZEUS). ...

Imre Szalóki; János Osán; René E. Van Grieken

2006-05-10T23:59:59.000Z

278

Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell Xiaojing Huang,1  

E-Print Network (OSTI)

Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell Xiaojing Huang,1 Johanna Nelson,1 eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezingV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25

Mohseni, Hooman

279

X-ray absorption anisotropy for polychromatic illumination--Crystal views from inside  

E-Print Network (OSTI)

X-ray absorption anisotropy for polychromatic illumination--Crystal views from inside P. Korecki a Keywords: X-ray absorption Real-space imaging X-ray holography Electron channeling Electron backscatter of the fine structure in X-ray absorption anisotropy, which results from incident beam diffraction

Korecki, Pawe³

280

Soft x-ray microscopy - a powerful analytical tool to image magnetism down to fundamental length and times scales  

E-Print Network (OSTI)

analytical tool to image magnetism down to fundamentalmicroscopies Research of magnetism in low dimensions has notnanoscience [3]. Solid state magnetism is also a showcase in

Fischer, Peter

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray imaging shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

X-ray emission from clusters of galaxies  

SciTech Connect

Some X-ray spectral observations of approximately 30 clusters of galaxies from HEAO-1 are summarized. There exists strong correlations between X-ray luminosity, L(x), and temperature kT in the form L(x)alphaT to the 2.3 power. This result combined with the L(x) central galaxy density relation and the virial theorem indicates that the core radius of the gas should be roughly independent of L(x) or KT and that more luminous clusters have a greater fraction of their virial mass in gas. The poor correlation of KT and optical velocity dispersion seems to indicate that clusters have a variety of equations of state. There is poor agreement between X-ray imaging observations and optical and X-ray spectral measures of the polytropic index. Most clusters show Fe emission lines with a strong indication that they all have roughly 1/2 solar abundance. The evidence for cooling in the cores of several clusters is discussed based on spectral observations with the Einstein solid state spectrometer.

Mushotzky, R.F.

1983-05-01T23:59:59.000Z

282

THE X-RAY BINARY POPULATION IN M33. II. X-RAY SPECTRA AND VARIABILITY H.-J. Grimm, J. McDowell, A. Zezas, D.-W. Kim, and G. Fabbiano  

E-Print Network (OSTI)

THE X-RAY BINARY POPULATION IN M33. II. X-RAY SPECTRA AND VARIABILITY H.-J. Grimm, J. McDowell, A the X-ray spectra and X-ray spectral variability of compact X-ray sources for 3 Chandra observations observations shows that X-ray absorption values are consistent with Galactic X-ray binaries and most sources

Kim, Dong-Woo

283

Tunable X-ray source  

DOE Patents (OSTI)

A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

Boyce, James R. (Williamsburg, VA)

2011-02-08T23:59:59.000Z

284

E-Print Network 3.0 - accurate x-ray scattering Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

RMS. Figure 8. Example x-ray images taken with a 2 scanning... X-ray imaging tests of Constellation-X SXT mirror segment pairs ... Source: Christian, Eric - Laboratory for High...

285

Design and development of a 3D X-ray microscope  

E-Print Network (OSTI)

The rapid development of needle-free injection systems demands better and faster imaging systems, capable of imaging the transient and steady state response of an injection into real tissue. X-ray radiography, x-ray ...

Brayanov, Jordan, 1981-

2006-01-01T23:59:59.000Z

286

Cryogenic x-ray diffraction microscopy utilizing high-pressure cryopreservation  

Science Journals Connector (OSTI)

We present cryo x-ray diffraction microscopy of high-pressure-cryofixed bacteria and report high-convergence imaging with multiple image reconstructions. Hydrated D. radiodurans cells were cryofixed at 200 MPa pressure into ?10??m-thick water layers and their unstained, hydrated cellular environments were imaged by phasing diffraction patterns, reaching sub-30-nm resolutions with hard x-rays. Comparisons were made with conventional ambient-pressure-cryofixed samples, with respect to both coherent small-angle x-ray scattering and the image reconstruction. The results show a correlation between the level of background ice signal and phasing convergence, suggesting that phasing difficulties with frozen-hydrated specimens may be caused by high-background ice scattering.

Enju Lima; Yuriy Chushkin; Peter van der Linden; Chae Un Kim; Federico Zontone; Philippe Carpentier; Sol M. Gruner; Petra Pernot

2014-10-15T23:59:59.000Z

287

X-Ray Observations of Radio Galaxies  

E-Print Network (OSTI)

We review some of the ways that X-ray observations provide unique information on radio galaxies. Thermal bremsstrahlung X-ray emission provides detailed data on ambient densities and temperatures. These parameters in turn can be used for pressure balance calculations and can demonstrate how the ambient gas affects radio source structure. Additionally, many signatures of the interaction of radio jets and lobes with the hot gas are found in high resolution X-ray maps. Non-thermal X-ray emission from knots and hotspots of radio jets can give us constraints on the relativistic electron population for energies greater that that normally sampled in the radio (in the case of synchrotron emission) or can give us an independent estimate of the average magnetic field strength (if inverse Compton emission is the origin of the X-rays). From recent ROSAT HRI observations of 3C 390.3 and 3C 120, we show evidence that X-ray emission from knots and hotspots appears to be associated with regions of large gradients in the radio surface brightness; i.e. at the location of powerful shocks.

D. E. Harris

1998-04-20T23:59:59.000Z

288

X-ray emission from clusters of galaxies Craig L. Sarazin  

E-Print Network (OSTI)

X-ray emission from clusters of galaxies Craig L. Sarazin Department of Astronomy, University show that they are bright x-ray sources, with luminosities of 1043 45 ergs/sec. It is now established the stars in all the galaxies in the cluster. The x-ray spectra of clusters show strong x-ray line emission

Sarazin, Craig

289

Backscatter x-ray development for space vehicle thermal protection systems  

SciTech Connect

The Backscatter X-Ray (BSX) imaging technique is used for various single sided inspection purposes. Previously developed BSX techniques for spray-on-foam insulation (SOFI) have been used for detecting defects in Space Shuttle External Tank foam insulation. The developed BSX hardware and techniques are currently being enhanced to advance Non-Destructive Evaluation (NDE) methods for future space vehicle applications. Various Thermal Protection System (TPS) materials were inspected using the enhanced BSX imaging techniques, investigating the capability of the method to detect voids and other discontinuities at various locations within each material. Calibration standards were developed for the TPS materials in order to characterize and develop enhanced BSX inspection capabilities. The ability of the BSX technique to detect both manufactured and natural defects was also studied and compared to through-transmission x-ray techniques. The energy of the x-ray, source to object distance, angle of x-ray, focal spot size and x-ray detector configurations were parameters playing a significant role in the sensitivity of the BSX technique to image various materials and defects. The image processing of the results also showed significant increase in the sensitivity of the technique. The experimental results showed BSX to be a viable inspection technique for space vehicle TPS systems.

Bartha, Bence B.; Hope, Dale; Vona, Paul; Born, Martin; Corak, Tony [USA NDE, United Space Alliance, Cape Canaveral, FL 32920 (United States)

2011-06-23T23:59:59.000Z

290

X-ray Spectrometry  

Science Journals Connector (OSTI)

The segmented STJ operated at total count rates of above 105 counts/s, and the best-achieved energy resolution of their single STJ was found to be 10 eV for X-ray energies below 1 keV. ... The Mo?Au TES, with an operating temperature of 230 mK, was developed for the Constellation-X mission and the energy resolution of the spectrometer is ?28 eV at 3.3 keV. ...

Imre Szalóki; Szabina B. Török; Jasna Injuk; René E. Van Grieken

2002-05-18T23:59:59.000Z

291

A High-Throughput 3-D X-ray Microtomography System with Real-Time 3-D  

NLE Websites -- All DOE Office Websites (Extended Search)

Throughput 3-D X-ray Microtomography System with Real-Time 3-D Throughput 3-D X-ray Microtomography System with Real-Time 3-D Reconstruction A high-throughput x-ray microtomography system (XMS) that can acquire, reconstruct, and interactively display rendered 3-D images of a sample at micrometer-scale resolution within minutes has been developed at Advanced Photon Source (APS) beamline 2-BM, which is managed by the Synchrotron Radiation Instrumentation Collaborative Access Team (SRI-CAT). This system could bring better understanding of an array of scientific and technological problems, ranging from failure in microelectronic devices to structures in biological samples. A rendered image from a three-dimensional tomographic reconstruction of a cricket, obtained with the x-ray microtomography system. The image has been digitally cut at different planes to show the internal structures of the cricket's head.

292

X-ray Science Division: Groups  

NLE Websites -- All DOE Office Websites (Extended Search)

Division: Groups Division: Groups Atomic, Molecular and Optical Physics (AMO) Primary Contact: Stephen Southworth Work focuses on understanding how strong optical and x-ray fields interact with matter, with an emphasis on photonic control of electronic, atomic and molecular motion. Chemical and Materials Science (CMS) Primary Contact: Randy Winans Research Disciplines: Chemistry, Materials Science Detectors (DET) Primary Contact: Antonino Miceli GMCA Structural Biology Facility (MX) Primary Contact: Robert Fischetti Research Disciplines: Biology, Life Sciences Imaging (IMG) Primary Contact: Francesco DeCarlo Research Disciplines: Materials Science, Biology, Physics, Life Sciences Inelastic X-ray & Nuclear Resonant Scattering (IXN) Primary Contact: Thomas Gog Research Disciplines: Condensed Matter Physics, Geophysics, Materials

293

Structural Investigation of Methane Hydrate Sediments by Microfocus X-ray Computed Tomography Technique under High-Pressure Conditions  

Science Journals Connector (OSTI)

The structure of natural gas hydrate sediments was observed by microfocus X-ray computed tomography (CT). A newly developed high-pressure vessel for the microfocus X-ray CT system was applied to observe the sediments at a temperature above 273 K and under high-pressure conditions. The obtained two-dimensional CT images clearly showed the spatial distribution of the free-gas pore, sand particles, water, and hydrates. These results demonstrated that microfocus X-ray CT can be effective for studying natural gas hydrate sediment samples.

Shigeki Jin; Jiro Nagao; Satoshi Takeya; Yusuke Jin; Junko Hayashi; Yasushi Kamata; Takao Ebinuma; Hideo Narita

2006-01-01T23:59:59.000Z

294

Plasma Diagnostic Calibration and Characterizations with High Energy X-rays  

SciTech Connect

National Security Technologies’ High Energy X-ray (HEX) Facility is unique in the U.S. Department of Energy complex. The HEX provides fluorescent X-rays of 5 keV to 100 keV with fluence of 10^5–10^6 photons/cm^2/second at the desired line energy. Low energy lines can be filtered, and both filters and fluorescers can be changed rapidly. We present results of calibrating image plates (sensitivity and modulation transfer function), a Bremsstrahlung spectrometer (stacked filters and image plates), and the National Ignition Facility’s Filter- Fluorescer Experiment (FFLEX) high energy X-ray spectrometer. We also show results of a scintillator light yield and alignment study for a neutron imaging system.

Zaheer Ali

2009-06-05T23:59:59.000Z

295

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

296

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

297

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

298

Soft X-ray properties of a spectroscopically selected sample of interacting and isolated Seyfert galaxies  

E-Print Network (OSTI)

We present a catalogue of ROSAT detected sources in the sample of spectroscopically selected Seyfert 1 and Seyfert 2 galaxies of Rafanelli et al. (1995). The catalogue contains 102 Seyfert 1 and 36 Seyfert 2 galaxies. The identification is based on X-ray contour maps overlaid on optical images taken from the Digitized Sky Survey. We have derived the basic spectral and timing properties of the X-ray detected Seyfert galaxies. For Seyfert 1 galaxies a strong correlation between photon index and X-ray luminosity is detected. We confirm the presence of generally steeper X-ray continua in narrow-line Seyfert 1 galaxies (NLS1s) compared to broad-line Seyfert 1 galaxies. Seyfert 2 galaxies show photon indices similar to those of NLS1s. Whereas a tendency for an increasing X-ray luminosity with increasing interaction strength is found for Seyfert 1 galaxies, such a correlation is not found for Seyfert 2 galaxies. For Seyfert 1 galaxies we found also a strong correlation for increasing far-infrared luminosity with increasing interaction strength. Both NLS1s and Seyfert 2 galaxies show the highest values of far-infrared luminosity compared to Seyfert 1 galaxies, suggesting that NLS1s and Seyfert 2 galaxies host strong (cirumnuclear) starformation. For variable Seyfert galaxies we present the X-ray light curves obtained from the ROSAT All-Sky Survey and from ROSAT PSPC and HRI pointed observations. Besides the expected strong short- and long-term X-ray variability in Seyfert 1 galaxies, we find indications for X-ray flux variations in Seyfert 2 galaxies.

F. Pfefferkorn; Th. Boller; P. Rafanelli

2001-01-11T23:59:59.000Z

299

Optical Design in Phase-Space for the I13L X-Ray Imaging and Coherence Beamline at Diamond using XPHASY  

SciTech Connect

I13L is a 250 m long beamline for imaging and coherent diffraction currently under construction at the Diamond Light Source. For modeling the beamline optics the phase-space based ray-tracing code XPHASY was developed, as general ray-tracing codes for x-rays do not easily allow studying the propagation of coherence along the beamline. In contrast to computational intensive wave-front propagation codes, which fully describe the propagation of a photon-beam along a beamline but obscure the impact of individual optical components onto the beamline performance, this code allows to quickly calculate the photon-beam propagation along the beamline and estimate the impact of individual components.In this paper we will discuss the optical design of the I13L coherence branch from the perspective of phase-space by using XPHASY. We will demonstrate how the phase-space representation of a photon-beam allows estimating the coherence length at any given position along the beamline. The impact of optical components on the coherence length and the effect of vibrations on the beamline performance will be discussed. The paper will demonstrate how the phase-space representation of photon-beams allows a more detailed insight into the optical performance of a coherence beamline than ray-tracing in real space.

Wagner, Ulrich H. [Science, Diamond Light Source Ltd., Didcot, Oxon OX11 0DE (United Kingdom); Rau, Christoph [Science, Diamond Light Source Ltd., Didcot, Oxon OX11 0DE (United Kingdom); Northwestern University, Chicago (United States)

2010-06-23T23:59:59.000Z

300

X-Ray: A Tool for Automatic Measurement of Hardware Parameters  

E-Print Network (OSTI)

X-Ray: A Tool for Automatic Measurement of Hardware Parameters Kamen Yotov, Keshav Pingali, Paul and register tiles. In this paper, we describe X-Ray1 , a system for im- plementing micro-benchmarks to measure. Experimen- tal evaluations of X-Ray on traditional workstations, servers and embedded systems show that X-Ray

Pingali, Keshav K.

Note: This page contains sample records for the topic "x-ray imaging shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

SUZAKU X-RAY IMAGING OF THE EXTENDED LOBE IN THE GIANT RADIO GALAXY NGC 6251 ASSOCIATED WITH THE FERMI-LAT SOURCE 2FGL J1629.4+8236  

SciTech Connect

We report the results of a Suzaku X-ray imaging study of NGC 6251, a nearby giant radio galaxy with intermediate FR I/II radio properties. Our pointing direction was centered on the {gamma}-ray emission peak recently discovered with the Fermi Large Area Telescope (LAT) around the position of the northwest (NW) radio lobe 15 arcmin offset from the nucleus. After subtracting two 'off-source' pointings adjacent to the radio lobe and removing possible contaminants in the X-ray Imaging Spectrometer field of view, we found significant residual X-ray emission most likely diffuse in nature. The spectrum of the excess X-ray emission is well fitted by a power law with a photon index {Gamma} = 1.90 {+-} 0.15 and a 0.5-8 keV flux of 4 Multiplication-Sign 10{sup -13} erg cm{sup -2} s{sup -1}. We interpret this diffuse X-ray emission component as being due to inverse Compton upscattering of the cosmic microwave background photons by ultrarelativistic electrons within the lobe, with only a minor contribution from the beamed emission of the large-scale jet. Utilizing archival radio data for the source, we demonstrate by means of broadband spectral modeling that the {gamma}-ray flux of the Fermi-LAT source 2FGL J1629.4+8236 may well be accounted for by the high-energy tail of the inverse Compton continuum of the lobe. Thus, this claimed association of {gamma}-rays from the NW lobe of NGC 6251, together with the recent Fermi-LAT imaging of the extended lobes of Centaurus A, indicates that particles may be efficiently (re-)accelerated up to ultrarelativistic energies within extended radio lobes of nearby radio galaxies in general.

Takeuchi, Y.; Kataoka, J.; Takahashi, Y.; Maeda, K.; Nakamori, T. [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Stawarz, L.; Tanaka, Y.; Takahashi, T. [Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5510 (Japan); Cheung, C. C. [National Academy of Sciences, Washington, DC 20001 (United States); Celotti, A., E-mail: uto_of_take@suou.waseda.jp [Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34014 Trieste (Italy)

2012-04-10T23:59:59.000Z

302

MULTI-KEV X-RAY YIELDS FROM HIGH-Z GAS TARGETS FIELDED AT OMEGA  

SciTech Connect

The authors report on modeling of x-ray yield from gas-filled targets shot at the OMEGA laser facility. The OMEGA targets were 1.8 mm long, 1.95 mm in diameter Be cans filled with either a 50:50 Ar:Xe mixture, pure Ar, pure Kr or pure Xe at {approx} 1 atm. The OMEGA experiments heated the gas with 20 kJ of 3{omega} ({approx} 350 nm) laser energy delivered in a 1 ns square pulse. the emitted x-ray flux was monitored with the x-ray diode based DANTE instruments in the sub-keV range. Two-dimensional x-ray images (for energies 3-5 keV) of the targets were recorded with gated x-ray detectors. The x-ray spectra were recorded with the HENWAY crystal spectrometer at OMEGA. Predictions are 2D r-z cylindrical with DCA NLTE atomic physics. Models generally: (1) underpredict the Xe L-shell yields; (2) overpredict the Ar K-shell yields; (3) correctly predict the Xe thermal yields; and (4) greatly underpredict the Ar thermal yields. However, there are spreads within the data, e.g. the DMX Ar K-shell yields are correctly predicted. The predicted thermal yields show strong angular dependence.

Kane, J O; Fournier, K B; May, M J; Colvin, J D; Thomas, C A; Marrs, R E; Compton, S M; Moody, J D; Bond, E J; Davis, J F

2010-11-04T23:59:59.000Z

303

The X-ray Position and Optical Counterpart of the Accretion-Powered Millisecond Pulsar XTE J1814-338  

E-Print Network (OSTI)

We report the precise optical and X-ray localization of the 3.2 ms accretion-powered X-ray pulsar XTE J1814-338 with data from the Chandra X-Ray Observatory as well as optical observations conducted during the 2003 June discovery outburst. Optical imaging of the field during the outburst of this soft X-ray transient reveals an R = 18 star at the X-ray position. This star is absent (R > 20) from an archival 1989 image of the field and brightened during the 2003 outburst, and we therefore identify it as the optical counterpart of XTE J1814-338. The best source position derived from optical astrometry is R.A. = 18h13m39.s04, Dec.= -33d46m22.3s (J2000). The featureless X-ray spectrum of the pulsar in outburst is best fit by an absorbed power-law (with photon index = 1.41 +- 0.06) plus blackbody (with kT = 0.95 +- 0.13 keV) model, where the blackbody component contributes approximately 10% of the source flux. The optical broad-band spectrum shows evidence for an excess of infrared emission with respect to an X-ray...

Krauss, M I; Dullighan, A; Juett, A M; Kaplan, D L; Chakraborty, D; Van Kerkwijk, M H; Steeghs, D; Jonker, P G; Markwardt, C B; Krauss, Miriam I.; Wang, Zhongxiang; Dullighan, Allyn; Juett, Adrienne M.; Kaplan, David L.; Chakrabarty, Deepto; Kerkwijk, Marten H. van; Steeghs, Danny; Jonker, Peter G.; Markwardt, Craig B.

2005-01-01T23:59:59.000Z

304

X-ray Absorption Spectroscopy  

SciTech Connect

This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

Yano, Junko; Yachandra, Vittal K.

2009-07-09T23:59:59.000Z

305

X-ray fluorescence mapping  

NLE Websites -- All DOE Office Websites (Extended Search)

biololgical cells, over the measurement of impurities in solar cells, to the rare earth content of geological materials. A somewhat 'typical' layout for a X-ray fluorescence...

306

E-Print Network 3.0 - alpha tagged x-ray Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

-X-ray pinhole camera -Fast electron beam spatial distribution 5m... ? Fusion Energy Fast Ignition Optimisation high power laser-driven ion -Cu K-alpha imaging system -X-ray... and...

307

Displaced Vertices from X-ray Lines  

E-Print Network (OSTI)

We present a simple model of weak-scale thermal dark matter that gives rise to X-ray lines. Dark matter consists of two nearly degenerate states near the weak scale, which are populated thermally in the early universe via co-annihilation with slightly heavier states that are charged under the Standard Model. The X-ray line arises from the decay of the heavier dark matter component into the lighter one via a radiative dipole transition, at a rate that is slow compared to the age of the universe. The model predicts observable signatures at the LHC in the form of exotic events with missing energy and displaced leptons and jets. As an application, we show how this model can explain the recently observed 3.55 keV X-ray line.

Adam Falkowski; Yonit Hochberg; Joshua T. Ruderman

2014-09-09T23:59:59.000Z

308

Phase recovery for x-ray crystallography  

Science Journals Connector (OSTI)

For many years people have believed that in conventional x-ray crystallography one can only record the diffraction intensities but not the phases. In order to obtain the atomic arrangements, one usually has to guess a structure and then fit the intensity data by refining its parameters. Here, we show that the phases are in fact hidden in the intensity data, and can be directly recovered from the peak profiles. This method is demonstrated by the normal two-beam x-ray diffraction of a noncentrosymmetric crystal, and nontrivial phases are recovered from the intensity data alone.

G. Xu, G. E. Zhou, and X. Y. Zhang

1999-04-01T23:59:59.000Z

309

The X-ray eclipse geometry of CAL 87  

E-Print Network (OSTI)

We explore XMM-{\\it Newton} observations of the eclipsing super-soft X-ray source CAL~87 in order to map the accretion structures of the system. { Indirect imaging techniques were applied in X-ray light curves to provide eclipse maps}. The surface brightness distribution exhibits an extended and symmetric emission, { and from the hardest X-rays is revealed a feature that is likely due to a bright spot}. A rate of $\\dot{P} = (+6\\pm2) \\times 10^{-10}$ for changes in the orbital period of the system was derived from the eclipses. There is no significant variation of the emission lines even during eclipses, arguing that the lines are formed in an extended region. The continuum emission dominates the decrease in flux which is observed during eclipses. The O\\,{\\small VIII} Ly$\\alpha$ line reveals a broadening velocity { which is} estimated in 365$^{+65}_{-69}$ km\\,s$^{-1}$ (at 1$\\sigma$) and marginal evidence for asymmetry in its profile, and sometimes shows evidence of double-peaked emission. Together, the results...

Ribeiro, T; Borges,; W, B

2014-01-01T23:59:59.000Z

310

Soft x-ray laser microscope  

SciTech Connect

The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL's 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si[sub 3]N[sub 4]) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

Suckewer, P.I.

1990-10-01T23:59:59.000Z

311

J. Appl. Cryst. (1999). 32, 11271133 Imaging of the helical arrangement of cellulose brils in wood by synchrotron X-ray  

E-Print Network (OSTI)

in wood by synchrotron X-ray microdiffraction H. Lichtenegger,a * M. Mu� ller,b O. Paris,a Ch. Riekelb of cellulose ®brils in the S2 layer of adjacent wood cells of Picea abies (Norwegian spruce) was obtained scans over intact transverse sections of adjacent wood cells with a microscopic position resolution

Lichtenegger, Helga C.

312

X-ray radiography for container inspection  

DOE Patents (OSTI)

Arrangements of X-ray inspection systems are described for inspecting high-z materials in voluminous objects such as containers. Inspection methods may involve generating a radiographic image based on detected attenuation corresponding to a pulsed beams of radiation transmitted through a voluminous object. The pulsed beams of radiation are generated by a high-energy source and transmitted substantially downward along an incident angle, of approximately 1.degree. to 30.degree., to a vertical axis extending through the voluminous object. The generated radiographic image may be analyzed to detect on localized high attenuation representative of high-z materials and to discriminate high-z materials from lower and intermediate-z materials on the basis of the high density and greater attenuation of high-z material for higher energy (3-10 MeV) X-rays, and the compact nature of threatening masses of fissionable materials.

Katz, Jonathan I. (Clayton, MO); Morris, Christopher L. (Los Alamos, NM)

2011-06-07T23:59:59.000Z

313

Optics for X-Ray Laser and Laser Plasma Soft X-Ray Radiation  

Science Journals Connector (OSTI)

Focusing X-ray grazing incidence optics for X-ray laser and laser plasma soft X-ray radiation has been studied. ... computer code. Parabolic axisymmetric mirror for focusing Princeton X-ray laser beam and ellipso...

L. Pina; A. Inneman; R. Hudec

1996-01-01T23:59:59.000Z

314

Generation of first hard X-ray pulse at Tsinghua Thomson Scattering X-ray Source  

SciTech Connect

Tsinghua Thomson Scattering X-ray Source (TTX) is the first-of-its-kind dedicated hard X-ray source in China based on the Thomson scattering between a terawatt ultrashort laser and relativistic electron beams. In this paper, we report the experimental generation and characterization of the first hard X-ray pulses (51.7 keV) via head-on collision of an 800 nm laser and 46.7 MeV electron beams. The measured yield is 1.0 Multiplication-Sign 10{sup 6} per pulse with an electron bunch charge of 200 pC and laser pulse energy of 300 mJ. The angular intensity distribution and energy spectra of the X-ray pulse are measured with an electron-multiplying charge-coupled device using a CsI scintillator and silicon attenuators. These measurements agree well with theoretical and simulation predictions. An imaging test using the X-ray pulse at the TTX is also presented.

Du Yingchao; Yan Lixin; Hua Jianfei; Du Qiang; Zhang Zhen; Li Renkai; Qian Houjun; Huang Wenhui; Chen Huaibi; Tang Chuanxiang [Accelerator Laboratory, Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084 (China); Key Laboratory of High Energy Radiation Imaging Fundamental Science for National Defense, Tsinghua University, Beijing 100084 (China)

2013-05-15T23:59:59.000Z

315

COUP census of X-ray stars in BN-KL and OMC-1S  

E-Print Network (OSTI)

We present a study of the X-ray sources detected in the vicinity of two density peaks in the Orion Molecular Cloud 1 (OMC-1) behind the Orion Nebula Cluster (ONC), as seen in the exceptionally deep (~10 days) exposure of the Chandra Orion Ultradeep Project (COUP). We focus on a 40"*50" region around the Becklin-Neugebauer object and Kleinmann-Low nebula (collectively BN-KL) and a 60"*75" region around OMC-1S, a secondary star-forming peak some 90" south of BN-KL. Forty-three and sixty X-ray sources were detected in BN-KL and OMC-1S, respectively, of which half and one-third, respectively, were found to be foreground members of the ONC, while the remaining sources are identified as obscured X-ray sources with column densities 22stars rather than wind emission from massive stars, suggesting that the X-ray emission may be arising from companions. The X-ray light curve of the X-ray source close to BN shows a periodicity of ~8.3 days and from an X-ray image deconvolution of the region around BN, we conclude that either BN itself or a low mass companion with a projected separation of ~200 AU was detected. On the other hand, no emission is seen from the bright radio Source I, held by some to be the main source of luminosity in BN-KL. In OMC-1S, Chandra unveils a new subcluster of seven YSOs without infrared counterparts (abridged).

N. Grosso; E. D. Feigelson; K. V. Getman; L. Townsley; P. Broos; E. Flaccomio; M. J. McCaughrean; G. Micela; S. Sciortino; J. Bally; N. Smith; A. A. Muench; G. P. Garmire; F. Palla

2005-04-08T23:59:59.000Z

316

Massively parallel X-ray holography STEFANO MARCHESINI1,2  

E-Print Network (OSTI)

, and a bacterial cell with a soft-X-ray free-electron laser, where illumination by a single 15-fs pulse was successfully used in producing the holographic image. As X-ray lasers move to shorter wavelengths we expectMassively parallel X-ray holography STEFANO MARCHESINI1,2 *, SE´BASTIEN BOUTET3,4 , ANNE E

Petta, Jason

317

Soft X-ray tomography of phenotypic switching and the cellular response to antifungal peptoids  

E-Print Network (OSTI)

Soft X-ray tomography of phenotypic switching and the cellular response to antifungal peptoids that circumvent fungal drug- resistance mechanisms. In this work we used soft X-ray tomogra- phy to image of an entire, fully functional biological system, i.e., in the milieu of a cell (8, 10). Recently, soft X-ray

Barron, Annelise E.

318

Miniature x-ray source  

DOE Patents (OSTI)

A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

Trebes, James E. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA)

2000-01-01T23:59:59.000Z

319

X-ray Stacking 2008-Apr-22 Astrostats X-ray Stacking  

E-Print Network (OSTI)

X-ray Stacking 2008-Apr-22 Astrostats X-ray Stacking Tom Aldcroft SAO/CXC #12;X-ray Stacking 2008 analysis for a sample Stacking ­ mean properties of sample Chandra X-ray data (faint point sources) are photon-limited with low background => stacking in X-rays is very effective #12;X-ray Stacking 2008-Apr-22

Wolfe, Patrick J.

320

SMB, X-ray Absorption Spectroscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Absorption Spectroscopy X-ray Absorption Spectroscopy X-ray absorption spectroscopy (XAS) is a well-established technique for simultaneous local geometric and electronic structure...

Note: This page contains sample records for the topic "x-ray imaging shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

X-rays Illuminate Ancient Archimedes Text  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Links: Related Links: May 2005 Headlines TIP Article Press Release Walters Art Museum SSRL Home Page SLAC Home Page Stanford Home Page Tuesday, 31 May 2005 X-rays Illuminate Ancient Archimedes Text (contact: Uwe Bergmann, bergmann@slac.stanford.edu) Archimedes Figure Image provided by Will Noel, The Walters Art Museum An early transcription of Archimedes' mathematical theories has been brought to light through the probing of high-intensity x-rays at SSRL's BL6-2. The text contains part of the Method of Mechanical Theorems, one of Archimedes' most important works, which was probably copied out by a scribe in the tenth century. The parchment on which it was written was later scraped down and reused as pages in a twelfth century prayer book, producing a document known as a palimpsest (which comes from the Greek,

322

The radiation-tolerant x-ray monitor  

SciTech Connect

A vacuum photoelectric detector (monitor) (VPD) designed for plasma tomography, megnetohydrodynamics monitoring, and imaging with the help of thermal x-ray radiation on the ITER facility is described. Laboratory experiments demonstrate that VPD has high sensitivity to thermal x rays and low sensitivity to hard gamma rays and neutrons. The results of tests of a prototype of this monitor on a {sup 60}Co source of gamma rays, on nuclear reactor and its calibration using radiation from an x-ray tube, and tests of its serviceability on the T-10 facility are presented.

Gott, Yu. V.; Stepanenko, M. M. [Nuclear Fusion Institute, Russian Research Center 'Kurchatov Institute', Kurchatov Sq. 1, Moscow 123182 (Russian Federation)

2008-10-15T23:59:59.000Z

323

TiO2 Nanoparticles as a Soft X-ray Molecular Probe  

SciTech Connect

With the emergence of soft x-ray techniques for imaging cells, there is a pressing need to develop protein localization probes that can be unambiguously identified within the region of x-ray spectrum used for imaging. TiO2 nanocrystal colloids, which have a strong absorption cross-section within the "water-window" region of x-rays, areideally suited as soft x-ray microscopy probes. To demonstrate their efficacy, TiO2-streptavidin nanoconjugates were prepared and subsequently labeled microtubules polymerized from biotinylated tubulin. The microtubules were imaged using scanning transmission x-ray microscopy (STXM), and the TiO2 nanoparticle tags were specifically identified using x-ray absorption near edge spectroscopy (XANES). These experiments demonstrate that TiO2 nanoparticles are potential probes for protein localization analyses using soft x-ray microscopy.

Larabell, Carolyn; Ashcroft, Jared M.; Gu, Weiwei; Zhang, Tierui; Hughes, Steven M.; Hartman, Keith B.; Hofmann, Cristina; Kanaras, Antonios G.; Kilcoyne, David A.; Le Gros, Mark; Yin, Yadong; Alivisatos, A. Paul; Larabell, Carolyn A.

2007-06-30T23:59:59.000Z

324

X-ray Emission from Massive Stars  

E-Print Network (OSTI)

X-ray Emission from Massive Stars David Cohen Department of Physics and Astronomy Swarthmore be related to the production of X-rays on massive stars. If so, massive stars' X-rays are much different than those found our own Sun and other cooler stars like the Sun that produce X-rays via magnetic activity

Cohen, David

325

X-ray Emission from Massive Stars  

E-Print Network (OSTI)

X-ray Emission from Massive Stars David Cohen Department of Physics and Astronomy Swarthmore #12;What is the mechanism by which massive stars produce x-rays? New results from the Chandra X-ray Observatory ­ high-resolution x-ray spectroscopy: measuring Doppler broadening in emission lines Testing

Cohen, David

326

Femtosecond Time-Delay X-ray Holography  

NLE Websites -- All DOE Office Websites (Extended Search)

Time-Delay X-ray Holography Time-Delay X-ray Holography X-ray free-electron lasers (XFELs) will produce photon pulses with a unique and desirable combination of properties. Their short X-ray wavelengths allow penetration into materials and the ability to probe structure at and below the nanometer scale. Their ultra-short duration gives information about this structure at the fundamental time-scales of atoms and molecules. The extreme intensity of the pulses will allow this information to be acquired in a single shot, so that these studies can be carried out on non-repeatable processes or on weakly-scattering objects that will be modified by the pulse. A fourth property of XFEL pulses is their high transverse coherence, which brings the promise of decades of innovation in visible optics to the X-ray regime, such as holography, interferometry, and laser-based imaging. Making an effective use of XFEL pulses, however, will benefit from innovations that are new to both X-ray science and coherent optics. One such innovation is the new method of time-delay X-ray holography [i], recently demonstrated at the FLASH FEL at DESY in Hamburg, to measure the evolution of objects irradiated by intense pulses.

327

X-ray Phase Contrast analysis - Digital wavefront development  

SciTech Connect

Optical schemes that enable imaging of the phase shift produced by an object have become popular in the x-ray region, where phase can be the dominant contrast mechanism. The propagation-based technique consists of recording the interference pattern produced by choosing one or several sample-to-detector distances. Pioneering studies, carried out making use of synchrotron radiation, demonstrated that this technique results in a dramatic increase of image contrast and detail visibility, allowing the detection of structures invisible with conventional techniques. An experimental and theoretical study of in-line hard x-ray phase-contrast imaging had been performed. The theoretical description of the technique is based on Fresnel diffraction. As an illustration of the potential of this quantitative imaging technique, high-resolution x-ray phase contrast images of simple objects will be presented.

Idir, Mourad [Metrology Beamline, Synchrotron SOLEIL, Gif-sur-Yvette (France); Potier, Jonathan [Phaseview, Palaiseau (France); Universite Paul Sabatier-Toulouse III, Metrology Beamline, Synchrotron SOLEIL, Gif-sur-Yvette (France); Fricker, Sebastien [Phaseview, Palaiseau (France); Snigirev, Anatoly; Snigireva, Irina [ESRF, Grenoble (France); Modi, M. H. [X-ray Optics Section, Raja Ramanna Centre for Advanced Technology, Indore (India)

2010-06-23T23:59:59.000Z

328

National Ignition Facility core x-ray streak camera  

SciTech Connect

The National Ignition Facility (NIF) core x-ray streak camera will be used for laser performance verification experiments as well as a wide range of physics experiments in the areas of high-energy-density science, inertial confinement fusion, and basic science. The x-ray streak camera system is being designed to record time-dependent x-ray emission from NIF targets using an interchangeable family of snouts for measurements such as one-dimensional (1D) spatial imaging or spectroscopy. the NIF core x-ray streak camera will consist of an x-ray-sensitive photocathode that detects x rays with 1D spatial resolution coupled to an electron streak tube to detect a continuous time history of the x rays incident on the photocathode over selected time periods. A charge-coupled-device (CCD) readout will record the signal from the streak tube. The streak tube, CCD, and associated electronics will reside in an electromagnetic interference, and electromagnetic pulse protected, hermetically sealed, temperature-controlled box whose internal pressure is approximately 1 atm. The streak tube itself will penetrate through the wall of the box into the target chamber vacuum. We are working with a goal of a spatial resolution of 15 lp/mm with 50% contrast transfer function at the photocathode and adjustment sweep intervals of 1--50 ns. The camera spectral sensitivity extends from soft x rays to 20 keV x rays, with varying quantum efficiency based on photocathode selection. The system will have remote control, monitoring, and Ethernet communications through an embedded controller. The core streak camera will be compatible with the instrument manipulators at the OMEGA (University of Rochester) and NIF facilities.

Kimbrough, J. R.; Bell, P. M.; Christianson, G. B.; Lee, F. D.; Kalantar, D. H.; Perry, T. S.; Sewall, N. R.; Wootton, A. J.

2001-01-01T23:59:59.000Z

329

Compact x-ray source and panel  

DOE Patents (OSTI)

A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

Sampayon, Stephen E. (Manteca, CA)

2008-02-12T23:59:59.000Z

330

Ultrafast X-ray Absorption Spectroscopy using Laser-Driven Electron X-ray Sources (LEXS)  

E-Print Network (OSTI)

: ultrafast x-rays, x-ray absorption spectroscopy, terawatt lasers, ultrafast reaction dynamics, atomic motion atomic motion by scrutinizing the changes in x- ray absorption spectra during reactions. FirstUltrafast X-ray Absorption Spectroscopy using Laser-Driven Electron X-ray Sources (LEXS) Guangjun

Guo, Ting

331

Element 104 identified by characteristic x rays  

Science Journals Connector (OSTI)

A research team at the Oak Ridge National Laboratory has recently announced that they have conclusively identified the 257 isotope of element 104. This new work shows promise of shedding light on the controversy between Albert Ghiorso and Georgi N. Flerov the leaders respectively of the groups at Lawrence Berkeley Laboratory and the Joint Institute for Nuclear Research Dubna. The isotope 104 X 257 decays by alpha emission to 102 No 253 with a half?life of 4.3 seconds. The Oak Ridge group observed the K?series x rays from nobelium in coincidence with the alpha particles from 104 X 257 ; the observation of x?ray spectra has never been reported previously by the Berkeley or Dubna workers according to Curtis E. Bemis Jr spokesman for the group.

Ronald J. Cohn

1973-01-01T23:59:59.000Z

332

First Results on Shear-selected Clusters from the Deep Lens Survey: Optical Imaging, Spectroscopy, and X-Ray Follow-up  

Science Journals Connector (OSTI)

We present the first sample of galaxy clusters selected on the basis of their weak gravitational lensing shear. The shear induced by a cluster is a function of its mass profile and its redshift relative to the background galaxies being sheared; in contrast to more traditional methods of selecting clusters, shear selection does not depend on the cluster's star formation history, baryon content, or dynamical state. Because mass is the property of clusters that provides constraints on cosmological parameters, the dependence on these other parameters could induce potentially important biases in traditionally selected samples. Comparison of a shear-selected sample with optically and X-ray-selected samples is therefore of great importance. Here we present the first step toward a new shear-selected sample: the selection of cluster candidates from the first 8.6 deg2 of the 20 deg2 Deep Lens Survey (DLS), and tabulation of their basic properties such as redshifts and optical and X-ray counterparts.

D. Wittman; I. P. Dell'Antonio; J. P. Hughes; V. E. Margoniner; J. A. Tyson; J. G. Cohen; D. Norman

2006-01-01T23:59:59.000Z

333

The scanning soft X-ray microscope at Hasylab: imaging and spectroscopy of photoelectrons, photoluminescence, desorbed ions, reflected, scattered and transmitted light  

Science Journals Connector (OSTI)

The scanning soft X-ray microscope operating at Hasylab/Desy has been developed to combine lateral and temporal resolution, tunability and various conventional spectroscopy techniques. Different mirror optics are used to form a microprobe in the energy range 15–1500 eV. A grazing incidence ellipsoidal mirror provides a resolution of 1 ?m over the entire energy range, and in the vacuum ultraviolet region below 30 eV, 0.15 ?m can be achieved with a Pt-coated Schwarzschild objective. Due to the large working distance of the optics used, the detection and analysis of several surface signals are comparatively simple. Detectors and spectrometers for photoelectrons, luminescence, fluorescence, desorbed ions, reflected, scattered and transmitted light are built in permanently into the microscope. Furthermore, some combinations of the different methods can be used for simultaneous measurements. In this paper the technical developments of recent years are described. A short representation of some exemplary applications will give an insight into the work of our group and illustrate the characteristics of the microscope. The following topics are discussed: cross-luminescence of barium fluoride, visible luminescence and degradation of porous silicon, photoluminescence of ceramics, chemical contrast in photoemission spectroscopy, and Bragg reflection as a contrast mechanism in X-ray microscopy.

J Voss

1997-01-01T23:59:59.000Z

334

High performance x-ray anti-scatter grid  

DOE Patents (OSTI)

Disclosed are an x-ray anti-scatter grid for x-ray imaging, particularly for screening mammography, and method for fabricating same, x-rays incident along a direct path pass through a grid composed of a plurality of parallel or crossed openings, microchannels, grooves, or slots etched in a substrate, such as silicon, having the walls of the microchannels or slots coated with a high opacity material, such as gold, while x-rays incident at angels with respect to the slots of the grid, arising from scatter, are blocked. The thickness of the substrate is dependent on the specific application of the grid, whereby a substrate of the grid for mammography would be thinner than one for chest radiology. Instead of coating the walls of the slots, such could be filed with an appropriate liquid, such as mercury. 4 Figs.

Logan, C.M.

1995-05-23T23:59:59.000Z

335

Polarization Entangled Photons at X-Ray Energies  

E-Print Network (OSTI)

We show that polarization entangled photons at x-ray energies can be generated via spontaneous parametric down conversion. Each of the four Bell states can be generated by choosing the angle of incidence and polarization of the pumping beam.

S. Shwartz; S. E. Harris

2010-12-16T23:59:59.000Z

336

Two solar flares that became X-ray plasma ejections  

E-Print Network (OSTI)

Solar flares and X-ray plasma ejections (XPEs) occur simultaneously but usually are separated spatially. We present two exceptional events observed by {\\sl Yohkoh} in 2001 October 2 (event 1) and 2000 October 16 (event 2), in which features of flares and XPEs are mixed. Namely, the soft and hard X-ray images show intense sources of emission that move dynamically. Both events occurred inside broad active regions showing complicated multi-level structure reaching up to 200 Mm high. Both events show also similar four-stages evolution: (1) a fast rise of a system of loops, (2) sudden changes in their emission distribution, (3) a reconfiguration leading to liberation of large amounts of plasma, (4) a small, static loop as the final remnant. Nevertheless, the events are probably caused by different physical processes: emerging magnetic flux plus reconnection (event 1) and reconnection plus ballooning instability (event 2). Different is also the final destination of the ejected plasma: in the event 1 overlying magne...

Tomczak, Michal

2013-01-01T23:59:59.000Z

337

Focused X-ray source  

DOE Patents (OSTI)

Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

1990-08-21T23:59:59.000Z

338

X-Ray Afterglows from Gamma-Ray Bursts  

Science Journals Connector (OSTI)

We consider possible interpretations of the recently detected X-ray afterglow from the gamma-ray burst source GRB 970228. Cosmological and Galactic models of gamma-ray bursts predict different flux and spectral evolution of X-ray afterglows. We show that models based on adiabatic expansion of relativistic forward shocks require very efficient particle energization or postburst reacceleration during the expansion. Cooling neutron star models predict a very distinctive spectral and flux evolution that can be tested in current X-ray data.

M. Tavani

1997-01-01T23:59:59.000Z

339

Dynamic model of anisotropic x-ray refraction  

Science Journals Connector (OSTI)

General mechanisms of anisotropic x-ray refraction at the resonance energy are investigated on the basis of dynamic-scattering theory. The deductions show that x rays within the crystals that have anisotropic susceptibility are completely polarized and have two elliptical polarization states. Analytical expressions of the elliptical axes, refractive indices, and absorption coefficients for these two types of polarized waves are obtained in terms of the anisotropic components of the susceptibility tensor. Anisotropic birefringence and dichroism effects associated with the polarization properties of the x-ray waves are also illustrated theoretically.

X. R. Huang, Yong Li, W. J. Liu, and S. S. Jiang

1997-11-01T23:59:59.000Z

340

Sampling-based Uncertainty Quantification in Deconvolution of X-ray Radiographs  

SciTech Connect

In imaging applications that focus on quantitative analysis{such as X-ray radiography in the security sciences--it is necessary to be able to reliably estimate the uncertainties in the processing algorithms applied to the image data, and deconvolving the system blur out of the image is usually an essential step. In this work we solve the deconvolution problem within a Bayesian framework for edge-enhancing reconstruction with uncertainty quantification. The likelihood is a normal approximation to the Poisson likelihood, and the prior is generated from a classical total variation regularized Poisson deconvolution. Samples from the corresponding posterior distribution are computed using a Markov chain Monte Carlo approach, giving a pointwise measure of uncertainty in the final, deconvolved signal. We demonstrate the results on real data used to calibrate a high-energy X-ray source and show that this approach gives reconstructions as good as classical regularization methods, while mitigating many of their drawbacks.

Howard, M. [NSTec; Luttman, A. [NSTec; Fowler, M. [NSTec

2014-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray imaging shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Deep Chandra Images of the X-ray Jets in PKS 0208-512 and PKS 1202-262 D.A. Schwartz (CfA), E. S. Perlman, M. Georganopoulos, (UMBC),  

E-Print Network (OSTI)

, with long lifetimes (Fig 7), while synchroton X-rays would arise from electrons with very short lifetimes

Schwartz, Daniel

342

The X-ray Position and Optical Counterpart of the Accretion-Powered Millisecond Pulsar XTE J1814-338  

E-Print Network (OSTI)

We report the precise optical and X-ray localization of the 3.2 ms accretion-powered X-ray pulsar XTE J1814-338 with data from the Chandra X-Ray Observatory as well as optical observations conducted during the 2003 June discovery outburst. Optical imaging of the field during the outburst of this soft X-ray transient reveals an R = 18 star at the X-ray position. This star is absent (R > 20) from an archival 1989 image of the field and brightened during the 2003 outburst, and we therefore identify it as the optical counterpart of XTE J1814-338. The best source position derived from optical astrometry is R.A. = 18h13m39.s04, Dec.= -33d46m22.3s (J2000). The featureless X-ray spectrum of the pulsar in outburst is best fit by an absorbed power-law (with photon index = 1.41 +- 0.06) plus blackbody (with kT = 0.95 +- 0.13 keV) model, where the blackbody component contributes approximately 10% of the source flux. The optical broad-band spectrum shows evidence for an excess of infrared emission with respect to an X-ray heated accretion disk model, suggesting a significant contribution from the secondary or from a synchrotron-emitting region. A follow-up observation performed when XTE J1814-338 was in quiescence reveals no counterpart to a limiting magnitude of R = 23.3. This suggests that the secondary is an M3 V or later-type star, and therefore very unlikely to be responsible for the soft excess, making synchroton emission a more reasonable candidate.

Miriam I. Krauss; Zhongxiang Wang; Allyn Dullighan; Adrienne M. Juett; David L. Kaplan; Deepto Chakrabarty; Marten H. van Kerkwijk; Danny Steeghs; Peter G. Jonker; Craig B. Markwardt

2005-03-30T23:59:59.000Z

343

Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell  

SciTech Connect

We report the first image of an intact, frozen hydrated eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezing the specimen in liquid ethane and maintaining it below -170 deg. C, artifacts due to dehydration, ice crystallization, and radiation damage are greatly reduced. In this example, coherent diffraction data using 520 eV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25 nm. This demonstration represents an important step towards high resolution imaging of cells in their natural, hydrated state, without limitations imposed by x-ray optics.

Huang Xiaojing; Nelson, Johanna; Lima, Enju; Miao, Huijie; Steinbrener, Jan; Stewart, Andrew; Turner, Joshua J.; Jacobsen, Chris [Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800 (United States); Kirz, Janos [Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800 (United States); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Marchesini, Stefano; Shapiro, David [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Neiman, Aaron M. [Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215 (United States)

2009-11-06T23:59:59.000Z

344

A compact scanning soft X-ray microscope  

SciTech Connect

Soft x-ray microscopes operating at wavelengths between 2.3 nm and 4.4 nm are capable of imaging wet biological cells with a resolution many times that of a visible light microscope. Several such soft x-ray microscopes have been constructed. However, with the exception of contact microscopes, all use synchrotrons as the source of soft x-ray radiation and Fresnel zone plates as the focusing optics. These synchrotron based microscopes are very successful but have the disadvantage of limited access. This dissertation reviews the construction and performance of a compact scanning soft x-ray microscope whose size and accessibility is comparable to that of an electron microscope. The microscope uses a high-brightness laser-produced plasma as the soft x-ray source and normal incidence multilayer-coated mirrors in a Schwarzschild configuration as the focusing optics. The microscope operates at a wavelength of 14 nm, has a spatial resolution of 0.5 {mu}m, and has a soft x-ray photon flux through the focus of 10{sup 4}-10{sup 5} s{sup {minus}1} when operated with only 170 mW of average laser power. The complete system, including the laser, fits on a single 4{prime} x 8{prime} optical table. The significant components of the compact microscope are the laser-produced plasma (LPP) source, the multilayer coatings, and the Schwarzschild objective. These components are reviewed, both with regard to their particular use in the current microscope and with regard to extending the microscope performance to higher resolution, higher speed, and operation at shorter wavelengths. Measurements of soft x-ray emission and debris emission from our present LPP source are presented and considerations given for an optimal LPP source. The LPP source was also used as a broadband soft x-ray source for measurement of normal incidence multilayer mirror reflectance in the 10-25 nm spectral region.

Trail, J.A.

1989-01-01T23:59:59.000Z

345

Microgap x-ray detector  

DOE Patents (OSTI)

An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

Wuest, Craig R. (Danville, CA); Bionta, Richard M. (Livermore, CA); Ables, Elden (Livermore, CA)

1994-01-01T23:59:59.000Z

346

Chest x-Rays | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chest x-Rays Chest x-Rays Chest x-Rays Chest X-ray B-Reading The B-reading is a special reading of a standard chest x-ray film performed by a physician certified by the National Institute for Occupational Safety and Health (NIOSH). The reading looks for changes on the chest x-ray that may indicate exposure and disease caused by agents such as asbestos or silica. The B-reading is considered a special reading because doctors who are certified by NIOSH to perform B-readings use a specific protocol to read and record the findings as developed by the International Labour Organization (ILO). The ILO's protocol provides rules for systematically examining the x-ray in a step-by-step method and recording certain abnormalities or changes on the chest x-ray that can be attributable to

347

Producing X-rays at the APS  

ScienceCinema (OSTI)

An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

None

2013-04-19T23:59:59.000Z

348

Synchrotron-Radiation Induced X-Ray Emission (SRIXE)  

SciTech Connect

Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change and increase in scientific use can be maintained for the synchrotron x-ray source. A short summary of the present state of the synchrotron radiation-induced x-ray emission (SRIXE) method is presented here. Basically, SRIXE experiments can include any that depend on the detection. of characteristic x-rays produced by the incident x-ray beam born the synchrotron source as they interact with a sample. Thus, experiments done to measure elemental composition, chemical state, crystal, structure, and other sample parameters can be considered in a discussion of SRIXE. It is also clear that the experimentalist may well wish to use a variety of complementary techniques for study of a given sample. For this reason, discussion of computed microtomography (CMT) and x-ray diffraction is included here. It is hoped that this present discussion will serve as a succinct introduction to the basic ideas of SRIXE for those not working in the field and possibly help to stimulate new types of work by those starting in the field as well as by experienced practitioners of the art. The topics covered include short descriptions of (1) the properties of synchrotron radiation, (2) a description of facilities used for its production, (3) collimated microprobe, (4) focused microprobes, (5) continuum and monoenergetic excitation, (6) detection limits, (7) quantitation, (8) applications of SRIXE, (9) computed microtomography (CMT), and (10)chemical speciation using x-ray absorption near-edge structure (XANES) and extended x-ray absorption fine structure (EXAFS). An effort has been made to cite a wide variety of work from different laboratories to show the vital nature of the field.

Jones, Keith W.

1999-09-01T23:59:59.000Z

349

Photon Sciences | Beamlines | SRX: Submicron Resolution X-ray Spectroscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

SRX: Submicron Resolution X-ray Spectroscopy SRX: Submicron Resolution X-ray Spectroscopy Poster | Fact Sheet | Preliminary Design Report Scientific Scope Scientific communities such as environmental sciences, life sciences, and material sciences have identified the need to develop analytical resources to advance the understanding of complex natural and engineered systems that are heterogeneous on the micron to nanometer scale. These needs for high intensity x-ray nanoprobes resulted in the commitment of the NSLS-II Project to build the Submicron Resolution X-ray (SRX) Spectroscopy beamline showing a unique combination of high spectral resolution over a very broad energy range and very high beam intensity in a sub-micrometer spot. NSLS-II will provide one of the best sources in the world for such an instrument.

350

X-ray Raman scattering study of aligned polyfluorene  

E-Print Network (OSTI)

We present a non-resonant inelastic x-ray scattering study at the carbon K-edge on aligned poly[9,9-bis(2-ethylhexyl)-fluorene-2,7-diyl] and show that the x-ray Raman scattering technique can be used as a practical alternative to x-ray absorption measurements. We demonstrate that this novel method can be applied to studies on aligned $\\pi$-conjugated polymers complementing diffraction and optical studies. Combining the experimental data and a very recently proposed theoretical scheme we demonstrate a unique property of x-ray Raman scattering by performing the symmetry decomposition on the density of unoccupied electronic states into $s$- and $p$-type symmetry contributions.

S. Galambosi; M. Knaapila; J. A. Soininen; K. Nyg\\aard; S. Huotari; F. Galbrecht; U. Scherf; A. P. Monkman; K. Hämäläinen

2006-08-29T23:59:59.000Z

351

Chandra X-ray Observatory Center  

E-Print Network (OSTI)

Chandra X-ray Observatory Center Harvard-Smithsonian Center for Astrophysics 60 Garden St in hot gas about 250 million light years from Earth. (Credit: X-ray: NASA/CXC/SAO/E.Bulbul, et al-Newton has revealed a mysterious X-ray signal in the data. This signal is represented in the circled data

352

X-Ray Absorption Spectroscopy of Metallobiomolecules  

E-Print Network (OSTI)

2/9/07 1 X-Ray Absorption Spectroscopy of Metallobiomolecules The Outskirts of Structural Biology 9, 07] This is a tutorial about the use of X-ray Absorption Spectroscopy (XAS) in biology, RG; Eisenberger, P; Kincaid, BM "X-ray Absorption Spectroscopy of Biological Molecules" Annu. Rev

Scott, Robert A.

353

Chandra X-ray Observatory Center  

E-Print Network (OSTI)

Chandra X-ray Observatory Center Harvard-Smithsonian Center for Astrophysics 60 Garden St million light years from Earth. (Credit: X-ray: NASA/CXC/Wesleyan Univ./R.Kilgard, et al; Optical: NASA with optical data from the Hubble Space Telescope (red, green, and blue). The X-ray data reveal hundreds

354

X-ray Spectroscopy of Cool Stars  

E-Print Network (OSTI)

High-resolution X-ray spectroscopy has addressed not only various topics in coronal physics of stars, but has also uncovered important features relevant for our understanding of stellar evolution and the stellar environment. I summarize recent progress in coronal X-ray spectroscopy and in particular also discuss new results from studies of X-rays from pre-main sequence stars.

M. Guedel

2006-09-11T23:59:59.000Z

355

X-Ray Physics Evan Berkowitz  

E-Print Network (OSTI)

X-Ray Physics Evan Berkowitz Junior, MIT Department of Physics (Dated: October 25, 2006) We measure a variety of phenomena related to X-Ray absorption and production. We present data which conforms within, as are 22 Na electron-positron annhilation lines. The importance of understanding x-rays is demonstrated

356

X-Ray Absorption Spectroscopy of Metallobiomolecules  

E-Print Network (OSTI)

9/6/09 1 X-Ray Absorption Spectroscopy of Metallobiomolecules The Outskirts of Structural Biology 6, 09] This is a tutorial about the use of X-ray Absorption Spectroscopy (XAS) in biology, RG; Eisenberger, P; Kincaid, BM "X-ray Absorption Spectroscopy of Biological Molecules" Annu. Rev

Scott, Robert A.

357

The X-ray attenuation characteristics and density of human calcaneal marrow do not change significantly during adulthood  

E-Print Network (OSTI)

The X-ray attenuation characteristics and density of human calcaneal marrow do not change be a significant source of error in measurements of bone density when using X-ray and ultrasound imaging modalities calcanei (28 males, 6 females, ages 17­65 years). The density and energy-dependent linear X-ray attenuation

Stanford University

358

Using Light to Control How X Rays Interact with Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

ultrafast x-ray spectroscopy. ALS femtosecond spectroscopy beamline layout. Femtosecond x-ray and laser pulses derive from a single 800-nm laser oscillator. Femtosecond x rays...

359

Fast microtomography using bright monochromatic x-rays  

SciTech Connect

A fast microtomography system for high-resolution high-speed imaging has been developed using bright monochromatic x-rays at the BL29XU beamline of SPring-8. The shortest scan time for microtomography we attained was 0.25 s in 1.25 {mu}m effective pixel size by combining the bright monochromatic x-rays, a fast rotating sample stage, and a high performance x-ray imaging detector. The feasibility of the tomography system was successfully demonstrated by visualization of rising bubbles in a viscous liquid, an interesting issue in multiphase flow physics. This system also provides a high spatial (a measurable feature size of 300 nm) or a very high temporal (9.8 {mu}s) resolution in radiographs.

Jung, J. W.; Lee, J. S.; Park, S. J.; Chang, S.; Pyo, J. [X-ray Imaging Center, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784 (Korea, Republic of); Department of Materials Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784 (Korea, Republic of); Kwon, N.; Kim, J. [X-ray Imaging Center, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784 (Korea, Republic of); School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kohmura, Y.; Nishino, Y.; Yamamoto, M.; Ishikawa, T. [RIKEN/SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148 (Japan); Je, J. H. [X-ray Imaging Center, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784 (Korea, Republic of); Department of Materials Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784 (Korea, Republic of); School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); RIKEN/SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148 (Japan)

2012-09-15T23:59:59.000Z

360

X-RAY SPECTROMETRY X-Ray Spectrom. 2007; 36: 336342  

E-Print Network (OSTI)

X-RAY SPECTROMETRY X-Ray Spectrom. 2007; 36: 336­342 Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/xrs.980 Fish otolith trace element maps: new approaches with synchrotron microbeam x-ray of elements as they accrete through a fish's life. We apply synchrotron microbeam x-ray fluorescence methods

Limburg, Karin E.

Note: This page contains sample records for the topic "x-ray imaging shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

X-ray Pulsations in the Supersoft X-ray Binary CAL 83  

E-Print Network (OSTI)

X-ray data reveal that the supersoft X-ray binary CAL 83 exhibits 38.4 minute pulsations at some epochs. These X-ray variations are similar to those found in some novae and are likely to be caused by nonradial pulsations the white dwarf. This is the first detection of pulsations in a classical supersoft X-ray binary.

P. C. Schmidtke; A. P. Cowley

2005-09-28T23:59:59.000Z

362

Time-Resolved Synchrotron X-ray Diffraction on Pulse Laser Heated Iron in Diamond Anvil Cell  

SciTech Connect

The authors present time-resolved synchrotron x-ray diffraction to probe the {var_epsilon}-{delta} phase transition of iron during pulse-laser heating in a diamond anvil cell. The system utilizes a monochromatic synchrotron x-ray beam, a two-dimensional pixel array x-ray detector and a dual beam, double side laser-heating system. Multiple frames of the diffraction images are obtained in real-time every 22 ms over 500 ms of the entire pulse heating period. The results show the structural evolution of iron phases at 17 GPa, resulting in thermal expansion coefficient 1/V({Delta}V/{Delta}T){sub p} = 7.1 * 10{sup -6}/K for {var_epsilon}-Fe and 2.4 * 10{sup -5}/K for {gamma}-Fe, as well as the evidence for metastability of {gamma}-Fe at low temperatures below the {var_epsilon}-{gamma} phase boundary.

Yoo, C S; Wei, H; Dias, R; Shen, G; Smith, J; Chen, J Y; Evans, W

2011-09-21T23:59:59.000Z

363

Characterization results from several commercial soft x-ray streak cameras  

SciTech Connect

The spatio-temporal performance of four soft x-ray streak cameras has been characterized. The objective in evaluating the performance capability of these instruments is to enable us to optimize experiment designs, to encourage quantitative analysis of streak data and to educate the ultra high speed photography and photonics community about the x-ray detector performance which is available. These measurements have been made collaboratively over the space of two years at the Forge pulsed x-ray source at Los Alamos and at the Ketjak laser facility an CEA Limeil-Valenton. The x-ray pulse lengths used for these measurements at these facilities were 150 psec and 50 psec respectively. The results are presented as dynamically-measured modulation transfer functions. Limiting temporal resolution values were also calculated. Emphasis is placed upon shot noise statistical limitations in the analysis of the data. Space charge repulsion in the streak tube limits the peak flux at ultra short experiments duration times. This limit results in a reduction of total signal and a decrease in signal to noise ratio in the streak image. The four cameras perform well with 20 1p/mm resolution discernable in data from the French C650X, the Hadland X-Chron 540 and the Hamamatsu C1936X streak cameras. The Kentech x-ray streak camera has lower modulation and does not resolve below 10 1p/mm but has a longer photocathode. The C650X bi-lamellar design shows uniform high fidelity recording across both spatial and temporal dimensions. The other three streak cameras show resolution degradation off axis. This must be weighed against a 10X lower streak tube throughput for the C650X.

Stradling, G.L.; Studebaker, J.K.; Cavailler, C.; Launspach, J.; Planes, J.

1986-01-01T23:59:59.000Z

364

X-ray Spectroscopy of Cooling Cluster  

SciTech Connect

We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolution X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radiative cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We discuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling.

Peterson, J.R.; /SLAC; Fabian, A.C.; /Cambridge U., Inst. of Astron.

2006-01-17T23:59:59.000Z

365

X-ray transmissive debris shield  

DOE Patents (OSTI)

An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

Spielman, R.B.

1996-05-21T23:59:59.000Z

366

X-ray Spectroscopy of Cooling Clusters  

E-Print Network (OSTI)

We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolution X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radiative cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We discuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling.

J. R. Peterson; A. C. Fabian

2005-12-21T23:59:59.000Z

367

X-ray transmissive debris shield  

DOE Patents (OSTI)

An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

Spielman, Rick B. (Albuquerque, NM)

1996-01-01T23:59:59.000Z

368

The Sun as an X-Ray Star. II. Using the Yohkoh/Soft X-Ray Telescope-derived Solar Emission Measure versus Temperature to Interpret Stellar X-Ray Observations  

Science Journals Connector (OSTI)

This paper is the second of a project dedicated to using solar Yohkoh/SXT data as a guide and a template to interpret data on stellar coronae. In the light of the large differences in scope and approach between solar and stellar studies, we have developed a method to translate Yohkoh/SXT data of the whole solar corona into stellar-like data, i.e., to put them in the same format and context as the stellar ones. First from the Yohkoh/SXT images we derive the whole-Sun X-ray emission measure versus temperature [EM(T)], in the range 105.5-108 K, during the specific observation. Then, we synthesize the solar X-ray spectrum; finally, we fold the spectrum through the instrumental response of nonsolar X-ray observatories, for instance, ROSAT/PSPC and ASCA/SIS. Finally, we analyze such solar coronal data in the same band and with the same methods used for stellar observations, allowing a direct and homogeneous comparison with them. In this paper we present in detail our method and, as an example of results, we show and discuss EM(T) and stellar-like spectra for three phases of the solar cycle: maximum, intermediate phase, and minimum. The total amount and the distribution of the emission measure change dramatically during the cycle, in particular at temperatures above 106 K. We also show the EM(T) of the whole solar corona during a large flare. The ROSAT/PSPC- and ASCA/SIS-like X-ray spectra of the Sun as a star that we obtain are discussed in the context of stellar coronal physics. The Sun's coronal total luminosity in the ROSAT/PSPC band ranges from ?2.7 ? 1026 ergs s-1 (at minimum) to ?4.7 ? 1027 ergs s-1 (at maximum). We discuss future developments and possible applications of our method.

G. Peres; S. Orlando; F. Reale; R. Rosner; H. Hudson

2000-01-01T23:59:59.000Z

369

Constraints on jet X-ray emission in low/hard state X-ray binaries  

E-Print Network (OSTI)

We show that the combination of the similarities between the X-ray properties of low luminosity accreting black holes and accreting neutron stars, combined with the differences in their radio properties argues that the X-rays from these systems are unlikely to be formed in the relativistic jets. Specifically, the spectra of extreme island state neutron stars and low/hard state black holes are known to be indistinguishable, while the power spectra from these systems are known to show only minor differences beyond what would be expected from scaling the characteristic variability frequencies by the mass of the compact object. The spectral and temporal similarities thus imply a common emission mechanism that has only minor deviations from having all key parameters scaling linearly with the mass of the compact object, while we show that this is inconsistent with the observations that the radio powers of neutron stars are typically about 30 times lower than those of black holes at the same X-ray luminosity. We also show that an abrupt luminosity change would be expected when a system makes a spectral state transition from a radiatively inefficient jet dominated accretion flow to a thin disk dominated flow, but that such a change is not seen.

Thomas J. Maccarone

2005-03-31T23:59:59.000Z

370

Surface Slope Metrology on Deformable Soft X-ray Mirrors  

SciTech Connect

We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situ visible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

Yuan Sheng; Yashchuk, Valeriy V.; Celestre, Rich; Church, Matthew; McKinney, Wayne R.; Morrison, Greg; Warwick, Tony [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Goldberg, Kenneth A. [Center for X-ray Optics, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

2010-06-23T23:59:59.000Z

371

Optimized Volumetric Scanning for X-Ray Array Sources  

SciTech Connect

Non-destructive evaluation (NDE) is the science and technology of determining non-invasively the internal structure of manufactured parts, objects, and materials. NDE application areas include medicine, industrial manufacturing, military, homeland security, and airport luggage screening. X-ray measurement systems are most widely used because of their ability to image through a wide range of material densities (from human tissue in medical applications to the dense materials of weapon components). Traditional x-ray systems involve a single source and detector system that rotate and/or translate about the object under evaluation. At each angular location, the source projects x-rays through the object. The rays undergo attenuation proportional to the density of the object's constitutive material. The detector records a measure of the attenuation. Mathematical algorithms are used to invert the forward attenuated ray projection process to form images of the object. This is known as computed tomography (CT). In recent years, the single-source x-ray NDE systems have been generalized to arrays of x-ray sources. Array sources permit multiple views of the object with fewer rotations and translations of the source/detector system. The spatially diverse nature of x-ray array sources has the potential of reducing data collection time, reducing imaging artifacts, and increasing the resolution of the resultant images. Most of the existing CT algorithms were not derived from array source models with a spatially diverse set of viewing perspectives. Single-source x-ray CT data collection, processing, and imaging methods and algorithms are not applicable when the source location is expanded from one dimension (a rotating and/or translating point source) to two (a rotating and/or translating array). They must be reformulated. The goal of this project is to determine the applicability of x-ray array sources to problems of interest to LLNL and its customers. It is believed array source data collection will be faster while yielding higher resolution reconstructions with fewer artifacts. There are three tasks in the research: (1) Develop forward array source analytic and computational models; (2) Research and develop array source reconstruction algorithms; and (3) Perform experiments.

Lehman, S K; Foudray, A M; Wang, A; Kallman, J S; Martz, H

2009-09-29T23:59:59.000Z

372

Monochromatic x-ray radiography for areal-density measurement of inertial fusion energy fuel in fast ignition experiment  

SciTech Connect

Ultrafast, two-dimensional x-ray imaging is an important diagnostics for the inertial fusion energy research, especially in investigating implosion dynamics at the final stage of the fuel compression. Although x-ray radiography was applied to observing the implosion dynamics, intense x-rays emitted from the high temperature and dense fuel core itself are often superimposed on the radiograph. This problem can be solved by coupling the x-ray radiography with monochromatic x-ray imaging technique. In the experiment, 2.8 or 5.2 keV backlight x-rays emitted from laser-irradiated polyvinyl chloride or vanadium foils were selectively imaged by spherically bent quartz crystals with discriminating the out-of-band emission from the fuel core. This x-ray radiography system achieved 24 {mu}m and 100 ps of spatial and temporal resolutions, respectively.

Fujioka, Shinsuke; Fujiwara, Takashi; Tanabe, Minoru; Nishimura, Hiroaki; Nagatomo, Hideo; Ohira, Shinji; Shiraga, Hiroyuki; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita Osaka, 565-0871 (Japan); Inubushi, Yuichi [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

2010-10-15T23:59:59.000Z

373

X-ray instrumentation for the photon factory  

SciTech Connect

The Photon Factory is one of the world's largest synchroton radiation light sources, the beam lines of which supply intense sources of vacuum UV, soft and hard X-rays. About 30 measuring instruments have been purpose-built, and this book describes the development and construction of the X-ray instrumentation. Given the multifunctional nature of the Photon Factory, it may be expected that the instrumentation serving it fulfills a variety of purposes including: reflection imaging systems; diffraction grating fabrication; monochromators; polarizers; analyzers; detectors; data collection systems; cameras; and goniometers.

Hosoya, S.; Iitaka, Y.; Hashizume, H.

1987-01-01T23:59:59.000Z

374

High resolution collimator system for X-ray detector  

DOE Patents (OSTI)

High resolution in an X-ray computerized tomography (CT) inspection system is achieved by using a collimator/detector combination to limit the beam width of the X-ray beam incident on a detector element to the desired resolution width. In a detector such as a high pressure Xenon detector array, a narrow tapered collimator is provided above a wide detector element. The collimator slits have any desired width, as small as a few mils at the top, the slit width is easily controlled, and they are fabricated on standard machines. The slit length determines the slice thickness of the CT image.

Eberhard, Jeffrey W. (Schenectady, NY); Cain, Dallas E. (Scotia, NY)

1987-01-01T23:59:59.000Z

375

Ultrafast x-ray diffraction of laser-irradiated crystals  

SciTech Connect

An apparatus has been developed for measuring time-dependent x-ray diffraction. X-ray pulses from an Advanced Light Source bend magnet are diffracted by a sagittally-focusing Si(111) crystal and then by a sample crystal, presently InSb(111). Laser pulses with 100 fs duration and a repetition rate of 1 KHz irradiate the sample inducing a phase transition. Two types of detectors are being employed: an x-ray streak camera and an avalanche photodiode. The streak camera is driven by a photoconductive switch and has a 2 ps temporal resolution determined by trigger jitter. The avalanche photodiode has high quantum efficiency and sufficient time resolution to detect single x-ray pulses in ALS two bunch or camshaft operation. A beamline is under construction dedicated for time resolved and micro-diffraction experiments. In the new beamline a toroidal mirror collects 3 mrad horizontally and makes a 1:1 image of the bend magnet source in the x-ray hutch. A laser induced phase transition has been observed in InSb occurring within 70 ps.

Heimann, P.A. [Lawrence Berkeley National Lab., CA (US). Advanced Light Source; Larsson, J. [Univ. of California, Berkeley, CA (US). Physics Dept.; Chang, Z. [Univ. of Michigan, Ann Arbor, MI (US). Center for Ultrafast Optical Science

1997-09-01T23:59:59.000Z

376

Interferometric phase detection at x-ray energies via Fano resonance control  

E-Print Network (OSTI)

Modern x-ray light sources promise access to structure and dynamics of matter in largely unexplored spectral regions. However, the desired information is encoded in the light intensity and phase, whereas detectors register only the intensity. This phase problem is ubiquitous in crystallography and imaging, and impedes the exploration of quantum effects at x-ray energies. Here, we demonstrate phase-sensitive measurements characterizing the quantum state of a nuclear two-level system at hard x-ray energies. The nuclei are initially prepared in a superposition state. Subsequently, the relative phase of this superposition is interferometrically reconstructed from the emitted x-rays. Our results form a first step towards x-ray quantum state tomography, and provide new avenues for structure determination and precision metrology via x-ray Fano interference.

K. P. Heeg; C. Ott; D. Schumacher; H. -C. Wille; R. Röhlsberger; T. Pfeifer; J. Evers

2014-11-06T23:59:59.000Z

377

Experimental study on hard X-rays emitted from metre-scale negative discharges in air  

E-Print Network (OSTI)

We investigate the development of meter long negative discharges and focus on their X-ray emissions. We describe appearance, timing and spatial distribution of the X-rays. They appear in bursts of nanosecond duration mostly in the cathode area. The spectrum can be characterized by an exponential function with 200 keV characteristic photon energy. With nanosecond-fast photography we took detailed images of the pre-breakdown phenomena during the time when X-rays were registered. We found bipolar discharge structures, also called "pilot systems", in the vicinity of the cathode. As in our previous study of X-rays from positive discharges, we correlate the X-ray emission with encounters between positive and negative streamers. We suggest that a similar process is responsible for X-rays generated by lightning leaders.

Kochkin, P O; Ebert, Ute

2015-01-01T23:59:59.000Z

378

Portable X-Ray, K-Edge Heavy Metal Detector  

SciTech Connect

The X-Ray, K-Edge Heavy Metal Detection System was designed and built by Ames Laboratory and the Center for Nondestructive Evaluation at Iowa State University. The system uses a C-frame inspection head with an X-ray tube mounted on one side of the frame and an imaging unit and a high purity germanium detector on the other side. the inspection head is portable and can be easily positioned around ventilation ducts and pipes up to 36 inches in diameter. Wide angle and narrow beam X-ray shots are used to identify the type of holdup material and the amount of the contaminant. Precise assay data can be obtained within minutes of the interrogation. A profile of the containerized holdup material and a permanent record of the measurement are immediately available.

Fricke, V.

1999-10-25T23:59:59.000Z

379

Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy  

Science Journals Connector (OSTI)

Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent...

Huang, Xiaojing; Miao, Huijie; Steinbrener, Jan; Nelson, Johanna; Shapiro, David; Stewart, Andrew; Turner, Joshua; Jacobsen, Chris

2009-01-01T23:59:59.000Z

380

3D Global Estimation and Augmented Reality Visualization of Intra-operative X-ray Dose  

Science Journals Connector (OSTI)

The growing use of image-guided minimally-invasive surgical procedures is confronting clinicians and surgical staff with new radiation exposure risks from X-ray imaging devices. The accurate estimation of intr...

Nicolas Loy Rodas; Nicolas Padoy

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray imaging shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Gray scale x-ray mask  

DOE Patents (OSTI)

The present invention describes a method for fabricating an embossing tool or an x-ray mask tool, providing microstructures that smoothly vary in height from point-to-point in etched substrates, i.e., structure which can vary in all three dimensions. The process uses a lithographic technique to transfer an image pattern in the surface of a silicon wafer by exposing and developing the resist and then etching the silicon substrate. Importantly, the photoresist is variably exposed so that when developed some of the resist layer remains. The remaining undeveloped resist acts as an etchant barrier to the reactive plasma used to etch the silicon substrate and therefore provides the ability etch structures of variable depths.

Morales, Alfredo M. (Livermore, CA); Gonzales, Marcela (Seattle, WA)

2006-03-07T23:59:59.000Z

382

X-ray mask and method for providing same  

DOE Patents (OSTI)

The present invention describes a method for fabricating an x-ray mask tool which can achieve pattern features having lateral dimension of less than 1 micron. The process uses a thin photoresist and a standard lithographic mask to transfer an trace image pattern in the surface of a silicon wafer by exposing and developing the resist. The exposed portion of the silicon substrate is then anisotropically etched to provide an etched image of the trace image pattern consisting of a series of channels in the silicon having a high depth-to-width aspect ratio. These channels are then filled by depositing a metal such as gold to provide an inverse image of the trace image and thereby providing a robust x-ray mask tool.

Morales, Alfredo M. (Pleasanton, CA); Skala, Dawn M. (Fremont, CA)

2004-09-28T23:59:59.000Z

383

Identification of X-ray Point Sources and Study on the Nature of 62 X-ray Globular Cluster Candidates in M31  

E-Print Network (OSTI)

This paper includes two parts. The first is to present the spectral energy distributions (SEDs) of 49 globular cluster (GC) X-ray sources in the BATC 13 intermediate-band filters from 3800 to 10000 A, and identify 8 unidentified X-ray sources in M31. Using the X-ray data of Einstein observation from 1979 to 1980, ROSAT HRI observation in 1990, Chandra HRC and ACIS-I observations from 1999 to 2001, and the BATC optical survey from 1995 to 1999, we find 49 GC X-ray sources and 8 new unidentified X-ray sources in the BATC M31 field. By analyzing SEDs and FWHMs, 4 of the 8 X-ray sources may be GC candidates. The second is to present some statistical relationships about 62 GC X-ray sources, of which 58 are already known, and 4 are identified in this paper. The distribution of M31 GC X-ray sources' V mags is bimodal, with peaks at m_v = 15.65 and m_v = 17.89, which is different from the distribution of GC candidates. The distribution of B-V color shows that,the GC X-ray sources seem to be associated preferentially ...

Fan, Z; Zhou, X; Chen, J; Jiang, Z; Wu, Z; Fan, Zhou; Ma, Jun; Zhou, Xu; Chen, Jiansheng; Jiang, Zhaoji; Wu, Zhenyu

2005-01-01T23:59:59.000Z

384

Multicavity X-Ray Fabry-Perot Resonance with Ultrahigh Resolution and Contrast  

Science Journals Connector (OSTI)

Realization of x-ray Fabry-Perot (FP) resonance in back-Bragg-reflection crystal cavities has been proposed and explored for many years, but to date no satisfactory performance has been achieved. Here we show that single-cavity crystal resonators intrinsically have limited finesse and efficiency. To break this limit, we demonstrate that monolithic multicavity resonators with equal-width cavities and specific plate thickness ratios can generate ultrahigh-resolution FP resonance with high efficiency, steep peak tails, and ultrahigh contrast simultaneously. The resonance mechanism is similar to that of sequentially cascaded single-cavity resonators. The ultranarrow-bandwidth FP resonance is anticipated to have various applications, including modern ultrahigh-resolution or precision x-ray monochromatization, spectroscopy, coherence purification, coherent diffraction, phase contrast imaging, etc.

X. R. Huang, D. P. Siddons, A. T. Macrander, R. W. Peng, and X. S. Wu

2012-05-31T23:59:59.000Z

385

Development of x-ray photoelectron microscope with an x-ray laser source  

Science Journals Connector (OSTI)

We have constructed an x-ray photoelectron microscopic system with an x-ray laser as an x-ray source. The lasing line is the Li-like Al 3d-4f transition at 15.47 nm where the recombining Al plasma is used as the x-ray laser medium. The beam from the x-ray laser cavity was then focused by using a Schwarzschild mirror coated with Mo/Si multilayers. The x-ray beam size with a diameter less than 0.5 ?m and the estimated photon number of about 2×10 6 ? photons/shot into the spot were achieved.

Tadayuki Ohchi; Naohiro Yamaguchi; Chiemi Fujikawa; Tamio Hara; Katsumi Watanabe; Ibuki Tanaka; Masami Taguchi

2000-01-01T23:59:59.000Z

386

ON THE X-RAY OUTBURSTS OF TRANSIENT ANOMALOUS X-RAY PULSARS AND SOFT GAMMA-RAY REPEATERS  

SciTech Connect

We show that the X-ray outburst light curves of four transient anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), namely, XTE J1810-197, SGR 0501+4516, SGR 1627-41, and CXOU J164710.2-455216, can be produced by the fallback disk model that was also applied to the outburst light curves of persistent AXPs and SGRs in our earlier work. The model solves the diffusion equation for the relaxation of a disk that has been pushed back by a soft gamma-ray burst. The sets of main disk parameters used for these transient sources are very similar to each other and to those employed in our earlier models of persistent AXPs and SGRs. There is a characteristic difference between the X-ray outburst light curves of transient and persistent sources. This can be explained by the differences in the disk surface density profiles of the transient and persistent sources in quiescence indicated by their quiescent X-ray luminosities. Our results imply that a viscous disk instability operating at a critical temperature in the range of {approx}1300-2800 K is a common property of all fallback disks around AXPs and SGRs. The effect of the instability is more pronounced and starts earlier for the sources with lower quiescent luminosities, which leads to the observable differences in the X-ray enhancement light curves of transient and persistent sources. A single active disk model with the same basic disk parameters can account for the enhancement phases of both transient and persistent AXPs and SGRs. We also present a detailed parameter study to show the effects of disk parameters on the evolution of the X-ray luminosity of AXPs and SGRs in the X-ray enhancement phases.

Cal Latin-Small-Letter-Dotless-I skan, Sirin; Ertan, Uenal [Sabanc Latin-Small-Letter-Dotless-I University, Orhanl Latin-Small-Letter-Dotless-I -Tuzla, Istanbul, 34956 (Turkey)

2012-10-20T23:59:59.000Z

387

Performance dependence of hybrid x-ray computed tomography/fluorescence molecular  

E-Print Network (OSTI)

Performance dependence of hybrid x-ray computed tomography/fluorescence molecular tomography imaging systems combining x-ray computed tomography (CT) and fluorescence tomography can im- prove Ntziachristos2 1 Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Ave

Miller, Eric

388

Masked deposition techniques for achieving multilayer period variations required for short-wavelength (68-Å) soft-x-ray imaging optics  

Science Journals Connector (OSTI)

Practical issues in the development of multilayer coatings for reflective imaging systems operating at ? ? 68 Å are discussed. The 1% bandpass of Ru/B4C multilayers at this...

Kortright, J B; Gullikson, E M; Denham, P E

1993-01-01T23:59:59.000Z

389

High speed x-ray beam chopper  

DOE Patents (OSTI)

A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.

McPherson, Armon (Oswego, IL); Mills, Dennis M. (Naperville, IL)

2002-01-01T23:59:59.000Z

390

X-ray laser frequency near-doubling and generation of tunable coherent x rays in plasma  

E-Print Network (OSTI)

X-ray laser frequency near-doubling and generation of tunable coherent x rays in plasma P. L plasmas in which efficient x-ray laser frequency near-doubling is expected for a number of available x-ray of coherent x rays and tunable optical radiation may result in tunable coherent x-ray radiation powerful

Kaplan, Alexander

391

Densitometric evaluation of intraoral x-ray films: Ektaspeed versus Ultraspeed  

SciTech Connect

Recently a new speed E intraoral dental x-ray film was introduced by the Eastman Kodak Company in order to reduce the radiation dose to the patient. In the present study the new higher-speed EP21 film was compared with the speed D DF58 film with regard to speed and quality (fog plus base, sharpness, resolution, and contrast) of the resulting images. Results showed no deterioration in the image with 50% dose reduction when the EP21 film was used as compared to the DF58 film. Therefore, this new type of film is highly recommended for routine radiographic examinations.

Kaffe, I.; Littner, M.M.; Kuspet, M.E.

1984-03-01T23:59:59.000Z

392

X-RAY MICROBEAM SPEECH PRODUCTION DATABASE  

E-Print Network (OSTI)

X-RAY MICROBEAM SPEECH PRODUCTION DATABASE USER'S HANDBOOK Version 1.0 (June 1994) prepared by John . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter Two: XRMB History

393

X-ray laser microscope apparatus  

DOE Patents (OSTI)

A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

Suckewer, Szymon (Princeton, NJ); DiCicco, Darrell S. (Plainsboro, NJ); Hirschberg, Joseph G. (Coral Gables, FL); Meixler, Lewis D. (East Windsor, NJ); Sathre, Robert (Princeton, NJ); Skinner, Charles H. (Lawrenceville, NJ)

1990-01-01T23:59:59.000Z

394

Automation in X-Ray Crystallography  

Science Journals Connector (OSTI)

Automation in X-Ray Crystallography ... But in the past few years, automation procedures have been applied to intrinsically superior experimental methods. ...

S.C. ABRAHAMS

1963-06-03T23:59:59.000Z

395

X-Ray Laser Sources for Microscopy  

Science Journals Connector (OSTI)

Progress and prospects in soft X-ray laser development at Princeton are presented. A comparison to plasma and synchrotron sources is made with a...

C. H. Skinner; D. E. Kim; A. Wouters; D. Voorhees; S. Suckewer

1988-01-01T23:59:59.000Z

396

Compound refractive X-ray lens  

DOE Patents (OSTI)

An apparatus and method for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point.

Nygren, David R. (Berkeley, CA); Cahn, Robert (Walnut Creek, CA); Cederstrom, Bjorn (Traellborg, SE); Danielsson, Mats (Stocksund, SE); Vestlund, Jonas (Stockholm, SE)

2000-01-01T23:59:59.000Z

397

X-Ray Science Division (XSD)  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Science Division (XSD) Search Button About Welcome Overview Visiting the APS Mission & Goals Find People Organization Charts Committees Job Openings User Information...

398

X-Ray Radiation from Nonlinear Thomson Scattering of an Intense Femtosecond Laser on Relativistic Electrons in a Helium Plasma  

E-Print Network (OSTI)

X-Ray Radiation from Nonlinear Thomson Scattering of an Intense Femtosecond Laser on Relativistic laser beam on plasma electrons. A collimated x-ray radiation with a broad continuous spectrum peaked by the ultraintense laser fields. The results show the existence of several physical mecha- nisms for the x-ray

Umstadter, Donald

399

X-ray spectroscopy of neutron star low-mass X-ray binaries  

E-Print Network (OSTI)

In this thesis, I present work spanning a variety of topics relating to neutron star lowmass X-ray binaries (LMXBs) and utilize spectral information from X-ray observations to further our understanding of these sources. ...

Krauss, Miriam Ilana

2007-01-01T23:59:59.000Z

400

X-ray Diffraction (XRD) 1.0 What is X-ray Diffraction  

E-Print Network (OSTI)

X-ray Diffraction (XRD) · 1.0 What is X-ray Diffraction · 2.0 Basics of Crystallography · 3.0 Production of X-rays · 4.0 Applications of XRD · 5.0 Instrumental Sources of Error · 6.0 Conclusions #12 why the cleavage faces of crystals appear to reflect X-ray beams at certain angles of incidence (theta

Moeck, Peter

Note: This page contains sample records for the topic "x-ray imaging shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The Ultra Luminous X-ray sources in the High Velocity System of NGC 1275  

E-Print Network (OSTI)

We report the results of a study of X-ray point sources coincident with the High Velocity System (HVS) projected in front of NGC 1275. A very deep X-ray image of the core of the Perseus cluster made with the Chandra Observatory has been used. We find a population of Ultra-Luminous X-ray sources (ULX; 7 sources with LX [0.5-7 keV] > 7x10^39 erg/s). As with the ULX populations in the Antennae and Cartwheel galaxies, those in the HVS are associated with a region of very active star formation. Several sources have possible optical counterparts found on HST images, although the X-ray brightest one does not. Absorbed power-law models fit the X-ray spectra, with most having a photon index between 2 and 3.

O. Gonzalez-Martin; A. C. Fabian; J. S. Sanders

2006-01-09T23:59:59.000Z

402

Aneta Siemiginowska Chandra X-ray Center  

E-Print Network (OSTI)

-ray and gamma-ray · High Energy Sky · Chandra X-ray Observatory · examples of typical X-ray data, · an example of a data analysis process · statistical challenges · what do we learn from the data? #12;What is Astronomy and phenomena do we study and how? Solar System: Sun and sollar wind, planets, moons, asteroids, comets Our

Wolfe, Patrick J.

403

Watershed in X-ray Astronomy  

Science Journals Connector (OSTI)

... extent the article on page 96 of this issue of Nature from the X-ray astronomy group at the Massachusetts Institute of Technology is a record of disappointments. That is ... near the galactic centre. Now that the first satellite to be devoted to X-ray astronomy has been launched, and is apparently working successfully, the MIT article and another from ...

1971-01-08T23:59:59.000Z

404

X-Ray Identification of Element 104  

Science Journals Connector (OSTI)

The daughter x-ray identification technique has been applied to the identification of element 104. The characteristic K-series x rays from the ?-decay daughter isotope, nobelium (Z=102), have been observed in coincidence with ? particles from the decay of 4.5-sec 104257, thus providing an unequivocal determination of the parent atomic number, Z=104.

C. E. Bemis; Jr.; R. J. Silva; D. C. Hensley; O. L. Keller; Jr.; J. R. Tarrant; L. D. Hunt; P. F. Dittner; R. L. Hahn; C. D. Goodman

1973-09-03T23:59:59.000Z

405

Confusion of Diffuse Objects in the X-ray Sky  

E-Print Network (OSTI)

Most of the baryons in the present-day universe are thought to reside in intergalactic space at temperatures of 10^5-10^7 K. X-ray emission from these baryons contributes a modest (~10%) fraction of the ~ 1 keV background whose prominence within the large-scale cosmic web depends on the amount of non-gravitational energy injected into intergalactic space by supernovae and AGNs. Here we show that the virialized regions of groups and clusters cover over a third of the sky, creating a source-confusion problem that may hinder X-ray searches for individual intercluster filaments and contaminate observations of distant groups.

G. Mark Voit; August E. Evrard; Greg L. Bryan

2000-12-08T23:59:59.000Z

406

Quantitative Measurements of X-ray Intensity  

SciTech Connect

This chapter describes the characterization of several X-ray sources and their use in calibrating different types of X-ray cameras at National Security Technologies, LLC (NSTec). The cameras are employed in experimental plasma studies at Lawrence Livermore National Laboratory (LLNL), including the National Ignition Facility (NIF). The sources provide X-rays in the energy range from several hundred eV to 110 keV. The key to this effort is measuring the X-ray beam intensity accurately and traceable to international standards. This is accomplished using photodiodes of several types that are calibrated using radioactive sources and a synchrotron source using methods and materials that are traceable to the U.S. National Institute of Standards and Technology (NIST). The accreditation procedures are described. The chapter begins with an introduction to the fundamental concepts of X-ray physics. The types of X-ray sources that are used for device calibration are described. The next section describes the photodiode types that are used for measuring X-ray intensity: power measuring photodiodes, energy dispersive photodiodes, and cameras comprising photodiodes as pixel elements. Following their description, the methods used to calibrate the primary detectors, the power measuring photodiodes and the energy dispersive photodiodes, as well as the method used to get traceability to international standards are described. The X-ray source beams can then be measured using the primary detectors. The final section then describes the use of the calibrated X-ray beams to calibrate X-ray cameras. Many of the references are web sites that provide databases, explanations of the data and how it was generated, and data calculations for specific cases. Several general reference books related to the major topics are included. Papers expanding some subjects are cited.

Haugh, M. J., Schneider, M.

2011-09-01T23:59:59.000Z

407

Depleted uranium ( U 238 92 ) induced preionization for enhanced and reproducible x-ray emission from plasma focus  

Science Journals Connector (OSTI)

The effect of preionization induced by depleted uranium ( U 238 92 ) around the insulator sleeve on the x-ray emission of ( 2.3 – 3.9 kJ ) plasma focusdevice is investigated by employing Quantrad Si p - i - n diodes and a multipinhole camera. X-ray emission in 4 ? geometry is measured as a function of charging voltage with and without preionization. It is found that the preionization enhances Cu K ? and total x-ray yield about 100% broadens the x-ray emission pressure range and x-ray pulse width and improves shot to shot reproducibility of plasma focus operation. The pinhole images of x-ray emitting zones indicate that dominant x-ray emission is from the anode tip.

S. Ahmad; M. Shafiq; M. Zakaullah; A. Waheed

2006-01-01T23:59:59.000Z

408

Soft x-ray laser microscope. Final report  

SciTech Connect

The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL`s 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si{sub 3}N{sub 4}) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

Suckewer, P.I.

1990-10-01T23:59:59.000Z

409

X-ray Practicals Series 1 Advanced Data Reduction  

E-Print Network (OSTI)

X-ray Practicals Series 1 Advanced Data Reduction Instructor J. Reibenspies, Ph. D. Nattamai Bhuvanesh, Ph.D. Version 1.0.0 #12;X-ray Practicals Series 2 #12;X-ray Practicals Series 3 #12;X-ray is good. The y direction is shifting the most, but the shift is ok #12;X-ray Practicals Series 5 Other

Meagher, Mary

410

Using ACIS on the Chandra X-ray Observatory as a particle radiation monitor  

E-Print Network (OSTI)

The Advanced CCD Imaging Spectrometer (ACIS) is one of two focal-plane instruments on the Chandra X-ray Observatory. During initial radiation-belt passes, the exposed ACIS suffered significant radiation damage from trapped ...

Grant, Catherine E.

411

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution  

NLE Websites -- All DOE Office Websites (Extended Search)

New Zone Plate for Soft X-Ray New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print Wednesday, 31 August 2005 00:00 Analytical tools that combine spatial resolution with elemental and chemical identification at the nanometer scale along with large penetration depth are indispensable for the life and physical sciences. The XM-1 soft x-ray microscope at the ALS produces images that not only reveal structures but can identify their chemical elements and measure magnetic and other properties as well. Now a new method for creating optical devices with nanoscale accuracy has allowed researchers in Berkeley Lab's Center for X-Ray Optics (CXRO), which built and operates the XM-1, to achieve an extraordinary resolution of better than 15 nm, with the promise of even higher resolution in the near future.

412

Using computational modeling to compare X-ray tube Practical Peak Voltage for Dental Radiology  

Science Journals Connector (OSTI)

Abstract The Practical Peak Voltage-PPV has been adopted to measure the voltage applied to an X-ray tube. The PPV was recommended by the IEC document and accepted and published in the TRS no. 457 code of practice. The PPV is defined and applied to all forms of waves and is related to the spectral distribution of X-rays and to the properties of the image. The calibration of X-rays tubes was performed using the MCNPX Monte Carlo code. An X-ray tube for Dental Radiology (operated from a single phase power supply) and an X-ray tube used as a reference (supplied from a constant potential power supply) were used in simulations across the energy range of interest of 40 kV to 100 kV. Results obtained indicated a linear relationship between the tubes involved.

Deisemar Holanda Cassiano; Samanda Cristine Arruda Correa; Edmilson Monteiro de Souza; Ademir Xaxier da Silva; José Guilherme Pereira Peixoto; Ricardo Tadeu Lopes

2014-01-01T23:59:59.000Z

413

A RADIO-SELECTED BLACK HOLE X-RAY BINARY CANDIDATE IN THE MILKY WAY GLOBULAR CLUSTER M62  

SciTech Connect

We report the discovery of a candidate stellar-mass black hole in the Milky Way globular cluster M62. We detected the black hole candidate, which we call M62-VLA1, in the core of the cluster using deep radio continuum imaging from the Karl G. Jansky Very Large Array. M62-VLA1 is a faint source with a flux density of 18.7 ± 1.9 ?Jy at 6.2 GHz and a flat radio spectrum (? = –0.24 ± 0.42, for S{sub ?} = ?{sup ?}). M62 is the second Milky Way cluster with a candidate stellar-mass black hole; unlike the two candidate black holes previously found in the cluster M22, M62-VLA1 is associated with a Chandra X-ray source, supporting its identification as a black hole X-ray binary. Measurements of its radio and X-ray luminosity, while not simultaneous, place M62-VLA1 squarely on the well-established radio-X-ray correlation for stellar-mass black holes. In archival Hubble Space Telescope imaging, M62-VLA1 is coincident with a star near the lower red giant branch. This possible optical counterpart shows a blue excess, H? emission, and optical variability. The radio, X-ray, and optical properties of M62-VLA1 are very similar to those for V404 Cyg, one of the best-studied quiescent stellar-mass black holes. We cannot yet rule out alternative scenarios for the radio source, such as a flaring neutron star or background galaxy; future observations are necessary to determine whether M62-VLA1 is indeed an accreting stellar-mass black hole.

Chomiuk, Laura; Ransom, Scott [National Radio Astronomy Observatory, 520 Edgemont Rd, Charlottesville, VA (United States); Strader, Jay [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Maccarone, Thomas J. [Department of Physics, Texas Tech University, Box 41051, Lubbock, TX 79409-1051 (United States); Miller-Jones, James C. A. [International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Heinke, Craig [Department of Physics, University of Alberta, 4-183 CCIS, Edmonton, AB T6G 2E1 (Canada); Noyola, Eva [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico (UNAM), A. P. 70-264, 04510 (Mexico); Seth, Anil C., E-mail: chomiuk@pa.msu.edu [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States)

2013-11-01T23:59:59.000Z

414

X-ray sources in globular clusters  

E-Print Network (OSTI)

The twelve bright (Lx>10(36) erg/s) X-ray sources in the globular clusters have lower luminosities than the brightest sources in the bulge of our galaxy. The dim (Lx<10(35) erg/s) X-ray sources in globular clusters reach higher luminosities than the cataclysmic variables in the disk of our galaxy. The first difference is a statistical fluke, as comparison with M31 indicates. The second difference is explained because the brightest of the dim sources are not cataclysmic variables, but soft X-ray transients in quiescence. This article describes the BeppoSAX, ROSAT and first Chandra observations leading to these conclusions.

Frank Verbunt

2001-11-22T23:59:59.000Z

415

X-RAY EMISSION FROM PLANETS AND COMETS: RELATIONSHIP WITH SOLAR X-RAYS AND SOLAR WIND  

E-Print Network (OSTI)

with the occurrence of solar X-ray flare, when light travel time delay is accounted, suggesting that X-rays fromX-RAY EMISSION FROM PLANETS AND COMETS: RELATIONSHIP WITH SOLAR X-RAYS AND SOLAR WIND ANIL BHARDWAJ Flight center, Greenbelt, MD 20771, USA Scattering of solar X-ray radiation mainly produces the non

Ã?stgaard, Nikolai

416

X-Ray Diffraction The X-Ray Diffraction facility is equipped with state-of-the-art  

E-Print Network (OSTI)

X-Ray Diffraction The X-Ray Diffraction facility is equipped with state-of-the-art diffractometers offering both single crystal and powder X-Ray diffraction. Powder X-Ray Diffraction High resolution data For more details on powder X-Ray analysis contact Dr J Hriljac on 0121 414 4458 or email: j

Birmingham, University of

417

NEAR-INFRARED PROPERTIES OF THE X-RAY-EMITTING YOUNG STELLAR OBJECTS IN THE CARINA NEBULA  

SciTech Connect

The Great Nebula in Carina (NGC 3372) is the best target to study in detail the process of violent massive star formation and the resulting feedback effects of cloud dispersal and triggered star formation. While the population of massive stars is rather well studied, the associated low-mass stellar population was largely unknown up to now. The near-infrared study in this paper builds on the results of the Chandra Carina Complex Project, that detected 14,368 X-ray sources in the 1.4 deg{sup 2} survey region, an automatic source classification study that classified 10,714 of these X-ray sources as very likely young stars in Carina, and an analysis of the clustering properties of the X-ray-selected Carina members. In order to determine physical properties of the X-ray-selected stars, most of which were previously unstudied, we used HAWK-I at the ESO Very Large Telescope to conduct a very deep near-IR survey with subarcsecond angular resolution, covering an area of about 1280 arcmin{sup 2}. The HAWK-I images reveal more than 600,000 individual infrared sources, whereby objects as faint as J {approx} 23, H {approx} 22, and K{sub s} {approx} 21 are detected at signal-to-noise ratio (S/N) {>=}3. While less than half of the Chandra X-ray sources have counterparts in the Two Micron All Sky Survey catalog, the {approx}5 mag deeper HAWK-I data reveal infrared counterparts to 6636 (=88.8%) of the 7472 Chandra X-ray sources in the HAWK-I field. We analyze near-infrared color-color and color-magnitude diagrams to derive information about the extinctions, infrared excesses (as tracers for circumstellar disks), ages, and masses of the X-ray-selected objects. The near-infrared properties agree well with the results of the automatic X-ray source classification, showing that the remaining contamination in the X-ray-selected sample of Carina members is very low ({approx}<7%). The shape of the K-band luminosity function of the X-ray-selected Carina members agrees well with that derived for the Orion Nebula Cluster, suggesting that, down to the X-ray detection limit around 0.5-1 M{sub sun}, the shape of the initial mass function (IMF) in Carina is consistent with that in Orion (and thus the field IMF). The fraction of stars with near-infrared excesses is rather small, {approx}<10%, but shows considerable variations between individual parts of the complex. The distribution of extinctions for the diskless stars ranges from {approx}1.6 mag to {approx}6.2 mag (central 80th percentile), clearly showing a considerable range of differential extinction between individual stars in the complex.

Preibisch, Thomas [Universitaets-Sternwarte Muenchen, Ludwig-Maximilians-Universitaet, Scheinerstr. 1, 81679 Muenchen (Germany); Hodgkin, Simon; Irwin, Mike; Lewis, James R. [Cambridge Astronomical Survey Unit, Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); King, Robert R. [Astrophysics Group, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QL (United Kingdom); McCaughrean, Mark J. [European Space Agency, Research and Scientific Support Department, ESTEC, Postbus 299, 2200 AG Noordwijk (Netherlands); Zinnecker, Hans [Deutsches SOFIA Institut, Universitaet Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany); Townsley, Leisa; Broos, Patrick [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park PA 16802 (United States)

2011-05-01T23:59:59.000Z

418

The Host Galaxies of X-ray Quasars Are Not Strong Star Formers  

E-Print Network (OSTI)

We use ultradeep SCUBA-2 850um observations (~0.37 mJy rms) of the 2 Ms CDF-N and 4 Ms CDF-S X-ray fields to examine the amount of dusty star formation taking place in the host galaxies of high-redshift X-ray AGNs. Supplementing with COSMOS, we measure the submillimeter fluxes of the 4-8 keV sources at z>1, finding little flux at the highest X-ray luminosities but significant flux at intermediate luminosities. We determine grey body and MIR luminosities by fitting spectral energy distributions to each X-ray source and to each radio source in an ultradeep Karl G. Jansky VLA 1.4 GHz (11.5uJy at 5-sigma) image of the CDF-N. We confirm the FIR-radio and MIR-radio correlations to z=4 using the non-X-ray detected radio sources. Both correlations are also obeyed by the X-ray less luminous AGNs but not by the X-ray quasars. We interpret the low FIR luminosities relative to the MIR for the X-ray quasars as being due to a lack of star formation, while the MIR stays high due to the AGN contribution. We find that the FIR...

Barger, A J; Owen, F N; Chen, C -C; Hasinger, G; Hsu, L -Y; Li, Y

2014-01-01T23:59:59.000Z

419

The Large Scale X-ray Emission from M87  

E-Print Network (OSTI)

We describe asymmetrical features in a long exposure X-ray map of M87 made with the ROSAT High Resolution Imager (HRI). A bright triangular region is marked by a linear `spur' along one edge. The structure of this spur suggests an interpretation of a tangential view of a shock front 18 kpc long. None of the brighter features are spatially coincident with radio or optical structures so we concur with earlier investigators that most of the emission arises from thermal processes.

D. E. Harris; J. A. Biretta; W. Junor

1998-04-20T23:59:59.000Z

420

X-ray emission line profile modeling of hot stars Roban H. Kramer  

E-Print Network (OSTI)

In cooler stars, like the Sun, x rays are produced in coronas, which are high-temperature regions near quantitative information about the spatial distribution and velocity of the x-ray-emitting and absorbing plasma 106 L and surface temperatures T 3 T ) show the signatures of rapidly expanding winds, with velocities

Cohen, David

Note: This page contains sample records for the topic "x-ray imaging shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Characterization of X-UV multilayers by grazing incidence X-ray reflectometry  

E-Print Network (OSTI)

1675 Characterization of X-UV multilayers by grazing incidence X-ray reflectometry L. Nevot, B of the performance at other wavelengths appears rather doubtful. We show how grazing incidence X-ray reflectometry], microelectronics [3], neutron optics [4] and X-UV optics [5]. In the last case, the stacks are made of alternating

Boyer, Edmond

422

Modification of the TASMIP x-ray spectral model for the simulation of microfocus x-ray sources  

SciTech Connect

Purpose: The availability of accurate and simple models for the estimation of x-ray spectra is of great importance for system simulation, optimization, or inclusion of photon energy information into data processing. There is a variety of publicly available tools for estimation of x-ray spectra in radiology and mammography. However, most of these models cannot be used directly for modeling microfocus x-ray sources due to differences in inherent filtration, energy range and/or anode material. For this reason the authors propose in this work a new model for the simulation of microfocus spectra based on existing models for mammography and radiology, modified to compensate for the effects of inherent filtration and energy range. Methods: The authors used the radiology and mammography versions of an existing empirical model [tungsten anode spectral model interpolating polynomials (TASMIP)] as the basis of the microfocus model. First, the authors estimated the inherent filtration included in the radiology model by comparing the shape of the spectra with spectra from the mammography model. Afterwards, the authors built a unified spectra dataset by combining both models and, finally, they estimated the parameters of the new version of TASMIP for microfocus sources by calibrating against experimental exposure data from a microfocus x-ray source. The model was validated by comparing estimated and experimental exposure and attenuation data for different attenuating materials and x-ray beam peak energy values, using two different x-ray tubes. Results: Inherent filtration for the radiology spectra from TASMIP was found to be equivalent to 1.68 mm Al, as compared to spectra obtained from the mammography model. To match the experimentally measured exposure data the combined dataset required to apply a negative filtration of about 0.21 mm Al and an anode roughness of 0.003 mm W. The validation of the model against real acquired data showed errors in exposure and attenuation in line with those reported for other models for radiology or mammography. Conclusions: A new version of the TASMIP model for the estimation of x-ray spectra in microfocus x-ray sources has been developed and validated experimentally. Similarly to other versions of TASMIP, the estimation of spectra is very simple, involving only the evaluation of polynomial expressions.

Sisniega, A.; Vaquero, J. J., E-mail: juanjose.vaquero@uc3m.es [Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid ES28911 (Spain); Instituto de Investigación Sanitaria Gregorio Marañón, Madrid ES28007 (Spain); Desco, M. [Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid ES28911 (Spain) [Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid ES28911 (Spain); Instituto de Investigación Sanitaria Gregorio Marañón, Madrid ES28007 (Spain); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid ES28029 (Spain)

2014-01-15T23:59:59.000Z

423

X-ray Absorption Spectroscopy of Biologically Relevant Systems  

E-Print Network (OSTI)

308, Messer, B. M. X-ray Absorption Spectroscopy of AqueousSarcosine via X-ray Absorption Spectroscopy 5.1 Introductionwith Carboxylate by X-Ray Absorption Spectroscopy of Liquid

Uejio, Janel Sunayo

2010-01-01T23:59:59.000Z

424

Compact X-Ray Light Source Workshop | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Compact X-Ray Light Source Workshop Compact X-Ray Light Source Workshop Teller R, Terminello L, Thevuthasan T, Moncton D. 2012. "Compact X-Ray Light Source Workshop Report."...

425

X-ray fluorescence observations of the moon by SMART-1/D-CIXS and the first detection of Ti Ka from the lunar surface  

E-Print Network (OSTI)

X-ray fluorescence observations of the moon by SMART-1/D-CIXS and the first detection of Ti Ka from s t r a c t The demonstration of a compact imaging X-ray spectrometer (D-CIXS), which flew on ESA new technologies for orbital X-ray fluorescence spectroscopy. D-CIXS conducted observations

Wieczorek, Mark

426

Soft x-ray laser holography with wavelength P. W. Wachulak, M. C. Marconi,* R. A. Bartels, C. S. Menoni, and J. J. Rocca  

E-Print Network (OSTI)

Soft x-ray laser holography with wavelength resolution P. W. Wachulak, M. C. Marconi,* R. A the tabletop acquisition of soft x-ray holographic images of nanostructures with a spatial resolution of 46 using a compact, tabletop capillary-discharge soft x-ray laser emitting at 46.9 nm in a high

Rocca, Jorge J.

427

APS Bending Magnet X-rays and  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiation of Nd-Fe-B Permanent Magnets with Irradiation of Nd-Fe-B Permanent Magnets with APS Bending Magnet X-rays and 60 Co γ-rays J. Alderman and P.K. Job APS Operations Division Advanced Photon Source J. Puhl Ionizing Radiation Division National Institute of Standards and Technology June 2000 Table of Contents Introduction Radiation-Induced Demagnetization of Permanent Magnets Resources Required γ-ray Irradiation Results and Analysis of γ-ray Irradiation X-ray Irradiation Results and Analysis of X-ray Irradiation Summary and Conclusions Acknowledgements References Tables and Figures Introduction The Advanced Photon Source (APS), as well as other third-generation synchrotron light sources, uses permanent magnets in the insertion devices to produce x-rays for scientific

428

Ultrafast X-Ray Sources and Science  

Science Journals Connector (OSTI)

X-ray science is entering the ultrafast and ultraintense era - spurred by developments in coherent, short-wavelength sources that range from tabletop to accelerator-based. These...

Young, Linda

429

X-ray induced optical reflectivity  

The change in optical reflectivity induced by intense x-ray pulses can now be used to study ultrafast many body responses in solids in the femtosecond time domain. X-ray absorption creates photoelectrons and core level holes subsequently filled by Auger or fluorescence processes, and these excitations ultimately add conduction and valence band carriers that perturb optical reflectivity.Optical absorption associated with band filling and band gap narrowing is shown to explain the basic features found in recent measurements on an insulator (silicon nitride, Si3N4), a semiconductor(gallium arsenide,GaAs), and a metal (gold,Au), obtained with ?100 fs x-ray pulses at 500-2000 eV and probed with 800 nm laser pulses. In particular GaAs exhibits an abrupt drop in reflectivity, persisting only for a time comparable to the x-ray excitation pulse duration, consistent with prompt band gap narrowing.

Durbin, Stephen M.

2012-01-01T23:59:59.000Z

430

SMB, X-ray Emission Spectroscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Emission Spectroscopy Beam Line 6-2b X-ray Emission Spectroscopy Beam Line 6-2b is an advanced spectroscopy experimental station on the multidisciplinary general user wiggler Beam...

431

X-raying galaxies: A Chandra legacy  

Science Journals Connector (OSTI)

...Astronomy, University of Massachusetts, Amherst, MA 01003 This presentation...stellar x-ray sources in the solar neighborhood (8). The...elements—Meteoritic and solar . Geochim Cosmochim Acta 53...Astronomy, University of Massachusetts, Amherst, MA 01003, USA...

Q. Daniel Wang

2010-01-01T23:59:59.000Z

432

Small Angle X-Ray Scattering Detector  

DOE Patents (OSTI)

A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

Hessler, Jan P.

2004-06-15T23:59:59.000Z

433

X-Ray Nanoimaging: Instruments and Methods  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Nanoimaging: Instruments and Methods To be held as part of SPIE. http:spie.orgOP318 August 28-29, 2013; San Diego, California, USA...

434

Femtosecond X-ray protein nanocrystallography  

NLE Websites -- All DOE Office Websites (Extended Search)

Femtosecond X-ray protein nanocrystallography Authors: Chapman, H.N., Fromme, P., Barty, A., White, T.A., Kirian, R.A., Aquila, A., Hunter, M.S., Schulz, J., DePonte, D.P.,...

435

January 15, 1992 / Vol. 17, No. 2 / OPTICS LETTERS First stage in the development of a soft-x-ray reflection  

E-Print Network (OSTI)

rough- ness). The Schwarzschild objective is made of a large concave mirror and a small convex mirror-x-ray reflection imaging microscope in the Schwarzschild configuration using a soft-x-ray laser at 18.2nm D. S. Di in the Schwarzschild configuration. A soft-x-ray laser operating at 18.2nm was used as the x-ray source. Mo

Kim, Jae-Hoon

436

Full-field Transmission X-ray Microscopy | Stanford Synchrotron Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

BL6-2c / Transmission X-ray Microscopy BL6-2c / Transmission X-ray Microscopy Home Researchers Publications Science Highlights Department of Energy Office of Science Search form Search Search TXM Search Full-field Transmission X-ray Microscopy Capabilities Full-field TXM is an excellent method to examine nanoscale heterogeneties in many materials, including complex hierarchical systems such as catalysts, fuel cells and battery electrodes, and biological and environmental samples, at 30 nm resolution.The transmission X-ray microscope (TXM) on beam line 6-2c at SSRL is capable of 2D imaging and tomography, as well as spectroscopic imaging for 2D and 3D elemental mapping and chemical mapping over tens of microns (up to mm in 2D). The field of view (FOV) is 30 microns, but mosaic images can be collected to

437

Using X-Ray Computed Tomography in Pore Structure Characterization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Using X-Ray Computed Tomography in Pore Structure Characterization for a Berea Sandstone: Resolution Effect. Using X-Ray Computed Tomography in Pore Structure Characterization for...

438

X-rays at Solid-Liquid Surfaces  

SciTech Connect

Solid-liquid interfaces play an important role in many areas of current and future technologies, and in our biosphere. They play a key role in the development of nanofluidics and nanotribology, which sensitively depend on our knowledge of the microscopic structures and phenomena at the solid-liquid interface. The detailed understanding of how a fluid meets a wall is also a theoretical challenge. In particular, the phenomena at repulsive walls are of interest, since they affect many different phenomena, such as water-repellent surfaces or the role of the hydrophobic interaction in protein folding. Recent x-ray reflectivity studies of various solid-liquid interfaces have disclosed rather intriguiing phenomena, which will be discussed in this lecture: premelting of ice in contact with silica; liquid Pb in contact with Si; water in contact with hydrophobic surfaces. These experiments, carried out with high-energy x-ray microbeams, reveal detailed insight into the liquid density profile closest to the wall. A detailed insight into atomistic phenomena at solid-liquid interfaces is also a prerequisite in the microscopic control of electrochemical reactions at interfaces. Recent x-ray studies show the enormous future potential of such non-destructive analytical tools for the in situ observation of (electro-)chemical surface reactions. This lecture will review recent x-ray experiments on solid-liquid interfaces.

Dosch, Helmut (Max Planck Institute for Metals Research) [Max Planck Institute for Metals Research

2007-05-02T23:59:59.000Z

439

The Constellation X-ray mission  

Science Journals Connector (OSTI)

The Constellation-X mission is a large collecting area X-ray facility, emphasizing observations at high spectral resolution (E/?E?300–3000) while covering a broad energy band (0.25–40 keV). By increasing the telescope aperture and utilizing efficient spectrometers the mission will achieve a factor of 100 increased sensitivity over current high-resolution X-ray spectroscopy missions. The use of focussing optics across the 10–40 keV band will provide a similar factor of 100 increased sensitivity in this band. Key technologies under development for the mission include lightweight high throughput X-ray optics, multilayer coatings to enhance the hard X-ray performance of X-ray optics, micro-calorimeter spectrometer arrays with 2 eV resolution, low-power and low-weight CCD arrays, lightweight gratings and hard X-ray detectors. When observations commence towards the end of the next decade, Constellation-X will address many pressing questions concerning the extremes of gravity and the evolution of the Universe.

N.E White; H Tananbaum

1999-01-01T23:59:59.000Z

440

Compton backscattered collimated x-ray source  

DOE Patents (OSTI)

A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

Ruth, R.D.; Huang, Z.

1998-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray imaging shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Compton backscattered collmated X-ray source  

DOE Patents (OSTI)

A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

2000-01-01T23:59:59.000Z

442

Compton backscattered collimated x-ray source  

DOE Patents (OSTI)

A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

1998-01-01T23:59:59.000Z

443

X-ray views of neutron star low-mass X-ray binaries  

E-Print Network (OSTI)

A neutron star low-mass X-ray binary is a binary stellar system with a neutron star and a low-mass companion star rotating around each other. In this system the neutron star accretes mass from the companion, and as this matter falls into the deep potential well of the neutron star, the gravitational potential energy is released primarily in the X-ray wavelengths. Such a source was first discovered in X-rays in 1962, and this discovery formally gave birth to the "X-ray astronomy". In the subsequent decades, our knowledge of these sources has increased enormously by the observations with several X-ray space missions. Here we give a brief overview of our current understanding of the X-ray observational aspects of these systems.

Sudip Bhattacharyya

2010-02-24T23:59:59.000Z

444

X-ray Microscopy and Imaging: FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

Frequently Asked Questions Frequently Asked Questions How to get beamtime ? 80% and more of our beamtime is awarded to General Users through the General User Proposal system. So, in order to receive beamtime for an experiment you have in mind, you would have to complete a short proposal form (specific instructions as to deadlines, etc), which can be found following this link. We are well oversubscribed, so prospective users may not get beamtime the first time they apply, but as proposals age, the score increases. Often, it is helpful for 'new' users to contact beamline staff first before submitting, so that potential pitfalls in experiments are avoided. For that purpose, you may wish to browse our webpages, and see who does what kind of science and applications, and directly email the person you think is most likely appropriate. When in doubt, you can also always send an email to Qun Shen, who then will make sure it reaches the appropriate people.

445

X-Ray Imaging March 28, 2012  

E-Print Network (OSTI)

Radiation Dose Ranges ( Rem ) 0 1 2 3 4 5 6 7 8 9 10 rem 0 10 20 30 40 50 60 70 80 90 100 mrem DOE, NRC dose for workers: 5 rem/yr (50 mSv/yr) Dose Equivalent: 100 rem = 1 Sievert = (absorbed dose x radiation quality limit from release in air: 10 mrem/yr DOE Low Dose Program Estimated dose for 3-yr Mars mission (current

Chandra, Premi

446

Application of X-ray synchrotron microscopy instrumentation in biology  

SciTech Connect

X-ray micro-fluorescence imaging technique has been used as a significant tool in order to investigate minerals contents in some kinds of materials. The aim of this study was to evaluate the elemental distribution of calcium and zinc in bone substitute materials (nano-hydroxyapatite spheres) and cortical bones through X-Ray Micro-fluorescence analysis with the increment of Synchrotron Radiation in order to evaluate the characteristics of the newly formed bone and its interface, the preexisting bone and biomaterials by the arrangement of collagen fibers and its birefringence. The elemental mapping was carried out at Brazilian Synchrotron Light Laboratory, Campinas - Sao Paulo, Brazil working at D09-XRF beam line. Based on this study, the results suggest that hydroxyapatite-based biomaterials are biocompatible, promote osteo-conduction and favored bone repair. (authors)

Gasperini, F. M. [Medical Science Program, Fluminense Federal Univ., Niteroi (Brazil); Pereira, G. R. [Dept. of Metallurgical and Materials Engineering, Federal Univ. of Rio de Janeiro (Brazil); Granjeiro, J. M. [Molecular and Cell Biology Dept., Fluminense Federal Univ., Niteroi, Rio de Janeiro (Brazil); Calasans-Maia, M. D. [Oral Surgery Dept., Fluminense Federal Univ., Niteroi, Rio de Janeiro (Brazil); Rossi, A. M. [Biomaterials Laboratory, Brazilian Center of Physics Research, Rio de Janeiro (Brazil); Perez, C. A. [Brazilian Synchrotron Laboratory, Campinas, Sao Paulo (Brazil); Lopes, R. T.; Lima, I. [Nuclear Engineering Laboratory, Federal Univ. of Rio de Janeiro (Brazil)

2011-07-01T23:59:59.000Z

447

An X-ray Polarimeter for Constellation-X  

E-Print Network (OSTI)

Polarimetry remains a largely unexploited technique in observational X-ray astronomy which could provide insight in the study of the strong gravity and magnetic fields at the core of the Constellation-X observational program. Adding a polarization capability to the Constellation-X instrumentation would be immensely powerful. It would make Constellation the first space observatory to simultaneously measure all astrophysically relevant parameters of source X-ray photons; their position (imaging), energy (spectroscopy), arrival time (timing), and polarization. Astrophysical polarimetry requires sensitive well-calibrated instruments. Many exciting objects are extra-galactic (i.e. faint) and may have small polarization. Recent advances in efficiency and bandpass make it attractive to consider a polarimetry Science Enhancement Package for the Constellation-X mission.

Jahoda, K; Deines-Jones, P; Hill, J E; Kallman, T; Strohmayer, T E; Swank, J H

2007-01-01T23:59:59.000Z

448

An X-ray Polarimeter for Constellation-X  

E-Print Network (OSTI)

Polarimetry remains a largely unexploited technique in observational X-ray astronomy which could provide insight in the study of the strong gravity and magnetic fields at the core of the Constellation-X observational program. Adding a polarization capability to the Constellation-X instrumentation would be immensely powerful. It would make Constellation the first space observatory to simultaneously measure all astrophysically relevant parameters of source X-ray photons; their position (imaging), energy (spectroscopy), arrival time (timing), and polarization. Astrophysical polarimetry requires sensitive well-calibrated instruments. Many exciting objects are extra-galactic (i.e. faint) and may have small polarization. Recent advances in efficiency and bandpass make it attractive to consider a polarimetry Science Enhancement Package for the Constellation-X mission.

K. Jahoda; K. Black; P. Deines-Jones; J. E. Hill; T. Kallman; T. Strohmayer; J. H. Swank

2007-01-04T23:59:59.000Z

449

Soft X-ray properties of Ultraluminous IRAS Galaxies  

E-Print Network (OSTI)

A sample of 323 Ultraluminous IRAS galaxies (ULIRGs) has been correlated with the ROSAT All-Sky Survey and ROSAT public pointed observations. 22 objects are detected in ROSAT survey observations, and 6 ULIRGs are detected in addition in ROSAT public pointed observations. The detection is based on a visual inspection of the X-ray contour maps overlaid on optical images of ULIRGs taken from the Digitized Sky Survey. Simple power law fits were used to compute the absorption-corrected fluxes of the ROSAT detected ULIRGs. The ratio of the soft X-ray flux to the far-infrared luminosity is used to estimate the contribution from starburst and AGN emitting processes. These results are compared with the ISO SWS ULIRG diagnostic diagram.

Th. Boller

1999-04-15T23:59:59.000Z

450

Hard X-ray Emission and Efficient Particle Acceleration by Supernova Remnants  

SciTech Connect

I discuss the non-thermal X-ray emission from young supernova remnants. Over the last decade it has become clear from both X-ray and {gamma}-ray observations that young supernovae accelerate particles up to 100 TeV. In soft X-rays the accelerated >10 TeV electrons produce synchrotron radiation, coming from narrow filaments located at the shock fronts. The width of these filaments shows that the magnetic fields are relatively high, thus providing evidence for magnetic field amplification.The synchrotron radiation of several remnants is known to extend into the hard X-ray regime. In particular Cas A, has a spectrum that appears as a power law up to almost 100 TeV. This is very surprising, as a steepening is expected going from the soft to the hard X-ray band. The spectrum is likely a result of many superimposed individual spectra, each steepening at different energies. This implies considerable spatial variation in hard X-rays, an obvious target for Simbol-X. The variations will be important to infer local shock acceleration properties, but also magnetic field fluctuations may cause spatial and temporal variations.Finally, I draw the attention to super bubbles and supernovae as sources of cosmic rays. As such they may be sources of hard X-ray emission. In particular, supernovae exploding inside the dense red supergiants winds of their progenitors ares promising candidates for hard X-ray emission.

Vink, Jacco [Astronomical Institute Utrecht, Utrecht University, P.O. Box 80000, 3508TA Utrecht (Netherlands)

2009-05-11T23:59:59.000Z

451

Spatially Resolved X-ray Spectroscopy of Vela Shrapnel A  

E-Print Network (OSTI)

We present the detailed X-ray spectroscopy of Vela shrapnel A with the XMM-Newton satellite. Vela shrapnel A is one of several protrusions identified as bullets from Vela supernova explosion. The XMM-Newton image shows that shrapnel A consists of a bright knot and a faint trailing wake. We extracted spectra from various regions, finding a prominent Si Ly$_\\alpha$ emission line in all the spectra. All the spectra are well represented by the non-equilibrium ionization (NEI) model. The abundances are estimated to be O$\\sim$0.3, Ne$\\sim$0.9, Mg$\\sim$0.8, Si$\\sim$3, Fe$\\sim$0.8 times their solar values. The non-solar abundance ratio between O and Si indicates that shrapnel A originates from a deep layer of a progenitor star. We found that the relative abundances between heavy elements are almost uniform in shrapnel A, which suggests that the ejecta from supernova explosion are well mixed with swept-up interstellar medium.

S. Katsuda; H. Tsunemi

2006-03-17T23:59:59.000Z

452

The Center for X-ray Optics - Now hiring engineers. Apply Today.  

NLE Websites -- All DOE Office Websites (Extended Search)

Database Nanomagnetism X-Ray Microscopy EUV Lithography EUV Mask Database Nanomagnetism X-Ray Microscopy EUV Lithography EUV Mask Imaging Reflectometry Zoneplate Lenses Coherent Optics Nanofabrication Optical Coatings Engineering Education Careers Publications Contact LBNL-Logo The Center for X-Ray Optics is a multi-disciplined research group within Lawrence Berkeley National Laboratory's (LBNL) Materials Sciences Division (MSD). Notice to users. Precision Engineering Building the tools that make nanoscience possible. A high-precision stage fabricated by CXRO's Instrument Fabrication Facility Zone plates Diffractive lenses for a new generation of x-ray beamlines. SEM image of a zoneplate fabricated by CXRO Interferometry Wavefront control with sub-angstrom sensitivity Null interferogram, in preparation for EUV metrology of the SEMATECH Berkeley Microfield Exposure Tool (MET)

453

X-ray inspection systems [Non-Destructive Evaluation (NDE) and Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering > Facilities > Non-Destructive Engineering > Facilities > Non-Destructive Evaluation (NDE) and Testing Facilities >