Sample records for x-ray free-electron laser

  1. X-ray Free-electron Lasers

    SciTech Connect (OSTI)

    Feldhaus, J.; /DESY; Arthur, J.; Hastings, J.B.; /SLAC

    2007-02-23T23:59:59.000Z

    In a free-electron laser (FEL) the lasing medium is a high-energy beam of electrons flying with relativistic speed through a periodic magnetic field. The interaction between the synchrotron radiation that is produced and the electrons in the beam induces a periodic bunching of the electrons, greatly increasing the intensity of radiation produced at a particular wavelength. Depending only on a phase match between the electron energy and the magnetic period, the wavelength of the FEL radiation can be continuously tuned within a wide spectral range. The FEL concept can be adapted to produce radiation wavelengths from millimeters to Angstroms, and can in principle produce hard x-ray beams with unprecedented peak brightness, exceeding that of the brightest synchrotron source by ten orders of magnitude or more. This paper focuses on short-wavelength FELs. It reviews the physics and characteristic properties of single-pass FELs, as well as current technical developments aiming for fully coherent x-ray radiation pulses with pulse durations in the 100 fs to 100 as range. First experimental results at wavelengths around 100 nm and examples of scientific applications planned on the new, emerging x-ray FEL facilities are presented.

  2. Femtosecond diffractive imaging with a soft-X-ray free-electron laser

    E-Print Network [OSTI]

    Loss, Daniel

    LETTERS Femtosecond diffractive imaging with a soft-X-ray free-electron laser HENRY N. CHAPMAN1 of this principle using the FLASH soft-X-ray free-electron laser. An intense 25 fs, 4 Ã? 1013 W cm-2 pulse by one10 . X-ray free-electron lasers (FELs) are expected to permit diffractive imaging at high

  3. The History of X-ray Free-Electron Lasers

    SciTech Connect (OSTI)

    Pellegrini, C.; /UCLA /SLAC; ,

    2012-06-28T23:59:59.000Z

    The successful lasing at the SLAC National Accelerator Laboratory of the Linear Coherent Light Source (LCLS), the first X-ray free-electron laser (X-ray FEL), in the wavelength range 1.5 to 15 {angstrom}, pulse duration of 60 to few femtoseconds, number of coherent photons per pulse from 10{sup 13} to 10{sup 11}, is a landmark event in the development of coherent electromagnetic radiation sources. Until now electrons traversing an undulator magnet in a synchrotron radiation storage ring provided the best X-ray sources. The LCLS has set a new standard, with a peak X-ray brightness higher by ten orders of magnitudes and pulse duration shorter by three orders of magnitudes. LCLS opens a new window in the exploration of matter at the atomic and molecular scales of length and time. Taking a motion picture of chemical processes in a few femtoseconds or less, unraveling the structure and dynamics of complex molecular systems, like proteins, are some of the exciting experiments made possible by LCLS and the other X-ray FELs now being built in Europe and Asia. In this paper, we describe the history of the many theoretical, experimental and technological discoveries and innovations, starting from the 1960s and 1970s, leading to the development of LCLS.

  4. A compact x-ray free electron laser

    SciTech Connect (OSTI)

    Barletta, W.; Attac, M.; Cline, D.B.; Kolonko, J.; Wang, X.; Bhowmik, A.; Bobbs, B.; Cover, R.A.; Dixon, F.P.; Rakowsky, G.; Gallardo, J.; Pellegrini, C.; Westenskow, G.

    1988-09-09T23:59:59.000Z

    We present a design concept and simulation of the performance of a compact x-ray, free electron laser driven by ultra-high gradient rf-linacs. The accelerator design is based on recent advances in high gradient technology by a LLNL/SLAC/LBL collaboration and on the development of bright, high current electron sources by BNL and LANL. The GeV electron beams generated with such accelerators can be concerted to soft x-rays in the range from 2--10 nm by passage through short period, high fields strength wigglers as are being designed at Rocketdyne. Linear light sources of this type can produce trains of picosecond (or shorter) pulses of extremely high spectral brilliance suitable for flash holography of biological specimens in vivo and for studies of fast chemical reactions. 12 refs., 8 figs., 4 tabs.

  5. Density gradient free electron collisionally excited X-ray laser

    DOE Patents [OSTI]

    Campbell, Edward M. (Pleasanton, CA); Rosen, Mordecai D. (Berkeley, CA)

    1989-01-01T23:59:59.000Z

    An operational X-ray laser (30) is provided that amplifies 3p-3s transition X-ray radiation along an approximately linear path. The X-ray laser (30) is driven by a high power optical laser. The driving line focused optical laser beam (32) illuminates a free-standing thin foil (34) that may be associated with a substrate (36) for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the X-ray laser gain medium. The X-ray laser (30) may be driven by more than one optical laser beam (32, 44). The X-ray laser (30) has been successfully demonstrated to function in a series of experimental tests.

  6. Density gradient free electron collisionally excited x-ray laser

    DOE Patents [OSTI]

    Campbell, E.M.; Rosen, M.D.

    1984-11-29T23:59:59.000Z

    An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.

  7. The European X-ray Free-Electron Laser: A Progress Report | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SLAC, Redtail Conference Room (901-108) M. Altarelli, European XFEL GmbH, Hamburg, Germany The present status of the construction of the European X-ray Free-Electron Laser in...

  8. Feasibility considerations of a soft-x-ray distributed feedback laser pumped by an x-ray free electron laser

    E-Print Network [OSTI]

    André, Jean-Michel; Jonnard, Philippe

    2014-01-01T23:59:59.000Z

    We discuss the feasibility of a soft-x-ray distributed feedback laser (DFL) pumped by an x-ray free electron laser (X-FEL). The DFL under consideration is a Mg/SiC bi-layered Bragg reflector pumped by a single X-FEL bunch at 57.4 eV, stimulating the Mg L2,3 emission at 49 eV corresponding to the 3s-3d â??2p1/2,3/2 transition. Based on a model developed by Yariv and Yeh and an extended coupled-wave theory, we show that it would be possible to obtain a threshold gain compatible with the pumping provided by available X-FEL facilities.

  9. Toward atomic resolution diffractive imaging of isolated molecules with x-ray free-electron lasers

    E-Print Network [OSTI]

    Stern, Stephan; Filsinger, Frank; Rouzée, Arnaud; Rudenko, Artem; Johnsson, Per; Martin, Andrew V; Barty, Anton; Bostedt, Christoph; Bozek, John D; Coffee, Ryan N; Epp, Sascha; Erk, Benjamin; Foucar, Lutz; Hartmann, Robert; Kimmel, Nils; Kühnel, Kai-Uwe; Maurer, Jochen; Messerschmidt, Marc; Rudek, Benedikt; Starodub, Dmitri G; Thøgersen, Jan; Weidenspointner, Georg; White, Thomas A; Stapelfeldt, Henrik; Rolles, Daniel; Chapman, Henry N; Küpper, Jochen

    2014-01-01T23:59:59.000Z

    We give a detailed account of the theoretical analysis and the experimental results of an x-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Coherent Light Source [Phys. Rev. Lett. 112, 083002 (2014)]. This experiment is the first step toward coherent diffractive imaging of structures and structural dynamics of isolated molecules at atomic resolution, i. e., picometers and femtoseconds, using x-ray free-electron lasers.

  10. Dominant Secondary Nuclear Photoexcitation with the X-ray Free Electron Laser

    E-Print Network [OSTI]

    Jonas Gunst; Yuri A. Litvinov; Christoph H. Keitel; Adriana Pálffy

    2014-02-27T23:59:59.000Z

    The new regime of resonant nuclear photoexcitation rendered possible by x-ray free electron laser beams interacting with solid state targets is investigated theoretically. Our results unexpectedly show that secondary processes coupling nuclei to the atomic shell in the created cold high-density plasma can dominate direct photoexcitation. As an example we discuss the case of $^{93m}$Mo isomer depletion for which nuclear excitation by electron capture as secondary process is shown to be orders of magnitude more efficient than the direct laser-nucleus interaction. General arguments revisiting the role of the x-ray free electron laser in nuclear experiments involving solid-state targets are further deduced.

  11. Three-dimensional manipulation of electron beam phase space for seeding soft x-ray free-electron lasers

    E-Print Network [OSTI]

    Feng, Chao; Deng, Haixiao; Zhao, Zhentang

    2014-01-01T23:59:59.000Z

    In this letter, a simple technique is proposed to induce strong density modulation into the electron beam with small energy modulation. By using the combination of a transversely dispersed electron beam and a wave-front tilted seed laser, three-dimensional manipulation of the electron beam phase space can be utilized to significantly enhance the micro-bunching of seeded free-electron laser schemes, which will improve the performance and extend the short-wavelength range of a single-stage seeded free-electron laser. Theoretical analysis and numerical simulations demonstrate the capability of the proposed technique in a soft x-ray free-electron laser.

  12. Multiple pulse thermal damage thresholds of materials for x-ray free electron laser optics investigated with an ultraviolet laser

    SciTech Connect (OSTI)

    Hau-Riege, Stefan P.; London, Richard A.; Bionta, Richard M.; Soufli, Regina; Ryutov, Dmitri; Shirk, Michael; Baker, Sherry L. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94539 (United States); Smith, Patrick M.; Nataraj, Pradeep [Kovio, Inc., 1145 Sonora Court, Sunnyvale, California 94086 (United States)

    2008-11-17T23:59:59.000Z

    Optical elements to be used for x-ray free electron lasers (XFELs) must withstand multiple high-fluence pulses. We have used an ultraviolet laser to study the damage of two candidate materials, crystalline Si and B{sub 4}C-coated Si, emulating the temperature profile expected to occur in optics exposed to XFEL pulses. We found that the damage threshold for 10{sup 5} pulses is {approx}20% to 70% lower than the melting threshold.

  13. Spectrometer for X-ray emission experiments at FERMI free-electron-laser

    SciTech Connect (OSTI)

    Poletto, L., E-mail: poletto@dei.unipd.it; Frassetto, F.; Miotti, P. [CNR - Institute of Photonics and Nanotechnologies (CNR-IFN), via Trasea 7, I-35131 Padova (Italy); Di Cicco, A.; Iesari, F. [Physics Division, School of Science and Technology, Università di Camerino, I-62032 Camerino (Italy); Finetti, P. [ELETTRA - Sincrotrone Trieste, Basovizza Area Science Park, S. S. 14 - km 163,5, I-34149, Basovizza (TS) (Italy); Grazioli, C. [Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, I-34127 Trieste (Italy); CNR-Istituto Officina dei Materiali (CNR-IOM), Laboratorio TASC, I-34149 Trieste (Italy); Kivimäki, A. [CNR-Istituto Officina dei Materiali (CNR-IOM), Laboratorio TASC, I-34149 Trieste (Italy); Stagira, S. [Politecnico di Milano – Department of Physics, I-20133 Milano (Italy); Coreno, M. [ELETTRA - Sincrotrone Trieste, Basovizza Area Science Park, S. S. 14 - km 163,5, I-34149, Basovizza (TS) (Italy); CNR – Istituto di Struttura della Materia (CNR-ISM), UOS Basovizza, I-34149 Trieste (Italy)

    2014-10-15T23:59:59.000Z

    A portable and compact photon spectrometer to be used for photon in-photon out experiments, in particular x-ray emission spectroscopy, is presented. The instrument operates in the 25–800 eV energy range to cover the full emissions of the FEL1 and FEL2 stages of FERMI. The optical design consists of two interchangeable spherical varied-lined-spaced gratings and a CCD detector. Different input sections can be accommodated, with/without an entrance slit and with/without an additional relay mirror, that allow to mount the spectrometer in different end-stations and at variable distances from the target area both at synchrotron and at free-electron-laser beamlines. The characterization on the Gas Phase beamline at ELETTRA Synchrotron (Italy) is presented.

  14. Evidence of High Harmonics from Echo-Enabled Harmonic Generation for Seeding X-ray Free Electron Lasers

    SciTech Connect (OSTI)

    Xiang, D.; Colby, E.; Dunning, M.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; Stupakov, G.; Szalata, Z.; Walz, D.; Weathersby, S.; Woodle, M.; /SLAC; ,

    2012-02-15T23:59:59.000Z

    Echo-enabled harmonic generation free electron lasers hold great promise for the generation of fully coherent radiation in x-ray wavelengths. Here we report the first evidence of high harmonics from the echo-enabled harmonic generation technique in the realistic scenario where the laser energy modulation is comparable to the beam slice energy spread. In this experiment, coherent radiation at the seventh harmonic of the second seed laser is generated when the energy modulation amplitude is about 2-3 times the slice energy spread. The experiment confirms the underlying physics of echo-enabled harmonic generation and may have a strong impact on emerging seeded x-ray free electron lasers that are capable of generating laserlike x rays which will advance many areas of science.

  15. Subnanometer-Scale Measurements of the Interaction of Ultrafast Soft X-Ray Free-Electron-Laser Pulses with Matter

    E-Print Network [OSTI]

    von der Linde, D.

    lengths greater than 3 A° . This experiment demonstrates that with intense ultrafast pulses, structuralSubnanometer-Scale Measurements of the Interaction of Ultrafast Soft X-Ray Free-Electron-Laser Pulses with Matter Stefan P. Hau-Riege,1,* Henry N. Chapman,1 Jacek Krzywinski,2 Ryszard Sobierajski,2

  16. Transverse pulse shaping and optimization of a tapered hard X-ray free electron laser

    E-Print Network [OSTI]

    Emma, Claudio; Wu, Juhao

    2014-01-01T23:59:59.000Z

    Multidimensional optimization schemes for TW hard X-Ray free electron lasers are applied to the cases of transversely uniform and parabolic electron beam distributions and compared to examples of transversely Gaussian beams. The optimizations are performed for a $200$m undulator and a resonant wavelength of $\\lambda_r=1.5\\AA $ using the fully 3-dimensional FEL particle code GENESIS. Time dependent simulations showed that the maximum radiation power is larger for flatter transverse distributions due to enhanced optical guiding in the tapered section of the undulator. For a transversely Gaussian beam the maximum output power was found to be $\\text{P}_{max}$=$1.56$ TW compared to $2.26$ TW for the parabolic case and $2.63$ TW for the uniform case. Spectral data also showed a 30-70$\\%$ reduction in energy deposited in the sidebands for the uniform and parabolic beams compared with a Gaussian. An analysis of the maximum power as a function of detuning from resonance shows that redshifting the central wavelength by...

  17. R&D for a Soft X-Ray Free Electron Laser Facility

    SciTech Connect (OSTI)

    Corlett, John; Attwood, David; Byrd, John; Denes, Peter; Falcone, Roger; Heimann, Phil; Leemans, Wim; Padmore, Howard; Prestemon, Soren; Sannibale, Fernando; Schlueter, Ross; Schroeder, Carl; Staples, John; Venturini, Marco; Warwick, Tony; Wells, Russell; Wilcox, Russell; Zholent, Alexander; Adolphsen, Chris; Arthur, John; Bergmann, Uwe; Cai, Yunhai; Colby, Eric; Dowell, David; Emma, Paul; Fox, John; Frisch, Josef; Galayda, John; Hettel, Robert; Huang, Zhirong; Phinney, Nan; Rabedeau, Tom; Raubenheimer, Tor; Reis, David; Schmerge, John; St& #246; hr, Joachim; Stupakov, Gennady; White, Bill; Xiang, Dao

    2009-06-08T23:59:59.000Z

    Several recent reports have identified the scientific requirements for a future soft x-ray light source, and a high-repetition-rate free-electron laser (FEL) facility that is responsive to these requirements is now on the horizon. R&D in some critical areas is needed, however, to demonstrate technical performance, thus reducing technical risks and construction costs. Such a facility most likely will be based on a CW superconducting linear accelerator with beam supplied by a high-brightness, high-repetition-rate photocathode electron gun operating in CW mode, and on an array of FELs to which the accelerated beam is distributed, each operating at high repetition rate and with even pulse spacing. Dependent on experimental requirements, the individual FELs can be configured for either self-amplified spontaneous emission (SASE), seeded, or oscillator mode of operation, including the use of high-gain harmonic generation (HGHG), echo-enhanced harmonic generation (EEHG), harmonic cascade, or other configurations. In this White Paper we identify the overall accelerator R&D needs, and highlight the most important pre-construction R&D tasks required to value-engineer the design configuration and deliverables for such a facility. In Section 1.4 we identify the comprehensive R&D ultimately needed. We identify below the highest-priority requirements for understanding machine performance and reduce risk and costs at this pre-conceptual design stage. Details of implementing the required tasks will be the subject of future evaluation. Our highest-priority R&D program is the injector, which must be capable of delivering a beam with bunches up to a nanocoulomb at MHz repetition rate and with normalized emittance {le} 1 mm {center_dot} mrad. This will require integrated accelerating structure, cathode, and laser systems development. Cathode materials will impact the choice of laser technology in wavelength and energy per pulse, as well as vacuum requirements in the accelerating structure. Demonstration experiments in advanced seeding techniques, such as EEHG, and other optical manipulations to enhance the FEL process are required to reduce technical risk in producing temporally coherent and ultrashort x-ray output using optical seed lasers. Success of EEHG in particular would result in reduced development and cost of laser systems and accelerator hardware for seeded FELs. With a 1.5-2.5 GeV linac, FELs could operate in the VUV-soft x-ray range, where the actual beam energy will be determined by undulator technology; for example, to use the lower energy would require the use of advanced designs for which undulator R&D is needed. Significant reductions in both unit costs and accelerator costs resulting from the lower electron beam energy required to achieve lasing at a particular wavelength could be obtained with undulator development. Characterization of the wakefields of the vacuum chambers in narrow-gap undulators will be needed to minimize risk in ability to deliver close to transform limited pulses. CW superconducting RF technology for an FEL facility with short bunches at MHz rate and up to mA average current will require selection of design choices in cavity frequency and geometry, higher order mode suppression and power dissipation, RF power supply and distribution, accelerating gradient, and cryogenics systems. R&D is needed to define a cost and performance optimum. Developments in laser technology are proceeding at rapid pace, and progress in high-power lasers, harmonic generation, and tunable sources will need to be tracked.

  18. R&D for a Soft X-Ray Free Electron Laser Facility

    E-Print Network [OSTI]

    Staples, John

    2009-01-01T23:59:59.000Z

    A CW normal-conductive RF gun for free electron laser andincluding state-of-the-art RF guns. High-power RF sourcesand first production RF gun for the DESY TESLA SASE FEL.

  19. The Turn-on of LCLS: the X-Ray Free Electron Laser at SLAC ( Keynote - 2011 JGI User Meeting)

    SciTech Connect (OSTI)

    Drell, Persis [SLAC Director] [SLAC Director

    2011-03-22T23:59:59.000Z

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. SLAC National Laboratory Director Persis Drell gives a keynote talk on "The Turn-on of LCLS: the X-Ray Free-Electron Laser at SLAC" at the 6th Genomics of Energy & Environment Meeting on March 22, 2011

  20. The Turn-on of LCLS: the X-Ray Free Electron Laser at SLAC ( Keynote - 2011 JGI User Meeting)

    ScienceCinema (OSTI)

    Drell, Persis [SLAC Director

    2011-06-08T23:59:59.000Z

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. SLAC National Laboratory Director Persis Drell gives a keynote talk on "The Turn-on of LCLS: the X-Ray Free-Electron Laser at SLAC" at the 6th Genomics of Energy & Environment Meeting on March 22, 2011

  1. R&D for a Soft X-Ray Free Electron Laser Facility

    E-Print Network [OSTI]

    Staples, John

    2009-01-01T23:59:59.000Z

    wavelength seed, and ultrafast pulses. Understanding gainedlasers to produce ultrafast x-ray pulses at the ALS in a “is home to the PULSE Institute for ultrafast energy science,

  2. Experimental Demonstration of a Soft X-ray Self-seeded Free-electron Laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ratner, D. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Abela, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Amann, J. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Behrens, C. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Bohler, D. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Bouchard, G. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Bostedt, C. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Boyes, M. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Chow, K. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Cocco, D. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Decker, F. J. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Ding, Y. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Eckman, C. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Emma, P. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Fairley, D. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Feng, Y. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Field, C. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Flechsig, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Gassner, G. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Hastings, J. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Heimann, P. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Huang, Z. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Kelez, N. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Krzywinski, J. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Loos, H. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Lutman, A. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Marinelli, A. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Marcus, G. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Maxwell, T. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Moeller, S. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Morton, D. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Nuhn, H. D. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Rodes, N. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Schlotter, W. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Serkez, S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stevens, T. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Turner, J. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Walz, D. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Welch, J. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Wu, J. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States)

    2015-02-06T23:59:59.000Z

    The Linac Coherent Light Source (LCLS) has added self-seeding capability to the soft x-ray range using a grating monochromator system. We report demonstration of soft x-ray self-seeding with a measured resolving power of 2000-5000, wavelength stability of 10-4, and an increase in peak brightness by a factor of 2-5 across the photon energy range of 500-1000 eV. By avoiding the need for a monochromator at the experimental station, the self-seeded beam can deliver as much as 50 fold higher brightness to users.

  3. Bent crystal spectrometer for both frequency and wavenumber resolved x-ray scattering at a seeded free-electron laser

    E-Print Network [OSTI]

    Zastrau, Ulf; Foerster, Eckhart; Galtier, Eric Ch; Gamboa, Eliseo; Glenzer, Siegfried H; Heimann, Philipp; Marschner, Heike; Nagler, Bob; Schropp, Andreas; Wehrhan, Ortrud; Lee, Hae Ja

    2014-01-01T23:59:59.000Z

    We present a cylindrically curved GaAs x-ray spectrometer with energy resolution $\\Delta E/E = 1.1\\cdot 10^{-4}$ and wave-number resolution of $\\Delta k/k = 3\\cdot 10^{-3}$, allowing plasmon scattering at the resolution limits of the Linac Coherent Light Source (LCLS) x-ray free-electron laser. It spans scattering wavenumbers of 3.6 to $5.2/$\\AA\\ in 100 separate bins, with only 0.34\\% wavenumber blurring. The dispersion of 0.418~eV/$13.5\\,\\mu$m agrees with predictions within 1.3\\%. The reflection homogeneity over the entire wavenumber range was measured and used to normalize the amplitude of scattering spectra. The proposed spectrometer is superior to a mosaic HAPG spectrometer when the energy resolution needs to be comparable to the LCLS seeded bandwidth of 1~eV and a significant range of wavenumbers must be covered in one exposure.

  4. Bent crystal spectrometer for both frequency and wavenumber resolved x-ray scattering at a seeded free-electron laser

    SciTech Connect (OSTI)

    Zastrau, Ulf, E-mail: ulf.zastrau@uni-jena.de [Institute of Optics and Quantum Electronics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Fletcher, Luke B.; Galtier, Eric Ch.; Gamboa, Eliseo; Glenzer, Siegfried H.; Heimann, Philipp; Nagler, Bob; Schropp, Andreas; Lee, Hae Ja [Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Förster, Eckhart [Institute of Optics and Quantum Electronics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Helmholtz Institute Jena, Fröbelstieg 3, 07743 Jena (Germany); Marschner, Heike; Wehrhan, Ortrud [Institute of Optics and Quantum Electronics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany)

    2014-09-15T23:59:59.000Z

    We present a cylindrically curved GaAs x-ray spectrometer with energy resolution ?E/E = 1.1 ×?10{sup ?4} and wave-number resolution of ?k/k = 3 ×?10{sup ?3}, allowing plasmon scattering at the resolution limits of the Linac Coherent Light Source (LCLS) x-ray free-electron laser. It spans scattering wavenumbers of 3.6 to 5.2/Å in 100 separate bins, with only 0.34% wavenumber blurring. The dispersion of 0.418 eV/13.5??m agrees with predictions within 1.3%. The reflection homogeneity over the entire wavenumber range was measured and used to normalize the amplitude of scattering spectra. The proposed spectrometer is superior to a mosaic highly annealed pyrolytic graphite spectrometer when the energy resolution needs to be comparable to the LCLS seeded bandwidth of 1 eV and a significant range of wavenumbers must be covered in one exposure.

  5. Damage Threshold of Platinum Coating used for Optics for Self-Seeding of Soft X-ray Free Electron Laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Krzywinski, Jacek; Cocco, Daniele; Moeller, Stefan; Ratner, Daniel

    2015-01-01T23:59:59.000Z

    We investigated the experimental damage threshold of platinum coating on a silicon substrate illuminated by soft x-ray radiation at grazing incidence angle of 2.1 deg. The coating was the same as the blazed grating used for the soft X-ray self-seeding optics of the Linac Coherent Light Source free electron laser. The irradiation condition was chosen such that the absorbed dose was similar to the maximum dose expected for the grating. The expected dose was simulated by solving the Helmholtz equation in non-homogenous media. The experiment was performed at 900 eV photon energy for both single pulse and multi-shot conditions. We have not observed single shot damage. This corresponds to a single shot damage threshold being higher than 3 J/cm2. The multiple shot damage threshold measured for 10 shots and about 600 shots was determined to be 0.95 J/cm2 and 0.75 J/cm2 respectively. The damage threshold occurred at an instantaneous dose which is higher that the melt dose of platinum.

  6. Femtosecond diffractive imaging with a soft-X-ray free-electron laser

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO) ï‚·diffractive imaging with a soft-X-ray

  7. Using X-ray free-electron lasers for probing of complex interaction dynamics of ultra-intense lasers with solid matter

    SciTech Connect (OSTI)

    Kluge, T., E-mail: t.kluge@hzdr.de; Huang, L. G.; Metzkes, J.; Bussmann, M. [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany)] [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany); Gutt, C. [Universität Siegen, D-57068 Siegen (Germany)] [Universität Siegen, D-57068 Siegen (Germany); Schramm, U.; Cowan, T. E. [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany) [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany); Technische Universität Dresden, D-01062 Dresden (Germany)

    2014-03-15T23:59:59.000Z

    We demonstrate the potential of X-ray free-electron lasers (XFEL) to advance the understanding of complex plasma dynamics by allowing for the first time nanometer and femtosecond resolution at the same time in plasma diagnostics. Plasma phenomena on such short timescales are of high relevance for many fields of physics, in particular in the ultra-intense ultra-short laser interaction with matter. Highly relevant yet only partially understood phenomena become directly accessible in experiment. These include relativistic laser absorption at solid targets, creation of energetic electrons and electron transport in warm dense matter, including the seeding and development of surface and beam instabilities, ambipolar expansion, shock formation, and dynamics at the surfaces or at buried layers. In this paper, we focus on XFEL plasma probing for high power laser matter interactions based on quantitative calculations using synthesized data and evaluate the feasibility of various imaging and scattering techniques with special focus on the small angle X-ray scattering technique.

  8. Study of the Feasibility of an X-Ray Free Electron Laser with a 15 GeV CLIC Beam

    E-Print Network [OSTI]

    Brandin, M; Ekelöf, T J C; Ferrari, A

    2002-01-01T23:59:59.000Z

    This note presents a study of the feasibility of a Free Electron Laser (FEL) using an electron beam from the Compact Linear Collider (CLIC). We first show that, with the nominal CLIC layout, the energy spread at 15 GeV would be too large to allow FEL saturation in an undulator of reasonable length. An alternative scheme was studied, with a dedicated source, with a by-pass of the damping rings and with magnetic compression between the various acceleration stages. With this scheme, the energy spread of the CLIC beam can be reduced from 1.5% to 0.1%, but the emittance is much larger and, although the power gain is better than in the nominal case, FEL saturation is still not reached. We show that the energy spread or the transverse emittance would have to be reduced by another order of magnitude in order to obtain FEL saturation.

  9. Catalac free electron laser

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM)

    1982-01-01T23:59:59.000Z

    A catalac free electron laser using a rf linac (catalac) which acts as a catalyst to accelerate an electron beam in an initial pass through the catalac and decelerate the electron beam during a second pass through the catalac. During the second pass through the catalac, energy is extracted from the electron beam and transformed to energy of the accelerating fields of the catalac to increase efficiency of the device. Various embodiments disclose the use of post linacs to add electron beam energy extracted by the wiggler and the use of supplementary catalacs to extract energy at various energy peaks produced by the free electron laser wiggler to further enhance efficiency of the catalac free electron laser. The catalac free electron laser can be used in conjunction with a simple resonator, a ring resonator or as an amplifier in conjunction with a master oscillator laser.

  10. Multiphoton above-threshold ionization in superintense free-electron x-ray laser fields: Beyond the dipole approximation

    E-Print Network [OSTI]

    Zhou, Zhongyuan; Chu, Shih-I

    2013-02-13T23:59:59.000Z

    (k,k?,t)Yl?m?(? ?,??)d#12;d#12;? (17) and Blm,l?m? (k,k?,t) = kk? ? ? Y ?lm(?,?)B(k,k?,t)Yl?m?(? ?,??)d#12;d#12;?, (18) respectively. For the laser pulse given by Eq. (2), Dlm,l?m?(k,k?,t) and Blm,l?m? (k,k?,t) are calculated using Eqs. (B1) and (B2) in Appendix B...†(k?,k,t) = D(k,k?,t) and B†(k?,k,t) = B(k,k?,t). Thus the P-space Hamiltonian given by Eq. (7), H (k,k?,t), is Hermitian. APPENDIX B: P-SPACE PARTIAL-WAVE LASER-ELECTRON INTERACTIONS Substituting Eqs. (A1) and (A2) into Eqs. (17) and (18), respectively, we...

  11. X-ray laser

    DOE Patents [OSTI]

    Nilsen, Joseph (Livermore, CA)

    1991-01-01T23:59:59.000Z

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  12. Free electron laser

    DOE Patents [OSTI]

    Villa, Francesco (Alameda, CA)

    1990-01-01T23:59:59.000Z

    A high gain, single-pass free electron laser formed of a high brilliance electron injector source, a linear accelerator which imparts high energy to the electron beam, and an undulator capable of extremely high magnetic fields, yet with a very short period. The electron injector source is the first stage (gap) of the linear accelerator or a radial line transformer driven by fast circular switch. The linear accelerator is formed of a plurality of accelerating gaps arranged in series. These gaps are energized in sequence by releasing a single pulse of energy which propagates simultaneously along a plurality of transmission lines, each of which feeds the gaps. The transmission lines are graduated in length so that pulse power is present at each gap as the accelerated electrons pass therethrough. The transmission lines for each gap are open circuited at their ends. The undualtor has a structure similar to the accelerator, except that the transmission lines for each gap are substantially short circuited at their ends, thus converting the electric field into magnetic field. A small amount of resistance is retained in order to generate a small electric field for replenishing the electron bunch with the energy lost as it traverses through the undulator structure.

  13. Rf Feedback free electron laser

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM)

    1981-01-01T23:59:59.000Z

    A free electron laser system and electron beam system for a free electron laser which use rf feedback to enhance efficiency. Rf energy is extracted from an electron beam by decelerating cavities and returned to accelerating cavities using rf returns such as rf waveguides, rf feedthroughs, etc. This rf energy is added to rf klystron energy to lower the required input energy and thereby enhance energy efficiency of the system.

  14. FREE-ELECTRON LASERS

    E-Print Network [OSTI]

    Sessler, A.M.

    2008-01-01T23:59:59.000Z

    to the electric field of the radiation, this energy-exchangewhere the electric field of the radiation would The energydue to the electric field of the laser radiation, but in

  15. Laser Phase Errors in Seeded Free Electron Lasers

    SciTech Connect (OSTI)

    Ratner, D.; Fry, A.; Stupakov, G.; White, W.; /SLAC

    2012-04-17T23:59:59.000Z

    Harmonic seeding of free electron lasers has attracted significant attention as a method for producing transform-limited pulses in the soft x-ray region. Harmonic multiplication schemes extend seeding to shorter wavelengths, but also amplify the spectral phase errors of the initial seed laser, and may degrade the pulse quality and impede production of transform-limited pulses. In this paper we consider the effect of seed laser phase errors in high gain harmonic generation and echo-enabled harmonic generation. We use simulations to confirm analytical results for the case of linearly chirped seed lasers, and extend the results for arbitrary seed laser envelope and phase.

  16. Injection of harmonics generated in gas in a free-electron laser providing intense and

    E-Print Network [OSTI]

    Loss, Daniel

    -ultraviolet to X-ray region. Recently, injection of a single-pass FEL by the third laser harmonic of a TiLETTERS Injection of harmonics generated in gas in a free-electron laser providing intense-electron lasers promise to extend this down to femtosecond timescales. The process by which free-electron lasers

  17. Combination free electron and gaseous laser

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Rockwood, Stephen D. (Los Alamos, NM); Stein, William E. (Los Alamos, NM)

    1980-01-01T23:59:59.000Z

    A multiple laser having one or more gaseous laser stages and one or more free electron stages. Each of the free electron laser stages is sequentially pumped by a microwave linear accelerator. Subsequently, the electron beam is directed through a gaseous laser, in the preferred embodiment, and in an alternative embodiment, through a microwave accelerator to lower the energy level of the electron beam to pump one or more gaseous lasers. The combination laser provides high pulse repetition frequencies, on the order of 1 kHz or greater, high power capability, high efficiency, and tunability in the synchronous production of multiple beams of coherent optical radiation.

  18. Inverse free electron laser accelerator for advanced light sources

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Duris, J. P.; Musumeci, P.; Li, R. K.

    2012-06-01T23:59:59.000Z

    We discuss the inverse free electron laser (IFEL) scheme as a compact high gradient accelerator solution for driving advanced light sources such as a soft x-ray free electron laser amplifier or an inverse Compton scattering based gamma-ray source. In particular, we present a series of new developments aimed at improving the design of future IFEL accelerators. These include a new procedure to optimize the choice of the undulator tapering, a new concept for prebunching which greatly improves the fraction of trapped particles and the final energy spread, and a self-consistent study of beam loading effects which leads to an energy-efficient high laser-to-beam power conversion.

  19. Ultrafast X-ray Absorption Spectroscopy using Laser-Driven Electron X-ray Sources (LEXS)

    E-Print Network [OSTI]

    Guo, Ting

    : ultrafast x-rays, x-ray absorption spectroscopy, terawatt lasers, ultrafast reaction dynamics, atomic motion atomic motion by scrutinizing the changes in x- ray absorption spectra during reactions. FirstUltrafast X-ray Absorption Spectroscopy using Laser-Driven Electron X-ray Sources (LEXS) Guangjun

  20. Inverse free-electron laser accelerator

    SciTech Connect (OSTI)

    Pellegrini, C.; Campisi, R.

    1982-01-01T23:59:59.000Z

    We first describe the basic physical properties of an inverse free-electron laser and make an estimate of the order of magnitude of the accelerating field obtainable with such a system; then apply the general ideas to the design of an actual device and through this example we give a more accurate evaluation of the fundamental as well as the technical limitations that this acceleration scheme imposes.

  1. X-ray laser microscope apparatus

    DOE Patents [OSTI]

    Suckewer, Szymon (Princeton, NJ); DiCicco, Darrell S. (Plainsboro, NJ); Hirschberg, Joseph G. (Coral Gables, FL); Meixler, Lewis D. (East Windsor, NJ); Sathre, Robert (Princeton, NJ); Skinner, Charles H. (Lawrenceville, NJ)

    1990-01-01T23:59:59.000Z

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  2. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Lensless X-Ray Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has...

  3. How Can X-ray Transient Absorption Spectroscopy Aide Solar Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are from optimized on structural, energetic and dynamic parameters. Intense X-ray pulses from synchrotrons and X-ray free electrons lasers coupled with ultrafast lasers...

  4. An inverse free electron laser accelerator experiment

    SciTech Connect (OSTI)

    Wernick, I.; Marshall, T.C.

    1992-01-01T23:59:59.000Z

    A free electron laser was configured as an autoaccelerator to test the principle of accelerating electrons by stimulated absorption of radiation ([lambda] = 1.65mm) by an electron beam (750kV) traversing an undulator. Radiation is produced in the first section of a constant period undulator (1[sub w1] = 1.43cm) and then absorbed ([approximately] 40%) in a second undulator, having a tapered period (1[sub w2] = 1.8 [minus] 2.25cm), which results in the acceleration of a subgroup ([approximately] 9%) of electrons to [approximately] 1MeV.

  5. An inverse free electron laser accelerator experiment

    SciTech Connect (OSTI)

    Wernick, I.; Marshall, T.C.

    1992-12-31T23:59:59.000Z

    A free electron laser was configured as an autoaccelerator to test the principle of accelerating electrons by stimulated absorption of radiation ({lambda} = 1.65mm) by an electron beam (750kV) traversing an undulator. Radiation is produced in the first section of a constant period undulator (1{sub w1} = 1.43cm) and then absorbed ({approximately} 40%) in a second undulator, having a tapered period (1{sub w2} = 1.8 {minus} 2.25cm), which results in the acceleration of a subgroup ({approximately} 9%) of electrons to {approximately} 1MeV.

  6. Synchronization of x-ray pulses to the pump laser in an ultrafast x-ray facility

    E-Print Network [OSTI]

    Corlett, J.N.; Barry, W.; Byrd, J.M.; Schoenlein, R.; Zholents, A.

    2002-01-01T23:59:59.000Z

    Accurate timing of ultrafast x-ray probe pulses emitted fromOF X-RAY PULSES TO THE PUMP LASER IN AN ULTRAFAST X-RAY

  7. Fluctuation X-Ray Scattering

    SciTech Connect (OSTI)

    Saldin, PI: D. K.; Co-I's: J. C. H. Spence and P. Fromme

    2013-01-25T23:59:59.000Z

    The work supported by the grant was aimed at developing novel methods of finding the structures of biomolecules using x-rays from novel sources such as the x-ray free electron laser and modern synchrotrons

  8. X-ray laser frequency near-doubling and generation of tunable coherent x rays in plasma

    E-Print Network [OSTI]

    Kaplan, Alexander

    X-ray laser frequency near-doubling and generation of tunable coherent x rays in plasma P. L plasmas in which efficient x-ray laser frequency near-doubling is expected for a number of available x-ray of coherent x rays and tunable optical radiation may result in tunable coherent x-ray radiation powerful

  9. Techniques for synchronization of X-Ray pulses to the pump laser in an ultrafast X-Ray facility

    E-Print Network [OSTI]

    Corlett, J.N.; Doolittle, L.; Schoenlein, R.; Staples, J.; Wilcox, R.; Zholents, A.

    2003-01-01T23:59:59.000Z

    synchronization of ultrafast x-ray pulses produced in theAccurate timing of ultrafast x-ray probe pulses emitted fromOF X-RAY PULSES TO THE PUMP LASER IN AN ULTRAFAST X-RAY

  10. An extreme ultraviolet Michelson interferometer for experiments at free-electron lasers

    SciTech Connect (OSTI)

    Hilbert, Vinzenz; Fuchs, Silvio; Paulus, Gerhard G.; Zastrau, Ulf [Institute of Optics and Quantum Electronics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany)] [Institute of Optics and Quantum Electronics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Blinne, Alexander [Institute for Theoretical Physics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany)] [Institute for Theoretical Physics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Feigl, Torsten [Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Straße 7, 07745 Jena (Germany)] [Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Straße 7, 07745 Jena (Germany); Kämpfer, Tino; Rödel, Christian; Uschmann, Ingo; Wünsche, Martin; Förster, Eckhart [Institute of Optics and Quantum Electronics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany) [Institute of Optics and Quantum Electronics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Helmholtz Institute, Fröbelstieg 3, 07743 Jena (Germany)

    2013-09-15T23:59:59.000Z

    We present a Michelson interferometer for 13.5 nm soft x-ray radiation. It is characterized in a proof-of-principle experiment using synchrotron radiation, where the temporal coherence is measured to be 13 fs. The curvature of the thin-film beam splitter membrane is derived from the observed fringe pattern. The applicability of this Michelson interferometer at intense free-electron lasers is investigated, particularly with respect to radiation damage. This study highlights the potential role of such Michelson interferometers in solid density plasma investigations using, for instance, extreme soft x-ray free-electron lasers. A setup using the Michelson interferometer for pseudo-Nomarski-interferometry is proposed.

  11. X-ray laser system, x-ray laser and method

    DOE Patents [OSTI]

    London, Richard A. (Oakland, CA); Rosen, Mordecai D. (Berkeley, CA); Strauss, Moshe (Omer, IL)

    1992-01-01T23:59:59.000Z

    Disclosed is an x-ray laser system comprising a laser containing generating means for emitting short wave length radiation, and means external to said laser for energizing said generating means, wherein when the laser is in an operative mode emitting radiation, the radiation has a transverse coherence length to width ratio of from about 0.05 to 1. Also disclosed is a method of adjusting the parameters of the laser to achieve the desired coherence length to laser width ratio.

  12. Ignition feedback regenerative free electron laser (FEL) amplifier

    DOE Patents [OSTI]

    Kim, Kwang-Je (Burr Ridge, IL); Zholents, Alexander (Walnut Creek, CA); Zolotorev, Max (Oakland, CA)

    2001-01-01T23:59:59.000Z

    An ignition feedback regenerative amplifier consists of an injector, a linear accelerator with energy recovery, and a high-gain free electron laser amplifier. A fraction of the free electron laser output is coupled to the input to operate the free electron laser in the regenerative mode. A mode filter in this loop prevents run away instability. Another fraction of the output, after suitable frequency up conversion, is used to drive the photocathode. An external laser is provided to start up both the amplifier and the injector, thus igniting the system.

  13. Femtosecond laser-electron x-ray source

    DOE Patents [OSTI]

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20T23:59:59.000Z

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  14. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs...

  15. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities...

  16. Free electron laser using Rf coupled accelerating and decelerating structures

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM)

    1984-01-01T23:59:59.000Z

    A free electron laser and free electron laser amplifier using beam transport devices for guiding an electron beam to a wiggler of a free electron laser and returning the electron beam to decelerating cavities disposed adjacent to the accelerating cavities of the free electron laser. Rf energy is generated from the energy depleted electron beam after it emerges from the wiggler by means of the decelerating cavities which are closely coupled to the accelerating cavities, or by means of a second bore within a single set of cavities. Rf energy generated from the decelerated electron beam is used to supplement energy provided by an external source, such as a klystron, to thereby enhance overall efficiency of the system.

  17. Microsoft PowerPoint - High Gradient Inverse Free Electron Laser...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hi h G di t Hi h i High Gradient High energy gain Inverse Free Electron Laser at BNL P. Musumeci UCLA Department of Physics and Astronomy ATF user meeting April 2-3 2009 Outline...

  18. Single electron beam rf feedback free electron laser

    DOE Patents [OSTI]

    Brau, C.A.; Stein, W.E.; Rockwood, S.D.

    1981-02-11T23:59:59.000Z

    A free electron laser system and electron beam system for a free electron laser which uses rf feedback to enhance efficiency are described. Rf energy is extracted from a single electron beam by decelerating cavities and energy is returned to accelerating cavities using rf returns, such as rf waveguides, rf feedthroughs, resonant feedthroughs, etc. This rf energy is added to rf klystron energy to reduce the required input energy and thereby enhance energy efficiency of the system.

  19. Legacy of the X-Ray Laser Program

    SciTech Connect (OSTI)

    Nilsen, J.

    1993-08-06T23:59:59.000Z

    The X-Ray Laser Program has evolved from a design effort focusing on developing a Strategic Defense Initiative weapon that protects against Soviet ICBMs to a scientific project that is producing new technologies for industrial and medical research. While the great technical successes and failures of the X-ray laser itself cannot be discussed, this article presents the many significant achievements made as part of the X-ray laser effort that are now being used for other applications at LLNL.

  20. Ultrafast time dynamics studies of periodic lattices with free electron laser radiation

    SciTech Connect (OSTI)

    Quevedo, W.; Busse, G.; Hallmann, J.; More, R.; Petri, M.; Rajkovic, I. [Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen (Germany); Krasniqi, F.; Rudenko, A. [Max Planck Advanced Study Group at CFEL, Notkestrasse 85, 22607 Hamburg (Germany); Tschentscher, T. [European XFEL GmbH, Albert-Einstein-Ring 19, 22671 Hamburg (Germany); Stojanovic, N.; Duesterer, S.; Treusch, R.; Tolkiehn, M. [HASYLAB at DESY, Notkestrasse 85, 22607 Hamburg (Germany); Techert, S. [Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen (Germany); Max Planck Advanced Study Group at CFEL, Notkestrasse 85, 22607 Hamburg (Germany)

    2012-11-01T23:59:59.000Z

    It has been proposed that radiation from free electron laser (FEL) at Hamburg (FLASH) can be used for ultrafast time-resolved x-ray diffraction experiments based on the near-infrared (NIR) pump/FEL probe scheme. Here, investigation probing the ultrafast structural dynamics of periodic nano-crystalline organic matter (silver behenate) with such a scheme is reported. Excitation with a femtosecond NIR laser leads to an ultrafast lattice modification which time evolution has been studied through the scattering of vacuum ultraviolet FEL pulses. The found effect last for 6 ps and underpins the possibility for studying nanoperiodic dynamics down to the FEL source time resolution. Furthermore, the possibility of extending the use of silver behenate (AgBh) as a wavelength and temporal calibration tool for experiments with soft x-ray/FEL sources is suggested.

  1. Resonator design for a visible wavelength free-electron laser (*)

    SciTech Connect (OSTI)

    Bhowmik, A.; Lordi, N. (Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Div.); Ben-Zvi, I.; Gallardo, J. (Brookhaven National Lab., Upton, NY (United States))

    1990-01-01T23:59:59.000Z

    Design requirements for a visible wavelength free-electron laser being developed at the Accelerator Test Facility at Brookhaven National Laboratory are presented along with predictions of laser performance from 3-D numerical simulations. The design and construction of the optical resonator, its alignment and control systems are also described. 15 refs., 8 figs., 4 tabs.

  2. Two-dimensional optimization of free-electron-laser designs

    DOE Patents [OSTI]

    Prosnitz, D.; Haas, R.A.

    1982-05-04T23:59:59.000Z

    Off-axis, two-dimensional designs for free electron lasers are described that maintain correspondence of a light beam with a synchronous electron at an optimal transverse radius r > 0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.

  3. Two-dimensional optimization of free electron laser designs

    DOE Patents [OSTI]

    Prosnitz, Donald (Walnut Creek, CA); Haas, Roger A. (Pleasanton, CA)

    1985-01-01T23:59:59.000Z

    Off-axis, two-dimensional designs for free electron lasers that maintain correspondence of a light beam with a "synchronous electron" at an optimal transverse radius r>0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.

  4. Laser Copper Plasma X-ray Source Debris Characterization

    E-Print Network [OSTI]

    Huston, Dryver R.

    Laser Copper Plasma X-ray Source Debris Characterization A Thesis Presented by David Hurley 3, 2007 Vice President for Research and Dean of Graduate studies #12;Abstract Laser copper plasma for x-ray lithography. Copper debris in the form of vapor, ions, dust, and high-speed particles

  5. Wiggler plane focusing in a linear free electron laser

    DOE Patents [OSTI]

    Scharlemann, E.T.

    1985-11-21T23:59:59.000Z

    This disclosure describes a free electron laser apparatus that provides a magnetic centering force to turn or focus a non-axial electron toward the longitudinal axis as desired. The focusing effect is provided by wiggler magnet pole faces that are approximately parabolically shaped.

  6. Free electron laser amplifier driven by an induction linac

    SciTech Connect (OSTI)

    Neil, V.K.

    1986-06-03T23:59:59.000Z

    This paper discusses the use of a free-electron laser amplifier as a means of converting the kinetic energy of an electron beam into coherent radiation. In particular, the use of an induction linear accelerator is discussed. The motion of the elections in the tapered and untapered wiggler magnets is discussed as well as the beam emittance, and the radiation fields involved. (LSP)

  7. Simulation of free-electron lasers seeded with broadband radiation

    SciTech Connect (OSTI)

    Bajlekov, Svetoslav; Fawley, William; Schroeder, Carl; Bartolini, Riccardo; Hooker, Simon

    2011-03-10T23:59:59.000Z

    The longitudinal coherence of free-electron laser (FEL) radiation can be enhanced by seeding the FEL with high harmonics of an optical laser pulse. The radiation produced by high-harmonic generation (HHG), however, has a fast-varying temporal profile that can violate the slowly varying envelope approximation and limited frequency window that is employed in conventional free-electron laser simulation codes. Here we investigate the implications of violating this approximation on the accuracy of simulations. On the basis of both analytical considerations and 1D numerical studies, it is concluded that, for most realistic scenarios, conventional FEL codes are capable of accurately simulating the FEL process even when the seed radiation violates the slowly varying envelope approximation. We additionally discuss the significance of filtering the harmonic content of broadband HHG seeds.

  8. A laser triggered vacuum spark x-ray lithography source

    E-Print Network [OSTI]

    Keating, Richard Allen

    1987-01-01T23:59:59.000Z

    ionized state or the physical processes occurring 15 in a high temperature plasma. There are many advantages to the use of the vacuum spark as an x-ray source; the simplicity of the machine is one. The x-ray output is within the range usable for x-ray... spark apparatus ha- been studied here to determine its applicability to x-ray lithography. A capacitor which stored approximately 3 KJ supplied most of the energy for the plasma. A Nd-YAG laser was used to supply electrons and metallic atoms...

  9. Chirped pulse inverse free-electron laser vacuum accelerator

    DOE Patents [OSTI]

    Hartemann, Frederic V. (Dublin, CA); Baldis, Hector A. (Pleasanton, CA); Landahl, Eric C. (Walnut Creek, CA)

    2002-01-01T23:59:59.000Z

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  10. Free-electron laser scientist is one of two newly elected American...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Steve Benson Steve Benson of the Free-Electron Laser (FEL) group was recently selected as a 2002 Fellow of the American Physical Society Free-electron laser scientist is one of two...

  11. E-Print Network 3.0 - alamos free-electron laser Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    free-electron laser Search Powered by Explorit Topic List Advanced Search Sample search results for: alamos free-electron laser Page: << < 1 2 3 4 5 > >> 1 Applications: Medical...

  12. E-Print Network 3.0 - axial free-electron laser Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    free-electron laser Search Powered by Explorit Topic List Advanced Search Sample search results for: axial free-electron laser Page: << < 1 2 3 4 5 > >> 1 JOURNAL DE PHYSIQUE...

  13. Hard x-ray or gamma ray laser by a dense electron beam

    E-Print Network [OSTI]

    S. Son; S. J. Moon

    2012-02-12T23:59:59.000Z

    A coherent x-ray or gamma ray can be created from a dense electron beam propagating through an intense laser undulator. It is analyzed by using the Landau damping theory which suits better than the conventional linear analysis for the free electron laser, as the electron beam energy spread is high. The analysis suggests that the currently available physical parameters would enable the generation of the coherent gamma ray of up to 100 keV. The electron quantum diffraction suppresses the FEL action, by which the maximum radiation energy to be generated is limited.

  14. Reversible electron beam heating for suppression of microbunching instabilities at free-electron lasers

    E-Print Network [OSTI]

    Behrens, Christopher; Xiang, Dao

    2011-01-01T23:59:59.000Z

    The presence of microbunching instabilities due to the compression of high-brightness electron beams at existing and future X-ray free-electron lasers (FELs) results in restrictions on the attainable lasing performance and renders beam imaging with optical transition radiation impossible. The instability can be suppressed by introducing additional energy spread, i.e., "heating" the electron beam, as demonstrated by the successful operation of the laser heater system at the Linac Coherent Light Source. The increased energy spread is typically tolerable for self-amplified spontaneous emission FELs but limits the effectiveness of advanced FEL schemes such as seeding. In this paper, we present a reversible electron beam heating system based on two transverse deflecting radio-frequency structures (TDSs) in front and behind a magnetic bunch compressor chicane. The additional energy spread will be introduced in the first TDS, which suppresses the microbunching instability, and then will be eliminated in the second T...

  15. Slippage effect on energy modulation in seeded free-electron lasers with frequency chirped seed laser pulses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feng, Chao; Deng, Haixiao; Wang, Guanglei; Wang, Dong; Zhao, Zhentang; Xiang, Dao

    2013-06-01T23:59:59.000Z

    Free-electron lasers (FELs) seeded with external lasers hold great promise for generating high power radiation with nearly transform-limited bandwidth in the soft x-ray region. However, it has been pointed out that the initial seed laser phase error will be amplified by the frequency up-conversion process, which may degrade the quality of the output radiation produced by a harmonic generation scheme. In this paper, theoretical and simulation studies on frequency chirp amplification in seeded FEL schemes with slippage effect taken into account are presented. It is found that the seed laser imperfection experienced by the electron beam can be significantly smoothed by the slippage effect in the modulator when the slippage length is comparable to the seed laser pulse length. This smoothing effect allows one to preserve the excellent temporal coherence of seeded FELs in the presence of large frequency chirp in the seed laser. Our studies show that the tolerance on frequency chirp in the seed laser for generating nearly transform-limited soft x-ray pulses in seeded FELs is much looser than previously thought and fully coherent radiation at nanometer wavelength may be reached with current technologies.

  16. Compact two-beam push-pull free electron laser

    DOE Patents [OSTI]

    Hutton, Andrew (Yorktown, VA)

    2009-03-03T23:59:59.000Z

    An ultra-compact free electron laser comprising a pair of opposed superconducting cavities that produce identical electron beams moving in opposite directions such that each set of superconducting cavities accelerates one electron beam and decelerates the other electron beam. Such an arrangement, allows the energy used to accelerate one beam to be recovered and used again to accelerate the second beam, thus, each electron beam is decelerated by a different structure than that which accelerated it so that energy exchange rather than recovery is achieved resulting in a more compact and highly efficient apparatus.

  17. Vanadium-pumped titanium x-ray laser

    DOE Patents [OSTI]

    Nilsen, J.

    1992-05-26T23:59:59.000Z

    A resonantly photo-pumped x-ray laser is formed of a vanadium and titanium foil combination that is driven by two beams of intense line focused optical laser radiation. Ground state neon-like titanium ions are resonantly photo-pumped by line emission from fluorine-like vanadium ions. 4 figs.

  18. Vanadium-pumped titanium x-ray laser

    DOE Patents [OSTI]

    Nilsen, Joseph (Livermore, CA)

    1992-01-01T23:59:59.000Z

    A resonantly photo-pumped x-ray laser (10) is formed of a vanadium (12) and titanium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state neon-like titanium ions (34) are resonantly photo-pumped by line emission from fluorine-like vanadium ions (32).

  19. Beam conditioner for free electron lasers and synchrotrons

    DOE Patents [OSTI]

    Liu, H.; Neil, G.R.

    1998-09-08T23:59:59.000Z

    A focused optical has been used to introduce an optical pulse, or electromagnetic wave, collinear with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM{sub 10} mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  20. Beam conditioner for free electron lasers and synchrotrons

    DOE Patents [OSTI]

    Liu, Hongxiu (Williamsburg, VA); Neil, George R. (Williamsburg, VA)

    1998-01-01T23:59:59.000Z

    A focused optical is been used to introduce an optical pulse, or electromagnetic wave, colinearly with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM.sub.10 mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  1. Thermal effect on prebunched two-beam free electron laser

    SciTech Connect (OSTI)

    Mirian, N. S. [School of Particle and Accelerator Physics, Institute for Research in Fundamental Sciences (IPM), 19395-5531 Tehran (Iran, Islamic Republic of)] [School of Particle and Accelerator Physics, Institute for Research in Fundamental Sciences (IPM), 19395-5531 Tehran (Iran, Islamic Republic of); Maraghechi, B. [Department of Physics, Amirkabir University of Technology, 15875-4413 Tehran (Iran, Islamic Republic of)] [Department of Physics, Amirkabir University of Technology, 15875-4413 Tehran (Iran, Islamic Republic of)

    2013-08-15T23:59:59.000Z

    A numerical simulation in one-dimension is conducted to study the two-beam free electron laser. The fundamental resonance of the fast electron beam coincides with the fifth harmonic of the slow electron beam in order to generate extreme ultraviolet radiation. Thermal effect in the form of the longitudinal velocity spread is included in the analysis. In order to reduce the length of the wiggler, prebunched slow electron beam is considered. The evaluation of the radiation power, bunching parameter, distribution function of energy, and the distribution function of the pondermotive phase is studied. Sensitivity of the power of the fifth harmonic to the jitter in the energy difference between the two beams is also studied. A phase space is presented that shows the trapped electrons at the saturation point.

  2. Free-Electron Laser-Powered Electron Paramagnetic Resonance Spectroscopy

    E-Print Network [OSTI]

    Takahashi, S; Edwards, D T; van Tol, J; Ramian, G; Han, S; Sherwin, M S

    2012-01-01T23:59:59.000Z

    Electron paramagnetic resonance (EPR) spectroscopy interrogates unpaired electron spins in solids and liquids to reveal local structure and dynamics; for example, EPR has elucidated parts of the structure of protein complexes that have resisted all other techniques in structural biology. EPR can also probe the interplay of light and electricity in organic solar cells and light-emitting diodes, and the origin of decoherence in condensed matter, which is of fundamental importance to the development of quantum information processors. Like nuclear magnetic resonance (NMR), EPR spectroscopy becomes more powerful at high magnetic fields and frequencies, and with excitation by coherent pulses rather than continuous waves. However, the difficulty of generating sequences of powerful pulses at frequencies above 100 GHz has, until now, confined high-power pulsed EPR to magnetic fields of 3.5 T and below. Here we demonstrate that ~1 kW pulses from a free-electron laser (FEL) can power a pulsed EPR spectrometer at 240 GHz...

  3. Soft x-ray laser microscope. Final report

    SciTech Connect (OSTI)

    Suckewer, P.I.

    1990-10-01T23:59:59.000Z

    The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL`s 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si{sub 3}N{sub 4}) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

  4. Jefferson Lab's Free-Electron Laser explores promise of carbon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webs of nanotubes on collector plates Webs of nanotubes form on collector plates during the collaboration's FEL experiment (image not actual size). Jefferson Lab's Free-Electron...

  5. Ultraviolet Free Electron Laser Facility preliminary design report

    SciTech Connect (OSTI)

    Ben-Zvi, I. (ed.)

    1993-02-01T23:59:59.000Z

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, but have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA).

  6. Electron bunch energy and phase feed-forward stabilization system for the Mark V RF-linac free-electron laser

    SciTech Connect (OSTI)

    Hadmack, M. R.; Kowalczyk, J. M. D.; Lienert, B. R.; Madey, J. M. J.; Szarmes, E. B. [Department of Physics and Astronomy, University of Hawai'i at Manoa, Honolulu, Hawaii 96822 (United States); Jacobson, B. T. [RadiaBeam Technologies, Santa Monica, California 90404 (United States)

    2013-06-15T23:59:59.000Z

    An amplitude and phase compensation system has been developed and tested at the University of Hawai'i for the optimization of the RF drive system to the Mark V free-electron laser. Temporal uniformity of the RF drive is essential to the generation of an electron beam suitable for optimal free-electron laser performance and the operation of an inverse Compton scattering x-ray source. The design of the RF measurement and compensation system is described in detail and the results of RF phase compensation are presented. Performance of the free-electron laser was evaluated by comparing the measured effects of phase compensation with the results of a computer simulation. Finally, preliminary results are presented for the effects of amplitude compensation on the performance of the complete system.

  7. Monte Carlo study for optimal conditions in single-shot imaging with femtosecond x-ray laser pulses

    SciTech Connect (OSTI)

    Park, Jaehyun; Ishikawa, Tetsuya; Song, Changyong [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan)] [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Joti, Yasumasa [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)] [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2013-12-23T23:59:59.000Z

    Intense x-ray pulses from x-ray free electron lasers (XFELs) enable the unveiling of atomic structure in material and biological specimens via ultrafast single-shot exposures. As the radiation is intense enough to destroy the sample, a new sample must be provided for each x-ray pulse. These single-particle delivery schemes require careful optimization, though systematic study to find such optimal conditions is still lacking. We have investigated two major single-particle delivery methods: particle injection as flying objects and membrane-mount as fixed targets. The optimal experimental parameters were searched for via Monte Carlo simulations to discover that the maximum single-particle hit rate achievable is close to 40%.

  8. Damage threshold of inorganic solids under free-electron-laser irradiation at 32.5 nm wavelength

    SciTech Connect (OSTI)

    Hau-Riege, S; London, R A; Bionta, R M; McKernan, M A; Baker, S L; Krzywinski, J; Sobierajski, R; Nietubyc, R; Pelka, J B; Jurek, M; Klinger, D; Juha, L; Chalupsky, J; Cihelka, J; Hajkova, V; Koptyaev, S; Velyhan, A; Krasa, J; Kuba, J; Tiedtke, K; Toleikis, S; Tschentscher, T; Wabnitz, H; Bergh, M; Caleman, C; Sokolowski-Tinten, K; Stojanovic, N; Zastrau, U; Tronnier, A; Meyer-ter-Vehn, J

    2007-12-03T23:59:59.000Z

    We exposed samples of B4C, amorphous C, chemical-vapor-deposition (CVD)-diamond C, Si, and SiC to single 25 fs-long pulses of 32.5 nm free-electron-laser radiation at fluences of up to 2.2 J/cm{sup 2}. The samples were chosen as candidate materials for x-ray free electron laser (XFEL) optics. We found that the threshold for surface-damage is on the order of the fluence required for thermal melting. For larger fluences, the crater depths correspond to temperatures on the order of the critical temperature, suggesting that the craters are formed by two-phase vaporization [1]. XFELs have the promise of producing extremely high-intensity ultrashort pulses of coherent, monochromatic radiation in the 1 to 10 keV regime. The expected high output fluence and short pulse duration pose significant challenges to the optical components, including radiation damage. It has not been possible to obtain direct experimental verification of the expected damage thresholds since appropriate x-ray sources are not yet available. FLASH has allowed us to study the interaction of high-fluence short-duration photon pulses with materials at the shortest wavelength possible to date. With these experiments, we have come closer to the extreme conditions expected in XFEL-matter interaction scenarios than previously possible.

  9. LIPSS Free-Electron Laser Searches for Dark Matter

    SciTech Connect (OSTI)

    Afanaciev, Andrei; Beard, Kevin; Biallas, George; Boyce, James R; Minarni, M; Ramdon, R; Robinson, Taylor; Shinn, Michelle D

    2011-09-01T23:59:59.000Z

    A variety of Dark Matter particle candidates have been hypothesized by physics Beyond the Standard Model (BSM) in the very light (10{sup -6} - 10{sup -3} eV) range. In the past decade several international groups have conducted laboratory experiments designed to either produce such particles or extend the boundaries in parameter space. The LIght Pseudo-scalar and Scalar Search (LIPSS) Collaboration, using the 'Light Shining through a Wall' (LSW) technique, passes the high average power photon beam from Jefferson Lab's Free-Electron Laser through a magnetic field upstream from a mirror and optical beam dump. Light Neutral Bosons (LNBs), generated by coupling of photons with the magnetic field, pass through the mirror ('the Wall') into an identical magnetic field where they revert to detectable photons by the same coupling process. While no evidence of LNBs was evident, new scalar coupling boundaries were established. New constraints were also determined for hypothetical para-photons and for millicharged fermions. We will describe our experimental setup and results for LNBs, para-photons, and milli-charged fermions. Plans for chameleon particle searches are underway.

  10. XTREME OPTICS: the behavior of cavity optics for the Jefferson Lab free-electron laser

    SciTech Connect (OSTI)

    Michelle D. Shinn; Christopher Behre; Stephen Benson; David Douglas; Fred Dylla; Christopher Gould; Joseph Gubeli; David Hardy; Kevin Jordan; George Neil; and Shukui Zhanga

    2006-09-25T23:59:59.000Z

    The cavity optics within high power free-electron lasers based on energy-recovering accelerators are subjected to extreme conditions associated with illumination from a broad spectrum of radiation, often at high irradiances. This is especially true for the output coupler, where absorption of radiation by both the mirror substrate and coating places significant design restrictions to properly manage heat load and prevent mirror distortion. Besides the fundamental lasing wavelength, the mirrors are irradiated with light at harmonics of the fundamental, THz radiation generated by the bending magnets downstream of the wiggler, and x-rays produced when the electron beam strikes accelerator diagnostic components (e.g., wire scanners and view screens) or from inadvertent beam loss. The optics must reside within high vacuum at ~ 10-8 Torr and this requirement introduces its own set of complications. This talk discusses the performance of numerous high reflector and output coupler optics assemblies and provides a detailed list of lessons learned gleaned from years of experience operating the Upgrade IR FEL, a 10 kW-class, sub-ps laser with output wavelength from 1 to 6 microns.

  11. Line X-ray emission from Al targets irradiated by high-intensity, variable-length laser pulses

    E-Print Network [OSTI]

    Limpouch, Jiri

    Line X-ray emission from Al targets irradiated by high-intensity, variable-length laser pulses J; the scaling rules for the conversion efficiency of the laser radiation into the line X-ray emission are discussed. Keywords: Laser-produced plasma; Line X-ray emission; X-ray sources; X-ray spectroscopy 1

  12. Gain dynamics in a soft X-ray laser ampli er perturbed by a strong injected X-ray eld

    SciTech Connect (OSTI)

    Wang, Yong [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Wang, Shoujun [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Oliva, E [Laboratoire de Physique des Gaz et des Gaz et des Plasmas] [Laboratoire de Physique des Gaz et des Gaz et des Plasmas; Lu, L [Laboratoire de Physique des Gaz et des Gaz et des Plasmas] [Laboratoire de Physique des Gaz et des Gaz et des Plasmas; Berrill, Mark A [ORNL] [ORNL; Yin, Liang [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Nejdl, J [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Luther, Brad [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Proux, C [Laboratoire d’Optique Applique´e, ENSTA, CNRS, Ecole Polytechnique] [Laboratoire d’Optique Applique´e, ENSTA, CNRS, Ecole Polytechnique; Le, T. T. [Laboratoire de Physique des Gaz et des Gaz et des Plasmas] [Laboratoire de Physique des Gaz et des Gaz et des Plasmas; Dunn, James [Lawrence Livermore National Laboratory (LLNL)] [Lawrence Livermore National Laboratory (LLNL); Ros, D [Laboratoire de Physique des Gaz et des Gaz et des Plasmas] [Laboratoire de Physique des Gaz et des Gaz et des Plasmas; Zeitoun, Philippe [École Polytechnique] [École Polytechnique; Rocca, Jorge [Colorado State University, Fort Collins] [Colorado State University, Fort Collins

    2014-01-01T23:59:59.000Z

    Seeding soft X-ray plasma ampli ers with high harmonics has been demonstrated to generate high-brightness soft X-ray laser pulses with full spatial and temporal coherence. The interaction between the injected coherent eld and the swept-gain medium has been modelled. However, no exper- iment has been conducted to probe the gain dynamics when perturbed by a strong external seed eld. Here, we report the rst X-ray pump X-ray probe measurement of the nonlinear response of a plasma ampli er perturbed by a strong soft X-ray ultra-short pulse. We injected a sequence of two time-delayed high-harmonic pulses (l518.9 nm) into a collisionally excited nickel-like molybdenum plasma to measure with femto-second resolution the gain depletion induced by the saturated ampli cation of the high-harmonic pump and its subsequent recovery. The measured fast gain recovery in 1.5 1.75 ps con rms the possibility to generate ultra-intense, fully phase-coherent soft X-ray lasers by chirped pulse ampli cation in plasma ampli ers.

  13. Supplemental information I. OPTICAL-LASER AND X-RAY CONFIGURATION

    E-Print Network [OSTI]

    Loss, Daniel

    Supplemental information I. OPTICAL-LASER AND X-RAY CONFIGURATION The experiment used 70 fs x-ray and x-ray pulses was established by the initial decrease in the 111 diffraction peak in a laser pulses at 10 keV from the LCLS in the high-charge (250 pC) mode at 120 Hz. The x-ray beam was focused

  14. Operational Radiation Protection in Synchrotron Light and Free Electron Laser Facilities

    SciTech Connect (OSTI)

    Liu, James C.; Rokni, Sayed H.; /SLAC; Vylet, Vaclav; /Jefferson Lab

    2009-12-11T23:59:59.000Z

    The 3rd generation synchrotron radiation (SR) facilities are storage ring based facilities with many insertion devices and photon beamlines, and have low injection beam power (< few tens of watts), but extremely high stored beam power ({approx} 1 GW). The 4th generation x-ray free electron laser (FEL) facilities are based on an electron Linac with a long undulator and have high injection beam power (a few kW). Due to its electron and photon beam characteristics and modes of operation, storage ring and photon beamlines have unique safety aspects, which are the main subjects of this paper. The shielding design limits, operational modes, and beam losses are first reviewed. Shielding analysis (source terms and methodologies) and interlocked safety systems for storage ring and photon beamlines (including SR and gas bremsstrahlung) are described. Specific safety issues for storage ring top-off injection operation and FEL facilities are discussed. The operational safety program, e.g., operation authorization, commissioning, training, and radiation measurements, for SR facilities is also presented.

  15. Beam energy distribution influences on density modulation efficiency in seeded free-electron lasers

    E-Print Network [OSTI]

    Wang, Guanglei; Deng, Haixiao; Zhang, Weiqing; Wu, Guorong; Dai, Dongxu; Wang, Dong; Zhao, Zhentang; Yang, Xueming

    2015-01-01T23:59:59.000Z

    The beam energy spread at the entrance of undulator system is of paramount importance for efficient density modulation in high-gain seeded free-electron lasers (FELs). In this paper, the dependences of high harmonic micro-bunching in the high-gain harmonic generation (HGHG), echo-enabled harmonic generation (EEHG) and phase-merging enhanced harmonic generation (PEHG) schemes on the electron energy spread distribution are studied. Theoretical investigations and multi-dimensional numerical simulations are applied to the cases of uniform and saddle beam energy distributions and compared to a traditional Gaussian distribution. It shows that the uniform and saddle electron energy distributions significantly enhance the performance of HGHG-FELs, while they almost have no influence on EEHG and PEHG schemes. A numerical example demonstrates that, with about 84keV RMS uniform and/or saddle slice energy spread, the 30th harmonic radiation can be directly generated by a single-stage seeding scheme for a soft x-ray FEL f...

  16. Efficiency enhancement of a two-beam free-electron laser

    SciTech Connect (OSTI)

    Rouhani, M. H.; Maraghechi, B.; Saberi, H. [Department of Physics, Amirkabir University of Technology, 15875-4413 Tehran (Iran, Islamic Republic of)

    2009-12-15T23:59:59.000Z

    A local and nonlinear simulation of two-beam and tapered free-electron laser (FEL) is presented self-consistently. The slippage of the electromagnetic wave with respect to the electron beam is ignored and the relativistic electron beams are assumed to be cold. The fundamental resonance and the third harmonic radiation of the beam with lower energy are considered, in which the third harmonic is at the fundamental resonance of the beam with higher energy. The wiggler field is set to decrease linearly when the radiation of the third harmonic saturates. The optimum starting point of tapering and the slope of the reduction in the amplitude of wiggler are found by successive run of the code. Using the slowly varying envelope approximation, a set of nonlinear equations is derived which describes this system. These equations are solved numerically by the Runge-Kutta method. This method can be used to improve the efficiency of the two-beam FEL in the extreme ultraviolet and x-ray regions of spectrum.

  17. Laser wakefield generated X-ray probe for femtosecond time-resolved measurements of ionization states of warm dense aluminum

    SciTech Connect (OSTI)

    Mo, M. Z.; Chen, Z.; Tsui, Y. Y.; Fedosejevs, R. [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada)] [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada); Fourmaux, S.; Saraf, A.; Otani, K.; Kieffer, J. C. [INRS-EMT, Université du Québec, 1650 Lionel Boulet, Varennes, Québec J3X 1S2 (Canada)] [INRS-EMT, Université du Québec, 1650 Lionel Boulet, Varennes, Québec J3X 1S2 (Canada); Ng, A. [Department of Physics and Astronomy, University of British Columbia, British Columbia V6T 1Z1 (Canada)] [Department of Physics and Astronomy, University of British Columbia, British Columbia V6T 1Z1 (Canada)

    2013-12-15T23:59:59.000Z

    We have developed a laser wakefield generated X-ray probe to directly measure the temporal evolution of the ionization states in warm dense aluminum by means of absorption spectroscopy. As a promising alternative to the free electron excited X-ray sources, Betatron X-ray radiation, with femtosecond pulse duration, provides a new technique to diagnose femtosecond to picosecond transitions in the atomic structure. The X-ray probe system consists of an adjustable Kirkpatrick-Baez (KB) microscope for focusing the Betatron emission to a small probe spot on the sample being measured, and a flat Potassium Acid Phthalate Bragg crystal spectrometer to measure the transmitted X-ray spectrum in the region of the aluminum K-edge absorption lines. An X-ray focal spot size of around 50 ?m was achieved after reflection from the platinum-coated 10-cm-long KB microscope mirrors. Shot to shot positioning stability of the Betatron radiation was measured resulting in an rms shot to shot variation in spatial pointing on the sample of 16 ?m. The entire probe setup had a spectral resolution of ?1.5 eV, a detection bandwidth of ?24 eV, and an overall photon throughput efficiency of the order of 10{sup ?5}. Approximately 10 photons were detected by the X-ray CCD per laser shot within the spectrally resolved detection band. Thus, it is expected that hundreds of shots will be required per absorption spectrum to clearly observe the K-shell absorption features expected from the ionization states of the warm dense aluminum.

  18. Massively parallel X-ray holography STEFANO MARCHESINI1,2

    E-Print Network [OSTI]

    Petta, Jason

    , and a bacterial cell with a soft-X-ray free-electron laser, where illumination by a single 15-fs pulse was successfully used in producing the holographic image. As X-ray lasers move to shorter wavelengths we expectMassively parallel X-ray holography STEFANO MARCHESINI1,2 *, SE´BASTIEN BOUTET3,4 , ANNE E

  19. Apparatus and method to enhance X-ray production in laser produced plasmas

    DOE Patents [OSTI]

    Augustoni, A.L.; Gerardo, J.B.; Raymond, T.D.

    1992-12-29T23:59:59.000Z

    Method and apparatus for generating x-rays for use in, for instance, x-ray photolithography is disclosed. The method of generating x-rays includes the steps of providing a target and irradiating the target with a laser system which produces a train of sub-pulses to generate an x-ray producing plasma. The sub-pulses are of both high intensity and short duration. The apparatus for generating x-rays from a plasma includes a vacuum chamber, a target supported within the chamber and a laser system, including a short storage time laser. 8 figs.

  20. Apparatus and method to enhance X-ray production in laser produced plasmas

    DOE Patents [OSTI]

    Augustoni, Arnold L. (Albuquerque, NM); Gerardo, James B. (Albuquerque, NM); Raymond, Thomas D. (Albuquerque, NM)

    1992-01-01T23:59:59.000Z

    Method and apparatus for generating x-rays for use in, for instance, x-ray photolithography. The method of generating x-rays includes the steps of providing a target and irradiating the target with a laser system which produces a train of sub-pulses to generate an x-ray producing plasma. The sub-pulses are of both high intensity and short duration. The apparatus for generating x-rays from a plasma includes a vacuum chamber, a target supported within the chamber and a laser system, including a short storage time laser.

  1. A CW normal-conductive RF gun for free electron laser and energy recovery linac applications

    E-Print Network [OSTI]

    Baptiste, Kenneth

    2009-01-01T23:59:59.000Z

    Todd, State-of-the art electron guns and injector de- signs,7] Summary of working group on guns and injectors, 41st Ad-A CW normal-conductive RF gun for free electron laser and

  2. SciTech Connect: Compact X-ray Free Electron Laser from a Laser-plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controllerAdditiveBetatron Radiation fromTop FBAccelerator using a

  3. Note: A novel normalization scheme for laser-based plasma x-ray sources

    SciTech Connect (OSTI)

    Zhang, B. B.; Sun, D. R.; Tao, Y., E-mail: taoy@ihep.ac.cn [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Sun, S. S. [Institute of Physics, Chinese Academy of Sciences, Beijing 100090 (China)

    2014-09-15T23:59:59.000Z

    A kHz repetition rate laser pump-X-ray probe system for ultrafast X-ray diffraction is set up based on a laser-driven plasma X-ray source. A simple and reliable normalization approach has been developed to minimize the impact of large X-ray pulse intensity fluctuation on data quality. It utilizes one single X-ray area detector to record both sample and reference signals simultaneously. Performance of this novel normalization method is demonstrated in reflectivity oscillation measurement of a superlattice sample at sub-ps resolution.

  4. Warm photoionized plasmas created by soft-x-ray laser irradiation of solid targets

    E-Print Network [OSTI]

    Rocca, Jorge J.

    Warm photoionized plasmas created by soft-x-ray laser irradiation of solid targets Mark Berrill,1); published April 7, 2008 We report the study of warm plasmas created by soft-x-ray laser irradiation of solid that in contrast to plasmas created by optical lasers the plasma properties are largely determined

  5. Bright High Average Power Table-top Soft X-Ray Lasers

    SciTech Connect (OSTI)

    Rocca, Jorge [Colorado State University, Fort Collins; Reagan, Brendon [Colorado State University, Fort Collins; Wernsing, Keith [Colorado State University, Fort Collins; Luther, Brad [Colorado State University, Fort Collins; Curtis, Alden [Colorado State University, Fort Collins; Nichols,, Anthony [Colorado State University, Fort Collins; Wang, Yong [Colorado State University, Fort Collins; Alessi, David [Colorado State University, Fort Collins; Martz, Dale [Colorado State University, Fort Collins; Yin, Liang [Colorado State University, Fort Collins; Wang, Shoujun [Colorado State University, Fort Collins; Berrill, Mark A [ORNL; Furch, Federico [Colorado State University, Fort Collins; Woolston, Mark [Colorado State University, Fort Collins; Patel, Dinesh [Colorado State University, Fort Collins; Marconi, Mario [Colorado State University, Fort Collins; Menoni, Carmen [Colorado State University, Fort Collins

    2012-01-01T23:59:59.000Z

    We have demonstrated the generation of bright soft x-ray laser pulses with record-high average power from compact plasma amplifiers excited by ultrafast solid state lasers. These lasers have numerous applications in nanoscience and nanotechnology.

  6. Single molecule imaging with longer x-ray laser pulses

    E-Print Network [OSTI]

    Martin, Andrew V; Caleman, Carl; Quiney, Harry M

    2015-01-01T23:59:59.000Z

    In serial femtosecond crystallography, x-ray laser pulses do not need to outrun all radiation damage processes because Bragg diffraction exceeds the damage-induced background scattering for longer pulses ($\\sim$ 50--100 fs). This is due to a "self-gating pulse" effect whereby damage terminates Bragg diffraction prior to the pulse completing its passage through the sample, as if that diffraction were produced by a shorter pulse of equal fluence. We show here that a similar gating effect applies to single molecule diffraction with respect to spatially uncorrelated damage processes like ionization and ion diffusion. The effect is clearly seen in calculations of the diffraction contrast, by calculating the diffraction of average structure separately to the diffraction from statistical fluctuations of the structure due to damage ("damage noise"). Our results suggest that sub-nanometer single molecule imaging with longer pulses, like those produced at currently operating facilities, should not yet be ruled out. The...

  7. CONTROL SYSTEM FOR MAGNET POWER SUPPLIES FOR NOVOSIBIRSK FREE ELECTRON LASER

    E-Print Network [OSTI]

    Kozak, Victor R.

    - power supplies are very small and do not require water cooling. Therefore it is very convenientCONTROL SYSTEM FOR MAGNET POWER SUPPLIES FOR NOVOSIBIRSK FREE ELECTRON LASER Yu.M.Velikanov, V electron laser (FEL) is described. The characteristics and structure of the power supply system

  8. Free electron properties of metals under ultrafast laser-induced electron-phonon nonequilibrium: a first-principles study

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Free electron properties of metals under ultrafast laser-induced electron-phonon nonequilibrium CEA-DIF, 91297 Arpajon, France (Dated: April 3, 2014) The electronic behavior of various solid metals modelled based on the free electron classical theory, the free electron number is a key parameter. However

  9. Free-electron laser driven by the LBNL laser-plasma accelerator

    SciTech Connect (OSTI)

    Schroeder, C. B.; Fawley, W. M.; Gruner, F.; Bakeman, M.; Nakamura, K.; Robinson, K. E.; Toth, Cs.; Esarey, E.; Leemans, W. P.

    2008-08-04T23:59:59.000Z

    A design of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, XUV pulses is presented. The FEL is driven by ahigh-current, 0.5 GeV electron beam from the Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few centimeters. The proposed ultra-fast source (~;;10 fs) would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science. Owing to the high current (>10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 10^13 photons/pulse. Devices based both on self-amplified spontaneous emission and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered.

  10. Method and apparatus for producing durationally short ultraviolet or x-ray laser pulses

    DOE Patents [OSTI]

    MacGowan, B.J.; Matthews, D.L.; Trebes, J.E.

    1987-05-05T23:59:59.000Z

    A method and apparatus is disclosed for producing ultraviolet or x- ray laser pulses of short duration. An ultraviolet or x-ray laser pulse of long duration is progressively refracted, across the surface of an opaque barrier, by a streaming plasma that is produced by illuminating a solid target with a pulse of conventional line focused high power laser radiation. The short pulse of ultraviolet or x-ray laser radiation, which may be amplified to high power, is separated out by passage through a slit aperture in the opaque barrier.

  11. Method and apparatus for producing durationally short ultraviolet or X-ray laser pulses

    DOE Patents [OSTI]

    MacGowan, Brian J. (Livermore, CA); Matthews, Dennis L. (El Granada, CA); Trebes, James E. (Livermore, CA)

    1988-01-01T23:59:59.000Z

    A method and apparatus is disclosed for producing ultraviolet or X-ray laser pulses of short duration (32). An ultraviolet or X-ray laser pulse of long duration (12) is progressively refracted, across the surface of an opaque barrier (28), by a streaming plasma (22) that is produced by illuminating a solid target (16, 18) with a pulse of conventional line focused high power laser radiation (20). The short pulse of ultraviolet or X-ray laser radiation (32), which may be amplified to high power (40, 42), is separated out by passage through a slit aperture (30) in the opaque barrier (28).

  12. Femtosecond dark-field imaging with an X-ray free electron laser (CXIDB ID 19)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Martin, A. V.

    This data was collected as part of the same experiment as the data deposited in [ID16](id-16.html). Experiment details are given in [Loh, N.D. et al.](http://dx.doi.org/10.1038/nature11222)

  13. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers

    SciTech Connect (OSTI)

    Hattne, Hattne

    2014-03-04T23:59:59.000Z

    Diffraction patterns from thermolysin microcrystals and one dark run, collected in December 2011. This data was used for metrology calibration and general cctbx.xfel development.

  14. De novo protein crystal structure determination from X-ray free-electron laser data

    SciTech Connect (OSTI)

    Barends, Thomas, R.M.

    2013-11-25T23:59:59.000Z

    Serial femtosecond crystallography (SFX) data of microcrystals of a lysozyme gadolinium derivative. The data was used to demonstrate de-novo phasing by single anomalous dispersion.

  15. R&D for a Soft X-Ray Free Electron Laser Facility

    E-Print Network [OSTI]

    Staples, John

    2009-01-01T23:59:59.000Z

    Accelerator Conference, Lucerne, Switzerland (2004) p. 330.Accelerator Conference, Lucerne, Switzerland, July (2004)Proceedings of EPAC 2004, Lucerne, Switzerland. 52. S.

  16. Femtosecond diffractive imaging with a soft-X-ray free-electron laser (CXIDB ID 3)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chapman, H. N.

    The diffraction pattern of this entry corresponds to the one shown in **figure 2a** of the corresponding citation.

  17. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hattne, Hattne

    Diffraction patterns from thermolysin microcrystals and one dark run, collected in December 2011. This data was used for metrology calibration and general cctbx.xfel development.

  18. De novo protein crystal structure determination from X-ray free-electron laser data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Barends, Thomas, R.M.

    Serial femtosecond crystallography (SFX) data of microcrystals of a lysozyme gadolinium derivative. The data was used to demonstrate de-novo phasing by single anomalous dispersion.

  19. The World's First Free-Electron X-ray Laser | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment of Energy The U.S. andThe

  20. The European X-ray Free-Electron Laser: A Progress Report | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience andFebruaryThe ElectronicSynchrotron

  1. Characteristic x-ray emission from undermines plasmas irradiated by ultra-intense lasers

    SciTech Connect (OSTI)

    Niemann, Christoph

    2012-05-05T23:59:59.000Z

    Between FY09 and FY11 we have conducted more than a dozen three-week experimental campaigns at high-power laser facilities around the world to investigate laser-channeling through x-ray and optical imaging and the conversion from laser-energy to xrays. We have performed simultaneous two-wavelength x-ray imaging (K-alpha and He-alpha) to distinguish the hot-plasma region (hot-spot) from the laser-produced electrons (K-alpha). In addition, we have initiated a new collaboration with SNL and have performed first shots on the 100 TW beamlet chamber to commission a fast x-ray streak camera to be used to investigate the temporal evolution of our K-alpha sources. We also collaborated on campaigns at the Rutherford Appleton Laboratory (UK) and the LANL Trident laser to employ laser produced x-ray sources for Thomson scattering off dense matter.

  2. Enhancement of x-ray line emission from plasmas produced by short high-intensity laser double pulses

    E-Print Network [OSTI]

    Limpouch, Jiri

    Enhancement of x-ray line emission from plasmas produced by short high-intensity laser double laser-produced plasmas are bright ultrafast line x-ray sources potentially suitable for different onto a solid target into the x-ray emission is significantly enhanced when a laser prepulse precedes

  3. X-Ray Radiation from Nonlinear Thomson Scattering of an Intense Femtosecond Laser on Relativistic Electrons in a Helium Plasma

    E-Print Network [OSTI]

    Umstadter, Donald

    X-Ray Radiation from Nonlinear Thomson Scattering of an Intense Femtosecond Laser on Relativistic laser beam on plasma electrons. A collimated x-ray radiation with a broad continuous spectrum peaked by the ultraintense laser fields. The results show the existence of several physical mecha- nisms for the x-ray

  4. Damage threshold of inorganic solids under free-electron-laser irradiation at 32.5 nm wavelength

    E-Print Network [OSTI]

    von der Linde, D.

    to the optical components required to utilize XFEL beams, including radiation damage. Theoretical workDamage threshold of inorganic solids under free-electron-laser irradiation at 32.5 nm wavelength SC were exposed to single 25 fs long pulses of 32.5 nm free-electron-laser radiation at fluences of up

  5. Absorbed XFEL dose in the components of the LCLS X-Ray Optics

    SciTech Connect (OSTI)

    Hau-Riege, S

    2005-09-27T23:59:59.000Z

    We list the materials that are anticipated to be placed into the Linac Coherent Light Source (LCLS) x-ray free electron laser (XFEL) beam line, their positions, and the absorbed dose, and compare this dose with anticipated damage thresholds.

  6. Making the Old New Again: Measuring Ultrashort X-ray Laser Pulses...

    Office of Science (SC) Website

    free-electron lasers using a transverse deflector." Physical Review ST Accelerators and Beams. 14:120701 (2011). DOI: 10.1103PhysRevSTAB.14.120701 External link V. A. Dolgashev...

  7. Development of a Time-resolved Soft X-ray Spectrometer for Laser Produced Plasma Experiments

    SciTech Connect (OSTI)

    Cone, K V; Dunn, J; Schneider, M B; Baldis, H A; Brown, G V; Emig, J; James, D L; May, M J; Park, J; Shepherd, R; Widmann, K

    2010-05-12T23:59:59.000Z

    A 2400 line/mm variable spaced grating spectrometer (VSG) has been used to measure soft x-ray emission (8-22 {angstrom}) from laser-produced plasma experiments at Lawrence Livermore National Laboratory's Compact Multipulse Terrawatt (COMET) Laser Facility. The spectrometer was coupled to a Kentech x-ray streak camera to study the temporal evolution of soft x-rays emitted from the back of mylar and copper foils irradiated at 10{sup 15} W/cm{sup 2}. The instrument demonstrated a resolving power of {approx} 120 at 19 {angstrom} with a time resolution of 31 ps. The time-resolved copper emission spectrum was consistent with a photodiode monitoring the laser temporal pulse shape and indicated that the soft x-ray emission follows the laser heating of the target. The time and spectral resolution of this diagnostic make it useful for studies of high temperature plasmas.

  8. Development of a time-resolved soft x-ray spectrometer for laser produced plasma experiments

    SciTech Connect (OSTI)

    Cone, K. V.; Park, J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); University of California at Davis, Davis, California 95616 (United States); Dunn, J.; Schneider, M. B.; Brown, G. V.; Emig, J.; James, D. L.; May, M. J.; Shepherd, R.; Widmann, K. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Baldis, H. A. [University of California at Davis, Davis, California 95616 (United States)

    2010-10-15T23:59:59.000Z

    A 2400 lines/mm variable-spaced grating spectrometer has been used to measure soft x-ray emission (8-22 A) from laser-produced plasma experiments at Lawrence Livermore National Laboratory's Compact Multipulse Terrawatt (COMET) Laser Facility. The spectrometer was coupled to a Kentech x-ray streak camera to study the temporal evolution of soft x rays emitted from the back of the Mylar and the copper foils irradiated at 10{sup 15} W/cm{sup 2}. The instrument demonstrated a resolving power of {approx}120 at 19 A with a time resolution of 31 ps. The time-resolved copper emission spectrum was consistent with a photodiode monitoring the laser temporal pulse shape and indicated that the soft x-ray emission follows the laser heating of the target. The time and spectral resolutions of this diagnostic make it useful for studies of high temperature plasmas.

  9. Plasma-Density Determination from X-Ray Radiography of Laser-Driven Spherical Implosions

    E-Print Network [OSTI]

    Frenje, Johan A.

    The fuel layer density of an imploding laser-driven spherical shell is inferred from framed x-ray radiographs. The density distribution is determined by using Abel inversion to compute the radial distribution of the opacity ...

  10. Technical Report Ultrafast X-ray Science at the Sub-Picosecond Pulse Source

    E-Print Network [OSTI]

    Wechsler, Risa H.

    1 Technical Report Ultrafast X-ray Science at the Sub-Picosecond Pulse Source Kelly J. Gaffney ultrafast phenomena. These techniques involve excitation of a sample with an ultrafast laser pump pulse, USA The ultrafast, high brightness x-ray free electron laser (XFEL) sources of the future have

  11. Invited Article: Coherent imaging using seeded free-electron laser pulses with variable polarization: First results and research opportunities

    SciTech Connect (OSTI)

    Capotondi, F.; Pedersoli, E.; Mahne, N.; Menk, R. H.; Passos, G.; Raimondi, L.; Svetina, C.; Sandrin, G.; Kiskinova, M. [FERMI, Elettra-Sincrotrone Trieste, SS 14 - km 163.5, 34149 Basovizza, Trieste (Italy); Zangrando, M. [FERMI, Elettra-Sincrotrone Trieste, SS 14 - km 163.5, 34149 Basovizza, Trieste (Italy); CNR, Istituto Officina dei Materiali - TASC, SS 14 - km 163.5, 34149 Basovizza, Trieste (Italy); Bajt, S.; Barthelmess, M.; Fleckenstein, H.; Chapman, H. N. [CFEL-DESY, Notkestrasse 85, 22607 Hamburg (Germany); Schulz, J. [European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Bach, J.; Froemter, R. [Universitaet Hamburg, Institut fuer Angewandte Physik, 20355 Hamburg (Germany); Schleitzer, S.; Mueller, L.; Gutt, C. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); and others

    2013-05-15T23:59:59.000Z

    FERMI-Elettra, the first vacuum ultraviolet and soft X-ray free-electron laser (FEL) using by default a 'seeded' scheme, became operational in 2011 and has been opened to users since December 2012. The parameters of the seeded FERMI FEL pulses and, in particular, the superior control of emitted radiation in terms of spectral purity and stability meet the stringent requirements for single-shot and resonant coherent diffraction imaging (CDI) experiments. The advantages of the intense seeded FERMI pulses with variable polarization have been demonstrated with the first experiments performed using the multipurpose experimental station operated at the diffraction and projection imaging (DiProI) beamline. The results reported here were obtained with fixed non-periodic targets during the commissioning period in 2012 using 20-32 nm wavelength range. They demonstrate that the performance of the FERMI FEL source and the experimental station meets the requirements of CDI, holography, and resonant magnetic scattering in both multi- and single-shot modes. Moreover, we present the first magnetic scattering experiments employing the fully circularly polarized FERMI pulses. The ongoing developments aim at pushing the lateral resolution by using shorter wavelengths provided by double-stage cascaded FERMI FEL-2 and probing ultrafast dynamic processes using different pump-probe schemes, including jitter-free seed laser pump or FEL-pump/FEL-probe with two color FEL pulses generated by the same electron bunch.

  12. Absolute x-ray yields from laser-irradiated germanium-doped low-density aerogels

    SciTech Connect (OSTI)

    Fournier, K. B.; Satcher, J. H.; May, M. J.; Poco, J. F.; Sorce, C. M.; Colvin, J. D.; Hansen, S. B.; MacLaren, S. A.; Moon, S. J.; Davis, J. F. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Girard, F.; Villette, B.; Primout, M.; Babonneau, D. [Commissariat a l'Energie Atomique-Direction des Application Militaires (CEA/DAM), Ile-de-France, F91297 Arpajon (France); Coverdale, C. A.; Beutler, D. E. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States)

    2009-05-15T23:59:59.000Z

    The x-ray yields from laser-irradiated germanium-doped ultra-low-density aerogel plasmas have been measured in the energy range from sub-keV to {approx_equal}15 keV at the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The targets' x-ray yields have been studied for variation in target size, aerogel density, laser pulse length, and laser intensity. For targets that result in plasmas with electron densities in the range of {approx_equal}10% of the critical density for 3{omega} light, one can expect 10-11 J/sr of x rays with energies above 9 keV, and 600-800 J/sr for energies below 3.5 keV. In addition to the x-ray spectral yields, the x-ray temporal waveforms have been measured and it is observed that the emitted x rays generally follow the delivered laser power, with late-time enhancements of emitted x-ray power correlated with hydrodynamic compression of the hot plasma. Further, the laser energy reflected from the target by plasma instabilities is found to be 2%-7% of the incident energy for individual beam intensities {approx_equal}10{sup 14}-10{sup 15} W/cm{sup 2}. The propagation of the laser heating in the target volume has been characterized with two-dimensional imaging. Source-region heating is seen to be correlated with the temporal profile of the emitted x-ray power.

  13. Absolute X-Ray Yields From Laser-Irradiated Ge-Doped Low-Density Aerogels

    SciTech Connect (OSTI)

    Fournier, K B; Satcher, J H; May, M J; Poco, J F; Sorce, C M; Colvin, J D; Hansen, S B; MacLaren, S A; Moon, S J; Davis, J F; Girard, F; Villette, B; Primout, M; Babonneau, D; Coverdale, C A; Beutler, D E

    2009-02-10T23:59:59.000Z

    We have used the OMEGA laser (Laboratory for Laser Energetics, University of Rochester) to measure the X-ray yields from laser-irradiated germanium-doped ultra-low-density aerogel plasmas in the energy range from sub-keV to {approx} 15 keV. They have studied the targets X-ray yields with variation in target size, aerogel density, laser pulse length and laser intensity. For targets that result in plasmas with electron densities in the range of {approx} 10% of the critical density for 3{omega} light, one can expect 10-11 J/sr of X-rays with energies above 9 keV, and 600-800 J/sr for energies below 3.5 keV. In addition to the X-ray spectral yields, they have measured the X-ray temporal waveforms and found that the emitted X rays generally follow the delivered laser power, with late-time enhancements of emitted X-ray power correlated with hydrodynamic compression of the hot plasma. Also, they find the laser energy reflected from the target by plasma instabilities to be 2-7% of the incident energy for individual beam intensities {approx} 10{sup 14}-10{sup 15} W/cm{sup 2}. They also have characterized the propagation of the laser heating in the target volume with two-dimensional imaging. They find the source-region heating to be correlated with the temporal profile of the emitted X-ray power.

  14. Low-Emittance Electron Bunches from a Laser-Plasma Accelerator Measured using Single-Shot X-Ray Spectroscopy

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Low-Emittance Electron Bunches from a Laser-Plasma Accelerator Measured using Single-Shot X-Ray,8], x-ray [9­11], and -ray radiation [12,13]. The electron density wave gener- ated by an intense laser manuscript received 15 February 2012; published 10 August 2012) X-ray spectroscopy is used to obtain single

  15. Study of an HHG-Seeded Free-Electron Laser for the LBNL Next Generation Light Source

    SciTech Connect (OSTI)

    Thompson, Neil

    2010-10-20T23:59:59.000Z

    The Next Generation Light Source (NGLS) is a high repetition rate free-electron laser facility proposed by Lawrence Berkeley National Laboratory (LBNL). The proposed facility will provide multiple FEL lines with varying spectral characteristics to satisfy a broad soft X-ray physics programme. At this stage of the project a number of FEL technologies and concepts are being investigated for possible implementation on the facility. In this report we consider a free-electron laser seeded by a Higher Harmonic Generation (HHG) source in which a high power (and consequently relatively low repetition rate) laser pulse is injected into a chamber of inert gas. Through a process of ionisation and recombination coherent higher harmonics of the laser are emitted from the gas and can be injected into an FEL system as a seed field. Further harmonic upconversion can be done within the FEL system to enable temporally coherent FEL output at wavelengths much shorter than, and pulse energies orders of magnitude higher than, the HHG source emission. The harmonic conversion within the FEL works in the following way. The seed field induces an energy modulation within the electron bunch at the start of the modulator. This energy modulation grows within the modulator due to the FEL interaction and starts to convert into a density modulation, or bunching, at the seed wavelength. However, this bunching also has components at higher harmonics which retain the longitudinal coherence of the initial seed. The beam passes through a magnetic chicane, which shears the longitudinal phase space to maximise the bunching at the required harmonic, then a further undulator which is tuned to this harmonic. If this second undulator is short it acts as a further modulator, and because the beam is pre-bunched at the modulator resonance there is a strong coherent burst of radiation which acts to modulate the electron beam energy in much the same way the input laser seed field acted in the first modulator. This second modulator is followed by a second bunching chicane and then a final long radiator tuned to a yet higher harmonic of the laser seed - the final output wavelength. Alternatively, the second undulator can be the radiator itself, in which case only one harmonic conversion from seed wavelength to final output is necessary. We initially consider the case of a 400kW peak power HHG seed source at wavelength 12nm (currently considered the cutoff wavelength for sufficient seed power to dominate shot noise in the electron beam) which is converted in either one or two stages or harmonic conversion to FEL emission at 1nm. We then consider the implications of a factor of ten reduction in seed power to 40kW.

  16. Time-dependent simulation of prebunched one and two-beam free electron laser

    SciTech Connect (OSTI)

    Mirian, N. S., E-mail: najmeh.mirian@ipm.ir [School of Particle and Accelerator Physics, Institute for Research in Fundamental Sciences (IPM), Post code 19395-5531 Tehran (Iran, Islamic Republic of); Maraghechi, B. [Department of Physics, Amirkabir University of Technology, Post code 15875-4413 Tehran (Iran, Islamic Republic of)] [Department of Physics, Amirkabir University of Technology, Post code 15875-4413 Tehran (Iran, Islamic Republic of)

    2014-04-15T23:59:59.000Z

    A numerical simulation in one-dimension is conducted to study the slippage effects on prebunched free electron laser. A technique for the simulation of time dependent free electron lasers (FEL) to model the slippage effects is introduced, and the slowly varying envelope approximation in both z and t is used to illustrate the temporal behaviour in the prebunched FEL. Slippage effect on prebunched two-beam FEL is compared with the one-beam modeling. The evaluation of the radiation pulse energy, thermal and phase distribution, and radiation pulse shape in one-beam and two-beam modeling is studied. It was shown that the performance is considerably undermined when the slippage time is comparable to the pulse duration. However, prebunching reduces the slippage. Prebunching also leads to the radiation pulse with a single smooth spike.

  17. Dispersion relation and growth rate in a Cherenkov free electron laser: Finite axial magnetic field

    SciTech Connect (OSTI)

    Kheiri, Golshad; Esmaeilzadeh, Mahdi [Department of Physics, Iran University of Science and Technology, Tehran 16844 (Iran, Islamic Republic of)] [Department of Physics, Iran University of Science and Technology, Tehran 16844 (Iran, Islamic Republic of)

    2013-12-15T23:59:59.000Z

    A theoretical analysis is presented for dispersion relation and growth rate in a Cherenkov free electron laser with finite axial magnetic field. It is shown that the growth rate and the resonance frequency of Cherenkov free electron laser increase with increasing axial magnetic field for low axial magnetic fields, while for high axial magnetic fields, they go to a saturation value. The growth rate and resonance frequency saturation values are exactly the same as those for infinite axial magnetic field approximation. The effects of electron beam self-fields on growth rate are investigated, and it is shown that the growth rate decreases in the presence of self-fields. It is found that there is an optimum value for electron beam density and Lorentz relativistic factor at which the maximum growth rate can take place. Also, the effects of velocity spread of electron beam are studied and it is found that the growth rate decreases due to the electron velocity spread.

  18. Soft-x-ray laser interferometry of a pinch discharge using a tabletop laser C. H. Moreno,* M. C. Marconi,* K. Kanizay, and J. J. Rocca

    E-Print Network [OSTI]

    Rocca, Jorge J.

    Soft-x-ray laser interferometry of a pinch discharge using a tabletop laser C. H. Moreno,* M. C Street, Kharkov 310002, Ukraine Received 18 December 1998 We have used a tabletop soft-x-ray laser region of the discharge. This demonstration of the use of tabletop soft-x-ray laser in plasma

  19. A convenient alignment approach for x-ray imaging experiments based on laser positioning devices

    SciTech Connect (OSTI)

    Zhang Da; Donovan, Molly; Wu Xizeng; Liu Hong [Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States); Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35233 (United States); Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States)

    2008-11-15T23:59:59.000Z

    This study presents a two-laser alignment approach for facilitating the precise alignment of various imaging and measuring components with respect to the x-ray beam. The first laser constantly pointed to the output window of the source, in a direction parallel to the path along which the components are placed. The second laser beam, originating from the opposite direction, was calibrated to coincide with the first laser beam. Thus, a visible indicator of the direction of the incident x-ray beam was established, and the various components could then be aligned conveniently and accurately with its help.

  20. Variable Gap Undulator for 1.5-48 Kev Free Electron Laser at Linac Coherent Light Source

    SciTech Connect (OSTI)

    Pellegrini, C.; /UCLA; Wu, J.; /SLAC; ,

    2011-08-17T23:59:59.000Z

    We study the feasibility of generating femtosecond duration Free-Electron Laser with a variable photon energy from 1.5 to 48 keV, using an electron bunch with the same characteristics of the LINAC Coherent Light Source (LCLS) bunch, and a planar undulator with additional focusing. We assume that the electron bunch energy can be changed, and the undulator has a variable gap, allowing a variable undulator parameter. It is assumed to be operated in an ultra-low charge and ultra-short pulse regime. We study the feasibility of a tunable, short pulse, X-ray FEL with photon energy from 1.5 to 48 keV, using an electron beam like the one in the LCLS and a 2:5 cm period, variable gap, planar undulator. The beam energy changes from 4.6 to 13.8 GeV, the electorn charge is kept at 10 pC, and the undulator parameter varies from 1 to 3. The undulator length needed to saturate the 48 keV FEL is about 55 m, with a peak power around 5 GW. At longer wavelength the saturation length is as short as 15 m, and the peak power around 20 GW. The results from the analytical models and the GENESIS simulations show that the system is feasible. The large wavelength range, full tunability and short, few femtosecond pulses, together with the large peak power, would provide a powerful research tool.

  1. Structured x-ray beams from twisted electrons by inverse Compton scattering of laser light

    E-Print Network [OSTI]

    Seipt, D; Fritzsche, S

    2014-01-01T23:59:59.000Z

    The inverse Compton scattering of laser light on high-energetic twisted electrons is investigated with the aim to construct spatially structured x-ray beams. In particular, we analyze how the properties of the twisted electrons, such as the topological charge and aperture angle of the electron Bessel beam, affects the energy and angular distribution of scattered x-rays. We show that with suitably chosen initial twisted electron states one can synthesize tailor-made x-ray beam profiles with a well-defined spatial structure, in a way not possible with ordinary plane-wave electron beams.

  2. X-Ray Entangled Photon Production in Collisions of Laser Beams with Relativistic Ions

    E-Print Network [OSTI]

    K. A. Ispirian; M. K. Ispiryan

    2010-04-02T23:59:59.000Z

    A method is suggested to produce, with the help of colliding laser photons with bunches of relativistic ions having two energy levels, both intense beams of monochromatic polarized X-ray fluorescence photons and significant number of X-ray entangled photons, via double Doppler transformation. Nonlinear susceptibility of the ions, the cross section and the rate of production of such photons at RHIC are estimated. Such beams of X-ray photons can be detected and applied to solve various problems, in a manner similar to the usage of optical photons.

  3. Quantitative X-Ray Phase-Contrast Microtomography from a Compact Laser Driven Betatron Source

    E-Print Network [OSTI]

    Wenz, J; Khrennikov, K; Bech, M; Thibault, P; Heigoldt, M; Pfeiffer, F; Karsch, S

    2014-01-01T23:59:59.000Z

    X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by well-controlled high-power lasers offer a promising route to a proliferation of this powerful imaging technology. A laser-driven plasma wave accelerates and wiggles electrons, giving rise to brilliant keV X-ray emission. This so-called Betatron radiation is emitted in a collimated beam with excellent spatial coherence and remarkable spectral stability. Here we present the first phase-contrast micro-tomogram revealing quantitative electron density values of a biological sample using betatron X-rays, and a comprehensive source characterization. Our results suggest that laser-based X-ray technology offers the potential fo...

  4. First Observation of Self-Amplified Spontaneous Emission in a Free-Electron Laser at 109 nm Wavelength

    E-Print Network [OSTI]

    Andruszków, J; Ayvazyan, V T; Baboi, N I; Bakker, R; Balakin, V; Barni, D; Bazhan, A; Bernard, M; Bosotti, A; Bourdon, J C; Brefeld, W; Brinkmann, R; Bühler, S; Carneiro, J P; Castellano, M G; Castro, P; Catani, L; Chel, S; Cho, Y; Choroba, S; Colby, E R; Decking, W; Den Hartog, P; Desmons, M; Dohlus, M; Edwards, D; Edwards, H T; Faatz, B; Feldhaus, J; Ferrario, M; Fitch, M J; Flöttmann, K; Fouaidy, M; Gamp, A; Garvey, Terence; Geitz, M A; Gluskin, E S; Gretchko, V; Hahn, U; Hartung, W H; Hubert, D; Hüning, M; Ischebek, R; Jablonka, M; Joly, J M; Juillard, M; Junquera, T; Jurkiewicz, P; Kabel, A C; Kahl, J; Kaiser, H; Kamps, T; Katelev, V V; Kirchgessner, J L; Körfer, M; Kravchuk, L V; Kreps, G; Krzywinski, J; Lokajczyk, T; Lange, R; Leblond, B; Leenen, M; Lesrel, J; Liepe, M; Liero, A; Limberg, T; Lorenz, R; Lu, H H; Lu, F H; Magne, C; Maslov, M A; Materlik, G; Matheisen, A; Menzel, J; Michelato, P; Möller, W D; Mosnier, A; Müller, U C; Napoly, O; Novokhatskii, A V; Omeich, M; Padamsee, H; Pagani, C; Peters, F; Petersen, B; Pierini, P; Pflüger, J; Piot, P; Phung Ngoc, B; Plucinski, L; Proch, D; Rehlich, K; Reiche, S; Reschke, D; Reyzl, I; Rosenzweig, J; Rossbach, J; Roth, S; Saldin, E L; Sandner, W; Sanok, Z; Schlarb, H; Schmidt, G; Schmüser, P; Schneider, J R; Schneidmiller, E A; Schreiber, H J; Schreiber, S; Schütt, P; Sekutowicz, J; Serafini, L; Sertore, D; Setzer, S; Simrock, S; Sonntag, B F; Sparr, B; Stephan, F; Sytchev, V V; Tazzari, S; Tazzioli, F; Tigner, Maury; Timm, M; Tonutti, M; Trakhtenberg, E; Treusch, R; Trines, D; Verzilov, V A; Vielitz, T; Vogel, V; Von Walter, G; Wanzenberg, R; Weiland, T; Weise, H; Weisend, J G; Wendt, M; Werner, M; White, M M; Will, I; Wolff, S; Yurkov, M V; Zapfe, K; Zhogolev, P; Zhou, F

    2000-01-01T23:59:59.000Z

    We present the first observation of Self-Amplified Spontaneous Emission (SASE) in a free-electron laser (FEL) in the Vacuum Ultraviolet regime at 109 nm wavelength (11 eV). The observed free-electron laser gain (approx. 3000) and the radiation characteristics, such as dependency on bunch charge, angular distribution, spectral width and intensity fluctuations all corroborate the existing models for SASE FELs.

  5. DEVELOPMENT OF NEW MID-INFRARED ULTRAFAST LASER SOURCES FOR COMPACT COHERENT X-RAY SOURCES

    SciTech Connect (OSTI)

    Sterling Backus

    2012-05-14T23:59:59.000Z

    In this project, we proposed to develop laser based mid-infrared lasers as a potentially robust and reliable source of ultrafast pulses in the mid-infrared region of the spectrum, and to apply this light source to generating bright, coherent, femtosecond-to-attosecond x-ray beams.

  6. Resonantly photo-pumped nickel-like erbium X-ray laser

    DOE Patents [OSTI]

    Nilsen, Joseph (Livermore, CA)

    1990-01-01T23:59:59.000Z

    A resonantly photo-pumped X-ray laser (10) that enhances the gain of seve laser lines that also lase because of collisional excitations and recombination processes, is described. The laser comprises an aluminum (12) and erbium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like erbium ions (34) are resonantly photo-pumped by line emission from hydrogen-like aluminum ions (32).

  7. Femtosecond nanocrystallography using X-ray lasers for membrane protein

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALL NEWSFemtosecond X-ray proteinstructure

  8. Induction linac-driven free-electron lasers: Status and future prospects

    SciTech Connect (OSTI)

    Prosnitz, D.

    1987-01-11T23:59:59.000Z

    The high repetition rate and low single-pass gain inherent in an rf-driven Free Electron Laser (FEL) dictate that the laser system be configured as an oscillator. This allows the laser's electric field to build up over many passes around a high Q cavity. By way of contrast, the high-current capability of the Induction Linac (IL) system permits high single-pass optical gain, but the relatively low duty factor precludes oscillator operation; the pulses are neither long enough nor often enough to permit a field to accumulate in a cavity. The IL is thus configured as a MOPA (master oscillator/power amplifier) with a conventional laser serving as the MO. This report concentrates on the status of IL-driven FEL research at LLNL and gives a description of several applications for the high-peak-power radiation produced by an induction linac FEL.

  9. Integrated Numerical Experiments (INEX) and the Free-Electron Laser Physical Process Code (FELPPC)

    SciTech Connect (OSTI)

    Thode, L.E.; Chan, K.C.D.; Schmitt, M.J.; McKee, J.; Ostic, J.; Elliott, C.J.; McVey, B.D.

    1990-01-01T23:59:59.000Z

    The strong coupling of subsystem elements, such as the accelerator, wiggler, and optics, greatly complicates the understanding and design of a free electron laser (FEL), even at the conceptual level. Given the requirements for high-performance FELs, the strong coupling between the laser subsystems must be included to obtain a realistic picture of the potential operational capability. To address the strong coupling character of the FEL the concept of an Integrated Numerical Experiment (INEX) was proposed. Unique features of the INEX approach are consistency and numerical equivalence of experimental diagnostics. The equivalent numerical diagnostics mitigates the major problem of misinterpretation that often occurs when theoretical and experimental data are compared. The INEX approach has been applied to a large number of accelerator and FEL experiments. Overall, the agreement between INEX and the experiments is very good. Despite the success of INEX, the approach is difficult to apply to trade-off and initial design studies because of the significant manpower and computational requirements. On the other hand, INEX provides a base from which realistic accelerator, wiggler, and optics models can be developed. The Free Electron Laser Physical Process Code (FELPPC) includes models developed from INEX, provides coupling between the subsystems models and incorporates application models relevant to a specific trade-off or design study.

  10. Investigating high speed phenomena in laser plasma interactions using dilation x-ray imager (invited)

    SciTech Connect (OSTI)

    Nagel, S. R., E-mail: nagel7@llnl.gov; Bell, P. M.; Bradley, D. K.; Ayers, M. J.; Piston, K.; Felker, B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Hilsabeck, T. J.; Kilkenny, J. D.; Chung, T.; Sammuli, B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Hares, J. D.; Dymoke-Bradshaw, A. K. L. [Kentech Instruments Ltd., Wallingford, Oxfordshire OX10 (United Kingdom)

    2014-11-15T23:59:59.000Z

    The DIlation X-ray Imager (DIXI) is a new, high-speed x-ray framing camera at the National Ignition Facility (NIF) sensitive to x-rays in the range of ?2–17 keV. DIXI uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps, a ?10× improvement over conventional framing cameras currently employed on the NIF (?100 ps resolution), and otherwise only attainable with 1D streaked imaging. The pulse-dilation technique utilizes a voltage ramp to impart a velocity gradient on the signal-bearing electrons. The temporal response, spatial resolution, and x-ray sensitivity of DIXI are characterized with a short x-ray impulse generated using the COMET laser facility at Lawrence Livermore National Laboratory. At the NIF a pinhole array at 10 cm from target chamber center (tcc) projects images onto the photocathode situated outside the NIF chamber wall with a magnification of ?64×. DIXI will provide important capabilities for warm-dense-matter physics, high-energy-density science, and inertial confinement fusion, adding important capabilities to temporally resolve hot-spot formation, x-ray emission, fuel motion, and mix levels in the hot-spot at neutron yields of up to 10{sup 17}. We present characterization data as well as first results on electron-transport phenomena in buried-layer foil experiments.

  11. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    E-Print Network [OSTI]

    Tsai, Hai-En; Shaw, Joseph; Li, Zhengyan; Arefiev, Alexey V; Zhang, Xi; Zgadzaj, Rafal; Henderson, Watson; Khudik, V; Shvets, G; Downer, M C

    2014-01-01T23:59:59.000Z

    We present results of the first tunable Compton backscattering (CBS) x-ray source that is based on the easily aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The LPA is driven in the blowout regime by 30 TW, 30 fs laser pulses, and produces high-quality, tunable, quasi-monoenergetic electron beams. A thin plastic film near the gas jet exit efficiently retro-reflects the LPA driving pulse with relativistic intensity into oncoming electrons to produce $2\\times10^{7}$ CBS x-ray photons per shot with 10-20 mrad angular divergence and 50 % (FWHM) energy spread without detectable bremsstrahlung background. The x-ray central energy is tuned from 75 KeV to 200 KeV by tuning the LPA e-beam central energy. Particle-in-cell simulations of the LPA, the drive pulse/PM interaction and CBS agree well with measurements.

  12. Overview of the ARGOS X-ray framing camera for Laser MegaJoule

    SciTech Connect (OSTI)

    Trosseille, C., E-mail: clement.trosseille@cea.fr; Aubert, D.; Auger, L.; Bazzoli, S.; Brunel, P.; Burillo, M.; Chollet, C.; Jasmin, S.; Maruenda, P.; Moreau, I.; Oudot, G.; Raimbourg, J.; Soullié, G.; Stemmler, P.; Zuber, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Beck, T. [CEA, DEN, CADARACHE, F-13108 St Paul lez Durance (France); Gazave, J. [CEA, DAM, CESTA, F-33116 Le Barp (France)

    2014-11-15T23:59:59.000Z

    Commissariat à l’Énergie Atomique et aux Énergies Alternatives has developed the ARGOS X-ray framing camera to perform two-dimensional, high-timing resolution imaging of an imploding target on the French high-power laser facility Laser MegaJoule. The main features of this camera are: a microchannel plate gated X-ray detector, a spring-loaded CCD camera that maintains proximity focus in any orientation, and electronics packages that provide remotely-selectable high-voltages to modify the exposure-time of the camera. These components are integrated into an “air-box” that protects them from the harsh environmental conditions. A miniaturized X-ray generator is also part of the device for in situ self-testing purposes.

  13. Ultrafast X-Ray Coherent Control

    SciTech Connect (OSTI)

    Reis, David

    2009-05-01T23:59:59.000Z

    This main purpose of this grant was to develop the nascent #12;eld of ultrafast x-ray science using accelerator-based sources, and originally developed from an idea that a laser could modulate the di#11;racting properties of a x-ray di#11;racting crystal on a fast enough time scale to switch out in time a shorter slice from the already short x-ray pulses from a synchrotron. The research was carried out primarily at the Advanced Photon Source (APS) sector 7 at Argonne National Laboratory and the Sub-Picosecond Pulse Source (SPPS) at SLAC; in anticipation of the Linac Coherent Light Source (LCLS) x-ray free electron laser that became operational in 2009 at SLAC (all National User Facilities operated by BES). The research centered on the generation, control and measurement of atomic-scale dynamics in atomic, molecular optical and condensed matter systems with temporal and spatial resolution . It helped develop the ultrafast physics, techniques and scienti#12;c case for using the unprecedented characteristics of the LCLS. The project has been very successful with results have been disseminated widely and in top journals, have been well cited in the #12;eld, and have laid the foundation for many experiments being performed on the LCLS, the world's #12;rst hard x-ray free electron laser.

  14. fLasHThe Free-Electron Laser new technologies for new science: Soon X-ray free-electron lasers

    E-Print Network [OSTI]

    , how molecular machines really work. Accelerators | photon Science | particle physics Deutsches in the accel- erator tunnel. The photon beam transport system in the hall delivers the FEL pulses ­ as short the feasibility of a superconducting linear electron-positron collider for elementary particle phy- sics

  15. Resource Letter on Stimulated Inelastic X-ray Scattering at an XFEL

    SciTech Connect (OSTI)

    Patterson, Bruce

    2010-09-02T23:59:59.000Z

    At sufficient X-ray intensity, stimulated effects in inelastic scattering will become important. These coherent, non-linear optical phenomena may be used to impulsively produce a high degree of collective excitation in, for example, correlated electron materials, suitable for performing ultrafast time-resolved spectroscopy. This Resource Letter collects information on fundamental aspects of stimulated X-ray scattering and evaluates the prospect for successful experiments at a present or future X-ray free electron laser (XFEL) facility.

  16. Multi-range free-electron laser with a pair of dielectric multilayer mirrors

    SciTech Connect (OSTI)

    Sei, Norihiro; Ogawa, Hiroshi; Yamada, Kawakatsu [Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2012-10-01T23:59:59.000Z

    We report the experimental achievement of a free-electron laser in three wavelength regions, mid-infrared, near-infrared, and visible, using a pair of dielectric multilayer mirrors in the storage ring NIJI-IV. Dielectric multilayer mirrors can have high reflectivity at wavelength regions corresponding to higher-diffraction orders of the target wavelength. A narrowing of the relative bandwidth of the dielectric multilayer mirrors was observed in the higher-diffraction orders of the target wavelength and was found to be caused by high diffraction and carbon contamination. Our experimental results will be applied to development of a multi-rang laser that have a gain in a wade wavelength region.

  17. Pump pulse-width dependence of grazing-incidence pumped transient collisional soft-x-ray lasers M. Berrill,1

    E-Print Network [OSTI]

    Rocca, Jorge J.

    Pump pulse-width dependence of grazing-incidence pumped transient collisional soft-x-ray lasers M 2007 The output energy dependence of high repetition rate grazing incidence pumped Ni-like Mo, Ni-like Ag, and Ne-like Ti transient collisional soft x-ray lasers on the duration of the pump pulse

  18. Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Seibert, M. Marvin; Ekeberg, Tomas; Maia, Filipe R.N.C.

    These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 1 are the pattern and configuration files for the pattern showed in Figure 2a in the paper.

  19. High-throughput imaging of heterogeneous cell organelles with an X-ray laser

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hantke, Max, F.

    Preprocessed detector images that were used for the paper "High-throughput imaging of heterogeneous cell organelles with an X-ray laser". The CXI file contains the entire recorded data - including both hits and blanks. It also includes down-sampled images and LCLS machine parameters. Additionally, the Cheetah configuration file is attached that was used to create the pre-processed data.

  20. Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 2)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Seibert, M. Marvin; Ekeberg, Tomas

    These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 2 are the pattern and configuration files for the pattern showed in Figure 2b in the paper.

  1. Application of soft X-ray lasers for probing high density plasmas

    SciTech Connect (OSTI)

    Da Silva, L.B.; Barbee, T.W. Jr.; Cauble, R. [and others

    1996-08-01T23:59:59.000Z

    The reliability and characteristics of collisionally pumped soft x-ray lasers make them ideal for a wide variety of plasma diagnostics. These systems now operate over a wavelength range extending from 35 to 400 {Angstrom} and have output energies as high as 10 mJ in 150 ps pulses. The beam divergence of these lasers is less than 15 mrad and they have a typical linewidth of {Delta}{lambda}/{lambda} {approximately} 10{sup -4} making them the brightest xuv sources available. In this paper we will describe the use of x-ray lasers to probe high density plasmas using a variety of diagnostic techniques. Using an x-ray laser and a multilayer mirror imaging system we have studied hydrodynamic imprinting of laser speckle pattern on directly driven thin foils with 1-2 {mu}m spatial resolution. Taking advantage of recently developed multilayer beamsplitters we have constructed and used a Mach-Zehnder interferometer operating at 155 {Angstrom} to probe 1-3 mm size laser produced plasmas with peak electron densities of 4 x 10{sup 21} cm{sup -3}. A comparison of our results with computer simulations will be presented.

  2. Attosecond Thomson-scattering x-ray source driven by laser-based electron acceleration

    SciTech Connect (OSTI)

    Luo, W. [School of Nuclear Science and Technology, University of South China, Hengyang 421001 (China) [School of Nuclear Science and Technology, University of South China, Hengyang 421001 (China); College of Science, National University of Defense Technology, Changsha 410073 (China); Zhuo, H. B.; Yu, T. P. [College of Science, National University of Defense Technology, Changsha 410073 (China)] [College of Science, National University of Defense Technology, Changsha 410073 (China); Ma, Y. Y. [College of Science, National University of Defense Technology, Changsha 410073 (China) [College of Science, National University of Defense Technology, Changsha 410073 (China); Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Song, Y. M.; Zhu, Z. C. [School of Nuclear Science and Technology, University of South China, Hengyang 421001 (China)] [School of Nuclear Science and Technology, University of South China, Hengyang 421001 (China); Yu, M. Y. [Department of Physics, Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China) [Department of Physics, Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Theoretical Physics I, Ruhr University, D-44801 Bochum (Germany)

    2013-10-21T23:59:59.000Z

    The possibility of producing attosecond x-rays through Thomson scattering of laser light off laser-driven relativistic electron beams is investigated. For a ?200-as, tens-MeV electron bunch produced with laser ponderomotive-force acceleration in a plasma wire, exceeding 10{sup 6} photons/s in the form of ?160 as pulses in the range of 3–300 keV are predicted, with a peak brightness of ?5 × 10{sup 20} photons/(s mm{sup 2} mrad{sup 2} 0.1% bandwidth). Our study suggests that the physical scheme discussed in this work can be used for an ultrafast (attosecond) x-ray source, which is the most beneficial for time-resolved atomic physics, dubbed “attosecond physics.”.

  3. PUBLISHED ONLINE: 17 JANUARY 2010 | DOI: 10.1038/NPHYS1506 High-reflectivity high-resolution X-ray crystal

    E-Print Network [OSTI]

    Loss, Daniel

    of X-ray free-electron laser oscillators (XFELOs), next-generation hard-X-ray sources of the highest-resolution X-ray crystal optics with diamonds Yuri V. Shvyd'ko1 *, Stanislav Stoupin1 , Alessandro Cunsolo1,2 , Ayman H. Said1 and Xianrong Huang2 Owing to the depth to which hard X-rays penetrate into most materials

  4. Dissociative multiple ionization of diatomic molecules by extreme-ultraviolet free-electron-laser pulses

    SciTech Connect (OSTI)

    Leth, Henriette Astrup; Madsen, Lars Bojer [Lundbeck Foundation Theoretical Center for Quantum System Research, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark)

    2011-06-15T23:59:59.000Z

    Nuclear dynamics in dissociative multiple ionization processes of diatomic molecules exposed to extreme-ultraviolet free-electron-laser pulses is studied theoretically using the Monte Carlo wave packet approach. By simulated detection of the emitted electrons, the model reduces a full propagation of the system to propagations of the nuclear wave packet in one specific electronic charge state at a time. Suggested ionization channels can be examined, and kinetic energy release spectra for the nuclei can be calculated and compared with experiments. Double ionization of O{sub 2} is studied as an example, and good agreement with published experimental data is obtained by simulating the dynamics on ten different electronic Born-Oppenheimer curves.

  5. Standing-Wave Free-Electron Laser Two-Beam Accelerator

    SciTech Connect (OSTI)

    Sessler, Andrew M.; Whittum, D.H.; Wurtele, Jonathan S.; Sharp, W.M.; Makowski, M.A.

    1991-02-01T23:59:59.000Z

    A free-electron laser (FEL) two-beam accelerator (TBA) is proposed, in which the FEL interaction takes place in a series of drive cavities, rather than in a waveguide. Each drive cavity is 'beat-coupled' to a section of the accelerating structure. This standing-wave TBA is investigated theoretically and numerically, with analyses included of microwave extraction, growth of the FEL signal through saturation, equilibrium longitudinal beam dynamics following saturation, and sensitivity of the microwave amplitude and phase to errors in current and energy. It is found that phase errors due to current jitter are substantially reduced from previous versions of the TBA. Analytic scalings and numerical simulations are used to obtain an illustrative TBA parameter set.

  6. Chaos in an ion-channel free-electron laser with realistic helical wiggler

    SciTech Connect (OSTI)

    Esmaeilzadeh, Mahdi [Department of Physics, Iran University of Science and Technology, Narmak, Tehran 16844 (Iran, Islamic Republic of); Taghavi, Amin [Department of Applied Science, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of)

    2012-11-15T23:59:59.000Z

    Chaotic behavior of an electron motion in a free-electron laser with realistic helical wiggler and ion-channel guiding is studied using Poincare surface-of-section maps. The effects of a realistic electron beam density on chaotic electron dynamics are investigated by considering an electron beam with Gaussian density profile in radial distance. The effects of self-fields on chaotic electron dynamics are investigated for different Gaussian beam parameters, and the results are compared with those of uniform electron beam. It is shown that the electron chaotic behavior can be controlled by changing the Gaussian beam parameter. Also, the chaotic behavior can be controlled by increasing the ion-channel and/or the electron beam densities.

  7. High-power rf-pulsed modulators for the Los Alamos free-electron laser

    SciTech Connect (OSTI)

    Johnson, W.J.D.; Lynch, M.T.; Tallerico, P.J.; Keffeler, D.R.; Hornkohl, J.O.

    1987-09-01T23:59:59.000Z

    In the rf-driven free-electron laser (FEL) at the Los Alamos National Laboratory, there are two pulsed-power rf modulators as sources for two tandem, side-coupled 20-MeV linear accelerators. The rf power used to control the cavity fields is supplied by two 5.5-MW modulating anode klystrons operating at a center frequency of 1300.2 MHz. The modulation of the 125 kV klystron is achieved by using a triode switch tube that provides a pulse width up to 300 ..mu..s and a pulse repetition rate up to 10 Hz. This paper describes the present configuration of these two duplicate systems and presents plans for meeting the requirements of future rf FEL experiments at Los Alamos. 12 refs., 5 figs.

  8. Design of a free-electron laser driven by the LBNL laser-plasma-accelerator

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    plasma accelerator at the LBNL LOASIS facility”, in: Proc.electron laser driven by the LBNL laser-plasma-accelerator ?National Laboratory (LBNL) laser-plasma accelerator, whose

  9. Free-electron laser driven by the LBNL laser-plasma accelerator

    E-Print Network [OSTI]

    Schroeder, C. B.

    2010-01-01T23:59:59.000Z

    XPLOTGIN, Technical Report LBNL-49625, Lawrence BerkeleyLASER-PLASMA ACCELERATOR AT THE LBNL LOASIS FACILITY,” inelectron laser driven by the LBNL laser-plasma accelerator

  10. Acceleration of electrons using an inverse free electron laser auto- accelerator

    SciTech Connect (OSTI)

    Wernick, I.K.; Marshall, T.C.

    1992-07-01T23:59:59.000Z

    We present data from our study of a device known as the inverse free electron laser. First, numerical simulations were performed to optimize the design parameters for an experiment that accelerates electrons in the presence of an undulator by stimulated absorption of radiation. The Columbia free electron laser (FEL) was configured as an auto-accelerator (IFELA) system; high power (MW's) FEL radiation at {approximately}1.65 mm is developed along the first section of an undulator inside a quasi-optical resonator. The electron beam then traverses a second section of undulator where a fraction of the electrons is accelerated by stimulated absorption of the 1.65 mm wavelength power developed in the first undulator section. The second undulator section has very low gain and does not generate power on its own. We have found that as much as 60% of the power generated in the first section can be absorbed in the second section, providing that the initial electron energy is chosen correctly with respect to the parameters chosen for the first and second undulators. An electron momentum spectrometer is used to monitor the distribution of electron energies as the electrons exit the IFELA. We have found; using our experimental parameters, that roughly 10% of the electrons are accelerated to energies as high as 1100 keV, in accordance with predictions from the numerical model. The appearance of high energy electrons is correlated with the abrupt absorption of millimeter power. The autoaccelerator configuration is used because there is no intense source of coherent power at the 1.65 mm design wavelength other than the FEL.

  11. Acceleration of electrons using an inverse free electron laser auto- accelerator

    SciTech Connect (OSTI)

    Wernick, I.K.; Marshall, T.C.

    1992-07-01T23:59:59.000Z

    We present data from our study of a device known as the inverse free electron laser. First, numerical simulations were performed to optimize the design parameters for an experiment that accelerates electrons in the presence of an undulator by stimulated absorption of radiation. The Columbia free electron laser (FEL) was configured as an auto-accelerator (IFELA) system; high power (MW`s) FEL radiation at {approximately}1.65 mm is developed along the first section of an undulator inside a quasi-optical resonator. The electron beam then traverses a second section of undulator where a fraction of the electrons is accelerated by stimulated absorption of the 1.65 mm wavelength power developed in the first undulator section. The second undulator section has very low gain and does not generate power on its own. We have found that as much as 60% of the power generated in the first section can be absorbed in the second section, providing that the initial electron energy is chosen correctly with respect to the parameters chosen for the first and second undulators. An electron momentum spectrometer is used to monitor the distribution of electron energies as the electrons exit the IFELA. We have found; using our experimental parameters, that roughly 10% of the electrons are accelerated to energies as high as 1100 keV, in accordance with predictions from the numerical model. The appearance of high energy electrons is correlated with the abrupt absorption of millimeter power. The autoaccelerator configuration is used because there is no intense source of coherent power at the 1.65 mm design wavelength other than the FEL.

  12. PUBLISHED ONLINE: 18 APRIL 2010 | DOI: 10.1038/NPHYS1638 Laser-driven amplification of soft X-rays by

    E-Print Network [OSTI]

    Loss, Daniel

    method for parametric amplification of soft-X-ray radiation. The laser-driven amplifier is based with the conventional plasma X-ray lasers. With a simple model, we can estimate the necessary experimental conditions duration3,4 or the narrow linewidth5 . X-ray lasers (XRLs) are attractive candidates for such investi

  13. FREE ELECTRON LASERS AND HIGH-ENERGY ELECTRON COOLING* Vladimir N. Litvinenko, BNL, Upton, Long Island, NY, USA#

    E-Print Network [OSTI]

    two orders-of-magnitude. Two techniques offering the potential to cool high- energy hadron beamsFREE ELECTRON LASERS AND HIGH-ENERGY ELECTRON COOLING* Vladimir N. Litvinenko, BNL, Upton, Long Island, NY, USA# Yaroslav S. Derbenev, TJNAF, Newport News, VA, USA) Abstract Cooling intense high

  14. X-ray pump optical probe cross-correlation study of GaAs

    SciTech Connect (OSTI)

    Durbin, S.M.; Clevenger, T.; Graber, T.; Henning, R. (Purdue); (UC)

    2012-09-10T23:59:59.000Z

    Ultrafast dynamics in atomic, molecular and condensed-matter systems are increasingly being studied using optical-pump, X-ray probe techniques where subpicosecond laser pulses excite the system and X-rays detect changes in absorption spectra and local atomic structure. New opportunities are appearing as a result of improved synchrotron capabilities and the advent of X-ray free-electron lasers. These source improvements also allow for the reverse measurement: X-ray pump followed by optical probe. We describe here how an X-ray pump beam transforms a thin GaAs specimen from a strong absorber into a nearly transparent window in less than 100 ps, for laser photon energies just above the bandgap. We find the opposite effect - X-ray induced optical opacity - for photon energies just below the bandgap. This raises interesting questions about the ultrafast many-body response of semiconductors to X-ray absorption, and provides a new approach for an X-ray/optical cross-correlator for synchrotron and X-ray free-electron laser applications.

  15. Phase-matched generation of coherent soft and hard X-rays using IR lasers

    DOE Patents [OSTI]

    Popmintchev, Tenio V.; Chen, Ming-Chang; Bahabad, Alon; Murnane, Margaret M.; Kapteyn, Henry C.

    2013-06-11T23:59:59.000Z

    Phase-matched high-order harmonic generation of soft and hard X-rays is accomplished using infrared driving lasers in a high-pressure non-linear medium. The pressure of the non-linear medium is increased to multi-atmospheres and a mid-IR (or higher) laser device provides the driving pulse. Based on this scaling, also a general method for global optimization of the flux of phase-matched high-order harmonic generation at a desired wavelength is designed.

  16. Correspondence: Email: shinn@jlab.org; Telephone: 757 269 7565; FAX: 757 269 5519 High Average Power Free-Electron Lasers -A New Laser Source for

    E-Print Network [OSTI]

    Power Free-Electron Lasers - A New Laser Source for Materials Processing Michelle D. Shinn Thomas). In general, the processing consists of material removal steps such as drilling, cutting, as well as joining technology provides a scaleable path to laser outputs above 50 kW, rendering these applications economically

  17. Soft x-ray laser holography with wavelength P. W. Wachulak, M. C. Marconi,* R. A. Bartels, C. S. Menoni, and J. J. Rocca

    E-Print Network [OSTI]

    Rocca, Jorge J.

    Soft x-ray laser holography with wavelength resolution P. W. Wachulak, M. C. Marconi,* R. A the tabletop acquisition of soft x-ray holographic images of nanostructures with a spatial resolution of 46 using a compact, tabletop capillary-discharge soft x-ray laser emitting at 46.9 nm in a high

  18. Breakthrough: X-ray Laser Captures Atoms and Molecules in Action

    ScienceCinema (OSTI)

    Bergmann, Uwe

    2014-05-21T23:59:59.000Z

    The Linac Coherent Light Source at SLAC is the world's most powerful X-ray laser. Just two years after turning on in 2009, breakthrough science is emerging from the LCLS at a rapid pace. A recent experiment used the X-rays to create and probe a 2-million-degree piece of matter in a controlled way for the first time-a significant leap toward understanding the extreme conditions found in the hearts of stars and giant planets, and a finding which could further guide research into nuclear fusion, the mechanism that powers the sun. Upcoming experiments will investigate the fundamental, atomic-scale processes behind such phenomena as superconductivity and magnetism, as well as peering into the molecular workings of photosynthesis in plants.

  19. Investigation of the electron trajectories and gain regimes of the whistler pumped free-electron laser

    SciTech Connect (OSTI)

    Jafarinia, F.; Jafari, S. [Department of Physics, University of Guilan, Rasht 41335-1914 (Iran, Islamic Republic of); Mehdian, H. [Department of Physics and Institute for Plasma Research, Tarbiat Moallem University, Tehran 15614 (Iran, Islamic Republic of)

    2013-04-15T23:59:59.000Z

    A free-electron laser (FEL) scheme, which employs the whistler wave as a slow electromagnetic wave wiggler, was studied theoretically. Subjected to the transverse fields of whistler wave wiggler, the beam electrons are the source of the energy needed to produce electromagnetic radiation. The strength and the period of the wiggler field depend on the parameters of the magnetoplasma medium. This configuration has a higher tunability by controlling the plasma density, on top of the {gamma}-tunability of the conventional FELs. The theory of linear gain and electron trajectories was presented and four groups (I, II, III, and IV) of electron orbits were found in the presence of an axial guide magnetic field. Using perturbation analysis, it is found that these groups of orbits were stable except small regions of group I and IV orbits. The function {Phi} which determines the rate of change of axial velocity with beam energy was also derived. In the case in which {Phi}<0 represents a negative-mass regime in which the axial velocity accelerates as the electrons lose energy. Numerical solutions showed that by increasing the cyclotron frequency, the gain for group I and III orbits increased, while a gain decrement was obtained for group II and IV orbits.

  20. Scaling relations and parameters for 1 Angstrom FEL. [Free Electron Laser

    SciTech Connect (OSTI)

    Yu, L.H.

    1990-01-01T23:59:59.000Z

    The Free Electron Laser (FEL) holds great promise as a tunable source of coherent radiation. At the present, the shortest wavelength achieved by an FEL is 2500 {Angstrom}. However, as recent progress in the development of laser driven photocathode electron guns has provided electron beams with lower and lower emittance and higher and higher current, it has become clear that FEL's with much shorter wavelength can be achieved. An FEL operating below 1000 {Angstrom} will yield important advances in fields such as photochemistry, atomic and molecular physics. An FEL with wavelength of 30 {Angstrom} will bring new era to the development of holography of living cells. And, if an FEL with 1 {Angstrom} wavelength can be developed, its impact on solid physics, molecular biology, and many other fields can hardly be exaggerated. We first describe our electron distribution model: a waterbag transverse phase space distribution and a Gaussian energy distribution. This model is widely used in simulations, and is rather close to reality. Then we describe the dispersion relation derived from the Vlasov-Maxwell equations, and its solution, expressed in scaled form. We compare the variational approximation with several simulation codes. Then we compare with exact results which we have derived for a parallel electron beam with finite beam size and energy spread. We explain the scaling relations, and give examples to show how system parameters scale when the FEL wavelength is reduced. Then, applying these scaling relations, we derive a list of preliminary system parameters for a 1 {Angstrom} FEL. As an example, we apply our analytical calculation to optimize one set of parameters derived from the scaling relations. Finally, as a conclusion we discuss the implication of the list of parameters for a 1{Angstrom} FEL. 20 refs., 4 figs.

  1. Investigations of laser-induced damages in fused silica optics using x-ray laser interferometric microscopy

    SciTech Connect (OSTI)

    Margarone, D.; Rus, B.; Kozlova, M.; Nejdl, J.; Mocek, T.; Homer, P.; Polan, J.; Stupka, M. [Department of X-ray Lasers/PALS Centre, Institute of Physics of the ASCR, 18221 Prague 8 (Czech Republic); Cassou, K.; Kazamias, S.; Lagron, J. C.; Ros, D. [LIXAM, Universite Paris-Sud, 91405 Orsay (France); Danson, C.; Hawkes, S. [Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom)

    2010-05-15T23:59:59.000Z

    A novel x-ray laser (XRL) application, aimed at understanding the microscopic effects involved in formation of laser-induced damage in optical materials exposed to high-power sub-ns laser pulses, is presented. Standard fused silica substrates with permanent damage threshold below 20 J/cm{sup 2}, when irradiated by 438 nm laser pulses, were probed in situ by a neonlike zinc XRL at 21.2 nm. The probing beamline employed a double Lloyd's mirror x-ray interferometer, used in conjunction with an imaging mirror to achieve magnification of {approx}8. In conjunction with an array of in situ optical diagnostics, the main question addressed is whether the damage on the rear surface of the beamsplitter is transient or permanent. The second issue, examined by both the x-ray interferometric microscopy and the optical diagnostics, is whether a local rear-surface modification is associated with nonlinear effects such as self-focusing or filamentation of the damaging laser beam in the bulk.

  2. Multicolor operation and spectral control in a gain-modulated x-ray free-electron laser

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    PRL 111, 134801 (2013) PHYSICAL REVIEW LETTERS week ending2013 PHYSICAL REVIEW LETTERS PRL 111, 134801 (2013) where uPHYSICAL REVIEW LETTERS PRL 111, 134801 (2013) i u expði u

  3. Using Lasers and X-rays to Reveal the Motion of Atoms and Electrons

    ScienceCinema (OSTI)

    Bob Schoenlein

    2010-01-08T23:59:59.000Z

    July 7, 2009 Berkeley Lab summer lecture: The ultrafast motion of atoms and electrons lies at the heart of chemical reactions, advanced materials with exotic properties, and biological processes such as the first event in vision. Bob Schoenlein, Deputy Director for Science at the Advanced Light Source, will discuss how such processes are revealed by using laser pulses spanning a millionth of a billionth of a second, and how a new generation of light sources will bring the penetrating power of x-rays to the world of ultrafast science

  4. Using Lasers and X-rays to Reveal the Motion of Atoms and Electrons

    SciTech Connect (OSTI)

    Bob Schoenlein

    2009-07-14T23:59:59.000Z

    July 7, 2009 Berkeley Lab summer lecture: The ultrafast motion of atoms and electrons lies at the heart of chemical reactions, advanced materials with exotic properties, and biological processes such as the first event in vision. Bob Schoenlein, Deputy Director for Science at the Advanced Light Source, will discuss how such processes are revealed by using laser pulses spanning a millionth of a billionth of a second, and how a new generation of light sources will bring the penetrating power of x-rays to the world of ultrafast science

  5. Table-top transient collisional excitation x-ray laser research at LLNL: Status June 1997

    SciTech Connect (OSTI)

    Dunn, J., LLNL

    1997-07-01T23:59:59.000Z

    This is a status report of transient collisional excitation x-ray laser experiments at LLNL during June 1997 that have the advantage of being conducted on a table-top. Two laser drivers with modest energy {approximately}6 J are used in the scheme: a long {approximately}1 ns pulse to preform and ionize the plasma followed by a short {approximately}1 ps pulse to produce the excitation and population inversion. The beams are co-propagated and focused using a combination of a cylindrical lens and paraboloid to a line of {approximately}70 {micro}m x 12.5 mm dimensions. High repetition rates approaching 1 shot/3 min. allow typically in excess of 50 target shots in a day. Various slab targets have been irradiated and we report preliminary results for x-ray laser gain in 3p-3s J=0-1 Ne-like Ti and Fe transitions where gains as high as 24 cm{sup -1} and gL products of {approximately}15 have been observed.

  6. Compact X-ray Source using a High Repetition Rate Laser and Copper Linac

    E-Print Network [OSTI]

    Graves, W S; Brown, P; Carbajo, S; Dolgashev, V; Hong, K -H; Ihloff, E; Khaykovich, B; Lin, H; Murari, K; Nanni, E A; Resta, G; Tantawi, S; Zapata, L E; Kärtner, F X; Moncton, D E

    2014-01-01T23:59:59.000Z

    A design for a compact x-ray light source (CXLS) with flux and brilliance orders of magnitude beyond existing laboratory scale sources is presented. The source is based on inverse Compton scattering of a high brightness electron bunch on a picosecond laser pulse. The accelerator is a novel high-efficiency standing-wave linac and RF photoinjector powered by a single ultrastable RF transmitter at x-band RF frequency. The high efficiency permits operation at repetition rates up to 1 kHz, which is further boosted to 100 kHz by operating with trains of 100 bunches of 100 pC charge, each separated by 5 ns. The 100 kHz repetition rate is orders of magnitude beyond existing high brightness copper linacs. The entire accelerator is approximately 1 meter long and produces hard x-rays tunable over a wide range of photon energies. The colliding laser is a Yb:YAG solid-state amplifier producing 1030 nm, 100 mJ pulses at the same 1 kHz repetition rate as the accelerator. The laser pulse is frequency-doubled and stored for m...

  7. A New Gated X-Ray Detector for the Orion Laser Facility

    SciTech Connect (OSTI)

    Clark, David D. [Los Alamos National Laboratory; Aragonez, Robert J. [Los Alamos National Laboratory; Archuleta, Thomas N. [Los Alamos National Laboratory; Fatherley, Valerie E. [Los Alamos National Laboratory; Hsu, Albert H. [Los Alamos National Laboratory; Jorgenson, H. J. [Los Alamos National Laboratory; Mares, Danielle [Los Alamos National Laboratory; Oertel, John A. [Los Alamos National Laboratory; Oades, Kevin [Atomic Weapons Establishment; Kemshall, Paul [Atomic Weapons Establishment; Thomas, Philip [Atomic Weapons Establishment; Young, Trevor [Atomic Weapons Establishment; Pederson, Neal [VI Control Systems

    2012-08-08T23:59:59.000Z

    Gated X-Ray Detectors (GXD) are considered the work-horse target diagnostic of the laser based inertial confinement fusion (ICF) program. Recently, Los Alamos National Laboratory (LANL) has constructed three new GXDs for the Orion laser facility at the Atomic Weapons Establishment (AWE) in the United Kingdom. What sets these three new instruments apart from the what has previously been constructed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is: improvements in detector head microwave transmission lines, solid state embedded hard drive and updated control software, and lighter air box design and other incremental mechanical improvements. In this paper we will present the latest GXD design enhancements and sample calibration data taken on the Trident laser facility at Los Alamos National Laboratory using the newly constructed instruments.

  8. Proposed Laser-driven, Dielectric Microstructure Few-cm Long Undulator for Attosecond Coherent X-rays

    SciTech Connect (OSTI)

    Plettner, T; Byer, R.L.; /Stanford U., Ginzton Lab.

    2011-09-16T23:59:59.000Z

    This article presents the concept of an all-dielectric laser-driven undulator for the generation of coherent X-rays. The proposed laser-driven undulator is expected to produce internal deflection forces equivalent to a several-Tesla magnetic field acting on a speed-of-light particle. The key idea for this laser-driven undulator is its ability to provide phase synchronicity between the deflection force and the electron beam for a distance that is much greater than the laser wavelength. The potential advantage of this undulator is illustrated with a possible design example that assumes a small laser accelerator which delivers a 2 GeV, 1 pC, 1 kHz electron bunch train to a 10 cm long, 1/2 mm period laser-driven undulator. Such an undulator could produce coherent X-ray pulses with {approx}10{sup 9} photons of 64 keV energy. The numerical modeling for the expected X-ray pulse shape was performed with GENESIS, which predicts X-ray pulse durations in the few-attosecond range. Possible applications for nonlinear electromagnetic effects from these X-ray pulses are briefly discussed.

  9. Study of 1–8 keV K-? x-ray emission from high intensity femtosecond laser produced plasma

    SciTech Connect (OSTI)

    Arora, V., E-mail: arora@rrcat.gov.in; Naik, P. A.; Chakera, J. A.; Bagchi, S.; Tayyab, M.; Gupta, P. D. [Laser Plasma Division, Raja Rammana Centre for Advanced Technology, Indore 452 013 (India)] [Laser Plasma Division, Raja Rammana Centre for Advanced Technology, Indore 452 013 (India)

    2014-04-15T23:59:59.000Z

    We report an experimental study on the optimization of a laser plasma based x-ray source of ultra-short duration K-? line radiation. The interaction of pulses from a CPA based Ti:sapphire laser (10 TW, 45 fs, 10 Hz) system with magnesium, titanium, iron and copper solid target generates bright 1-8 keV K-? x-ray radiation. The x-ray yield was optimized with the laser pulse duration (at fixed fluence) which is varied in the range of 45 fs to 1.4 ps. It showed a maximum at laser pulse duration of ?740 fs, 420 fs, 350 and 250 fs for Mg (1.3 keV), Ti (4.5 keV), Fe (6.4 keV) and Cu (8.05 keV) respectively. The x-ray yield is observed to be independent of the sign of the chirp. The scaling of the K-? yield (I{sub x} ? I{sub L}{sup ?}) for 45 fs and optimized pulse duration were measured for laser intensities in the region of 3 × 10{sup 14} – 8 × 10{sup 17}. The x-ray yield shows a much faster scaling exponent ? = 1.5, 2.1, 2.4 and 2.6 for Mg, Ti, Fe and Cu respectively at optimized pulse duration compared to scaling exponent of 0.65, 1.3, 1.5, and 1.7 obtained for 45 fs duration laser pulses. The laser to x-ray energy conversion efficiencies obtained for different target materials are ?{sub Mg} = 1.2 × 10{sup ?5}, ?{sub Ti} = 3.1 × 10{sup ?5}, ?{sub Fe} = 2.7 × 10{sup ?5}, ?{sub Cu} = 1.9 × 10{sup ?5}. The results have been explained from the efficient generation of optimal energy hot electrons at longer laser pulse duration. The faster scaling observed at optimal pulse duration indicates that the x-ray source is generated at the target surface and saturation of x-ray emission would appear at larger laser fluence. An example of utilization of the source for measurement of shock-wave profiles in a silicon crystal by time resolved x-ray diffraction is also presented.

  10. Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources

    DOE Patents [OSTI]

    Kublak, G.D.; Richardson, M.C.

    1996-11-19T23:59:59.000Z

    Method and apparatus for producing extreme ultraviolet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10{sup 11}--10{sup 12} watts/cm{sup 2}) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10--30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle. 5 figs.

  11. Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources

    DOE Patents [OSTI]

    Kublak, Glenn D. (124 Turquoise Way, Livermore, Alameda County, CA 94550); Richardson, Martin C. (CREOL

    1996-01-01T23:59:59.000Z

    Method and apparatus for producing extreme ultra violet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10.sup.11 -10.sup.12 watts/cm.sup.2) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10-30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle.

  12. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    SciTech Connect (OSTI)

    Thaury, C.; Ta Phuoc, K.; Corde, S.; Brijesh, P.; Lambert, G.; Malka, V. [Laboratoire d'Optique Appliquée, ENSTA ParisTech—CNRS UMR7639—École Polytechnique ParisTech, Chemin de la Hunière, 91761 Palaiseau (France)] [Laboratoire d'Optique Appliquée, ENSTA ParisTech—CNRS UMR7639—École Polytechnique ParisTech, Chemin de la Hunière, 91761 Palaiseau (France); Mangles, S. P. D.; Bloom, M. S.; Kneip, S. [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)] [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)

    2013-06-15T23:59:59.000Z

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.

  13. Spectral-phase interferometry for direct electric-field reconstruction applied to seeded extreme-ultraviolet free-electron lasers

    E-Print Network [OSTI]

    Mahieu, Benoît; De Ninno, Giovanni; Dacasa, Hugo; Lozano, Magali; Rousseau, Jean-Philippe; Zeitoun, Philippe; Garzella, David; Merdji, Hamed

    2015-01-01T23:59:59.000Z

    We present a setup for complete characterization of femtosecond pulses generated by seeded free-electron lasers (FEL's) in the extreme-ultraviolet spectral region. Two delayed and spectrally shifted replicas are produced and used for spectral phase interferometry for direct electric field reconstruction (SPIDER). We show that it can be achieved by a simple arrangement of the seed laser. Temporal shape and phase obtained in FEL simulations are well retrieved by the SPIDER reconstruction, allowing to foresee the implementation of this diagnostic on existing and future sources. This will be a significant step towards an experimental investigation and control of FEL spectral phase.

  14. Bright x-ray sources from laser irradiation of foams with high concentration of Ti

    SciTech Connect (OSTI)

    Pérez, F., E-mail: perez75@llnl.gov; Patterson, J. R.; May, M.; Colvin, J. D.; Biener, M. M.; Wittstock, A.; Kucheyev, S. O.; Charnvanichborikarn, S.; Satcher, J. H.; Gammon, S. A.; Poco, J. F.; Fournier, K. B. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550 (United States); Fujioka, S.; Zhang, Z.; Ishihara, K.; Tanaka, N.; Ikenouchi, T.; Nishimura, H. [Institute of Laser Engineering, Osaka University, 2-6 Yamada-Oka, Suita, Osaka 565-0871 (Japan)] [Institute of Laser Engineering, Osaka University, 2-6 Yamada-Oka, Suita, Osaka 565-0871 (Japan)

    2014-02-15T23:59:59.000Z

    Low-density foams irradiated by a 20 kJ laser at the Omega laser facility (Laboratory for Laser Energetics, Rochester, NY, USA) are shown to convert more than 5% of the laser energy into 4.6 to 6.0?keV x rays. This record efficiency with foam targets is due to novel fabrication techniques based on atomic-layer-deposition of Ti atoms on an aerogel scaffold. A Ti concentration of 33 at.?% was obtained in a foam with a total density of 5?mg/cm{sup 3}. The dynamics of the ionization front through these foams were investigated at the 1 kJ laser of the Gekko XII facility (Institute for Laser Engineering, Osaka, Japan). Hydrodynamic simulations can reproduce the average electron temperature but fail to predict accurately the heat front velocity in the foam. This discrepancy is shown to be unrelated to the possible water adsorbed in the foam but could be attributed to effects of the foam micro-structure.

  15. High-resolution multi-MeV x-ray radiography using relativistic laser-solid interaction

    SciTech Connect (OSTI)

    Courtois, C.; Compant La Fontaine, A.; Barbotin, M.; Bazzoli, S.; Brebion, D.; Bourgade, J. L.; Gazave, J.; Lagrange, J. M.; Landoas, O.; Le Dain, L.; Lefebvre, E.; Pichoff, N. [CEA, DAM, DIF, F-91297 Arpajon (France); Edwards, R.; Aedy, C.; Biddle, L.; Drew, D.; Gardner, M.; Ramsay, M.; Simons, A.; Sircombe, N. [AWE Plc., Aldermaston, Reading RG7 4PR (United Kingdom)

    2011-02-15T23:59:59.000Z

    When high intensity ({>=}10{sup 19} W cm{sup -2}) laser light interacts with matter, multi-MeV electrons are produced. These electrons can be utilized to generate a MeV bremsstrahlung x-ray emission spectrum as they propagate into a high-Z solid target positioned behind the interaction area. The short duration (<10 ps) and the small diameter (<500 {mu}m) of the x-ray pulse combined with the MeV x-ray spectrum offers an interesting alternative to conventional bremsstrahlung x-ray sources based on an electron accelerator used to radiograph dense, rapidly moving objects. In experiments at the Omega EP laser, a multi-MeV x-ray source is characterized consistently with number of independent diagnostics. An unfiltered x-ray dose of approximately 2 rad in air at 1 m and a source diameter of less than 350 {mu}m are inferred. Radiography of a complex and high area density (up to 61 g/cm{sup 2}) object is then performed with few hundred microns spatial resolution.

  16. Towards hard X-ray imaging at GHz frame rate

    SciTech Connect (OSTI)

    Wang, Zhehui [Los Alamos National Laboratory; Morris, Christopher [Los Alamos National Laboratory; Luo, Shengnian [Los Alamos National Laboratory; Kwiatkowski, Kris K. [Los Alamos National Laboratory; Kapustinsky, Jon S. [Los Alamos National Laboratory

    2012-05-02T23:59:59.000Z

    Gigahertz (GHz) imaging using hard X-rays ({approx}> 10 keV) can be useful to high-temperature plasma experiments, as well as research using coherent photons from synchrotron radiation and X-ray free electron lasers. GHz framing rate can be achieved by using multiple cameras through multiplexing. The advantages and trade-offs of single-photon detection mode, when no more than one X-ray photon is detected per pixel, are given. Two possible paths towards X-ray imaging at GHz frame rates using a single camera are (a) Avalanche photodiode arrays of high-Z materials and (b) Microchannel plate photomultipliers in conjunction with materials with large indices of refraction.

  17. Towards hard x-ray imaging at GHz frame rate

    SciTech Connect (OSTI)

    Wang Zhehui; Morris, C. L.; Kapustinsky, J. S.; Kwiatkowski, K.; Luo, S.-N. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-10-15T23:59:59.000Z

    Gigahertz (GHz) imaging using hard x-rays ( Greater-Than-Or-Equivalent-To 10 keV) can be useful to high-temperature plasma experiments, as well as research and applications using coherent photons from synchrotron radiation and x-ray free electron lasers. GHz framing rate can be achieved by using multiple cameras through multiplexing. The advantages and trade-offs of single-photon detection mode, when no more than one x-ray photon is detected per pixel, are given. Two possible paths towards x-ray imaging at GHz frame rates using a single camera are: (a) avalanche photodiode arrays of high-Z materials and (b) microchannel plate photomultipliers in conjunction with materials with large indices of refraction.

  18. Nonlinear X-ray Compton Scattering

    E-Print Network [OSTI]

    Fuchs, Matthias; Chen, Jian; Ghimire, Shambhu; Shwartz, Sharon; Kozina, Michael; Jiang, Mason; Henighan, Thomas; Bray, Crystal; Ndabashimiye, Georges; Bucksbaum, P H; Feng, Yiping; Herrmann, Sven; Carini, Gabriella; Pines, Jack; Hart, Philip; Kenney, Christopher; Guillet, Serge; Boutet, Sebastien; Williams, Garth; Messerschmidt, Marc; Seibert, Marvin; Moeller, Stefan; Hastings, Jerome B; Reis, David A

    2015-01-01T23:59:59.000Z

    X-ray scattering is a weak linear probe of matter. It is primarily sensitive to the position of electrons and their momentum distribution. Elastic X-ray scattering forms the basis of atomic structural determination while inelastic Compton scattering is often used as a spectroscopic probe of both single-particle excitations and collective modes. X-ray free-electron lasers (XFELs) are unique tools for studying matter on its natural time and length scales due to their bright and coherent ultrashort pulses. However, in the focus of an XFEL the assumption of a weak linear probe breaks down, and nonlinear light-matter interactions can become ubiquitous. The field can be sufficiently high that even non-resonant multiphoton interactions at hard X-rays wavelengths become relevant. Here we report the observation of one of the most fundamental nonlinear X-ray-matter interactions, the simultaneous Compton scattering of two identical photons producing a single photon at nearly twice the photon energy. We measure scattered...

  19. X-Ray Radiation Measurements With Photodiodes In Plasmas Generated By 1017 W/Cm2 Intensity Krf Excimer Laser Pulses

    SciTech Connect (OSTI)

    Racz, E.; Foeldes, I. B. [KFKI RMKI, EURATOM Association, P.O.Box 49, H-1525 Budapest (Hungary); Ryc, L. [Institute of Plasma Physics and Laser Microfusion, Hery 23, 00-908 Warsaw (Poland)

    2006-01-15T23:59:59.000Z

    Experiments were carried out using a prepulse-free hybrid KrF excimer-dye laser system (700fs pulse duration, 248nm wavelength, 15mJ pulse energy). The intensity of the p-polarized, focused laser beam was 1.5{center_dot}1017 W/cm2. Vacuum ultraviolet (VUV) and x-rays from solid state laser plasmas were generated in the laser-plasma interaction of subpicosecond laser pulses of nonrelativistic laser intensities. An x-ray sensitive FLM photodiode (ITE, Warsaw) was used to detect x-rays between 1-19 keV in front of the targets. The diode was filtered by a 4{mu}m Al foil. The dependence of the x-ray flux on laser intensity and the angular distribution of x-rays for aluminum and copper targets in the half space of the front side of the targets were investigated.

  20. X-Ray Microscopy at BESSY: From Nano-Tomography to Fs-Imaging

    SciTech Connect (OSTI)

    Schneider, G.; Heim, S.; Rehbein, S.; Eichert, D. [BESSY GmbH, Albert Einstein Strasse 15, 12489 Berlin (Germany); Guttmann, P. [IRP, c/o BESSY m.b.H., Albert Einstein Strasse 15, 12489 Berlin (Germany); Niemann, B. [IRP, University of Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany)

    2007-01-19T23:59:59.000Z

    The BESSY X-ray microscopy group has developed a new full-field x-ray microscope with glass capillary condenser. It permits tomography and spectromicroscopy of cryogenic as well as heated samples. Correlative light and x-ray microscopy is supported by an incorporated high resolution light microscope. Spectromicroscopy with polarized x-rays from a helical undulator can be performed with E/{delta}E = 104. With the planned BESSY High Gain Harmonic Generation Free Electron Laser (HGHG-FEL) x-ray imaging with ultra-short pulses and an integral photon flux of about 1011 photons/pulse in an energy bandwidth of 0.1% will be possible. Single shot imaging with a full field Transmission X-ray Microscope (TXM) employing a beam shaper as a condenser will be feasible with 20 fs pulses.

  1. High-average-power, 100-Hz-repetition-rate, tabletop soft-x-ray lasers at sub-15-nm wavelengths

    SciTech Connect (OSTI)

    Reagan, Brendon [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Berrill, Mark A [ORNL] [ORNL; Wernsing, Keith [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Baumgarten, Cory [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Woolston, Mark [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Rocca, Jorge [Colorado State University, Fort Collins] [Colorado State University, Fort Collins

    2014-01-01T23:59:59.000Z

    Efficient excitation of dense plasma columns at 100-Hz repetition rate using a tailored pump pulse profile produced a tabletop soft-x-ray laser average power of 0.1 mW at = 13.9 nm and 20 W at = 11.9 nm from transitions of Ni-like Ag and Ni-like Sn, respectively. Lasing on several other transitions with wavelengths between 10.9 and 14.7 nm was also obtained using 0.9-J pump pulses of 5-ps duration from a compact diode-pumped chirped pulse amplification Yb:YAG laser. Hydrodynamic and atomic plasma simulations show that the pump pulse profile, consisting of a nanosecond ramp followed by two peaks of picosecond duration, creates a plasma with an increased density of Ni-like ions at the time of peak temperature that results in a larger gain coefficient over a temporally and spatially enlarged space leading to a threefold increase in the soft-x-ray laser output pulse energy. The high average power of these compact soft-x-ray lasers will enable applications requiring high photon flux. These results open the path to milliwatt-average-power tabletop soft-x-ray lasers.

  2. Traces on ion yields and electron spectra of Ar inner-shell hollow states with Free-Electron Lasers

    E-Print Network [OSTI]

    Wallis, A O G; Emmanouilidou, A

    2015-01-01T23:59:59.000Z

    We explore the formation by Free-Electron-Laser radiation of Ar hollow states with two or three inner-shell holes. We find that even charged Ar ion states can be more populated than odd charged Ar ion states. This depends on the pulse intensity and the number of energetically accessible inner- shell holes. Fully accounting for fine structure, we demonstrate that one electron spectra bare the imprints of Ar hollow states with two inner-shell holes. Moreover, we show how the Auger spectra of these hollow states can be extracted from two-electron coincidence spectra.

  3. Spatio-temporal coherence of free-electron laser radiation in the extreme ultraviolet determined by a Michelson interferometer

    SciTech Connect (OSTI)

    Hilbert, V.; Rödel, C.; Zastrau, U., E-mail: ulf.zastrau@uni-jena.de [Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Max-Wien-Platz 1, 07743 Jena (Germany); Brenner, G.; Düsterer, S.; Dziarzhytski, S.; Harmand, M.; Przystawik, A.; Redlin, H.; Toleikis, S. [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); Döppner, T.; Ma, T. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Fletcher, L. [Department of Physics, University of California, Berkeley, California 94720 (United States); Förster, E. [Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Max-Wien-Platz 1, 07743 Jena (Germany); Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena (Germany); Glenzer, S. H.; Lee, H. J. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Hartley, N. J. [Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Kazak, L.; Komar, D.; Skruszewicz, S. [Institut für Physik, Universität Rostock, 18051 Rostock (Germany); and others

    2014-09-08T23:59:59.000Z

    A key feature of extreme ultraviolet (XUV) radiation from free-electron lasers (FELs) is its spatial and temporal coherence. We measured the spatio-temporal coherence properties of monochromatized FEL pulses at 13.5?nm using a Michelson interferometer. A temporal coherence time of (59±8) fs has been determined, which is in good agreement with the spectral bandwidth given by the monochromator. Moreover, the spatial coherence in vertical direction amounts to about 15% of the beam diameter and about 12% in horizontal direction. The feasibility of measuring spatio-temporal coherence properties of XUV FEL radiation using interferometric techniques advances machine operation and experimental studies significantly.

  4. X-ray lasers and methods utilizing two component driving illumination provided by optical laser means of relatively low energy and small physical size

    DOE Patents [OSTI]

    Rosen, Mordecai D. (Berkeley, CA); Matthews, Dennis L. (El Granada, CA)

    1991-01-01T23:59:59.000Z

    An X-ray laser (10), and related methodology, are disclosed wherein an X-ray laser target (12) is illuminated with a first pulse of optical laser radiation (14) of relatively long duration having scarcely enough energy to produce a narrow and linear cool plasma of uniform composition (38). A second, relatively short pulse of optical laser radiation (18) is uniformly swept across the length, from end to end, of the plasma (38), at about the speed of light, to consecutively illuminate continuously succeeding portions of the plasma (38) with optical laser radiation having scarcely enough energy to heat, ionize, and invert them into the continuously succeeding portions of an X-ray gain medium. This inventive double pulse technique results in a saving of more than two orders of magnitude in driving optical laser energy, when compared to the conventional single pulse approach.

  5. Search for Photon-Photon Elastic Scattering in the X-ray Region

    E-Print Network [OSTI]

    T. Inada; T. Yamaji; S. Adachi; T. Namba; S. Asai; T. Kobayashi; K. Tamasaku; Y. Tanaka; Y. Inubushi; K. Sawada; M. Yabashi; T. Ishikawa

    2014-04-18T23:59:59.000Z

    We report the first results of a search for real photon-photon scattering using X rays. A novel system is developed to split and collide X-ray pulses by applying interferometric techniques. A total of $6.5\\times10^{5}$ pulses (each containing about $10^{11}$ photons) from an X-ray Free-Electron Laser are injected into the system. No scattered events are observed, and an upper limit of $1.7\\times 10^{-24}$ ${\\rm m^{2}}$ (95% C.L.) is obtained on the photon-photon elastic scattering cross section at 6.5 keV.

  6. Quantum coherence in the dynamical excitation, ionization, and decaying of neon gas induced by X-ray laser

    E-Print Network [OSTI]

    Li, Yongqiang; Dong, Wenpu; Zeng, Jiaolong; Yuan, Jianmin

    2015-01-01T23:59:59.000Z

    We develop a large scale quantum master equation approach to describe dynamical processes of practical open quantum systems driven by both coherent and stochastic interactions by including more than one thousand true states of the systems, motivated by the development of highly bright and fully coherent lasers in the X-ray wavelength regime. The method combines the processes of coherent dynamics induced by the X-ray laser and incoherent relaxations due to spontaneous emissions, Auger decays, and electronic collisions. As examples, theoretical investigation of {\\it real} coherent dynamics of inner-shell electrons of a neon gas, irradiated by a high-intensity X-ray laser with a full temporal coherence, is carried out with the approach. In contrast to the rate equation treatment, we find that coherence can suppress the multiphoton absorptions of a neon gas in the ultra-intense X-ray pulse, due to coherence-induced Rabi oscillations and power broadening effects. We study the influence of coherence on ionization p...

  7. Spatial Gradients in Particle Reinforced Polymers Characterized by X-Ray Attenuation and Laser Confocal Microscopy

    SciTech Connect (OSTI)

    LAGASSE,ROBERT R.; THOMPSON,KYLE R.

    2000-06-12T23:59:59.000Z

    The goal of this work is to develop techniques for measuring gradients in particle concentration within filled polymers, such as encapsulant. A high concentration of filler particles is added to such materials to tailor physical properties such as thermal expansion coefficient. Sedimentation and flow-induced migration of particles can produce concentration gradients that are most severe near material boundaries. Therefore, techniques for measuring local particle concentration should be accurate near boundaries. Particle gradients in an alumina-filled epoxy resin are measured with a spatial resolution of 0.2 mm using an x-ray beam attenuation technique, but an artifact related to the finite diameter of the beam reduces accuracy near the specimen's edge. Local particle concentration near an edge can be measured more reliably using microscopy coupled with image analysis. This is illustrated by measuring concentration profiles of glass particles having 40 {micro}m median diameter using images acquired by a confocal laser fluorescence microscope. The mean of the measured profiles of volume fraction agrees to better than 3% with the expected value, and the shape of the profiles agrees qualitatively with simple theory for sedimentation of monodisperse particles. Extending this microscopy technique to smaller, micron-scale filler particles used in encapsulant for microelectronic devices is illustrated by measuring the local concentration of an epoxy resin containing 0.41 volume fraction of silica.

  8. All-laser-driven, MeV-energy X-ray source for detection of SNM Sudeep Banerjee, Nathan Powers, Vidya Ramanathan, Nathaniel Cunningham, Nate Chandler-Smith, Shouyuan

    E-Print Network [OSTI]

    Umstadter, Donald

    All-laser-driven, MeV-energy X-ray source for detection of SNM Sudeep Banerjee, Nathan Powers, MI 48109. A quasi-monoenergetic MeV x-ray source based on laser-driven electron acceleration per laser shot. Characterization of such a high-flux high energy x-ray beam is in progress. Quasi

  9. Characterization and Application of Hard X-Ray Betatron Radiation Generated by Relativistic Electrons from a Laser-Wakefield Accelerator

    E-Print Network [OSTI]

    Schnell, Michael; Uschmann, Ingo; Jansen, Oliver; Kaluza, Malte Christoph; Spielmann, Christian

    2015-01-01T23:59:59.000Z

    The necessity for compact table-top x-ray sources with higher brightness, shorter wavelength and shorter pulse duration has led to the development of complementary sources based on laser-plasma accelerators, in contrast to conventional accelerators. Relativistic interaction of short-pulse lasers with underdense plasmas results in acceleration of electrons and in consequence in the emission of spatially coherent radiation, which is known in the literature as betatron radiation. In this article we report on our recent results in the rapidly developing field of secondary x-ray radiation generated by high-energy electron pulses. The betatron radiation is characterized with a novel setup allowing to measure the energy, the spatial energy distribution in the far-field of the beam and the source size in a single laser shot. Furthermore, the polarization state is measured for each laser shot. In this way the emitted betatron x-rays can be used as a non-invasive diagnostic tool to retrieve very subtle information of t...

  10. Mapping the Ionization State of Laser-Irradiated Ar Gas Jets With Multi-Wavelength Monochromatic X-Ray Imaging

    SciTech Connect (OSTI)

    Kugland, N L; Doppner, T; Kemp, A; Schaeffer, D; Glenzer, S H; Niemann, C

    2010-04-08T23:59:59.000Z

    Two-dimensional monochromatic images of fast-electron stimulated Ar K{alpha} and He-{alpha} x-ray self-emission have recorded a time-integrated map of the extent of Ar{sup {approx}6+} and Ar{sup 16+} ions, respectively, within a high density (10{sup 20} cm{sup -3} atomic density) Ar plasma. This plasma was produced by irradiating a 2 mm wide clustering Ar gas jet with an ultra-high intensity (10{sup 19} W/cm{sup 2}, 200 fs) Ti:Sapphire laser operating at 800 nm. Spherically bent quartz crystals in the 200 (for K{alpha}) and 201 (for He-{alpha}) planes were used as near-normal incidence reflective x-ray optics. We see that a large (830 {micro}m long) region of plasma emits K{alpha} primarily along the laser axis, while the He-{alpha} emission is confined to smaller hot spot (230 {micro}m long) region that likely corresponds to the focal volume of the f/8 laser beam. X-ray spectra from a Bragg spectrometer operating in the von Hamos geometry, which images in one dimension, indicate that the centroids of the K{alpha} and He-{alpha} emission regions are separated by approximately 330 {micro}m along the laser axis.

  11. The analysis of single-electron orbits in a free electron laser based upon a rectangular hybrid wiggler

    SciTech Connect (OSTI)

    Kordbacheh, A.; Ghahremaninezhad, Roghayeh [Department of Physics, Iran University of Science and Technology, 1684613114 Tehran (Iran, Islamic Republic of); Maraghechi, B. [Department of Physics, Amirkabir University of Technology, 159163411 Tehran (Iran, Islamic Republic of)

    2012-09-15T23:59:59.000Z

    A three-dimensional analysis of a novel free-electron laser (FEL) based upon a rectangular hybrid wiggler (RHW) is presented. This RHW is designed in a configuration composed of rectangular rings with alternating ferrite and dielectric spacers immersed in a solenoidal magnetic field. An analytic model of RHW is introduced by solution of Laplace's equation for the magnetostatic fields under the appropriate boundary conditions. The single-electron orbits in combined RHW and axial guide magnetic fields are studied when only the first and the third spatial harmonic components of the RHW field are taken into account and the higher order terms are ignored. The results indicate that the third spatial harmonic leads to group III orbits with a strong negative mass regime particularly in large solenoidal magnetic fields. RHW is found to be a promising candidate with favorable characteristics to be used in microwave FEL.

  12. High-current-density, high brightness cathodes for free electron laser applications

    SciTech Connect (OSTI)

    Green, M.C. (Varian Associates, Palo Alto, CA (USA). Palo Alto Microwave Tube Div.)

    1987-06-01T23:59:59.000Z

    This report discusses the following topics: brightness and emittance of electron beams and cathodes; general requirements for cathodes in high brightness electron guns; candidate cathode types; plasma and field emission cathodes; true field emission cathodes; oxide cathodes; lanthanum hexaborides cathodes; laser driven thermionic cathodes; laser driven photocathodes; impregnated porous tungsten dispenser cathodes; and choice of best performing cathode types.

  13. August 15, 1999 / Vol. 24, No. 16 / OPTICS LETTERS 1115 Generation of millijoule-level soft-x-ray laser pulses

    E-Print Network [OSTI]

    August 15, 1999 / Vol. 24, No. 16 / OPTICS LETTERS 1115 Generation of millijoule-level soft of the brightest soft-x-ray sources to date. 1999 Optical Society of America OCIS codes: 140.7240, 140.3280, 140 of soft-x-ray pulses that result from the generation of high-order harmonics of optical lasers

  14. Interaction of soft x-ray laser pulse radiation with aluminum surface: Nano-meter size surface modification

    SciTech Connect (OSTI)

    Ishino, Masahiko; Faenov, Anatoly; Tanaka, Momoko; Hasegawa, Noboru; Nishikino, Masaharu; Tamotsu, Satoshi; Pikuz, Tatiana; Inogamov, Nail; Zhakhovsky, Vasily; Skobelev, Igor; Fortov, Vladimir; Khohlov, Viktor; Shepelev, Vadim; Ohba, Toshiyuki; Kaihori, Takeshi; Ochi, Yoshihiro; Imazono, Takashi; Kawachi, Tetsuya [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto 619-0215 (Japan); Joint Institute for High Temperatures, Russian Academy of Science, Moscow 125412 (Russian Federation); Graduate School of Humanities and Science, Nara Women's University, Nara 630-8506 (Japan); Landau Institute for Theoretical Physics, Russian Academy of Science, Chernogolovka 142432 (Russian Federation); Institute for Computer Aided Design, Russian Academy of Science, Moscow 123056 (Russian Federation)

    2012-07-11T23:59:59.000Z

    Interaction of soft x-ray laser radiation with material and caused modification of the exposed surface has both physical and practical interests. We irradiated the focusing soft x-ray laser (SXRL) pulses having a wavelength of 13.9 nm and the duration of 7 ps to aluminum (Al) surface. After the SXRL irradiation process, the irradiated Al surface was observed with a scanning electron microscope. The surface modifications caused by SXRL single pulse exposure were clearly seen. In addition, it was found that the conical structures having around 100 nm in diameters were formed in the shallow features. The nano-meter size modified structures at Al surface induced by SXRL pulse is interesting as the newly surface structure. Hence, the SXRL beam would be a candidate for a tool of micromachining. We also provide a thermomechanical modeling of SXRL interaction with Al briefly to explain the surface modification.

  15. Rietveld X-ray diffraction analysis of nanostructured rutile films of titania prepared by pulsed laser deposition

    SciTech Connect (OSTI)

    Murugesan, S. [Physical Metallurgy Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India)] [Physical Metallurgy Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Kuppusami, P., E-mail: pk@igcar.gov.in [Physical Metallurgy Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Mohandas, E. [Physical Metallurgy Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India)] [Physical Metallurgy Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India)

    2010-01-15T23:59:59.000Z

    Rietveld powder X-ray diffraction analysis of the rutile films of titanium oxide prepared by pulsed laser deposition was carried out. The crystallite size increased with increase of substrate temperature, while the strain showed a reverse trend. The films synthesized at temperature {>=}573 K showed that the crystal structure was almost close to that of bulk rutile structure. The influence of the substrate temperature on the lattice parameters and oxygen coordinates were also studied in the present work.

  16. X-ray beamsplitter

    DOE Patents [OSTI]

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07T23:59:59.000Z

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  17. X-ray beamsplitter

    DOE Patents [OSTI]

    Ceglio, Natale M. (Livermore, CA); Stearns, Daniel S. (Mountain View, CA); Hawryluk, Andrew M. (Modesto, CA); Barbee, Jr., Troy W. (Palo Alto, CA)

    1989-01-01T23:59:59.000Z

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  18. Design of a free-electron laser driven by the LBNLlaser-plasma-accelerator

    SciTech Connect (OSTI)

    Schroeder, C.B.; Fawley, W.M.; Montgomery, A.L.; Robinson, K.E.; Gruner, F.; Bakeman, M.; Leemans, W.P.

    2007-09-10T23:59:59.000Z

    We discuss the design and current status of a compactfree-electron laser (FEL), generating ultra-fast, high-peak flux, VUVpulses driven by a high-current, GeV electron beam from the existingLawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator,whose active acceleration length is only a few cm. The proposedultra-fast source would be intrinsically temporally synchronized to thedrive laser pulse, enabling pump-probe studies in ultra-fast science withpulse lengths of tens of fs. Owing to the high current (&10 kA) ofthe laser-plasma-accelerated electron beams, saturated output fluxes arepotentially greater than 1013 photons/pulse. Devices based both on SASEand high-harmonic generated input seeds, to reduce undulator length andfluctuations, are considered.

  19. Spectrum bandwidth narrowing of Thomson scattering X-rays with energy chirped electron beams from laser wakefield acceleration

    SciTech Connect (OSTI)

    Xu, Tong; Chen, Min, E-mail: minchen@sjtu.edu.cn; Li, Fei-Yu; Yu, Lu-Le [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)] [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Sheng, Zheng-Ming, E-mail: zmsheng@sjtu.edu.cn [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China) [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Zhang, Jie [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China) [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China)

    2014-01-06T23:59:59.000Z

    We study incoherent Thomson scattering between an ultrashort laser pulse and an electron beam accelerated from a laser wakefield. The energy chirp effects of the accelerated electron beam on the final radiation spectrum bandwidth are investigated. It is found that the scattered X-ray radiation has the minimum spectrum width and highest intensity as electrons are accelerated up to around the dephasing point. Furthermore, it is proposed that the electron acceleration process inside the wakefield can be studied by use of 90° Thomson scattering. The dephasing position and beam energy chirp can be deduced from the intensity and bandwidth of the scattered radiation.

  20. Comment on ''Chaotic electron trajectories in an electromagnetic wiggler free-electron laser with ion-channel guiding'' [Phys. Plasmas 17, 093103 (2010)

    SciTech Connect (OSTI)

    Nasr, N.; Hasanbeigi, A. [Department of Physics and Institute for Plasma Research, Tarbiat Moallem University, 49 Dr Mofatteh Avenue, Tehran 15614 (Iran, Islamic Republic of)

    2011-05-15T23:59:59.000Z

    The chaotic electron dynamics in a free-electron laser with electromagnetic-wave wiggler and ion-channel has been recently reported by A. Taghavi et al.[Phys. Plasmas 17, 093103 (2010)]. We comment on the authors use of a set of initial condition that is not correct based on the dispersion relation and steady-state orbits.

  1. Selective Photothermolysis to target Sebaceous Glands: Theoretical Estimation of Parameters and Preliminary Results Using a Free Electron Laser

    SciTech Connect (OSTI)

    Fernanda Sakamoto, Apostolos Doukas, William Farinelli, Zeina Tannous, Michelle D. Shinn, Stephen Benson, Gwyn P. Williams, H. Dylla, Richard Anderson

    2011-12-01T23:59:59.000Z

    The success of permanent laser hair removal suggests that selective photothermolysis (SP) of sebaceous glands, another part of hair follicles, may also have merit. About 30% of sebum consists of fats with copious CH2 bond content. SP was studied in vitro, using free electron laser (FEL) pulses at an infrared CH2 vibrational absorption wavelength band. Absorption spectra of natural and artificially prepared sebum were measured from 200 nm to 3000 nm, to determine wavelengths potentially able to target sebaceous glands. The Jefferson National Accelerator superconducting FEL was used to measure photothermal excitation of aqueous gels, artificial sebum, pig skin, human scalp and forehead skin (sebaceous sites). In vitro skin samples were exposed to FEL pulses from 1620 to 1720 nm, spot diameter 7-9.5 mm with exposure through a cold 4C sapphire window in contact with the skin. Exposed and control tissue samples were stained using H and E, and nitroblue tetrazolium chloride staining (NBTC) was used to detect thermal denaturation. Natural and artificial sebum both had absorption peaks near 1210, 1728, 1760, 2306 and 2346 nm. Laser-induced heating of artificial sebum was approximately twice that of water at 1710 and 1720 nm, and about 1.5x higher in human sebaceous glands than in water. Thermal camera imaging showed transient focal heating near sebaceous hair follicles. Histologically, skin samples exposed to {approx}1700 nm, {approx}100-125 ms pulses showed evidence of selective thermal damage to sebaceous glands. Sebaceous glands were positive for NBTC staining, without evidence of selective loss in samples exposed to the laser. Epidermis was undamaged in all samples. Conclusions: SP of sebaceous glands appears to be feasible. Potentially, optical pulses at {approx}1720 nm or {approx}1210 nm delivered with large beam diameter and appropriate skin cooling in approximately 0.1 s may provide an alternative treatment for acne.

  2. Laser plasma cryogenic target on translating substrate for generation of continuously repetitive EUV and soft X-ray pulses

    SciTech Connect (OSTI)

    Amano, Sho [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1205 (Japan)

    2014-06-15T23:59:59.000Z

    To generate continuously repetitive EUV and soft X-ray pulses with various wavelengths from laser-produced plasmas, a one-dimensionally translating substrate system with a closed He gas cryostat that can continuously supply various cryogenic targets for ?10 Hz laser pulses has been developed. The system was successfully operated at a lowest temperature of 15 K and at a maximum up-down speed of 12 mm/s. Solid Ar, Kr, and Xe layers were formed, and their growth rates and the laser crater sizes on them were studied. By optimization of the operational parameters in accordance with our design rule, it was shown that stable output power was achieved continuously from the plasma emission at frequencies of 1–10 Hz. The average soft X-ray and EUV powers obtained were 19 mW at 3.2 nm, 33 mW at 10.0 nm, and 66 mW at 10.8 nm, with 10% bandwidths, from the Ar, Kr, and Xe solid targets, respectively, with a laser power of 1 W. We will be able to achieve higher frequencies using a high beam quality laser that produces smaller craters, and can expect higher powers. Although only Ar, Kr, and Xe gases were tested in this study, the target system achieved a temperature of 15 K and can thus solidify almost all target gases, apart from H and He, and can continuously supply the solid target. The use of various target materials will enable expansion of the EUV and soft X-ray emission wavelength range.

  3. Ultra-bright, ultra-broadband hard x-ray driven by laser-produced energetic electron beams

    SciTech Connect (OSTI)

    Shi, Yin; Shen, Baifei; Zhang, Xiaomei; Wang, Wenpeng; Ji, Liangliang; Zhang, Lingang; Xu, Jiancai; Yu, Yahong; Zhao, Xueyan; Wang, Xiaofeng; Yi, Longqing; Xu, Tongjun; Xu, Zhizhan [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800 (China)] [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800 (China)

    2013-09-15T23:59:59.000Z

    We propose a new method of obtaining a compact ultra-bright, ultra-broadband hard X-ray source. This X-ray source has a high peak brightness in the order of 10{sup 22} photons/(s mm{sup 2} mrad{sup 2} 0.1\\%BW), an ultrashort duration (10 fs), and a broadband spectrum (flat distribution from 0.1 MeV to 4 MeV), and thus has wide-ranging potential applications, such as in ultrafast Laue diffraction experiments. In our scheme, laser-plasma accelerators (LPAs) provide driven electron beams. A foil target is placed oblique to the beam direction so that the target normal sheath field (TNSF) is used to provide a bending force. Using this TNSF-kick scheme, we can fully utilize the advantages of current LPAs, including their high charge, high energy, and low emittance.

  4. Demonstration of Successful X-ray Thomson Scattering Using Picosecond K-(alpha) X-ray Sources for the Characterization of Dense Heated Matter

    SciTech Connect (OSTI)

    Kritcher, A; Neumayer, P; Lee, H J; Doeppner, T; Falcone, R; Glenzer, S; Morse, E C

    2008-05-05T23:59:59.000Z

    We discuss the first successful K-{alpha} x-ray Thomson scattering experiment from solid density plasmas for use as a diagnostic in determining the temperature, density, and ionization state of warm dense matter with picosecond resolution. The development of this source as a diagnostic and stringent requirements for successful K-{alpha} x-ray Thomson scattering are addressed. Data for the experimental techniques described in this paper [1] suggest the capability of single shot characterization of warm dense matter and the ability to use this scattering source at future Free Electron Lasers (FEL) where comparable scattering signal levels are predicted.

  5. Status of UCLA Helical Permanent-Magnet Inverse Free Electron Laser

    SciTech Connect (OSTI)

    Knyazik, A.; Tikhoplav, R.; Frederico, J. T.; Affolter, M.; Rosenzweig, J. B. [Department of Physics and Astronomy, UCLA, Los Angeles, California 90095 (United States)

    2009-01-22T23:59:59.000Z

    A helical undulator, utilizing permanent-magnet of cylindrically symmetric (Halbach) geometry is being developed at UCLA's Neptune Facility. The initial prototype is a short 10 cm, 7 periods long helical undulator, designed to test the electron-photon coupling by observing the micro-bunching is currently being constructed. The Neptune IFEL facility utilizes a 15 MeV Photoinjector-generated electron beam of 0.5 nC interacting with CO{sub 2} of peak energy up to 100 J, estimated to have acceleration of 100 MeV/m. An Open Iris-Loaded Waveguide Structure (OILS) scheme which conserves laser mode size and wave fronts throughout the undulator, is utilized to avoid Gouy phase shift caused by focusing of the drive laser. Undulator design was tested by computer simulations Radia and Genesis 1.3. Coherent Transition Radiation and Coherent Cherenkov Radiation will be used for micro-bunching diagnostic. Currently permanent dipoles and their aluminum holders have been built, and the project is in its final state of assembly and undulator testing.

  6. Study of electron acceleration and x-ray radiation as a function of plasma density in capillary-guided laser wakefield accelerators

    SciTech Connect (OSTI)

    Ju, J.; Döpp, A.; Cros, B. [Laboratoire de Physique des Gaz et des Plasmas, CNRS-Université Paris-Sud, 91405 Orsay (France)] [Laboratoire de Physique des Gaz et des Plasmas, CNRS-Université Paris-Sud, 91405 Orsay (France); Svensson, K.; Genoud, G.; Wojda, F.; Burza, M.; Persson, A.; Lundh, O.; Wahlström, C.-G. [Department of Physics, Lund University, P.O. Box 118, S-22100 Lund (Sweden)] [Department of Physics, Lund University, P.O. Box 118, S-22100 Lund (Sweden); Ferrari, H. [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and CNEA-CAB (Argentina)] [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and CNEA-CAB (Argentina)

    2013-08-15T23:59:59.000Z

    Laser wakefield electron acceleration in the blow-out regime and the associated betatron X-ray radiation were investigated experimentally as a function of the plasma density in a configuration where the laser is guided. Dielectric capillary tubes were employed to assist the laser keeping self-focused over a long distance by collecting the laser energy around its central focal spot. With a 40 fs, 16 TW pulsed laser, electron bunches with tens of pC charge were measured to be accelerated to an energy up to 300 MeV, accompanied by X-ray emission with a peak brightness of the order of 10{sup 21} ph/s/mm{sup 2}/mrad{sup 2}/0.1%BW. Electron trapping and acceleration were studied using the emitted X-ray beam distribution to map the acceleration process; the number of betatron oscillations performed by the electrons was inferred from the correlation between measured X-ray fluence and beam charge. A study of the stability of electron and X-ray generation suggests that the fluctuation of X-ray emission can be reduced by stabilizing the beam charge. The experimental results are in good agreement with 3D particle-in-cell (PIC) simulation.

  7. Study of beam transverse properties of a thermionic electron gun for application to a compact THz free electron laser

    SciTech Connect (OSTI)

    Hu, Tongning, E-mail: TongningHu@hust.edu.cn, E-mail: yjpei@ustc.edu.cn; Qin, Bin; Tan, Ping; Chen, Qushan; Yang, Lei [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Pei, Yuanji, E-mail: TongningHu@hust.edu.cn, E-mail: yjpei@ustc.edu.cn; Li, Ji [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China)

    2014-10-15T23:59:59.000Z

    A novel thermionic electron gun adopted for use in a high power THz free electron laser (FEL) is proposed in this paper. By optimization of the structural and radiofrequency (RF) parameters, the physical design of the gun is performed using dynamic calculations. Velocity bunching is used to minimize the bunch's energy spread, and the dynamic calculation results indicate that high quality beams can be provided. The transverse properties of the beams generated by the gun are also analyzed. The novel RF focusing effects of the resonance cavity are investigated precisely and are used to establish emittance compensation, which enables the injector length to be reduced. In addition, the causes of the extrema of the beam radius and the normalized transverse emittance are analyzed and interpreted, respectively, and slice simulations are performed to illustrate how the RF focusing varies along the bunch length and to determine the effects of that variation on the emittance compensation. Finally, by observation of the variations of the beam properties in the drift tube behind the electron gun, prospective assembly scenarios for the complete THz-FEL injector are discussed, and a joint-debugging process for the injector is implemented.

  8. High-energy x-ray microscopy of laser-fusion plasmas at the National Ignition Facility

    SciTech Connect (OSTI)

    Koch, J.A.; Landen, O.L.; Hammel, B.A. [and others

    1997-08-26T23:59:59.000Z

    Multi-keV x-ray microscopy will be an important laser-produced plasma diagnostic at future megajoule facilities such as the National Ignition Facility (NIF).In preparation for the construction of this facility, we have investigated several instrumentation options in detail, and we conclude that near normal incidence single spherical or toroidal crystals may offer the best general solution for high-energy x-raymicroscopy at NIF and at similar large facilities. Kirkpatrick-Baez microscopes using multi-layer mirrors may also be good secondary options, particularly if apertures are used to increase the band-width limited field of view.

  9. Using Lasers and X-rays to Reveal the Motion of Atoms and Electrons (LBNL Summer Lecture Series)

    SciTech Connect (OSTI)

    Schoenlein, Robert (Deputy Director, Advanced Light Source) [Deputy Director, Advanced Light Source

    2009-07-07T23:59:59.000Z

    Summer Lecture Series 2009: The ultrafast motion of atoms and electrons lies at the heart of chemical reactions, advanced materials with exotic properties, and biological processes such as the first event in vision. Bob Schoenlein, Deputy Director for Science at the Advanced Light Source, will discuss how such processes are revealed by using laser pulses spanning a millionth of a billionth of a second, and how a new generation of light sources will bring the penetrating power of x-rays to the world of ultrafast science.

  10. Using Lasers and X-rays to Reveal the Motion of Atoms and Electrons (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Schoenlein, Robert [Deputy Director, Advanced Light Source

    2011-04-28T23:59:59.000Z

    Summer Lecture Series 2009: The ultrafast motion of atoms and electrons lies at the heart of chemical reactions, advanced materials with exotic properties, and biological processes such as the first event in vision. Bob Schoenlein, Deputy Director for Science at the Advanced Light Source, will discuss how such processes are revealed by using laser pulses spanning a millionth of a billionth of a second, and how a new generation of light sources will bring the penetrating power of x-rays to the world of ultrafast science.

  11. VOLUME 81, NUMBER 26 P H Y S I C A L R E V I E W L E T T E R S 28 DECEMBER 1998 Demonstration of a High Average Power Tabletop Soft X-Ray Laser

    E-Print Network [OSTI]

    of a High Average Power Tabletop Soft X-Ray Laser B. R. Benware, C. D. Macchietto, C. H. Moreno, and J. J of a high average power tabletop soft x-ray laser. An average laser output power of 1 mW .2 3 1014 photons of spontaneous emission in a plasma (an x-ray laser). At present, the generation of high order harmonics under

  12. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C.; Weierstall, Uwe; Beetz, Tobias; Jacobsen, Chris; Shapiro, David

    2006-01-01T23:59:59.000Z

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.

  13. Imaging single cells in a beam of live cyanobacteria with an X-ray laser

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schot, Gijs, vander

    This entry contains ten diffraction patterns, and reconstructions images, of individual living Cyanobium gracile cells, imaged using 517 eV X-rays from the LCLS XFEL. The Hawk software package was used for phasing. The Uppsala aerosol injector was used for sample injection, assuring very low noise levels. The cells come from various stages of the cell cycle, and were imaged in random orientations.

  14. Optics-free x-ray FEL oscillator

    SciTech Connect (OSTI)

    Litvinenko, V.N.; Hao, Y.; Kayran, D.; Trbojevic, D.

    2011-03-28T23:59:59.000Z

    There is a need for an Optics-Free FEL Oscillators (OFFELO) to further the advantages of free-electron lasers and turning them in fully coherent light sources. While SASE (Self-Amplified Spontaneous Emission) FELs demonstrated the capability of providing very high gain and short pulses of radiation and scalability to the X-ray range, the spectra of SASE FELs remains rather wide ({approx}0.5%-1%) compared with typical short wavelengths FEL-oscillators (0.01%-0.0003% in OK-4 FEL). Absence of good optics in VUV and X-ray ranges makes traditional oscillator schemes with very high average and peak spectral brightness either very complex or, strictly speaking, impossible. In this paper, we discuss lattice of the X-ray optics-free FEL oscillator and present results of initial computer simulations of the feedback process and the evolution of FEL spectrum in X-ray OFFELO. We also discuss main limiting factors and feasibility of X-ray OFFELO.

  15. Measurements of Ionic Structure in Shock Compressed Lithium Hydride from Ultrafast X-Ray Thomson Scattering

    SciTech Connect (OSTI)

    Kritcher, A. L. [L-399, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Department of Nuclear Engineering, University of California Berkeley, Berkeley, California 94709 (United States); Neumayer, P.; Doeppner, T.; Landen, O. L.; Glenzer, S. H. [L-399, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Brown, C. R. D. [Department of Physics, Imperial College, London SW7 2AZ (United Kingdom); AWE plc., Aldermaston, Reading, RG7 4PR (United Kingdom); Davis, P. [L-399, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Department of Physics, University of California Berkeley, Berkeley, California 94709 (United States); Falcone, R. W.; Lee, H. J. [Department of Physics, University of California Berkeley, Berkeley, California 94709 (United States); Gericke, D. O.; Vorberger, J.; Wuensch, K. [CFSA, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Gregori, G. [Department of Physics, Oxford University, Oxford OX1 3PU (United Kingdom); Holst, B.; Redmer, R. [Universitaet Rostock, Institut fuer Physik, D-18051 Rostock (Germany); Morse, E. C. [Department of Nuclear Engineering, University of California Berkeley, Berkeley, California 94709 (United States); Pelka, A.; Roth, M. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Darmstadt (Germany)

    2009-12-11T23:59:59.000Z

    We present the first ultrafast temporally, spectrally, and angularly resolved x-ray scattering measurements from shock-compressed matter. The experimental spectra yield the absolute elastic and inelastic scattering intensities from the measured density of free electrons. Laser-compressed lithium-hydride samples are well characterized by inelastic Compton and plasmon scattering of a K-alpha x-ray probe providing independent measurements of temperature and density. The data show excellent agreement with the total intensity and structure when using the two-species form factor and accounting for the screening of ion-ion interactions.

  16. Self-field effects on instability of wave modes in a two-stream free-electron laser with an axial magnetic field

    SciTech Connect (OSTI)

    Mohsenpour, Taghi, E-mail: mohsenpour@umz.ac.ir; Rezaee Rami, Omme Kolsoum [Department of Physics, Faculty of Basic Sciences, University of Mazandaran, Babolsar (Iran, Islamic Republic of)

    2014-07-15T23:59:59.000Z

    Free electron lasers (FEL) play major roles in the Raman Regime, due to the charge and current densities of the beam self-field. The method of perturbation has been applied to study the influence of self-electric and self-magnetic fields. A dispersion relation for two-stream free electron lasers with a helical wiggler and an axial magnetic field has been found. This dispersion relation is solved numerically to investigate the influence of self-fields on the FEL coupling and the two-stream instability. It was found that self-fields can produce very large effects on the FEL coupling, but they have almost negligible effects on two-stream instability.

  17. Mode couplings in a two-stream free-electron laser with a helical wiggler and an ion-channel guiding

    SciTech Connect (OSTI)

    Mohsenpour, Taghi, E-mail: mohsenpour@umz.ac.ir; Alirezaee, Hajar [Department of Physics, Faculty of Basic Sciences, University of Mazandaran, Babolsar (Iran, Islamic Republic of)

    2014-08-15T23:59:59.000Z

    In this study, the method of perturbation has been applied to obtain the dispersion relation (DR) of a two-stream free-electron laser (FEL) with a helical wiggler and an ion-channel with all relativistic effects on waves. This DR has been solved numerically to find the unstable modes and their growth rate. Numerical solutions of DR show that the growth rate is considerably enhanced in comparison with single-stream free-electron laser. In group II orbits, with relatively large wiggler induced velocities, new couplings are found. The effect of the velocity difference of the two electron beams on the instabilities has also been investigated in this study. Moreover, the effect of the ion-channel density on the maximum growth rate of FEL resonance has been analyzed.

  18. X-ray spectroscopy study of electronic structure of laser-irradiated Au nanoparticles in a silica film

    SciTech Connect (OSTI)

    Jonnard, P.; Bercegol, H.; Lamaignere, L.; Morreeuw, J.-P.; Rullier, J.-L.; Cottancin, E.; Pellarin, M. [Laboratoire de Chimie Physique-Matiere et Rayonnement, Universite Pierre et Marie Curie, Centre National de la Recherche Scientifique Unite Mixte de Recherche (CNRS UMR) 7614, 11 rue Pierre et Marie Curie, F-75231 Paris Cedex 05 (France); Commissariat a l'Energie Atomique/Centre d'Etudes Scientifiques et Techniques d'Aquitaine (CEA/CESTA), BP 2, F-33114, Le Barp (France); Centre Agregat Laboratoire de Spectrometrie Ionique et Moleculaire (LASIM) et Laboratoire de Physique de la Matiere Condensee et Nanostructures (LPMCN), Universite Claude Bernard Lyon I, F-69622 Villeurbanne (France)

    2005-03-15T23:59:59.000Z

    The electronic structure of gold nanoparticles embedded in a silica film is studied, both before and after irradiation at 355 nm by a laser. The Au 5d occupied valence states are observed by x-ray emission spectroscopy. They show that before irradiation the gold atoms are in metallic states within the nanoparticles. After irradiation with a fluence of 0.5 J/cm{sup 2}, it is found that gold valence states are close to those of a metal-poor gold silicide; thanks to a comparison of the experimental Au 5d states with the calculated ones for gold silicides using the density-functional theory. The formation of such a compound is driven by the diffusion of the gold atoms into the silica film upon the laser irradiation. At higher fluence, 1 J/cm{sup 2}, we find a higher percentage of metallic gold that could be attributed to annealing in the silica matrix.

  19. Characterisation of a MeV Bremsstrahlung x-ray source produced from a high intensity laser for high areal density object radiography

    SciTech Connect (OSTI)

    Courtois, C.; Compant La Fontaine, A.; Bazzoli, S.; Bourgade, J. L.; Gazave, J.; Lagrange, J. M.; Landoas, O.; Dain, L. Le; Pichoff, N. [CEA, DAM, DIF, F-91297 Arpajon (France)] [CEA, DAM, DIF, F-91297 Arpajon (France); Edwards, R.; Aedy, C. [AWE Plc., Aldermaston, Reading RG7 4PR (United Kingdom)] [AWE Plc., Aldermaston, Reading RG7 4PR (United Kingdom); Mastrosimone, D.; Pien, G.; Stoeckl, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)] [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2013-08-15T23:59:59.000Z

    Results of an experiment to characterise a MeV Bremsstrahlung x-ray emission created by a short (<10 ps) pulse, high intensity (1.4 × 10{sup 19} W/cm{sup 2}) laser are presented. X-ray emission is characterized using several diagnostics; nuclear activation measurements, a calibrated hard x-ray spectrometer, and dosimeters. Results from the reconstructed x-ray energy spectra are consistent with numerical simulations using the PIC and Monte Carlo codes between 0.3 and 30 MeV. The intense Bremsstrahlung x-ray source is used to radiograph an image quality indicator (IQI) heavily filtered with thick tungsten absorbers. Observations suggest that internal features of the IQI can be resolved up to an external areal density of 85 g/cm{sup 2}. The x-ray source size, inferred by the radiography of a thick resolution grid, is estimated to be approximately 400 ?m (full width half maximum of the x-ray source Point Spread Function)

  20. Role of multilayer-like interference effects on the transient optical response of Si{sub 3}N{sub 4} films pumped with free-electron laser pulses

    SciTech Connect (OSTI)

    Casolari, F.; Giangrisostomi, E. [Elettra-Sincrotrone Trieste, SS 14 - km 163.5, I-34149 Basovizza, Trieste (Italy); Dipartimento di Fisica, Università degli Studi di Trieste, via A. Valerio 2, I-34127 Trieste (Italy); Bencivenga, F.; Capotondi, F.; Manfredda, M.; Pedersoli, E.; Principi, E.; Masciovecchio, C.; Kiskinova, M. [Elettra-Sincrotrone Trieste, SS 14 - km 163.5, I-34149 Basovizza, Trieste (Italy); Mincigrucci, R. [Elettra-Sincrotrone Trieste, SS 14 - km 163.5, I-34149 Basovizza, Trieste (Italy); Dipartimento di Fisica, Università degli Studi di Perugia, via A. Pascoli, I-06123 Perugia (Italy)

    2014-05-12T23:59:59.000Z

    X-ray/optical cross-correlation methods are attracting increasing interest for exploring transient states of matter using ultrashort free-electron laser (FEL) pulses. Our paper shows that in such studies the difference in the penetration depth of the FEL-pump and the infrared (IR) probe pulses become important, in particular, when exploring the changes in the optical properties of solid targets. We discuss the role of interference effects, using a phenomenological model with excited and unperturbed slabs. The reliability of this model was experimentally verified by measuring the transient optical response of free-standing and silicon (Si) supported silicon nitride (Si{sub 3}N{sub 4}) films, simultaneously in reflection and transmission, using s- and p-polarized IR light. The changes in the Si{sub 3}N{sub 4} optical refractive index, induced by the FEL pulses, have fully been described in the frame of the proposed model. The experimental results confirm that the differences, observed in the FEL-induced transient reflectance and transmittance of the Si{sub 3}N{sub 4} targets with different thicknesses, arise from multilayer-like interferometric phenomena.

  1. Efficient multi-keV x-ray source generated by nanosecond laser pulse irradiated multi-layer thin foils target

    SciTech Connect (OSTI)

    Tu, Shao-yong [Department of Modern Physics and CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei, Anhui 230026 (China) [Department of Modern Physics and CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei, Anhui 230026 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Hu, Guang-yue, E-mail: gyhu@ustc.edu.cn; Zhao, Bin; Zheng, Jian [Department of Modern Physics and CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei, Anhui 230026 (China)] [Department of Modern Physics and CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei, Anhui 230026 (China); Miao, Wen-yong; Yuan, Yong-teng; Zhan, Xia-yu; Hou, Li-fei; Jiang, Shao-en; Ding, Yong-kun [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China)] [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China)

    2014-04-15T23:59:59.000Z

    A new target configuration is proposed to generate efficient multi-keV x-ray source using multiple thin foils as x-ray emitters. The target was constructed with several layers of thin foils, which were placed with a specific, optimized spacing. The thin foils are burned though one by one by a nanosecond-long laser pulse, which produced a very large, hot, underdense plasma. One-dimensional radiation hydrodynamic simulations show that the emission region and the multi-keV x-ray flux generated by multi-layer thin foil target are similar to that of the low-density gas or foam target, which is currently a bright multi-keV x-ray source generated by laser heating. Detailed analysis of a range of foil thicknesses showed that a layer-thickness of 0.1??m is thin enough to generate an efficient multi-keV x-ray source. Additionally, this type of target can be easily manufactured, compared with the complex techniques for fabrication of low-density foam targets. Our preliminary experimental results also verified that the size of multi-keV x-ray emission region could be enhanced significantly by using a multi-layer Ti thin foil target.

  2. Temporal synchronization of GHz repetition rate electron and laser pulses for the optimization of a compact inverse-Compton scattering x-ray source

    E-Print Network [OSTI]

    Hadmack, Michael R; Madey, John M J; Kowalczyk, Jeremy M D

    2014-01-01T23:59:59.000Z

    The operation of an inverse-Compton scattering source of x-rays or gamma-rays requires the precision alignment and synchronization of highly focused electron bunches and laser pulses at the collision point. The arrival times of electron and laser pulses must be synchronized with picosecond precision. We have developed an RF synchronization technique that reduces the initial timing uncertainty from 350 ps to less than 2 ps, greatly reducing the parameter space to be optimized while commissioning the x-ray source. We describe the technique and present measurements of its performance.

  3. The BErkeley Lab Laser Accelerator (BELLA): A 10 GeV Laser Plasma Accelerator

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    used at the world's first x-ray free electron laser (FEL) at the LCLS at SLAC, and the lower energyThe BErkeley Lab Laser Accelerator (BELLA): A 10 GeV Laser Plasma Accelerator W.P. Leemansa,b,c , R, USA Abstract. An overview is presented of the design of a 10 GeV laser plasma accelerator (LPA

  4. The impact of low-Z impurities on x-ray conversion efficiency from laser-produced plasmas of low-density gold foam targets

    SciTech Connect (OSTI)

    Dong, Yunsong [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China) [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Shang, Wanli; Yang, Jiamin; Zhang, Lu; Zhang, Wenhai; Li, Zhichao; Guo, Liang; Zhan, Xiayu; Du, Huabing; Deng, Bo [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)] [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Pu, Yikang [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)] [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2013-12-15T23:59:59.000Z

    It is an important approach to improve the x-ray conversion efficiency of laser-ablated high-Z plasmas by using low initial density materials for various applications. However, unavoidable low-Z impurities in the manufacture process of low-density high-Z foam targets will depress this effect. A general easy-to-use analytical model based on simulations was developed to evaluate the quantitative impact of impurities within the gold foam target on laser to x-ray conversion efficiency. In addition, the x-ray conversion efficiencies of 1 g/cm{sup 3} gold foams with two different initial contents of impurities were experimentally investigated. Good agreements have been achieved between the model results and experiments.

  5. Pulsed CO{sub 2} laser with an X-ray preioniser based on a high-voltage low-pressure glow discharge

    SciTech Connect (OSTI)

    Oreshkin, V F; Seregin, Aleksandr M; Sinaiskii, V V; Shchetinkina, T A ['Astrofizika' Research and Production Association (Russian Federation); Sorokin, A R [Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2003-12-31T23:59:59.000Z

    An X-ray preioniser with an electron beam energy density of 0.1 J cm{sup -2} based on a high-voltage (20 - 40 kV) low-pressure glow discharge is developed for repetitively pulsed gas lasers. The electron concentration in the CO{sub 2} - N{sub 2} - He mixture as a function of the voltage across the preioniser is calculated for titanium and other foils. The preioniser can be operated both in a single-pulse regime and at pulse repetition rates ranging up to hundreds of Hertz. A specific energy yield of 51 J L{sup -1} is achieved in the X-ray preionised pulsed CO{sub 2} atmospheric-pressure laser. This preioniser was shown to be efficient for other active media (CO and excimer lasers), which opens up new opportunities for the development of repetitively pulsed gas lasers. (lasers)

  6. Narrowband inverse Compton scattering x-ray sources at high laser intensities

    E-Print Network [OSTI]

    Seipt, D; Surzhykov, A; Fritzsche, S

    2014-01-01T23:59:59.000Z

    Narrowband x- and gamma-ray sources based on the inverse Compton scattering of laser pulses suffer from a limitation of the allowed laser intensity due to the onset of nonlinear effects that increase their bandwidth. It has been suggested that laser pulses with a suitable frequency modulation could compensate this ponderomotive broadening and reduce the bandwidth of the spectral lines, which would allow to operate narrowband Compton sources in the high-intensity regime. In this paper we, therefore, present the theory of nonlinear Compton scattering in a frequency modulated intense laser pulse. We systematically derive the optimal frequency modulation of the laser pulse from the scattering matrix element of nonlinear Compton scattering, taking into account the electron spin and recoil. We show that, for some particular scattering angle, an optimized frequency modulation completely cancels the ponderomotive broadening for all harmonics of the backscattered light. We also explore how sensitive this compensation ...

  7. Magnetism studies using resonant, coherent, x-ray scattering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetism studies using resonant, coherent, x-ray scattering Monday, September 10, 2012 - 10:00am SLAC, Bldg. 137, Room 226 Keoki Seu Seminar: With the advent of free electron...

  8. The FERMI@Elettra free-electron-laser source for coherent X-ray physics: photon properties, beam transport system, and applications

    E-Print Network [OSTI]

    Allaria, Enrico

    2010-01-01T23:59:59.000Z

    of diluted system, and EIS, dedicated to Elastic Scattering.to the Timer part of the EIS beamline (at whose beginning athe LDM, DIPROI or Timex-EIS beamlines that share a number

  9. Single photon ionization of van der Waals clusters with a soft x-ray laser: ,,CO2...n and ,,CO2...n,,H2O...m

    E-Print Network [OSTI]

    Rocca, Jorge J.

    Single photon ionization of van der Waals clusters with a soft x-ray laser: ,,CO2...n and ,,CO2...n 2006; published online 20 October 2006 Pure neutral CO2 n clusters and mixed CO2 n H2O m clustersV. The distribution of pure CO2 n clusters decreases roughly exponentially with increasing cluster size. During

  10. Demonstration of an 8.85 nm Gain-Saturated Table-Top Soft X-Ray Laser and Lasing down to 7.4 nm

    SciTech Connect (OSTI)

    Wang, Yong [Colorado State University, Fort Collins; Alessi, David [Colorado State University, Fort Collins; Luther, Brad [Colorado State University, Fort Collins; Yin, Liang [Colorado State University, Fort Collins; Martz, Dale [Colorado State University, Fort Collins; Berrill, Mark A [ORNL; Jorge, Rocca [Colorado State University, Fort Collins

    2012-01-01T23:59:59.000Z

    We report the efficient generation of a gain-saturated 8.85 nm wavelength table-top soft x-ray laser operating at 1 Hz repetition rate and the observation of lasing at wavelengths as short as 7.36 nm in lanthanide ions.

  11. Beam Line Design and Beam Physics Study of Energy Recovery Linac Free Electron Laser at Peking University

    SciTech Connect (OSTI)

    Guimei Wang

    2011-12-31T23:59:59.000Z

    Energy recovering linac (ERL) offers an attractive alternative for generating intense beams of charged particles by approaching the operational efficiency of a storage ring while maintaining the superior beam quality typical of a linear accelerator. In ERLs, the decelerated beam cancels the beam loading effects of the accelerated beam with high repetition rate. Therefore, ERLs can, in principle, accelerate very high average currents with only modest amounts of RF power. So the efficiency of RF power to beam is much higher. Furthermore, the energy of beam to dump is lower, so it will reduce dump radiation. With the successful experiments in large maximum-to-injection energy ratio up to 51:1 and high power FEL up to 14kW, the use of ERL, especially combining with superconducting RF technology, provides a potentially powerful new paradigm for generation of the charged particle beams used in MW FEL, synchrotron radiation sources, high-energy electron cooling devices and so on. The 3+1/2 DC-SC photo injector and two 9cell TESLA superconducting cavity for IR SASE FEL in PKU provides a good platform to achieve high average FEL with Energy Recovery. The work of this thesis is on Beam line design and Beam dynamics study of Energy Recovery Linac Free Electron Laser for Peking University. It is the upgrade of PKU facility, which is under construction. With ERL, this facility can work in CW mode, so it can operate high average beam current without RF power constraint in main linac and generate high average FEL power. Moreover, it provides a test facility to study the key technology in ERL. System parameters are optimized for PKU ERL-FEL. The oscillation FEL output power is studied with different bunch charge, transverse emittance, bunch length and energy spread. The theory of optimal RF power and Q{sub ext} with ERL and without ERL is analyzed and applied to PKU injector and linac including microphonic effect. pace charge effect in the injector and merger is studied for beam energy at ~5MeV. Simulation shows that in the 3+1/2 DC- C injector, there is a region the beam could be over focused by RF electromagnetic field and the transverse emittance in the transport line up to linac will increase instantly due to over focusing. In order to eliminate this effect on beam emittance, several solutions are investigated to avoid over focusing. This result is very important for beam loading experiment for low bunch charge operation. Meanwhile, different merger structures are compared in terms of error sensitivity and emittance increase with space charge effect. In recirculation beam line, a new symmetric 180{degree} arc structure is designed. It fulfills the achromatic condition and adjustable bunch compression. These two parameters are controlled by different Quads knob. With this novel structure, the recirculation lattice can achieve path length adjustment, bunch compression and decompression in a large range. With beamline error, the beam central orbit will deviate from the designed trajectory. An orbit correction system is optimized, which balances between cost and performance of orbit after correction at design level. Different methods are used to estimate its robustness. The BBU instability, especially multi-pass BBU imposed a potentially severe limitation to the average current that can be accelerated in an ERL. Simulation gives the harmful HOMs and predicts that the threshold average current in this machine is much higher than the possible operation current. This work is based on the existing facility in PKU, so it provides guidelines for the facility operation and upgrade in the future. The theoretical analysis of ERL requirement and FEL requirement on beam transport line and beam property paves the way for future ERL research.

  12. Phase-sensitive X-ray imager

    DOE Patents [OSTI]

    Baker, Kevin Louis

    2013-01-08T23:59:59.000Z

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  13. Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments

    SciTech Connect (OSTI)

    Hill, K. W., E-mail: khill@pppl.gov; Bitter, M.; Delgado-Aparacio, L.; Efthimion, P.; Pablant, N. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Lu, J. [Key Laboratory of Optoelectronic Technology and System of Ministry of Education, Chongqing University, Chongqing 400030 (China); Beiersdorfer, P.; Chen, H.; Magee, E. [Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-11-15T23:59:59.000Z

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/?E of order 10?000 and spatial resolution better than 10 ?m. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

  14. Soft X-ray laser using pumping of 3P and 4P levels of He-like and H-like ions

    DOE Patents [OSTI]

    Hagelstein, Peter L. (Livermore, CA)

    1987-01-01T23:59:59.000Z

    X-ray laser method and apparatus for producing coherent radiation at, for example, energies of at least 40 eV, using Be-like Cr, N-like Ni, He-like Na, B-like Cr, Be-like Mn or similar multiply ionized species to pump appropriate high energy transitions in He-like or H-like N, O, F, C or rare gases, with associated laser transition gains of 4-50 cm.sup.-1.

  15. Soft x-ray laser using pumping of 3p and 4p levels of He-like and H-like ions

    DOE Patents [OSTI]

    Hagelstein, P.L.

    1985-07-05T23:59:59.000Z

    X-ray laser method and apparatus for producing coherent radiation at, for example, energies of at least 40 eV, using Be-like Cr, N-like Ni, He-like Na, B-like Cr, Be-like Mn or similar multiply ionized species to pump appropriate high energy transitions in He-like or H-like N, O, F, C or rare gases, with associated laser transition gains of 4 to 50 cm/sup -1/.

  16. Femtosecond X-ray Diffraction From Two-Dimensional Protein Crystals

    SciTech Connect (OSTI)

    Frank, Matthias; Carlson, David B.; Hunter, Mark; Williams, Garth J.; Messerschmidt, Marc; Zatsepin, Nadia A.; Barty, Anton; Benner, Henry; Chu, Kaiqin; Graf, Alexander; Hau-Riege, Stefan; Kirian, Rick; Padeste, Celestino; Pardini, Tommaso; Pedrini, Bill; Segelke, Brent; Seibert, M. M.; Spence , John C.; Tsai, Ching-Ju; Lane, Steve M.; Li, Xiao-Dan; Schertler, Gebhard; Boutet, Sebastien; Coleman, Matthew A.; Evans, James E.

    2014-02-28T23:59:59.000Z

    Here we present femtosecond x-ray diffraction patterns from two-dimensional (2-D) protein crystals using an x-ray free electron laser (XFEL). To date it has not been possible to acquire x-ray diffraction from individual 2-D protein crystals due to radiation damage. However, the intense and ultrafast pulses generated by an XFEL permits a new method of collecting diffraction data before the sample is destroyed. Utilizing a diffract-before-destroy methodology at the Linac Coherent Light Source, we observed Bragg diffraction to better than 8.5 Å resolution for two different 2-D protein crystal samples that were maintained at room temperature. These proof-of-principle results show promise for structural analysis of both soluble and membrane proteins arranged as 2-D crystals without requiring cryogenic conditions or the formation of three-dimensional crystals.

  17. Quasicontinuous x-ray laser with {lambda}=10.8 nm in Pd-like tungsten using a nanostructured target

    SciTech Connect (OSTI)

    Ivanova, E. P. [Institute of Spectroscopy, Russian Academy of Sciences, 142190 Troitsk, Moscow Region (Russian Federation)

    2010-10-15T23:59:59.000Z

    A new-generation x-ray laser project is explained. It is based on the transitions in Pd-like ions in nanoplasmas. The gain coefficient is calculated for the 4d{sub 3/2}{sup 9}5d{sub 3/2}[J=0]-4d{sub 3/2}{sup 9}5p{sub 1/2}[J=1] transition ({lambda}{approx_equal}10.8 nm) in Pd-like tungsten. It is suggested that a cylindrical target made of nanostructured tungsten is pumped in the longitudinal direction by a laser pulse with energy 1-2 keV and duration {approx}500 ps. For this pump pulse the target density and dimensions are calculated, as well as the temporal variations of the optimal plasma parameters for attaining gL {approx} 14. The energy yield in the 10.8-nm line is more than 10{sup 20} eV.

  18. Study of an HHG-Seeded Free-Electron Laser for the LBNL Next Generation Light Source

    E-Print Network [OSTI]

    Thompson, Neil

    2011-01-01T23:59:59.000Z

    Electron Laser for the LBNL Next Generation Light SourceElectron Laser for the LBNL Next Generation Light SourceBerkeley National Laboratory (LBNL). The proposed facil- ity

  19. Spectral encoding method for measuring the relative arrival time between x-ray/optical pulses

    SciTech Connect (OSTI)

    Bionta, M. R., E-mail: mina.bionta@irsamc.ups-tlse.fr [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); The Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Hartmann, N. [The Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Institute of Applied Physics, University of Bern, Sidlerstr. 5, 3012 Bern (Switzerland); Weaver, M.; French, D.; Glownia, J. M.; Bostedt, C.; Chollet, M.; Ding, Y.; Fritz, D. M.; Fry, A. R.; Krzywinski, J.; Lemke, H. T.; Messerschmidt, M.; Schorb, S.; Zhu, D.; White, W. E. [The Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Nicholson, D. J. [The Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Cryan, J. P. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Baker, K. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Kane, D. J. [Mesa Photonics, LLC., 1550 Pacheco St., Santa Fe, New Mexico 87505 (United States); and others

    2014-08-15T23:59:59.000Z

    The advent of few femtosecond x-ray light sources brings promise of x-ray/optical pump-probe experiments that can measure chemical and structural changes in the 10–100 fs time regime. Widely distributed timing systems used at x-ray Free-Electron Laser facilities are typically limited to above 50 fs fwhm jitter in active x-ray/optical synchronization. The approach of single-shot timing measurements is used to sort results in the event processing stage. This has seen wide use to accommodate the insufficient precision of active stabilization schemes. In this article, we review the current technique for “measure-and-sort” at the Linac Coherent Light Source at the SLAC National Accelerator Laboratory. The relative arrival time between an x-ray pulse and an optical pulse is measured near the experimental interaction region as a spectrally encoded cross-correlation signal. The cross-correlation provides a time-stamp for filter-and-sort algorithms used for real-time sorting. Sub-10 fs rms resolution is common in this technique, placing timing precision at the same scale as the duration of the shortest achievable x-ray pulses.

  20. Efficient laser-induced 6-8 keV x-ray production from iron oxide aerogel and foil-lined cavity targets

    SciTech Connect (OSTI)

    Perez, F.; Kay, J. J.; Patterson, J. R.; Kane, J.; May, M.; Emig, J.; Colvin, J.; Gammon, S.; Satcher, J. H. Jr.; Fournier, K. B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Villette, B.; Girard, F.; Reverdin, C. [CEA DAM DIF, F-91297 Arpajon (France); Sorce, C. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); University of Rochester - Laboratory for Laser Energetics, 250 E. River Rd, Rochester, New York 14623-1299 (United States); Jaquez, J. [General Atomics, San Diego, California 92121 (United States)

    2012-08-15T23:59:59.000Z

    The performance of new iron-based laser-driven x-ray sources has been tested at the OMEGA laser facility for production of x rays in the 6.5-8.5 keV range. Two types of targets were experimentally investigated: low-density iron oxide aerogels (density 6-16 mg/cm{sup 3}) and stainless steel foil-lined cavity targets (steel thickness 1-5 {mu}m). The targets were irradiated by 40 beams of the OMEGA laser (500 J/beam, 1 ns pulse, wavelength 351 nm). All targets showed good coupling with the laser, with <5% of the incident laser light backscattered by the resulting plasma in all cases (typically <2.5%). The aerogel targets produced T{sub e}=2 to 3 keV, n{sub e}=0.12-0.2 critical density plasmas yielding a 40%-60% laser-to-x-ray total conversion efficiency (CE) (1.2%-3% in the Fe K-shell range). The foil cavity targets produced T{sub e}{approx} 2 keV, n{sub e}{approx} 0.15 critical density plasmas yielding a 60%-75% conversion efficiency (1.6%-2.2% in the Fe K-shell range). Time-resolved images illustrate that the volumetric heating of low-density aerogels allow them to emit a higher K-shell x-ray yield even though they contain fewer Fe atoms. However, their challenging fabrication process leads to a larger shot-to-shot variation than cavity targets.

  1. Demonstartion of density dependence of x-ray flux in a laser-driven hohlraum

    SciTech Connect (OSTI)

    Young, P E; Rosen, M D; Hammer, J H; Hsing, W S; Glendinning, S G; Turner, R E; Kirkwood, R; Schein, J; Sorce, C; Satcher, J; Hamza, A; Reibold, R A; Hibbard, R; Landen, O; Reighard, A; McAlpin, S; Stevenson, M; Thomas, B

    2008-02-11T23:59:59.000Z

    Experiments have been conducted using laser-driven cylindrical hohlraums whose walls are machined from Ta{sub 2}O{sub 5} foams of 100 mg/cc and 4 g/cc densities. Measurements of the radiation temperature demonstrate that the lower density walls produce higher radiation temperatures than the high density walls. This is the first experimental demonstration of the prediction that this would occur [M. D. Rosen and J. H. Hammer, Phys. Rev. E 72, 056403 (2005)]. For high density walls, the radiation front propagates subsonically, and part of the absorbed energy is wasted by the flow kinetic energy. For the lower wall density, the front velocity is supersonic and can devote almost all of the absorbed energy to heating the wall.

  2. Relativistic self-focusing of ultra-high intensity X-ray laser beams in warm quantum plasma with upward density profile

    SciTech Connect (OSTI)

    Habibi, M., E-mail: habibi.physics@gmail.com [Young Researchers and Elite Club, Shirvan Branch, Islamic Azad University, Shirvan (Iran, Islamic Republic of); Ghamari, F. [Young Researchers and Elite Club, Khorramabad Branch, Islamic Azad University, Khorramabad (Iran, Islamic Republic of)

    2014-05-15T23:59:59.000Z

    The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration of the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam.

  3. Study of strain propagation in laser irradiated silicon crystal by time-resolved diffraction of K-{alpha} x-ray probe of different photon energies

    SciTech Connect (OSTI)

    Arora, V.; Bagchi, S.; Chakera, J. A.; Naik, P. A.; Gupta, P. D. [Laser Plasma Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India); Gupta, M.; Gupta, A.; Chaddah, P. [UGC-DAE Consortium for Scientific Research, University Campus, Indore 452 001 (India)

    2013-07-14T23:59:59.000Z

    An experimental study on the time resolved x-ray diffraction from laser shocked silicon crystal, carried out using a 10 TW Ti:sapphire laser system, is presented. The characteristic K{sub {alpha}} x-ray line radiation generated by 45 fs laser produced plasmas of two different target materials (iron and copper) is used as the probe, whereas the stretched pulse of sub-nanosecond duration (pump), derived from the same laser, is used to compress the sample. The use of x-ray probe of different photon energies yields information about the strain over a greater crystal depth. The dynamics of the strain propagation is inferred by monitoring the evolution of rocking curve width of the shocked sample at different time delays between the pump and the probe pulse. The shock velocity deduced from these measurements is {approx}10{sup 6} cm/s, consistent with the sound velocity in bulk silicon. The maximum elastic compression observed is 0.4%, indicating a pressure of 0.8 GPa.

  4. Plasma Channel Diagnostic Based on Laser Centroid Oscillations

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    THz [4] to free electron laser (FEL) x-ray sources [5] and Thomson scattering gamma ray sources [6Plasma Channel Diagnostic Based on Laser Centroid Oscillations A. J. Gonsalves, K. Nakamura, C. Lin for measuring the properties of discharge-based plasma channels by monitoring the centroid location of a laser

  5. Architecture and Bloch-Maxwell modelling of multi-mJ 100 fs fully-coherent soft X-ray laser based on X-ray CPA

    SciTech Connect (OSTI)

    Zeitoun, Ph.; Oliva, E.; Fajardo, M.; Cheriaux, G.; Le, T. T. T.; Li, L.; Pitman, M.; Ros, D.; Sebban, S.; Velarde, P. [Laboratoire d'Optique Appliquee, ENSTA-PariesTech, CNRS, Ecole Poluytehcnique-PariesTech, chemin d ela huniere, Palaiseau (France); Laboratoire d'Optique Appliquee, ENSTA-PariesTech, CNRS, Ecole Poluytehcnique-PariesTech, chemin d ela huniere, Palaiseau (France); GoLP, Instituto de Plasmas e Fusao Nuclear, Laboratorio Associado, Instituto Superior Tecnico, Lisbon (Portugal); Laboratoire d'Optique Appliquee, ENSTA-PariesTech, CNRS, Ecole Poluytehcnique-PariesTech, chemin d ela huniere, Palaiseau (France); CLUPS, EA4127, Bat 106, Universite Paris-Sud, 91405 Orsay (France); Laboratoire d'Optique Appliquee, ENSTA-PariesTech, CNRS, Ecole Poluytehcnique-PariesTech, chemin d ela huniere, Palaiseau (France); Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, Madrid (Spain)

    2012-07-09T23:59:59.000Z

    By seeding amplifying plasmas pumped with the so-called Transient collisionnal excitation scheme, the amplified pulse seems to be limited to an energy of several 10's of {mu}J. Aiming to attain several mJ, we study the seeding of plasma pumped by long laser pulse. Thanks to our time-dependent Maxwell-Bloch code, we demonstrate that direct seeding with femtosecond pulse is inefficient. We also study the amplification of pulse train with the drawback of re-synchronizing the pulses. We proposed and studied the amplification of high harmonic seed stretched by a grating pair, amplified finally compressed. We consider off-axis diffraction on the gratings for maximizing their efficiency. Considering the phase deformation induced by the amplification and the spectral narrowing the final pulse is 230 fs in duration and 5 mJ.

  6. Particle Formation from Pulsed Laser Irradiation of SootAggregates studied with scanning mobility particle sizer, transmissionelectron microscope and near-edge x-ray absorption fine structure.

    SciTech Connect (OSTI)

    Michelsen, Hope A.; Tivanski, Alexei V.; Gilles, Mary K.; vanPoppel, Laura H.; Dansson, Mark A.; Buseck, Peter R.; Buseck, Peter R.

    2007-02-20T23:59:59.000Z

    We investigated the physical and chemical changes induced in soot aggregates exposed to laser radiation using a scanning mobility particle sizer, a transmission electron microscope, and a scanning transmission x-ray microscope to perform near-edge x-ray absorption fine structure spectroscopy. Laser-induced nanoparticle production was observed at fluences above 0.12 J/cm(2) at 532 nm and 0.22 J/cm(2) at 1064 nm. Our results indicate that new particle formation proceeds via (1) vaporization of small carbon clusters by thermal or photolytic mechanisms, followed by homogeneous nucleation, (2) heterogeneous nucleation of vaporized carbon clusters onto material ablated from primary particles, or (3) both processes.

  7. High K-alpha X-ray Conversion Efficiency From Extended Source Gas Jet Targets Irradiated by Ultra Short Laser Pulses

    SciTech Connect (OSTI)

    Kugland, N L; Constantin, C; Collette, A; Dewald, E; Froula, D; Glenzer, S H; Kritcher, A; Neumayer, P; Ross, J S; Niemann, C

    2007-11-01T23:59:59.000Z

    The absolute laser conversion efficiency to K{sub {alpha}}-like inner shell x-rays (integrated from K{sub {alpha}} to K{sub {beta}}) is observed to be an order of magnitude higher in argon gas jets than in solid targets due to enhanced emission from higher ionization stages following ultra short pulse laser irradiation. Excluding the higher ionization stages, the conversion efficiency to near-cold K{sub {alpha}} is the same in gas jets as in solid targets. These results demonstrate that gas jet targets are bright, high conversion efficiency, high repetition rate, debris-free multi-keV x-ray sources for spectrally resolved scattering and backlighting of rapidly evolving dense matter.

  8. X-ray Synchrotron Radiation in a Plasma Wiggler

    SciTech Connect (OSTI)

    Wang, Shuoquin; /UCLA /SLAC, SSRL

    2005-09-27T23:59:59.000Z

    A relativistic electron beam can radiate due to its betatron motion inside an ion channel. The ion channel is induced by the electron bunch as it propagates through an underdense plasma. In the theory section of this thesis the formation of the ion channel, the trajectories of beam electrons inside the ion channel, the radiation power and the radiation spectrum of the spontaneous emission are studied. The comparison between different plasma wiggler schemes is made. The difficulties in realizing stimulated emission as the beam traverses the ion channel are investigated, with particular emphasis on the bunching mechanism, which is important for the ion channel free electron laser. This thesis reports an experiment conducted at the Stanford Linear Accelerator Center (SLAC) to measure the betatron X-ray radiations for the first time. They first describe the construction and characterization of the lithium plasma source. In the experiment, the transverse oscillations of the SLAC 28.5 GeV electron beam traversing through a 1.4 meter long lithium plasma source are clearly seen. These oscillations lead to a quadratic density dependence of the spontaneously emitted betatron X-ray radiation. The divergence angle of the X-ray radiation is measured. The absolute photon yield and the spectral brightness at 14.2 KeV photon energy are estimated and seen to be in reasonable agreement with theory.

  9. Instability of wave modes in a two-stream free-electron laser with a helical wiggler and an axial magnetic field

    SciTech Connect (OSTI)

    Mohsenpour, Taghi; Mehrabi, Narges [Department of Physics, Faculty of Basic Sciences, University of Mazandaran, Babolsar (Iran, Islamic Republic of)] [Department of Physics, Faculty of Basic Sciences, University of Mazandaran, Babolsar (Iran, Islamic Republic of)

    2013-08-15T23:59:59.000Z

    The dispersion relation of a two-stream free-electron laser (TSFEL) with a one-dimensional helical wiggler and an axial magnetic field is studied. Also, all relativistic effects on the space-charge wave and radiation are considered. This dispersion relation is solved numerically to find the unstable interaction among the all wave modes. Numerical calculations show that the growth rate is considerably enhanced in comparison with single-stream FEL. The effect of the velocity difference of the two electron beams on the two-stream instability and the FEL resonance is investigated. The maximum growth rate of FEL resonance is investigated numerically as a function of the axial magnetic field.

  10. 2011 X-Ray Science Gordon Research Conference (August 7-12, 2011, Colby, College. Waterville, ME)

    SciTech Connect (OSTI)

    Gregory Stephenson

    2011-08-12T23:59:59.000Z

    The 2011 Gordon Research Conference on X-ray Science will feature forefront x-ray-based science enabled by the rapid improvements in synchrotron and x-ray laser sources. Across the world, x-ray sources are playing an increasingly important role in physics, materials, chemistry, and biology, expanding into ever broadening areas of science and engineering. With the first hard x-ray free electron laser source beginning operation and with other advanced x-ray sources operational and planned, it is a very exciting and pivotal time for exchange ideas about the future of x-ray science and applications. The Conference will provide the forum for this interaction. An international cast of speakers will illuminate sessions on ultrafast science, coherence, imaging, in situ studies, extreme conditions, new developments in optics, sources, and detectors, inelastic scattering, nanoscience, life science, and energy sciences. The Conference will bring together investigators at the forefront of these areas, and will provide a venue for young scientists entering a career in x-ray research to present their research in poster format, hold discussions in a friendly setting, and exchange ideas with leaders in the field. Some poster presenters will be selected for short talks. The collegial atmosphere of this Conference, with ample time for discussion as well as opportunities for informal gatherings in the afternoons and evenings, will provide an avenue for scientists from different disciplines to exchange ideas about forefront x-ray techniques and will promote cross-fertilization between the various research areas represented.

  11. Electron beam-based sources of ultrashort x-ray pulses.

    SciTech Connect (OSTI)

    Zholents, A.; Accelerator Systems Division (APS)

    2010-09-30T23:59:59.000Z

    A review of various methods for generation of ultrashort x-ray pulses using relativistic electron beam from conventional accelerators is presented. Both spontaneous and coherent emission of electrons is considered. The importance of the time-resolved studies of matter at picosecond (ps), femtosecond (fs), and atttosecond (as) time scales using x-rays has been widely recognized including by award of a Nobel Prize in 1999 [Zewa]. Extensive reviews of scientific drivers can be found in [BES1, BES2, BES3, Lawr, Whit]. Several laser-based techniques have been used to generate ultrashort x-ray pulses including laser-driven plasmas [Murn, Alte, Risc, Rose, Zamp], high-order harmonic generation [Schn, Rund, Wang, Arpi], and laser-driven anode sources [Ande]. In addition, ultrafast streak-camera detectors have been applied at synchrotron sources to achieve temporal resolution on the picosecond time scale [Wulf, Lind1]. In this paper, we focus on a different group of techniques that are based on the use of the relativistic electron beam produced in conventional accelerators. In the first part we review several techniques that utilize spontaneous emission of electrons and show how solitary sub-ps x-ray pulses can be obtained at existing storage ring based synchrotron light sources and linacs. In the second part we consider coherent emission of electrons in the free-electron lasers (FELs) and review several techniques for a generation of solitary sub-fs x-ray pulses. Remarkably, the x-ray pulses that can be obtained with the FELs are not only significantly shorter than the ones considered in Part 1, but also carry more photons per pulse by many orders of magnitude.

  12. Soft X-ray laser using pumping of 3P and 4P levels of He-like and H-like ions

    DOE Patents [OSTI]

    Hagelstein, P.L.

    1987-04-21T23:59:59.000Z

    X-ray laser method and apparatus are disclosed for producing coherent radiation at, for example, energies of at least 40 eV, using Be-like Cr, N-like Ni, He-like Na, B-like Cr, Be-like Mn or similar multiply ionized species to pump appropriate high energy transitions in He-like or H-like N, O, F, C or rare gases, with associated laser transition gains of 4-50 cm[sup [minus]1]. 8 figs.

  13. Soft x-ray laser using pumping of 3P and 4P levels of He-like and H-like ions

    DOE Patents [OSTI]

    Hagelstein, P.

    1982-03-26T23:59:59.000Z

    X-ray laser method and apparatus for producing coherent radiation at, for example, energies of 40 to 189 eV, using Be-like Cr, N-like Ni, He-like Na, B-like Cr, Be-like Mn or similar multiply ionized species to pump appropriate high energy transitions in He-like or H-like rare gases or N, O, F, or C gases, with associated laser transition gains of 20 to 50 cm/sup -1/.

  14. Experimental Verification of the Chemical Sensitivity of Two-Site Double Core-Hole States Formed by an X-ray FEL

    E-Print Network [OSTI]

    Salen, P; Schmidt, H T; Thomas, R D; Larsson, M; Feifel, R; Piancastelli, M N; Fang, L; Murphy, B; Osipov, T; Berrah, N; Kukk, E; Ueda, K; Bozek, J D; Bostedt, C; Wada, S; Richter, R; Feyer, V; Prince, K C

    2012-01-01T23:59:59.000Z

    We have performed X-ray two-photon photoelectron spectroscopy (XTPPS) using the Linac Coherent Light Source (LCLS) X-ray free-electron laser (FEL) in order to study double core-hole (DCH) states of CO2, N2O and N2. The experiment verifies the theory behind the chemical sensitivity of two-site (ts) DCH states by comparing a set of small molecules with respect to the energy shift of the tsDCH state and by extracting the relevant parameters from this shift.

  15. Morphology, microstructure, stress and damage properties of thin film coatings for the LCLS x-ray mirrors

    SciTech Connect (OSTI)

    Soufli, R; Baker, S L; Robinson, J C; Gullikson, E M; McCarville, T J; Pivovaroff, M J; Stefan, P; Hau-Riege, S P; Bionta, R

    2009-04-23T23:59:59.000Z

    The development and properties of reflective coatings for the x-ray offset mirror systems of the Linac Coherent Light Source (LCLS) free-electron laser (FEL) are discussed in this manuscript. The uniquely high instantaneous dose of the LCLS FEL beam translates to strict limits in terms of materials choice, thus leading to an x-ray mirror design consisting of a reflective coating deposited on a silicon substrate. Coherent wavefront preservation requirements for these mirrors result in stringent surface figure and finish specifications. DC-magnetron sputtered B{sub 4}C and SiC thin film coatings with optimized stress, roughness and figure properties for the LCLS x-ray mirrors are presented. The evolution of microstructure, morphology, and stress of these thin films versus deposition conditions is discussed. Experimental results on the performance of these coatings with respect to FEL damage are also presented.

  16. IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 27, NO. 12. DECEMBER 1991 2691 Applications of Infrared Free-Electron Lasers: Basic

    E-Print Network [OSTI]

    Fayer, Michael D.

    IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 27, NO. 12. DECEMBER 1991 2691 Applications of Infrared. Fayer Invited Paper Abstract-Applications of tunable infrared (IR) picosecond (ps) pulses generated- heating are suggested. I. INTRODUCTION REE-ELECTRON lasers (FEL's) have developed Frapidly in the last 15

  17. DarkLight: A Search for Dark Forces at the Jefferson Laboratory Free-Electron Laser Facility

    SciTech Connect (OSTI)

    Balewski, Jan; Bernauer, J.; Bertozzi, William; Bessuille, Jason; Buck, B.; Cowan, Ray; Dow, K.; Epstein, C.; Fisher, Peter; Gilad, Shalev; Ihloff, Ernest; Kahn, Yonatan; Kelleher, Aidan; Kelsey, J.; Milner, Richard; Moran, C.; Ou, Longwu; Russell, R.; Schmookler, Barak; Thaler, J.; Tschalar, C.; Vidal, Christopher; Winnebeck, A.; Benson, Stephen [JLAB; Gould, Christopher [JLAB; Biallas, George [JLAB; Boyce, James [JLAB; Coleman, James [JLAB; Douglas, David [JLAB; Ent, Rolf [JLAB; Evtushenko, Pavel [JLAB; Fenker, Howard [JLAB; Gubeli, Joseph [JLAB; Hannon, Fay [JLAB; Huang, Jia [JLAB; Jordan, Kevin [JLAB; Legg, Robert [JLAB; Marchlik, Matthew [JLAB; Moore, Steven [JLAB; Neil, George [JLAB; Shinn, Michelle D [JLAB; Tennant, Christopher [JLAB; Walker, Richard [JLAB; Williams, Gwyn [JLAB; Zhang, Shukui [JLAB; Freytsis, M.; Fiorito, Ralph; O'Shea, P.; Alarcon, Ricardo; Dipert, R.; Ovanesyan, G.; Gunter, Thoth; Kalantarians, Narbe; Kohl, M.; Albayrak, Ibrahim; Horn, Tanja; Gunarathne, D. S.; Martoff, C. J.; Olvitt, D. L.; Surrow, Bernd; Lia, X.; Beck, Reinhard; Schmitz, R.; Walther, D.; Brinkmann, K.; Zaunig, H.

    2014-05-01T23:59:59.000Z

    We give a short overview of the DarkLight detector concept which is designed to search for a heavy photon A' with a mass in the range 10 MeV/c^2 < m(A') < 90 MeV/c^2 and which decays to lepton pairs. We describe the intended operating environment, the Jefferson Laboratory free electon laser, and a way to extend DarkLight's reach using A' --> invisible decays.

  18. A new spectrometer design for the x-ray spectroscopy of laser-produced plasmas with high (sub-ns) time resolution

    SciTech Connect (OSTI)

    Bitter, M., E-mail: bitter@pppl.gov; Hill, K. W.; Efthimion, P. C.; Delgado-Aparicio, L.; Pablant, N. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Lu, Jian [Department of Engineering, Chongqing University, Chongqing 400044 (China); Beiersdorfer, P.; Chen, Hui [Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-11-15T23:59:59.000Z

    This paper describes a new type of x-ray crystal spectrometer, which can be used in combination with gated x-ray detectors to obtain spectra from laser-produced plasmas with a high (sub-ns) time resolution. The spectrometer consists of a convex, spherically bent crystal, which images individual spectral lines as perfectly straight lines across multiple, sequentially gated, strip detectors. Since the Bragg-reflected rays are divergent, the distance between detector and crystal is arbitrary, so that this distance can be appropriately chosen to optimize the experimental arrangement with respect to the detector parameters. The spectrometer concept was verified in proof-of-principle experiments by imaging the L?{sub 1}- and L?{sub 2}-lines of tungsten, at 9.6735 and 9.96150 keV, from a micro-focus x-ray tube with a tungsten target onto a two-dimensional pixilated Pilatus detector, using a convex, spherically bent Si-422 crystal with a radius of curvature of 500 mm.

  19. A technique has been developed to accurately align a laser beam through a plasma channel by minimizing the

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    for radiation sources ­ ranging from coherent THz to free electron laser (FEL) x-ray sources and ThomsonAbstract A technique has been developed to accurately align a laser beam through a plasma channel by minimizing the shift in laser centroid and angle at the channel outptut. If only the shift in centroid

  20. Time-resolved x-ray imaging of high-power laser-irradiated under-dense silica aerogels and agar foams

    SciTech Connect (OSTI)

    Koch, J.A.; Estabrook, K.G.; Bauer, J.D. [and others

    1995-08-01T23:59:59.000Z

    This paper presents the results of experiments in which a high-power laser was used to irradiate low density (4 - 9 mg/cm{sup 3}) silica aerogel and agar foam targets. The laser-solid interaction and energy transport through the material were monitored with time-resolved imaging diagnostics, and the data show the production and propagation of an x-ray emission front in the plasma. The emission-front trajectory data are found to be in significant disagreement with detailed simulations, which predict a much more rapid heating of the cold material, and the data suggest that this discrepancy is not explainable by target inhomogeneities. Evidence suggests that energy transport into the cold material may be dominated by thermal conduction; however, no completely satisfactory explanation for the discrepancies is identified, and further experimental and theoretical research is necessary in order to resolve this important problem in laser-plasma interaction physics.

  1. Detailed analysis of hollow ions spectra from dense matter pumped by X-ray emission of relativistic laser plasma

    SciTech Connect (OSTI)

    Hansen, S. B., E-mail: sbhanse@sandia.gov, E-mail: anatolyf@hotmail.com [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Colgan, J.; Abdallah, J. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Faenov, A. Ya., E-mail: sbhanse@sandia.gov, E-mail: anatolyf@hotmail.com [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto 619-0215 (Japan); Pikuz, S. A.; Skobelev, I. Yu. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation)] [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Wagenaars, E.; Culfa, O.; Dance, R. J.; Tallents, G. J.; Rossall, A. K.; Woolsey, N. C. [York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom)] [York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom); Booth, N.; Lancaster, K. L. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)] [Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Evans, R. G. [Department of Physics, Imperial College, London SW7 2AZ (United Kingdom)] [Department of Physics, Imperial College, London SW7 2AZ (United Kingdom); Gray, R. J.; McKenna, P. [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 ONG (United Kingdom)] [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 ONG (United Kingdom); Kaempfer, T.; Schulze, K. S. [Helmholtzinstitut Jena, Jena D-07743 (Germany)] [Helmholtzinstitut Jena, Jena D-07743 (Germany); Uschmann, I. [Helmholtzinstitut Jena, Jena D-07743 (Germany) [Helmholtzinstitut Jena, Jena D-07743 (Germany); Institut für Optik und Quantenelektronic, Friedrich-Schiller-Universität Jena, Max-Wien Platz 1, Jena, D-07743 (Germany); and others

    2014-03-15T23:59:59.000Z

    X-ray emission from hollow ions offers new diagnostic opportunities for dense, strongly coupled plasma. We present extended modeling of the x-ray emission spectrum reported by Colgan et al. [Phys. Rev. Lett. 110, 125001 (2013)] based on two collisional-radiative codes: the hybrid-structure Spectroscopic Collisional-Radiative Atomic Model (SCRAM) and the mixed-unresolved transition arrays (MUTA) ATOMIC model. We show that both accuracy and completeness in the modeled energy level structure are critical for reliable diagnostics, investigate how emission changes with different treatments of ionization potential depression, and discuss two approaches to handling the extensive structure required for hollow-ion models with many multiply excited configurations.

  2. Transient x-ray diffraction and its application to materials science and x-ray optics

    SciTech Connect (OSTI)

    Hauer, A.A.; Kopp, R.; Cobble, J.; Kyrala, G.; Springer, R. [and others

    1997-12-01T23:59:59.000Z

    Time resolved x-ray diffraction and scattering have been applied to the measurement of a wide variety of physical phenomena from chemical reactions to shock wave physics. Interest in this method has heightened in recent years with the advent of versatile, high power, pulsed x-ray sources utilizing laser plasmas, electron beams and other methods. In this article, we will describe some of the fundamentals involved in time resolved x-ray diffraction, review some of the history of its development, and describe some recent progress in the field. In this article we will emphasize the use of laser-plasmas as the x-ray source for transient diffraction.

  3. X-Ray Data Booklet X-RAY DATA BOOKLET

    E-Print Network [OSTI]

    Meagher, Mary

    X-Ray Data Booklet X-RAY DATA BOOKLET Center for X-ray Optics and Advanced Light Source Lawrence Berkeley National Laboratory Introduction X-Ray Properties of Elements Electron Binding Energies X-Ray Levels of Few Electron Ions Now Available Order X-Ray Data Booklet http://xdb.lbl.gov/ (1 of 3) [2

  4. Femtosecond laser-induced modification of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy

    SciTech Connect (OSTI)

    Seuthe, T.; Eberstein, M. [Fraunhofer-Institut fuer Keramische Technologien und Systeme (IKTS), Winterbergstrasse 28, 01277 Dresden (Germany); Hoefner, M.; Eichler, H. J.; Grehn, M. [Technische Universitaet Berlin, Institut fuer Optik und Atomare Physik, Strasse des 17. Juni 135, 10623 Berlin (Germany); Reinhardt, F. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany); Tsai, W. J. [ITRI South, Industrial Technology Research Institute, 8 Gongyan Rd., Liu-jia District, Tainan City 73445, Taiwan (China); Bonse, J. [BAM Bundesanstalt fuer Materialforschung und - pruefung, Unter den Eichen 87, 12205 Berlin (Germany)

    2012-05-28T23:59:59.000Z

    The effects of femtosecond laser pulse irradiation on the glass structure of alkaline silicate glasses were investigated by x-ray absorption near edge structure spectroscopy using the beamline of the Physikalisch-Technische Bundesanstalt at the electron synchrotron BESSY II in Berlin (Germany) by analyzing the magnesium K-edge absorption peak for different laser fluences. The application of fluences above the material modification threshold (2.1 J/cm{sup 2}) leads to a characteristic shift of {approx}1.0 eV in the K-edge revealing a reduced ({approx}3%) mean magnesium bond length to the ligated oxygen ions (Mg-O) along with a reduced average coordination number of the Mg ions.

  5. X-ray Laser Used to Produce Movies of Atomic-scale Motion | U.S. DOE Office

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,BiosScience (SC)Supply andof SeeingX-Ray Light

  6. Compression of powerful x-ray pulses to attosecond durations by stimulated Raman backscattering in plasmas

    E-Print Network [OSTI]

    the possibility of using powerful x-ray sources for producing ultrahigh laser intensities. It might clarify how much the emerging mJ x-ray laser technologies 1 could compete with the emerging MJ optical laser the biggest of currently built lasers: Linac Coherent Light Source LCLS 1 in x-ray range and megajoule laser

  7. Time-resolved X-ray diffraction studies of laser-induced acoustic wave propagation in bilayer metallic thin crystals

    SciTech Connect (OSTI)

    Er, Ali Oguz [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, Kentucky 42101 (United States); Tang, Jau, E-mail: jautang@gate.sinica.edu.tw, E-mail: prentzepis@ece.tamu.edu [Research Center for Applied Sciences Academia Sinica, Taipei, Taiwan (China); Chen, Jie [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Rentzepis, Peter M., E-mail: jautang@gate.sinica.edu.tw, E-mail: prentzepis@ece.tamu.edu [Department of Electrical and Computer Engineering, Texas A and M University, College Station, Texas 77843 (United States)

    2014-09-07T23:59:59.000Z

    Phonon propagation across the interface of a Cu/Ag(111) bilayer and transient lattice disorder, induced by a femtosecond 267?nm pulse, in Ag(111) crystal have been measured by means of time resolved X-ray diffraction. A “blast” force due to thermal stress induced by suddenly heated electrons is formed within two picoseconds after excitation and its “blast wave” propagation through the interface and Ag (111) crystal was monitored by the shift and broadening of the rocking curve, I vs. ?, as a function of time after excitation. Lattice disorder, contraction and expansion as well as thermal strain formation and wave propagation have also been measured. The experimental data and mechanism proposed are supported by theoretical simulations.

  8. Chest x-Rays

    Broader source: Energy.gov [DOE]

    The B-reading is a special reading of a standard chest x-ray film performed by a physician certified by the National Institute for Occupational Safety and Health (NIOSH). The reading looks for changes on the chest x-ray that may indicate exposure and disease caused by agents such as asbestos or silica.

  9. X-ray binaries

    E-Print Network [OSTI]

    H. Schatz; K. E. Rehm

    2006-08-01T23:59:59.000Z

    We review the nuclear astrophysics aspects of accreting neutron stars in X-ray binaries. We summarize open astrophysical questions in light of recent observations and their relation to the underlying nuclear physics. Recent progress in the understanding of the nuclear physics, especially of X-ray bursts, is also discussed.

  10. THREE-DIMENSIONAL IMAGING OF NANOSCALE MATERIALS BY UISNG COHERENT X-RAYS

    SciTech Connect (OSTI)

    Jianwei Miao

    2011-04-18T23:59:59.000Z

    X-ray crystallography is currently the primary methodology used to determine the 3D structure of materials and macromolecules. However, many nanostructures, disordered materials, biomaterials, hybrid materials and biological specimens are noncrystalline and, hence, their structures are not accessible by X-ray crystallography. Probing these structures therefore requires the employment of different approaches. A very promising technique currently under rapid development is X-ray diffraction microscopy (or lensless imaging), in which the coherent X-ray diffraction pattern of a noncrystalline specimen is measured and then directly phased to obtain a high-resolution image. Through the DOE support over the past three years, we have applied X-ray diffraction microscopy to quantitative imaging of GaN quantum dot particles, and revealed the internal GaN-Ga2O3 core shell structure in three dimensions. By exploiting the abrupt change in the scattering cross-section near electronic resonances, we carried out the first experimental demonstration of resonant X-ray diffraction microscopy for element specific imaging. We performed nondestructive and quantitative imaging of buried Bi structures inside a Si crystal by directly phasing coherent X-ray diffraction patterns acquired below and above the Bi M5 edge. We have also applied X-ray diffraction microscopy to nondestructive imaging of mineral crystals inside biological composite materials - intramuscular fish bone - at the nanometer scale resolution. We identified mineral crystals in collagen fibrils at different stages of mineralization and proposed a dynamic mechanism to account for the nucleation and growth of mineral crystals in the collagen matrix. In addition, we have also discovered a novel 3D imaging modality, denoted ankylography, which allows for complete 3D structure determination without the necessity of sample titling or scanning. We showed that when the diffraction pattern of a finite object is sampled at a sufficiently fine scale on the Ewald sphere, the 3D structure of the object is determined by the 2D spherical pattern. We confirmed the theoretical analysis by performing 3D numerical reconstructions of a sodium silicate glass structure at 2 Ã? resolution from a 2D spherical diffraction pattern alone. As X-ray free electron lasers are under rapid development worldwide, ankylography may open up a new horizon to obtain the 3D structure of a non-crystalline specimen from a single pulse and allow time-resolved 3D structure determination of disordered materials.

  11. Elemental content of enamel and dentin after bleaching of teeth (a comparative study between laser-induced breakdown spectroscopy and x-ray photoelectron spectroscopy)

    SciTech Connect (OSTI)

    Imam, H. [National Institute of Laser Enhanced Sciences, NILES, Cairo University, Giza (Egypt)] [National Institute of Laser Enhanced Sciences, NILES, Cairo University, Giza (Egypt); Ahmed, Doaa [Department of Restorative Sciences, Faculty of Dentistry, Alexandria University, Alexandria (Egypt)] [Department of Restorative Sciences, Faculty of Dentistry, Alexandria University, Alexandria (Egypt); Eldakrouri, Ashraf [National Institute of Laser Enhanced Sciences, NILES, Cairo University, Giza (Egypt) [National Institute of Laser Enhanced Sciences, NILES, Cairo University, Giza (Egypt); Department of Optometry and Vision Science, College of Applied Medical Science, King Saud University, Riyadh (Saudi Arabia)

    2013-06-21T23:59:59.000Z

    The elemental content of the superficial and inner enamel as well as that of dentin was analyzed using laser-induced breakdown spectroscopy (LIBS) and x-ray photoelectron spectroscopy (XPS) of bleached and unbleached tooth specimens. It is thus clear from the spectral analysis using both the LIBS and XPS technique that elemental changes (though insignificant within the scopes of this study) of variable intensities do occur on the surface of the enamel and extend deeper to reach dentin. The results of the LIBS revealed a slight reduction in the calcium levels in the bleached compared to the control specimens in all the different bleaching groups and in both enamel and dentin. The good correlation found between the LIBS and XPS results demonstrates the possibility of LIBS technique for detection of minor loss in calcium and phosphorus in enamel and dentin.

  12. X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator

    SciTech Connect (OSTI)

    Kneip, S. [Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom); Center for Ultrafast Optical Science, University of Michigan, Ann Arbor 48109 (United States); McGuffey, C.; Dollar, F.; Chvykov, V.; Kalintchenko, G.; Krushelnick, K.; Maksimchuk, A.; Mangles, S. P. D.; Matsuoka, T.; Schumaker, W.; Thomas, A. G. R.; Yanovsky, V. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor 48109 (United States); Bloom, M. S.; Najmudin, Z.; Palmer, C. A. J.; Schreiber, J. [Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom)

    2011-08-29T23:59:59.000Z

    We show that x-rays from a recently demonstrated table top source of bright, ultrafast, coherent synchrotron radiation [Kneip et al., Nat. Phys. 6, 980 (2010)] can be applied to phase contrast imaging of biological specimens. Our scheme is based on focusing a high power short pulse laser in a tenuous gas jet, setting up a plasma wakefield accelerator that accelerates and wiggles electrons analogously to a conventional synchrotron, but on the centimeter rather than tens of meter scale. We use the scheme to record absorption and phase contrast images of a tetra fish, damselfly and yellow jacket, in particular highlighting the contrast enhancement achievable with the simple propagation technique of phase contrast imaging. Coherence and ultrafast pulse duration will allow for the study of various aspects of biomechanics.

  13. Modeling of ns and ps laser-induced soft X-ray sources using nitrogen gas puff target

    SciTech Connect (OSTI)

    Vrba, P., E-mail: vrba@ipp.cas.cz [Institute of Plasma Physics, Academy of Sciences, Za Slovankou 3, Prague 8 (Czech Republic); Vrbova, M. [Faculty of Biomedical Engineering, CTU in Prague, Sitna 3105, Kladno 2 (Czech Republic); Zakharov, S. V. [EPPRA sas, Villebon/Yvette (France); Zakharov, V. S. [EPPRA sas, Villebon/Yvette (France); KIAM RAS, Moscow (Russian Federation)

    2014-07-15T23:59:59.000Z

    Gas puff laser plasma is studied as a source of water window radiation with 2.88?nm wavelength, corresponding to quantum transition 1s{sup 2} ? 1s2p of helium-like nitrogen ions. Spatial development of plasma induced by Nd:YAG laser beam is simulated by 2D Radiation-Magneto-Hydro-Dynamic code Z*. The results for nitrogen gas layer (0.72?mm thickness, 1?bar pressure) and two different laser pulses (600 mJ/7?ns and 525 mJ/170 ps), corresponding to the experiments done in Laser Laboratory Gottingen are presented.

  14. High Average Power, 100 Hz Repetition Rate, Table-top EUV/Soft X-ray Lasers

    SciTech Connect (OSTI)

    Reagan, Brendon [Colorado State University, Fort Collins; Wernsing, Keith [Colorado State University, Fort Collins; Baumgarten, Cory [Colorado State University, Fort Collins; Durivage, Leon [Colorado State University, Fort Collins; Berrill, Mark A [ORNL; Furch, Federico [Colorado State University, Fort Collins; Curtis, Alden [Colorado State University, Fort Collins; Salsbury, Chase [Colorado State University, Fort Collins; Luther, Brad [Colorado State University, Fort Collins; Patel, Dinesh [Colorado State University, Fort Collins; Menoni, Carmen [Colorado State University, Fort Collins; Rocca, Jorge [Colorado State University, Fort Collins

    2013-01-01T23:59:59.000Z

    Compact =13.9 nm and =18.9 nm lasers with >0.1 mW average power at 100 Hz repetition rate driven by a diode-pumped, 1 J, CPA laser were demonstrated. Wavelength scaling to =10.9 nm will be discussed.

  15. Compton backscattered collimated x-ray source

    DOE Patents [OSTI]

    Ruth, R.D.; Huang, Z.

    1998-10-20T23:59:59.000Z

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  16. Compton backscattered collmated X-ray source

    DOE Patents [OSTI]

    Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

    2000-01-01T23:59:59.000Z

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  17. Compton backscattered collimated x-ray source

    DOE Patents [OSTI]

    Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

    1998-01-01T23:59:59.000Z

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  18. X-ray absorption spectroscopy

    E-Print Network [OSTI]

    Yano, Junko; Yachandra, Vittal K.

    2009-01-01T23:59:59.000Z

    009-9473-8 REVIEW X-ray absorption spectroscopy Junko Yano Æand application of X-ray absorption spectroscopy, bothX-ray absorption near-edge structure (XANES) and extended X-

  19. X-ray Absorption Spectroscopy

    E-Print Network [OSTI]

    Yano, Junko

    2010-01-01T23:59:59.000Z

    type: Review X-ray Absorption Spectroscopy Junko Yano andPhotosystem II; XAS, X-ray absorption spectroscopy; EXAFS,X-ray absorption fine structure; EPR, electron paramagnetic

  20. X-ray spectroscopy of buried layer foils irradiated with an ultra high intensity short pulse laser

    E-Print Network [OSTI]

    Chen, Sophia Nan

    2009-01-01T23:59:59.000Z

    Short Pulse Laser by Sophia Nan Chen Doctor of Philosophy inEngineering Physics) by Sophia Nan Chen Committee in charge:Tynan The dissertation of Sophia Nan Chen is approved, and

  1. A grazing incidence x-ray streak camera for ultrafast, single-shot measurements

    E-Print Network [OSTI]

    Feng, Jun

    2010-01-01T23:59:59.000Z

    provided by UV pulses derived from an ultrafast laser. Dueultrafast dynamics using a single synchrotron x-ray pulse.

  2. X-ray induced optical reflectivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Durbin, Stephen M.

    2012-01-01T23:59:59.000Z

    The change in optical reflectivity induced by intense x-ray pulses can now be used to study ultrafast many body responses in solids in the femtosecond time domain. X-ray absorption creates photoelectrons and core level holes subsequently filled by Auger or fluorescence processes, and these excitations ultimately add conduction and valence band carriers that perturb optical reflectivity.Optical absorption associated with band filling and band gap narrowing is shown to explain the basic features found in recent measurements on an insulator (silicon nitride, Si3N4), a semiconductor(gallium arsenide,GaAs), and a metal (gold,Au), obtained with ?100 fs x-ray pulses at 500-2000 eV and probed with 800 nm laser pulses. In particular GaAs exhibits an abrupt drop in reflectivity, persisting only for a time comparable to the x-ray excitation pulse duration, consistent with prompt band gap narrowing.

  3. HARMONIC CASCADE FEL DESIGNS FOR LUX, A FACILTY FOR ULTRAFAST X-RAY SCIENCE

    E-Print Network [OSTI]

    Wurtele, Jonathan

    -electron laser (FEL) beamlines which use the har- monic cascade approach to produce coherent XUV & soft X-ray for an integrated system of ultrafast x-ray techniques and lasers, using laser-seeded harmonic cascade FEL's, rfHARMONIC CASCADE FEL DESIGNS FOR LUX, A FACILTY FOR ULTRAFAST X-RAY SCIENCE J. Corlett, W. Fawley

  4. Observations of laser induced magnetization dynamics in Co/Pd multilayers with coherent x-ray scattering

    E-Print Network [OSTI]

    ,12 Using a 5.12 MHz repetition rate Ti:Sapphire laser phase locked to the revolution clock (1.28 MHz from a multi-domain ground state, the magnetization is uniformly reduced after excitation by an intense of Physics. [doi:10.1063/1.3670305] The magnetization of excited states define the operation processes

  5. High resolution soft x-ray spectroscopy of low Z K-shell emission from laser-produced plasmas

    SciTech Connect (OSTI)

    Dunn, J; Magee, E W; Shepherd, R; Chen, H; Hansen, S B; Moon, S J; Brown, G V; Gu, M; Beiersdorfer, P; Purvis, M A

    2008-05-21T23:59:59.000Z

    A large radius, R = 44.3 m, High Resolution Grating Spectrometer (HRGS) with 2400 line/mm variable line spacing has been designed for laser-produced plasma experiments conducted at the Lawrence Livermore National Laboratory Jupiter Laser Facility. The instrument has been run with a low-noise, charge-coupled device detector to record high signal-to-noise spectra in the 10-50 {angstrom} wavelength range. The instrument can be run with a 10-20 {micro}m wide slit to achieve the best spectral resolving power, approaching 1000 and similar to crystal spectrometers at 12-20 {angstrom}, or in slitless operation with a small symmetrical emission source. We describe preliminary spectra emitted from various H-like and He-like low Z ion plasmas heated by 100-500 ps (FWHM), 527 nm wavelength laser pulses. This instrument can be developed as a useful spectroscopy platform relevant to laboratory-based astrophysics as well as high energy density plasma studies.

  6. X-ray beam finder

    DOE Patents [OSTI]

    Gilbert, H.W.

    1983-06-16T23:59:59.000Z

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  7. Photonic laser-driven accelerator for GALAXIE

    SciTech Connect (OSTI)

    Naranjo, B.; Ho, M.; Hoang, P.; Putterman, S.; Valloni, A.; Rosenzweig, J. B. [UCLA Dept. of Physics and Astronomy Los Angeles, CA 90095-1547 (United States)

    2012-12-21T23:59:59.000Z

    We report on the design and development of an all-dielectric laser-driven accelerator to be used in the GALAXIE (GV-per-meter Acce Lerator And X-ray-source Integrated Experiment) project's compact free-electron laser. The approach of our working design is to construct eigenmodes, borrowing from the field of photonics, which yield the appropriate, highly demanding dynamics in a high-field, short wavelength accelerator. Topics discussed include transverse focusing, power coupling, bunching, and fabrication.

  8. Absorbed XFEL Dose in the Components of the LCLS X-Ray Optics

    SciTech Connect (OSTI)

    Hau-Riege, Stefan

    2010-12-03T23:59:59.000Z

    There is great concern that the short, intense XFEL pulse of the LCLS will damage the optics that will be placed into the beam. We have analyzed the extent of the problem by considering the anticipated materials and position of the optical components in the beam path, calculated the absorbed dose as a function of photon energy, and compared these doses with the expected doses required (i) to observe rapid degradation due to thermal fatigue, (ii) to reach the melting temperature, or (iii) to actually melt the material. We list the materials that are anticipated to be placed into the Linac Coherent Light Source (LCLS) x-ray free electron laser (XFEL) beam line, their positions, and the absorbed dose, and compare this dose with anticipated damage thresholds.

  9. X-rays only when you want them: Report on Pseudo-single-bunch...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Room 108A Speaker: David Robin, Lawrence Berkeley National Laboratory Program Description Laser pump - x-ray probe experiments require control over the x-ray pulse pattern and...

  10. E-Print Network 3.0 - alpha tagged x-ray Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ion -Cu K-alpha imaging system -X-ray... and for the optimisation of high power laser-driven ion and X-ray sources. ... Source: Strathclyde, University of - Department...

  11. Time-resolved x-ray diagnostics

    SciTech Connect (OSTI)

    Lyons, P.B.

    1981-01-01T23:59:59.000Z

    Techniques for time-resolved x-ray diagnostics will be reviewed with emphasis on systems utilizing x-ray diodes or scintillators. System design concerns for high-bandwidth (> 1 GHz) diagnostics will be emphasized. The limitations of a coaxial cable system and a technique for equalizing to improve bandwidth of such a system will be reviewed. Characteristics of new multi-GHz amplifiers will be presented. An example of a complete operational system on the Los Alamos Helios laser will be presented which has a bandwidth near 3 GHz over 38 m of coax. The system includes the cable, an amplifier, an oscilloscope, and a digital camera readout.

  12. Spatiotemporal focusing dynamics in plasmas at X-ray wavelength

    SciTech Connect (OSTI)

    Sharma, A., E-mail: a-physics2001@yahoo.com; Tibai, Z. [Institute of Physics, University of Pecs, Pecs–7624 (Hungary)] [Institute of Physics, University of Pecs, Pecs–7624 (Hungary); Hebling, J. [Institute of Physics, University of Pecs, Pecs–7624 (Hungary) [Institute of Physics, University of Pecs, Pecs–7624 (Hungary); Szentagothai Research Centre, University of Pecs, Pecs-7624 (Hungary); Mishra, S. K. [Institute for Plasma Research, Gandhinagar (India)] [Institute for Plasma Research, Gandhinagar (India)

    2014-03-15T23:59:59.000Z

    Using a finite curvature beam, we investigate here the spatiotemporal focusing dynamics of a laser pulse in plasmas at X-ray wavelength. We trace the dependence of curvature parameter on the focusing of laser pulse and recognize that the self-focusing in plasma is more intense for the X-ray laser pulse with curved wavefront than with flat wavefront. The simulation results demonstrate that spatiotemporal focusing dynamics in plasmas can be controlled with the appropriate choice of beam-plasma parameters to explore the high intensity effects in X-ray regime.

  13. Soft x-ray reduction camera for submicron lithography

    DOE Patents [OSTI]

    Hawryluk, Andrew M. (2708 Rembrandt Pl., Modesto, CA 95356); Seppala, Lynn G. (7911 Mines Rd., Livermore, CA 94550)

    1991-01-01T23:59:59.000Z

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm.sup.2. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics.

  14. Soft x-ray reduction camera for submicron lithography

    DOE Patents [OSTI]

    Hawryluk, A.M.; Seppala, L.G.

    1991-03-26T23:59:59.000Z

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm[sup 2]. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics. 9 figures.

  15. Tunable X-ray source

    DOE Patents [OSTI]

    Boyce, James R. (Williamsburg, VA)

    2011-02-08T23:59:59.000Z

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  16. Laser Phase Errors in Seeded FELs

    SciTech Connect (OSTI)

    Ratner, D.; Fry, A.; Stupakov, G.; White, W.; /SLAC

    2012-03-28T23:59:59.000Z

    Harmonic seeding of free electron lasers has attracted significant attention from the promise of transform-limited pulses in the soft X-ray region. Harmonic multiplication schemes extend seeding to shorter wavelengths, but also amplify the spectral phase errors of the initial seed laser, and may degrade the pulse quality. In this paper we consider the effect of seed laser phase errors in high gain harmonic generation and echo-enabled harmonic generation. We use simulations to confirm analytical results for the case of linearly chirped seed lasers, and extend the results for arbitrary seed laser envelope and phase.

  17. X-ray lithography source

    DOE Patents [OSTI]

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31T23:59:59.000Z

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  18. X-ray lithography source

    DOE Patents [OSTI]

    Piestrup, Melvin A. (Woodside, CA); Boyers, David G. (Mountain View, CA); Pincus, Cary (Sunnyvale, CA)

    1991-01-01T23:59:59.000Z

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  19. X-Ray Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL Home SRNL main campusMore than 20X-Ray Diagnostics

  20. Advances in X-Ray Chemical Analysis, Japan, 45 (2014) ISSN 0911-7806 Color Center in NaCl

    E-Print Network [OSTI]

    Jun, Kawai

    . In addition, the color of NaCl changes to pale purple when irradiated with 405 nm laser after X-ray irradiation and to light brown when irradiated with 532 nm laser after X-ray irradiation. The colorCl, Sodium chloride, X-ray irradiation, Laser irradiation, White fluorescent lamp irradiation X X NaCl X X X

  1. Miniature x-ray source

    DOE Patents [OSTI]

    Trebes, James E. (Livermore, CA); Stone, Gary F. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA); Chornenky, Victor I. (Minnetonka, MN)

    2002-01-01T23:59:59.000Z

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  2. X-ray fluorescence mapping

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biololgical cells, over the measurement of impurities in solar cells, to the rare earth content of geological materials. A somewhat 'typical' layout for a X-ray fluorescence...

  3. Human genome sequencing with direct x-ray holographic imaging

    SciTech Connect (OSTI)

    Rhodes, C.K.

    1993-06-08T23:59:59.000Z

    Direct holographic imaging of biological materials is widely applicable to the study of the structure, properties and action of genetic material. This particular application involves the sequencing of the human genome where prospective genomic imaging technology is composed of three subtechnologies, name an x-ray holographic camera, suitable chemistry and enzymology for the preparation of tagged DNA samples, and the illuminator in the form of an x-ray laser. We report appropriate x-ray camera, embodied by the instrument developed by MCR, is available and that suitable chemical and enzymatic procedures exist for the preparation of the necessary tagged DNA strands. Concerning the future development of the x-ray illuminator. We find that a practical small scale x-ray light source is indeed feasible. This outcome requires the use of unconventional physical processes in order to achieve the necessary power-compression in the amplifying medium. The understanding of these new physical mechanisms is developing rapidly. Importantly, although the x-ray source does not currently exist, the understanding of these new physical mechanisms is developing rapidly and the research has established the basic scaling laws that will determine the properties of the x-ray illuminator. When this x-ray source becomes available, an extremely rapid and cost effective instrument for 3-D imaging of biological materials can be applied to a wide range of biological structural assays, including the base-pair sequencing of the human genome and many questions regarding its higher levels of organization.

  4. X-ray shearing interferometer

    DOE Patents [OSTI]

    Koch, Jeffrey A. (Livermore, CA)

    2003-07-08T23:59:59.000Z

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  5. Quantitative x-ray imager (abstract)

    SciTech Connect (OSTI)

    Evans, Scott C.; Archuleta, Tom N.; Oertel, John A.; Walsh, Peter J.

    2001-01-01T23:59:59.000Z

    We report on development of a quantitative x-ray imager (QXI) for the national Inertial Confinement Fusion Program. Included in this development is a study of photocathode response as a function of photon energy, 2--17.5 keV, which is related to diagnostic development on the National Ignition Facility (NIF). The QXI is defined as being a quantative imager due to the repeated characterization. This instrument is systematically checked out, electronically as well as its photocathode x-ray response, both on a direct current and pulsed x-ray sources, before and after its use on a shot campaign. The QXI is a gated x-ray imager1 used for a variety of experiments conducted in the Inertial Confinement Fusion and Radiation Physics Program. The camera was assembled in Los Alamos and has been under development since 1997 and has now become the workhorse framing camera by the program. The electronics were built by Grant Applied Physics of San Fransisco, CA.2 The QXI has been used at the LANL Trident, LLNL Nova, and University of Rochester Laboratory OMEGA laser facilities. The camera consists of a grated microchannel plate (MCP), a phosphor coated fiberoptic faceplate coupled to film for data readout, along with high speed electronic pulsers to drive the x-ray detector. The QXI has both a two-strip and a four-strip detection head and has the ability to individually bias the gain of each of the strips. The timing of the QXI was done at the Trident short pulse laboratory, using 211 nm light. Single strip jitter was looked at as well and determined to be <25 ps. Flatfielding of the photocathode across the MCP was done with the Trident main laser with 150 J on a gold disk with a 1 ns. Spatial resolution was determined to be <5 {mu}m by using the same laser conditions as before and a backlit 1000 lp/in. grid. The QXI has been used on cylindrical implosion work at the Nova Laser Facility, and on direct-drive cylinder mix and indirect-drive high convergence implosion experiments at OMEGA. Its two-strip module has provided the capability to look at point backlighters, as part of technique development for experiments on the NIF. Its next use will be in March 2000 with its off axis viewer nose at Omega, providing a perpendicular view of Rayleigh--Taylor spike dissipation.

  6. Dilation x-ray imager a new/faster gated x-ray imager for the NIF

    SciTech Connect (OSTI)

    Nagel, S. R.; Bell, P. M.; Bradley, D. K.; Ayers, M. J.; Barrios, M. A.; Felker, B.; Smith, R. F.; Collins, G. W.; Jones, O. S.; Piston, K.; Raman, K. S. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Hilsabeck, T. J.; Kilkenny, J. D.; Chung, T.; Sammuli, B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Hares, J. D.; Dymoke-Bradshaw, A. K. L. [Kentech Instruments Ltd., Wallingford, Oxfordshire OX10 (United Kingdom)

    2012-10-15T23:59:59.000Z

    As the yield on implosion shots increases it is expected that the peak x-ray emission reduces to a duration with a FWHM as short as 20 ps for {approx}7 Multiplication-Sign 10{sup 18} neutron yield. However, the temporal resolution of currently used gated x-ray imagers on the NIF is 40-100 ps. We discuss the benefits of the higher temporal resolution for the NIF and present performance measurements for dilation x-ray imager, which utilizes pulse-dilation technology [T. J. Hilsabeck et al., Rev. Sci. Instrum. 81, 10E317 (2010)] to achieve x-ray imaging with temporal gate times below 10 ps. The measurements were conducted using the COMET laser, which is part of the Jupiter Laser Facility at the Lawrence Livermore National Laboratory.

  7. Science Driven Requirements for Seeded Soft X-ray Free Electron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wednesday, October 1, 2014 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Fulvio Parmigiani (Elettra Sincrotrone Trieste) Program Description Starting from the...

  8. Time-resolved protein nanocrystallography using an X-ray free-electron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScienceThe43068G.Time-Resolved Study

  9. X-ray Stacking 2008-Apr-22 Astrostats X-ray Stacking

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    X-ray Stacking 2008-Apr-22 Astrostats X-ray Stacking Tom Aldcroft SAO/CXC #12;X-ray Stacking 2008 analysis for a sample Stacking ­ mean properties of sample Chandra X-ray data (faint point sources) are photon-limited with low background => stacking in X-rays is very effective #12;X-ray Stacking 2008-Apr-22

  10. Miniature x-ray source

    DOE Patents [OSTI]

    Trebes, James E. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA)

    2000-01-01T23:59:59.000Z

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  11. Investigation of the hard x-ray background in backlit pinhole imagers

    SciTech Connect (OSTI)

    Fein, J. R., E-mail: jrfein@umich.edu; Holloway, J. P. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2143 (United States); Peebles, J. L. [Center for Energy Research, University of California, San Diego, La Jolla, California 92093 (United States); Keiter, P. A.; Klein, S. R.; Kuranz, C. C.; Manuel, M. J.-E.; Drake, R. P. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109-2143 (United States)

    2014-11-15T23:59:59.000Z

    Hard x-rays from laser-produced hot electrons (>10 keV) in backlit pinhole imagers can give rise to a background signal that decreases signal dynamic range in radiographs. Consequently, significant uncertainties are introduced to the measured optical depth of imaged plasmas. Past experiments have demonstrated that hard x-rays are produced when hot electrons interact with the high-Z pinhole substrate used to collimate the softer He-? x-ray source. Results are presented from recent experiments performed on the OMEGA-60 laser to further study the production of hard x-rays in the pinhole substrate and how these x-rays contribute to the background signal in radiographs. Radiographic image plates measured hard x-rays from pinhole imagers with Mo, Sn, and Ta pinhole substrates. The variation in background signal between pinhole substrates provides evidence that much of this background comes from x-rays produced in the pinhole substrate itself. A Monte Carlo electron transport code was used to model x-ray production from hot electrons interacting in the pinhole substrate, as well as to model measurements of x-rays from the irradiated side of the targets, recorded by a bremsstrahlung x-ray spectrometer. Inconsistencies in inferred hot electron distributions between the different pinhole substrate materials demonstrate that additional sources of hot electrons beyond those modeled may produce hard x-rays in the pinhole substrate.

  12. National Ignition Facility core x-ray streak camera

    SciTech Connect (OSTI)

    Kimbrough, J. R.; Bell, P. M.; Christianson, G. B.; Lee, F. D.; Kalantar, D. H.; Perry, T. S.; Sewall, N. R.; Wootton, A. J.

    2001-01-01T23:59:59.000Z

    The National Ignition Facility (NIF) core x-ray streak camera will be used for laser performance verification experiments as well as a wide range of physics experiments in the areas of high-energy-density science, inertial confinement fusion, and basic science. The x-ray streak camera system is being designed to record time-dependent x-ray emission from NIF targets using an interchangeable family of snouts for measurements such as one-dimensional (1D) spatial imaging or spectroscopy. the NIF core x-ray streak camera will consist of an x-ray-sensitive photocathode that detects x rays with 1D spatial resolution coupled to an electron streak tube to detect a continuous time history of the x rays incident on the photocathode over selected time periods. A charge-coupled-device (CCD) readout will record the signal from the streak tube. The streak tube, CCD, and associated electronics will reside in an electromagnetic interference, and electromagnetic pulse protected, hermetically sealed, temperature-controlled box whose internal pressure is approximately 1 atm. The streak tube itself will penetrate through the wall of the box into the target chamber vacuum. We are working with a goal of a spatial resolution of 15 lp/mm with 50% contrast transfer function at the photocathode and adjustment sweep intervals of 1--50 ns. The camera spectral sensitivity extends from soft x rays to 20 keV x rays, with varying quantum efficiency based on photocathode selection. The system will have remote control, monitoring, and Ethernet communications through an embedded controller. The core streak camera will be compatible with the instrument manipulators at the OMEGA (University of Rochester) and NIF facilities.

  13. Hole Coupling Resonator for Free Electron Lasers

    E-Print Network [OSTI]

    Xie, M.

    2011-01-01T23:59:59.000Z

    3. Total round-trip power loss, coupling efficiency and themicron. Total round-trip power loss and coupling efficiencythe total fractional power loss per round trip, the hole

  14. Axial interaction free-electron laser

    DOE Patents [OSTI]

    Carlsten, B.E.

    1997-09-02T23:59:59.000Z

    Electron orbits from a helical axial wiggler in an axial guide field are absolutely unstable as power is extracted from the particles. For off-axis beams an axial FEL mechanism exists when the axial electric field in a TM mode is wiggled to interact with the axial velocity of the electrons that form the beam. The interaction strength is comparable to that for helical FELs and is insensitive to beam orbit errors. The orbits for this mechanism are extremely stable in the absence of space charge and lead to high extraction efficiencies without particle phasing incoherence or interception. This interaction mechanism is suitable for use with intense annular electron beams for high power generation at microwave frequencies. 5 figs.

  15. Free-Electron Laser | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI HomeTours, ProgramsCleanFranklin Research

  16. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs spaceLaser The SRSSPECIALLenslessX-Ray Imaging in

  17. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs spaceLaser The SRSSPECIALLenslessX-Ray Imaging

  18. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs spaceLaser The SRSSPECIALLenslessX-Ray

  19. 7 Å Resolution in Protein 2-Dimentional-Crystal X-Ray Diffraction at Linac Coherent Light Source

    SciTech Connect (OSTI)

    Pedrini, Bill; Tsai, Ching-Ju; Capitani, Guido; Padeste, Celestino; Hunter, Mark; Zatsepin, Nadia A.; Barty, Anton; Benner, Henry; Boutet, Sebastien; Feld, Geoffrey K.; Hau-Riege, Stefan; Kirian, Rick; Kupitz, Christopher; Messerschmidt, Marc; Ogren, John I.; Pardini, Tommaso; Segelke, Brent; Williams, Garth J.; Spence , John C.; Abela, Rafael; Coleman, Matthew A.; Evans, James E.; Schertler, Gebhard; Frank, Matthias; Li, Xiao-Dan

    2014-06-09T23:59:59.000Z

    Membrane proteins arranged as two-dimensional (2D) crystals in the lipid en- vironment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. X-ray diffraction from individual 2D crystals did not represent a suitable investigation tool because of radiation damage. The recent availability of ultrashort pulses from X-ray Free Electron Lasers (X-FELs) has now provided a mean to outrun the damage. Here we report on measurements performed at the LCLS X-FEL on bacteriorhodopsin 2D crystals mounted on a solid support and kept at room temperature. By merg- ing data from about a dozen of single crystal diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 °A, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase of resolution. The presented results pave the way to further X-FEL studies on 2D crystals, which may include pump-probe experiments at subpicosecond time resolution.

  20. The NIF x-ray spectrometer calibration campaign at Omega

    SciTech Connect (OSTI)

    Pérez, F.; Kemp, G. E.; Barrios, M. A.; Pino, J.; Scott, H.; Ayers, S.; Chen, H.; Emig, J.; Colvin, J. D.; Fournier, K. B., E-mail: fournier2@llnl.gov [Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, California 94551 (United States); Regan, S. P.; Bedzyk, M.; Shoup, M. J.; Agliata, A.; Yaakobi, B.; Marshall, F. J.; Hamilton, R. A. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Jaquez, J.; Farrell, M.; Nikroo, A. [General Atomics, P.O. Box 85608, San Diego, California 92186 (United States)

    2014-11-15T23:59:59.000Z

    The calibration campaign of the National Ignition Facility X-ray Spectrometer (NXS) was carried out at the OMEGA laser facility. Spherically symmetric, laser-driven, millimeter-scale x-ray sources of K-shell and L-shell emission from various mid-Z elements were designed for the 2–18 keV energy range of the NXS. The absolute spectral brightness was measured by two calibrated spectrometers. We compare the measured performance of the target design to radiation hydrodynamics simulations.

  1. X-ray Emission from Massive Stars

    E-Print Network [OSTI]

    Cohen, David

    X-ray Emission from Massive Stars David Cohen Department of Physics and Astronomy Swarthmore be related to the production of X-rays on massive stars. If so, massive stars' X-rays are much different than those found our own Sun and other cooler stars like the Sun that produce X-rays via magnetic activity

  2. X-ray Emission from Massive Stars

    E-Print Network [OSTI]

    Cohen, David

    X-ray Emission from Massive Stars David Cohen Department of Physics and Astronomy Swarthmore #12;What is the mechanism by which massive stars produce x-rays? New results from the Chandra X-ray Observatory ­ high-resolution x-ray spectroscopy: measuring Doppler broadening in emission lines Testing

  3. Signal averaging x-ray streak camera with picosecond jitter A. Maksimchuk, M. Kim, J. Workman, G. Korn,a)

    E-Print Network [OSTI]

    Umstadter, Donald

    pulse laser-produced plasma. Accumulation of the streaked x-ray signals significantly improvedSignal averaging x-ray streak camera with picosecond jitter A. Maksimchuk, M. Kim, J. Workman, G picosecond x-ray streak camera using a dc-biased photoconductive switch as a generator of a high-voltage ramp

  4. X-ray diffraction experiments with femtosecond time D. VON DER LINDE and K. SOKOLOWSKI-TINTEN

    E-Print Network [OSTI]

    von der Linde, D.

    X-ray diffraction experiments with femtosecond time resolution D. VON DER LINDE and K. SOKOLOWSKI-essen.de (Received 4 March 2002) Abstract. Intense ultrashort laser pulses enable the generation of subpico- second X-ray pulses in the multi-kilovolt range of photon energies. These X- ray pulses have opened the door

  5. Compact x-ray source and panel

    DOE Patents [OSTI]

    Sampayon, Stephen E. (Manteca, CA)

    2008-02-12T23:59:59.000Z

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  6. Imaging X-ray Thomson Scattering Spectrometer Design and Demonstration

    SciTech Connect (OSTI)

    Gamboa, E.J. [University of Michigan; Huntington, C.M. [University of Michigan; Trantham, M.R. [University of Michigan; Keiter, P.A [University of Michigan; Drake, R.P. [University of Michigan; Montgomery, David [Los Alamos National Laboratory; Benage, John F. [Los Alamos National Laboratory; Letzring, Samuel A. [Los Alamos National Laboratory

    2012-05-04T23:59:59.000Z

    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally-curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

  7. Automatic detection of bone fragments in poultry using multi-energy x-rays

    DOE Patents [OSTI]

    Gleason, Shaun S. (Knoxville, TN); Paulus, Michael J. (Knoxville, TN); Mullens, James A. (Knoxville, TN)

    2002-04-09T23:59:59.000Z

    At least two linear arrays of x-ray detectors are placed below a conveyor belt in a poultry processing plant. Multiple-energy x-ray sources illuminate the poultry and are detected by the detectors. Laser profilometry is used to measure the poultry thickness as the x-ray data is acquired. The detector readout is processed in real time to detect the presence of small highly attenuating fragments in the poultry, i.e., bone, metal, and cartilage.

  8. Focused X-ray source

    DOE Patents [OSTI]

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

    1990-08-21T23:59:59.000Z

    Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

  9. X-Ray Diffraction on NIF

    SciTech Connect (OSTI)

    Eggert, J H; Wark, J

    2012-02-15T23:59:59.000Z

    The National Ignition Facility (NIF) is currently a 192 beam, 1.6 MJ laser. NIF Ramp-Compression Experiments have already made the relevant exo-planet pressure range from 1 to 50 Mbar accessible. We Proposed to Study Carbon Phases by X-Ray Diffraction on NIF. Just a few years ago, ultra-high pressure phase diagrams for materials were very 'simple'. New experiments and theories point out surprising and decidedly complex behavior at the highest pressures considered. High pressures phases of aluminum are also predicted to be complex. Recent metadynamics survey of carbon proposed a dynamic pathway among multiple phases. We need to develop diagnostics and techniques to explore this new regime of highly compressed matter science. X-Ray Diffraction - Understand the phase diagram/EOS/strength/texture of materials to 10's of Mbar. Strategy and physics goals: (1) Powder diffraction; (2) Begin with diamond; (3) Continue with metals etc.; (4) Explore phase diagrams; (5) Develop liquid diffraction; and (6) Reduce background/improve resolution.

  10. Microgap x-ray detector

    DOE Patents [OSTI]

    Wuest, C.R.; Bionta, R.M.; Ables, E.

    1994-05-03T23:59:59.000Z

    An x-ray detector is disclosed which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope. 3 figures.

  11. Microgap x-ray detector

    DOE Patents [OSTI]

    Wuest, Craig R. (Danville, CA); Bionta, Richard M. (Livermore, CA); Ables, Elden (Livermore, CA)

    1994-01-01T23:59:59.000Z

    An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

  12. Spectral analysis of X-ray binaries

    E-Print Network [OSTI]

    Fridriksson, Joel Karl

    2011-01-01T23:59:59.000Z

    In this thesis, I present work from three separate research projects associated with observations of X-ray binaries. Two of those revolve around spectral characteristics of neutron star low-mass X-ray binaries (NS-LMXBs), ...

  13. Producing X-rays at the APS

    ScienceCinema (OSTI)

    None

    2013-04-19T23:59:59.000Z

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

  14. Chandra X-ray Observatory Center

    E-Print Network [OSTI]

    Chandra X-ray Observatory Center Harvard-Smithsonian Center for Astrophysics 60 Garden St in hot gas about 250 million light years from Earth. (Credit: X-ray: NASA/CXC/SAO/E.Bulbul, et al-Newton has revealed a mysterious X-ray signal in the data. This signal is represented in the circled data

  15. X-Ray Absorption Spectroscopy of Metallobiomolecules

    E-Print Network [OSTI]

    Scott, Robert A.

    2/9/07 1 X-Ray Absorption Spectroscopy of Metallobiomolecules The Outskirts of Structural Biology 9, 07] This is a tutorial about the use of X-ray Absorption Spectroscopy (XAS) in biology, RG; Eisenberger, P; Kincaid, BM "X-ray Absorption Spectroscopy of Biological Molecules" Annu. Rev

  16. Chandra X-ray Observatory Center

    E-Print Network [OSTI]

    Chandra X-ray Observatory Center Harvard-Smithsonian Center for Astrophysics 60 Garden St million light years from Earth. (Credit: X-ray: NASA/CXC/Wesleyan Univ./R.Kilgard, et al; Optical: NASA with optical data from the Hubble Space Telescope (red, green, and blue). The X-ray data reveal hundreds

  17. Cryotomography x-ray microscopy state

    DOE Patents [OSTI]

    Le Gros, Mark (Berkeley, CA); Larabell, Carolyn A. (Berkeley, CA)

    2010-10-26T23:59:59.000Z

    An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

  18. X-ray Spectroscopy of Cool Stars

    E-Print Network [OSTI]

    M. Guedel

    2006-09-11T23:59:59.000Z

    High-resolution X-ray spectroscopy has addressed not only various topics in coronal physics of stars, but has also uncovered important features relevant for our understanding of stellar evolution and the stellar environment. I summarize recent progress in coronal X-ray spectroscopy and in particular also discuss new results from studies of X-rays from pre-main sequence stars.

  19. X-Ray Physics Evan Berkowitz

    E-Print Network [OSTI]

    X-Ray Physics Evan Berkowitz Junior, MIT Department of Physics (Dated: October 25, 2006) We measure a variety of phenomena related to X-Ray absorption and production. We present data which conforms within, as are 22 Na electron-positron annhilation lines. The importance of understanding x-rays is demonstrated

  20. Chandra X-ray Observatory Center

    E-Print Network [OSTI]

    Chandra X-ray Observatory Center Harvard-Smithsonian Center for Astrophysics 60 Garden St 200 million light years from Earth. (Credit: X-ray: NASA/CXC/UAH/M.Sun et al; Optical: NASA, ESA, & the Hubble Heritage Team (STScI/AURA) Caption: This composite image from the Chandra X-ray Observatory (blue

  1. X-Ray Absorption Spectroscopy of Metallobiomolecules

    E-Print Network [OSTI]

    Scott, Robert A.

    9/6/09 1 X-Ray Absorption Spectroscopy of Metallobiomolecules The Outskirts of Structural Biology 6, 09] This is a tutorial about the use of X-ray Absorption Spectroscopy (XAS) in biology, RG; Eisenberger, P; Kincaid, BM "X-ray Absorption Spectroscopy of Biological Molecules" Annu. Rev

  2. Chandra X-ray Observatory Center

    E-Print Network [OSTI]

    Chandra X-ray Observatory Center Harvard-Smithsonian Center for Astrophysics 60 Garden St. Cambridge, MA 02138 USA http://chandra.harvard.edu Four Supernova Remnants: NASA's Chandra X-ray Observatory's Chandra X-ray Observatory, four newly processed images of supernova remnants dramatically illustrate

  3. X-ray microscope assemblies. Final report and metrology report

    SciTech Connect (OSTI)

    Zehnpfennig, T.F.

    1981-04-13T23:59:59.000Z

    This is the Final Report and Metrology Report prepared under Lawrence Livermore Laboratory Subcontract 9936205, X-ray Microscope Assemblies. The purpose of this program was to design, fabricate, and perform detailed metrology on an axisymmetric grazing-incidence x-ray microscope (XRMS) to be used as a diagnostic instrument in the Lawrence Livermore Laser Fusion Program. The optical configuration chosen for this device consists of two internally polished surfaces of revolution: an hyperboloid facing the object; and a confocal, co-axial elliposid facing the image. This arrangement is known as the Wolter Type-I configuration. The grazing angle of reflection for both surfaces is approximately 1/sup 0/. The general optical performance goals under this program were to achieve a spatial resolution in the object plane in the soft x-ray region of approximately 1 micron, and to achieve an effective solid collecting angle which is an appreciable fraction of the geometric solid collecting angle.

  4. X-ray spectroscopy of low-mass X-ray binaries

    E-Print Network [OSTI]

    Juett, Adrienne Marie, 1976-

    2004-01-01T23:59:59.000Z

    I present high-resolution X-ray grating spectroscopy of neutron stars in low-mass X-ray binaries (LMXBs) using instruments onboard the Chandra X-ray Observatory and the X-ray Multi-Mirror Mission (XMM-Newton). The first ...

  5. Extending The Methodology Of X-ray Crystallography To Allow X-ray

    E-Print Network [OSTI]

    Miao, Jianwei "John"

    , the radiation damage. While the radiation damage problem can be mitigated somewhat by using cryogenic techniques resolution without serious radiation damage to the specimens. Although X-ray crystallography becomesExtending The Methodology Of X-ray Crystallography To Allow X-ray Microscopy Without X-ray Optics

  6. X-ray Pulsations in the Supersoft X-ray Binary CAL 83

    E-Print Network [OSTI]

    P. C. Schmidtke; A. P. Cowley

    2005-09-28T23:59:59.000Z

    X-ray data reveal that the supersoft X-ray binary CAL 83 exhibits 38.4 minute pulsations at some epochs. These X-ray variations are similar to those found in some novae and are likely to be caused by nonradial pulsations the white dwarf. This is the first detection of pulsations in a classical supersoft X-ray binary.

  7. X-ray Spectroscopy of Cooling Clusters

    E-Print Network [OSTI]

    J. R. Peterson; A. C. Fabian

    2005-12-21T23:59:59.000Z

    We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolution X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radiative cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We discuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling.

  8. X-ray transmissive debris shield

    DOE Patents [OSTI]

    Spielman, Rick B. (Albuquerque, NM)

    1996-01-01T23:59:59.000Z

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  9. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, Malcolm R. (Berkeley, CA); Jacobsen, Chris (Sound Beach, NY)

    1995-01-01T23:59:59.000Z

    A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

  10. Optical synchronization system for femtosecond X-ray sources

    DOE Patents [OSTI]

    Wilcox, Russell B. (El Cerrito, CA); Holzwarth, Ronald (Munich, DE)

    2011-12-13T23:59:59.000Z

    Femtosecond pump/probe experiments using short X-Ray and optical pulses require precise synchronization between 100 meter-10 km separated lasers in a various experiments. For stabilization in the hundred femtosecond range a CW laser is amplitude modulated at 1-10 GHz, the signal retroreflected from the far end, and the relative phase used to correct the transit time with various implementations. For the sub-10 fsec range the laser frequency itself is upshifted 55 MHz with an acousto-optical modulator, retroreflected, upshifted again and phase compared at the sending end to a 110 MHz reference. Initial experiments indicate less than 1 fsec timing jitter. To lock lasers in the sub-10 fs range two single-frequency lasers separated by several teraHertz will be lock to a master modelocked fiber laser, transmit the two frequencies over fiber, and lock two comb lines of a slave laser to these frequencies, thus synchronizing the two modelocked laser envelopes.

  11. X-ray Imaging Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1of EnergyX-ray Computed TomographyImaging

  12. X-ray fluorescence mapping

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1of EnergyX-rayNew Materialsray

  13. X-Ray Science Education

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL Home SRNL main campusMore thanX-Ray Imagingfeed

  14. Accuracy evaluation of a Compton X-ray spectrometer with bremsstrahlung X-rays generated by a 6 MeV electron bunch

    SciTech Connect (OSTI)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp; Arikawa, Yasunobu; Zhang, Zhe; Ikenouchi, Takahito; Morace, Alessio; Nagai, Takahiro; Abe, Yuki; Sakata, Shouhei; Inoue, Hiroaki; Utsugi, Masaru; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Nishimura, Yasuhiko; Togawa, Hiromi [Toyota Technical Development Corporation, 1-21 Imae, Hanamoto-cho, Toyota, Aichi 470-0334 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshicho, Toki, Gifu 509-5292 (Japan); Kato, Ryukou [The Institute of Science and Industrial Research, Osaka University, 2-6 Yamada-oka, Suita, Osaka (Japan)

    2014-11-15T23:59:59.000Z

    A Compton-scattering-based X-ray spectrometer is developed to obtain the energy distribution of fast electrons produced by intense laser and matter interactions. Bremsstrahlung X-rays generated by fast electrons in a material are used to measure fast electrons’ energy distribution in matter. In the Compton X-ray spectrometer, X-rays are converted into recoil electrons by Compton scattering in a converter made from fused silica glass, and a magnet-based electron energy analyzer is used to measure the energy distribution of the electrons that recoil in the direction of the incident X-rays. The spectrum of the incident X-rays is reconstructed from the energy distribution of the recoil electrons. The accuracy of this spectrometer is evaluated using a quasi-monoenergetic 6 MeV electron bunch that emanates from a linear accelerator. An electron bunch is injected into a 1.5 mm thick tungsten plate to produce bremsstrahlung X-rays. The spectrum of these bremsstrahlung X-rays is obtained in the range from 1 to 9 MeV. The energy of the electrons in the bunch is estimated using a Monte Carlo simulation of particle-matter interactions. The result shows that the spectrometer's energy accuracy is ±0.5 MeV for 6.0 MeV electrons.

  15. Note: Application of a pixel-array area detector to simultaneous single crystal x-ray diffraction and x-ray absorption spectroscopy measurements

    SciTech Connect (OSTI)

    Sun, Cheng-Jun, E-mail: cjsun@aps.anl.gov; Brewe, Dale L.; Heald, Steve M. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)] [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Zhang, Bangmin [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States) [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore (Singapore); NUSNNI-Nanocore, National University of Singapore, 117411 Singapore (Singapore); Chen, Jing-Sheng; Chow, G. M. [Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore (Singapore)] [Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore (Singapore); Venkatesan, T. [NUSNNI-Nanocore, National University of Singapore, 117411 Singapore (Singapore) [NUSNNI-Nanocore, National University of Singapore, 117411 Singapore (Singapore); Department of Physics, National University of Singapore, 117542 Singapore (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, 117575 Singapore (Singapore)

    2014-04-15T23:59:59.000Z

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr{sub 0.67}Sr{sub 0.33}MnO{sub 3} film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.

  16. Controlling X-rays With Light

    SciTech Connect (OSTI)

    Glover, Ernie; Hertlein, Marcus; Southworth, Steve; Allison, Tom; van Tilborg, Jeroen; Kanter, Elliot; Krassig, B.; Varma, H.; Rude, Bruce; Santra, Robin; Belkacem, Ali; Young, Linda

    2010-08-02T23:59:59.000Z

    Ultrafast x-ray science is an exciting frontier that promises the visualization of electronic, atomic and molecular dynamics on atomic time and length scales. A largelyunexplored area of ultrafast x-ray science is the use of light to control how x-rays interact with matter. In order to extend control concepts established for long wavelengthprobes to the x-ray regime, the optical control field must drive a coherent electronic response on a timescale comparable to femtosecond core-hole lifetimes. An intense field is required to achieve this rapid response. Here an intense optical control pulse isobserved to efficiently modulate photoelectric absorption for x-rays and to create an ultrafast transparency window. We demonstrate an application of x-ray transparencyrelevant to ultrafast x-ray sources: an all-photonic temporal cross-correlation measurement of a femtosecond x-ray pulse. The ability to control x-ray/matterinteractions with light will create new opportunities at current and next-generation x-ray light sources.

  17. X-ray Observations of Mrk 231

    E-Print Network [OSTI]

    T. J. Turner

    1998-08-10T23:59:59.000Z

    This paper presents new X-ray observations of Mrk 231, an active galaxy of particular interest due to its large infrared luminosity and the presence of several blueshifted broad absorption line (BAL) systems, a phenomenon observed in a small fraction of QSOs. A ROSAT HRI image of Mrk 231 is presented, this shows an extended region of soft X-ray emission, covering several tens of kpc, consistent with the extent of the host galaxy. An ASCA observation of Mrk 231 is also presented. Hard X-rays are detected but the data show no significant variability in X-ray flux. The hard X-ray continuum is heavily attenuated and X-ray column estimates range from ~ 2 x 10^{22} - 10^{23} cm^{-2} depending on whether the material is assumed to be neutral or ionized, and on the model assumed for the extended X-ray component. These ASCA data provide only the second hard X-ray spectrum of a BAL AGN presented to date. The broad-band spectral-energy-distribution of the source is discussed. While Mrk 231 is X-ray weak compared to Seyfert 1 galaxies, it has an optical-to-X-ray spectrum typical of a QSO.

  18. Hard x-ray imaging from explorer

    SciTech Connect (OSTI)

    Grindlay, J.E.; Murray, S.S.

    1981-11-01T23:59:59.000Z

    Coded aperture X-ray detectors were applied to obtain large increases in sensitivity as well as angular resolution. A hard X-ray coded aperture detector concept is described which enables very high sensitivity studies persistent hard X-ray sources and gamma ray bursts. Coded aperture imaging is employed so that approx. 2 min source locations can be derived within a 3 deg field of view. Gamma bursts were located initially to within approx. 2 deg and X-ray/hard X-ray spectra and timing, as well as precise locations, derived for possible burst afterglow emission. It is suggested that hard X-ray imaging should be conducted from an Explorer mission where long exposure times are possible.

  19. High speed x-ray beam chopper

    DOE Patents [OSTI]

    McPherson, Armon (Oswego, IL); Mills, Dennis M. (Naperville, IL)

    2002-01-01T23:59:59.000Z

    A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.

  20. X-ray populations in galaxies

    E-Print Network [OSTI]

    G. Fabbiano

    2005-11-09T23:59:59.000Z

    Today's sensistive, high resolution Chandra X-ray observations allow the study of many populations of X-ray sources. The traditional astronomical tools of photometric diagrams and luminosity functions are now applied to these populations, and provide the means for classifying the X-ray sources and probing their evolution. While overall stellar mass drives the amount of X-ray binaries in old stellar population, the amount of sources in star-forming galaxies is related to the star formation rate. Shart-lived, luminous, high mass binaries (HNXBs) dominate these young populations.

  1. X-RAY MICROBEAM SPEECH PRODUCTION DATABASE

    E-Print Network [OSTI]

    X-RAY MICROBEAM SPEECH PRODUCTION DATABASE USER'S HANDBOOK Version 1.0 (June 1994) prepared by John . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter Two: XRMB History

  2. Compound refractive X-ray lens

    DOE Patents [OSTI]

    Nygren, David R. (Berkeley, CA); Cahn, Robert (Walnut Creek, CA); Cederstrom, Bjorn (Traellborg, SE); Danielsson, Mats (Stocksund, SE); Vestlund, Jonas (Stockholm, SE)

    2000-01-01T23:59:59.000Z

    An apparatus and method for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point.

  3. X-Ray Science Division (XSD)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Science Division (XSD) Search Button About Welcome Overview Visiting the APS Mission & Goals Find People Organization Charts Committees Job Openings User Information...

  4. Relic Crystal-Lattice Effects on Raman Compression of Powerful X-Ray Pulses in Plasmas V. M. Malkin and N. J. Fisch

    E-Print Network [OSTI]

    .38.ÿr, 41.60.Cr, 42.55.Vc, 42.65.Re New mJ x-ray laser technologies [1­3] might produce attosecond laser optical laser technologies [4,5]. The currently projected durations of powerful x-ray pulsesRelic Crystal-Lattice Effects on Raman Compression of Powerful X-Ray Pulses in Plasmas V. M. Malkin

  5. X-ray spectroscopy of neutron star low-mass X-ray binaries

    E-Print Network [OSTI]

    Krauss, Miriam Ilana

    2007-01-01T23:59:59.000Z

    In this thesis, I present work spanning a variety of topics relating to neutron star lowmass X-ray binaries (LMXBs) and utilize spectral information from X-ray observations to further our understanding of these sources. ...

  6. Ultraluminous X-ray Sources: The most extreme X-ray binaries

    E-Print Network [OSTI]

    Â?umer, Slobodan

    1 Ultraluminous X-ray Sources: The most extreme X-ray binaries Luca Zampieri INAF ULXs ­ Lubiana ­ May 11, 2012- LZ #12;6 · X-ray observations of nearby galaxies show a population of pointlike, off-nuclear sources with L >> Ledd for 1 Msun (L>1.0e39 erg/s) UltraLuminous X-ray Sources (e

  7. X-ray Diffraction (XRD) 1.0 What is X-ray Diffraction

    E-Print Network [OSTI]

    Moeck, Peter

    X-ray Diffraction (XRD) · 1.0 What is X-ray Diffraction · 2.0 Basics of Crystallography · 3.0 Production of X-rays · 4.0 Applications of XRD · 5.0 Instrumental Sources of Error · 6.0 Conclusions #12 why the cleavage faces of crystals appear to reflect X-ray beams at certain angles of incidence (theta

  8. Human genome sequencing with direct x-ray holographic imaging. Final report

    SciTech Connect (OSTI)

    Rhodes, C.K.

    1993-06-08T23:59:59.000Z

    Direct holographic imaging of biological materials is widely applicable to the study of the structure, properties and action of genetic material. This particular application involves the sequencing of the human genome where prospective genomic imaging technology is composed of three subtechnologies, name an x-ray holographic camera, suitable chemistry and enzymology for the preparation of tagged DNA samples, and the illuminator in the form of an x-ray laser. We report appropriate x-ray camera, embodied by the instrument developed by MCR, is available and that suitable chemical and enzymatic procedures exist for the preparation of the necessary tagged DNA strands. Concerning the future development of the x-ray illuminator. We find that a practical small scale x-ray light source is indeed feasible. This outcome requires the use of unconventional physical processes in order to achieve the necessary power-compression in the amplifying medium. The understanding of these new physical mechanisms is developing rapidly. Importantly, although the x-ray source does not currently exist, the understanding of these new physical mechanisms is developing rapidly and the research has established the basic scaling laws that will determine the properties of the x-ray illuminator. When this x-ray source becomes available, an extremely rapid and cost effective instrument for 3-D imaging of biological materials can be applied to a wide range of biological structural assays, including the base-pair sequencing of the human genome and many questions regarding its higher levels of organization.

  9. X-ray source populations in galaxies

    E-Print Network [OSTI]

    G. Fabbiano

    2005-11-16T23:59:59.000Z

    Today's sensitive, high-resolution X-ray observations allow the study of populations of X-ray sources, in the luminosity range of Galactic X-ray binaries, in galaxies as distant as 20-30 Mpc. The traditional astronomical tools of photometric diagrams and luminosity functions are now applied to these populations, providing a direct probe of the evolved binary component of different stellar populations. The study of the X-ray populations of E and S0 galaxies has revamped the debate on the formation and evolution of low-mass X-ray binaries (LMXBs) and on the role of globular clusters in these processes. While overall stellar mass drives the amount of X-ray binaries in old stellar populations, the amount of sources in star forming galaxies is related to the star formation rate. Short-lived, luminous, high-mass binaries (HMXBs) dominate these young populations. The most luminous sources in these systems are the debated ULXs, which have been suggested to be ~100-1000 Msol black holes, but could alternatively include a number of binaries with stellar mass black holes. Very soft sources have also been discovered in many galaxies and their nature is currently being debated. Observations of the deep X-ray sky, and comparison with deep optical surveys, are providing the first evidence of the X-ray evolution of galaxies.

  10. Aneta Siemiginowska Chandra X-ray Center

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    -ray and gamma-ray · High Energy Sky · Chandra X-ray Observatory · examples of typical X-ray data, · an example of a data analysis process · statistical challenges · what do we learn from the data? #12;What is Astronomy and phenomena do we study and how? Solar System: Sun and sollar wind, planets, moons, asteroids, comets Our

  11. Phased Contrast X-Ray Imaging

    ScienceCinema (OSTI)

    Erin Miller

    2012-12-31T23:59:59.000Z

    The Pacific Northwest National Laboratory is developing a range of technologies to broaden the field of explosives detection. Phased contrast X-ray imaging, which uses silicon gratings to detect distortions in the X-ray wave front, may be applicable to mail or luggage scanning for explosives; it can also be used in detecting other contraband, small-parts inspection, or materials characterization.

  12. Quantitative Measurements of X-ray Intensity

    SciTech Connect (OSTI)

    Haugh, M. J., Schneider, M.

    2011-09-01T23:59:59.000Z

    This chapter describes the characterization of several X-ray sources and their use in calibrating different types of X-ray cameras at National Security Technologies, LLC (NSTec). The cameras are employed in experimental plasma studies at Lawrence Livermore National Laboratory (LLNL), including the National Ignition Facility (NIF). The sources provide X-rays in the energy range from several hundred eV to 110 keV. The key to this effort is measuring the X-ray beam intensity accurately and traceable to international standards. This is accomplished using photodiodes of several types that are calibrated using radioactive sources and a synchrotron source using methods and materials that are traceable to the U.S. National Institute of Standards and Technology (NIST). The accreditation procedures are described. The chapter begins with an introduction to the fundamental concepts of X-ray physics. The types of X-ray sources that are used for device calibration are described. The next section describes the photodiode types that are used for measuring X-ray intensity: power measuring photodiodes, energy dispersive photodiodes, and cameras comprising photodiodes as pixel elements. Following their description, the methods used to calibrate the primary detectors, the power measuring photodiodes and the energy dispersive photodiodes, as well as the method used to get traceability to international standards are described. The X-ray source beams can then be measured using the primary detectors. The final section then describes the use of the calibrated X-ray beams to calibrate X-ray cameras. Many of the references are web sites that provide databases, explanations of the data and how it was generated, and data calculations for specific cases. Several general reference books related to the major topics are included. Papers expanding some subjects are cited.

  13. Titanium dioxide nanofiber-cotton targets for efficient multi-keV x-ray generation

    SciTech Connect (OSTI)

    Tanabe, Minoru; Nishimura, Hiroaki; Fujioka, Shinsuke; Nagai, Keiji; Yamamoto, Norimasa; Mima, Kunioki [Institute of Laser Engineering, Osaka University, 2-6 Yamada-Oka, Suita, Osaka 565-0871 (Japan); Gu, Zhong-Ze; Pan, Chao [State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu 210096 (China); Girard, Frederic; Primout, Michel; Villette, Bruno; Brebion, Didier [Commissariat a l'Energie Atomique, DAM-Ile-de-France, Bruyeres-le-Chatel, 91297 Arpajon, Cedex (France); Fournier, Kevin B. [Lawrence Livermore National Laboratory, P.O. Box 808, L-473, Livermore, California 94550 (United States); Fujishima, Akira [Kanagawa Academy of Science and Technology, 3-2-1 Sakato, Takatsu-ku, Kawasaki 213-0012 (Japan)

    2008-08-04T23:59:59.000Z

    Multi-keV x-ray generation from low-density (27{+-}7 mg/cm{sup 3}) nanofiber-cotton targets composed of titanium dioxide has been investigated. The cotton targets were heated volumetrically and supersonically to a peak electron temperature of 2.3 keV, which is optimal to yield Ti K-shell x rays. Considerable enhancement of conversion efficiency [(3.7{+-}0.5)%] from incident laser energy into Ti K-shell x rays (4-6 keV band) was attained in comparison with that [(1.4{+-}0.9)%] for a planar Ti-foil target.

  14. X-ray Practicals Series 1 Advanced Data Reduction

    E-Print Network [OSTI]

    Meagher, Mary

    X-ray Practicals Series 1 Advanced Data Reduction Instructor J. Reibenspies, Ph. D. Nattamai Bhuvanesh, Ph.D. Version 1.0.0 #12;X-ray Practicals Series 2 #12;X-ray Practicals Series 3 #12;X-ray is good. The y direction is shifting the most, but the shift is ok #12;X-ray Practicals Series 5 Other

  15. Generation of Coherent X-Ray Radiation Through Modulation Compression

    E-Print Network [OSTI]

    Qiang, Ji

    2010-01-01T23:59:59.000Z

    In this letter, we propose a scheme to generate tunable coherent X-ray radiation for future light source applications. This scheme uses an energy chirped electron beam, a laser modulators, a laser chirper and two bunch compressors to generate a prebunched kilo-Ampere current electron beam from a few tens Ampere electron beam out of a linac. The initial modulation energy wavelength can be compressed by a factor of $1+h_b R_{56}^a$ in phase space, where $h_b$ is the energy bunch length chirp introduced by the laser chirper, $R_{56}^a$ is the momentum compaction factor of the first bunch compressor. As an illustration, we present an example to generate more than $400$ MW, $170$ atto-seconds pulse, $1$ nm coherent X-ray radiation using a $60$ Ampere electron beam out of the linac and $200$ nm laser seed. Both the final wavelength and the radiation pulse length in the proposed scheme are tunable by adjusting the compression factor and the laser parameters.

  16. Generation of Coherent X-Ray Radiation Through Modulation Compression

    SciTech Connect (OSTI)

    Qiang, Ji; Wu, Juhao

    2010-12-14T23:59:59.000Z

    In this letter, we propose a scheme to generate tunable coherent X-ray radiation for future light source applications. This scheme uses an energy chirped electron beam, a laser modulators, a laser chirper and two bunch compressors to generate a prebunched kilo-Ampere current electron beam from a few tens Ampere electron beam out of a linac. The initial modulation energy wavelength can be compressed by a factor of 1 + h{sub b}R{sub 56}{sup a} phase space, where h{sub b} is the energy bunch length chirp introduced by the laser chirper, R{sub 56}{sup a} is the momentum compaction factor of the first bunch compressor. As an illustration, we present an example to generate more than 400 MW, 170 atto-seconds pulse, 1 nm coherent X-ray radiation using a 60 Ampere electron beam out. of the linac and 200 nm laser seed. Both the final wavelength and the radiation pulse length in the proposed scheme are tunable by adjusting the compression factor and the laser parameters.

  17. Dense Plasma X-ray Scattering: Methods and Applications

    SciTech Connect (OSTI)

    Glenzer, S H; Lee, H J; Davis, P; Doppner, T; Falcone, R W; Fortmann, C; Hammel, B A; Kritcher, A L; Landen, O L; Lee, R W; Munro, D H; Redmer, R; Weber, S

    2009-08-19T23:59:59.000Z

    We have developed accurate x-ray scattering techniques to measure the physical properties of dense plasmas. Temperature and density are inferred from inelastic x-ray scattering data whose interpretation is model-independent for low to moderately coupled systems. Specifically, the spectral shape of the non-collective Compton scattering spectrum directly reflects the electron velocity distribution. In partially Fermi degenerate systems that have been investigated experimentally in laser shock-compressed beryllium, the Compton scattering spectrum provides the Fermi energy and hence the electron density. We show that forward scattering spectra that observe collective plasmon oscillations yield densities in agreement with Compton scattering. In addition, electron temperatures inferred from the dispersion of the plasmon feature are consistent with the ion temperature sensitive elastic scattering feature. Hence, theoretical models of the static ion-ion structure factor and consequently the equation of state of dense matter can be directly tested.

  18. X-RAY EMISSION FROM PLANETS AND COMETS: RELATIONSHIP WITH SOLAR X-RAYS AND SOLAR WIND

    E-Print Network [OSTI]

    Ã?stgaard, Nikolai

    with the occurrence of solar X-ray flare, when light travel time delay is accounted, suggesting that X-rays fromX-RAY EMISSION FROM PLANETS AND COMETS: RELATIONSHIP WITH SOLAR X-RAYS AND SOLAR WIND ANIL BHARDWAJ Flight center, Greenbelt, MD 20771, USA Scattering of solar X-ray radiation mainly produces the non

  19. X-Ray Diffraction The X-Ray Diffraction facility is equipped with state-of-the-art

    E-Print Network [OSTI]

    Birmingham, University of

    X-Ray Diffraction The X-Ray Diffraction facility is equipped with state-of-the-art diffractometers offering both single crystal and powder X-Ray diffraction. Powder X-Ray Diffraction High resolution data For more details on powder X-Ray analysis contact Dr J Hriljac on 0121 414 4458 or email: j

  20. Novel X-Ray Imaging Opportunities for the RPI Linear Accelerator's Tunable, Quasi-monochromatic X-ray Source

    E-Print Network [OSTI]

    Danon, Yaron

    Novel X-Ray Imaging Opportunities for the RPI Linear Accelerator's Tunable, Quasi-monochromatic X-ray of an intense, tunable, polarized, and quasi-monochromatic X-ray source has been ongoing at Rensselaer Polytechnic Institute since 2001 [1, 2, 3, 4, 5, 6]. This X-ray source, known as Parametric X-rays (PXR

  1. X-Ray Physics in Confinement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1of Energy WorldwideX-RayX-RayX-Ray

  2. X-ray Absorption Spectroscopy of Biologically Relevant Systems

    E-Print Network [OSTI]

    Uejio, Janel Sunayo

    2010-01-01T23:59:59.000Z

    308, Messer, B. M. X-ray Absorption Spectroscopy of AqueousSarcosine via X-ray Absorption Spectroscopy 5.1 Introductionwith Carboxylate by X-Ray Absorption Spectroscopy of Liquid

  3. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Biological Imaging by Soft X-Ray Diffraction Microscopy Print Wednesday, 30 November 2005 00:00 Electron and x-ray...

  4. THE CORRELATION BETWEEN DISPERSION MEASURE AND X-RAY COLUMN DENSITY FROM RADIO PULSARS

    SciTech Connect (OSTI)

    He, C.; Ng, C.-Y.; Kaspi, V. M., E-mail: ncy@bohr.physics.hku.hk [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada)

    2013-05-01T23:59:59.000Z

    Pulsars are remarkable objects that emit across the entire electromagnetic spectrum, providing a powerful probe of the interstellar medium. In this study, we investigate the relation between dispersion measure (DM) and X-ray absorption column density N{sub H} using 68 radio pulsars detected at X-ray energies with the Chandra X-Ray Observatory or XMM-Newton. We find a best-fit empirical linear relation of N{sub H} (10{sup 20} cm{sup -2})= 0.30{sup +0.13}{sub -0.09} DM (pc cm{sup -3}), which corresponds to an average ionization of 10{sup +4}{sub -3}%, confirming the ratio of one free electron per 10 neutral hydrogen atoms commonly assumed in the literature. We also compare different N{sub H} estimates and note that some N{sub H} values obtained from X-ray observations are higher than the total Galactic H I column density along the same line of sight, while the optical extinction generally gives the best N{sub H} predictions.

  5. Small Angle X-Ray Scattering Detector

    DOE Patents [OSTI]

    Hessler, Jan P.

    2004-06-15T23:59:59.000Z

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

  6. X-ray grid-detector apparatus

    DOE Patents [OSTI]

    Boone, John M. (Folsom, CA); Lane, Stephen M. (Oakland, CA)

    1998-01-27T23:59:59.000Z

    A hybrid grid-detector apparatus for x-ray systems wherein a microchannel plate structure has an air-interspaced grid portion and a phosphor/optical fluid-filled grid portion. The grids are defined by multiple adjacent channels separated by lead-glass septa. X-rays entering the air-interspaced grid portion at an angle of impingement upon the septa are attenuated, while non-impinging x-rays pass through to the phosphor/fluid filled portion. X-ray energy is converted to luminescent energy in the phosphor/fluid filled portion and the resultant beams of light are directed out of the phosphor/optical fluid filled portion to an imaging device.

  7. X-ray source for mammography

    DOE Patents [OSTI]

    Logan, Clinton M. (Pleasanton, CA)

    1994-01-01T23:59:59.000Z

    An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

  8. Columbia University X-Ray Measurements

    E-Print Network [OSTI]

    Columbia University X-Ray Measurements of the Levitated Dipole Experiment J. L. Ellsworth, J. Kesner MIT Plasma Science and Fusion Center D.T. Garnier, A.K. Hansen, M.E. Mauel Columbia University

  9. X-Ray Nanoimaging: Instruments and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Nanoimaging: Instruments and Methods To be held as part of SPIE. http:spie.orgOP318 August 28-29, 2013; San Diego, California, USA...

  10. X-ray source for mammography

    DOE Patents [OSTI]

    Logan, C.M.

    1994-12-20T23:59:59.000Z

    An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.

  11. Principles of X-ray Navigation

    SciTech Connect (OSTI)

    Hanson, John Eric; /SLAC

    2006-03-17T23:59:59.000Z

    X-ray navigation is a new concept in satellite navigation in which orientation, position and time are measured by observing stellar emissions in x-ray wavelengths. X-ray navigation offers the opportunity for a single instrument to be used to measure these parameters autonomously. Furthermore, this concept is not limited to missions in close proximity to the earth. X-ray navigation can be used on a variety of missions from satellites in low earth orbit to spacecraft on interplanetary missions. In 1997 the Unconventional Stellar Aspect Experiment (USA) will be launched as part of the Advanced Research and Global Observation Satellite (ARGOS). USA will provide the first platform for real-time experimentation in the field of x-ray navigation and also serves as an excellent case study for the design and manufacturing of space qualified systems in small, autonomous groups. Current techniques for determining the orientation of a satellite rely on observations of the earth, sun and stars in infrared, visible or ultraviolet wavelengths. It is possible to use x-ray imaging devices to provide arcsecond level measurement of attitude based on star patterns in the x-ray sky. This technique is explored with a simple simulation. Collimated x-ray detectors can be used on spinning satellites to provide a cheap and reliable measure of orientation. This is demonstrated using observations of the Crab Pulsar taken by the high Energy Astronomy Observatory (HEAO-1) in 1977. A single instrument concept is shown to be effective, but dependent on an a priori estimate of the guide star intensity and thus susceptible to errors in that estimate. A star scanner based on a differential measurement from two x-ray detectors eliminates the need for an a priori estimate of the guide star intensity. A first order model and a second order model of the two star scanner concepts are considered. Many of the stars that emit in the x-ray regime are also x-ray pulsars with frequency stability approaching a part in 10{sup 9}. By observing these pulsations, a satellite can keep accurate time autonomously. They have demonstrated the acquisition and tracking of the Crab nebula pulsar by simulating the operation of a phase-locked loop.

  12. Hard X-ray Fluorescence Measurements of Heteroepitaxial Solid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hard X-ray Fluorescence Measurements of Heteroepitaxial Solid Oxide Fuel Cell Cathode Materials. Hard X-ray Fluorescence Measurements of Heteroepitaxial Solid Oxide Fuel Cell...

  13. Using X-Ray Computed Tomography in Pore Structure Characterization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using X-Ray Computed Tomography in Pore Structure Characterization for a Berea Sandstone: Resolution Effect. Using X-Ray Computed Tomography in Pore Structure Characterization for...

  14. Indus-2 X-ray lithography beamline for X-ray optics and material science applications

    SciTech Connect (OSTI)

    Dhamgaye, V. P., E-mail: vishal@rrcat.gov.in; Lodha, G. S., E-mail: vishal@rrcat.gov.in [Indus Synchrotrons Utilisation Division, Raja Ramanna Centre for Advanced Technology, Indore-452013 (India)

    2014-04-24T23:59:59.000Z

    X-ray lithography is an ideal technique by which high aspect ratio and high spatial resolution micro/nano structures are fabricated using X-rays from synchrotron radiation source. The technique has been used for fabricating optics (X-ray, visible and infrared), sensors and actuators, fluidics and photonics. A beamline for X-ray lithography is operational on Indus-2. The beamline offers wide lithographic window from 1-40keV photon energy and wide beam for producing microstructures in polymers upto size ?100mm × 100mm. X-ray exposures are possible in air, vacuum and He gas environment. The air based exposures enables the X-ray irradiation of resist for lithography and also irradiation of biological and liquid samples.

  15. X-ray views of neutron star low-mass X-ray binaries

    E-Print Network [OSTI]

    Sudip Bhattacharyya

    2010-02-24T23:59:59.000Z

    A neutron star low-mass X-ray binary is a binary stellar system with a neutron star and a low-mass companion star rotating around each other. In this system the neutron star accretes mass from the companion, and as this matter falls into the deep potential well of the neutron star, the gravitational potential energy is released primarily in the X-ray wavelengths. Such a source was first discovered in X-rays in 1962, and this discovery formally gave birth to the "X-ray astronomy". In the subsequent decades, our knowledge of these sources has increased enormously by the observations with several X-ray space missions. Here we give a brief overview of our current understanding of the X-ray observational aspects of these systems.

  16. X-Ray Observations of Radio Galaxies

    E-Print Network [OSTI]

    D. E. Harris

    1998-04-20T23:59:59.000Z

    We review some of the ways that X-ray observations provide unique information on radio galaxies. Thermal bremsstrahlung X-ray emission provides detailed data on ambient densities and temperatures. These parameters in turn can be used for pressure balance calculations and can demonstrate how the ambient gas affects radio source structure. Additionally, many signatures of the interaction of radio jets and lobes with the hot gas are found in high resolution X-ray maps. Non-thermal X-ray emission from knots and hotspots of radio jets can give us constraints on the relativistic electron population for energies greater that that normally sampled in the radio (in the case of synchrotron emission) or can give us an independent estimate of the average magnetic field strength (if inverse Compton emission is the origin of the X-rays). From recent ROSAT HRI observations of 3C 390.3 and 3C 120, we show evidence that X-ray emission from knots and hotspots appears to be associated with regions of large gradients in the radio surface brightness; i.e. at the location of powerful shocks.

  17. Apparatus for generating x-ray holograms

    DOE Patents [OSTI]

    Rhodes, Charles K. (Chicago, IL); Boyer, Keith (Los Alamos, NM); Solem, Johndale C. (Los Alamos, NM); Haddad, Waleed S. (Chicago, IL)

    1990-01-01T23:59:59.000Z

    Apparatus for x-ray microholography of living biological materials. A Fourier transform holographic configuration is described as being most suitable for the 3-dimensional recording of the physical characteristics of biological specimens. The use of a spherical scatterer as a reference and a charge-coupled device two-dimensional detector array placed in the forward direction relative to the incident x-radiation for viewing electromagnetic radiation simultaneously scattered from both the specimen and the reference scatterer permits the ready reconstruction of the details of the specimen from the fringe pattern detected by the charge-coupled device. For example, by using a nickel reference scatter at 4.5 nm, sufficient reference illumination is provided over a wide enough angle to allow similar resolution in both transverse and longitudinal directions. Both laser and synchrotron radiation sources are feasible for generating microholographs. Operation in the water window (2.4 to 4.5 nm) should provide maximum contrast for features of the specimen and spatial resolution on the order of the wavelength of x-radiation should be possible in all three dimensions, which is sufficient for the visualization of many biological features. It is anticipated that the present apparatus will find utility in other areas as well where microscopic physical details of a specimen are important. A computational procedure which enables the holographic data collected by the detector to be used to correct for misalignments introduced by inexact knowledge of the relative positions of the spherical reference scatterer and the sample under investigation has been developed. If the correction is performed prior to reconstruction, full compensation can be achieved and a faithfully reconstructed image produced.

  18. Apparatus for generating x-ray holograms

    DOE Patents [OSTI]

    Rhodes, C.K.; Boyer, K.; Solem, J.C.; Haddad, W.S.

    1990-09-11T23:59:59.000Z

    Apparatus for x-ray microholography of living biological materials. A Fourier transform holographic configuration is described as being most suitable for the 3-dimensional recording of the physical characteristics of biological specimens. The use of a spherical scatterer as a reference and a charge-coupled device two-dimensional detector array placed in the forward direction relative to the incident x-radiation for viewing electromagnetic radiation simultaneously scattered from both the specimen and the reference scatterer permits the ready reconstruction of the details of the specimen from the fringe pattern detected by the charge-coupled device. For example, by using a nickel reference scatter at 4.5 nm, sufficient reference illumination is provided over a wide enough angle to allow similar resolution in both transverse and longitudinal directions. Both laser and synchrotron radiation sources are feasible for generating microholographs. Operation in the water window (2.4 to 4.5 nm) should provide maximum contrast for features of the specimen and spatial resolution on the order of the wavelength of x-radiation should be possible in all three dimensions, which is sufficient for the visualization of many biological features. It is anticipated that the present apparatus will find utility in other areas as well where microscopic physical details of a specimen are important. A computational procedure which enables the holographic data collected by the detector to be used to correct for misalignments introduced by inexact knowledge of the relative positions of the spherical reference scatterer and the sample under investigation has been developed. If the correction is performed prior to reconstruction, full compensation can be achieved and a faithfully reconstructed image produced. 7 figs.

  19. Time-domain sampling of x-ray pulses using an ultrafast sample response

    SciTech Connect (OSTI)

    Gaal, P.; Shayduk, R. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Wilhelm-Conrad-Roentgen Campus, BESSY II, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Schick, D.; Herzog, M.; Bojahr, A.; Goldshteyn, J.; Navirian, H. A.; Leitenberger, W. [Institut fuer Physik und Astronomie, Universitaet Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam (Germany); Vrejoiu, I. [Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany); Khakhulin, D.; Wulff, M. [European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz, 38000 Grenoble (France); Bargheer, M. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Wilhelm-Conrad-Roentgen Campus, BESSY II, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Institut fuer Physik und Astronomie, Universitaet Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam (Germany)

    2012-12-10T23:59:59.000Z

    We employ the ultrafast response of a 15.4 nm thin SrRuO{sub 3} layer grown epitaxially on a SrTiO{sub 3} substrate to perform time-domain sampling of an x-ray pulse emitted from a synchrotron storage ring. Excitation of the sample with an ultrashort laser pulse triggers coherent expansion and compression waves in the thin layer, which turn the diffraction efficiency on and off at a fixed Bragg angle during 5 ps. This is significantly shorter than the duration of the synchrotron x-ray pulse of 100 ps. Cross-correlation measurements of the ultrafast sample response and the synchrotron x-ray pulse allow to reconstruct the x-ray pulse shape.

  20. Demonstration of x-ray fluorescence imaging of a high-energy-density plasma

    SciTech Connect (OSTI)

    MacDonald, M. J., E-mail: macdonm@umich.edu; Gamboa, E. J. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Keiter, P. A.; Fein, J. R.; Klein, S. R.; Kuranz, C. C.; LeFevre, H. J.; Manuel, M. J.-E.; Wan, W. C.; Drake, R. P. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Montgomery, D. S. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Biener, M. M.; Fournier, K. B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Streit, J. [Schafer Corporation, Livermore, California 94551 (United States)

    2014-11-15T23:59:59.000Z

    Experiments at the Trident Laser Facility have successfully demonstrated the use of x-ray fluorescence imaging (XRFI) to diagnose shocked carbonized resorcinol formaldehyde (CRF) foams doped with Ti. One laser beam created a shock wave in the doped foam. A second laser beam produced a flux of vanadium He-? x-rays, which in turn induced Ti K-shell fluorescence within the foam. Spectrally resolved 1D imaging of the x-ray fluorescence provided shock location and compression measurements. Additionally, experiments using a collimator demonstrated that one can probe specific regions within a target. These results show that XRFI is a capable alternative to path-integrated measurements for diagnosing hydrodynamic experiments at high energy density.

  1. Development of extreme ultraviolet and soft x-ray multilayer optics for scientific studies with femtosecond/attosecond sources

    SciTech Connect (OSTI)

    Aquila, Andrew Lee

    2009-05-21T23:59:59.000Z

    The development of multilayer optics for extreme ultraviolet (EUV) radiation has led to advancements in many areas of science and technology, including materials studies, EUV lithography, water window microscopy, plasma imaging, and orbiting solar physics imaging. Recent developments in femtosecond and attosecond EUV pulse generation from sources such as high harmonic generation lasers, combined with the elemental and chemical specificity provided by EUV radiation, are opening new opportunities to study fundamental dynamic processes in materials. Critical to these efforts is the design and fabrication of multilayer optics to transport, focus, shape and image these ultra-fast pulses This thesis describes the design, fabrication, characterization, and application of multilayer optics for EUV femtosecond and attosecond scientific studies. Multilayer mirrors for bandwidth control, pulse shaping and compression, tri-material multilayers, and multilayers for polarization control are described. Characterization of multilayer optics, including measurement of material optical constants, reflectivity of multilayer mirrors, and metrology of reflected phases of the multilayer, which is critical to maintaining pulse size and shape, were performed. Two applications of these multilayer mirrors are detailed in the thesis. In the first application, broad bandwidth multilayers were used to characterize and measure sub-100 attosecond pulses from a high harmonic generation source and was performed in collaboration with the Max-Planck institute for Quantum Optics and Ludwig- Maximilians University in Garching, Germany, with Professors Krausz and Kleineberg. In the second application, multilayer mirrors with polarization control are useful to study femtosecond spin dynamics in an ongoing collaboration with the T-REX group of Professor Parmigiani at Elettra in Trieste, Italy. As new ultrafast x-ray sources become available, for example free electron lasers, the multilayer designs described in this thesis can be extended to higher photon energies, and such designs can be used with those sources to enable new scientific studies, such as molecular bonding, phonon, and spin dynamics.

  2. Oscillations During Thermonuclear X-ray Bursts

    E-Print Network [OSTI]

    Tod E. Strohmayer

    2001-01-01T23:59:59.000Z

    High amplitude, nearly coherent X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries, a long sought goal of X-ray astronomy. Studies carried out over the past year have led to the discovery of burst oscillations in four new sources, bringing to ten the number with confirmed burst oscillations. I review the status of our knowledge of these oscillations and indicate how they can be used to probe the physics of neutron stars. For a few burst oscillation sources it has been proposed that the strongest and most ubiquitous frequency is actually the first overtone of the spin frequency and hence that two nearly antipodal hot spots are present on the neutron star. This inference has important implications for both the physics of thermonuclear burning as well as the mass- radius relation for neutron stars, so its confirmation is crucial. I discuss recent attempts to confirm this hypothesis for 4U 1636-53, the source for which a signal at the putative fundamental (290 Hz) has been claimed.

  3. X-ray Pinhole Camera Measurements

    SciTech Connect (OSTI)

    Nelson, D. S. [NSTec; Berninger, M. J. [NSTec; Flores, P. A. [NSTec; Good, D. E. [NSTec; Henderson, D. J. [NSTec; Hogge, K. W. [NSTec; Huber, S. R. [NSTec; Lutz, S. S. [NSTec; Mitchell, S. E. [NSTec; Howe, R. A. [NSTec; Mitton, C. V. [NSTec; Molina, I. [NSTec; Bozman, D. R. [SNL; Cordova, S. R. [SNL; Mitchell, D. R. [SNL; Oliver, B. V. [SNL; Ormond, E. C. [SNL

    2013-07-01T23:59:59.000Z

    The development of the rod pinch diode [1] has led to high-resolution radiography for dynamic events such as explosive tests. Rod pinch diodes use a small diameter anode rod, which extends through the aperture of a cathode plate. Electrons borne off the aperture surface can self-insulate and pinch onto the tip of the rod, creating an intense, small x-ray source (Primary Pinch). This source has been utilized as the main diagnostic on numerous experiments that include high-value, single-shot events. In such applications there is an emphasis on machine reliability, x-ray reproducibility, and x-ray quality [2]. In tests with the baseline rod pinch diode, we have observed that an additional pinch (Secondary Pinch) occurs at the interface near the anode rod and the rod holder. This suggests that stray electrons exist that are not associated with the Primary Pinch. In this paper we present measurements on both pinches using an x-ray pinhole camera. The camera is placed downstream of the Primary Pinch at an angle of 60° with respect to the diode centerline. This diagnostic will be employed to diagnose x-ray reproducibility and quality. In addition, we will investigate the performance of hybrid diodes relating to the formation of the Primary and Secondary Pinches.

  4. Oscillations During Thermonuclear X-ray Bursts

    E-Print Network [OSTI]

    Tod E. Strohmayer

    2001-01-12T23:59:59.000Z

    High amplitude, nearly coherent X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries, a long sought goal of X-ray astronomy. Studies carried out over the past year have led to the discovery of burst oscillations in four new sources, bringing to ten the number with confirmed burst oscillations. I review the status of our knowledge of these oscillations and indicate how they can be used to probe the physics of neutron stars. For a few burst oscillation sources it has been proposed that the strongest and most ubiquitous frequency is actually the first overtone of the spin frequency and hence that two nearly antipodal hot spots are present on the neutron star. This inference has important implications for both the physics of thermonuclear burning as well as the mass - radius relation for neutron stars, so its confirmation is crucial. I discuss recent attempts to confirm this hypothesis for 4U 1636-53, the source for which a signal at the putative fundamental (290 Hz) has been claimed.

  5. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, Malcolm S. (Berkeley, CA); Jacobsen, Chris (Sound Beach, NY)

    1997-01-01T23:59:59.000Z

    Methods for forming X-ray images having 0.25 .mu.m minimum line widths on X-ray sensitive material are presented. A holgraphic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required.

  6. Reflection soft X-ray microscope and method

    DOE Patents [OSTI]

    Suckewer, Szymon (Princeton, NJ); Skinner, Charles H. (Lawrenceville, NJ); Rosser, Roy (Princeton, NJ)

    1993-01-01T23:59:59.000Z

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  7. Differential phase contrast X-ray imaging system and components

    DOE Patents [OSTI]

    Stutman, Daniel; Finkenthal, Michael

    2014-07-01T23:59:59.000Z

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  8. X-RAY SPECTROMETRY X-Ray Spectrom. 2007; 36: 336342

    E-Print Network [OSTI]

    Limburg, Karin E.

    , Chicago, IL 60637, USA 3 Cornell High Energy Synchrotron Source and School of Applied and EngineeringX-RAY SPECTROMETRY X-Ray Spectrom. 2007; 36: 336­342 Published online in Wiley InterScience (www to establish a breakthrough in high-resolution, simultaneous area mapping of multiple trace elements

  9. In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries

    E-Print Network [OSTI]

    Cui, Yi

    In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries Johanna Information ABSTRACT: Rechargeable lithium-sulfur (Li-S) batteries hold great potential for high of these batteries for commercial use. The two primary obstacles are the solubility of long chain lithium

  10. X-Ray Data from the X-Ray Data Booklet Online

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thompson, Albert C.; Attwood, David T.; Gullikson, Eric M.; Howells, Malcolm R.; Kortright, Jeffrey B.; Robinson, Arthur L.; Underwood, James H.; Kim, Kwang-Je; Kirz, Janos; Lindau, Ingolf; Pianetta, Piero; Winick, Herman; Williams, Gwyn P.; Scofield, James H.

    The original X-Ray Data Booklet, published in 1985, became a classic reference source. The online version has been significantly revised and updated to reflect today's science. Hundreds of pages of authoritative data provide the x-ray properties of elements, information on synchrotron radiation, scattering processes, optics and detectors, and other related calculations, formulas, and data tables.

  11. Predicted X-ray backgrounds for the International X-ray Observatory

    E-Print Network [OSTI]

    Bautz, Marshall W.

    The background that will be observed by IXO's X-ray detectors naturally separates into two components: (1) a Cosmic X-ray Background (CXB), primarily due to unresolved point sources at high energies (E>2 keV), along with ...

  12. Titanium and germanium lined hohlraums and halfraums as multi-keV x-ray radiators

    SciTech Connect (OSTI)

    Girard, F.; Primout, M.; Villette, B.; Stemmler, Ph.; Jacquet, L.; Babonneau, D. [CEA, DAM, DIF, F-91297 Arpajon (France); Fournier, K. B. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)

    2009-05-15T23:59:59.000Z

    As multi-keV x-ray radiators, hohlraums and halfraums with inner walls coated with metallic materials (called liner) have been tested for the first time with laser as the energy drive. For titanium, conversion efficiencies (CEs) are up to {approx}14% for emission into 4{pi}, integrating between 4.6 and 6.5 keV when a large diameter hohlraum is used. Germanium CE is {approx}0.8% into 4{pi} between 9 and 13 keV. The highest CEs have been obtained with a 1 ns squared pulse and phase plates giving laser absorption near 99%. These high CEs are due to long-lasting, good plasma conditions for multi-keV x-ray production maintained by plasma confinement inside the plastic cylinder and plasma collision leading to a burst of x rays at a time that depends on target size. As photon emitters at 4.7 keV, titanium-lined hohlraums are the most efficient solid targets and data are close to CEs for gas targets, which are considered as the upper limit for x-ray yields since their low density allows good laser absorption and low kinetics losses. As 10.3 keV x-ray emitters, exploded germanium foils give best results one order of magnitude more efficient than thick targets; doped aerogels and lined hohlraums give similar yields, about three times lower than those from exploded foils.

  13. X-ray reflectivity and surface roughness

    SciTech Connect (OSTI)

    Ocko, B.M.

    1988-01-01T23:59:59.000Z

    Since the advent of high brightness synchrotron radiation sources there has been a phenomenal growth in the use of x-rays as a probe of surface structure. The technique of x-ray reflectivity is particularly relevant to electrochemists since it is capable of probing the structure normal to an electrode surface in situ. In this paper the theoretical framework for x-ray reflectivity is reviewed and the results from previous non-electrochemistry measurements are summarized. These measurements are from the liquid/air interface (CCl/sub 4/), the metal crystal vacuum interface (Au(100)), and from the liquid/solid interface(liquid crystal/silicon). 34 refs., 5 figs.

  14. X-ray variability in M87

    E-Print Network [OSTI]

    D. E. Harris; J. A. Biretta; W. Junor

    1996-12-05T23:59:59.000Z

    We present the evidence for X-ray variability from the core and from knot A in the M87 jet based on data from two observations with the Einstein Observatory High Resolution Imager (HRI) and three observations with the ROSAT HRI. The core intensity showed a 16% increase in 17 months ('79-'80); a 12% increase in the 3 years '92 to '95; and a 17% drop in the last half of 1995. The intensity of knot A appears to have decreased by 16% between 92Jun and 95Dec. Although the core variability is consistent with general expectations for AGN nuclei, the changes in knot A provide constraints on the x-ray emission process and geometry. Thus we predict that the x-ray morphology of knot A will differ significantly from the radio and optical structure.

  15. Combined microstructure x-ray optics

    SciTech Connect (OSTI)

    Barbee, T.W. Jr.

    1989-02-01T23:59:59.000Z

    Multilayers are man-made microstructures which vary in depth and are now of sufficient quality to be used as x-ray, soft x-ray and extreme ultraviolet optics. Gratings are man-made in plane microstructures which have been used as optic elements for most of this century. Joining of these two optical microstructures to form combined microstructure optical microstructures to form combined microstructure optical elements has the potential for greatly enhancing both the throughput and the resolution attainable in these spectral ranges. The characteristics of these new optic elements will be presented and compared to experiment with emphasis on the unique properties of these combined microstructures. These results reported are general in nature and not limited to the soft x-ray or extreme ultraviolet spectral domains and also apply to neutrons. 19 refs., 7 figs., 4 tabs.

  16. The X-ray/submillimetre link

    E-Print Network [OSTI]

    O. Almaini

    2000-01-07T23:59:59.000Z

    It is widely believed that most of the cosmic X-ray background (XRB) is produced by a vast, hitherto undetected population of obscured AGN. Deep X-ray surveys with Chandra and XMM will soon test this hypothesis. Similarly, recent sub-mm surveys with SCUBA have revealed an analogous population of exceptionally luminous, dust-enshrouded {\\em star-forming} galaxies at high redshift. There is now growing evidence for an intimate link between these obscured populations. There are currently large uncertainties in the models, but several independent arguments lead to the conclusion that a significant fraction of the SCUBA sources ($10-30% $) will contain quasars. Recent observational studies of SCUBA survey sources appear to confirm these predictions, although the relative roles of AGN and star-forming activity in heating the dust are unclear. Forthcoming surveys combining X-ray and sub-mm observations will provide a very powerful tool for disentangling these processes.

  17. X-ray atlas of rheumatic diseases

    SciTech Connect (OSTI)

    Dihlmann, W.

    1986-01-01T23:59:59.000Z

    This atlas comprises instructive X-rays of the various inflammatory rheumatic joint diseases in all stages at the extremities and the spinal column. In addition, the complex pattern of the wide range of arthroses, also known as degenerative rheumatic disease is included. Besides the instructive pointers to X-ray diagnosis, the book is also a guide to differential diagnosis. Hence, this book is actually an X-ray atlas of joint diseases in general. Selected Contents: Introduction: What Does ''Rheumatism'' Actually Mean./Radiographic Methodology in Rheumatic Diseases of the Locomotor System/The Mosaic of Arthritis/Adult Rheumatoid Arthritis/Seronegative Spondylarthritis/Classic Collagen Diseases/Enthesiopathies/Gout-Pseudogout

  18. X-ray focal spot locating apparatus and method

    DOE Patents [OSTI]

    Gilbert, Hubert W. (Cedar Crest, NM)

    1985-07-30T23:59:59.000Z

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  19. Energy resolved X-ray grating interferometry

    SciTech Connect (OSTI)

    Thuering, T.; Stampanoni, M. [Swiss Light Source, Paul Scherrer Institut, Villigen PSI (Switzerland) [Swiss Light Source, Paul Scherrer Institut, Villigen PSI (Switzerland); Institute for Biomedical Engineering, Swiss Federal Institute of Technology, Zurich (Switzerland); Barber, W. C.; Iwanczyk, J. S. [DxRay, Inc., Northridge, California 91324 (United States)] [DxRay, Inc., Northridge, California 91324 (United States); Seo, Y.; Alhassen, F. [UCSF Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143 (United States)] [UCSF Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143 (United States)

    2013-05-13T23:59:59.000Z

    Although compatible with polychromatic radiation, the sensitivity in X-ray phase contrast imaging with a grating interferometer is strongly dependent on the X-ray spectrum. We used an energy resolving detector to quantitatively investigate the dependency of the noise from the spectral bandwidth and to consequently optimize the system-by selecting the best energy band matching the experimental conditions-with respect to sensitivity maximization and, eventually, dose. Further, since theoretical calculations of the spectrum are usually limited due to non-ideal conditions, an energy resolving detector accurately quantifies the spectral changes induced by the interferometer including flux reduction and beam hardening.

  20. Radiobiological studies using gamma and x rays.

    SciTech Connect (OSTI)

    Potter, Charles Augustus; Longley, Susan W.; Scott, Bobby R. [Lovelace Respiratory Research Institute, Albuquerque, NM; Lin, Yong [Lovelace Respiratory Research Institute, Albuquerque, NM; Wilder, Julie [Lovelace Respiratory Research Institute, Albuquerque, NM; Hutt, Julie A. [Lovelace Respiratory Research Institute, Albuquerque, NM; Padilla, Mabel T. [Lovelace Respiratory Research Institute, Albuquerque, NM; Gott, Katherine M. [Lovelace Respiratory Research Institute, Albuquerque, NM

    2013-02-01T23:59:59.000Z

    There are approximately 500 self-shielded research irradiators used in various facilities throughout the U.S. These facilities use radioactive sources containing either 137Cs or 60Co for a variety of biological investigations. A report from the National Academy of Sciences[1] described the issues with security of particular radiation sources and the desire for their replacement. The participants in this effort prepared two peer-reviewed publications to document the results of radiobiological studies performed using photons from 320-kV x rays and 137Cs on cell cultures and mice. The effectiveness of X rays was shown to vary with cell type.

  1. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LawrenceE C H NLensless X-RayLensless X-Ray

  2. Theoretical standards in x-ray spectroscopies

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    We propose to extend our state-of-the-art, ab initio XAFS (X-ray absorption fine structure) codes, FEFF. Our current work has been highly successful in achieving accurate, user-friendly XAFS standards, exceeding the performance of both tabulated standards and other codes by a considerable margin. We now propose to add the capability to treat more complex materials. This includes multiple-scattering, polarization dependence, an approximate treatment of XANES (x-ray absorption near edge structure), and other improvements. We also plan to adapt FEFF to other spectroscopies, e.g. photoelectron diffraction (PD) and diffraction anomalous fine structure (DAFS).

  3. X-Ray Nanoimaging: Instruments and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL Home SRNL main campusMore thanX-Ray Imaging ofX-Ray

  4. X-ray Computed Tomography | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL Home SRNL main campusMore thanX-Ray ImagingfeedX-ray

  5. Deconvolving the temporal response of photoelectric x-ray detectors for the diagnosis of pulsed radiations

    SciTech Connect (OSTI)

    Zou, Shiyang; Song, Peng; Pei, Wenbing [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)] [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Guo, Liang [Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900 (China)] [Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900 (China)

    2013-09-15T23:59:59.000Z

    Based on the conjugate gradient method, a simple algorithm is presented for deconvolving the temporal response of photoelectric x-ray detectors (XRDs) to reconstruct the resolved time-dependent x-ray fluxes. With this algorithm, we have studied the impact of temporal response of XRD on the radiation diagnosis of hohlraum heated by a short intense laser pulse. It is found that the limiting temporal response of XRD not only postpones the rising edge and peak position of x-ray pulses but also smoothes the possible fluctuations of radiation fluxes. Without a proper consideration of the temporal response of XRD, the measured radiation flux can be largely misinterpreted for radiation pulses of a hohlraum heated by short or shaped laser pulses.

  6. Small Angle X-Ray Scattering Detector

    DOE Patents [OSTI]

    Hessler, Jan P. (Downers Grove, IL)

    2004-06-15T23:59:59.000Z

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., q.sub.max /q.sub.min.congruent.100.

  7. SLAC All Access: X-ray Microscope

    ScienceCinema (OSTI)

    Nelson, Johanna; Liu, Yijin

    2014-06-13T23:59:59.000Z

    SLAC physicists Johanna Nelson and Yijin Liu give a brief overview of the X-ray microscope at the Stanford Synchrotron Radiation Lightsource (SSRL) that is helping improve rechargeable-battery technology by letting researchers peek into the inner workings of batteries as they operate.

  8. X-ray spectroscopy of manganese clusters

    SciTech Connect (OSTI)

    Grush, M.M. [Univ. of California, Davis, CA (United States). Dept. of Applied Science; [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

    1996-06-01T23:59:59.000Z

    Much of this thesis represents the groundwork necessary in order to probe Mn clusters more productively than with conventional Mn K-edge XAS and is presented in Part 1. Part 2 contains the application of x-ray techniques to Mn metalloproteins and includes a prognosis at the end of each chapter. Individual Mn oxidation states are more readily distinguishable in Mn L-edge spectra. An empirical mixed valence simulation routine for determining the average Mn oxidation state has been developed. The first Mn L-edge spectra of a metalloprotein were measured and interpreted. The energy of Mn K{beta} emission is strongly correlated with average Mn oxidation state. K{beta} results support oxidation states of Mn(III){sub 2}(IV){sub 2} for the S{sub 1} state of Photosystem II chemical chemically reduced preparations contain predominantly Mn(II). A strength and limitation of XAS is that it probes all of the species of a particular element in a sample. It would often be advantageous to selectively probe different forms of the same element. The first demonstration that chemical shifts in x-ray fluorescence energies can be used to obtain oxidation state-selective x-ray absorption spectra is presented. Spin-dependent spectra can also be used to obtain a more simplified picture of local structure. The first spin-polarized extended x-ray absorption fine structure using Mn K{beta} fluorescence detection is shown.

  9. Multiple wavelength X-ray monochromators

    DOE Patents [OSTI]

    Steinmeyer, P.A.

    1992-11-17T23:59:59.000Z

    An improved apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined first distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focusing the separate first and second output x-ray radiation wavelengths into separate focal points. 3 figs.

  10. Catalog of supersoft X-ray sources

    E-Print Network [OSTI]

    J. Greiner

    2000-05-11T23:59:59.000Z

    This catalog comprises an up-to-date (December 1999) list of luminous (>10^36 erg/s), binary supersoft X-ray sources. This electronic version (including the accompannying Web-pages) supersedes the printed version of Greiner (1996).

  11. Ultrafast X-ray Diffraction Theory Jianshu Cao* and Kent R. Wilson

    E-Print Network [OSTI]

    Cao, Jianshu

    notablely using ultrafast optical pump-probe pulses. Unfortunately, except for a few favorable cases of a sample is initiated by an ultrafast optical laser pulse and then probed by an ultrafast X-ray pulse initiated by the optical pump pulse in real time and real space.9-11 From a simple viewpoint, ultrafast X

  12. X-ray microscopy using grazing-incidence reflections optics

    SciTech Connect (OSTI)

    Price, R.H.

    1983-06-30T23:59:59.000Z

    The role of Kirkpatrick-Baez microscopes as the workhorse of the x-ray imaging devices is discussed. This role is being extended with the development of a 22X magnification Kirkpatrick-Baez x-ray microscope with multilayer x-ray mirrors. These mirrors can operate at large angles, high x-ray energies, and have a narrow, well defined x-ray energy bandpass. This will make them useful for numerous experiments. However, where a large solid angle is needed, the Woelter microscope will still be necessary and the technology needed to build them will be useful for many other types of x-ray optics.

  13. X-ray microscopy using grazing-incidence reflection optics

    SciTech Connect (OSTI)

    Price, R.H.

    1981-08-06T23:59:59.000Z

    The Kirkpatrick-Baez microscopes are described along with their role as the workhorse of the x-ray imaging devices. This role is being extended with the development of a 22X magnification Kirkpatrick-Baez x-ray microscope with multilayer x-ray mirrors. These mirrors can operate at large angles, high x-ray energies, and have a narrow, well defined x-ray energy bandpass. This will make them useful for numerous experiments. However, where a large solid angle is needed, the Woelter microscope will still be necessary and the technology needed to build them will be useful for many other types of x-ray optics.

  14. Rise Time Measurement for Ultrafast X-Ray Pulses

    DOE Patents [OSTI]

    Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

    2005-04-05T23:59:59.000Z

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  15. Rise time measurement for ultrafast X-ray pulses

    DOE Patents [OSTI]

    Celliers, Peter M. (Berkeley, CA); Weber, Franz A. (Oakland, CA); Moon, Stephen J. (Tracy, CA)

    2005-04-05T23:59:59.000Z

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  16. X-ray imaging crystal spectrometer for extended X-ray sources

    DOE Patents [OSTI]

    Bitter, Manfred L. (Princeton, NJ); Fraenkel, Ben (Jerusalem, IL); Gorman, James L. (Bordentown, NJ); Hill, Kenneth W. (Lawrenceville, NJ); Roquemore, A. Lane (Cranbury, NJ); Stodiek, Wolfgang (Princeton, NJ); von Goeler, Schweickhard E. (Princeton, NJ)

    2001-01-01T23:59:59.000Z

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  17. X-RAY POINT-SOURCE POPULATIONS CONSTITUTING THE GALACTIC RIDGE X-RAY EMISSION

    SciTech Connect (OSTI)

    Morihana, Kumiko [Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)] [Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tsujimoto, Masahiro; Ebisawa, Ken [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)] [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Yoshida, Tessei, E-mail: morihana@crab.riken.jp [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)] [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2013-03-20T23:59:59.000Z

    Apparently diffuse X-ray emission has been known to exist along the central quarter of the Galactic Plane since the beginning of X-ray astronomy; this is referred to as the Galactic Ridge X-ray emission (GRXE). Recent deep X-ray observations have shown that numerous X-ray point sources account for a large fraction of the GRXE in the hard band (2-8 keV). However, the nature of these sources is poorly understood. Using the deepest X-ray observations made in the Chandra bulge field, we present the result of a coherent photometric and spectroscopic analysis of individual X-ray point sources for the purpose of constraining their nature and deriving their fractional contributions to the hard-band continuum and Fe K line emission of the GRXE. Based on the X-ray color-color diagram, we divided the point sources into three groups: A (hard), B (soft and broad spectrum), and C (soft and peaked spectrum). The group A sources are further decomposed spectrally into thermal and non-thermal sources with different fractions in different flux ranges. From their X-ray properties, we speculate that the group A non-thermal sources are mostly active galactic nuclei and the thermal sources are mostly white dwarf (WD) binaries such as magnetic and non-magnetic cataclysmic variables (CVs), pre-CVs, and symbiotic stars, whereas the group B and C sources are X-ray active stars in flares and quiescence, respectively. In the log N-log S curve of the 2-8 keV band, the group A non-thermal sources are dominant above Almost-Equal-To 10{sup -14} erg cm{sup -2} s{sup -1}, which is gradually taken over by Galactic sources in the fainter flux ranges. The Fe K{alpha} emission is mostly from the group A thermal (WD binaries) and the group B (X-ray active stars) sources.

  18. Beyond hard x-ray photoelectron spectroscopy: Simultaneous combination with x-ray diffraction

    SciTech Connect (OSTI)

    Rubio-Zuazo, Juan; Castro, German R. [SpLine, Spanish CRG beamline at the European Synchrotron Radiation Facility, B.P. 220, F-38043 Grenoble (France) and ICMM-CSIC Cantoblanco, E-28049 Madrid (Spain)

    2013-05-15T23:59:59.000Z

    Hard x-ray photoelectron spectroscopy (HAXPES) is a powerful and novel emerging technique for the nondestructive determination of electronic properties and chemical composition of bulk, buried interfaces and surfaces. It benefits from the exceptionally large escape depth of high kinetic energy photoelectrons, increasing the information depth up to several tens of nanometers. Complementing HAXPES with an atomic structure sensitive technique (such as x-ray diffraction) opens a new research field with major applications for materials science. At SpLine, the Spanish CRG beamline at the European Synchrotron Radiation Facility, we have developed a novel experimental set-up that combines HAXPES and x-ray diffraction (x-ray reflectivity, surface x-ray diffraction, grazing incidence x-ray diffraction, and reciprocal space maps). Both techniques can be operated simultaneously on the same sample and using the same excitation source. The set-up includes a robust 2S + 3D diffractometer hosting a ultrahigh vacuum chamber equipped with a unique photoelectron spectrometer (few eV < electron kinetic energy < 15 keV), x-ray tube (Mg/Ti), 15 keV electron gun, and auxiliary standard surface facilities (molecular beam epitaxy evaporator, ion gun, low energy electron diffraction, sample heating/cooling system, leak valves, load-lock sample transfer, etc.). This end-station offers the unique possibility of performing simultaneous HAXPES + x-ray diffraction studies. In the present work, we describe the experimental set-up together with two experimental examples that emphasize its outstanding capabilities: (i) nondestructive characterization of the Si/Ge and HfO{sub 2}/SiO{sub 2} interfaces on Ge-based CMOS devices, and (ii) strain study on La{sub 0.7}Ca{sub 0.3}MnO{sub 3} ultrathin films grown on SrTiO{sub 3}(001) substrate.

  19. Femtosecond Single-Shot Imaging of Nanoscale Ferromagnetic Order in Co/Pd Multilayers using Resonant X-ray Holography

    SciTech Connect (OSTI)

    Wang, Tianhan; Zhu, Diling; Benny Wu,; Graves, Catherine; Schaffert, Stefan; Rander, Torbjorn; Muller, leonard; Vodungbo, Boris; Baumier, Cedric; Bernstein, David P.; Brauer, Bjorn; Cros, Vincent; Jong, Sanne de; Delaunay, Renaud; Fognini, Andreas; Kukreja, Roopali; Lee, Sooheyong; Lopez-Flores, Victor; Mohanty, Jyoti; Pfau, Bastian; Popescu, 5 Horia

    2012-05-15T23:59:59.000Z

    We present the first single-shot images of ferromagnetic, nanoscale spin order taken with femtosecond x-ray pulses. X-ray-induced electron and spin dynamics can be outrun with pulses shorter than 80 fs in the investigated fluence regime, and no permanent aftereffects in the samples are observed below a fluence of 25 mJ/cm{sup 2}. Employing resonant spatially-muliplexed x-ray holography results in a low imaging threshold of 5 mJ/cm{sup 2}. Our results open new ways to combine ultrafast laser spectroscopy with sequential snapshot imaging on a single sample, generating a movie of excited state dynamics.

  20. Titanium-Dioxide Nano-Fiber-Cotton Targets for Efficient Multi-keV X-Ray Generation

    SciTech Connect (OSTI)

    Tanabe, M; Nishimura, H; Fujioka, S; Nagai, K; Yamamoto, N; Gu, Z; Pan, C; Girard, F; Primout, M; Villette, B; Brebion, D; Fournier, K B; Fujishima, A; Mima, K

    2008-06-12T23:59:59.000Z

    Multi-keV x-ray generation from low-density (27 {+-} 7 mg/cc) nano-fiber-cotton targets composed of titanium-dioxide has been investigated. The cotton targets were heated volumetrically and supersonically to a peak electron temperature of 2.3 keV, which is optimal to yield Ti K-shell x rays. Considerable enhancement of conversion efficiency (3.7 {+-} 0.5%) from incident laser energy into Ti K-shell x rays (4-6 keV band) was attained in comparison with that (1.4 {+-} 0.9%) for a planar Ti-foil target.

  1. Casimir self-energy of a free electron

    E-Print Network [OSTI]

    Allan Rosencwaig

    2006-06-23T23:59:59.000Z

    We derive the electromagnetic self-energy and the radiative correction to the gyromagnetic ratio of a free electron using a Casimir energy approach. This method provides an attractive and straightforward physical basis for the renormalization process.

  2. High resolution x-ray microscope

    SciTech Connect (OSTI)

    Gary, C. K.; Park, H.; Lombardo, L. W.; Piestrup, M. A.; Cremer, J. T.; Pantell, R. H.; Dudchik, Y. I. [Adelphi Technology, Inc. 981-B Industrial Road, San Carlos, California 94070 (United States); Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Institute of Applied Physics Problems, Kurchatova 7, Minsk 220064 (Belarus)

    2007-04-30T23:59:59.000Z

    The authors present x-ray images of grid meshes and biological material obtained using a microspot x-ray tube with a multilayer optic and a 92-element parabolic compound refractive lens (CRL) made of a plastic containing only hydrogen and carbon. Images obtained using this apparatus are compared with those using an area source with a spherical lens and a spherical lens with multilayer condenser. The authors found the best image quality using the multilayer condenser with a parabolic lens, compared to images with a spherical lens and without the multilayer optics. The resolution was measured using a 155-element parabolic CRL and a multilayer condenser with the microspot tube. The experiment demonstrates about 1.1 {mu}m resolution.

  3. X-ray radiography for container inspection

    DOE Patents [OSTI]

    Katz, Jonathan I. (Clayton, MO); Morris, Christopher L. (Los Alamos, NM)

    2011-06-07T23:59:59.000Z

    Arrangements of X-ray inspection systems are described for inspecting high-z materials in voluminous objects such as containers. Inspection methods may involve generating a radiographic image based on detected attenuation corresponding to a pulsed beams of radiation transmitted through a voluminous object. The pulsed beams of radiation are generated by a high-energy source and transmitted substantially downward along an incident angle, of approximately 1.degree. to 30.degree., to a vertical axis extending through the voluminous object. The generated radiographic image may be analyzed to detect on localized high attenuation representative of high-z materials and to discriminate high-z materials from lower and intermediate-z materials on the basis of the high density and greater attenuation of high-z material for higher energy (3-10 MeV) X-rays, and the compact nature of threatening masses of fissionable materials.

  4. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in...

  5. The X-ray Microcalorimeter Spectrometer onboard of IXO

    E-Print Network [OSTI]

    Figueroa-Feliciano, Enectali

    One of the instruments on the International X-ray Observatory (IXO), under study with NASA, ESA and JAXA, is the X-ray Microcalorimeter Spectrometer (XMS). This instrument, which will provide high spectral resolution images, ...

  6. Resonant Soft X-Ray Scattering - Combining Structural with Spectroscop...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resonant Soft X-Ray Scattering - Combining Structural with Spectroscopic Refinement Friday, September 28, 2012 - 10:00am SLAC, Bldg. 137, Room 322 SSRL Presents Kevin Stone X-ray...

  7. Sample holder for X-ray diffractometry

    DOE Patents [OSTI]

    Hesch, Victor L. (Los Alamos, NM)

    1992-01-01T23:59:59.000Z

    A sample holder for use with X-ray diffractometers with the capability to rotate the sample, as well as to adjust the position of the sample in the x, y, and z directions. Adjustment in the x direction is accomplished through loosening set screws, moving a platform, and retightening the set screws. Motion translators are used for adjustment in the y and z directions. An electric motor rotates the sample, and receives power from the diffractometer.

  8. Columbia University X-Ray Measurements

    E-Print Network [OSTI]

    V-720 keV · NaI 2x2x2" detector views an energy range of 1 keV-3 MeV Store signal in the tree. computer configuration. Plasmas were created using multi-frequency ECRH, and we find that most of the plasma energy is stored in the fast electrons. The energy spectrum of the x-ray emission below 740 keV is measured

  9. X-rays from Supernova Remnants

    E-Print Network [OSTI]

    B. Aschenbach

    2002-08-28T23:59:59.000Z

    A summary of X-ray observations of supernova remnants is presented including the explosion fragment A of the Vela SNR, Tycho, N132D, RX J0852-4622, the Crab Nebula and the 'bulls eye', and SN 1987A, high-lighting the progress made with Chandra and XMM-Newton and touching upon the questions which arise from these observations and which might inspire future research.

  10. The X-ray Telescope of CAST

    E-Print Network [OSTI]

    M. Kuster; H. Bräuninger; S. Cébrian; M. Davenport; C. Elefteriadis; J. Englhauser; H. Fischer; J. Franz; P. Friedrich; R. Hartmann; F. H. Heinsius; D. H. H. Hoffmann; G. Hoffmeister; J. N. Joux; D. Kang; K. Königsmann; R. Kotthaus; T. Papaevangelou; C. Lasseur; A. Lippitsch; G. Lutz; J. Morales; A. Rodríguez; L. Strüder; J. Vogel; K. Zioutas

    2007-05-10T23:59:59.000Z

    The Cern Axion Solar Telescope (CAST) is in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting X-ray photons are expected to be thermally distributed between 1 and 7 keV. The most sensitive detector system of CAST is a pn-CCD detector combined with a Wolter I type X-ray mirror system. With the X-ray telescope of CAST a background reduction of more than 2 orders off magnitude is achieved, such that for the first time the axion photon coupling constant g_agg can be probed beyond the best astrophysical constraints g_agg < 1 x 10^-10 GeV^-1.

  11. X-Ray Searches for Solar Axions

    E-Print Network [OSTI]

    Hugh S. Hudson; L. W. Acton; E. DeLuca; I. G. Hannah; K. Reardon; K. Van Bibber

    2012-01-22T23:59:59.000Z

    Axions generated thermally in the solar core can convert nearly directly to X-rays as they pass through the solar atmosphere via interaction with the magnetic field. The result of this conversion process would be a diffuse centrally-concentrated source of few-keV X-rays at disk center; it would have a known dimension, of order 10% of the solar diameter, and a spectral distribution resembling the blackbody spectrum of the solar core. Its spatial structure in detail would depend on the distribution of mass and field in the solar atmosphere. The brightness of the source depends upon these factors as well as the unknown coupling constant and the unknown mass of the axion; this particle is hypothetical and no firm evidence for its existence has been found yet. We describe the solar magnetic environment as an axion/photon converter and discuss the upper limits obtained by existing and dedicated observations from three solar X-ray observatories: Yohkoh, RHESSI, and Hinode

  12. Applications of holography to x-ray imaging

    SciTech Connect (OSTI)

    Howells, M.; Iarocci, M.; Kenney, J.; Rarback, H.; Rosser, R.; Yun, W.

    1985-03-01T23:59:59.000Z

    In this paper we consider various applications of holographic techniques to the problem of soft x-ray imaging. We give special attention to imaging biological material using x-rays in the wavelength range 24 to 45A. We describe some experiments on formation and reconstruction of x-ray holograms and propose some ways in which holographic techniques might contribute to the difficult problem of fabricating optical elements for use in the soft x-ray region.

  13. Applications of holography to X-ray imaging

    SciTech Connect (OSTI)

    Howells, M.; Iarocci, M.; Kenney, J.; Rarback, H.; Rosser, R.; Yun, W.

    1985-01-01T23:59:59.000Z

    In this paper the authors consider various applications of holographic techniques to the problem of soft x-ray imaging. Special attention is given to imaging biological material using x-rays in the wavelength range 24-45A. The authors describe some experiments on formation and reconstruction of x-ray holograms and propose some ways in which holographic techniques might contribute to the difficult problem of fabricating optical elements for use in the soft x-ray region.

  14. X-ray MicroCT Training Presentation

    E-Print Network [OSTI]

    X-ray MicroCT Training Presentation T. Fettah Kosar, PhD Center for Nanoscale Systems Harvard) Model: HMXST225 (max. 225 kV) #12;Overview 3 Introduction to X-ray imaging and Computed Tomography (CT) · What are X-rays and how do we generate and image them? · How do we magnify X-ray images and keep them

  15. X-ray Diffraction Laboratory Department of Chemistry

    E-Print Network [OSTI]

    Meagher, Mary

    X-ray Diffraction Laboratory Department of Chemistry Texas A & M University College Station, Texas Phone : 979-845-9125 www.chem.tamu.edu/xray xray@tamu.edu X-rayDiffractionLaboratory DepartmentofChemistry 3255TAMU CollegeStation,TX77843-3255 Mission The purpose of our laboratory is to provide X-ray

  16. X-ray Diffraction Practicals 1 Graphics Programs

    E-Print Network [OSTI]

    Meagher, Mary

    X-ray Diffraction Practicals 1 Graphics Programs that will read SHELX or CIF files J. Reibenspies, N. Bhuvanesh ver 1.0.0 #12;X-ray Diffraction Practicals 2 Free software. Gretep : Reads SHELX files shelx files or output thermal ellipsoid plots. http://www.umass.edu/microbio/rasmol/ #12;X-ray

  17. X-ray Emission from Massive Stars David Cohen

    E-Print Network [OSTI]

    Cohen, David

    X-ray Emission from Massive Stars David Cohen Department of Physics and Astronomy Swarthmore University, Oct. 13, 2005 astro.swarthmore.edu/~cohen/ #12;Outline 1. What you need to know: a. X-rays from the Sun - magnetic activity, x-ray spectra b. Hot stars c. Radiation-driven winds and the Doppler shift d

  18. X-Ray Photoelectron Spectroscopy XPS Mark Engelhard

    E-Print Network [OSTI]

    X-Ray Photoelectron Spectroscopy XPS Mark Engelhard 1 #12;EMSL XPS Instrumentation 2 Physical Electronics Quantera XPS High Energy Resolution Focused X-ray Beam Capability Catalysis reaction and processing chamber with inert atmosphere glove box connected to a PHI Quantera Scanning X-ray Microprobe

  19. Development of all-solid-state flash x-ray generator with photoconductive semiconductor switches

    SciTech Connect (OSTI)

    Xun, Ma; Jianjun, Deng; Hongwei, Liu; Jianqiang, Yuan; Jinfeng, Liu; Bing, Wei; Yanling, Qing; Wenhui, Han; Lingyun, Wang; Pin, Jiang; Hongtao, Li [Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAEP, P.O. Box 919-108, Mianyang 621900 (China)

    2014-09-15T23:59:59.000Z

    A compact, low-jitter, and high repetitive rate all-solid-state flash x-ray generator making use of photo conductive semiconductor switches was developed recently for the diagnostic purpose of some hydrokinetical experiments. The generator consisted of twelve stages of Blumlein pulse forming networks, and an industrial cold cathode diode was used to generate intense x-ray radiations with photon energy up to 220 keV. Test experiments showed that the generator could produce >1 kA electron beam currents and x-ray pulses with ?40 ns duration under 100 Hz repetitive rates at least (limited by the triggering laser on hand), also found was that the delay time of the cathode explosive emission is crucial to the energy transfer efficiency of the whole system. In addition, factors affecting the diode impedance, how the switching synchronization and diode impedance determining the allowable operation voltage were discussed.

  20. Response Time Measurements of the NIF DANTE XRD-31 X-Ray Diodes (Pre-print)

    SciTech Connect (OSTI)

    Don Pellinen and Michael Griffin

    2009-01-23T23:59:59.000Z

    The XRD-31 is a fast, windowless X-ray vacuum photodiode developed by EG&G. It is currently the primary fast X-ray detector used to diagnose the X-rays on NIF and OMEGA on the multichannel DANTE spectrometer. The XRD-31 has a dynamic range of less than 1e-12 amps to more than 10 amps. A technique is described to measure the impulse response of the diodes to a 150 fs pulse of 200 nm laser light and a method to calculate the “risetime” for a square pulse and compare it with the computed electron transit time from the photocathode to the anode. Measured response time for 5 XRD-31s assembled in early 2004 was 149.7 ps +-2.75 ps.

  1. X-ray tests of a two-dimensional stigmatic imaging scheme with variable magnifications

    SciTech Connect (OSTI)

    Lu, J., E-mail: jlu@pppl.gov [Key Laboratory of Optoelectronic Technology and System of Ministry of Education, Chongqing University, Chongqing 400030 (China); Bitter, M.; Hill, K. W.; Delgado-Aparicio, L. F.; Efthimion, P. C.; Pablant, N. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Beiersdorfer, P. [Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Caughey, T. A.; Brunner, J. [Inrad Optics, 181 Legrand Avenue, Northvale, New Jersey 07647 (United States)

    2014-11-15T23:59:59.000Z

    A two-dimensional stigmatic x-ray imaging scheme, consisting of two spherically bent crystals, one concave and one convex, was recently proposed [M. Bitter et al., Rev. Sci. Instrum. 83, 10E527 (2012)]. The Bragg angles and the radii of curvature of the two crystals of this imaging scheme are matched to eliminate the astigmatism and to satisfy the Bragg condition across both crystal surfaces for a given x-ray energy. In this paper, we consider more general configurations of this imaging scheme, which allow us to vary the magnification for a given pair of crystals and x-ray energy. The stigmatic imaging scheme has been validated for the first time by imaging x-rays generated by a micro-focus x-ray source with source size of 8.4 ?m validated by knife-edge measurements. Results are presented from imaging the tungsten L?1 emission at 8.3976 keV, using a convex Si-422 crystal and a concave Si-533 crystal with 2d-spacings of 2.21707 Å and 1.65635 Å and radii of curvature of 500 ± 1 mm and 823 ± 1 mm, respectively, showing a spatial resolution of 54.9 ?m. This imaging scheme is expected to be of interest for the two-dimensional imaging of laser produced plasmas.

  2. HIGH AVERAGE POWER UV FREE ELECTRON LASER EXPERIMENTS AT JLAB

    SciTech Connect (OSTI)

    Douglas, David; Evtushenko, Pavel; Gubeli, Joseph; Hernandez-Garcia, Carlos; Legg, Robert; Neil, George; Powers, Thomas; Shinn, Michelle D; Tennant, Christopher

    2012-07-01T23:59:59.000Z

    Having produced 14 kW of average power at {approx}2 microns, JLAB has shifted its focus to the ultraviolet portion of the spectrum. This presentation will describe the JLab UV Demo FEL, present specifics of its driver ERL, and discuss the latest experimental results from FEL experiments and machine operations.

  3. Gamma-ray free-electron lasers: Quantum fluid model

    E-Print Network [OSTI]

    Silva, H M

    2014-01-01T23:59:59.000Z

    A quantum fluid model is used to describe the interacion of a nondegenerate cold relativistic electron beam with an intense optical wiggler taking into account the beam space-charge potential and photon recoil effect. A nonlinear set of coupled equations are obtained and solved numerically. The numerical results shows that in the limit of plasma wave-breaking an ultra-high power radiation pulse are emitted at the$\\gamma$-ray wavelength range which can reach an output intensity near the Schwinger limit depending of the values of the FEL parameters such as detuning and input signal initial phase at the entrance of the interaction region.

  4. High Gradient Inverse Free Electron Laser (IFEL) Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILLAdministration | National|Gradient High

  5. Part 2: Coherent emission from Free Electron Lasers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven Ashby Dr.presentations PapersParking PrintEpidermal0

  6. Development of free-electron lasers for xuv projection lithography

    SciTech Connect (OSTI)

    Newnam, B.E.

    1990-01-01T23:59:59.000Z

    Future rf-linac-driven FELs, operating in the range from 4 nm to 100 nm, could be excellent exposure tools for extending the resolution limit of projection optical lithography to {le}0.1 {mu}m and with adequate total depth of focus (1 to 2 {mu}m). When operated at a moderate duty rate of {ge}1%, XUV FELs should be able to supply sufficient average power to support high-volume chip production. Recent developments of the electron beam, magnetic undulator, and resonator mirrors are described which raise our expectation that FEL operation below 100 nm is almost ready for demonstration. Included as a supplement is a review of initial design studies of the reflecting XUV projection optics, fabrication of reflection masks, characterization of photoresists, and the first experimental demonstrations of the capability of projection lithography with 14-nm radiation to produce lines and spaces as small as 0.05 {mu}m. 88 refs., 10 figs.

  7. A PLASMA CHANNEL BEAM CONDITIONER FOR A FREE ELECTRON LASER

    E-Print Network [OSTI]

    Wurtele, Jonathan

    plasma focusing and plasma accel- eration, but further beam compression is not required. The resulting

  8. Free-Electron Laser Targets Fat | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" GiveFutureFrederick

  9. fel 2005 :: Free Electron Laser Conference and Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwater Methane Hydrate MaximizeOctober Home |

  10. Jefferson Lab's upgraded Free-Electron Laser produces first ligh |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJefferson LabJefferson LabJLab OpenLab

  11. Imaging Nonequilibrium Atomic Vibrations with X-ray Diffuse Scattering

    SciTech Connect (OSTI)

    Trigo, M.; Chen, J.; Vishwanath, V.H.; /SLAC; Sheu, Y.M.; /Michigan U.; Graber, T.; Henning, R.; /U. Chicago; Reis, D; /SLAC /Stanford U., Appl. Phys. Dept.; ,

    2011-03-03T23:59:59.000Z

    We use picosecond x-ray diffuse scattering to image the nonequilibrium vibrations of the lattice following ultrafast laser excitation. We present images of nonequilibrium phonons in InP and InSb throughout the Brillouin-zone which remain out of equilibrium up to nanoseconds. The results are analyzed using a Born model that helps identify the phonon branches contributing to the observed features in the time-resolved diffuse scattering. In InP this analysis shows a delayed increase in the transverse acoustic (TA) phonon population along high-symmetry directions accompanied by a decrease in the longitudinal acoustic (LA) phonons. In InSb the increase in TA phonon population is less directional.

  12. X-Ray Interactions with Matter from the Center for X-Ray Optics (CXRO)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Henke, B.L.; Gullikson, E.M.; Davis, J.C.

    The primary interactions of low-energy x-rays within condensed matter, viz. photoabsorption and coherent scattering, are described for photon energies outside the absorption threshold regions by using atomic scattering factors. The atomic scattering factors may be accurately determined from the atomic photoabsorption cross sections using modified Kramers-Kronig dispersion relations. From a synthesis of the currently available experimental data and recent theoretical calculations for photoabsorption, the angle-independent, forward-scattering components of the atomic scattering factors have been thus semiempirically determined and tabulated here for 92 elements and for the region 50-30,000 eV. Atomic scattering factors for all angles of coherent scattering and at the higher photon energies are obtained from these tabulated forward-scattering values by adding a simple angle-dependent form-factor correction. The incoherent scattering contributions that become significant for the light elements at the higher photon energies are similarly determined. The basic x-ray interaction relations that are used in applied x-ray physics are presented here in terms of the atomic scattering factors. The bulk optical constants are also related to the atomic scattering factors. These atomic and optical relations are applied to the detailed calculation of the reflectivity characteristics of a series of practical x-ray mirror, multilayer, and crystal monochromators. Comparisons of the results of this semiempirical,"atom-like", description of x-ray interactions for the low-energy region with those of experiment and ab initio theory are presented.

  13. Calibrating X-ray Imaging Devices for Accurate Intensity Measurement

    SciTech Connect (OSTI)

    Haugh, M. J.

    2011-07-28T23:59:59.000Z

    The purpose of the project presented is to develop methods to accurately calibrate X-ray imaging devices. The approach was to develop X-ray source systems suitable for this endeavor and to develop methods to calibrate solid state detectors to measure source intensity. NSTec X-ray sources used for the absolute calibration of cameras are described, as well as the method of calibrating the source by calibrating the detectors. The work resulted in calibration measurements for several types of X-ray cameras. X-ray camera calibration measured efficiency and efficiency variation over the CCD. Camera types calibrated include: CCD, CID, back thinned (back illuminated), front illuminated.

  14. Proceedings of the workshop on X-ray computed microtomography

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    This report consists of vugraphs from the nine presentations at the conference. Titles of the presentations are: CMT: Applications and Techniques; Computer Microtomography Using X-rays from Third Generation Synchrotron X-ray; Approaches to Soft-X-ray Nanotomography; Diffraction Enhanced Tomography; X-ray Computed Microtomography Applications at the NSLS; XCMT Applications in Forestry and Forest Products; 3DMA: Investigating Three Dimensional Pore Geometry from High Resolution Images; X-ray Computed Microtomography Studies of Volcanic Rock; and 3-D Visualization of Tomographic Volumes.

  15. X-Ray Source Based on the Parametric X-Rays

    E-Print Network [OSTI]

    Alexander Lobko; Olga Lugovskaya

    2005-09-02T23:59:59.000Z

    Prospects of parametric x-rays (PXR) application for the development of a tuneable quasi-monochromatic x-ray source for medical imaging are discussed. Analysis of basic requirements for electron accelerator shows that it must be relatively low-energy and high-current linac. In comparison with known ultra-relativistic cases, at low energies PXR properties will be modified to a great extent by multiple scattering of the electrons. PXR intensity dependence on target thickness and beam energy are calculated taking multiple scattering into account. It is concluded that PXR source based on real medical accelerators is feasible and can provide x-ray flux needful for obtaining high quality medical images.

  16. Apparatus for monitoring X-ray beam alignment

    DOE Patents [OSTI]

    Steinmeyer, P.A.

    1991-10-08T23:59:59.000Z

    A self-contained, hand-held apparatus is provided for monitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency. 2 figures.

  17. Apparatus for monitoring X-ray beam alignment

    DOE Patents [OSTI]

    Steinmeyer, Peter A. (Arvada, CO)

    1991-10-08T23:59:59.000Z

    A self-contained, hand-held apparatus is provided for minitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency.

  18. X-ray emission properties of galaxies in Abell 3128

    E-Print Network [OSTI]

    Russell J. Smith

    2003-07-15T23:59:59.000Z

    We use archival Chandra X-ray Observatory data to investigate X-ray emission from early-type galaxies in the rich z=0.06 cluster Abell 3128. By combining the X-ray count-rates from an input list of optically-selected galaxies, we obtain a statistical detection of X-ray flux, unbiased by X-ray selection limits. Using 87 galaxies with reliable Chandra data, X-ray emission is detected for galaxies down to M_B ~ -19.0, with only an upper limit determined for galaxies at M_B ~ -18.3. The ratio of X-ray to optical luminosities is consistent with recent determinations of the low-mass X-ray binary content of nearby elliptical galaxies. Taken individually, in contrast, we detect significant (3sigma) flux for only six galaxies. Of these, one is a foreground galaxy, while two are optically-faint galaxies with X-ray hardness ratios characteristic of active galactic nuclei. The remaining three detected galaxies are amongst the optically-brightest cluster members, and have softer X-ray spectra. Their X-ray flux is higher than that expected from X-ray binaries, by a factor 2-10; the excess suggests these galaxies have retained their hot gaseous haloes. The source with the highest L_X / L_B ratio is of unusual optical morphology with prominent sharp-edged shells. Notwithstanding these few exceptions, the cluster population overall exhibits X-ray properties consistent with their emission being dominated by X-ray binaries. We conclude that in rich cluster environments, interaction with the ambient intra-cluster medium acts to strip most galaxies of their hot halo gas.

  19. X-ray generation using carbon nanotubes

    E-Print Network [OSTI]

    Parmee, Richard J.; Collins, Clare M.; Milne, William I.; Cole, Matthew T.

    2015-01-06T23:59:59.000Z

    of these sys- tems are illustrated in Figure 2(b) also outlines the principle mode of operation. Here, sealed in an inexpensive and eas- ily fabricated evacuated glass or ceramic envelope, the elec- trons are liberated from a metallic filament, often made... - ment of CNT-based FE sources is provided in [152]. Here we provide a condensed review of the progress, as it pertains to X-ray sources, since then. CNTs have some of the highest attainable aspect ratios, high thermal conductivity, low chemical...

  20. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LawrenceE C H NLensless X-Ray Imaging in