Sample records for x-ray energy resolution

  1. Spatial resolution of synchrotron x-ray microtomography in high energy range: Effect of x-ray energy and sample-to-detector distance

    SciTech Connect (OSTI)

    Seo, D.; Tomizato, F.; Toda, H.; Kobayashi, M. [Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Uesugi, K.; Takeuchi, A.; Suzuki, Y. [Japan Synchrotron Radiation Research Institute, Mikazuki, Sayo, Hyogo 679-5198 (Japan)

    2012-12-24T23:59:59.000Z

    Spatial resolution of three-dimensional images obtained by synchrotron X-ray microtomography technique is evaluated using cyclic bar patterns machined on a steel wire. Influences of X-ray energy and the sample-to-detector distance on spatial resolution were investigated. High X-ray energies of 33-78 keV are applied due to the high X-ray absorption of transition metals. Best spatial resolution of about 1.2 {mu}m pitch was observed at the sample-to-detector distance range of 20-110 mm and at the energy range of 68-78 keV. Several factors such as X-ray scattering and diffraction phenomena affecting the degradation of spatial resolution are also discussed.

  2. High resolution energy-sensitive digital X-ray

    DOE Patents [OSTI]

    Nygren, David R. (Berkeley, CA)

    1995-01-01T23:59:59.000Z

    An apparatus and method for detecting an x-ray and for determining the depth of penetration of an x-ray into a semiconductor strip detector. In one embodiment, a semiconductor strip detector formed of semiconductor material is disposed in an edge-on orientation towards an x-ray source such that x-rays From the x-ray source are incident upon and substantially perpendicular to the front edge of the semiconductor strip detector. The semiconductor strip detector is formed of a plurality of segments. The segments are coupled together in a collinear arrangement such that the semiconductor strip detector has a length great enough such that substantially all of the x-rays incident on the front edge of the semiconductor strip detector interact with the semiconductor material which forms the semiconductor strip detector. A plurality of electrodes are connected to the semiconductor strip detect or such that each one of the of semiconductor strip detector segments has at least one of the of electrodes coupled thereto. A signal processor is also coupled to each one of the electrodes. The present detector detects an interaction within the semiconductor strip detector, between an x-ray and the semiconductor material, and also indicates the depth of penetration of the x-ray into the semiconductor strip detector at the time of the interaction.

  3. Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments

    SciTech Connect (OSTI)

    Hill, K. W., E-mail: khill@pppl.gov; Bitter, M.; Delgado-Aparacio, L.; Efthimion, P.; Pablant, N. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Lu, J. [Key Laboratory of Optoelectronic Technology and System of Ministry of Education, Chongqing University, Chongqing 400030 (China); Beiersdorfer, P.; Chen, H.; Magee, E. [Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-11-15T23:59:59.000Z

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/?E of order 10?000 and spatial resolution better than 10 ?m. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

  4. Broadband high resolution X-ray spectral analyzer

    DOE Patents [OSTI]

    Silver, E.H.; Legros, M.; Madden, N.W.; Goulding, F.; Landis, D.

    1998-07-07T23:59:59.000Z

    A broad bandwidth high resolution X-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces X-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available X-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for X-ray microanalysis or in research applications such as laboratory and astrophysical X-ray and particle spectroscopy. 6 figs.

  5. Broadband high resolution X-ray spectral analyzer

    DOE Patents [OSTI]

    Silver, Eric H. (Berkeley, CA); Legros, Mark (Berkeley, CA); Madden, Norm W. (Livermore, CA); Goulding, Fred (Lafayette, CA); Landis, Don (Pinole, CA)

    1998-01-01T23:59:59.000Z

    A broad bandwidth high resolution x-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces x-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available x-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for x-ray microanalysis or in research applications such as laboratory and astrophysical x-ray and particle spectroscopy.

  6. An alternative scheme of angular-dispersion analyzers for high-resolution medium-energy inelastic X-ray scattering

    E-Print Network [OSTI]

    Huang, Xian-Rong

    2011-01-01T23:59:59.000Z

    The development of medium-energy inelastic X-ray scattering (IXS) optics with meV and sub-meV resolution has attracted considerable efforts in recent years. Meanwhile, there are also concerns or debates about the fundamental and feasibility of the involved schemes. Here the central optical component, the back-reflection angular-dispersion monochromator or analyzer, is analyzed. The results show that the multiple-beam diffraction effect together with transmission-induced absorption can noticeably reduce the diffraction efficiency, although it may not be a fatal threat. In order to improve the efficiency, a simple four-bounce analyzer is proposed that completely avoids these two adverse effects. The new scheme is illustrated to be a feasible alternative approach for developing meV- to sub-meV-resolution IXS spectroscopy.

  7. High-resolution X-ray spectroscopy of Theta Car

    E-Print Network [OSTI]

    Yael Naze; Gregor Rauw

    2008-08-25T23:59:59.000Z

    Context : The peculiar hot star Theta Car in the open cluster IC2602 is a blue straggler as well as a single-line binary of short period (2.2d). Aims : Its high-energy properties are not well known, though X-rays can provide useful constraints on the energetic processes at work in binaries as well as in peculiar, single objects. Methods : We present the analysis of a 50ks exposure taken with the XMM-Newton observatory. It provides medium as well as high-resolution spectroscopy. Results : Our high-resolution spectroscopy analysis reveals a very soft spectrum with multiple temperature components (1--6MK) and an X-ray flux slightly below the `canonical' value (log[L_X(0.1-10.)/L_{BOL}] ~ -7). The X-ray lines appear surprisingly narrow and unshifted, reminiscent of those of beta Cru and tau Sco. Their relative intensities confirm the anomalous abundances detected in the optical domain (C strongly depleted, N strongly enriched, O slightly depleted). In addition, the X-ray data favor a slight depletion in neon and iron, but they are less conclusive for the magnesium abundance (solar-like?). While no significant changes occur during the XMM-Newton observation, variability in the X-ray domain is detected on the long-term range. The formation radius of the X-ray emission is loosely constrained to <5 R_sol, which allows for a range of models (wind-shock, corona, magnetic confinement,...) though not all of them can be reconciled with the softness of the spectrum and the narrowness of the lines.

  8. Advances in the Detection of As in Environmental Samples Using Low Energy X-ray Fluorescence in a Scanning Transmission X-ray

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    X-ray emission (PIXE),4 or energy dispersive X-ray (EDX) spectrometry in scanning or transmission XAdvances in the Detection of As in Environmental Samples Using Low Energy X-ray Fluorescence at high spatial resolution is needed in many areas of geobiochemistry and environmental science. Scanning

  9. Optimization of future high-resolution X-ray instrumentation in astrophysics

    E-Print Network [OSTI]

    Zajczyk, Anna; Dowkontt, Paul; Guo, Qingzhen; Kislat, Fabian; Krawczynski, Henric; De Geronimo, Gianluigi; Li, Shaorui; Beilicke, Matthias

    2015-01-01T23:59:59.000Z

    Cadmium Zinc Telluride and Cadmium Telluride are the detector materials of choice for the detection of X-rays in the X-ray energy band E >= 5keV with excellent spatial and spectral resolution and without cryogenic cooling. Owing to recent breakthroughs in grazing incidence mirror technology, next-generation hard X-ray telescopes will achieve angular resolution between 5 and 10 arc seconds - about an order of magnitude better than that of the NuSTAR hard X-ray telescope. As a consequence, the next generation of X-ray telescopes will require pixelated X-ray detectors with pixels on a grid with a lattice constant of <= 250um. Additional detector requirements include a low energy threshold of less than 5keV and an energy resolution of less than one keV. The science drivers for a high angular-resolution X-ray mission include studies and measurements of black hole spins, the cosmic evolution of super-massive black holes, active galactic nuclei feedback, and the behaviour of matter at very high densities. In this...

  10. Energy resolved X-ray grating interferometry

    SciTech Connect (OSTI)

    Thuering, T.; Stampanoni, M. [Swiss Light Source, Paul Scherrer Institut, Villigen PSI (Switzerland) [Swiss Light Source, Paul Scherrer Institut, Villigen PSI (Switzerland); Institute for Biomedical Engineering, Swiss Federal Institute of Technology, Zurich (Switzerland); Barber, W. C.; Iwanczyk, J. S. [DxRay, Inc., Northridge, California 91324 (United States)] [DxRay, Inc., Northridge, California 91324 (United States); Seo, Y.; Alhassen, F. [UCSF Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143 (United States)] [UCSF Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143 (United States)

    2013-05-13T23:59:59.000Z

    Although compatible with polychromatic radiation, the sensitivity in X-ray phase contrast imaging with a grating interferometer is strongly dependent on the X-ray spectrum. We used an energy resolving detector to quantitatively investigate the dependency of the noise from the spectral bandwidth and to consequently optimize the system-by selecting the best energy band matching the experimental conditions-with respect to sensitivity maximization and, eventually, dose. Further, since theoretical calculations of the spectrum are usually limited due to non-ideal conditions, an energy resolving detector accurately quantifies the spectral changes induced by the interferometer including flux reduction and beam hardening.

  11. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stephano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-04-20T23:59:59.000Z

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the ?-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane andmore »freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.« less

  12. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nelson, Johanna [Stony Brook Univ., Stony Brook, NY (United States); Huang, Xiaojing [Stony Brook Univ., Stony Brook, NY (United States); Steinbrener, Jan [Stony Brook Univ., Stony Brook, NY (United States); Shapiro, David [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source; Kirz, Janos [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source; Marchesini, Stephano [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source; Neiman, Aaron M. [Northwestern Univ., Evanston, IL (United States); Turner, Joshua J. [Stony Brook Univ., Stony Brook, NY (United States); Jacobsen, Chris [Stony Brook Univ., Stony Brook, NY (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source

    2010-04-20T23:59:59.000Z

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the ?-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.

  13. High-resolution radio observations of X-ray binaries

    E-Print Network [OSTI]

    James Miller-Jones

    2008-09-15T23:59:59.000Z

    I present an overview of important results obtained using high-resolution very long baseline interferometry (VLBI) observations of X-ray binary systems. These results derive from both astrometric observations and resolved imaging of sources, from black holes to neutron star and even white dwarf systems. I outline a number of upcoming developments in instrumentation, both new facilities and ongoing upgrades to existing VLBI instruments, and I conclude by identifying a number of important areas of investigation where VLBI will be crucial in advancing our understanding of X-ray binaries.

  14. Chandra High Resolution X-ray Spectroscopy of AM Her

    E-Print Network [OSTI]

    V. Girish; V. R. Rana; K. P. Singh

    2007-02-14T23:59:59.000Z

    We present the results of high resolution spectroscopy of the prototype polar AM Herculis observed with Chandra High Energy Transmission Grating. The X-ray spectrum contains hydrogen-like and helium-like lines of Fe, S, Si, Mg, Ne and O with several Fe L-shell emission lines. The forbidden lines in the spectrum are generally weak whereas the hydrogen-like lines are stronger suggesting that emission from a multi-temperature, collisionally ionized plasma dominates. The helium-like line flux ratios yield a plasma temperature of 2 MK and a plasma density 1 - 9 x10^12 cm^-3, whereas the line flux ratio of Fe XXVI to Fe XXV gives an ionization temperature of 12.4 +1.1 -1.4 keV. We present the differential emission measure distribution of AM Her whose shape is consistent with the volume emission measure obtained by multi-temperature APEC model. The multi-temperature plasma model fit to the average X-ray spectrum indicates the mass of the white dwarf to be ~1.15 M_sun. From phase resolved spectroscopy, we find the line centers of Mg XII, S XVI, resonance line of Fe XXV, and Fe XXVI emission modulated by a few hundred to 1000 km/s from the theoretically expected values indicating bulk motion of ionized matter in the accretion column of AM Her. The observed velocities of Fe XXVI ions are close to the expected shock velocity for a 0.6 M_sun white dwarf. The observed velocity modulation is consistent with that expected from a single pole accreting binary system.

  15. A portable high-resolution soft x-ray and extreme ultraviolet spectrometer designed for the Shanghai EBIT and the Shanghai low energy EBITs

    SciTech Connect (OSTI)

    Shi, Zhan; Zhao, Ruifeng; Li, Wenxian; Tu, Bingsheng; Yang, Yang, E-mail: yangyang@fudan.edu.cn; Xiao, Jun; Hutton, Roger; Zou, Yaming [EBIT Laboratory, Institute of Modern Physics, Fudan University, Shanghai 200433 (China); The Key Laboratory of Applied Ion Beam Physics (Ministry of Education), Fudan University, Shanghai 200433 (China); Huldt, Sven [Lund Observatory, Lund University, Lund SE-22100 (Sweden)

    2014-06-15T23:59:59.000Z

    A portable high resolution soft x-ray and extreme ultraviolet (EUV) spectrometer has been developed for spectroscopic research at the Shanghai Electron Beam Ion Trap (EBIT) laboratory. A unique way of aligning the grazing incidence spectrometer using the zero order of the grating is introduced. This method is realized by extending the range of the movement of the CCD detector to cover the zero order. The alignment can be done in a few minutes, thus leading to a portable spectrometer. The high vacuum needed to be compatible with the EBITs is reached by mounting most of the translation and rotation stages outside the chamber. Only one high vacuum compatible linear guide is mounted inside the chamber. This is to ensure the convenient interchange of the gratings needed to enable wavelength coverage of the whole range of 10 to 500 Å. Spectra recorded with one of our low energy EBITs shows that a resolving power of above 800 can be achieved. In the slitless configuration used in this work, we found the resolving power to be limited by the width of the EBIT plasma. When mounted on the Shanghai EBIT which is a high energy EBIT and has a narrower EBIT plasma width, the estimated resolving power will be around 1400 at 221.15 Å.

  16. Ultra-high Resolution Optics for EUV and Soft X-ray Inelastic Scattering

    E-Print Network [OSTI]

    Voronov, Dmitry L.

    2010-01-01T23:59:59.000Z

    16. Yu. Shvyd’ko, X-Ray Optics, Berlin: Springer-Verlag,Ultra-high Resolution Optics for EUV and Soft X-rayspectral resolution soft x-ray optics. Conventionally in the

  17. Final report: high resolution lensless 3D imaging of nanostructures with coherent x-rays

    SciTech Connect (OSTI)

    Jacobsen, Chris

    2014-12-07T23:59:59.000Z

    Final report on the project "High resolution lensless 3D imaging of nanostructures with coherent x-rays"

  18. Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas

    SciTech Connect (OSTI)

    Hill, K W; Broennimann, Ch; Eikenberry, E F; Ince-Cushman, A; Lee, S G; Rice, J E; Scott, S

    2008-02-27T23:59:59.000Z

    A new imaging high resolution x-ray crystal spectrometer (XCS) has been developed to measure continuous profiles of ion temperature and rotation velocity in fusion plasmas. Following proof-of-principle tests on the Alcator C-Mod tokamak and the NSTX spherical tokamak, and successful testing of a new silicon, pixilated detector with 1MHz count rate capability per pixel, an imaging XCS is being designed to measure full profiles of Ti and v? on C-Mod. The imaging XCS design has also been adopted for ITER. Ion-temperature uncertainty and minimum measurable rotation velocity are calculated for the C-Mod spectrometer. The affects of x-ray and nuclear-radiation background on the measurement uncertainties are calculated to predict performance on ITER.

  19. Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas

    SciTech Connect (OSTI)

    Hill, K W; Broennimann, Ch; Eikenberry, E F; Ince-Cushman, A; Lee, S G; Rice, J E; Scott, S

    2008-01-29T23:59:59.000Z

    A new imaging high resolution x-ray crystal spectrometer (XCS) has been developed to measure continuous profiles of ion temperature and rotation velocity in fusion plasmas. Following proof-of-principle tests on the Alcator C-Mod tokamak and the NSTX spherical tokamak, and successful testing of a new silicon, pixilated detector with 1 MHz count rate capability per pixel, an imaging XCS is being designed to measure full profiles of Ti and v? on C-Mod. The imaging XCS design has also been adopted for ITER. Ion-temperature uncertainty and minimum measurable rotation velocity are calculated for the C-Mod spectrometer. The affects of x-ray and uclear-radiation background on the measurement uncertainties are calculated to predict performance on ITER.

  20. Dose, exposure time, and resolution in Serial X-ray Crystallography

    SciTech Connect (OSTI)

    Starodub, D; Rez, P; Hembree, G; Howells, M; Shapiro, D; Chapman, H N; Fromme, P; Schmidt, K; Weierstall, U; Doak, R B; Spence, J C

    2007-03-22T23:59:59.000Z

    Using detailed simulation and analytical models, the exposure time is estimated for serial crystallography, where hydrated laser-aligned proteins are sprayed across a continuous synchrotron beam. The resolution of X-ray diffraction microscopy is limited by the maximum dose that can be delivered prior to sample damage. In the proposed Serial Crystallography method, the damage problem is addressed by distributing the total dose over many identical hydrated macromolecules running continuously in a single-file train across a continuous X-ray beam, and resolution is then limited only by the available fluxes of molecules and X-rays. Orientation of the diffracting molecules is achieved by laser alignment. We evaluate the incident X-ray fluence (energy/area) required to obtain a given resolution from (1) an analytical model, giving the count rate at the maximum scattering angle for a model protein, (2) explicit simulation of diffraction patterns for a GroEL-GroES protein complex, and (3) the frequency cut off of the transfer function following iterative solution of the phase problem, and reconstruction of a density map in the projection approximation. These calculations include counting shot noise and multiple starts of the phasing algorithm. The results indicate the number of proteins needed within the beam at any instant for a given resolution and X-ray flux. We confirm an inverse fourth power dependence of exposure time on resolution, with important implications for all coherent X-ray imaging. We find that multiple single-file protein beams will be needed for sub-nanometer resolution on current third generation synchrotrons, but not on fourth generation designs, where reconstruction of secondary protein structure at a resolution of 7 {angstrom} should be possible with short (below 100 s) exposures.

  1. Ion implantation for figure correction of high-resolution x-ray telescope mirrors

    E-Print Network [OSTI]

    Chalifoux, Brandon D

    2014-01-01T23:59:59.000Z

    Fabricating mirrors for future high-resolution, large-aperture x-ray telescopes continues to challenge the x-ray astronomy instrumentation community. Building a large-aperture telescope requires thin, lightweight mirrors; ...

  2. Using X-ray computed tomography in pore structure characterization for a Berea sandstone: Resolution effect

    E-Print Network [OSTI]

    Hu, Qinhong "Max"

    Using X-ray computed tomography in pore structure characterization for a Berea sandstone Keywords: XCT Pore structure characterization Resolution effect MIP s u m m a r y X-ray computed tomography electron microscopy (Ioannidis et al., 1996), X-ray computed tomography (XCT) with either conventional

  3. Cryogenic, high-resolution x-ray detector with high count rate capability

    DOE Patents [OSTI]

    Frank, Matthias (Oakland, CA); Mears, Carl A. (Windsor, CA); Labov, Simon E. (Berkeley, CA); Hiller, Larry J. (Livermore, CA); Barfknecht, Andrew T. (Menlo Park, CA)

    2003-03-04T23:59:59.000Z

    A cryogenic, high-resolution X-ray detector with high count rate capability has been invented. The new X-ray detector is based on superconducting tunnel junctions (STJs), and operates without thermal stabilization at or below 500 mK. The X-ray detector exhibits good resolution (.about.5-20 eV FWHM) for soft X-rays in the keV region, and is capable of counting at count rates of more than 20,000 counts per second (cps). Simple, FET-based charge amplifiers, current amplifiers, or conventional spectroscopy shaping amplifiers can provide the electronic readout of this X-ray detector.

  4. High Resolution X-Ray Scattering at Sector 3, Advanced Photon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    about 1 meV resolution; momentum resolved inelastic x-ray scattering with about 1 meV resolution (HERIX); Synchrotron Mossbauer spectroscopy with about 10 neV resolution (SMS)....

  5. Performance enhancement approaches for a dual energy x-ray

    E-Print Network [OSTI]

    Fu, Kenneth

    2010-01-01T23:59:59.000Z

    Evans, J.P.O. , “Stereoscopic dual energy imaging for targetCrawford, C.R. , “Dual Energy Volumetric X-ray Tomographicimages in 4–10 MeV Dual- energy customs system for material

  6. In situ X-ray Characterization of Energy Storage Materials |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-ray Characterization of Energy Storage Materials Tuesday, July 9, 2013 - 11:00am SLAC, Conference Room 137-322 Presented by Johanna Nelson, Stanford Postdoctoral Scholar, SSRL...

  7. Dimensionality and noise in energy selective x-ray imaging

    SciTech Connect (OSTI)

    Alvarez, Robert E. [Aprend Technology, Mountain View, California 94043 (United States)] [Aprend Technology, Mountain View, California 94043 (United States)

    2013-11-15T23:59:59.000Z

    Purpose: To develop and test a method to quantify the effect of dimensionality on the noise in energy selective x-ray imaging.Methods: The Cramèr-Rao lower bound (CRLB), a universal lower limit of the covariance of any unbiased estimator, is used to quantify the noise. It is shown that increasing dimensionality always increases, or at best leaves the same, the variance. An analytic formula for the increase in variance in an energy selective x-ray system is derived. The formula is used to gain insight into the dependence of the increase in variance on the properties of the additional basis functions, the measurement noise covariance, and the source spectrum. The formula is also used with computer simulations to quantify the dependence of the additional variance on these factors. Simulated images of an object with three materials are used to demonstrate the trade-off of increased information with dimensionality and noise. The images are computed from energy selective data with a maximum likelihood estimator.Results: The increase in variance depends most importantly on the dimension and on the properties of the additional basis functions. With the attenuation coefficients of cortical bone, soft tissue, and adipose tissue as the basis functions, the increase in variance of the bone component from two to three dimensions is 1.4 × 10{sup 3}. With the soft tissue component, it is 2.7 × 10{sup 4}. If the attenuation coefficient of a high atomic number contrast agent is used as the third basis function, there is only a slight increase in the variance from two to three basis functions, 1.03 and 7.4 for the bone and soft tissue components, respectively. The changes in spectrum shape with beam hardening also have a substantial effect. They increase the variance by a factor of approximately 200 for the bone component and 220 for the soft tissue component as the soft tissue object thickness increases from 1 to 30 cm. Decreasing the energy resolution of the detectors increases the variance of the bone component markedly with three dimension processing, approximately a factor of 25 as the resolution decreases from 100 to 3 bins. The increase with two dimension processing for adipose tissue is a factor of two and with the contrast agent as the third material for two or three dimensions is also a factor of two for both components. The simulated images show that a maximum likelihood estimator can be used to process energy selective x-ray data to produce images with noise close to the CRLB.Conclusions: The method presented can be used to compute the effects of the object attenuation coefficients and the x-ray system properties on the relationship of dimensionality and noise in energy selective x-ray imaging systems.

  8. Using X-ray computed tomography in hydrology: systems, resolutions, and limitations

    E-Print Network [OSTI]

    Wildenschild, Dorthe

    Using X-ray computed tomography in hydrology: systems, resolutions, and limitations D to characterize phase distribution and pore geometry in porous media using non-destructive X-ray computed tomography (CT). We present qualitative and quantitative CT results for partially saturated media, obtained

  9. X-ray pulse preserving single-shot optical cross-correlation method for improved experimental temporal resolution

    SciTech Connect (OSTI)

    Beye, M. [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, 12489 Berlin (Germany); Krupin, O. [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); European XFEL GmbH, 22607 Hamburg (Germany); Hays, G.; Jong, S. de; Lee, S.; Coffee, R.; Holmes, M. R.; Fry, A. R.; White, W. E.; Bostedt, C.; Schlotter, W. F. [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Reid, A. H. [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Radboud University Nijmegen, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands); Rupp, D. [Technische Universitaet Berlin, 10623 Berlin (Germany); LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Lee, W.-S.; Scherz, A. O. [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Chuang, Y.-D. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Cryan, J. P.; Glownia, J. M. [PULSE, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Foehlisch, A. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, 12489 Berlin (Germany); Durr, H. A. [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); PULSE, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2012-03-19T23:59:59.000Z

    We measured the relative arrival time between an optical pulse and a soft x-ray pulse from a free-electron laser. This femtosecond cross-correlation measurement was achieved by observing the change in optical reflectivity induced through the absorption of a fraction of the x-ray pulse. The main x-ray pulse energy remained available for an independent pump-probe experiment where the sample may be opaque to soft x-rays. The method was employed to correct the two-pulse delay data from a canonical pump-probe experiment and demonstrate 130 {+-} 20 fs (FWHM) temporal resolution. We further analyze possible timing jitter sources and point to future improvements.

  10. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C.; et al

    2006-01-01T23:59:59.000Z

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore »resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less

  11. High-resolution ab initio Three-dimensional X-ray Diffraction Microscopy

    SciTech Connect (OSTI)

    Chapman, H N; Barty, A; Marchesini, S; Noy, A; Cui, C; Howells, M R; Rosen, R; He, H; Spence, J H; Weierstall, U; Beetz, T; Jacobsen, C; Shapiro, D

    2005-08-19T23:59:59.000Z

    Coherent X-ray diffraction microscopy is a method of imaging non-periodic isolated objects at resolutions only limited, in principle, by the largest scattering angles recorded. We demonstrate X-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the 3D diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a non-periodic object. We also construct 2D images of thick objects with infinite depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution using X-ray undulator radiation, and establishes the techniques to be used in atomic-resolution ultrafast imaging at X-ray free-electron laser sources.

  12. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C.; Weierstall, Uwe; Beetz, Tobias; Jacobsen, Chris; Shapiro, David

    2006-01-01T23:59:59.000Z

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.

  13. HIGH-RESOLUTION X-RAY SPECTROSCOPY OF THE MULTIPHASE INTERSTELLAR MEDIUM TOWARD Cyg X-2

    E-Print Network [OSTI]

    Schulz, Norbert S.

    High-resolution X-ray absorption spectroscopy is a powerful diagnostic tool for probing chemical and physical properties of the interstellar medium (ISM) at various phases. We present detections of K transition absorption ...

  14. Simultaneous High-Resolution 2-Dimensional Spatial and 1-Dimensional Picosecond Streaked X-ray Pinhole Imaging

    SciTech Connect (OSTI)

    Steel, A B; Nagel, S R; Dunn, J; Baldis, H A

    2012-05-03T23:59:59.000Z

    A Kentech x-ray streak camera was run at the LLNL Compact Multipulse Terawatt (COMET) laser to record simultaneous space- and time-resolved measurements of picosecond laser-produced plasmas. Four different x-ray energy channels were monitored using broad-band filters to record the time history of Cu targets heated at irradiances of 10{sup 16} - 10{sup 19} W/cm{sup 2}. Through the Cu filter channel, a time-resolution below 3ps was obtained. Additionally, an array of 10 {micro}m diameter pinholes was placed in front of the camera to produce multiple time-resolved x-ray images on the photocathode and time-integrated images on the phosphor with 10 and 15 times magnification, respectively, with spatial resolution of <13 {micro}m.

  15. High resolution, high rate x-ray spectrometer

    DOE Patents [OSTI]

    Goulding, F.S.; Landis, D.A.

    1983-07-14T23:59:59.000Z

    It is an object of the invention to provide a pulse processing system for use with detected signals of a wide dynamic range which is capable of very high counting rates, with high throughput, with excellent energy resolution and a high signal-to-noise ratio. It is a further object to provide a pulse processing system wherein the fast channel resolving time is quite short and substantially independent of the energy of the detected signals. Another object is to provide a pulse processing system having a pile-up rejector circuit which will allow the maximum number of non-interfering pulses to be passed to the output. It is also an object of the invention to provide new methods for generating substantially symmetrically triangular pulses for use in both the main and fast channels of a pulse processing system.

  16. The color of X-rays Spectral X-ray computed tomography using energy sensitive pixel detectors

    E-Print Network [OSTI]

    Schioppa, Enrico Junior

    Energy sensitive X-ray imaging detectors are produced by connecting a semiconductor sensor to a spectroscopic pixel readout chip. In this thesis, the applicability of such detectors to X-ray Computed Tomography (CT) is studied. A prototype Medipix based silicon detector is calibrated using X-ray fluorescence. The charge transport properties of the sensor are characterized using a high energy beam of charged particles at the Super Proton Synchrotron (SPS) at the European Center for Nuclear Research (CERN). Monochromatic X-rays at the European Synchrotron Radiation Facility (ESRF) are used to determined the energy response function. These data are used to implement a physics-based CT projection operator that accounts for the transmission of the source spectrum through the sample and detector effects. Based on this projection operator, an iterative spectral CT reconstruction algorithm is developed by extending an Ordered Subset Expectation Maximization (OSEM) method. Subsequently, a maximum likelihood based algo...

  17. High-energy x-ray diffractometer for nondestructive strain depth profile measurement

    SciTech Connect (OSTI)

    Al-Shorman, M. Y. [Department of Physics, Yarmouk University, 21163 Irbid (Jordan)] [Department of Physics, Yarmouk University, 21163 Irbid (Jordan); Jensen, T. C.; Gray, J. N. [Center for Nondestructive Evaluation, Iowa State University, Ames, Iowa 50011 (United States)] [Center for Nondestructive Evaluation, Iowa State University, Ames, Iowa 50011 (United States)

    2013-12-15T23:59:59.000Z

    We describe a lab-based high-energy x-ray diffraction system and a new approach to nondestructively measuring strain profiles in polycrystalline samples. This technique utilizes the tungsten K{sub ?1} characteristic radiation from a standard industrial x-ray tube. We introduce a simulation model that is used to determine strain values from data collected with this system. Examples of depth profiling are shown for shot peened aluminum and titanium samples. Profiles to 1 mm depth in aluminum and 300 ?m depth in titanium with a depth resolution of 20 ?m are presented.

  18. High resolution, high rate X-ray spectrometer

    DOE Patents [OSTI]

    Goulding, Frederick S. (Lafayette, CA); Landis, Donald A. (Pinole, CA)

    1987-01-01T23:59:59.000Z

    A pulse processing system (10) for use in an X-ray spectrometer in which a ain channel pulse shaper (12) and a fast channel pulse shaper (13) each produce a substantially symmetrical triangular pulse (f, p) for each event detected by the spectrometer, with the pulse width of the pulses being substantially independent of the magnitude of the detected event and with the pulse width of the fast pulses (p) being substantially shorter than the pulse width of the main channel pulses (f). A pile-up rejector circuit (19) allows output pulses to be generated, with amplitudes linearly related to the magnitude of the detected events, whenever the peak of a main channel pulse (f) is not affected by a preceding or succeeding main channel pulse, while inhibiting output pulses wherein peak magnitudes of main channel pulses are affected by adjacent pulses. The substantially symmetrical triangular main channel pulses (f) are generated by the weighted addition (27-31) of successive RC integrations (24, 25, 26) of an RC differentiated step wave (23). The substantially symmetrical triangular fast channel pulses (p) are generated by the RC integration ( 43) of a bipolar pulse (o) in which the amplitude of the second half is 1/e that of the first half, with the RC time constant of integration being equal to one-half the width of the bipolar pulse.

  19. X-ray Observations of Galaxies: The Importance of Deep High-Resolution Observations

    E-Print Network [OSTI]

    G. Fabbiano

    2007-11-30T23:59:59.000Z

    X-ray observations of galaxies have grown from a curiosity into a full-fledged field of astronomy. These observations provide unique information on black holes, binary stars, and the hot phase of the ISM, which can be used to constrain the chemical evolution of the Universe, and the joint evolution of galaxies and massive black holes. These exciting results are due in large part to the high-resolution capability of {\\it Chandra}. To follow on {\\it Chandra} and push forward this science past the present capabilities, our community must build a high-resolution (sub-arcsecond) large-area (several square meters) X-ray telescope.

  20. Attenuation of high-energy x rays by iron shielding

    SciTech Connect (OSTI)

    Bespalov, V.I.; Chakhlov, V.L.; Shtein, M.M.

    1988-04-01T23:59:59.000Z

    Monte Carlo calculations are presented on electron-accelerator x-ray spectra for actual target thicknesses and electron energies of 4-50 MeV. Effective attenuation coefficients have been obtained as well as build-up factors for collimated beams andiron shielding of thickness form 1 to 80 cm. The radiation contrast has been determined as a function of thickness for this energy range.

  1. A High Resolution Intergalactic Explorer for the Soft X-ray/FUV

    E-Print Network [OSTI]

    Martin Elvis; Fabrizio Fiore; the CWE Team

    2003-03-19T23:59:59.000Z

    We present a mission concept for high resolution X-ray spectroscopy with a resolving power, R~6000, (c.f. R=Web'. The Cosmic Web is predicted to contain most of the normal matter (baryons) in the nearby Universe.

  2. High spatial resolution X-ray and gamma ray imaging system using diffraction crystals

    DOE Patents [OSTI]

    Smither, Robert K. (Hinsdale, IL)

    2011-05-17T23:59:59.000Z

    A method and a device for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation are provided. The device comprises a plurality of arrays, with each array comprising a plurality of elements comprising a first collimator, a diffracting crystal, a second collimator, and a detector.

  3. High-Angular-Resolution Microbeam X-Ray Diffraction with CCD Detector

    SciTech Connect (OSTI)

    Imai, Yasuhiko; Kimura, Shigeru; Sakaia, Akira [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Sakata, Osami [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 670-8531 (Japan)

    2010-04-06T23:59:59.000Z

    We have introduced a CCD-type two-dimensional X-ray detector for a microbeam X-ray diffraction system using synchrotron radiation, so that we can measure local reciprocal space maps (RSM) of samples rapidly. A local RSM of a strain-relaxed SiGe 004 grown on a Si (001) substrate was measured in higher-angular-resolution and faster than a conventional way. The measurement was achieved in 1 h 40 min. with the 2theta resolution of 80 murad and the spatial resolution of 1.4(h)x0.5(v) {mu}m{sup 2}. The introduction of the CCD enabled us to measure RSMs at many points in a sample, that is, the distribution of strain fields and lattice tilts can be revealed in high-angular- and high-spatial-resolution.

  4. High resolution x-ray lensless imaging by differential holographic encoding

    SciTech Connect (OSTI)

    Zhu, D.; Guizar-Sicairos, M.; Wu, B.; Scherz, A.; Acremann, Y.; Tylisczcak, T.; Fischer, P.; Friedenberger, N.; Ollefs, K.; Farle, M.; Fienup, J. R.; Stohr, J.

    2009-11-02T23:59:59.000Z

    X-ray free electron lasers (X-FEL{sub s}) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by splitand-delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with stateof- the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  5. Streaked spectrometry using multilayer x-ray-interference mirrors to investigate energy transport in laser-plasma applications

    SciTech Connect (OSTI)

    Stradling, G.L.; Barbee, T.W. Jr.; Henke, B.L.; Campbell, E.M.; Mead, W.C.

    1981-08-01T23:59:59.000Z

    Transport of energy in laser-produced plasmas is scrutinized by devising spectrally and temporally identifiable characteristics in the x-ray emission history which identify the heat-front position at various times in the heating process. Measurements of the relative turn-on times of these characteristics show the rate of energy transport between various points. These measurements can in turn constrain models of energy transport phenomena. We are time-resolving spectrally distinguishable subkilovolt x-ray emissions from different layers of a disk target to examine the transport rate of energy into the target. A similar technique is used to measure the lateral expansion rate of the plasma spot. A soft x-ray streak camera with 15-psec temporal resolution is used to make the temporal measurements. Spectral discrimination of the incident signal is provided by multilayer x-ray interference mirrors.

  6. Absolute pulse energy measurements of soft x-rays at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tiedtke, K.; Sorokin, A. A.; Jastrow, U.; Jurani?, P.; Kreis, S.; Gerken, N.; Richter, M.; Arp, U.; Feng, Y.; Nordlund, D.; et al

    2014-01-01T23:59:59.000Z

    This paper reports novel measurements of x-ray optical radiation on an absolute scale from the intense and ultra-short radiation generated in the soft x-ray regime of a free electron laser. We give a brief description of the detection principle for radiation measurements which was specifically adapted for this photon energy range. We present data characterizing the soft x-ray instrument at the Linac Coherent Light Source (LCLS) with respect to the radiant power output and transmission by using an absolute detector temporarily placed at the downstream end of the instrument. This provides an estimation of the reflectivity of all x-ray opticalmore »elements in the beamline and provides the absolute photon number per bandwidth per pulse. This parameter is important for many experiments that need to understand the trade-offs between high energy resolution and high flux, such as experiments focused on studying materials via resonant processes. Furthermore, the results are compared with the LCLS diagnostic gas detectors to test the limits of linearity, and observations are reported on radiation contamination from spontaneous undulator radiation and higher harmonic content.« less

  7. Regularized energy-dependent solar flare hard x-ray spectral index

    E-Print Network [OSTI]

    Eduard P. Kontar; Alexander L. MacKinnon

    2005-06-05T23:59:59.000Z

    The deduction from solar flare X-ray photon spectroscopic data of the energy dependent model-independent spectral index is considered as an inverse problem. Using the well developed regularization approach we analyze the energy dependency of spectral index for a high resolution energy spectrum provided by Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The regularization technique produces much smoother derivatives while avoiding additional errors typical of finite differences. It is shown that observations imply a spectral index varying significantly with energy, in a way that also varies with time as the flare progresses. The implications of these findings are discussed in the solar flare context.

  8. Toward Rapid Unattended X-ray Tomography of Large Planar Samples at 50-nm Resolution

    SciTech Connect (OSTI)

    Rudati, J.; Tkachuk, A.; Gelb, J.; Hsu, G.; Feng, Y.; Pastrick, R.; Lyon, A.; Trapp, D.; Beetz, T.; Chen, S.; Hornberger, B.; Seshadri, S.; Kamath, S.; Zeng, X.; Feser, M.; Yun, W. [Xradia, Inc., Concord, California (United States); Pianetta, P.; Andrews, J.; Brennan, S. [Stanford Synchrotron Radiation Lightsource, Stanford Linear Accelerator Center, Menlo Park, California (United States); Chu, Y. S. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois (United States)] (and others)

    2009-04-19T23:59:59.000Z

    X-ray tomography at sub-50 nm resolution of small areas ({approx}15 {mu}mx15 {mu}m) are routinely performed with both laboratory and synchrotron sources. Optics and detectors for laboratory systems have been optimized to approach the theoretical efficiency limit. Limited by the availability of relatively low-brightness laboratory X-ray sources, exposure times for 3-D data sets at 50 nm resolution are still many hours up to a full day. However, for bright synchrotron sources, the use of these optimized imaging systems results in extremely short exposure times, approaching live-camera speeds at the Advanced Photon Source at Argonne National Laboratory near Chicago in the US These speeds make it possible to acquire a full tomographic dataset at 50 nm resolution in less than a minute of true X-ray exposure time. However, limits in the control and positioning system lead to large overhead that results in typical exposure times of {approx}15 min currently.We present our work on the reduction and elimination of system overhead and toward complete automation of the data acquisition process. The enhancements underway are primarily to boost the scanning rate, sample positioning speed, and illumination homogeneity to performance levels necessary for unattended tomography of large areas (many mm{sup 2} in size). We present first results on this ongoing project.

  9. PHERMEX: Pulsed High-Energy Radiographic Machine Emitting X rays

    SciTech Connect (OSTI)

    Dick, R.D.

    1981-01-01T23:59:59.000Z

    The PHERMEX facility used to provide flash radiographs of explosives and explosive-driven metal systems is described. With this facility, precision radiographs of large objects containing materials with high atomic number and high density are attainable. PHERMEX encompasses the high-current, three-cavity, 30-MeV linear electron accelerator; the 50-MHz-radiofrequency power source to drive the cavities; timing, firing, and signal detection system; and a data-acquisition system. Some unique features of PHERMEX are reliability; very intensive submicrosecond bremsstrahlung source rich in 4- to 8-MeV x rays; less than 1.0-mm-diam spot size; precision determination of edges, discontinuities, and areal-mass distribution; and flash radiographs of large explosive systems close to the x-ray target. Some aspects of the PHERMEX-upgrading program are discussed. The program will result (1) in an increased electron-beam energy to about 50 MeV, (2) the use of an electron-gun pulser that is capable of producing three time-adjustable pulses for obtaining three radiographic pictures of a single explosive event, (3) an increased electron injection energy of 1.25 MeV, (4) the capability for recording high-speed signals, and (5) the use of computers to assist the monitoring and control of the data-acquisition system and the PHERMEX accelerator.

  10. Time-resolved soft-x-ray studies of energy transport in layered and planar laser-driven targets

    SciTech Connect (OSTI)

    Stradling, G.L.

    1982-04-19T23:59:59.000Z

    New low-energy x-ray diagnostic techniques are used to explore energy-transport processes in laser heated plasmas. Streak cameras are used to provide 15-psec time-resolution measurements of subkeV x-ray emission. A very thin (50 ..mu..g/cm/sup 2/) carbon substrate provides a low-energy x-ray transparent window to the transmission photocathode of this soft x-ray streak camera. Active differential vacuum pumping of the instrument is required. The use of high-sensitivity, low secondary-electron energy-spread CsI photocathodes in x-ray streak cameras is also described. Significant increases in sensitivity with only a small and intermittant decrease in dynamic range were observed. These coherent, complementary advances in subkeV, time-resolved x-ray diagnostic capability are applied to energy-transport investigations of 1.06-..mu..m laser plasmas. Both solid disk targets of a variety of Z's as well as Be-on-Al layered-disk targets were irradiated with 700-psec laser pulses of selected intensity between 3 x 10/sup 14/ W/cm/sup 2/ and 1 x 10/sup 15/ W/cm/sup 2/.

  11. THE NUCLEAR SPECTROSCOPIC TELESCOPE ARRAY (NuSTAR) HIGH-ENERGY X-RAY MISSION

    SciTech Connect (OSTI)

    Harrison, Fiona A.; Cook, W. Rick; Forster, Karl; Grefenstette, Brian W.; Madsen, Kristin K.; Mao, Peter H.; Miyasaka, Hiromasa [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Craig, William W.; Pivovaroff, Michael J. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Hailey, Charles J.; Koglin, Jason E.; Mori, Kaya [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Zhang, William W. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Boggs, Steven E. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Stern, Daniel; Kim, Yunjin [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Giommi, Paolo; Perri, Matteo [ASI Science Data Center, c/o ESRIN, via G. Galilei, I-00044 Frascati (Italy); Kitaguchi, Takao, E-mail: fiona@srl.caltech.edu [INAF-Osservatorio Astronomico di Roma, via di Frascati 33, I-00040 Monteporzio (Italy); and others

    2013-06-20T23:59:59.000Z

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the {approx}10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to the peak epoch of galaxy assembly in the universe (at z {approx}< 2) by surveying selected regions of the sky; (2) study the population of hard X-ray-emitting compact objects in the Galaxy by mapping the central regions of the Milky Way; (3) study the non-thermal radiation in young supernova remnants, both the hard X-ray continuum and the emission from the radioactive element {sup 44}Ti; (4) observe blazars contemporaneously with ground-based radio, optical, and TeV telescopes, as well as with Fermi and Swift, to constrain the structure of AGN jets; and (5) observe line and continuum emission from core-collapse supernovae in the Local Group, and from nearby Type Ia events, to constrain explosion models. During its baseline two-year mission, NuSTAR will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6 Degree-Sign inclination orbit, the observatory has now completed commissioning, and is performing consistent with pre-launch expectations. NuSTAR is now executing its primary science mission, and with an expected orbit lifetime of 10 yr, we anticipate proposing a guest investigator program, to begin in late 2014.

  12. High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals

    DOE Patents [OSTI]

    Smither, Robert K. (Hinsdale, IL)

    2008-12-23T23:59:59.000Z

    A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.

  13. Solar coronal magnetic field topology inferred from high resolution optical and x-ray movies

    SciTech Connect (OSTI)

    Tarbell, T.; Frank, Z.; Hurlburt, N.; Morrison, M.; Shine, R.; Title, A.; Acton, L.

    1993-01-01T23:59:59.000Z

    The authors are using high resolution digital movies of solar active regions in optical and X-ray wavelengths to study solar flares and other transients. The optical movies were collected at the Swedish Solar Observatory on La Palma using the Lockheed tunable filtergraph system, in May-July, 1992. They include longitudinal and transverse magnetograms, H-alpha Doppler and intensity images at many wavelengths, Ca K, Na D, and white light images. Simultaneous X-ray images from Yohkoh are available much of the time. Several ways to establish the connectivity of some coronal magnetic field lines are being explored. Some of the clues available are: magnetic footpoint polarities and transverse field direction; H-alpha fibrils and loops seen in several wavelengths; proper motion and Dopper shifts of blobs moving along field lines; footprint brightening in micro-flares; spreading of flare ribbons during gradual phases of flares; X-ray morphology and correlations with H-alpha; and draining of flare loops. Examples of each of these will be shown on video.

  14. Taheri-Saramad x-ray detector (TSXD): A novel high spatial resolution x-ray imager based on ZnO nano scintillator wires in polycarbonate membrane

    SciTech Connect (OSTI)

    Taheri, A., E-mail: at1361@aut.ac.ir; Saramad, S.; Ghalenoei, S.; Setayeshi, S. [Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of)] [Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of)

    2014-01-15T23:59:59.000Z

    A novel x-ray imager based on ZnO nanowires is designed and fabricated. The proposed architecture is based on scintillation properties of ZnO nanostructures in a polycarbonate track-etched membrane. Because of higher refractive index of ZnO nanowire compared to the membrane, the nanowire acts as an optical fiber that prevents the generated optical photons to spread inside the detector. This effect improves the spatial resolution of the imager. The detection quantum efficiency and spatial resolution of the fabricated imager are 11% and <6.8 ?m, respectively.

  15. Implications of heavy-ion-induced satellite x-ray emission. III. Chemical effects in high resolution sulfur K/sub. cap alpha. / x-ray spectra

    SciTech Connect (OSTI)

    Vane, C.R.; Hulett, L.D. Jr.; Kahane, S.; McDaniel, F.D.; Milner, W.T.; Raman, S.; Rosseel, T.M.; Slaughter, G.G.; Varghese, S.L.; Young, J.P.

    1983-01-01T23:59:59.000Z

    High resolution (approx. 7 eV at 2.3 keV) sulfur K/sub ..cap alpha../ x-ray spectra have been obtained for a series of sulfur compound targets under heavy ion impact at the Holified Heavy Ion Facility. The spectra observed are dominated by a series of satellite peaks arising from varying degrees of L-shell ionization at the time of x-ray emission. Each spectral profile has been parameterized by a single variable p/sub L/, the apparent average L-shell ionization probability. Correlations are evident between p/sub L/ and the corresponding sulfur atom chemical environment. Much stronger correlations are however found for variations of some individual peak intensities with specific chemical parameters. Comparison of results for Ar/sup q+/ and Kr/sup q+/ projectiles shows that while L-shell ionization probability has increased, chemical sensitivity has apparently saturated.

  16. A Model-Based Iterative Algorithm for Dual-Energy X-Ray CT Reconstruction

    E-Print Network [OSTI]

    A Model-Based Iterative Algorithm for Dual-Energy X-Ray CT Reconstruction Ruoqiao Zhang, Jean, Senior Member, IEEE Abstract--Recent developments in dual-energy X-ray CT have shown a number of benefits the opportunity to reduce noise and artifacts in dual energy reconstructions. However, previous approaches

  17. SIMULATION OF ENERGY SELECTIVE X-RAY IMAGES FOR MATERIAL DIS-CRIMINATION

    E-Print Network [OSTI]

    Hickman, Mark

    SIMULATION OF ENERGY SELECTIVE X-RAY IMAGES FOR MATERIAL DIS- CRIMINATION Rune S Thing1 , Syen J Carlo model is presented to evaluate the clinical benefits of optimal energy bins in spectral X-ray imaging, using the BEAMnrc code system. While energy resolving photon counting detectors have been

  18. Interferometric phase detection at x-ray energies via Fano resonance control

    E-Print Network [OSTI]

    K. P. Heeg; C. Ott; D. Schumacher; H. -C. Wille; R. Röhlsberger; T. Pfeifer; J. Evers

    2014-11-06T23:59:59.000Z

    Modern x-ray light sources promise access to structure and dynamics of matter in largely unexplored spectral regions. However, the desired information is encoded in the light intensity and phase, whereas detectors register only the intensity. This phase problem is ubiquitous in crystallography and imaging, and impedes the exploration of quantum effects at x-ray energies. Here, we demonstrate phase-sensitive measurements characterizing the quantum state of a nuclear two-level system at hard x-ray energies. The nuclei are initially prepared in a superposition state. Subsequently, the relative phase of this superposition is interferometrically reconstructed from the emitted x-rays. Our results form a first step towards x-ray quantum state tomography, and provide new avenues for structure determination and precision metrology via x-ray Fano interference.

  19. Automatic detection of bone fragments in poultry using multi-energy x-rays

    DOE Patents [OSTI]

    Gleason, Shaun S. (Knoxville, TN); Paulus, Michael J. (Knoxville, TN); Mullens, James A. (Knoxville, TN)

    2002-04-09T23:59:59.000Z

    At least two linear arrays of x-ray detectors are placed below a conveyor belt in a poultry processing plant. Multiple-energy x-ray sources illuminate the poultry and are detected by the detectors. Laser profilometry is used to measure the poultry thickness as the x-ray data is acquired. The detector readout is processed in real time to detect the presence of small highly attenuating fragments in the poultry, i.e., bone, metal, and cartilage.

  20. TheChandraViewofRadiativeandKineticEnergyDissipationin Beyond Unification:An X-ray

    E-Print Network [OSTI]

    Evans, Dan

    optically thin corona · X-rays from Comptonization of disk photons in hot corona · Power law X-ray spectrum complex in general consists of a narrow line core, often accompanied by broadened emission · If we can Energy Transmission Gratings Spectrometer well suited · Narrow core always attributed

  1. An Exact Modeling of Signal Statistics in Energy-integrating X-ray Computed Tomography

    E-Print Network [OSTI]

    An Exact Modeling of Signal Statistics in Energy-integrating X-ray Computed Tomography Yi Fan1 used by modern computed tomography (CT) scanners and has been an interesting research topic 1. INTRODUCTION In x-ray computed tomography (CT), Poisson noise model has been widely used in noise

  2. Air Displacement Plethysmography versus Dual-Energy X-Ray Absorptiometry in Underweight, Normal-Weight, and Overweight/Obese Individuals

    E-Print Network [OSTI]

    Lowry, DW; Tomiyama, AJ

    2015-01-01T23:59:59.000Z

    SB (1993) Use of dual-energy x-ray absorp- tiometry in body-Heymsfield SB (1996) Dual-energy X-ray absorptiometry bodyPlethysmography versus Dual-Energy X-Ray Absorptiometry in

  3. Vibronic fine structure in high-resolution x-ray absorption spectra from ion-bombarded boron nitride nanotubes

    SciTech Connect (OSTI)

    Petravic, Mladen; Peter, Robert; Varasanec, Marijana [Department of Physics and Center for Micro and Nano Sciences and Technologies, University of Rijeka, 51000 Rijeka (Croatia); Li Luhua; Chen Ying [Institute for Technology Research and Innovation, Deakin University, Geelong Waurn Ponds Campus, 3217 (Australia); Cowie, Bruce C. C. [Australian Synchrotron, Clayton VIC 3168 (Australia)

    2013-05-15T23:59:59.000Z

    The authors have applied high-resolution near-edge x-ray absorption fine structure measurements around the nitrogen K-edge to study the effects of ion-bombardment on near-surface properties of boron nitride nanotubes. A notable difference has been observed between surface sensitive partial electron yield (PEY) and bulk sensitive total electron yield (TEY) fine-structure measurements. The authors assign the PEY fine structure to the coupling of excited molecular vibrational modes to electronic transitions in NO molecules trapped just below the surface. Oxidation resistance of the boron nitride nanotubes is significantly reduced by low energy ion bombardment, as broken B-N bonds are replaced by N-O bonds involving oxygen present in the surface region. In contrast to the PEY spectra, the bulk sensitive TEY measurements on as-grown samples do not exhibit any fine structure while the ion-bombarded samples show a clear vibronic signature of molecular nitrogen.

  4. Single photon energy dispersive x-ray diffraction

    SciTech Connect (OSTI)

    Higginbotham, Andrew; Patel, Shamim; Ciricosta, Orlando; Suggit, Matthew J.; Wark, Justin S. [Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)] [Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Hawreliak, James A.; Collins, Gilbert W.; Coppari, Federica; Eggert, Jon H. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Tang, Henry [Department of Earth and Planetary Science, University of California Berkeley, Berkeley, California 94720 (United States)] [Department of Earth and Planetary Science, University of California Berkeley, Berkeley, California 94720 (United States)

    2014-03-15T23:59:59.000Z

    With the pressure range accessible to laser driven compression experiments on solid material rising rapidly, new challenges in the diagnosis of samples in harsh laser environments are emerging. When driving to TPa pressures (conditions highly relevant to planetary interiors), traditional x-ray diffraction techniques are plagued by increased sources of background and noise, as well as a potential reduction in signal. In this paper we present a new diffraction diagnostic designed to record x-ray diffraction in low signal-to-noise environments. By utilising single photon counting techniques we demonstrate the ability to record diffraction patterns on nanosecond timescales, and subsequently separate, photon-by-photon, signal from background. In doing this, we mitigate many of the issues surrounding the use of high intensity lasers to drive samples to extremes of pressure, allowing for structural information to be obtained in a regime which is currently largely unexplored.

  5. A Combinational Approach to the Fusion, De-noising and Enhancement of Dual-Energy X-Ray Luggage Images

    E-Print Network [OSTI]

    Abidi, Mongi A.

    dual-energy X-ray images for better object classification and threat detection. The fusion stepA Combinational Approach to the Fusion, De-noising and Enhancement of Dual-Energy X-Ray Luggage-based noise reduction technique which is very efficient in removing background noise from fused X-ray images

  6. Fat to Muscle Ratio Measurements with Dual Energy X Ray Absorbtiometry

    E-Print Network [OSTI]

    Chen, A; Broadbent, C; Zhong, J; Dilmanian, A; Zafonte, F; Zhong, Z

    2014-01-01T23:59:59.000Z

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. An efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent in the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.

  7. Fat to muscle ratio measurements with dual energy x-ray absorbtiometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, A.; Zhong, Z.; Luo, J.; Wang, A.; Broadbent, C.; Zhong, J.; Dilmanian, F. A.; Zafonte, F.

    2015-07-01T23:59:59.000Z

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. An efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent in the fatmore »to muscle ratio could be observed with the x-ray dose of 0.001 mGy.« less

  8. Boundary displacement measurements using multi-energy soft x-rays

    SciTech Connect (OSTI)

    Tritz, K., E-mail: ktritz@pppl.gov; Stutman, D. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Diallo, A.; LeBlanc, B. P. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Sabbagh, S. [Department of Applied Physics and Mathematics, Columbia University, New York City, New York 10027 (United States)

    2014-11-15T23:59:59.000Z

    The Multi-Energy Soft X-ray (ME-SXR) system on NSTX provides radial profiles of soft X-ray emission, measured through a set of filters with varying thickness, which have been used to reconstruct the electron temperature on fast time scales (?10?kHz). In addition to this functionality, here we show that the ME-SXR system can be used to measure the boundary displacement of the NSTX plasma with a few mm spatial resolution during magnetohydrodyamic (MHD) activity. Boundary displacement measurements can serve to inform theoretical predictions of neoclassical toroidal viscosity, and will be used to investigate other edge phenomena on NSTX-U. For example, boundary measurements using filtered SXR measurements can provide information on pedestal steepness and dynamic evolution leading up to and during edge localized modes (ELMs). Future applications include an assessment of a simplified, filtered SXR edge detection system as well as its suitability for real-time non-magnetic boundary feedback for ELMs, MHD, and equilibrium position control.

  9. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography

    SciTech Connect (OSTI)

    Brun, E., E-mail: emmanuel.brun@esrf.fr [European Synchrotron Radiation Facility (ESRF), Grenoble 380000, France and Department of Physics, Ludwig-Maximilians University, Garching 85748 (Germany); Grandl, S.; Sztrókay-Gaul, A.; Gasilov, S. [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich (Germany); Barbone, G. [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Mittone, A.; Coan, P. [Department of Physics, Ludwig-Maximilians University, Garching 85748, Germany and Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich (Germany); Bravin, A. [European Synchrotron Radiation Facility (ESRF), Grenoble 380000 (France)

    2014-11-01T23:59:59.000Z

    Purpose: Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. Methods: The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure’s possible applications. Results: A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. Conclusions: The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  10. Absolute x-ray energy calibration over a wide energy range using a diffraction-based iterative method

    E-Print Network [OSTI]

    Duffy, Thomas S.

    Mineral Physics Institute, Stony Brook University, Stony Brook, New York 11794, USA 2 DepartmentAbsolute x-ray energy calibration over a wide energy range using a diffraction-based iterative;REVIEW OF SCIENTIFIC INSTRUMENTS 83, 063901 (2012) Absolute x-ray energy calibration over a wide energy

  11. X-ray bang-time and fusion reaction history at picosecond resolution using RadOptic detection

    SciTech Connect (OSTI)

    Vernon, S. P.; Lowry, M. E.; Baker, K. L.; Bennett, C. V.; Celeste, J. R.; Cerjan, C.; Haynes, S.; Hernandez, V. J.; Hsing, W. W.; LaCaille, G. A.; London, R. A.; Moran, B.; Schach von Wittenau, A.; Steele, P. T.; Stewart, R. E. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States)

    2012-10-15T23:59:59.000Z

    We report recent progress in the development of RadOptic detectors, radiation to optical converters, that rely upon x-ray absorption induced modulation of the optical refractive index of a semiconductor sensor medium to amplitude modulate an optical probe beam. The sensor temporal response is determined by the dynamics of the electron-hole pair creation and subsequent relaxation in the sensor medium. Response times of a few ps have been demonstrated in a series of experiments conducted at the LLNL Jupiter Laser Facility (JLF). This technology will enable x-ray bang-time and fusion burn-history measurements with {approx} ps resolution.

  12. Upgrades of the high resolution imaging x-ray crystal spectrometers on experimental advanced superconducting tokamak

    SciTech Connect (OSTI)

    Lu, B.; Wang, F.; Fu, J.; Li, Y.; Wan, B. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Shi, Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); National Fusion Research Institute, 52 Eoeun-Dong, Yusung-Gu, Daejeon (Korea, Republic of); Bitter, M.; Hill, K. W. [Princeton Plasma Physics Laboratory, MS37-B332, Princeton, New Jersey 08543-0451 (United States); Lee, S. G. [National Fusion Research Institute, 52 Eoeun-Dong, Yusung-Gu, Daejeon (Korea, Republic of)

    2012-10-15T23:59:59.000Z

    Two imaging x-ray crystal spectrometers, the so-called 'poloidal' and 'tangential' spectrometers, were recently implemented on experimental advanced superconducting tokamak (EAST) to provide spatially and temporally resolved impurity ion temperature (T{sub i}), electron temperature (T{sub e}) and rotation velocity profiles. They are derived from Doppler width of W line for Ti, the intensity ratio of Li-like satellites to W line for Te, and Doppler shift of W line for rotation. Each spectrometer originally consisted of a spherically curved crystal and a two-dimensional multi-wire proportional counter (MWPC) detector. Both spectrometers have now been upgraded. The layout of the tangential spectrometer was modified, since it had to be moved to a different port, and the spectrometer was equipped with two high count rate Pilatus detectors (Model 100 K) to overcome the count rate limitation of the MWPC and to improve its time resolution. The poloidal spectrometer was equipped with two spherically bent crystals to record the spectra of He-like and H-like argon simultaneously and side by side on the original MWPC. These upgrades are described, and new results from the latest EAST experimental campaign are presented.

  13. An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Howells, M.R.; Beetz, T.; Chapman, H.N.; Cui, C.; Holton, J.M.; Jacobsen, C.J.; Kirz, J.; Lima, E.; Marchesini, S.; Miao, H.; et al

    2009-03-01T23:59:59.000Z

    X-ray diffraction microscopy (XDM) is a new form of x-ray imaging that is being practiced at several third-generation synchrotron-radiation x-ray facilities. Nine years have elapsed since the technique was first introduced and it has made rapid progress in demonstrating high-resolution three-dimensional imaging and promises few-nm resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, and it is expected that the principal limitation to resolution will be radiation damage for life science and the coherent power of available x-ray sources for material science. In this paper wemore »address the question of the role of radiation damage. We use a statistical analysis based on the so-called "dose fractionation theorem" of Hegerl and Hoppe to calculate the dose needed to make an image of a single life-science sample by XDM with a given resolution. We find that for simply-shaped objects the needed dose scales with the inverse fourth power of the resolution and present experimental evidence to support this finding. To determine the maximum tolerable dose we have assembled a number of data taken from the literature plus some measurements of our own which cover ranges of resolution that are not well covered otherwise. The conclusion of this study is that, based on the natural contrast between protein and water and "Rose-criterion" image quality, one should be able to image a frozen-hydrated biological sample using XDM at a resolution of about 10 nm.« less

  14. An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Howells, M.R.; Beetz, T.; Chapman, H.N.; Cui, C.; Holton, J.M.; Jacobsen, C.J.; Kirz, J.; Lima, E.; Marchesini, S.; Miao, H.; Sayre, D.; Shapiro, D.A.; Spence, J.C.H.; Starodub, D.

    2009-03-01T23:59:59.000Z

    X-ray diffraction microscopy (XDM) is a new form of x-ray imaging that is being practiced at several third-generation synchrotron-radiation x-ray facilities. Nine years have elapsed since the technique was first introduced and it has made rapid progress in demonstrating high-resolution three-dimensional imaging and promises few-nm resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, and it is expected that the principal limitation to resolution will be radiation damage for life science and the coherent power of available x-ray sources for material science. In this paper we address the question of the role of radiation damage. We use a statistical analysis based on the so-called "dose fractionation theorem" of Hegerl and Hoppe to calculate the dose needed to make an image of a single life-science sample by XDM with a given resolution. We find that for simply-shaped objects the needed dose scales with the inverse fourth power of the resolution and present experimental evidence to support this finding. To determine the maximum tolerable dose we have assembled a number of data taken from the literature plus some measurements of our own which cover ranges of resolution that are not well covered otherwise. The conclusion of this study is that, based on the natural contrast between protein and water and "Rose-criterion" image quality, one should be able to image a frozen-hydrated biological sample using XDM at a resolution of about 10 nm.

  15. Observation of solar high energy gamma and X-ray emission and solar energetic particles

    E-Print Network [OSTI]

    Struminsky, Alexei

    2015-01-01T23:59:59.000Z

    We considered 18 solar flares observed between June 2010 and July 2012, in which high energy >100 MeV {\\gamma}-emission was registered by the Large Area Telescope (LAT) aboard FermiGRO. We examined for these {\\gamma}-events soft X-ray observations by GOES, hard X-ray observations by the Anti-Coincidence Shield of the SPectrometer aboard INTEGRAL (ACS SPI) and the Gamma-Ray burst Monitor (GBM) aboard FermiGRO. Hard X-ray and {\\pi}0-decay {\\gamma}-ray emissions are used as tracers of electron and proton acceleration, respectively. Bursts of hard X-ray were observed by ACS SPI during impulsive phase of 13 events. Bursts of hard X-ray >100 keV were not found during time intervals, when prolonged hard {\\gamma}-emission was registered by LAT/FermiGRO. Those events showing prolonged high-energy gamma-ray emission not accompanied by >100 keV hard X-ray emission are interpreted as an indication of either different acceleration processes for protons and electrons or as the presence of a proton population accelerated du...

  16. A Super-high Angular Resolution Principle for Coded-mask X-ray Imaging Beyond the Diffraction Limit of Single Pinhole

    E-Print Network [OSTI]

    Chen Zhang; Shuang Nan Zhang

    2008-06-25T23:59:59.000Z

    High angular resolution X-ray imaging is always demanded by astrophysics and solar physics, which can be realized by coded-mask imaging with very long mask-detector distance in principle. Previously the diffraction-interference effect has been thought to degrade coded-mask imaging performance dramatically at low energy end with very long mask-detector distance. In this work the diffraction-interference effect is described with numerical calculations, and the diffraction-interference cross correlation reconstruction method (DICC) is developed in order to overcome the imaging performance degradation. Based on the DICC, a super-high angular resolution principle (SHARP) for coded-mask X-ray imaging is proposed. The feasibility of coded mask imaging beyond the diffraction limit of single pinhole is demonstrated with simulations. With the specification that the mask element size of 50* 50 square micrometers and the mask-detector distance of 50 m, the achieved angular resolution is 0.32 arcsec above about 10 keV, and 0.36 arcsec at 1.24 keV where diffraction can not be neglected. The on-axis source location accuracy is better than 0.02 arcsec. Potential applications for solar observations and wide-field X-ray monitors are also shortly discussed.

  17. Photonuclear reaction based high-energy x-ray spectrometer to cover from 2 MeV to 20 MeV

    SciTech Connect (OSTI)

    Sakata, S., E-mail: sakata-s@ile.osaka-u.ac.jp; Arikawa, Y.; Kojima, S.; Ikenouchi, T.; Nagai, T.; Abe, Y.; Inoue, H.; Morace, A.; Utsugi, M.; Nishimura, H.; Nakai, M.; Shiraga, H.; Fujioka, S.; Azechi, H. [Institute of Laser Engineering, Osaka University, Suita 565-0871 (Japan); Kato, R. [Institute of Scientific and Industrial Research, Osaka University, Ibaraki 565-0047 (Japan)

    2014-11-15T23:59:59.000Z

    A photonuclear-reaction-based hard x-ray spectrometer is developed to measure the number and energy spectrum of fast electrons generated by interactions between plasma and intense laser light. In this spectrometer, x-rays are converted to neutrons through photonuclear reactions, and the neutrons are counted with a bubble detector that is insensitive to x-rays. The spectrometer consists of a bundle of hard x-ray detectors that respond to different photon-energy ranges. Proof-of-principle experiment was performed on a linear accelerator facility. A quasi-monoenergetic electron bunch (N{sub e} = 1.0 × 10{sup ?6} C, E{sub e} = 16 ± 0.32 MeV) was injected into a 5-mm-thick lead plate. Bremsstrahlung x-rays, which emanate from the lead plate, were measured with the spectrometer. The measured spectral shape and intensity agree fairly well with those computed with a Monte Carlo simulation code. The result shows that high-energy x-rays can be measured absolutely with a photon-counting accuracy of 50%–70% in the energy range from 2 MeV to 20 MeV with a spectral resolution (?h?/h?) of about 15%. Quantum efficiency of this spectrometer was designed to be 10{sup ?7}, 10{sup ?4}, 10{sup ?5}, respectively, for 2–10, 11–15, and 15–25 MeV of photon energy ranges.

  18. Thin optic surface analysis for high resolution X-ray telescopes

    E-Print Network [OSTI]

    Akilian, Mireille

    2004-01-01T23:59:59.000Z

    The art of glass developed throughout the years has covered artifacts ranging from crude ornaments to high precision optics used in flat panel displays, hard disk drives, and x-ray telescopes. Methods for manufacturing ...

  19. ENERGY FEEDBACK FROM X-RAY BINARIES IN THE EARLY UNIVERSE

    SciTech Connect (OSTI)

    Fragos, T.; Zezas, A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)] [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Lehmer, B. D. [The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States)] [The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Naoz, S. [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)] [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Basu-Zych, A., E-mail: tfragos@cfa.harvard.edu [NASA Goddard Space Flight Centre, Code 662, Greenbelt, MD 20771 (United States)

    2013-10-20T23:59:59.000Z

    X-ray photons, because of their long mean-free paths, can easily escape the galactic environments where they are produced, and interact at long distances with the intergalactic medium, potentially having a significant contribution to the heating and reionization of the early universe. The two most important sources of X-ray photons in the universe are active galactic nuclei (AGNs) and X-ray binaries (XRBs). In this Letter we use results from detailed, large scale population synthesis simulations to study the energy feedback of XRBs, from the first galaxies (z ? 20) until today. We estimate that X-ray emission from XRBs dominates over AGN at z ?> 6-8. The shape of the spectral energy distribution of the emission from XRBs shows little change with redshift, in contrast to its normalization which evolves by ?4 orders of magnitude, primarily due to the evolution of the cosmic star-formation rate. However, the metallicity and the mean stellar age of a given XRB population affect significantly its X-ray output. Specifically, the X-ray luminosity from high-mass XRBs per unit of star-formation rate varies an order of magnitude going from solar metallicity to less than 10% solar, and the X-ray luminosity from low-mass XRBs per unit of stellar mass peaks at an age of ?300 Myr and then decreases gradually at later times, showing little variation for mean stellar ages ?> 3 Gyr. Finally, we provide analytical and tabulated prescriptions for the energy output of XRBs, that can be directly incorporated in cosmological simulations.

  20. Spectral resolution for a five-element, filtered, x-ray detector array using the method of Backus and Gilbert

    SciTech Connect (OSTI)

    Fehl, D. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1196 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185-1196 (United States); Biggs, F. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1196 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185-1196 (United States); Chandler, G. A. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1196 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185-1196 (United States); Stygar, W. A. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1196 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185-1196 (United States)

    2000-08-01T23:59:59.000Z

    The generalized method of Backus and Gilbert (BG) is described and applied to the inverse problem of obtaining the spectrum from a five-channel, filtered array of x-ray detectors. This diagnostic is routinely fielded on the Z facility at Sandia National Laboratories to study soft x-ray photons ({approx}100-2300 eV), emitted by high density Z-pinch plasmas. The BG method defines spectral resolution limits on the system of response functions that are in good agreement with a classical unfold method, based on a histogram representation of the source spectrum. The resolution so defined is independent of the source spectrum. For noise-free, simulated data the BG approximating function is also in reasonable agreement with the source spectrum (150 eV blackbody) and the unfolded spectrum. This function may be used as an initial trial function for iterative methods or a regularization model.(c) 2000 American Institute of Physics. (c)

  1. Spectral Resolution for Five-Element, Filtered, X-Ray Detector (XRD) Arrays Using the Methods of Backus and Gilbert

    SciTech Connect (OSTI)

    FEHL,DAVID LEE; BIGGS,F.; CHANDLER,GORDON A.; STYGAR,WILLIAM A.

    2000-01-17T23:59:59.000Z

    The generalized method of Backus and Gilbert (BG) is described and applied to the inverse problem of obtaining spectra from a 5-channel, filtered array of x-ray detectors (XRD's). This diagnostic is routinely fielded on the Z facility at Sandia National Laboratories to study soft x-ray photons ({le}2300 eV), emitted by high density Z-pinch plasmas. The BG method defines spectral resolution limits on the system of response functions that are in good agreement with the unfold method currently in use. The resolution so defined is independent of the source spectrum. For noise-free, simulated data the BG approximating function is also in reasonable agreement with the source spectrum (150 eV black-body) and the unfold. This function may be used as an initial trial function for iterative methods or a regularization model.

  2. X-RAY SPECTROMETRY X-Ray Spectrom. 2007; 36: 336342

    E-Print Network [OSTI]

    Limburg, Karin E.

    , Chicago, IL 60637, USA 3 Cornell High Energy Synchrotron Source and School of Applied and EngineeringX-RAY SPECTROMETRY X-Ray Spectrom. 2007; 36: 336­342 Published online in Wiley InterScience (www to establish a breakthrough in high-resolution, simultaneous area mapping of multiple trace elements

  3. A theoretical analysis of reflection of X-rays from water at energies relevant for diagnostics

    SciTech Connect (OSTI)

    Arsenovic, Dusan [Institute of Physics, Pregrevica 118, P.O. Box 57, Belgrade (Serbia and Montenegro); Davidovic, Dragomir M.; Vukanic, Jovan [Vinca Institute of Nuclear Sciences, P.O Box 522, Belgrade (Serbia and Montenegro)

    2003-01-24T23:59:59.000Z

    The reflection of X-rays from a semi-infinite water target, for energies used in X-ray diagnostics, is treated by the analog Monte Carlo simulation. In the developed procedure it was possible to calculate separately contributions of photons scattered, before reflection, fixed number of times with target electrons. It turned out that multiple collision type of reflection dominates at all energies investigated, whenever the absorption is small. The same process was also treated analytically as the classical albedo problem for isotropic scattering without energy loss. Very good agreement of results of the two approaches is obtained.

  4. High-energy x-ray production with pyroelectric crystals Jeffrey A. Geuthera

    E-Print Network [OSTI]

    Danon, Yaron

    as the lower-energy L-shell peaks, allowing more positive sample identification. This report shows how a paired-ray sources for use in imaging, materials analysis, and other applications. For many applications, for example, high-energy sources enable the excitation of the K-shell x-ray peaks for high-Z materials as well

  5. The spectral energy distribution of quiescent black hole X-ray binaries: new constraints from Spitzer

    E-Print Network [OSTI]

    E. Gallo; S. Migliari; S. Markoff; J. Tomsick; C. Bailyn; S. Berta; R. Fender; J. Miller-Jones

    2007-06-30T23:59:59.000Z

    (Abridged) Among the various issues that remain open in the field of accretion onto black hole X-ray binaries (BHBs) is the way the gas accretes at very low Eddington ratios, in the so-called quiescent regime. While there is general agreement that the X-rays are produced by a population of high-energy electrons near to the BH, the controversy comes about in modeling the contribution from inflowing vs. outflowing particles, and their relative energy budget. Recent Spitzer observations of three quiescent BHBs have shown evidence for excess emission with respect to the tail of the companion star between 8-24 micron. We suggest that synchrotron emission from a partially self-absorbed outflow might be responsible for the observed mid-IR excess, in place of, or in addition to, thermal emission from circumbinary material. If so, then the jet synchrotron luminosity exceeds the measured 2-10 keV luminosity by a factor of a few in these systems. In turn, the mechanical power stored in the jet exceeds the bolometric X-ray luminosity at least by 4 orders of magnitude. We then compile the broadband spectral energy distribution (SED) of A0620-00, the lowest Eddington-ratio stellar mass BH with a known radio counterpart, by means of simultaneous radio, optical and X-ray observations, and the archival Spitzer data. We are able to fit the SED of A0620-00 with a `maximally jet-dominated' model in which the radio through the soft X-rays are dominated by synchrotron emission, while the hard X-rays are dominated by inverse Compton at the jet base. The fitted parameters land in a range of values that is reminiscent of the Galactic Center super-massive BH Sgr A*. Most notably, the inferred ratio of the jet acceleration rate to local cooling rates is two orders of magnitude weaker with respect to higher luminosity, hard state sources.

  6. A Hard X-ray KB-FZP Microscope for Tomography with Sub-100-nm Resolution

    E-Print Network [OSTI]

    Braun, Paul

    Bielefeld, Germany, 7 BESSY GmbH, Albert-Einstein-Str.15, 12489 Berlin, Germany 8 Department of Physics. INTRODUCTION Synchrotron-based hard X-ray tomography is nowadays a standard technique for structural analyses sciences, biomedicine, planetary science etc.. The high coherence of third generation synchrotron sources

  7. Fundamental x-ray interaction limits in diagnostic imaging detectors: Spatial resolution

    E-Print Network [OSTI]

    Cunningham, Ian

    , London, Ontario N6A 5K8, Canada, Departments of Diagnostic Radiology and Nuclear Medicine, London Health transformed with the emergence of digital detector technology. Although digital systems offer many practical of future digital x-ray detectors. © 2008 American Association of Physicists in Medicine. DOI: 10

  8. Design of the high-resolution soft X-ray imaging system on the Joint Texas Experimental Tokamak

    SciTech Connect (OSTI)

    Li, Jianchao; Ding, Yonghua, E-mail: yhding@mail.hust.edu.cn; Zhang, Xiaoqing; Xiao, Zhengyu; Zhuang, Ge [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electric and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-11-15T23:59:59.000Z

    A new soft X-ray diagnostic system has been designed on the Joint Texas Experimental Tokamak (J-TEXT) aiming to observe and survey the magnetohydrodynamic (MHD) activities. The system consists of five cameras located at the same toroidal position. Each camera has 16 photodiode elements. Three imaging cameras view the internal plasma region (r/a < 0.7) with a spatial resolution about 2 cm. By tomographic method, heat transport outside from the 1/1 mode X-point during the sawtooth collapse is found. The other two cameras with a higher spatial resolution 1 cm are designed for monitoring local MHD activities respectively in plasma core and boundary.

  9. Demonstration of x-ray fluorescence imaging of a high-energy-density plasma

    SciTech Connect (OSTI)

    MacDonald, M. J., E-mail: macdonm@umich.edu; Gamboa, E. J. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Keiter, P. A.; Fein, J. R.; Klein, S. R.; Kuranz, C. C.; LeFevre, H. J.; Manuel, M. J.-E.; Wan, W. C.; Drake, R. P. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Montgomery, D. S. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Biener, M. M.; Fournier, K. B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Streit, J. [Schafer Corporation, Livermore, California 94551 (United States)

    2014-11-15T23:59:59.000Z

    Experiments at the Trident Laser Facility have successfully demonstrated the use of x-ray fluorescence imaging (XRFI) to diagnose shocked carbonized resorcinol formaldehyde (CRF) foams doped with Ti. One laser beam created a shock wave in the doped foam. A second laser beam produced a flux of vanadium He-? x-rays, which in turn induced Ti K-shell fluorescence within the foam. Spectrally resolved 1D imaging of the x-ray fluorescence provided shock location and compression measurements. Additionally, experiments using a collimator demonstrated that one can probe specific regions within a target. These results show that XRFI is a capable alternative to path-integrated measurements for diagnosing hydrodynamic experiments at high energy density.

  10. Thermal Acoustic Sensor for High Pulse Energy X-ray FEL Beams

    SciTech Connect (OSTI)

    Smith, T.J.; Frisch, J.C.; Kraft, E.M.; Loos, J.; /SLAC; Bentsen, G.S.; /Rochester U.

    2011-12-13T23:59:59.000Z

    The pulse energy density of X-ray FELs will saturate or destroy conventional X-ray diagnostics, and the use of large beam attenuation will result in a beam that is dominated by harmonics. We present preliminary results at the LCLS from a pulse energy detector based on the thermal acoustic effect. In this type of detector an X-ray resistant material (boron carbide in this system) intercepts the beam. The pulse heating of the target material produces an acoustic pulse that can be detected with high frequency microphones to produce a signal that is linear in the absorbed energy. The thermal acoustic detector is designed to provide first- and second-order calorimetric measurement of X-ray FEL pulse energy. The first-order calorimetry is a direct temperature measurement of a target designed to absorb all or most of the FEL pulse power with minimal heat leak. The second-order measurement detects the vibration caused by the rapid thermoelastic expansion of the target material each time it absorbs a photon pulse. Both the temperature change and the amplitude of the acoustic signal are directly related to the photon pulse energy.

  11. Dual-energy synchrotron X ray measurements of rapid soil density and water content changes in swelling soils

    E-Print Network [OSTI]

    Walter, M.Todd

    content and bulk density. A number of studies have used dual-energy gamma rays to investigate soilDual-energy synchrotron X ray measurements of rapid soil density and water content changes-energy synchrotron X ray to measure, for the first time, the water content and bulk density changes during the fast

  12. alxga1-xas high-energy x-ray: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alxga1-xas high-energy x-ray First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 ?????? ??? ??...

  13. THE NUCLEAR SPECTROSCOPIC TELESCOPE ARRAY (NuSTAR) HIGH-ENERGY X-RAY MISSION

    E-Print Network [OSTI]

    Chakrabarty, Deepto

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of ...

  14. Filter-fluorescer measurement of low-voltage simulator x-ray energy spectra

    SciTech Connect (OSTI)

    Baldwin, G.T.; Craven, R.E.

    1986-01-01T23:59:59.000Z

    X-ray energy spectra of the Maxwell Laboratories MBS and Physics International Pulserad 737 were measured using an eight-channel filter-fluorescer array. The PHOSCAT computer code was used to calculate channel response functions, and the UFO code to unfold spectrum.

  15. Measurement of high energy x-ray beam penumbra with GafchromicTM EBT radiochromic film

    E-Print Network [OSTI]

    Yu, K.N.

    , respectively, for a 6 MV linear accelerator produced x-ray beam. This is com- pared to 3.2 mm±0.2 mm Kodak EDR2. Radiographic film types like Kodak EDR2 have improved this feature due to reduced energy dependence and higher

  16. High-resolution chemical imaging of gold nanoparticles using hard x-ray ptychography

    SciTech Connect (OSTI)

    Hoppe, R.; Patommel, J.; Schroer, C. G. [Institute of Structural Physics, Technische Universitaet Dresden, D-01062 Dresden (Germany)] [Institute of Structural Physics, Technische Universitaet Dresden, D-01062 Dresden (Germany); Reinhardt, J. [Institute of Structural Physics, Technische Universitaet Dresden, D-01062 Dresden (Germany) [Institute of Structural Physics, Technische Universitaet Dresden, D-01062 Dresden (Germany); Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany)] [Germany; Hofmann, G.; Grunwaldt, J.-D. [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany)] [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Damsgaard, C. D. [Center for Electron Nanoscopy and Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark)] [Center for Electron Nanoscopy and Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark); Wellenreuther, G.; Falkenberg, G. [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany)] [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany)

    2013-05-20T23:59:59.000Z

    We combine resonant scattering with (ptychographic) scanning coherent diffraction microscopy to determine the chemical state of gold nanoparticles with high spatial resolution. Ptychographic images of the sample are recorded for a series of energies around the gold L{sub 3} absorption edge. From these data, chemical information in the form of absorption and resonant scattering spectra is reconstructed at each location in the sample. For gold nanoparticles of about 100 nm diameter, a spatial resolution of about 20-30 nm is obtained. In the future, this microscopy approach will open the way to operando studies of heterogeneous catalysts on the nanometer scale.

  17. TENDER ENERGY X-RAY ABSORPTION SPECTROSCOPY (TES)

    E-Print Network [OSTI]

    Ohta, Shigemi

    productivity at the earliest possible date. · Strategy combines in-house and external aspects to create world IMPACT: · Energy Materials: Photovoltaic, fuel-cell, battery and superconducting (nano

  18. Portable X-Ray Diffraction (XRD) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratiniEdwards, Wisconsin: EnergyReading, NewJumpPortable

  19. 7 Å Resolution in Protein 2-Dimentional-Crystal X-Ray Diffraction at Linac Coherent Light Source

    SciTech Connect (OSTI)

    Pedrini, Bill; Tsai, Ching-Ju; Capitani, Guido; Padeste, Celestino; Hunter, Mark; Zatsepin, Nadia A.; Barty, Anton; Benner, Henry; Boutet, Sebastien; Feld, Geoffrey K.; Hau-Riege, Stefan; Kirian, Rick; Kupitz, Christopher; Messerschmidt, Marc; Ogren, John I.; Pardini, Tommaso; Segelke, Brent; Williams, Garth J.; Spence , John C.; Abela, Rafael; Coleman, Matthew A.; Evans, James E.; Schertler, Gebhard; Frank, Matthias; Li, Xiao-Dan

    2014-06-09T23:59:59.000Z

    Membrane proteins arranged as two-dimensional (2D) crystals in the lipid en- vironment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. X-ray diffraction from individual 2D crystals did not represent a suitable investigation tool because of radiation damage. The recent availability of ultrashort pulses from X-ray Free Electron Lasers (X-FELs) has now provided a mean to outrun the damage. Here we report on measurements performed at the LCLS X-FEL on bacteriorhodopsin 2D crystals mounted on a solid support and kept at room temperature. By merg- ing data from about a dozen of single crystal diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 °A, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase of resolution. The presented results pave the way to further X-FEL studies on 2D crystals, which may include pump-probe experiments at subpicosecond time resolution.

  20. X-Ray Fluorescence (XRF) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, New York:State ParksWyrulec1991) |

  1. High Resolution Spectroscopy of X-ray Quasars: Searching for the X-ray Absorption from the Warm-Hot Intergalactic Medium

    E-Print Network [OSTI]

    Fang, Taotao

    We present a survey of six low- to moderate-redshift quasars with Chandra and XMM-Newton. The primary goal is to search for the narrow X-ray absorption lines produced by highly ionized metals in the warm-hot intergalactic ...

  2. Category:X-Ray Diffraction (XRD) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey as explorationpage? ForChina Pages in

  3. X-Ray Diffraction (XRD) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Projectsource History View New PagesWzeng's blog

  4. X-Ray Characterization of Diesel Sprays | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters |-- 9:00 AM OpeningWorld's Largest

  5. Development of scanning x-ray fluorescence microscope with spatial resolution of 30 nm using Kirkpatrick-Baez mirror optics

    SciTech Connect (OSTI)

    Matsuyama, S.; Mimura, H.; Yumoto, H.; Sano, Y.; Yamamura, K.; Yabashi, M.; Nishino, Y.; Tamasaku, K.; Ishikawa, T.; Yamauchi, K. [Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Research Center for Ultra-Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); SPring-8/Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayoucho, Sayogun, Hyogo 679-5148 (Japan); SPring-8/RIKEN, 1-1-1 Kouto, Sayoucho, Sayogun, Hyogo 679-5148 (Japan); Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2006-10-15T23:59:59.000Z

    We developed a high-spatial-resolution scanning x-ray fluorescence microscope (SXFM) using Kirkpatrick-Baez mirrors. As a result of two-dimensional focusing tests at BL29XUL of SPring-8, the full width at half maximum of the focused beam was achieved to be 50x30 nm{sup 2} (VxH) under the best focusing conditions. The measured beam profiles were in good agreement with simulated results. Moreover, beam size was controllable within the wide range of 30-1400 nm by changing the virtual source size, although photon flux and size were in a trade-off relationship. To demonstrate SXFM performance, a fine test chart fabricated using focused ion beam system was observed to determine the best spatial resolution. The element distribution inside a logo mark of SPring-8 in the test chart, which has a minimum linewidth of approximately 50-60 nm, was visualized with a spatial resolution better than 30 nm using the smallest focused x-ray beam.

  6. High-resolution, high-transmission soft x-ray spectrometer for the study of biological samples

    SciTech Connect (OSTI)

    Fuchs, Oliver; Weinhardt, L.; Blum, M.; Weigand, M.; Umbach, E.; Bar, M.; Heske, Clemens; Denlinger, Jonathan; Chuang, Y.-D.; McKinney, Wayne; Hussain, Zahid; Gullikson, Eric; Jones, M.; Batson, Phil; Nelles, B.; Follath, R.

    2009-03-09T23:59:59.000Z

    We present a variable line-space grating spectrometer for soft x-rays that covers the photon energy range between 130 and 650 eV. The optical design is based on the Hettrick-Underwood principle and tailored to synchrotron-based studies of radiation-sensitive biological samples. The spectrometer is able to record the entire spectral range in one shot, i.e., without any mechanical motion, at a resolving power of 1200 or better. Despite its slitless design, such a resolving power can be achieved for a source spot as large as 30x3000 mu m2, which is important for keeping beam damage effects in radiation-sensitive samples low. The high spectrometer efficiency allows recording of comprehensive two-dimensional resonant inelastic soft x-ray scattering (RIXS) maps with good statistics within several minutes. This is exemplarily demonstrated for a RIXS map of highly oriented pyrolytic graphite, which was taken within 10 min.

  7. How Can X-ray Transient Absorption Spectroscopy Aide Solar Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are from optimized on structural, energetic and dynamic parameters. Intense X-ray pulses from synchrotrons and X-ray free electrons lasers coupled with ultrafast lasers...

  8. High-Energy X-ray Studies of Real Materials Under Real Conditions and in Real Time

    SciTech Connect (OSTI)

    Almer, Jonathan (ANL) [ANL

    2011-05-11T23:59:59.000Z

    High-energy x-rays from 3rd generation synchrotron sources, including the APS, possess a unique combination of high penetration power and high spatial, reciprocal space, and temporal resolution. These characteristics can be exploited to non-destructively measure phase, texture and strain distributions under extreme environments including thermo-mechanical loading, high-pressure, irradiation and supercritical environments. Over the past several years, the 1-ID beamline has developed a number of programs for these purposes, namely (i) high-energy diffraction microscopy, in which grain and sub-grain volumes are mapped in polycrystalline aggregates, and (ii) combined small-and wide-angle x-ray scattering which permits information over a broad range of length scales to be collected from the same (micron-level) volume. These programs have been increasingly used to test and extend predictive simulations of materials behavior over size scales ranging from nm to mm. Select studies will be presented including nucleation and growth of nanomaterials, void and structural evolution in complex composites under thermo-mechanical and irradiated environments, and microstructural changes in layered systems including thermal-barrier coatings, batteries and fuel cells. Finally, extension of these programs, through the planned APS upgrade, to higher spatio-temporal resolution will be described.

  9. Development of a dual MCP framing camera for high energy x-rays

    SciTech Connect (OSTI)

    Izumi, N., E-mail: izumi2@llnl.gov; Hall, G. N.; Carpenter, A. C.; Allen, F. V.; Cruz, J. G.; Felker, B.; Hargrove, D.; Holder, J.; Lumbard, A.; Montesanti, R.; Palmer, N. E.; Piston, K.; Stone, G.; Thao, M.; Vern, R.; Zacharias, R.; Landen, O. L.; Tommasini, R.; Bradley, D. K.; Bell, P. M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-11-15T23:59:59.000Z

    Recently developed diagnostic techniques at LLNL require recording backlit images of extremely dense imploded plasmas using hard x-rays, and demand the detector to be sensitive to photons with energies higher than 50 keV [R. Tommasini et al., Phys. Phys. Plasmas 18, 056309 (2011); G. N. Hall et al., “AXIS: An instrument for imaging Compton radiographs using ARC on the NIF,” Rev. Sci. Instrum. (these proceedings)]. To increase the sensitivity in the high energy region, we propose to use a combination of two MCPs. The first MCP is operated in a low gain regime and works as a thick photocathode, and the second MCP works as a high gain electron multiplier. We tested the concept of this dual MCP configuration and succeeded in obtaining a detective quantum efficiency of 4.5% for 59 keV x-rays, 3 times larger than with a single plate of the thickness typically used in NIF framing cameras.

  10. X-Ray Energy Responses of Silicon Tomography Detectors Irradiated with Fusion Produced Neutrons

    SciTech Connect (OSTI)

    Kohagura, J. [Plasma Research Centre, University of Tsukuba (Japan); Cho, T. [Plasma Research Centre, University of Tsukuba (Japan); Hirata, M. [Plasma Research Centre, University of Tsukuba (Japan); Numakura, T. [Plasma Research Centre, University of Tsukuba (Japan); Yokoyama, N. [Plasma Research Centre, University of Tsukuba (Japan); Fukai, T. [Plasma Research Centre, University of Tsukuba (Japan); Tomii, Y. [Plasma Research Centre, University of Tsukuba (Japan); Tokioka, S. [Plasma Research Centre, University of Tsukuba (Japan); Miyake, Y. [Plasma Research Centre, University of Tsukuba (Japan); Kiminami, S. [Plasma Research Centre, University of Tsukuba (Japan); Shimizu, K. [Plasma Research Centre, University of Tsukuba (Japan); Miyoshi, S. [Plasma Research Centre, University of Tsukuba (Japan); Hirano, K. [High Energy Accelerator Research Organization (Japan); Yoshida, M. [Japan Atomic Energy Research Institute (Japan); Yamauchi, M. [Japan Atomic Energy Research Institute (Japan); Kondoh, T. [Japan Atomic Energy Research Institute (Japan); Nishitani, T. [Japan Atomic Energy Research Institute (Japan)

    2005-01-15T23:59:59.000Z

    In order to clarify the effects of fusion-produced neutron irradiation on silicon semiconductor x-ray detectors, the x-ray energy responses of both n- and p-type silicon tomography detectors used in the Joint European Torus (JET) tokamak (n-type) and the GAMMA 10 tandem mirror (p-type) are studied using synchrotron radiation at the Photon Factory of the National Laboratory for High Energy Accelerator Research Organization (KEK). The fusion neutronics source (FNS) of Japan Atomic Energy Research Institute (JAERI) is employed as well-calibrated D-T neutron source with fluences from 10{sup 13} to 10{sup 15} neutrons/cm{sup 2} onto these semiconductor detectors. Different fluence dependence is found between these two types of detectors; that is, (i) for the n-type detector, the recovery of the degraded response is found after the neutron exposure beyond around 10{sup 13} neutrons/cm{sup 2} onto the detector. A further finding is followed as a 're-degradation' by a neutron irradiation level over about 10{sup 14} neutrons/cm{sup 2}. On the other hand, (ii) the energy response of the p-type detector shows only a gradual decrease with increasing neutron fluences. These properties are interpreted by our proposed theory on semiconductor x-ray responses in terms of the effects of neutrons on the effective doping concentration and the diffusion length of a semiconductor detector.

  11. Microdosimetric predictions of RBE for low-energy X-rays and low-energy fast neutrons

    E-Print Network [OSTI]

    Potter, Eugene Wayne

    1977-01-01T23:59:59.000Z

    . Neff Recently at Texas ABN, Bartlett used a sensitive technique for measuring mutations in E. Coli at low doses of low-energy x-rays. He noted a significant increase in effect with the lowest x-ray energy used (29 Kev) at about 30 R exposure which... ionizing radiation, most of the energy being deposited by heavy recoil particles such as hydrogen, helium, carbon, and oxygen nuclei. Thus even monoenergetic neutrons give rise to a very complex spatial distribution of energy (Be67). When a fast charged...

  12. Tunable X-ray source

    DOE Patents [OSTI]

    Boyce, James R. (Williamsburg, VA)

    2011-02-08T23:59:59.000Z

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  13. A high-resolution soft x-ray spectrometer on the MAST tokamak

    SciTech Connect (OSTI)

    Nelson, M.J.; Barnsley, R.; Keenan, F.; Meyer, H.; Bunting, C.A.; Carolan, P.G.; Conway, N.J.; Cunningham, G.; Lehane, I.; Tournianski, M.R. [Queens University, Belfast, N. Ireland BT7 1NN (United Kingdom); EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2004-10-01T23:59:59.000Z

    A curved crystal spectrometer in Johann configuration has been implemented on MAST to obtain values for electron temperature, ion temperature and toroidal velocity. The spectrometer is used to examine medium Z impurities in the soft x-ray region by utilising a Silicon (111) crystal, bent using a 4 pin bending jig, and a CCD detector ({delta}t=8 ms). Helium-like Argon emissions from 3.94 to 4.00 A have been examined using a crystal radius of 859.77 mm. The Bragg angle and crystal radius can be adjusted with relative ease. The spectrometer can be scanned toroidally and poloidally to include a radial view which facilitates absolute velocity measurements by assuming radial velocity =0. Doppler shifts of 2.3x10{sup -5} A (1.8 kms{sup -1}) can be measured. The line of sight is shared with a neutral particle analyzer, which enables in situ ion temperature comparisons. Ray tracing has been used for the development of new imaging spectrometers, using spherical/toroidal crystals, planned to be implemented on MAST.

  14. Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy

    E-Print Network [OSTI]

    Chao, W.

    2010-01-01T23:59:59.000Z

    of 12 nm Resolution Fresnel Zone Plate Lens based Soft X-raynanofabrication process for Fresnel zone plate lenses. Theoptical performance of Fresnel zone plate lens based imaging

  15. Analysis of nuclear materials by energy dispersive x-ray fluorescence and spectral effects of alpha decay

    SciTech Connect (OSTI)

    Worley, Christopher G [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    Energy dispersive X-ray fluorescence (EDXRF) spectra collected from alpha emitters are complicated by artifacts inherent to the alpha decay process, particularly when using portable instruments. For example, {sup 239}Pu EDXRF spectra exhibit a prominent uranium L X-ray emission peak series due to sample alpha decay rather than source-induced X-ray fluorescence. A portable EDXRF instrument was used to collect spectra from plutonium, americium, and a Pu-contaminated steel sample. The plutonium sample was also analyzed by wavelength dispersive XRF to demonstrate spectral differences observed when using these very different instruments.

  16. X-ray Emission of Low-Energy-Peaked BL Lacertae Objects

    SciTech Connect (OSTI)

    Randall, Jill M.; Perlman, Eric S. [Florida Institute of Technology, Department of Physics and Space Sciences, 150 W. University Blvd., Melbourne, FL 32901 (United States)

    2009-12-18T23:59:59.000Z

    Presented here is an analysis of X-ray observations of the following seven low-energy-peaked BL Lacertae objects: BL Lacertae, S5 0716+71, W Comae, 3C 66A, S4 0954+65, OJ 287, and AO 0235+16. The spectral data for these objects were taken from observations by the XMM-Newton and/or Chandra X-ray observatories. These objects are being analyzed in an effort to reanalyze all XMM-Newton and Chandra data of low-energy BL Lacs, similar to the efforts of Perlman et al.[4] for high energy BL Lacs. The objects were studied in an effort to understand the nature of the X-ray and multi-waveband emissions in these objects, study the shape of the spectra, and compare the observations of low-energy-peaked BL Lacs to previous observations of these objects and also to observations of high-energy-peaked BL Lacs. Light curves and spectra were analyzed to look for evidence of spectral variability in the objects and as a comparison to previous research on these objects. Most data shows both synchrotron and Inverse-Compton emission, though only little correlation was seen between the emission strength and the spectral slope. Our data is generally well-fitted to a broken power law model with distinct bimodality seen in the first spectral index (six observations with {Gamma}{sub 1{approx}}0.4 and four observations with {Gamma}{sub 1{approx}}3.0), a break in energy between 0.6 and 1.4 keV, and a second spectral index {Gamma}{sub 2{approx}}2.0. None of the observations showed spectral lines, which is consistent with past results. For S5 0716+71 the XMM-Newton X-ray and optical data, along with radio data obtained from the University of Michigan Radio Astronomy Observatory (UMRAO), a spectral energy distribution was created and peak frequencies were estimated.

  17. Using X-Ray Computed Tomography in Pore Structure Characterization for a Berea Sandstone: Resolution Effect

    SciTech Connect (OSTI)

    Peng, Sheng; Hu, Qinhong; Dultz, Stefan; Zhang, Ming

    2012-11-23T23:59:59.000Z

    X-raycomputedtomography (XCT) is a powerful tool for detecting the micro-scale porestructure and has been applied to many natural and synthetic porous media. However, due to the resolution limitations, either non-representative view of the sample or inaccurate results can be produced from the XCT image processing. In this paper, two XCT (micro-CT and CT with synchrotron radiation) with different resolutions of 12.7 ?m and 0.35 ?m, as well as mercury intrusion porosimetry (MIP) with a minimum detection limit of 3 nm, were used for Berea sandstone to investigate the effect of detecting resolution on the porestructure. Several key porestructure parameters, including porosity, pore size distribution, pore connectivity, surface area, hydraulic radius, and aspect ratio were analyzed in a manner of quantitative comparison between different resolutions of XCT and MIP. The low resolution XCT can capture the large-pore porosity, while overestimates the pore size and pore connectivity. The high resolution XCT is more accurate in describing the pore shape, porosity, pore size; however, it is not representative since narrower detecting pore size range and small volume represented. A representative element volume related to large-pore porosity and probably large-pore connectivity with diameter and height of 2.8 mm is obtained through scale effect analysis. Therefore, selecting an appropriate resolution should be a compromise between the pore size and the representative element volume for the specific property or process of interest.

  18. Ultrafast probing of the x-ray-induced lattice and electron dynamics in graphite at atomic-resolution

    SciTech Connect (OSTI)

    Hau-Riege, S

    2010-10-07T23:59:59.000Z

    We used LCLS pulses to excite thin-film and bulk graphite with various different microstructures, and probed the ultrafast ion and electron dynamics through Bragg and x-ray Thomson scattering (XRTS). We pioneered XRTS at LCLS, making this technique viable for other users. We demonstrated for the first time that the LCLS can be used to characterize warm-dense-matter through Bragg and x-ray Thomson scattering. The warm-dense-matter conditions were created using the LCLS beam. Representative examples of the results are shown in the Figure above. In our experiment, we utilized simultaneously both Bragg and two Thomson spectrometers. The Bragg measurements as a function of x-ray fluence and pulse length allows us to characterize the onset of atomic motion at 2 keV with the highest resolution to date. The Bragg detector was positioned in back-reflection, providing us access to scattering data with large scattering vectors (nearly 4{pi}/{lambda}). We found a clear difference between the atomic dynamics for 70 and 300 fs pulses, and we are currently in the process of comparing these results to our models. The outcome of this comparison will have important consequences for ultrafast diffractive imaging, for which it is still not clear if atomic resolution can truly be achieved. The backward x-ray Thomson scattering data suggests that the average graphite temperature and ionization was 10 eV and 1.0, respectively, which agrees with our models. In the forward scattering data, we observed an inelastic feature in the Thomson spectrum that our models currently do not reproduce, so there is food for thought. We are in the process of writing these results up. Depending on if we can combine the Bragg and Thomson data or not, we plan to publish them in a single paper (e.g. Nature or Science) or as two separate papers (e.g. two Phys. Rev. Lett.). We will present the first analysis of the results at the APS Plasma Meeting in November 2010. We had a fantastic experience performing our experiment at the LCLS, and we are grateful to the beamline scientists and all the support personnel for enabling this experiment. A major hurdle was the very short transition time of two days, which despite all our preparations did not give us sufficient time to test the full system before the start of the beam time. We further were not able to make optimal use of the beam time since we had to exchange samples in the middle of the 36-hours shift. An additional 12-hours break could have avoided this. Finally, our experiment would have benefitted from the best possible focus, but 5 shifts do not allow performing the experiment while fine-tuning the focusing optics.

  19. Atomic resolution mapping of the excited-state electronic structure of Cu2O with time-resolved x-ray absorption spectroscopy

    SciTech Connect (OSTI)

    Hillyard, P. W.; Kuchibhatla, S. V. N. T.; Glover, T. E.; Hertlein, M. P.; Huse, Nils; Nachimuthu, P.; Saraf, L. V.; Thevuthasan, S.; Gaffney, K. J.

    2010-05-02T23:59:59.000Z

    We have used time-resolved soft x-ray spectroscopy to investigate the electronic structure of optically excited cuprous oxide at the O K-edge and the Cu L3-edge. The 400 nm optical excitation shifts the Cu and O absorptions to lower energy, but does not change the integrated x-ray absorption significantly for either edge. The constant integrated x-ray absorption cross-section indicates that the conduction-band and valence-band edges have very similar Cu 3d and O 2p orbital contributions. The 2.1 eV optical band gap of Cu2O significantly exceeds the one eV shift in the Cu L3- and O K-edges absorption edges induced by optical excitation, demonstrating the importance of core-hole excitonic effects and valence electron screening in the x-ray absorption process.

  20. High-Resolution Soft X-Ray Photoionization Studies of Selected Molecules

    E-Print Network [OSTI]

    Hudson, E.A.

    2009-01-01T23:59:59.000Z

    6737 (1989). Table Ill-1: Energi_ and assignmentsof the(Ci), Calculations of the energi, of the (C Is)"Ind Rydbcrg

  1. SMART-X, "Square Meter, Arcsecond Resolution X-ray Telescope" A. Vikhlinina, P. Reida, H. Tananbauma, D. A. Schwartza, W. R. Formana, C. Jonesa, J. Bookbindera,

    E-Print Network [OSTI]

    SMART-X, "Square Meter, Arcsecond Resolution X-ray Telescope" A. Vikhlinina, P. Reida, HJohn Hopkins University, 3400 North Charles Street Baltimore, MD 21211 ABSTRACT SMART-X is a mission concept microcalorimeter, 22 FOV imager, and high-throughput gratings. 1. OVERVIEW We describe the Square Meter Arcsecond

  2. A detailed pore characterization in 2D and 3D by means of optical and fluorescence microscopy combined with high-resolution X-ray CT.

    E-Print Network [OSTI]

    Gent, Universiteit

    combined with high-resolution X-ray CT. Research Unit: Sedimentary Geology and Engineering Geology Topic about oil reservoirs, aquifers, building stone weathering). In the past, the pore network was mainly/or laboratory work: Precise sampling of the geological material. Petrographical research with optical

  3. Calibration of the NuSTAR High Energy Focusing X-ray Telescope

    E-Print Network [OSTI]

    Madsen, Kristin K; Markwardt, Craig; An, Hongjun; Grefenstette, Brian W; Bachetti, Matteo; Miyasaka, Hiromasa; Kitaguchi, Takao; Bhalerao, Varun; Christensen, Finn E; Craig, William W; Fuerst, Felix; Walton, Dominic J; Hailey, Charles J; Rana, Vikram; Stern, Daniel; Westergaard, Niels-Jørgen; Zhang, William

    2015-01-01T23:59:59.000Z

    We present the calibration of the Nuclear Spectroscopic Telescope Array (NuSTAR) X-ray satellite. We used the Crab as the primary effective area calibrator and constructed a piece-wise linear spline function to modify the vignetting response. The achieved residuals for all off-axis angles and energies, compared to the assumed spectrum, are typically better than +/-2% up to 40 keV and 5--10% above due to limited counting statistics. An empirical adjustment to the theoretical 2D point spread function (PSF) was found using several strong point sources, and no increase of the PSF half power diameter (HPD) has been observed since the beginning of the mission. We report on the detector gain calibration, good to 60 eV for all grades, and discuss the timing capabilities of the observatory, which has an absolute timing of +/-3ms. Finally we present cross-calibration results from two campaigns between all the major concurrent X-ray observatories Chandra, Swift, Suzaku and XMM-Newton, conducted in 2012 and 2013 on the s...

  4. A High-Resolution Very Large Array Observation of a Protostar in OMC-3: Shock-induced X-ray Emission by a Protostellar Jet

    E-Print Network [OSTI]

    M. Tsujimoto; K. Koyama; N. Kobayashi; M. Saito; Y. Tsuboi; C. J. Chandler

    2004-01-07T23:59:59.000Z

    Using the Very Large Array (VLA) in the A-configuration, we have obtained a high-resolution 3.6 cm map of a hard X-ray source detected by the Chandra X-ray Observatory in a protostellar clump in Orion molecular cloud 3. Two radio continuum sources were detected in the vicinity of the X-ray source, both of which have NIR counterparts. We conclude that these VLA sources are free-free emission produced by shocks in protostellar jets from the NIR class I protostars. Using the centimeter data, we determined the power and orientation of the protostellar jets. The center position of the X-ray emission was found to be ~1--2" offset from the exciting sources of the jets, and the displacement is in the direction of the jets and molecular outflows. We discuss the nature of the X-ray emission as the shock-excited plasma at the shock front where the jet propagates through interstellar medium at a speed of ~1000 km/s.

  5. A High-Resolution Very Large Array Observation of a Protostar in OMC-3: Shock-induced X-ray Emission by a Protostellar Jet

    E-Print Network [OSTI]

    Tsujimoto, M; Kobayashi, N; Saitó, M; Tsuboi, Y; Chandler, C J

    2004-01-01T23:59:59.000Z

    Using the Very Large Array (VLA) in the A-configuration, we have obtained a high-resolution 3.6 cm map of a hard X-ray source detected by the Chandra X-ray Observatory in a protostellar clump in Orion molecular cloud 3. Two radio continuum sources were detected in the vicinity of the X-ray source, both of which have NIR counterparts. We conclude that these VLA sources are free-free emission produced by shocks in protostellar jets from the NIR class I protostars. Using the centimeter data, we determined the power and orientation of the protostellar jets. The center position of the X-ray emission was found to be ~1--2" offset from the exciting sources of the jets, and the displacement is in the direction of the jets and molecular outflows. We discuss the nature of the X-ray emission as the shock-excited plasma at the shock front where the jet propagates through interstellar medium at a speed of ~1000 km/s.

  6. X-ray lithography source

    DOE Patents [OSTI]

    Piestrup, Melvin A. (Woodside, CA); Boyers, David G. (Mountain View, CA); Pincus, Cary (Sunnyvale, CA)

    1991-01-01T23:59:59.000Z

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  7. X-ray lithography source

    DOE Patents [OSTI]

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31T23:59:59.000Z

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  8. Two Novel x-ray Optical Schemes for Spectroscopy with Fast Time Resolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Zandof Energy TwoJeffersonTwo

  9. New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew Visible to BroadbandNewofNew Zone

  10. New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew Visible to BroadbandNewofNew

  11. New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew Visible to BroadbandNewofNewNew

  12. New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew Visible to BroadbandNewofNewNewNew

  13. A high resolution view of the jet termination shock in a hot spot of the nearby radio galaxy Pictor A: implications for X-ray models of radio galaxy hot spots

    E-Print Network [OSTI]

    S. J. Tingay; E. Lenc; G. Brunetti; M. Bondi

    2008-10-02T23:59:59.000Z

    Images made with the VLBA have resolved the region in a nearby radio galaxy, Pictor A, where the relativistic jet that originates at the nucleus terminates in an interaction with the intergalactic medium, a so-called radio galaxy hot spot. This image provides the highest spatial resolution view of such an object to date (16 pc), more than three times better than previous VLBI observations of similar objects. The north-west Pictor A hot spot is resolved into a complex set of compact components, seen to coincide with the bright part of the hot spot imaged at arcsecond-scale resolution with the VLA. In addition to a comparison with VLA data, we compare our VLBA results with data from the HST and Chandra telescopes, as well as new Spitzer data. The presence of pc-scale components in the hot spot, identifying regions containing strong shocks in the fluid flow, leads us to explore the suggestion that they represent sites of synchrotron X-ray production, contributing to the integrated X-ray flux of the hot spot, along with X-rays from synchrotron self-Compton scattering. This scenario provides a natural explanation for the radio morphology of the hot spot and its integrated X-ray emission, leading to very different predictions for the higher energy X-ray spectrum compared to previous studies. From the sizes of the individual pc-scale components and their angular spread, we estimate that the jet width at the hot spot is in the range 70 - 700 pc, which is comparable to similar estimates in PKS 2153-69, 3C 205, and 4C 41.17. The lower limit in this range arises from the suggestion that the jet may dither in its direction as it passes through hot spot backflow material close to the jet termination point, creating a "dentist drill" effect on the inside of a cavity 700 pc in diameter.

  14. X-ray spectroscopy of low-mass X-ray binaries

    E-Print Network [OSTI]

    Juett, Adrienne Marie, 1976-

    2004-01-01T23:59:59.000Z

    I present high-resolution X-ray grating spectroscopy of neutron stars in low-mass X-ray binaries (LMXBs) using instruments onboard the Chandra X-ray Observatory and the X-ray Multi-Mirror Mission (XMM-Newton). The first ...

  15. Extending The Methodology Of X-ray Crystallography To Allow X-ray

    E-Print Network [OSTI]

    Miao, Jianwei "John"

    , the radiation damage. While the radiation damage problem can be mitigated somewhat by using cryogenic techniques resolution without serious radiation damage to the specimens. Although X-ray crystallography becomesExtending The Methodology Of X-ray Crystallography To Allow X-ray Microscopy Without X-ray Optics

  16. AUTOMATED ELEMENTAL ANALYSIS USING ENERGY DISPERSIVE X-RAY FLUORESCENCE ANALYSIS

    E-Print Network [OSTI]

    Jaklevic, J.M.

    2011-01-01T23:59:59.000Z

    upon the x-ray fluorescence (XRF) method for the elementalnon-destructive nature of XRF is especially important whereconcentrations are measured in the XRF spectrometer and the

  17. Using X-Ray Computed Tomography in Pore Structure Characterization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using X-Ray Computed Tomography in Pore Structure Characterization for a Berea Sandstone: Resolution Effect. Using X-Ray Computed Tomography in Pore Structure Characterization for...

  18. Structure of a zeolite ZSM-5-Bithiophene complex as determined by high-resolution synchrotron X-ray powder diffraction

    SciTech Connect (OSTI)

    Eylem, C.; Hriljac, J.A. [Brookhaven National Laboratory, Upton, NY (United States)] [Brookhaven National Laboratory, Upton, NY (United States); Ramamurthy, V.; Corbin, D.R. [Du Pont Co., Wilmington, DE (United States)] [Du Pont Co., Wilmington, DE (United States); Parise, J.B. [State Univ. of New York, Stony Brook, NY (United States)] [State Univ. of New York, Stony Brook, NY (United States)

    1996-04-01T23:59:59.000Z

    The structure of a zeolite ZSM-5 complex with ca. 4 molecules/unit cell of bithiophene was determined by high-resolution synchrotron X-ray powder diffraction. In adopts monoclinic symmetry in space group P2{sub 1}/n ({alpha} unique) between room temperature and 25 K, with refined lattice parameters at 25 K of a = 20.0614(4), b = 19.8251(4), c = 13.3623(4) {Angstrom}, and a = 90.848(2){degrees}. Structural modeling and Rietveld refinements showed that there are two crystallographically unique bithiophene molecules, each with an occupancy factor of ca. 0.5. One bithiophene is localized at the center of the straight channels with one of the rings residing at the intersection with the sinusoidal channels. The other molecule lies in the sinusoidal channels and projects partially into the straight channels. The relationship between polythiophene chain length and the formation of conducting polythiophene molecular wires in the ZSM-5 framework is discussed. 32 refs., 4 figs., 3 tabs.

  19. Dual energy CT-based characterization of x-ray attenuation properties of breast equivalent material plates

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Dual energy CT-based characterization of x-ray attenuation properties of breast equivalent material of the same nominal breast density equivalence (+ 1.5 HU). In addition, dual energy CT provided mono equivalent material, breast density, attenuation properties, linear attenuation coefficients, dual energy CT

  20. New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew User and Data Analytics951New Zone

  1. COLLOQUIUM: Development of High Resolution X-Ray Spectroscopy at PPPL |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience,Institute forPrincetonInformation

  2. Exploring electronic structure through high-resolution hard x-ray

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecular Solids1spectroscopies | Stanford

  3. Measurement of high-energy (10–60 keV) x-ray spectral line widths with eV accuracy

    SciTech Connect (OSTI)

    Seely, J. F., E-mail: seelyjf@gmail.com; Feldman, U. [Artep Inc., 2922 Excelsior Springs Court, Ellicott City, Maryland 21042 (United States); Glover, J. L.; Hudson, L. T.; Ralchenko, Y.; Henins, Albert [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Pereira, N. [Ecopulse Inc., P. O. Box 528, Springfield, Virginia 22152 (United States); Di Stefano, C. A.; Kuranz, C. C.; Drake, R. P. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Chen, Hui; Williams, G. J.; Park, J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2014-11-15T23:59:59.000Z

    A high resolution crystal spectrometer utilizing a crystal in transmission geometry has been developed and experimentally optimized to measure the widths of emission lines in the 10–60 keV energy range with eV accuracy. The spectrometer achieves high spectral resolution by utilizing crystal planes with small lattice spacings (down to 2d = 0.099 nm), a large crystal bending radius and Rowland circle diameter (965 mm), and an image plate detector with high spatial resolution (60 ?m in the case of the Fuji TR image plate). High resolution W L-shell and K-shell laboratory test spectra in the 10–60 keV range and Ho K-shell spectra near 47 keV recorded at the LLNL Titan laser facility are presented. The Ho K-shell spectra are the highest resolution hard x-ray spectra recorded from a solid target irradiated by a high-intensity laser.

  4. A Full-Field KB-FZP Microscope for Hard X-Ray Imaging with Sub-100 nm Resolution

    E-Print Network [OSTI]

    Braun, Paul

    , Germany, 6 BESSY GmbH, Albert-Einstein-Str.15, 12489 Berlin, Germany A full-field hard X-ray microscope was performed at the Advanced Photon Source (APS), a synchrotron radiation source of the third generation

  5. Element-specific imaging of magnetic domains at 25 nm spatial resolution using soft x-ray microscopy

    E-Print Network [OSTI]

    Bayreuther, Günther

    magnetic transmission x-ray microscopy M-TXM . This was first demonstrated at the synchrotron facility BESSY I in Berlin.8­10 In this article experiments with M-TXM obtained at the XM-1 beamline

  6. Relationship between dislocations and residual stresses in cold-drawn pearlitic steel analyzed by energy-dispersive X-ray diffraction

    SciTech Connect (OSTI)

    Sato, Shigeo, E-mail: s.sato@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Wagatsuma, Kazuaki [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Suzuki, Shigeru [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Kumagai, Masayoshi; Imafuku, Muneyuki [Faculty of Engineering, Tokyo City University, Tokyo 158-8557 (Japan); Tashiro, Hitoshi [Gyoda 361-0011 (Japan); Kajiwara, Kentaro [Japan Synchrotron Radiation Research Institute, Sayo 679-5198 (Japan); Shobu, Takahiasa [Japan Atomic Energy Agency, Sayo 679-5184 (Japan)

    2013-09-15T23:59:59.000Z

    We analyzed the dislocation distribution of cold-drawn pearlitic-steel wire by using the line-profile analysis based on the energy dispersive X-ray diffraction (EDXD). Although this line-profile analysis requires a high resolution in reciprocal space, the resolution for EDXD is generally poor due to the energy resolution of the detector. Our analysis demonstrated that the resolution in the reciprocal space can be maximized at small scattering angles. Using the line-profile analysis based on the EDXD, the microstructural parameters such as the crystallite size and the dislocation density of the ferrite phase in the pearlitic steel were successfully analyzed. In addition, the distribution of the residual stress of the ferrite phase of a pearlitic steel wire was also analyzed using the EDXD measurement. - Highlights: • Energy dispersive X-ray diffraction is applied to the line-profile analysis. • Distribution of dislocations in ferrite in the pearlitic steel wire is analyzed. • Relationship between dislocations and residual stress is discussed.

  7. The X-ray afterglow flat segment in short GRB 051221A: Energy injection from a millisecond magnetar?

    E-Print Network [OSTI]

    Yizhong Fan; Dong Xu

    2006-07-12T23:59:59.000Z

    The flat segment lasting $\\sim 10^4$ seconds in the X-ray afterglow of GRB051221A represents the first clear case of strong energy injection in the external shock of a short GRB afterglow. In this work, we show that a millisecond pulsar with dipole magnetic field $\\sim 10^{14}$ Gauss could well account for that energy injection. The good quality X-ray flat segment thus suggests that the central engine of this short burst may be a millisecond magnetar.

  8. Miniature x-ray source

    DOE Patents [OSTI]

    Trebes, James E. (Livermore, CA); Stone, Gary F. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA); Chornenky, Victor I. (Minnetonka, MN)

    2002-01-01T23:59:59.000Z

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  9. X-Ray Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more toConsensusX-Ray Diagnostics X-Ray

  10. Soft X-ray irradiation of methanol ice: Formation of products as a function of photon energy

    SciTech Connect (OSTI)

    Chen, Y.-J.; Juang, K.-J.; Yih, T.-S. [Department of Physics, National Central University, Jhongli City, Taoyuan County 32054, Taiwan (China); Ciaravella, A.; Cecchi-Pestellini, C. [INAF-Osservatorio Astronomico di Palermo, P.za Parlamento 1, I-90134 Palermo (Italy); Muñoz Caro, G. M.; Jiménez-Escobar, A., E-mail: aciaravella@astropa.unipa.it [Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir, km 4, Torrejón de Ardoz, E-28850 Madrid (Spain)

    2013-12-01T23:59:59.000Z

    Pure methanol ices have been irradiated with monochromatic soft X-rays of 300 and 550 eV close to the 1s resonance edges of C and O, respectively, and with a broadband spectrum (250-1200 eV). The infrared (IR) spectra of the irradiated ices show several new products of astrophysical interest such as CH{sub 2}OH, H{sub 2}CO, CH{sub 4}, HCOOH, HCOCH{sub 2}OH, CH{sub 3}COOH, CH{sub 3}OCH{sub 3}, HCOOCH{sub 3}, and (CH{sub 2}OH){sub 2}, as well as HCO, CO, and CO{sub 2}. The effect of X-rays is the result of the combined interactions of photons and electrons with the ice. A significant contribution to the formation and growth of new species in the CH{sub 3}OH ice irradiated with X-rays is given by secondary electrons, whose energy distribution depends on the energy of X-ray photons. Within a single experiment, the abundances of the new products increase with the absorbed energy. Monochromatic experiments show that product abundances also increase with the photon energy. However, the abundances per unit energy of newly formed species show a marked decrease in the broadband experiment as compared to irradiations with monochromatic photons, suggesting a possible regulatory role of the energy deposition rate. The number of new molecules produced per absorbed eV in the X-ray experiments has been compared to those obtained with electron and ultraviolet (UV) irradiation experiments.

  11. STELLAR CORONAE, SOLAR FLARES: A DETAILED COMPARISON OF {sigma} GEM, HR 1099, AND THE SUN IN HIGH-RESOLUTION X-RAYS

    SciTech Connect (OSTI)

    Huenemoerder, David P. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 70 Vassar St., Cambridge, MA 02139 (United States); Phillips, Kenneth J. H. [Visiting Scientist, Space Research Center, Polish Academy of Sciences, 51-622, Kopernika 11, Wroclaw (Poland); Sylwester, Janusz; Sylwester, Barbara, E-mail: dph@space.mit.edu, E-mail: kennethjhphillips@yahoo.com, E-mail: js@cbk.pan.wroc.pl, E-mail: bs@cbk.pan.wroc.pl [Space Research Center, Polish Academy of Sciences, 51-622, Kopernika 11, Wroclaw (Poland)

    2013-05-10T23:59:59.000Z

    The Chandra High Energy Transmission Grating Spectrometer (HETG) spectra of the coronally active binary stars {sigma} Gem and HR 1099 are among the highest fluence observations for such systems taken at high spectral resolution in X-rays with this instrument. This allows us to compare their properties in detail to solar flare spectra obtained with the Russian CORONAS-F spacecraft's RESIK instrument at similar resolution in an overlapping bandpass. Here we emphasize the detailed comparisons of the 3.3-6.1 A region (including emission from highly ionized S, Si, Ar, and K) from solar flare spectra to the corresponding {sigma} Gem and HR 1099 spectra. We also model the larger wavelength range of the HETG, from 1.7 to 25 A - having emission lines from Fe, Ca, Ar, Si, Al, Mg, Ne, O, and N-to determine coronal temperatures and abundances. {sigma} Gem is a single-lined coronally active long-period binary which has a very hot corona. HR 1099 is a similar, but shorter period, double-lined system. With very deep HETG exposures we can even study emission from some of the weaker species, such as K, Na, and Al, which are important since they have the lowest first ionization potentials, a parameter well known to be correlated with elemental fractionation in the solar corona. The solar flare temperatures reach Almost-Equal-To 20 MK, comparable to the {sigma} Gem and HR 1099 coronae. During the Chandra exposures, {sigma} Gem was slowly decaying from a flare and its spectrum is well characterized by a collisional ionization equilibrium plasma with a broad temperature distribution ranging from 2 to 60 MK, peaking near 25 MK, but with substantial emission from 50 MK plasma. We have detected K XVIII and Na XI emission which allow us to set limits on their abundances. HR 1099 was also quite variable in X-rays, also in a flare state, but had no detectable K XVIII. These measurements provide new comparisons of solar and stellar coronal abundances, especially at the lowest first ionization potential (FIP) values. The low FIP elements do not show enhancement in the stellar coronae as they do in the Sun, except perhaps for K in {sigma} Gem. While {sigma} Gem and HR 1099 differ in their emission measure distributions, they have very similar elemental abundances.

  12. THE CHANDRA MULTI-WAVELENGTH PROJECT: OPTICAL SPECTROSCOPY AND THE BROADBAND SPECTRAL ENERGY DISTRIBUTIONS OF X-RAY-SELECTED AGNs

    SciTech Connect (OSTI)

    Trichas, Markos; Green, Paul J.; Aldcroft, Tom; Kim, Dong-Woo; Mossman, Amy [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Silverman, John D. [Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, Kashiwanoha 5-1-5, Kashiwa-shi, Chiba 277-8568 (Japan); Barkhouse, Wayne [Department of Physics and Astrophysics, University of North Dakota, Grand Forks, ND 58202 (United States); Cameron, Robert A. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Constantin, Anca [Department of Physics and Astronomy, James Madison University, PHCH, Harrisonburg, VA 22807 (United States); Ellison, Sara L. [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 1A1 (Canada); Foltz, Craig [Division of Astronomical Sciences, National Science Foundation, 4201 Wilson Blvd., Arlington, VA 22230 (United States); Haggard, Daryl [Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Jannuzi, Buell T. [NOAO, Kitt Peak National Observatory, Tucson, AZ 85726 (United States); Marshall, Herman L. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Perez, Laura M. [Department of Astronomy, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125 (United States); Romero-Colmenero, Encarni [South African Astronomical Observatory, P.O. Box 9, Observatory, 7935 (South Africa); Ruiz, Angel [Osservatorio Astronomico di Brera-INAF, Milan (Italy); Smith, Malcolm G., E-mail: mtrichas@cfa.harvard.edu [Cerro Tololo Interamerican Observatory, La Serena (Chile); and others

    2012-06-01T23:59:59.000Z

    From optical spectroscopy of X-ray sources observed as part of the Chandra Multi-wavelength Project (ChaMP), we present redshifts and classifications for a total of 1569 Chandra sources from our targeted spectroscopic follow-up using the FLWO/1.5 m, SAAO/1.9 m, WIYN 3.5 m, CTIO/4 m, KPNO/4 m, Magellan/6.5 m, MMT/6.5 m, and Gemini/8 m telescopes, and from archival Sloan Digital Sky Survey (SDSS) spectroscopy. We classify the optical counterparts as 50% broad-line active galactic nuclei (AGNs), 16% emission line galaxies, 14% absorption line galaxies, and 20% stars. We detect QSOs out to z {approx} 5.5 and galaxies out to z {approx} 3. We have compiled extensive photometry, including X-ray (ChaMP), ultraviolet (GALEX), optical (SDSS and ChaMP-NOAO/MOSAIC follow-up), near-infrared (UKIDSS, Two Micron All Sky Survey, and ChaMP-CTIO/ISPI follow-up), mid-infrared (WISE), and radio (FIRST and NVSS) bands. Together with our spectroscopic information, this enables us to derive detailed spectral energy distributions (SEDs) for our extragalactic sources. We fit a variety of template SEDs to determine bolometric luminosities, and to constrain AGNs and starburst components where both are present. While {approx}58% of X-ray Seyferts (10{sup 42} erg s{sup -1} < L{sub 2-10keV} <10{sup 44} erg s{sup -1}) require a starburst event (>5% starburst contribution to bolometric luminosity) to fit observed photometry only 26% of the X-ray QSO (L{sub 2-10keV} >10{sup 44} erg s{sup -1}) population appear to have some kind of star formation contribution. This is significantly lower than for the Seyferts, especially if we take into account torus contamination at z > 1 where the majority of our X-ray QSOs lie. In addition, we observe a rapid drop of the percentage of starburst contribution as X-ray luminosity increases. This is consistent with the quenching of star formation by powerful QSOs, as predicted by the merger model, or with a time lag between the peak of star formation and QSO activity. We have tested the hypothesis that there should be a strong connection between X-ray obscuration and star formation but we do not find any association between X-ray column density and star formation rate both in the general population or the star-forming X-ray Seyferts. Our large compilation also allows us to report here the identification of 81 X-ray Bright Optically inactive Galaxies, 78 z > 3 X-ray sources, and eight Type-2 QSO candidates. Also, we have identified the highest redshift (z = 5.4135) X-ray-selected QSO with optical spectroscopy.

  13. Facilities and techniques for x-ray diagnostic calibration in the 100-eV to 100-keV energy range

    SciTech Connect (OSTI)

    Gaines, J.L.; Wittmayer, F.J.

    1986-06-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) has been a pioneer in the field of x-ray diagnostic calibration for more than 20 years. We have built steady state x-ray sources capable of supplying fluorescent lines of high spectral purity in the 100-eV to 100-keV energy range, and these sources have been used in the calibration of x-ray detectors, mirrors, crystals, filters, and film. This paper discusses our calibration philosophy and techniques, and describes some of our x-ray sources. Examples of actual calibration data are presented as well.

  14. Compact x-ray source and panel

    DOE Patents [OSTI]

    Sampayon, Stephen E. (Manteca, CA)

    2008-02-12T23:59:59.000Z

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  15. DETERMINING NEUTRON STAR MASSES AND RADII USING ENERGY-RESOLVED WAVEFORMS OF X-RAY BURST OSCILLATIONS

    SciTech Connect (OSTI)

    Lo, Ka Ho; Lamb, Frederick K. [Center for Theoretical Astrophysics and Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801-3080 (United States); Miller, M. Coleman [Department of Astronomy and Joint Space-Science Institute, University of Maryland, College Park, College Park, MD 20742-2421 (United States); Bhattacharyya, Sudip, E-mail: fkl@illinois.edu [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai 400005 (India)

    2013-10-10T23:59:59.000Z

    Simultaneous, precise measurements of the mass M and radius R of neutron stars can yield uniquely valuable information about the still uncertain properties of cold matter at several times the density of nuclear matter. One method that could be used to measure M and R is to analyze the energy-dependent waveforms of the X-ray flux oscillations seen during some thermonuclear bursts from some neutron stars. These oscillations are thought to be produced by X-ray emission from hotter regions on the surface of the star that are rotating at or near the spin frequency of the star. Here we explore how well M and R could be determined by generating and analyzing, using Bayesian techniques, synthetic energy-resolved X-ray data that we produce assuming a future space mission having 2-30 keV energy coverage and an effective area of 10 m{sup 2}, such as the proposed Large Observatory for X-Ray Timing or Advanced X-Ray Timing Array missions. We find that waveforms from hot spots within 10° of the rotation equator usually constrain both M and R with an uncertainty of about 10%, if there are 10{sup 6} total counts from the spot, whereas waveforms from spots within 20° of the rotation pole provide no useful constraints. The constraints we report can usually be achieved even if the burst oscillations vary with time and data from multiple bursts must be used to obtain 10{sup 6} counts from the hot spot. This is therefore a promising method to constrain M and R tightly enough to discriminate strongly between competing models of cold, high-density matter.

  16. High-resolution x-ray diffraction investigation of relaxation and dislocations in SiGe layers grown on (001), (011), and (111) Si substrates

    SciTech Connect (OSTI)

    Zhylik, A.; Benediktovich, A. [Department of Theoretical Physics, Belarusian State University, 4 Fr. Nezavisimosti Avenue, 220030 Minsk, Republic of Belarus (Belarus); Ulyanenkov, A.; Guerault, H. [Bruker AXS GmbH, Oestliche Rheinbrueckenstrasse 49, 76187 Karlsruhe (Germany); Myronov, M.; Dobbie, A.; Leadley, D. R. [Department of Physics, The University of Warwick, Coventry CV4 7AL (United Kingdom); Ulyanenkova, T. [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2011-06-15T23:59:59.000Z

    This work presents a detailed characterization, using high-resolution x-ray diffraction, of multilayered Si{sub 1-x}Ge{sub x} heterostructures grown on (001), (011), and (111) Si substrates by reduced pressure chemical vapor deposition. Reciprocal space mapping has been used to determine both the strain and Ge concentration depth profiles within each layer of the heterostructures after initially determining the crystallographic tilt of all the layers. Both symmetric and asymmetric reciprocal space maps were measured on each sample, and the evaluation was performed simultaneously for the whole data set. The ratio of misfit to threading dislocation densities has been estimated for each individual layer based on an analysis of diffuse x-ray scattering from the defects.

  17. A Variable-Energy Soft X-Ray Microprobe to Investigate Mechanisms of the Radiation-Induced Bystander Effect.

    SciTech Connect (OSTI)

    Folkard, Melvyn; Vojnovic, Borivoj; Schettino, Giuseppe; Atkinson, Kirk; Prise, Kevin, M.; Michael, Barry, D.

    2007-01-23T23:59:59.000Z

    The Gray Cancer Institute has pioneered the use of X ray focussing techniques to develop systems for micro irradiating individual cells and sub cellular targets in vitro. Cellular micro irradiation is now recognised as a highly versatile technique for understanding how ionising radiation interacts with living cells and tissues. The strength of the technique lies in its ability to deliver precise doses of radiation to selected individual cells (or sub cellular targets). The application of this technique in the field of radiation biology continues to be of great interest for investigating a number of phenomena currently of concern to the radiobiological community. One important phenomenon is the so called ‘bystander effect’ where it is observed that unirradiated cells can also respond to signals transmitted by irradiated neighbours. Clearly, the ability of a microbeam to irradiate just a single cell or selected cells within a population is well suited to studying this effect. Our prototype ‘tabletop’ X-ray microprobe was optimised for focusing 278 eV C-K X rays and has been used successfully for a number of years. However, we have sought to develop a new variable energy soft X-ray microprobe capable of delivering focused CK (0.28 keV), Al-K (1.48 keV) and notably, Ti-K (4.5 keV) X rays. Ti-K X rays are capable of penetrating several cell layers and are therefore much better suited to studies involving tissues and multi cellular layers. In our new design, X-rays are generated by the focussed electron bombardment of a material whose characteristic-K radiation is required. The source is mounted on a 1.5 x 1.0 metre optical table. Electrons are generated by a custom built gun, designed to operate up to 15 kV. The electrons are focused using a permanent neodymium iron boron magnet assembly. Focusing is achieved by adjusting the accelerating voltage and by fine tuning the target position via a vacuum position feedthrough. To analyze the electron beam properties, a custom built microscope is used to image the focussed beam on the target, through a vacuum window. The X-rays are focussed by a zone plate optical assembly mounted to the end of a hollow vertical tube that can be precisely positioned above the X ray source. The cell finding and positioning stage comprises an epi-fluorescence microscope and a feedback controlled 3 axis cell positioning stage, also mounted on the optical table. Independent vertical micro positioning of the microscope objective turret allows the focus of the microscope and the X ray focus to coincide in space (i.e. at the point where the cell should be positioned for exposure). The whole microscope stage assembly can be precisely raised or lowered, to cater for large differences in the focal length of the X ray zone plates. The facility is controlled by PC and the software provides full status and control of the source and makes use of a dual-screen for control and display during the automated cell finding and irradiation procedures.

  18. The high energy X-ray tail of Eta Car revealed by BeppoSAX

    E-Print Network [OSTI]

    R. F. Viotti; L. A. Antonelli; C. Rossi; S. Rebecchi

    2004-02-13T23:59:59.000Z

    We report on the June 2000 long (100 ks) BeppoSAX exposure that has unveiled above 10 keV a new very high energy component of the X-ray spectrum of Eta Car extending to at least 50 keV. We find that the 2-150 keV spectrum is best reproduced by a thermal + non-thermal model. The thermal component dominates the 2-10 keV spectral range with kT_h=5.5 +/- 0.3 keV and log NH_h=22.68 +/- 0.01. The spectrum displays a prominent iron emission line centred at 6.70 keV. Its equivalent width of 0.94 keV, if produced by the thermal source, gives a slightly sub-solar iron abundance ([Fe/H]=-0.15 +/- 0.02). The high energy tail above 10 keV is best fitted by a power law with a photon index of 2.42 +/- 0.04. The integrated 13-150 keV luminosity of ~12 L-sun is comparable to that of the 2-10 keV thermal component. The present result can be explained, in the Eta Car binary star scenario, by Comptonisation of low frequency radiation by high energy electrons, probably generated in the colliding wind shock front, or in instabilities in the wind of the S Dor primary star. It is possible that the high energy tail had largely weakened near the minimum of the 5.53 yr cycle. With respect to the thermal component, it probably has a longer recovering time like that of the highest excitation optical emission lines. Both features can be associated with the large absorption measured by BeppoSAX at phase 0.05.

  19. High Energy Neutrino Flashes from Far-Ultraviolet and X-ray Flares in Gamma-Ray Bursts

    E-Print Network [OSTI]

    Kohta Murase; Shigehiro Nagataki

    2006-08-07T23:59:59.000Z

    The recent observations of bright optical and x-ray flares by the Swift satellite suggest these are produced by the late activities of the central engine. We study the neutrino emission from far-ultraviolet and x-ray flares under the late internal shock model. We show that the efficiency of pion production in the highest energy is comparable to or higher than the unity, and the contribution from such neutrino flashes to a diffuse very high energy neutrino background can be larger than that of prompt bursts if the total baryonic energy input into flares is comparable to the radiated energy of prompt bursts. These signals may be detected by IceCube and are very important because they have possibilities to probe the nature of flares (the baryon loading, the photon field, the magnetic field and so on).

  20. Production and application of a novel energy-tunable X-ray source at the RPI LINAC

    E-Print Network [OSTI]

    Danon, Yaron

    Production and application of a novel energy-tunable X-ray source at the RPI LINAC Bryndol Sones energy linewidth for example, Si(400) FWHM of 134 eV at 9.0 keV (2%). Per electron, the photon production 17­20 keV. Low Z materials like graphite and LiF were most suitable for PXR production because

  1. Note: Design and construction of a multi-scale, high-resolution, tube-generated X-Ray computed-tomography system for three-dimensional (3D) imaging

    SciTech Connect (OSTI)

    Mertens, J. C. E.; Williams, J. J.; Chawla, Nikhilesh [Materials Science and Engineering, Security and Defense Systems Initiative, Arizona State University, 781 E. Terrace Road, ISTB4, Tempe, Arizona 85287-5604 (United States)] [Materials Science and Engineering, Security and Defense Systems Initiative, Arizona State University, 781 E. Terrace Road, ISTB4, Tempe, Arizona 85287-5604 (United States)

    2014-01-15T23:59:59.000Z

    The design and construction of a high resolution modular x-ray computed tomography (XCT) system is described. The approach for meeting a specified set of performance goals tailored toward experimental versatility is highlighted. The instrument is unique in its detector and x-ray source configuration, both of which enable elevated optimization of spatial and temporal resolution. The process for component selection is provided. The selected components are specified, the custom component design discussed, and the integration of both into a fully functional XCT instrument is outlined. The novelty of this design is a new lab-scale detector and imaging optimization through x-ray source and detector modularity.

  2. Upgrades of imaging x-ray crystal spectrometers for high-resolution and high-temperature plasma diagnostics on EAST

    SciTech Connect (OSTI)

    Lyu, B., E-mail: blu@ipp.ac.cn; Wang, F. D.; Fu, J.; Li, Y. Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Pan, X. Y.; Chen, J.; Wan, B. N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Bitter, M.; Hill, K. W.; Delgado-Aparicio, L. F.; Pablant, N. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Lee, S. G. [National Fusion Research Institute, 52 Eoeun-Dong, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Shi, Y. J. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); WCI for Fusion Theory, National Fusion Research Institute, 52 Eoeun-Dong, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Ye, M. Y. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-11-15T23:59:59.000Z

    Upgrade of the imaging X-ray crystal spectrometers continues in order to fulfill the high-performance diagnostics requirements on EAST. For the tangential spectrometer, a new large pixelated two-dimensional detector was deployed on tokamaks for time-resolved X-ray imaging. This vacuum-compatible detector has an area of 83.8 × 325.3 mm{sup 2}, a framing rate over 150 Hz, and water-cooling capability for long-pulse discharges. To effectively extend the temperature limit, a double-crystal assembly was designed to replace the previous single crystals for He-like argon line measurement. The tangential spectrometer employed two crystal slices attached to a common substrate and part of He- and H-like Ar spectra could be recorded on the same detector when crystals were chosen to have similar Bragg angles. This setup cannot only extend the measurable Te up to 10 keV in the core region, but also extend the spatial coverage since He-like argon ions will be present in the outer plasma region. Similarly, crystal slices for He-like iron and argon spectra were adopted on the poloidal spectrometer. Wavelength calibration for absolute rotation velocity measurement will be studied using cadmium characteristic L-shell X-ray lines excited by plasma radiation. A Cd foil is placed before the crystal and can be inserted and retracted for in situ wavelength calibration. The Geant4 code was used to estimate X-ray fluorescence yield and optimize the thickness of the foil.

  3. A new spectrometer design for the x-ray spectroscopy of laser-produced plasmas with high (sub-ns) time resolution

    SciTech Connect (OSTI)

    Bitter, M., E-mail: bitter@pppl.gov; Hill, K. W.; Efthimion, P. C.; Delgado-Aparicio, L.; Pablant, N. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Lu, Jian [Department of Engineering, Chongqing University, Chongqing 400044 (China); Beiersdorfer, P.; Chen, Hui [Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-11-15T23:59:59.000Z

    This paper describes a new type of x-ray crystal spectrometer, which can be used in combination with gated x-ray detectors to obtain spectra from laser-produced plasmas with a high (sub-ns) time resolution. The spectrometer consists of a convex, spherically bent crystal, which images individual spectral lines as perfectly straight lines across multiple, sequentially gated, strip detectors. Since the Bragg-reflected rays are divergent, the distance between detector and crystal is arbitrary, so that this distance can be appropriately chosen to optimize the experimental arrangement with respect to the detector parameters. The spectrometer concept was verified in proof-of-principle experiments by imaging the L?{sub 1}- and L?{sub 2}-lines of tungsten, at 9.6735 and 9.96150 keV, from a micro-focus x-ray tube with a tungsten target onto a two-dimensional pixilated Pilatus detector, using a convex, spherically bent Si-422 crystal with a radius of curvature of 500 mm.

  4. A Fast, Versatile Nanoprobe for Complex Materials: The Sub-micron Resolution X-ray Spectroscopy Beamline at NSLS-II (491st Brookhaven Lecture)

    SciTech Connect (OSTI)

    Thieme, Juergen [BNL Photon Sciences Directorate

    2014-02-06T23:59:59.000Z

    Time is money and for scientists who need to collect data at research facilities like Brookhaven Lab’s National Synchrotron Light Source (NSLS), “beamtime” can be a precious commodity. While scanning a complex material with a specific technique and standard equipment today would take days to complete, researchers preparing to use brighter x-rays and the new sub-micron-resolution x-ray spectroscopy (SRX) beamline at the National Synchrotron Light Source II (NSLS-II) could scan the same sample in greater detail with just a few hours of beamtime. Talk about savings and new opportunities for researchers! Users will rely on these tools for locating trace elements in contaminated soils, developing processes for nanoparticles to deliver medical treatments, and much more. Dr. Thieme explains benefits for next-generation research with spectroscopy and more intense x-rays at NSLS-II. He discusses the instrumentation, features, and uses for the new SRX beamline, highlighting its speed, adjustability, and versatility for probing samples ranging in size from millimeters down to the nanoscale. He will talk about complementary beamlines being developed for additional capabilities at NSLS-II as well.

  5. X-ray holography of biological specimens

    SciTech Connect (OSTI)

    Solem, J.C.

    1984-01-01T23:59:59.000Z

    The author reviews the reasons for x-ray imaging of biological specimens and the techniques presently being used for x-ray microscopy. The author points out the advantages of x-ray holography and the difficulties of obtaining the requisite coherence with conventional sources. The author discusses the problems of radiation damage and the remarkable fact that short pulse x-ray sources circumvent these problems and obtain high-resolution images of specimens in the living state. Finally, the author reviews some of the efforts underway to develop high-intensity coherent x-ray sources for the laboratory. 14 references, 5 figures, 2 tables.

  6. High Energy X-Ray System Specification for the Device Assembly Facility (DAF) at the NNSS

    SciTech Connect (OSTI)

    Fry, David A. [Los Alamos National Laboratory

    2012-08-10T23:59:59.000Z

    This specification establishes requirements for an X-Ray System to be used at the Device Assembly Facility (DAF) at the Nevada National Security Site (NNSS) to support radiography of experimental assemblies for Laboratory (LANL, LLNL, SNL) programs conducting work at the NNSS.

  7. THE SAP3 COMPUTER PROGRAM FOR QUANTITATIVE MULTIELEMENT ANALYSIS BY ENERGY DISPERSIVE X-RAY FLUORESCENCE

    SciTech Connect (OSTI)

    Nielson,, K. K.; Sanders,, R. W.

    1982-04-01T23:59:59.000Z

    SAP3 is a dual-function FORTRAN computer program which performs peak analysis of energy-dispersive x-ray fluorescence spectra and then quantitatively interprets the results of the multielement analysis. It was written for mono- or bi-chromatic excitation as from an isotopic or secondary excitation source, and uses the separate incoherent and coherent backscatter intensities to define the bulk sample matrix composition. This composition is used in performing fundamental-parameter matrix corrections for self-absorption, enhancement, and particle-size effects, obviating the need for specific calibrations for a given sample matrix. The generalized calibration is based on a set of thin-film sensitivities, which are stored in a library disk file and used for all sample matrices and thicknesses. Peak overlap factors are also determined from the thin-film standards, and are stored in the library for calculating peak overlap corrections. A detailed description is given of the algorithms and program logic, and the program listing and flow charts are also provided. An auxiliary program, SPCAL, is also given for use in calibrating the backscatter intensities. SAP3 provides numerous analysis options via seventeen control switches which give flexibility in performing the calculations best suited to the sample and the user needs. User input may be limited to the name of the library, the analysis livetime, and the spectrum filename and location. Output includes all peak analysis information, matrix correction factors, and element concentrations, uncertainties and detection limits. Twenty-four elements are typically determined from a 1024-channel spectrum in one-to-two minutes using a PDP-11/34 computer operating under RSX-11M.

  8. 12.6 keV Kr K-alpha X-ray Source For High Energy Density Physics Experiments

    SciTech Connect (OSTI)

    Kugland, N; Constantin, C G; Niemann, C; Neumayer, P; Chung, H; Doppner, T; Kemp, A; Glenzer, S H; Girard, F

    2008-04-22T23:59:59.000Z

    A high contrast 12.6 keV Kr K{alpha} source has been demonstrated on the petawatt-class Titan laser facility. The contrast ratio (K{alpha} to continuum) is 65, with a competitive ultra short pulse laser to x-ray conversion efficiency of 10{sup -5}. Filtered shadowgraphy indicates that the Kr K{alpha} and K{beta} x-rays are emitted from a roughly 1 x 2 mm emission volume, making this source suitable for area backlighting and scattering. Spectral calculations indicate a typical bulk electron temperature of 50-70 eV (i.e. mean ionization state 13-16), based on the observed ratio of K{alpha} to K{beta}. Kr gas jets provide a debris-free high energy K{alpha} source for time-resolved diagnosis of dense matter.

  9. Quality indexes based on water measurements for low and medium energy x-ray beams: A theoretical study with PENELOPE

    SciTech Connect (OSTI)

    Chica, U. [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada, Spain and FISRAD S.A.S Carrera 64 a No 22-41, Bogotá D.C. (Colombia)] [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada, Spain and FISRAD S.A.S Carrera 64 a No 22-41, Bogotá D.C. (Colombia); Anguiano, M.; Lallena, A. M., E-mail: lallena@ugr.es [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain); Vilches, M. [Servicio de Radiofísica, Hospital Universitario “San Cecilio”, Avda. Dr. Olóriz, 16, E-18012 Granada (Spain)] [Servicio de Radiofísica, Hospital Universitario “San Cecilio”, Avda. Dr. Olóriz, 16, E-18012 Granada (Spain)

    2014-01-15T23:59:59.000Z

    Purpose : To study the use of quality indexes based on ratios of absorbed doses in water at two different depths to characterize x-ray beams of low and medium energies. Methods : A total of 55 x-ray beam spectra were generated with the codes XCOMP5R and SPEKCALC and used as input of a series of Monte Carlo simulations performed with PENELOPE, in which the percentage depth doses in water and thek{sub Q,Q{sub 0}} factors, defined in the TRS-398 protocol, were determined for each beam. Some of these calculations were performed by simulating the ionization chamber PTW 30010. Results : The authors found that the relation betweenk{sub Q,Q{sub 0}} and the ratios of absorbed doses at two depths is almost linear. A set of ratios statistically compatible with that showing the best fit has been determined. Conclusions : The results of this study point out which of these ratios of absorbed doses in water could be used to better characterize x-ray beams of low and medium energies.

  10. Biomedical nuclear and X-ray imager using high-energy grazing incidence mirrors

    DOE Patents [OSTI]

    Ziock, Klaus-Peter; Craig, William W.; Hasegawa, Bruce; Pivovaroff, Michael J.

    2005-09-27T23:59:59.000Z

    Imaging of radiation sources located in a subject is explored for medical applications. The approach involves using grazing-incidence optics to form images of the location of radiopharmaceuticals administered to a subject. The optics are "true focusing" optics, meaning that they project a real and inverted image of the radiation source onto a detector possessing spatial and energy resolution.

  11. Correlated Optical and X-ray Variability in LMC X-2

    E-Print Network [OSTI]

    Katherine E. McGowan; Phil A. Charles; Darragh O'Donoghue; Alan P. Smale

    2003-07-21T23:59:59.000Z

    We have obtained high time resolution (seconds) photometry of LMC X-2 in December 1997, simultaneously with the Rossi X-ray Timing Explorer (RXTE), in order to search for correlated X-ray and optical variability on timescales from seconds to hours. We find that the optical and X-ray data are correlated only when the source is in a high, active X-ray state. Our analysis shows evidence for the X-ray emission leading the optical with a mean delay of <20s. The timescale for the lag can be reconciled with disc reprocessing, driven by the higher energy X-rays, only by considering the lower limit for the delay. The results are compared with a similar analysis of archival data of Sco X-1.

  12. XMM-Newton Observations Reveal the X-ray Counterpart of the Very-high-energy gamma-ray Source HESS J1640-465

    SciTech Connect (OSTI)

    Funk, S.; Hinton, J.A.; Puhlhofer, G.; Aharonian, F.A.; Hofmann, W.; Reimer, O.; Wagner, S.; /KIPAC, Menlo Park /Heidelberg, Max Planck Inst. /Leeds U. /Dublin Inst. /Stanford U., HEPL; Funk, S.; Hinton, J.A.; Puehlhofer, G.; Aharonian, F.A.; Hofmann, W.; Reimer, O.; Wagner, S.

    2007-03-05T23:59:59.000Z

    We present X-ray observations of the as of yet unidentified very high-energy (VHE) {gamma}-ray source HESS J1640-465 with the aim of establishing a counterpart of this source in the keV energy range, and identifying the mechanism responsible for the VHE emission. The 21.8 ksec XMM-Newton observation of HESS J1640-465 in September 2005 represents a significant improvement in sensitivity and angular resolution over previous ASCA studies in this region. These new data show a hard-spectrum X-ray emitting object at the centroid of the H.E.S.S. source, within the shell of the radio Supernova Remnant (SNR) G338.3-0.0. This object is consistent with the position and flux previously measured by both ASCA and Swift-XRT but is now shown to be significantly extended. We argue that this object is very likely the counterpart to HESS J1640-465 and that both objects may represent the Pulsar Wind Nebula of an as of yet undiscovered pulsar associated with G338.3-0.0.

  13. Low-Energy X-ray Emission from Young Isolated Neutron Stars

    E-Print Network [OSTI]

    M. Ruderman

    2003-10-28T23:59:59.000Z

    A young neutron star with large spin-down power is expected to be closely surrounded by an e+/- pair plasma maintained by the conversion of gamma-rays associated with the star's polar-cap and/or outer-gap accelerators. Cyclotron-resonance scattering by the e- and e+ within several radii of such neutron stars prevents direct observations of thermal X-rays from the stellar surface. Estimates are presented for the parameters of the Planck-like X-radiation which ultimately diffuses out through this region. Comparisons with observations, especially of apparent blackbody emission areas as a function of neutron star age, support the proposition that we are learning about a neutron star's magnetosphere rather than about its surface from observations of young neutron star thermal X-rays.

  14. Application of neutron activation analysis and high resolution x-ray spectrometry for the determination of trace quantities of elements with short-lived activation products

    E-Print Network [OSTI]

    Marshall, John Richard

    1974-01-01T23:59:59.000Z

    its energy by ejecting an electron from the K, L, or M shell. As in the case of elect. ron capture, this vacated shell is filled by electrons from hi, ghez energy levels resulting in the emission of' characteristic x-rays. It was H. G. J. Mosely... interacts with orbital electrons. This interaction causes a transfer of energy and angular momentum to an orbital electron of the K, L or M shell, thus causing it to be ejected from the atom. The ejected "conversion electron" will be emitted...

  15. A short working distance multiple crystal x-ray spectrometer

    SciTech Connect (OSTI)

    Dickinson, B.; Seidler, G. T.; Webb, Z. W.; Bradley, J. A.; Nagle, K. P. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Heald, S. M. [Advanced Photon Source, Argonne National Laboratories, Argonne, Illinois 60439 (United States); Gordon, R. A. [Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada); Chou, I. M. [U.S. Geological Survey, Reston, Virginia 20192 (United States)

    2008-12-15T23:59:59.000Z

    For x-ray spot sizes of a few tens of microns or smaller, a millimeter-sized flat analyzer crystal placed {approx}1 cm from the sample will exhibit high energy resolution while subtending a collection solid angle comparable to that of a typical spherically bent crystal analyzer (SBCA) at much larger working distances. Based on this observation and a nonfocusing geometry for the analyzer optic, we have constructed and tested a short working distance (SWD) multicrystal x-ray spectrometer. This prototype instrument has a maximum effective collection solid angle of 0.14 sr, comparable to that of 17 SBCA at 1 m working distance. We find good agreement with prior work for measurements of the Mn K{beta} x-ray emission and resonant inelastic x-ray scattering for MnO, and also for measurements of the x-ray absorption near-edge structure for Dy metal using L{alpha}{sub 2} partial-fluorescence yield detection. We discuss future applications at third- and fourth-generation light sources. For concentrated samples, the extremely large collection angle of SWD spectrometers will permit collection of high-resolution x-ray emission spectra with a single pulse of the Linac Coherent Light Source. The range of applications of SWD spectrometers and traditional multi-SBCA instruments has some overlap, but also is significantly complementary.

  16. A CENSUS OF X-RAY GAS IN NGC 1068: RESULTS FROM 450 ks of CHANDRA HIGH ENERGY TRANSMISSION GRATING OBSERVATIONS

    E-Print Network [OSTI]

    Kallman, T.

    We present models for the X-ray spectrum of the Seyfert 2 galaxy NGC 1068. These are fitted to data obtained using the High Energy Transmission Grating on Chandra. The data show line and radiative recombination continuum ...

  17. X-ray mammography with synchrotron radiation

    SciTech Connect (OSTI)

    Burattini, E. (CNR and INFN-Laboratori Nazionali di Frascati, Frascati, Rome (Italy)); Gambaccini, M.; Marziani, M.; Rimondi, O. (Dipartimento di Fisica dell'Universita and Sezione INFN di Ferrara, Ferrara (Italy)); Indovina, P.L. (Dipartimento di Scienze Fisiche dell'Universita and Sezione INFN di Napoli, Naples (Italy)); Pocek, M.; Simonetti, G. (Istituto di Radiologia, Ospedale Sant'Eugenio, Universita di Tor Vergata, Rome (Italy)); Benassi, M.; Tirelli, C. (Istituto Nazionale del Cancro, Regina Elena, Rome (Italy)); Passariello, R. (Cattedra di Radiologia, Universita dell'Aquila, L'Aquila (Italy))

    1992-01-01T23:59:59.000Z

    For the first time in the literature, radiographs of breast phantoms were obtained using several monochromatic synchrotron radiation x-ray beams of selected energy in the range from 14 to 26 keV. In addition, after optimization of the photon energy as a function of the phantom thickness, several mammographs were obtained on surgically removed human breast specimens containing cancer nodules. Comparison between radiographs using a conventional x-ray unit and those obtained of the same specimens utilizing synchrotron monochromatic beams clearly shows that higher contrast and better resolution can be achieved with synchrotron radiation. These results demonstrate the possibility of obtaining radiographs of excised human breast tissue containing a greater amount of radiological information using synchrotron radiation.

  18. Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

    E-Print Network [OSTI]

    Moffet, Ryan C.

    2011-01-01T23:59:59.000Z

    2-ID-B intermediate-energy scanning X-ray microscope at theW. D. , Morrison, G. R. et al. Scanning transmission X-rayX-ray spectromicroscopy with the scanning transmission X-ray

  19. Bomb Detection Using Backscattered X-Rays

    SciTech Connect (OSTI)

    Jacobs, J.; Lockwood, G.; Selph, M; Shope, S.; Wehlburg, J.

    1998-10-01T23:59:59.000Z

    Bomb Detection Using Backscattered X-rays* Currently the most common method to determine the contents of a package suspected of containing an explosive device is to use transmission radiography. This technique requires that an x-ray source and film be placed on opposite sides of the package. This poses a problem if the pachge is placed so that only one side is accessible, such as against a wall. There is also a threat to persomel and property since exTlosive devices may be "booby trapped." We have developed a method to x-ray a paclage using backscattered x-rays. This procedure eliminates the use of film behind the target. All of the detection is done from the same side as the source. When an object is subjected to x-rays, some of them iare scattered back towards the source. The backscattenng of x-rays is propordoml to the atomic number (Z) of the material raised to the 4.1 power. This 24"' dependence allows us to easily distinguish between explosives, wires, timer, batteries, and other bomb components. Using transmission radiography-to image the contents of an unknown package poses some undesirable risks. The object must have an x-ray film placed on the side opposite the x-ray source; this cannot be done without moving the package if it has been placed firmly against a wall or pillar. Therefore it would be extremely usefid to be able to image the contents of a package from only one side, without ever having to disturb the package itself. where E is the energy of the incoming x-ray. The volume of x-rays absorbed is important because it is, of course, directly correlated to the intensity of x-mys that will be scattered. Most of the x-rays that scatter will do so in a genemlly forward direction; however, a small percentage do scatter in a backward direction. Figure 1 shows a diagram of the various fates of x-rays directed into an object. The package that was examined in this ex~enment was an attache case made of pressed fiberboardwith a vinyl covering. It was approxirmtely 36 cm wide by 51 cm long by 13 cm deep. The case was placed on an aluminum sheet under the x-ray source. Because of the laborato~ setup, the attache case was rastered in the y-coordinate direction, while the x-ray source mstered in the x-coordinate direction. However, for field use, the x-ray source would of course raster in both the x- and y-coordinate directions, while the object under interrogation would remain stationary and undisturbed. A mobile system for use by law enforcement agencies or bomb disposal squads needs to be portable and somewhat durable. A 300 kV x-ray source should be sufficient for the task requirements and can be mounted on a mobile system. A robotic carriage could be used to transport the x-ray source and the CCD camera to the proximity of the suspect package. The controlling and data analyzing elements of the system' could then be maintained at a &tie distance from the possible explosive. F@re 8 shows a diagram of a conceptual design of a possible system for this type of use. The use of backscattered x-rays for interrogation of packages that may contain explosive devices has been shown to be feasible inthelaboratory. Usinga 150kVx-ray source anddetectors consisting of plastic scintillating material, all bomb components including the wiring were detectable. However, at this time the process requires more time than is desirable for the situations in which it will most likely be needed. Further development of the technology using CCD cameras, rather than the plastic stint illator detectors, shows promise of leading to a much faster system, as well as one with better resolution. Mounting the x- ray source and the CCD camera on a robotic vehicle while keeping the controlling and analyzing components and the opemting personnel a safe distance away from the suspect package will allow such a package to be examined at low risk to human life.

  20. Miniature x-ray source

    DOE Patents [OSTI]

    Trebes, James E. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA)

    2000-01-01T23:59:59.000Z

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  1. Fluorescence-type Monochromatic X-ray Beam-position Monitor with High-spatial Resolution for the NSLS-II Beamlines

    SciTech Connect (OSTI)

    Yoon, Phil S. [Experimental Facility Division, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973 (United States); Siddons, D. Peter [Experimental Systems, NSLS, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2010-06-23T23:59:59.000Z

    We developed a fluorescence-type monochromatic X-ray beam-position monitor (X-BPM) with high-spatial resolution for end-station experiments at the initial project beamlines of the NSLS-II. We designed a ring array of multi-segmented Si PIN-junction photodiodes to use as a position sensor. Further, we integrated a low-noise charge-preamplification HERMES4 ASIC chip into an electronic readout system for photon-counting application. A series of precision measurements to characterize electronically the Si-photodiode sensor and the ASIC chip demonstrated that the inherent noise from the detector system is sufficiently low to meet our stringent requirements. Using a Gaussian beam, we parametrically modeled the optimum working distance to ensure the detector's best performance. Based upon the results from the parametric modeling, prototypes of the next versions of the X-BPM are being developed. In this paper, we describe the methodology for developing the new compact monochromatic X-ray BPM, including its instrumentation, detector modeling, and future plan.

  2. In-situ stoichiometry determination using x-ray fluorescence generated by reflection-high-energy-electron-diffraction

    SciTech Connect (OSTI)

    Keenan, Cameron; Chandril, Sandeep; Lederman, David [Department of Physics and Multifunctional Materials Laboratory, West Virginia University, Morgantown, West Virginia 26506 (United States); Myers, T. H. [Department of Physics and Multifunctional Materials Laboratory, West Virginia University, Morgantown, West Virginia 26506 (United States); Materials Science, Engineering, and Commercialization Program, Texas State University-San Marcos, San Marcos, Texas 78666 (United States)

    2011-06-01T23:59:59.000Z

    A major challenge in the stoichiometric growth of complex oxide compounds is the control of the relative compositions of the constituent materials. A potential avenue for compositional analysis during growth is the use of x-ray fluorescence generated during reflection high energy electron diffraction measurements. Using this technique, relative compositions of Y and Mn in molecular beam epitaxy grown YMnO{sub 3} samples were studied. Comparing the results with Rutherford back scattering spectroscopy suggests that the technique has the potential for real-time analysis of elemental fluxes and stoichiometry control during sample growth.

  3. Probing Heterogeneous Chemistry of Individual Atmospheric Particles Using Scanning Electron Microscopy and Energy-Dispersive X-ray Analysis

    SciTech Connect (OSTI)

    Krueger, Brenda J.; Grassian, Vicki H.; Iedema, Martin J.; Cowin, James P.; Laskin, Alexander

    2003-10-01T23:59:59.000Z

    In this paper, we demonstrate the utility of single-particle analysis to investigate the chemistry of isolated, individual particles of atmospheric relevance such as NaCl, sea salt, CaCO3, and SiO2. A variety of state-of-th-art scanning electron microscopy techniques, including environmental scanning electon microscopy and computer-controlled scanning electron microscopy/energy-dispersive X-ray analysis, were utilized for monitoring and quantifying phase transitions of individual particles, morphology, and compositional changes of individual particles as they react with nitric acid.

  4. High-energy x-ray microscopy of laser-fusion plasmas at the National Ignition Facility

    SciTech Connect (OSTI)

    Koch, J.A.; Landen, O.L.; Hammel, B.A. [and others

    1997-08-26T23:59:59.000Z

    Multi-keV x-ray microscopy will be an important laser-produced plasma diagnostic at future megajoule facilities such as the National Ignition Facility (NIF).In preparation for the construction of this facility, we have investigated several instrumentation options in detail, and we conclude that near normal incidence single spherical or toroidal crystals may offer the best general solution for high-energy x-raymicroscopy at NIF and at similar large facilities. Kirkpatrick-Baez microscopes using multi-layer mirrors may also be good secondary options, particularly if apertures are used to increase the band-width limited field of view.

  5. Lowering the background level and the energy threshold of Micromegas x-ray detectors for axion searches

    E-Print Network [OSTI]

    F. J. Iguaz; S. Aune; F. Aznar; J. F. Castel; T. Dafni; M. Davenport; E. Ferrer-Ribas; J. Galan; J. A. Garcia; J. G. Garza; I. Giomataris; I. G. Irastorza; T. Papaevangelou; A. Rodriguez; A. Tomas; T. Vafeiadis; S. C. Yildiz

    2015-01-07T23:59:59.000Z

    Axion helioscopes search for solar axions by their conversion in x-rays in the presence of high magnetic fields. The use of low background x-ray detectors is an essential component contributing to the sensitivity of these searches. In this work, we review the recent advances on Micromegas detectors used in the CERN Axion Solar Telescope (CAST) and proposed for the future International Axion Observatory (IAXO). The actual setup in CAST has achieved background levels below 10$^{-6}$ keV$^{-1}$ cm$^{-2}$ s$^{-1}$, a factor 100 lower than the first generation of Micromegas detectors. This reduction is based on active and passive shielding techniques, the selection of radiopure materials, offline discrimination techniques and the high granularity of the readout. We describe in detail the background model of the detector, based on its operation at CAST site and at the Canfranc Underground Laboratory (LSC), as well as on Geant4 simulations. The best levels currently achieved at LSC are low than 10$^{-7}$ keV$^{-1}$ cm$^{-2}$ s$^{-1}$ and show good prospects for the application of this technology in IAXO. Finally, we present some ideas and results for reducing the energy threshold of these detectors below 1 keV, using high-transparent windows, autotrigger electronics and studying the cluster shape at different energies. As a high flux of axion-like-particles is expected in this energy range, a sub-keV threshold detector could enlarge the physics case of axion helioscopes.

  6. Toward Control of Matter: Basic Energy Science Needs for a New Class of X-Ray Light Sources

    SciTech Connect (OSTI)

    Arenholz, Elke; Belkacem, Ali; Cocke, Lew; Corlett, John; Falcone, Roger; Fischer, Peter; Fleming, Graham; Gessner, Oliver; Hasan, M. Zahid; Hussain, Zahid; Kevan, Steve; Kirz, Janos; McCurdy, Bill; Nelson, Keith; Neumark, Dan; Nilsson, Anders; Siegmann, Hans; Stocks, Malcolm; Schafer, Ken; Schoenlein, Robert; Spence, John; Weber, Thorsten

    2008-09-24T23:59:59.000Z

    Over the past quarter century, light-source user facilities have transformed research in areas ranging from gas-phase chemical dynamics to materials characterization. The ever-improving capabilities of these facilities have revolutionized our ability to study the electronic structure and dynamics of atoms, molecules, and even the most complex new materials, to understand catalytic reactions, to visualize magnetic domains, and to solve protein structures. Yet these outstanding facilities still have limitations well understood by their thousands of users. Accordingly, over the past several years, many proposals and conceptual designs for"next-generation" x-ray light sources have been developed around the world. In order to survey the scientific problems that might be addressed specifically by those new light sources operating below a photon energy of about 3 keV and to identify the scientific requirements that should drive the design of such facilities, a workshop"Science for a New Class of Soft X-Ray Light Sources" was held in Berkeley in October 2007. From an analysisof the most compelling scientific questions that could be identified and the experimental requirements for answering them, we set out to define, without regard to the specific technologies upon which they might be based, the capabilities such light sources would have to deliver in order to dramatically advance the state of research in the areas represented in the programs of the Department of Energy's Office of Basic Energy Sciences (BES). This report is based on the workshop presentations and discussions.

  7. X-ray populations in galaxies

    E-Print Network [OSTI]

    G. Fabbiano

    2005-11-09T23:59:59.000Z

    Today's sensistive, high resolution Chandra X-ray observations allow the study of many populations of X-ray sources. The traditional astronomical tools of photometric diagrams and luminosity functions are now applied to these populations, and provide the means for classifying the X-ray sources and probing their evolution. While overall stellar mass drives the amount of X-ray binaries in old stellar population, the amount of sources in star-forming galaxies is related to the star formation rate. Shart-lived, luminous, high mass binaries (HNXBs) dominate these young populations.

  8. Rise time measurement for ultrafast X-ray pulses

    DOE Patents [OSTI]

    Celliers, Peter M. (Berkeley, CA); Weber, Franz A. (Oakland, CA); Moon, Stephen J. (Tracy, CA)

    2005-04-05T23:59:59.000Z

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  9. Rise Time Measurement for Ultrafast X-Ray Pulses

    DOE Patents [OSTI]

    Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

    2005-04-05T23:59:59.000Z

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  10. High resolution soft x-ray spectroscopy of low Z K-shell emission from laser-produced plasmas

    SciTech Connect (OSTI)

    Dunn, J; Magee, E W; Shepherd, R; Chen, H; Hansen, S B; Moon, S J; Brown, G V; Gu, M; Beiersdorfer, P; Purvis, M A

    2008-05-21T23:59:59.000Z

    A large radius, R = 44.3 m, High Resolution Grating Spectrometer (HRGS) with 2400 line/mm variable line spacing has been designed for laser-produced plasma experiments conducted at the Lawrence Livermore National Laboratory Jupiter Laser Facility. The instrument has been run with a low-noise, charge-coupled device detector to record high signal-to-noise spectra in the 10-50 {angstrom} wavelength range. The instrument can be run with a 10-20 {micro}m wide slit to achieve the best spectral resolving power, approaching 1000 and similar to crystal spectrometers at 12-20 {angstrom}, or in slitless operation with a small symmetrical emission source. We describe preliminary spectra emitted from various H-like and He-like low Z ion plasmas heated by 100-500 ps (FWHM), 527 nm wavelength laser pulses. This instrument can be developed as a useful spectroscopy platform relevant to laboratory-based astrophysics as well as high energy density plasma studies.

  11. Constraining H{sub 0} in general dark energy models from Sunyaev-Zeldovich/X-ray technique and complementary probes

    SciTech Connect (OSTI)

    Holanda, R.F.L.; Lima, J.A.S. [Departamento de Astronomia (IAGUSP), Universidade de São Paulo, Rua do Matão 1226, 05508-900, São Paulo, SP (Brazil); Cunha, J.V. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia 166, 09210-170, Santo André, SP (Brazil); Marassi, L., E-mail: holanda@astro.iag.usp.br, E-mail: jvcunha@ufpa.br, E-mail: luciomarassi@ect.ufrn.br, E-mail: limajas@astro.iag.usp.br [Escola de Ciência e Tecnologia, UFRN, 59072-970, Natal, RN (Brazil)

    2012-02-01T23:59:59.000Z

    In accelerating dark energy models, the estimates of the Hubble constant, H{sub 0}, from Sunyaev-Zel'dovich effect (SZE) and X-ray surface brightness of galaxy clusters may depend on the matter content (?{sub M}), the curvature (?{sub K}) and the equation of state parameter (?). In this article, by using a sample of 25 angular diameter distances of galaxy clusters described by the elliptical ? model obtained through the SZE/X-ray technique, we constrain H{sub 0} in the framework of a general ?CDM model (arbitrary curvature) and a flat XCDM model with a constant equation of state parameter ? = p{sub x}/?{sub x}. In order to avoid the use of priors in the cosmological parameters, we apply a joint analysis involving the baryon acoustic oscillations (BAO) and the CMB Shift Parameter signature. By taking into account the statistical and systematic errors of the SZE/X-ray technique we obtain for nonflat ?CDM model H{sub 0} = 74{sup +5.0}{sub ?4.0} km s{sup ?1} Mpc{sup ?1}(1?) whereas for a flat universe with constant equation of state parameter we find H{sub 0} = 72{sup +5.5}{sub ?4.0} km s{sup ?1} Mpc{sup ?1}(1?). By assuming that galaxy clusters are described by a spherical ? model these results change to H{sub 0} = 62{sup +8.0}{sub ?7.0} and H{sub 0} = 59{sup +9.0}{sub ?6.0} km s{sup ?1} Mpc{sup ?1}(1?), respectively. The results from elliptical description are in good agreement with independent studies from the Hubble Space Telescope key project and recent estimates based on the Wilkinson Microwave Anisotropy Probe, thereby suggesting that the combination of these three independent phenomena provides an interesting method to constrain the Hubble constant. As an extra bonus, the adoption of the elliptical description is revealed to be a quite realistic assumption. Finally, by comparing these results with a recent determination for a flat ?CDM model using only the SZE/X-ray technique and BAO, we see that the geometry has a very weak influence on H{sub 0} estimates for this combination of data.

  12. Viewing spin structures with soft x-ray microscopy

    SciTech Connect (OSTI)

    Fischer, Peter

    2010-06-01T23:59:59.000Z

    The spin of the electron and its associated magnetic moment marks the basic unit for magnetic properties of matter. Magnetism, in particular ferromagnetism and antiferromagnetism is described by a collective order of these spins, where the interaction between individual spins reflects a competition between exchange, anisotropy and dipolar energy terms. As a result the energetically favored ground state of a ferromagnetic system is a rather complex spin configuration, the magnetic domain structure. Magnetism is one of the eldest scientific phenomena, yet it is one of the most powerful and versatile utilized physical effects in modern technologies, such as in magnetic storage and sensor devices. To achieve highest storage density, the relevant length scales, such as the bit size in disk drives is now approaching the nanoscale and as such further developments have to deal with nanoscience phenomena. Advanced characterization tools are required to fully understand the underlying physical principles. Magnetic microscopes using polarized soft X-rays offer a close-up view into magnetism with unique features, these include elemental sensitivity due to X-ray magnetic dichroism effects as contrast mechanism, high spatial resolution provided by state-of-the-art X-ray optics and fast time resolution limited by the inherent time structure of current X-ray sources, which will be overcome with the introduction of ultrafast and high brilliant X-ray sources.

  13. High Gain, Fast Scan, Broad Spectrum, Parallel Beam Wavelength Dispersive X-ray Spectrometer for SEM

    SciTech Connect (OSTI)

    David OHara; Dr. Eric Lochmer

    2003-09-12T23:59:59.000Z

    Parallax Research, Inc. proposes to produce a new type of x-ray spectrometer for use with Scanning Electron Microscopy (SEM) that would have the energy resolution of WDS and the ease of use of EDS with sufficient gain for lower energies that it can be used at low beam currents as is EDS. Parallax proposes to do this by development of new multiple reflection x-ray collimation optics, new diffractor technology, new detector technology and new scan algorithms.

  14. On-orbit calibration of soft X-ray detector on Chang'E-2 satellite

    E-Print Network [OSTI]

    Hong Xiao; Wenxi Penga; Huanyu Wang; Xingzhu Cui; Dongya Guo

    2015-02-02T23:59:59.000Z

    X-ray spectrometer is one of the satellite payloads on Chang'E-2 satellite. The soft X-ray detector is one of the device on X-ray spectrometer which is designed to detect the major rock-forming elements within 0.5-10keV range on lunar surface. In this paper, energy linearity and energy resolution calibration is done using a weak Fe55 source, while temperature and time effect is considered not take big error. The total uncertainty is estimated to be within 5% after correction.

  15. On-orbit calibration of soft X-ray detector on Chang'E-2 satellite

    E-Print Network [OSTI]

    Xiao, Hong; Wang, Huanyu; Cui, Xingzhu; Guo, Dongya

    2015-01-01T23:59:59.000Z

    X-ray spectrometer is one of the satellite payloads on Chang'E-2 satellite. The soft X-ray detector is one of the device on X-ray spectrometer which is designed to detect the major rock-forming elements within 0.5-10keV range on lunar surface. In this paper, energy linearity and energy resolution calibration is done using a weak Fe55 source, while temperature and time effect is considered not take big error. The total uncertainty is estimated to be within 5% after correction.

  16. Non-matrix corrected organic sulfur determination by energy dispersive X-ray spectroscopy for western Kentucky coals and residues

    SciTech Connect (OSTI)

    Clark, C.P.; Freeman, G.B.; Hower, J.C.

    1984-01-01T23:59:59.000Z

    A method for non-matrix corrected organic sulfur analysis by energy dispersive X-ray spectroscopy has been developed using petroleum coke standards. Typically, electron beam microanalysis is a rapid, nondestructive analytical technique to quantitatively measure organic sulfur in coal. The results show good correlation to ASTM values for numerous well characterized coals with a wide range in total and pyritic sulfur content. This direct analysis is capable of reducing error commonly associated with the present ASTM method which relies on an indirect measure of organic sulfur by difference. The precision of the organic sulfur values determined in the present study is comparable to that obtained by ZAF matrix corrected microanalysis. The energy dispersive microanalysis is capable of measuring micro as well as bulk organic sulfur levels.

  17. Toward Control of Matter: Basic Energy Science Needs for a New Class of X-Ray Light Sources

    E-Print Network [OSTI]

    Arenholz, Elke

    2008-01-01T23:59:59.000Z

    radiation damage with ultrafast pulses (2) Three-dimensionalradiation damage with ultrafast pulses Radiation damagebe accomplished with ultrafast soft x-ray pulses. In the

  18. SNR-weighted Sinogram Smoothing with Improved Noise-resolution Properties for Low-dose X-ray Computed Tomography

    E-Print Network [OSTI]

    -ray Computed Tomography T. Li*a , J. Wanga , J. Wena , X. Lib , H. Luc , J. Hsiehd , and Z. Lianga a State-beam, uniform attenuation, resolution variation. 1. INTRODUCTION It is well known that the quality of computed tomography (CT) images would be severely degraded by the excessive quantum noise under extremely low x

  19. X-ray Observations of Mrk 231

    E-Print Network [OSTI]

    T. J. Turner

    1998-08-10T23:59:59.000Z

    This paper presents new X-ray observations of Mrk 231, an active galaxy of particular interest due to its large infrared luminosity and the presence of several blueshifted broad absorption line (BAL) systems, a phenomenon observed in a small fraction of QSOs. A ROSAT HRI image of Mrk 231 is presented, this shows an extended region of soft X-ray emission, covering several tens of kpc, consistent with the extent of the host galaxy. An ASCA observation of Mrk 231 is also presented. Hard X-rays are detected but the data show no significant variability in X-ray flux. The hard X-ray continuum is heavily attenuated and X-ray column estimates range from ~ 2 x 10^{22} - 10^{23} cm^{-2} depending on whether the material is assumed to be neutral or ionized, and on the model assumed for the extended X-ray component. These ASCA data provide only the second hard X-ray spectrum of a BAL AGN presented to date. The broad-band spectral-energy-distribution of the source is discussed. While Mrk 231 is X-ray weak compared to Seyfert 1 galaxies, it has an optical-to-X-ray spectrum typical of a QSO.

  20. The Soft X-ray Spectromicroscopy Beamline at SSRF

    SciTech Connect (OSTI)

    Guo, Z.; Tai, R.; Wand, Y.; Yan, R.; Chen, M.; Wu, Y.; Chen, J.; Xue, S.; Xu, H. [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Appled Physics, CAS 239 Zhang Heng Road, Pudong District, Shanghai (China)

    2011-09-09T23:59:59.000Z

    Commissioning of the soft x-ray spectromicroscopy beanmline at SSRF was formally started on Dec 26, 2008. Beamline performance has reached or surpassed the designing goals according to the measurements by domestic experts, especially for its high energy resolution and high spatial resolution. Since its first operation by users on May 6, 2009, tens of experiments have been conducted, and some preliminary exciting results have been acquired.

  1. X-ray transmissive debris shield

    DOE Patents [OSTI]

    Spielman, Rick B. (Albuquerque, NM)

    1994-01-01T23:59:59.000Z

    A composite window structure is described for transmitting x-ray radiation and for shielding radiation generated debris. In particular, separate layers of different x-ray transmissive materials are laminated together to form a high strength, x-ray transmissive debris shield which is particularly suited for use in high energy fluences. In one embodiment, the composite window comprises alternating layers of beryllium and a thermoset polymer.

  2. X-ray lasers and methods utilizing two component driving illumination provided by optical laser means of relatively low energy and small physical size

    DOE Patents [OSTI]

    Rosen, Mordecai D. (Berkeley, CA); Matthews, Dennis L. (El Granada, CA)

    1991-01-01T23:59:59.000Z

    An X-ray laser (10), and related methodology, are disclosed wherein an X-ray laser target (12) is illuminated with a first pulse of optical laser radiation (14) of relatively long duration having scarcely enough energy to produce a narrow and linear cool plasma of uniform composition (38). A second, relatively short pulse of optical laser radiation (18) is uniformly swept across the length, from end to end, of the plasma (38), at about the speed of light, to consecutively illuminate continuously succeeding portions of the plasma (38) with optical laser radiation having scarcely enough energy to heat, ionize, and invert them into the continuously succeeding portions of an X-ray gain medium. This inventive double pulse technique results in a saving of more than two orders of magnitude in driving optical laser energy, when compared to the conventional single pulse approach.

  3. Reduction in the intensity of solar X-ray emission in the 2- to 15-keV photon energy range and heating of the solar corona

    SciTech Connect (OSTI)

    Mirzoeva, I. K., E-mail: colombo2006@mail.ru [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2013-04-15T23:59:59.000Z

    The time profiles of the energy spectra of low-intensity flares and the structure of the thermal background of the soft X-ray component of solar corona emission over the period of January-February, 2003, are investigated using the data of the RHESSI project. A reduction in the intensity of X-ray emission of the solar flares and the corona thermal background in the 2- to 15-keV photon energy range is revealed. The RHESSI data are compared with the data from the Interball-Geotail project. A new mechanism of solar corona heating is proposed on the basis of the results obtained.

  4. PbSrYCaCuO : a new class of superconducting materials. Chemical analyses refined by Energy Dispersive X-rays

    E-Print Network [OSTI]

    Boyer, Edmond

    39 PbSrYCaCuO : a new class of superconducting materials. Chemical analyses refined by Energy of superconducting material - PbSrYCaCuO - has been recently synthesized. Energy Dispersive X-ray analyses synthesized a new class of superconducting materials, which can be represented by the general formula Pb2Sr2R1

  5. X-ray Surveys and Wide-Field Optical/Near-Infrared Imaging with the Joint Dark Energy Mission

    E-Print Network [OSTI]

    W. N. Brandt

    2004-07-22T23:59:59.000Z

    I briefly describe a few important scientific issues that could be addressed effectively via the combination of data from JDEM and X-ray missions. The topics covered are largely focused on active galactic nuclei (AGN) and include (1) the selection of AGN via X-ray emission and optical variability, (2) nuclear outbursts in galaxies due to transient fueling of their supermassive black holes, (3) moderate-luminosity AGN at high redshift (z > 4) found via application of "dropout" techniques to X-ray sources, and (4) the host-galaxy morphologies of X-ray selected AGN. I also describe the substantial challenges to obtaining wide-field X-ray data with sufficient sensitivity to complement JDEM properly.

  6. Radiation exposure in X-ray-based imaging techniques used in osteoporosis

    E-Print Network [OSTI]

    Damilakis, John; Adams, Judith E.; Guglielmi, Giuseppe; Link, Thomas M.

    2010-01-01T23:59:59.000Z

    and nonradiologists in dual-energy X-ray absorptiometrymorphometry studies using dual-energy X-ray absorptiometry.dose measurements in dual energy X-ray absorptiometry (DXA).

  7. A multi-crystal wavelength dispersive x-ray spectrometer

    SciTech Connect (OSTI)

    Alonso-Mori, Roberto; Montanez, Paul; Delor, James; Bergmann, Uwe [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kern, Jan [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8099 (United States); Sokaras, Dimosthenis; Weng, Tsu-Chien; Nordlund, Dennis [SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Tran, Rosalie; Yachandra, Vittal K.; Yano, Junko [Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8099 (United States)

    2012-07-15T23:59:59.000Z

    A multi-crystal wavelength dispersive hard x-ray spectrometer with high-energy resolution and large solid angle collection is described. The instrument is specifically designed for time-resolved applications of x-ray emission spectroscopy (XES) and x-ray Raman scattering (XRS) at X-ray Free Electron Lasers (XFEL) and synchrotron radiation facilities. It also simplifies resonant inelastic x-ray scattering (RIXS) studies of the whole 2d RIXS plane. The spectrometer is based on the Von Hamos geometry. This dispersive setup enables an XES or XRS spectrum to be measured in a single-shot mode, overcoming the scanning needs of the Rowland circle spectrometers. In conjunction with the XFEL temporal profile and high-flux, it is a powerful tool for studying the dynamics of time-dependent systems. Photo-induced processes and fast catalytic reaction kinetics, ranging from femtoseconds to milliseconds, will be resolvable in a wide array of systems circumventing radiation damage.

  8. Chest x-Rays

    Broader source: Energy.gov [DOE]

    The B-reading is a special reading of a standard chest x-ray film performed by a physician certified by the National Institute for Occupational Safety and Health (NIOSH). The reading looks for changes on the chest x-ray that may indicate exposure and disease caused by agents such as asbestos or silica.

  9. X-ray source populations in galaxies

    E-Print Network [OSTI]

    G. Fabbiano

    2005-11-16T23:59:59.000Z

    Today's sensitive, high-resolution X-ray observations allow the study of populations of X-ray sources, in the luminosity range of Galactic X-ray binaries, in galaxies as distant as 20-30 Mpc. The traditional astronomical tools of photometric diagrams and luminosity functions are now applied to these populations, providing a direct probe of the evolved binary component of different stellar populations. The study of the X-ray populations of E and S0 galaxies has revamped the debate on the formation and evolution of low-mass X-ray binaries (LMXBs) and on the role of globular clusters in these processes. While overall stellar mass drives the amount of X-ray binaries in old stellar populations, the amount of sources in star forming galaxies is related to the star formation rate. Short-lived, luminous, high-mass binaries (HMXBs) dominate these young populations. The most luminous sources in these systems are the debated ULXs, which have been suggested to be ~100-1000 Msol black holes, but could alternatively include a number of binaries with stellar mass black holes. Very soft sources have also been discovered in many galaxies and their nature is currently being debated. Observations of the deep X-ray sky, and comparison with deep optical surveys, are providing the first evidence of the X-ray evolution of galaxies.

  10. X-ray laser microscope apparatus

    DOE Patents [OSTI]

    Suckewer, Szymon (Princeton, NJ); DiCicco, Darrell S. (Plainsboro, NJ); Hirschberg, Joseph G. (Coral Gables, FL); Meixler, Lewis D. (East Windsor, NJ); Sathre, Robert (Princeton, NJ); Skinner, Charles H. (Lawrenceville, NJ)

    1990-01-01T23:59:59.000Z

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  11. Chemical order in Ge{sub x}As{sub y}Se{sub 1-x-y} glasses probed by high resolution X-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Xu, S. W. [Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); College of Applied Sciences, Beijing University of Technology, Beijing100124 (China); Wang, R. P.; Luther-Davies, B. [Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Kovalskiy, A. [Department of Physics and Astronomy, Austin Peay State University, Clarksville, Tennessee 37043 (United States); Miller, A. C.; Jain, H. [Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, Pennsylvania 18015-3195 (United States)

    2014-02-28T23:59:59.000Z

    We have measured high-resolution x-ray photoelectron spectra of Ge{sub x}As{sub y}Se{sub 1-x-y} glasses with a mean coordination number (MCN) from 2.2 to 2.78. The valence band spectra showed that a number of Se–Se–Se trimers can be found in Se-rich samples, whilst multiband features induced by phase separation can be observed in extremely Se-poor samples. When the Ge, As, and Se 3d spectra were decomposed into several doublets, which correspond, respectively, to different chemical environments, the perfect AsSe{sub 3/2} pyramidal and GeSe{sub 4/2} tetrahedral structures in Se-rich samples gradually evolved into defect structures, including As–As and Ge–Ge homopolar bonds, with increasing Ge and As concentrations. Two transition-like features were found at MCN?=?2.5 and 2.64–2.72 that correspond first to the disappearance of Se-chains in the glass network and, subsequently, destruction of the perfect GeSe{sub 4/2} tetrahedral structures, respectively.

  12. X-ray microscopy using grazing-incidence reflections optics

    SciTech Connect (OSTI)

    Price, R.H.

    1983-06-30T23:59:59.000Z

    The role of Kirkpatrick-Baez microscopes as the workhorse of the x-ray imaging devices is discussed. This role is being extended with the development of a 22X magnification Kirkpatrick-Baez x-ray microscope with multilayer x-ray mirrors. These mirrors can operate at large angles, high x-ray energies, and have a narrow, well defined x-ray energy bandpass. This will make them useful for numerous experiments. However, where a large solid angle is needed, the Woelter microscope will still be necessary and the technology needed to build them will be useful for many other types of x-ray optics.

  13. X-ray microscopy using grazing-incidence reflection optics

    SciTech Connect (OSTI)

    Price, R.H.

    1981-08-06T23:59:59.000Z

    The Kirkpatrick-Baez microscopes are described along with their role as the workhorse of the x-ray imaging devices. This role is being extended with the development of a 22X magnification Kirkpatrick-Baez x-ray microscope with multilayer x-ray mirrors. These mirrors can operate at large angles, high x-ray energies, and have a narrow, well defined x-ray energy bandpass. This will make them useful for numerous experiments. However, where a large solid angle is needed, the Woelter microscope will still be necessary and the technology needed to build them will be useful for many other types of x-ray optics.

  14. On Estimating the High-Energy Cutoff in the X-ray Spectra of Black Holes via Reflection Spectroscopy

    E-Print Network [OSTI]

    Garcia, Javier A; Steiner, James F; McClintock, Jeffrey E; Keck, Mason L; Wilms, Joern

    2015-01-01T23:59:59.000Z

    The fundamental parameters describing the coronal spectrum of an accreting black hole are the slope $\\Gamma$ of the power-law continuum and the energy $E_{cut}$ at which it rolls over. Remarkably, this parameter can be accurately measured for values as high as 1 MeV by modeling the spectrum of X-rays reflected from a black hole accretion disk at energies below 100 keV. This is possible because the details in the reflection spectrum, rich in fluorescent lines and other atomic features, are very sensitive to the spectral shape of the hardest coronal radiation illuminating the disk. We show that fitting simultaneous NuSTAR (3-79 keV) and low-energy (e.g., Suzaku) data with the most recent version of our reflection model RELXILL, one can obtain reasonable constraints on $E_{cut}$ at energies from tens of keV up to 1 MeV, for a source as faint as 1 mCrab in a 100 ks observation.

  15. Studies of local and intermediate range structure in crystalline and amorphouse materials at high pressure using high-energy x-rays.

    SciTech Connect (OSTI)

    Ehm, L.; Antao, M.; Chen, J.; Locke, D. R.; Michel, F. M.; Martin, C. D.; Yu, T.; Lee, P. L.; Chupas, P. J.; Shastri, S. D.; Guo, Q.; Parise, J. B.; Stony Brook Univ.; BNL

    2007-06-01T23:59:59.000Z

    The method of high-energy total elastic X-ray scattering to determine the atomic structure of nanocrystalline, highly disordered, and amorphous materials is presented. The current state of the technique, its potential, and limitations are discussed with two successful studies on the pressure induced phase transition in mackinawite (FeS) and the high-pressure behavior of liquid gallium.

  16. Studies of Local and Intermediate Range Structure in Crystalline and Amorphous Materials at High Pressure Using High-Energy X-rays

    SciTech Connect (OSTI)

    Ehm,L.; Antao, S.; Chen, J.; Locke, D.; Michel, F.; Martin, D.; Yu, T.; Parise, J.; Lee, P.; et al.

    2007-01-01T23:59:59.000Z

    The method of high-energy total elastic X-ray scattering to determine the atomic structure of nanocrystalline, highly disordered, and amorphous materials is presented. The current state of the technique, its potential, and limitations are discussed with two successful studies on the pressure induced phase transition in mackinawite (FeS) and the high-pressure behavior of liquid gallium.

  17. THE CHANDRA MULTI-WAVELENGTH PROJECT: OPTICAL SPECTROSCOPY AND THE BROADBAND SPECTRAL ENERGY DISTRIBUTIONS OF X-RAY-SELECTED AGNs

    E-Print Network [OSTI]

    Trichas, Markos

    From optical spectroscopy of X-ray sources observed as part of the Chandra Multi-wavelength Project (ChaMP), we present redshifts and classifications for a total of 1569 Chandra sources from our targeted spectroscopic ...

  18. A theoretical comparison of x-ray angiographic image quality using energy-dependent and conventional subtraction methods

    SciTech Connect (OSTI)

    Tanguay, Jesse; Kim, Ho Kyung; Cunningham, Ian A. [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Ontario N6A 5K8 (Canada) and Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 5C1 (Canada); School of Mechanical Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Ontario N6A 5K8 (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 5C1 (Canada); Lawson Health Research Institute, London, Ontario N6A 4V2 (Canada) and London Health Sciences Centre, London, Ontario N6A 5A5 (Canada)

    2012-01-15T23:59:59.000Z

    Purpose: X-ray digital subtraction angiography (DSA) is widely used for vascular imaging. However, the need to subtract a mask image can result in motion artifacts and compromised image quality. The current interest in energy-resolving photon-counting (EPC) detectors offers the promise of eliminating motion artifacts and other advanced applications using a single exposure. The authors describe a method of assessing the iodine signal-to-noise ratio (SNR) that may be achieved with energy-resolved angiography (ERA) to enable a direct comparison with other approaches including DSA and dual-energy angiography for the same patient exposure. Methods: A linearized noise-propagation approach, combined with linear expressions of dual-energy and energy-resolved imaging, is used to describe the iodine SNR. The results were validated by a Monte Carlo calculation for all three approaches and compared visually for dual-energy and DSA imaging using a simple angiographic phantom with a CsI-based flat-panel detector. Results: The linearized SNR calculations show excellent agreement with Monte Carlo results. While dual-energy methods require an increased tube heat load of 2x to 4x compared to DSA, and photon-counting detectors are not yet ready for angiographic imaging, the available iodine SNR for both methods as tested is within 10% of that of conventional DSA for the same patient exposure over a wide range of patient thicknesses and iodine concentrations. Conclusions: While the energy-based methods are not necessarily optimized and further improvements are likely, the linearized noise-propagation analysis provides the theoretical framework of a level playing field for optimization studies and comparison with conventional DSA. It is concluded that both dual-energy and photon-counting approaches have the potential to provide similar angiographic image quality to DSA.

  19. X-ray laser

    DOE Patents [OSTI]

    Nilsen, Joseph (Livermore, CA)

    1991-01-01T23:59:59.000Z

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  20. Space X-ray Solves Mysteries of Black Holes | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Site EnvironmentalEnergySafely DeliveringSolid-State Lightingof2 AnnualAudit

  1. The World's First Free-Electron X-ray Laser | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy SolarRadioactive LiquidSavings for Specific U.S.TheTheFirst

  2. Hand-held X-Ray Fluorescence (XRF) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open

  3. Use of the high-energy x-ray microprobe at the Advanced Photon Source to investigate the interactions between metals and bacteria.

    SciTech Connect (OSTI)

    Kemner, K. M.; Lai, B.; Maser, J.; Schneegurt, M. A.; Cai, Z.; Ilinski, P. P.; Kulpa, C. F.; Legnini, D. G.; Nealson, K. H.; Pratt, S. T.; Rodrigues, W.; Tischler, M. L.; Yun, W.

    1999-09-30T23:59:59.000Z

    Understanding the fate of heavy-metal contaminants in the environment is of fundamental importance in the development and evaluation of effective remediation and sequestration strategies. Among the factors influencing the transport of these contaminants are their chemical separation and the chemical and physical attributes of the surrounding medium. Bacteria and the extracellular material associated with them are thought to play a key role in determining a contaminant's speciation and thus its mobility in the environment. In addition, the microenvironment at and adjacent to actively metabolizing cell surfaces can be significantly different from the bulk environment. Thus, the spatial distribution and chemical separation of contaminants and elements that are key to biological processes must be characterized at micron and submicron resolution in order to understand the microscopic physical, geological, chemical, and biological interfaces that determine a contaminant's macroscopic fate. Hard X-ray microimaging is a powerful technique for the element-specific investigation of complex environmental samples at th needed micron and submicron resolution. An important advantage of this technique results from the large penetration depth of hard X-rays in water. This advantage minimizes the requirements for sample preparation and allows the detailed study of hydrated samples. This paper presents results of studies of the spatial distribution of naturally occurring metals and a heavy-metal contaminant (Cr) in and near hydrated bacteria (Pseudomonas fluorescens) in the early stages of biofilm development, performed at the Advanced Photon Source Sector 2 X-ray microscopy beamline.

  4. SU-E-I-67: X-Ray Fluorescence for Energy Response Calibration of a Photon Counting Detector: A Simulation Study

    SciTech Connect (OSTI)

    Cho, H; Ding, H; Ziemer, B; Molloi, S [University of California, Irvine, CA (United States)

    2014-06-01T23:59:59.000Z

    Purpose: To investigate the feasibility of energy calibration and energy response characterization of a photon counting detector using x-ray fluorescence. Methods: A comprehensive Monte Carlo simulation study was done to investigate the influence of various geometric components on the x-ray fluorescence measurement. Different materials, sizes, and detection angles were simulated using Geant4 Application for Tomographic Emission (GATE) Monte Carlo package. Simulations were conducted using 100 kVp tungsten-anode spectra with 2 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm2 in detection area. The fluorescence material was placed 300 mm away from both the x-ray source and the detector. For angular dependence measurement, the distance was decreased to 30 mm to reduce the simulation time. Compound materials, containing silver, barium, gadolinium, hafnium, and gold in cylindrical shape, were simulated. The object size varied from 5 to 100 mm in diameter. The angular dependence of fluorescence and scatter were simulated from 20° to 170° with an incremental step of 10° to optimize the fluorescence to scatter ratio. Furthermore, the angular dependence was also experimentally measured using a spectrometer (X-123CdTe, Amptek Inc., MA) to validate the simulation results. Results: The detection angle between 120° to 160° resulted in more optimal x-ray fluorescence to scatter ratio. At a detection angle of 120°, the object size did not have a significant effect on the fluorescence to scatter ratio. The experimental results of fluorescence angular dependence are in good agreement with the simulation results. The K? and K? peaks of five materials could be identified. Conclusion: The simulation results show that the x-ray fluorescence procedure has the potential to be used for detector energy calibration and detector response characteristics by using the optimal system geometry.

  5. In situ X-ray Characterization of Energy Storage Materials | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFP » Important TrinityEnergyIn SituIn

  6. Fuel Spray Research Using X-Ray Radiography | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)OverviewgreenLife RequirementsUsing

  7. X-Ray Diffraction > Analytical Resources > Research > The Energy Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEurekaWeekly UserWhat's NewWorking atCenter at

  8. Portable Parallel Beam X-Ray Diffraction System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of60 DATE: MarchNEPA/309Energy Poneman Joins

  9. X-ray Tube with Magnetic Electron Steering - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat isJoin theanniversaryI 1 0 3 PIndustrial

  10. Investigating high speed phenomena in laser plasma interactions using dilation x-ray imager (invited)

    SciTech Connect (OSTI)

    Nagel, S. R., E-mail: nagel7@llnl.gov; Bell, P. M.; Bradley, D. K.; Ayers, M. J.; Piston, K.; Felker, B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Hilsabeck, T. J.; Kilkenny, J. D.; Chung, T.; Sammuli, B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Hares, J. D.; Dymoke-Bradshaw, A. K. L. [Kentech Instruments Ltd., Wallingford, Oxfordshire OX10 (United Kingdom)

    2014-11-15T23:59:59.000Z

    The DIlation X-ray Imager (DIXI) is a new, high-speed x-ray framing camera at the National Ignition Facility (NIF) sensitive to x-rays in the range of ?2–17 keV. DIXI uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps, a ?10× improvement over conventional framing cameras currently employed on the NIF (?100 ps resolution), and otherwise only attainable with 1D streaked imaging. The pulse-dilation technique utilizes a voltage ramp to impart a velocity gradient on the signal-bearing electrons. The temporal response, spatial resolution, and x-ray sensitivity of DIXI are characterized with a short x-ray impulse generated using the COMET laser facility at Lawrence Livermore National Laboratory. At the NIF a pinhole array at 10 cm from target chamber center (tcc) projects images onto the photocathode situated outside the NIF chamber wall with a magnification of ?64×. DIXI will provide important capabilities for warm-dense-matter physics, high-energy-density science, and inertial confinement fusion, adding important capabilities to temporally resolve hot-spot formation, x-ray emission, fuel motion, and mix levels in the hot-spot at neutron yields of up to 10{sup 17}. We present characterization data as well as first results on electron-transport phenomena in buried-layer foil experiments.

  11. Proceedings of the workshop on X-ray computed microtomography

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    This report consists of vugraphs from the nine presentations at the conference. Titles of the presentations are: CMT: Applications and Techniques; Computer Microtomography Using X-rays from Third Generation Synchrotron X-ray; Approaches to Soft-X-ray Nanotomography; Diffraction Enhanced Tomography; X-ray Computed Microtomography Applications at the NSLS; XCMT Applications in Forestry and Forest Products; 3DMA: Investigating Three Dimensional Pore Geometry from High Resolution Images; X-ray Computed Microtomography Studies of Volcanic Rock; and 3-D Visualization of Tomographic Volumes.

  12. Characterization of Cr poisoning in a solid oxide fuel cell cathode using a high-energy x-ray microbeam.

    SciTech Connect (OSTI)

    Liu, D. J.; Almer, J.; Cruse, T.

    2010-01-01T23:59:59.000Z

    A key feature of planar solid oxide fuel cells (SOFCs) is the feasibility of using metallic interconnects made of high temperature ferritic stainless steels, which reduce system cost while providing excellent electric conductivity. Such interconnects, however, contain high levels of chromium, which has been found to be associated with SOFC cathode performance degradation at SOFC operating temperatures; a phenomenon known as Cr poisoning. Here, we demonstrate an accurate measurement of the phase and concentration distributions of Cr species in a degraded SOFC, as well as related properties including deviatoric strain, integrated porosity, and lattice parameter variation, using high energy microbeam X-ray diffraction and radiography. We unambiguously identify (MnCr){sub 3}O{sub 4} and Cr{sub 2}O{sub 3} as the two main contaminant phases and find that their concentrations correlate strongly with the cathode layer composition. Cr{sub 2}O{sub 3} deposition within the active cathode region reduces porosity and produces compressive residual strains, which hinders the reactant gas percolation and can cause structural breakdown of the SOFC cathode. The information obtained through this study can be used to better understand the Cr-poisoning mechanism and improve SOFC design.

  13. Atomic-Scale Chemical Imaging and Quantification of Metallic Alloy Structures by Energy-Dispersive X-Ray Spectroscopy

    SciTech Connect (OSTI)

    Lu, Ping [Sandia National Laboratories; Zhou, Lin [Ames Laboratory; Kramer, Matthew J. [Ames Laboratory; Smith, David J. [Arizona State University

    2014-02-04T23:59:59.000Z

    Determination of atomic-scale crystal structure for nanostructured intermetallic alloys, such as magnetic alloys containing Al, Ni, Co (alnico) and Fe, is crucial for understanding physical properties such as magnetism, but technically challenging due to the small interatomic distances and the similar atomic numbers. By applying energy-dispersive X-ray spectroscopy (EDS) mapping to the study of two intermetallic phases of an alnico alloy resulting from spinodal decomposition, we have determined atomic-scale chemical composition at individual lattice sites for the two phases: one is the B2 phase with Fe0.76Co0.24 -Fe0.40Co0.60 ordering and the other is the L21 phase with Ni0.48Co0.52 at A-sites, Al at B?-sites and Fe0.20Ti0.80 at B??-sites, respectively. The technique developed through this study represents a powerful real-space approach to investigate structure chemically at the atomic scale for a wide range of materials systems.

  14. Iran Thomas Auditorium, 8600 Materials For Energy: In Situ Synchrotron X-Ray Studies for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 Investigation Peer Review 2012IowaFebruary 9, 2012December

  15. Advances in X-Ray Diagnostics of Diesel Fuel Sprays | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartmentDepartment2 DOEX-Ray Diagnostics of Diesel

  16. Spray Structure Measured with X-Ray Radiography | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretaryVideos Solid-State|Special3020-2015Program Reach2 DOE1

  17. Stabilizing dual-energy X-ray computed tomography reconstructions using patch-based regularization

    E-Print Network [OSTI]

    Tracey, Brian H

    2014-01-01T23:59:59.000Z

    Recent years have seen growing interest in exploiting dual- and multi-energy measurements in computed tomography (CT) in order to characterize material properties as well as object shape. Material characterization is performed by decomposing the scene into constitutive basis functions, such as Compton scatter and photoelectric absorption functions. While well motivated physically, the joint recovery of the spatial distribution of photoelectric and Compton properties is severely complicated by the fact that the data are several orders of magnitude more sensitive to Compton scatter coefficients than to photoelectric absorption, so small errors in Compton estimates can create large artifacts in the photoelectric estimate. To address these issues, we propose a model-based iterative approach which uses patch-based regularization terms to stabilize inversion of photoelectric coefficients, and solve the resulting problem though use of computationally attractive Alternating Direction Method of Multipliers (ADMM) solu...

  18. A New Measurement of Kaonic Hydrogen X rays

    E-Print Network [OSTI]

    M. Bazzi; G. Beer; L. Bombelli; A. M. Bragadireanu; M. Cargnelli; G. Corradi; C. Curceanu; A. d'Uffizi; C. Fiorini; T. Frizzi; F. Ghio; B. Girolami; C. Guaraldo; R. S. Hayano; M. Iliescu; T. Ishiwatari; M. Iwasaki; P. Kienle; P. Levi Sandri; A. Longoni; V. Lucherini; J. Marton; S. Okada; D. Pietreanu; T. Ponta; A. Rizzo; A. Romero Vidal; A. Scordo; H. Shi; D. L. Sirghi; F. Sirghi; H. Tatsuno; A. Tudorache; V. Tudorache; O. Vazquez Doce; E. Widmann; J. Zmeskal

    2011-08-09T23:59:59.000Z

    The $\\bar{K}N$ system at threshold is a sensitive testing ground for low energy QCD, especially for the explicit chiral symmetry breaking. Therefore, we have measured the $K$-series x rays of kaonic hydrogen atoms at the DA$\\Phi$NE electron-positron collider of Laboratori Nazionali di Frascati, and have determined the most precise values of the strong-interaction energy-level shift and width of the $1s$ atomic state. As x-ray detectors, we used large-area silicon drift detectors having excellent energy and timing resolution, which were developed especially for the SIDDHARTA experiment. The shift and width were determined to be $\\epsilon_{1s} = -283 \\pm 36 \\pm 6 {(syst)}$ eV and $\\Gamma_{1s} = 541 \\pm 89 {(stat)} \\pm 22 {(syst)}$ eV, respectively. The new values will provide vital constraints on the theoretical description of the low-energy $\\bar{K}N$ interaction.

  19. Small Angle X-Ray Scattering Detector

    DOE Patents [OSTI]

    Hessler, Jan P.

    2004-06-15T23:59:59.000Z

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

  20. First results from the high-brightness x-ray spectroscopy beamline 9. 3.1 at ALS

    SciTech Connect (OSTI)

    Ng, W.; Jones, G.; Perera, R.C.C.

    1995-10-01T23:59:59.000Z

    Beamline 9.3.1 at the Advanced Light Source (ALS) is a windowless beamline, covering the 1-6 keV photon-energy range. This beamline is designed to achieve the goal of high brightness at the sample for use in the X-ray Atomic and Molecular Spectroscopy (XAMS) science, surface and interface science, biology, and x-ray optical development programs at ALS. X-ray absorption and time of flight photoemission measurements in 2 - 5 keV photon energy along with the flux, resolution, spot size and stability of the beamline will be discussed. Prospects for future XAMS measurements will also be presented.

  1. X-ray beam finder

    DOE Patents [OSTI]

    Gilbert, H.W.

    1983-06-16T23:59:59.000Z

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  2. Low-energy x-ray and electron physics and applications to diagnostics development for laser-produced plasma research. Final report, April 30, 1980-April 29, 1981

    SciTech Connect (OSTI)

    Henke, B.L.

    1981-08-01T23:59:59.000Z

    This final report describes a collaborative extension of an ongoing research program in low-energy x-ray and electron physics into particular areas of immediate need for the diagnostics of plasmas as involved in laser-produced fusion research. It has been for the continued support for one year of a post-doctoral research associate and for three student research assistants who have been applied to the following specific efforts: (1) the continuation of our research on the absolute characterization of x-ray photocathode systems for the 0.1 to 10 keV photon energy region. The research results were applied collaboratively to the design, construction and calibration of photocathodes for time-resolved detection with the XRD and the streak and framing cameras; (2) the design, construction and absolute calibration of optimized, bolt-on spectrographs for the absolute measurement of laser-produced plasma spectra.

  3. X-Ray Nanoimaging: Instruments and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more toConsensusX-RayX-Ray ImagingX-Ray

  4. A System for Conducting Sophisticated Mechanical Tests in Situ with High Energy Synchrotron X-Rays Final Technical Report

    SciTech Connect (OSTI)

    Jeremy Weiss

    2012-08-02T23:59:59.000Z

    This is the final technical report for the SBIR Phase I project titled 'A System for Conducting Sophisticated Mechanical Tests in Situ with High Energy Synchrotron X-Rays.' Experiments using diffraction of synchrotron radiation that help scientists understand engineering material failure modes, such as fracture and fatigue, require specialized machinery. This machinery must be able to induce these failure modes in a material specimen while adhering to strict size, weight, and geometric limitations prescribed by diffraction measurement techniques. During this Phase I project, Mechanical Solutions, Inc. (MSI) developed one such machine capable of applying uniaxial mechanical loading to a material specimen in both tension and compression, with zero backlash while transitioning between the two. Engineers currently compensate for a lack of understanding of fracture and fatigue by employing factors of safety in crucial system components. Thus, mechanical and structural parts are several times bigger, thicker, and heavier than they need to be. The scientific discoveries that result from diffraction experiments which utilize sophisticated mechanical loading devices will allow for broad material, weight, fuel, and cost savings in engineering design across all industries, while reducing the number of catastrophic failures in transportation, power generation, infrastructure, and all other engineering systems. With an existing load frame as the starting point, the research focused on two main areas: (1) the design of a specimen alignment and gripping system that enables pure uniaxial tension and compression loading (and no bending, shear, or torsion), and (2) development of a feedback control system that is adaptive and thus can maintain a load set point despite changing specimen material properties (e.g. a decreasing stiffness during yield).

  5. A Strategy to Measure the Dark Energy Equation of State using the HII galaxy Hubble Relation & X-ray AGN Clustering: Preliminary Results

    E-Print Network [OSTI]

    M. Plionis; R. Terlevich; S. Basilakos; F. Bresolin; E. Terlevich; J. Melnick; R. Chavez

    2011-06-22T23:59:59.000Z

    We explore the possibility of setting stringent constraints to the Dark Energy equation of state using alternative cosmic tracers like: (a) the Hubble relation using HII galaxies, which can be observed at much higher redshifts (z~3.5) than those currently traced by SNIa samples, and (b) the large-scale structure using the clustering of X-ray selected AGN,which have a redshift distribution peaking at z~1. We use extensive Monte-Carlo simulations to define the optimal strategy for the recovery of the dark-energy equation of state using the high redshift (z~2) Hubble relation, but accounting also for the effects of gravitational lensing, which for such high redshifts can significantly affect the derived cosmological constraints. Based on a "Figure of Merit" analysis, we provide estimates for the number of 2energy equation of state by using the joint likelihood of the X-ray AGN clustering and of the Hubble relation cosmological analyses. A preliminary joint analysis using the X-ray AGN clustering of the 2XMM survey and the Hubble relation of the Constitution SNIa set provide: Omega_m= 0.31+-0.01 and w=-1.06+-0.05. We also find that the joint SNIa-2XMM analysis provides significantly more stringent cosmological constraints, increasing the Figure of Merit by a factor ~2, with respect to that of the joint SNIa-BAO analysis.

  6. X-ray source for mammography

    DOE Patents [OSTI]

    Logan, Clinton M. (Pleasanton, CA)

    1994-01-01T23:59:59.000Z

    An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

  7. X-ray grid-detector apparatus

    DOE Patents [OSTI]

    Boone, John M. (Folsom, CA); Lane, Stephen M. (Oakland, CA)

    1998-01-27T23:59:59.000Z

    A hybrid grid-detector apparatus for x-ray systems wherein a microchannel plate structure has an air-interspaced grid portion and a phosphor/optical fluid-filled grid portion. The grids are defined by multiple adjacent channels separated by lead-glass septa. X-rays entering the air-interspaced grid portion at an angle of impingement upon the septa are attenuated, while non-impinging x-rays pass through to the phosphor/fluid filled portion. X-ray energy is converted to luminescent energy in the phosphor/fluid filled portion and the resultant beams of light are directed out of the phosphor/optical fluid filled portion to an imaging device.

  8. X-ray source for mammography

    DOE Patents [OSTI]

    Logan, C.M.

    1994-12-20T23:59:59.000Z

    An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.

  9. Soft x-ray reduction camera for submicron lithography

    DOE Patents [OSTI]

    Hawryluk, Andrew M. (2708 Rembrandt Pl., Modesto, CA 95356); Seppala, Lynn G. (7911 Mines Rd., Livermore, CA 94550)

    1991-01-01T23:59:59.000Z

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm.sup.2. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics.

  10. Soft x-ray reduction camera for submicron lithography

    DOE Patents [OSTI]

    Hawryluk, A.M.; Seppala, L.G.

    1991-03-26T23:59:59.000Z

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm[sup 2]. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics. 9 figures.

  11. A high-resolution X-ray and optical study of SN 1006: asymmetric expansion and small-scale structure in a type IA supernova remnant

    SciTech Connect (OSTI)

    Winkler, P. Frank [Department of Physics, Middlebury College, Middlebury, VT 05753 (United States); Williams, Brian J.; Petre, Robert; Hwang, Una [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Reynolds, Stephen P. [Physics Department, North Carolina State University, Raleigh, NC 27695 (United States); Long, Knox S. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Katsuda, Satoru, E-mail: winkler@middlebury.edu, E-mail: brian.j.williams@nasa.gov, E-mail: robert.petre-1@nasa.gov, E-mail: reynolds@ncsu.edu, E-mail: long@stsci.edu [RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2014-02-01T23:59:59.000Z

    We introduce a deep (670 ks) X-ray survey of the entire SN 1006 remnant from the Chandra X-Ray Observatory, together with a deep H? image of SN 1006 from the 4 m Blanco telescope at CTIO. Comparison with Chandra images from 2003 gives the first measurement of the X-ray proper motions around the entire periphery, carried out over a 9 yr baseline. We find that the expansion velocity varies significantly with azimuth. The highest velocity of ?7400 km s{sup –1} (almost 2.5 times that in the northwest (NW)) is found along the southeast (SE) periphery, where both the kinematics and the spectra indicate that most of the X-ray emission stems from ejecta that have been decelerated little, if at all. Asymmetries in the distribution of ejecta are seen on a variety of spatial scales. Si-rich ejecta are especially prominent in the SE quadrant, while O and Mg are more uniformly distributed, indicating large-scale asymmetries arising from the explosion itself. Neon emission is strongest in a sharp filament just behind the primary shock along the NW rim, where the pre-shock density is highest. Here the Ne is likely interstellar, while Ne within the shell may include a contribution from ejecta. Within the interior of the projected shell we find a few isolated 'bullets' of what appear to be supernova ejecta that are immediately preceded by bowshocks seen in H?, features that we interpret as ejecta knots that have reached relatively dense regions of the surrounding interstellar medium, but that appear in the interior in projection. Recent three-dimensional hydrodynamic models for Type Ia supernovae display small-scale features that strongly resemble the ones seen in X-rays in SN 1006; an origin in the explosion itself or from subsequent hydrodynamic instabilities both remain viable options. We have expanded the search for precursor X-ray emission ahead of a synchrotron-dominated shock front, as expected from diffusive shock acceleration theory, to numerous regions along both the northeast and southwest rims of the shell. Our data require that a precursor be thinner than about 3'', and fainter than about 5% of the post-shock peak. These limits suggest that the magnetic field is amplified by a factor of seven or more in a narrow precursor region, promoting diffusive particle acceleration.

  12. Imaging of high-energy x-ray emission from cryogenic thermonuclear fuel implosions on the NIF

    SciTech Connect (OSTI)

    Ma, T.; Izumi, N.; Tommasini, R.; Bradley, D. K.; Bell, P.; Cerjan, C. J.; Dixit, S.; Doeppner, T.; Jones, O.; Landen, O. L.; LePape, S.; Mackinnon, A. J.; Park, H.-S.; Patel, P. K.; Prasad, R. R.; Ralph, J.; Smalyuk, V. A.; Springer, P. T.; Suter, L.; Town, R. P. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2012-10-15T23:59:59.000Z

    Accurately assessing and optimizing the implosion performance of inertial confinement fusion capsules is a crucial step to achieving ignition on the NIF. We have applied differential filtering (matched Ross filter pairs) to provide broadband time-integrated absolute x-ray self-emission images of the imploded core of cryogenic layered implosions. This diagnostic measures the temperature- and density-sensitive bremsstrahlung emission and provides estimates of hot spot mass, mix mass, and pressure.

  13. Installation of soft X-ray array diagnostics and its application to tomography reconstruction using synthetic KSTAR X-ray images

    SciTech Connect (OSTI)

    Lee, Seung Hun; Jang, Juhyeok; Hong, Joohwan; Jang, Siwon; Choe, Wonho, E-mail: wchoe@kaist.ac.kr [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Impurity and Edge Research Center, Daejeon 305-701 (Korea, Republic of); Pacella, D.; Romano, A.; Gabellieri, L. [Associazione Euratom-ENEA sulla Fusione, C.R. Frascati 00044 (Italy); Kim, Junghee [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Major of Nuclear Fusion and Plasma Science Department, Korea University of Science and Technology, Daejeon 305-350 (Korea, Republic of)

    2014-11-15T23:59:59.000Z

    Four-array system of soft X-ray diagnostics was installed on KSTAR tokamak. Each array has 32 viewing chords of two photo-diode array detectors with spatial resolution of 2 cm. To estimate signals from the soft X-ray radiation power, typical n{sub e}, T{sub e}, and argon impurity line radiation profiles in KSTAR are chosen. The photo-diodes were absolutely calibrated as a function of the incident photon energy in 2–40 keV range with a portable X-ray tube. Two-dimensional T{sub e} image properties by multi-energy method were simulated and visualized with six combinations of beryllium filter sets within the dynamic range of signal ratio.

  14. Study of strain propagation in laser irradiated silicon crystal by time-resolved diffraction of K-{alpha} x-ray probe of different photon energies

    SciTech Connect (OSTI)

    Arora, V.; Bagchi, S.; Chakera, J. A.; Naik, P. A.; Gupta, P. D. [Laser Plasma Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India); Gupta, M.; Gupta, A.; Chaddah, P. [UGC-DAE Consortium for Scientific Research, University Campus, Indore 452 001 (India)

    2013-07-14T23:59:59.000Z

    An experimental study on the time resolved x-ray diffraction from laser shocked silicon crystal, carried out using a 10 TW Ti:sapphire laser system, is presented. The characteristic K{sub {alpha}} x-ray line radiation generated by 45 fs laser produced plasmas of two different target materials (iron and copper) is used as the probe, whereas the stretched pulse of sub-nanosecond duration (pump), derived from the same laser, is used to compress the sample. The use of x-ray probe of different photon energies yields information about the strain over a greater crystal depth. The dynamics of the strain propagation is inferred by monitoring the evolution of rocking curve width of the shocked sample at different time delays between the pump and the probe pulse. The shock velocity deduced from these measurements is {approx}10{sup 6} cm/s, consistent with the sound velocity in bulk silicon. The maximum elastic compression observed is 0.4%, indicating a pressure of 0.8 GPa.

  15. Fluctuation X-Ray Scattering

    SciTech Connect (OSTI)

    Saldin, PI: D. K.; Co-I's: J. C. H. Spence and P. Fromme

    2013-01-25T23:59:59.000Z

    The work supported by the grant was aimed at developing novel methods of finding the structures of biomolecules using x-rays from novel sources such as the x-ray free electron laser and modern synchrotrons

  16. Rotational Doppler effect in x-ray photoionization

    SciTech Connect (OSTI)

    Sun Yuping; Wang Chuankui [College of Physics and Electronics, Shandong Normal University, 250014 Jinan (China); Theoretical Chemistry, Roslagstullsbacken 15, Royal Institute of Technology, S-106 91 Stockholm (Sweden); Gel'mukhanov, Faris [Theoretical Chemistry, Roslagstullsbacken 15, Royal Institute of Technology, S-106 91 Stockholm (Sweden)

    2010-11-15T23:59:59.000Z

    The energy of the photoelectron experiences a red or blue Doppler shift when the molecule recedes from the detector or approaches him. This results in a broadening of the photoelectron line due to the translational thermal motion. However, the molecules also have rotational degrees of freedom and we show that the translational Doppler effect has its rotational counterpart. This rotational Doppler effect leads to an additional broadening of the spectral line of the same magnitude as the Doppler broadening caused by translational thermal motion. The rotational Doppler broadening as well as the rotational recoil broadening is sensitive to the molecular orbital from which the photoelectron is ejected. This broadening should be taken into account in analysis of x-ray photoemission spectra of super-high resolution and it can be directly observed using x-ray pump-probe spectroscopy.

  17. Improved Performance of a Commercial SDD for X-ray Microanalysis

    SciTech Connect (OSTI)

    Kenik, Edward A [ORNL

    2009-01-01T23:59:59.000Z

    The performance of a silicon drift detector (SDD) is evaluated for SEM-based x-ray microanalysis. The throughput, spectral fidelity and energy resolution are measured as a function of input count rate and detector time constant for two pulse processors. Post-acquisition processing to minimize the effects of pulse pile-up is discussed.

  18. Alcator C-Mod soft X-ray pulse height analysis system

    E-Print Network [OSTI]

    Gamboa, Eliseo (Eliseo J.)

    2007-01-01T23:59:59.000Z

    A pulse height analysis (PHA) system has been installed on the Alcator C-Mod magnetic confinement fusion experiment. The PHA utilizes a Si(Li) detector to measure soft X-rays in the 1-30 keV range with an energy resolution ...

  19. A high-resolution imaging x-ray crystal spectrometer for high energy density plasmas

    SciTech Connect (OSTI)

    Chen, Hui, E-mail: chen33@llnl.gov, E-mail: bitter@pppl.gov; Magee, E.; Nagel, S. R.; Park, J.; Schneider, M. B.; Stone, G.; Williams, G. J.; Beiersdorfer, P. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550-9234 (United States); Bitter, M., E-mail: chen33@llnl.gov, E-mail: bitter@pppl.gov; Hill, K. W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Kerr, S. [Department of Applied Science, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)

    2014-11-15T23:59:59.000Z

    Adapting a concept developed for magnetic confinement fusion experiments, an imaging crystal spectrometer has been designed and tested for HED plasmas. The instrument uses a spherically bent quartz [211] crystal with radius of curvature of 490.8 mm. The instrument was tested at the Titan laser at Lawrence Livermore National Laboratory by irradiating titanium slabs with laser intensities of 10{sup 19}–10{sup 20} W/cm{sup 2}. He-like and Li-like Ti lines were recorded, from which the spectrometer performance was evaluated. This spectrometer provides very high spectral resolving power (E/dE > 7000) while acquiring a one-dimensional image of the source.

  20. Application of phase-retrieval x-ray diffractometry to carbon doped SiGe(C)/Si(C) superlattice structures. II. High resolution reconstruction using neural network root finder technique

    SciTech Connect (OSTI)

    Dilanian, Ruben A.; Nikulin, Andrei Y.; Darahanau, Aliaksandr V.; Hester, James; Zaumseil, Peter [School of Physics, Monash University, Clayton, Victoria 3800 (Australia); Australian Nuclear Science and Technology Organisation (ANSTO), Private Mail Bag 1, Menai, New South Wales 2234 (Australia); IHP, Im Technologiepark 25, D-15236 Frankfurt (Germany)

    2006-06-01T23:59:59.000Z

    A neural network root finder approach for finding complex roots of high-degree complex polynomials was applied as part of the phase-retrieval x-ray diffractometry technique to reconstruct strain profiles in SiGe(C)/Si(C) superlattice structures. The high spatial resolution, 5 A, as a result of significantly higher degree of the complex polynomial, 1400 roots, allowed us to obtain more accurate results for the strain profile distribution in SiGe(C)/Si(C) superlattice structures. Previously, such high quality analysis was fundamentally impossible due to the limitations imposed by conventional numerical methods of finding complex polynomial roots.

  1. Coded Aperture Imaging for Fluorescent X-rays-Biomedical Applications

    SciTech Connect (OSTI)

    Haboub, Abdel; MacDowell, Alastair; Marchesini, Stefano; Parkinson, Dilworth

    2013-06-01T23:59:59.000Z

    Employing a coded aperture pattern in front of a charge couple device pixilated detector (CCD) allows for imaging of fluorescent x-rays (6-25KeV) being emitted from samples irradiated with x-rays. Coded apertures encode the angular direction of x-rays and allow for a large Numerical Aperture x- ray imaging system. The algorithm to develop the self-supported coded aperture pattern of the Non Two Holes Touching (NTHT) pattern was developed. The algorithms to reconstruct the x-ray image from the encoded pattern recorded were developed by means of modeling and confirmed by experiments. Samples were irradiated by monochromatic synchrotron x-ray radiation, and fluorescent x-rays from several different test metal samples were imaged through the newly developed coded aperture imaging system. By choice of the exciting energy the different metals were speciated.

  2. Principles of X-ray Navigation

    SciTech Connect (OSTI)

    Hanson, John Eric; /SLAC

    2006-03-17T23:59:59.000Z

    X-ray navigation is a new concept in satellite navigation in which orientation, position and time are measured by observing stellar emissions in x-ray wavelengths. X-ray navigation offers the opportunity for a single instrument to be used to measure these parameters autonomously. Furthermore, this concept is not limited to missions in close proximity to the earth. X-ray navigation can be used on a variety of missions from satellites in low earth orbit to spacecraft on interplanetary missions. In 1997 the Unconventional Stellar Aspect Experiment (USA) will be launched as part of the Advanced Research and Global Observation Satellite (ARGOS). USA will provide the first platform for real-time experimentation in the field of x-ray navigation and also serves as an excellent case study for the design and manufacturing of space qualified systems in small, autonomous groups. Current techniques for determining the orientation of a satellite rely on observations of the earth, sun and stars in infrared, visible or ultraviolet wavelengths. It is possible to use x-ray imaging devices to provide arcsecond level measurement of attitude based on star patterns in the x-ray sky. This technique is explored with a simple simulation. Collimated x-ray detectors can be used on spinning satellites to provide a cheap and reliable measure of orientation. This is demonstrated using observations of the Crab Pulsar taken by the high Energy Astronomy Observatory (HEAO-1) in 1977. A single instrument concept is shown to be effective, but dependent on an a priori estimate of the guide star intensity and thus susceptible to errors in that estimate. A star scanner based on a differential measurement from two x-ray detectors eliminates the need for an a priori estimate of the guide star intensity. A first order model and a second order model of the two star scanner concepts are considered. Many of the stars that emit in the x-ray regime are also x-ray pulsars with frequency stability approaching a part in 10{sup 9}. By observing these pulsations, a satellite can keep accurate time autonomously. They have demonstrated the acquisition and tracking of the Crab nebula pulsar by simulating the operation of a phase-locked loop.

  3. Compton backscattered collimated x-ray source

    DOE Patents [OSTI]

    Ruth, R.D.; Huang, Z.

    1998-10-20T23:59:59.000Z

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  4. Compton backscattered collmated X-ray source

    DOE Patents [OSTI]

    Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

    2000-01-01T23:59:59.000Z

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  5. Compton backscattered collimated x-ray source

    DOE Patents [OSTI]

    Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

    1998-01-01T23:59:59.000Z

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  6. Combined microstructure x-ray optics

    SciTech Connect (OSTI)

    Barbee, T.W. Jr.

    1989-02-01T23:59:59.000Z

    Multilayers are man-made microstructures which vary in depth and are now of sufficient quality to be used as x-ray, soft x-ray and extreme ultraviolet optics. Gratings are man-made in plane microstructures which have been used as optic elements for most of this century. Joining of these two optical microstructures to form combined microstructure optical microstructures to form combined microstructure optical elements has the potential for greatly enhancing both the throughput and the resolution attainable in these spectral ranges. The characteristics of these new optic elements will be presented and compared to experiment with emphasis on the unique properties of these combined microstructures. These results reported are general in nature and not limited to the soft x-ray or extreme ultraviolet spectral domains and also apply to neutrons. 19 refs., 7 figs., 4 tabs.

  7. Radiographic X-Ray Pulse Jitter

    SciTech Connect (OSTI)

    Mitton, C. V., Good, D. E., Henderson, D. J., Hogge, K. W.

    2011-01-15T23:59:59.000Z

    The Dual Beam Radiographic Facility consists of two identical radiographic sources. Major components of the machines are: Marx generator, water-filled pulse-forming line (PFL), water-filled coaxial transmission line, three-cell inductive voltage adder, and rod-pinch diode. The diode pulse has the following electrical specifications: 2.25-MV, 60-kA, 60-ns. Each source has the following x-ray parameters: 1-mm-diameter spot size, 4-rad at 1 m, 50-ns full width half max. The x-ray pulse is measured with PIN diode detectors. The sources were developed to produce high resolution images on single-shot, high-value experiments. For this application it is desirable to maintain a high level of reproducibility in source output. X-ray pulse jitter is a key metric for analysis of reproducibility. We will give measurements of x-ray jitter for each machine. It is expected that x-ray pulse jitter is predominantly due to PFL switch jitter, and therefore a correlation of the two will be discussed.

  8. Bandpass x-ray diode and x-ray multiplier detector

    DOE Patents [OSTI]

    Wang, C.L.

    1982-09-27T23:59:59.000Z

    An absorption-edge of an x-ray absorption filter and a quantum jump of a photocathode determine the bandpass characteristics of an x-ray diode detector. An anode, which collects the photoelectrons emitted by the photocathode, has enhanced amplification provided by photoelectron-multiplying means which include dynodes or a microchannel-plate electron-multiplier. Suppression of undesired high frequency response for a bandpass x-ray diode is provided by subtracting a signal representative of energies above the passband from a signal representative of the overall response of the bandpass diode.

  9. Warm absorbers in X-rays (WAX), a comprehensive high resolution grating spectral study of a sample of Seyfert galaxies: I. A global view and frequency of occurrence of warm absorbers

    E-Print Network [OSTI]

    Laha, Sibasish; Dewangan, Gulab C; Chakravorty, Susmita; Kembhavi, Ajit K

    2014-01-01T23:59:59.000Z

    We present results from a homogeneous analysis of the broadband 0.3-10 keV CCD resolution as well as of soft X-ray high-resolution grating spectra of a hard X-ray flux-limited sample of 26 Seyfert galaxies observed with XMM-Newton. Our goal is to characterise the warm absorber (WA) properties along the line-of-sight to the active nucleus. We significantly detect WAs in $65\\%$ of the sample sources. Our results are consistent with WAs being present in at least half of the Seyfert galaxies in the nearby Universe, in agreement with previous estimates . We find a gap in the distribution of the ionisation parameter in the range $0.5<\\log\\xi<1.5$ which we interpret as a thermally unstable region for WA clouds. This may indicate that the warm absorber flow is probably constituted by a clumpy distribution of discrete clouds rather than a continuous medium. The distribution of the WA column densities for the sources with broad Fe K$\\alpha$ lines are similar to those sources which do not have broadened emission l...

  10. Warm absorbers in X-rays (WAX), a comprehensive high resolution grating spectral study of a sample of Seyfert galaxies: I. A global view and frequency of occurrence of warm absorbers

    E-Print Network [OSTI]

    Laha, Sibasish; Dewangan, Gulab C; Chakravorty, Susmita; Kembhavi, Ajit K

    2014-01-01T23:59:59.000Z

    We present results from a homogeneous analysis of the broadband 0.3-10 keV CCD resolution as well as of soft X-ray high-resolution grating spectra of a hard X-ray flux-limited sample of 26 Seyfert galaxies observed with XMM-Newton. Our goal is to characterise the warm absorber (WA) properties along the line-of-sight to the active nucleus. We significantly detect WAs in $65\\%$ of the sample sources. Our results are consistent with WAs being present in at least half of the Seyfert galaxies in the nearby Universe, in agreement with previous estimates . We find a gap in the distribution of the ionisation parameter in the range $0.5warm absorber flow is probably constituted by a clumpy distribution of discrete clouds rather than a continuous medium. The distribution of the WA column densities for the sources with broad Fe K$\\alpha$ lines are similar to those sources which do not have broadened emission l...

  11. Developing a Compton Polarimeter to Measure Polarization of Hard X-Rays in the 50-300 keV Energy Range

    E-Print Network [OSTI]

    J. S. Legere; P. Bloser; J. R. Macri; M. L. McConnell; T. Narita; J. M. Ryan

    2005-08-14T23:59:59.000Z

    This paper discusses the latest progress in the development of GRAPE (Gamma-Ray Polarimeter Experiment), a hard X-ray Compton Polarimeter. The purpose of GRAPE is to measure the polarization of hard X-rays in the 50-300 keV energy range. We are particularly interested in X-rays that are emitted from solar flares and gamma-ray bursts (GRBs). Accurately measuring the polarization of the emitted radiation from these sources will lead, to a better understating of both the emission mechanisms and source geometries. The GRAPE design consists of an array of plastic scintillators surrounding a central high-Z crystal scintillator. We can monitor individual Compton scatters that occur in the plastics and determine whether the photon is photo absorbed by the high-Z crystal or not. A Compton scattered photon that is immediately photo absorbed by the high-Z crystal constitutes a valid event. These valid events provide us with the interaction locations of each incident photon and ultimately produces a modulation pattern for the Compton scattering of the polarized radiation. Comparing with Monte Carlo simulations of a 100% polarized beam, the level of polarization of the measured beam can then be determined. The complete array is mounted on a flat-panel multi-anode photomultiplier tube (MAPMT) that can measure the deposited energies resulting from the photon interactions. The design of the detector allows for a large field-of-view (>pi steradian), at the same time offering the ability to be close-packed with multiple modules in order to reduce deadspace. We plan to present in this paper the latest laboratory results obtained from GRAPE using partially polarized radiation sources.

  12. X-Ray Diffraction Microscopy of Magnetic Structures

    SciTech Connect (OSTI)

    Turner, J.; Lima, E.; Huang, X.; Krupin, O.; Seu, K.; Parks, D.; Kevan, S.; Kisslinger, K.; McNulty, I.; Gambino, R.; Mangin, S.; Roy, S. and Fischer, P.

    2011-07-14T23:59:59.000Z

    We report the first proof-of-principle experiment of iterative phase retrieval from magnetic x-ray diffraction. By using the resonant x-ray excitation process and coherent x-ray scattering, we show that linearly polarized soft x rays can be used to image both the amplitude and the phase of magnetic domain structures. We recovered the magnetic structure of an amorphous terbium-cobalt thin film with a spatial resolution of about 75 nm at the Co L{sub 3} edge at 778 eV. In comparison with soft x-ray microscopy images recorded with Fresnel zone plate optics at better than 25 nm spatial resolution, we find qualitative agreement in the observed magnetic structure.

  13. Brighter Screens for Nondestructive Digital X-ray Radiography

    SciTech Connect (OSTI)

    Miller, Jr., A. C.; Bell, Z. W.; Carpenter, D. A.

    2003-09-15T23:59:59.000Z

    Fine resolution, bright X-ray screens are needed for digital radiography and material characterization at the Y-12 National Security Complex (Y-12). Current technology is simply not adequate for transferring high-energy X-ray images to visible light for demanding digital applications. Low energy radiography and especially emerging tomographic technologies are severely hampered for Y-12 nondestructive evaluation (NDE) applications by dim screens with poor resolution. Also, the development of more advanced materials characterization techniques, such as electron backscatter diffraction (EBSD), is driven by a design agency desire for tighter specifications and more uniform materials. Brighter screens would allow us to probe materials on a finer scale, leading to a better understanding of material behavior. A number of X-ray screen materials were studied that would be suitable for direct replacement in existing digital imaging systems. Spectroscopic evaluations were first made for a several candidates and indicated that lutetium orthosilicate (LSO) would be a promising candidate for MeV images. A relative comparison of brightness at various energies was then completed which showed that cesium iodide (CsI) could increase brightness by over an order of magnitude. Since image quality is also important for better screens, the resolving capabilities of candidate materials were measured. Resolution measurements were completed at X-ray peak energies up to 420KeV with magnified optical imaging systems, and indicated that LSO and Industrial Quality Incorporated glass (IQI) exhibited higher resolution than the CsI screen. The results give a choice of materials that can be tailored to the particular test under consideration. If high-speed images are necessary and some resolution can be sacrificed, the CsI screen will be a good choice. The screen can be replaced by an IQI or LSO unit if higher resolution is needed later, for instance to focus in on a region of interest. A number of significant findings were obtained from this study. Most important of the findings was that materials are commercially available that are much brighter than screens currently in use. This finding meets the original objective of the project. Two objectives of the study; however, were not met. We hoped to evaluate a 'quantum dot' (nanometer-sized particles of semiconductor material) wavelength conversion screen, but the manufacturer ceased production of the screen shortly before the project was started. The dot screen could be efficient in converting ultraviolet light to visible light which would have proved important for utilizing a Cherenkov screen. Since this was a very new, cutting-edge technology, an alternative supplier was not found during the study. Also, high-energy testing of a Cherenkov light screen was not performed due to difficulties in obtaining appropriate approvals for locating test equipment in the high-energy X-ray vault at Y-12. The test is still important, and is being pursued through follow-on funding sources. Although many film shots will be eliminated by the availability of high quality digital images, the largest potential gains result from the availability of clearer images that show fine detail in the parts under analysis. Digital radiographic data also offers the possibility of easily sharing data with other sites. This could prove invaluable when critical material, placement, assembly, or quality issues are pressing. Also, increased throughput in the NDE facility allows statistically significant numbers of units to be analyzed. Digital technologies may in fact be needed just to meet minimum requirements of future demands. Increased brightness screens allow for such innovations as 3-D tomographic images to be acquired in a reasonable time. Much of the skill required to interpret 'flattened' X-ray images is not needed to maneuver around the reconstructed tomogram. This study showed that several commercially available materials are much brighter than screens currently in use. The study also showed that materials othe

  14. A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility

    SciTech Connect (OSTI)

    Moore, A S; Guymer, T M; Kline, J L; Morton, J; Taccetti, M; Lanier, N E; Bentley, C; Workman, J; Peterson, B; Mussack, K; Cowan, J; Prasad, R; Richardson, M; Burns, S; Kalantar, D H; Benedetti, L R; Bell, P; Bradley, D; Hsing, W; Stevenson, M

    2012-05-01T23:59:59.000Z

    A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors (GXD) it records sixteen time-gated spectra between 250 and 1000eV with 100ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and VUV beamline at the National Synchrotron Light Source (NSLS), evidence a <100{micro}m spatial resolution in combination with a source-size limited spectral resolution that is <10eV at photon energies of 300eV.

  15. X-ray spectrometry

    SciTech Connect (OSTI)

    Markowicz, A.A.; Van Grieken, R.E.

    1986-04-01T23:59:59.000Z

    In the period under review, i.e, through 1984 and 1985, some 600 articles on XRS (X-ray spectrometry) were published; most of these have been scanned and the most fundamental ones are discussed. All references will refer to English-language articles, unless states otherwise. Also general books have appeared on quantitative EPXMA (electron-probe X-ray microanalysis) and analytical electron microscopy (AEM) as well as an extensive review on the application of XRS to trace analysis of environmental samples. In the period under review no radically new developments have been seen in XRS. However, significant improvements have been made. Gain in intensities has been achieved by more efficient excitation, higher reflectivity of dispersing media, and better geometry. Better understanding of the physical process of photon- and electron-specimen interactions led to complex but more accurate equations for correction of various interelement effects. Extensive use of micro- and minicomputers now enables fully automatic operation, including qualitative analysis. However, sample preparation and presentation still put a limit to further progress. Although some authors find XRS in the phase of stabilization or even stagnation, further gradual developments are expected, particularly toward more dedicated equipment, advanced automation, and image analysis systems. Ways are outlined in which XRS has been improved in the 2 last years by excitation, detection, instrumental, methodological, and theoretical advances. 340 references.

  16. In situ synchrotron based x-ray techniques as monitoring tools for atomic layer deposition

    SciTech Connect (OSTI)

    Devloo-Casier, Kilian, E-mail: Kilian.DevlooCasier@Ugent.be; Detavernier, Christophe; Dendooven, Jolien [Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, B-9000 Ghent (Belgium); Ludwig, Karl F. [Physics Department, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215 (United States)

    2014-01-15T23:59:59.000Z

    Atomic layer deposition (ALD) is a thin film deposition technique that has been studied with a variety of in situ techniques. By exploiting the high photon flux and energy tunability of synchrotron based x-rays, a variety of new in situ techniques become available. X-ray reflectivity, grazing incidence small angle x-ray scattering, x-ray diffraction, x-ray fluorescence, x-ray absorption spectroscopy, and x-ray photoelectron spectroscopy are reviewed as possible in situ techniques during ALD. All these techniques are especially sensitive to changes on the (sub-)nanometer scale, allowing a unique insight into different aspects of the ALD growth mechanisms.

  17. Comparison of SOFC Cathode Microstructure Quantified using X-ray Nanotomography and Focused Ioni Beam-scanning Electron Microscopy

    SciTech Connect (OSTI)

    G Nelson; W Harris; J Lombardo; J Izzo Jr.; W Chiu; P Tanasini; M Cantoni; J Van herle; C Comninellis; et al.

    2011-12-31T23:59:59.000Z

    X-ray nanotomography and focused ion beam scanning electron microscopy (FIB-SEM) have been applied to investigate the complex 3D microstructure of solid oxide fuel cell (SOFC) electrodes at spatial resolutions of 45 nm and below. The application of near edge differential absorption for x-ray nanotomography and energy selected backscatter detection for FIB-SEM enable elemental mapping within the microstructure. Using these methods, non-destructive 3D x-ray imaging and FIB-SEM serial sectioning have been applied to compare three-dimensional elemental mapping of the LSM, YSZ, and pore phases in the SOFC cathode microstructure. The microstructural characterization of an SOFC cathode is reported based on these measurements. The results presented demonstrate the viability of x-ray nanotomography as a quantitative characterization technique and provide key insights into the SOFC cathode microstructure.

  18. Comparison of SOFC Cathode Microstructure Quantified using X-ray Nanotomography and Focused Ion Beam - Scanning Electron Microscopy

    SciTech Connect (OSTI)

    Nelson, George J.; Harris, William H.; Lombardo, Jeffrey J.; Izzo, Jr., John R.; Chiu, W. K. S.; Tanasini, Pietro; cantoni, Marco; Van herle, Jan; Comninellis, Christos; Andrews, Joy C.; Liu, Yijin; Pianetta, Piero; Chu, Yong

    2011-01-01T23:59:59.000Z

    X-ray nanotomography and focused ion beam scanning electron microscopy (FIB?SEM) have been applied to investigate the complex 3D microstructure of solid oxide fuel cell (SOFC) electrodes at spatial resolutions of 45 nm and below. The application of near edge differential absorption for x-ray nanotomography and energy selected backscatter detection for FIB–SEM enable elemental mapping within the microstructure. Using these methods, non?destructive 3D x-ray imaging and FIB–SEM serial sectioning have been applied to compare three?dimensional elemental mapping of the LSM, YSZ, and pore phases in the SOFC cathode microstructure. The microstructural characterization of an SOFC cathode is reported based on these measurements. The results presented demonstrate the viability of x-ray nanotomography as a quantitative characterization technique and provide key insights into the SOFC cathode microstructure.

  19. A mirror for lab-based quasi-monochromatic parallel x-rays

    SciTech Connect (OSTI)

    Nguyen, Thanhhai; Lu, Xun; Lee, Chang Jun; Jeon, Insu, E-mail: i-jeon@chonnam.ac.kr [School of Mechanical Engineering, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757 (Korea, Republic of); Jung, Jin-Ho [Pro-optics Co., Ltd., 475 Ami-ri, Bubal-eup, Icheon 467-866 (Korea, Republic of); Jin, Gye-Hwan [Department of Radiology, Nambu University, 76 Chumdan Jungang 1-ro, Gwangsan-gu, Gwangju 506-706 (Korea, Republic of); Kim, Sung Youb [School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology, 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of)

    2014-09-15T23:59:59.000Z

    A multilayered parabolic mirror with six W/Al bilayers was designed and fabricated to generate monochromatic parallel x-rays using a lab-based x-ray source. Using this mirror, curved bright bands were obtained in x-ray images as reflected x-rays. The parallelism of the reflected x-rays was investigated using the shape of the bands. The intensity and monochromatic characteristics of the reflected x-rays were evaluated through measurements of the x-ray spectra in the band. High intensity, nearly monochromatic, and parallel x-rays, which can be used for high resolution x-ray microscopes and local radiation therapy systems, were obtained.

  20. X-ray tests of a two-dimensional stigmatic imaging scheme with variable magnifications

    SciTech Connect (OSTI)

    Lu, J., E-mail: jlu@pppl.gov [Key Laboratory of Optoelectronic Technology and System of Ministry of Education, Chongqing University, Chongqing 400030 (China); Bitter, M.; Hill, K. W.; Delgado-Aparicio, L. F.; Efthimion, P. C.; Pablant, N. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Beiersdorfer, P. [Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Caughey, T. A.; Brunner, J. [Inrad Optics, 181 Legrand Avenue, Northvale, New Jersey 07647 (United States)

    2014-11-15T23:59:59.000Z

    A two-dimensional stigmatic x-ray imaging scheme, consisting of two spherically bent crystals, one concave and one convex, was recently proposed [M. Bitter et al., Rev. Sci. Instrum. 83, 10E527 (2012)]. The Bragg angles and the radii of curvature of the two crystals of this imaging scheme are matched to eliminate the astigmatism and to satisfy the Bragg condition across both crystal surfaces for a given x-ray energy. In this paper, we consider more general configurations of this imaging scheme, which allow us to vary the magnification for a given pair of crystals and x-ray energy. The stigmatic imaging scheme has been validated for the first time by imaging x-rays generated by a micro-focus x-ray source with source size of 8.4 ?m validated by knife-edge measurements. Results are presented from imaging the tungsten L?1 emission at 8.3976 keV, using a convex Si-422 crystal and a concave Si-533 crystal with 2d-spacings of 2.21707 Å and 1.65635 Å and radii of curvature of 500 ± 1 mm and 823 ± 1 mm, respectively, showing a spatial resolution of 54.9 ?m. This imaging scheme is expected to be of interest for the two-dimensional imaging of laser produced plasmas.

  1. Nonlinear X-ray Compton Scattering

    E-Print Network [OSTI]

    Fuchs, Matthias; Chen, Jian; Ghimire, Shambhu; Shwartz, Sharon; Kozina, Michael; Jiang, Mason; Henighan, Thomas; Bray, Crystal; Ndabashimiye, Georges; Bucksbaum, P H; Feng, Yiping; Herrmann, Sven; Carini, Gabriella; Pines, Jack; Hart, Philip; Kenney, Christopher; Guillet, Serge; Boutet, Sebastien; Williams, Garth; Messerschmidt, Marc; Seibert, Marvin; Moeller, Stefan; Hastings, Jerome B; Reis, David A

    2015-01-01T23:59:59.000Z

    X-ray scattering is a weak linear probe of matter. It is primarily sensitive to the position of electrons and their momentum distribution. Elastic X-ray scattering forms the basis of atomic structural determination while inelastic Compton scattering is often used as a spectroscopic probe of both single-particle excitations and collective modes. X-ray free-electron lasers (XFELs) are unique tools for studying matter on its natural time and length scales due to their bright and coherent ultrashort pulses. However, in the focus of an XFEL the assumption of a weak linear probe breaks down, and nonlinear light-matter interactions can become ubiquitous. The field can be sufficiently high that even non-resonant multiphoton interactions at hard X-rays wavelengths become relevant. Here we report the observation of one of the most fundamental nonlinear X-ray-matter interactions, the simultaneous Compton scattering of two identical photons producing a single photon at nearly twice the photon energy. We measure scattered...

  2. Fabrication process for a gradient index x-ray lens

    DOE Patents [OSTI]

    Bionta, Richard M. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA); Skulina, Kenneth M. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    A process for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments m the soft x-ray region.

  3. Fabrication process for a gradient index x-ray lens

    DOE Patents [OSTI]

    Bionta, R.M.; Makowiecki, D.M.; Skulina, K.M.

    1995-01-17T23:59:59.000Z

    A process is disclosed for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments in the soft x-ray region. 13 figures.

  4. A laser triggered vacuum spark x-ray lithography source

    E-Print Network [OSTI]

    Keating, Richard Allen

    1987-01-01T23:59:59.000Z

    ionized state or the physical processes occurring 15 in a high temperature plasma. There are many advantages to the use of the vacuum spark as an x-ray source; the simplicity of the machine is one. The x-ray output is within the range usable for x-ray... spark apparatus ha- been studied here to determine its applicability to x-ray lithography. A capacitor which stored approximately 3 KJ supplied most of the energy for the plasma. A Nd-YAG laser was used to supply electrons and metallic atoms...

  5. X-Ray Nanoimaging: Instruments and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more toConsensusX-RayX-Ray

  6. Beyond Chandra - the X-ray Surveyor

    E-Print Network [OSTI]

    Weisskopf, Martin C; Tananbaum, Harvey; Vikhlinin, Alexey

    2015-01-01T23:59:59.000Z

    Over the past 16 years, NASA's Chandra X-ray Observatory has provided an unparalleled means for exploring the universe with its half-arcsecond angular resolution. Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, planets, and solar system objects addressing almost all areas of current interest in astronomy and astrophysics. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address even more demanding science questions, such as the formation and subsequent growth of black hole seeds at very high redshift; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, NASA Marshall Space Flight Center, together with the Smithsonian Astrophysical Observatory, has initiated a concept study for such a mission named the X-ray Surveyor. This study starts with a baseline payloa...

  7. High-energy magnetic excitations in overdoped La 2 - x Sr x CuO 4 studied by neutron and resonant inelastic x-ray scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wakimoto, S.; Ishii, K.; Kimura, H.; Fujita, M.; Dellea, G.; Kummer, K.; Braicovich, L.; Ghiringhelli, G.; Debeer-Schmitt, L. M.; Granroth, G. E.

    2015-05-01T23:59:59.000Z

    We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L? edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La2-xSrxCuO? with x=0.25 (Tc=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the (?,?) direction agree with the dispersion relation of the spin wave in the nondoped La?CuO? (LCO), which is consistent with the previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L? edge, we have measured the dispersion relations of the so-called paramagnon mode along both (?,?) and (?,0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (?,0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (?,?) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near (?/2,?/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (?,?) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. A possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (?,?) direction as detected by the x-ray scattering.

  8. High-energy magnetic excitations in overdoped La 2 - x Sr x CuO 4 studied by neutron and resonant inelastic x-ray scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wakimoto, S.; Ishii, K.; Kimura, H.; Fujita, M.; Dellea, G.; Kummer, K.; Braicovich, L.; Ghiringhelli, G.; Debeer-Schmitt, L. M.; Granroth, G. E.

    2015-05-01T23:59:59.000Z

    We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L? edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La2-xSrxCuO? with x=0.25 (Tc=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the (?,?) direction agree with the dispersion relation of the spin wave in the nondoped La?CuO? (LCO), which is consistent with themore »previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L? edge, we have measured the dispersion relations of the so-called paramagnon mode along both (?,?) and (?,0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (?,0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (?,?) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near (?/2,?/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (?,?) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. A possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (?,?) direction as detected by the x-ray scattering.« less

  9. The experimental feature on the data of the primary proton identification in stratospheric X-ray emulsion chambers at energies >10 TeV (RUNJOB experiment)

    E-Print Network [OSTI]

    I. S. Zayarnaya

    2006-10-02T23:59:59.000Z

    The RUNJOB balloon-born emulsion chamber experiments have been carried out for investigating the composition and energy spectra of primary cosmic rays at energies 10-1000 TeV/nucleon. On the data of the treatment of RUNJOB` X-ray emulsion chambers exposed since 1995 to 1999 year about 50 % proton tracks were identified. In remained half of the events from proton group the one charged primary tracks were not found in the search area determined with high accuracy by the triangulation method using the several background heavy tracks. Considered methodical reasons in this paper could not explain this experimental result. The one from the probable physical reasons that is the neutrons in cosmic ray flux does not explain it too.

  10. High-rate x-ray spectroscopy in mammography with a CdTe detector: A digital pulse processing approach

    SciTech Connect (OSTI)

    Abbene, L.; Gerardi, G.; Principato, F.; Del Sordo, S.; Ienzi, R.; Raso, G. [Dipartimento di Fisica e Tecnologie Relative, Universita di Palermo, Viale delle Scienze, Edificio 18, Palermo 90128 (Italy) and INAF/IASF Palermo, Via Ugo La Malfa 153, 90146 Palermo (Italy); Dipartimento di Fisica e Tecnologie Relative, Universita di Palermo, Viale delle Scienze, Edificio 18, Palermo 90128 (Italy); INAF/IASF Palermo, Via Ugo La Malfa 153, 90146 Palermo (Italy); Istituto di Radiologia, Policlinico, 90100 Palermo (Italy); Dipartimento di Fisica e Tecnologie Relative, Universita di Palermo, Viale delle Scienze, Edificio 18, Palermo 90128 (Italy)

    2010-12-15T23:59:59.000Z

    Purpose:Direct measurement of mammographic x-ray spectra under clinical conditions is a difficult task due to the high fluence rate of the x-ray beams as well as the limits in the development of high resolution detection systems in a high counting rate environment. In this work we present a detection system, based on a CdTe detector and an innovative digital pulse processing (DPP) system, for high-rate x-ray spectroscopy in mammography. Methods: The DPP system performs a digital pile-up inspection and a digital pulse height analysis of the detector signals, digitized through a 14-bit, 100 MHz digitizer, for x-ray spectroscopy even at high photon counting rates. We investigated on the response of the digital detection system both at low (150 cps) and at high photon counting rates (up to 500 kcps) by using monoenergetic x-ray sources and a nonclinical molybdenum anode x-ray tube. Clinical molybdenum x-ray spectrum measurements were also performed by using a pinhole collimator and a custom alignment device. Results: The detection system shows excellent performance up to 512 kcps with an energy resolution of 4.08% FWHM at 22.1 keV. Despite the high photon counting rate (up to 453 kcps), the molybdenum x-ray spectra, measured under clinical conditions, are characterized by a low number of pile-up events. The agreement between the attenuation curves and the half value layer values, obtained from the measured spectra, simulated spectra, and from the exposure values directly measured with an ionization chamber, also shows the accuracy of the measurements. Conclusions: These results make the proposed detection system a very attractive tool for both laboratory research and advanced quality controls in mammography.

  11. NSLS (National Synchrotron Light Source) X-19A beamline performance for x-ray absorption measurements

    SciTech Connect (OSTI)

    Yang, C.Y.; Penner-Hahn, J.E.; Stefan, P.M. (Michigan Univ., Ann Arbor, MI (USA). Dept. of Chemistry; Brookhaven National Lab., Upton, NY (USA))

    1989-01-01T23:59:59.000Z

    Characterization of the X-19A beamline at the National Synchrotron Light Source (NSLS) is described. The beamline is designed for high resolution x-ray absorption spectroscopy over a wide energy range. All of the beamline optical components are compatible with ultrahigh vacuum (UHV) operation. This permits measurements to be made in a window-less mode, thereby facilitating lower energy (<4 KeV) studies. To upgrade the beamline performance, several possible improvements in instrumentation and practice are discussed to increase photon statistics with an optimum energy resolution, while decreasing the harmonic contamination and noise level. A special effort has been made to improve the stability and UHV compatibility of the monochromator system. Initial x-ray absorption results demonstrate the capabilities of this beamline for x-ray absorption studies of low Z elements (e.g. S) in highly dilute systems. The future use of this beamline for carrying out various x-ray absorption experiments is presented. 10 refs., 4 figs.

  12. Measurement and characterization of x-ray spot size

    SciTech Connect (OSTI)

    Mueller, K.H.

    1989-01-01T23:59:59.000Z

    In planning an x-ray imaging experiment one must have an accurate model of the imaging system to obtain optimum results. The blurring caused by the finite size of the x-ray source is often the least understood element in the system. We have developed experimental and analytical methods permitting accurate measurement and modeling of the x-ray source. The model offers a simple and accurate way to optimize the radiographic geometry for any given experimental requirement (i.e., resolution and dose at detector). Any text on radiography will mention the effects of the finite size of the x-ray source on image quality and how one can minimize this influence by the choice of a small radiographic magnification. The film blur (independent of the source blur) is often treated as a single number and combined with an effective blur dimension for the x-ray source to give a total blur on the film. In this paper, we will develop a treatment of x-ray sources based on the modulation transfer function (MTF). This approach allows us to infer the spatial distribution function of the electron beam that produces the bremsstrahlung x-rays and to predict the performance of an x-ray imaging system if we know the MTF of the detector. This treatment is much more accurate than a single number characterization. 4 refs., 7 figs.

  13. X-Ray Interactions with Matter from the Center for X-Ray Optics (CXRO)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Henke, B.L.; Gullikson, E.M.; Davis, J.C.

    The primary interactions of low-energy x-rays within condensed matter, viz. photoabsorption and coherent scattering, are described for photon energies outside the absorption threshold regions by using atomic scattering factors. The atomic scattering factors may be accurately determined from the atomic photoabsorption cross sections using modified Kramers-Kronig dispersion relations. From a synthesis of the currently available experimental data and recent theoretical calculations for photoabsorption, the angle-independent, forward-scattering components of the atomic scattering factors have been thus semiempirically determined and tabulated here for 92 elements and for the region 50-30,000 eV. Atomic scattering factors for all angles of coherent scattering and at the higher photon energies are obtained from these tabulated forward-scattering values by adding a simple angle-dependent form-factor correction. The incoherent scattering contributions that become significant for the light elements at the higher photon energies are similarly determined. The basic x-ray interaction relations that are used in applied x-ray physics are presented here in terms of the atomic scattering factors. The bulk optical constants are also related to the atomic scattering factors. These atomic and optical relations are applied to the detailed calculation of the reflectivity characteristics of a series of practical x-ray mirror, multilayer, and crystal monochromators. Comparisons of the results of this semiempirical,"atom-like", description of x-ray interactions for the low-energy region with those of experiment and ab initio theory are presented.

  14. Electromagnetic Application: X-RAY Alawi H. Ba-Surrah

    E-Print Network [OSTI]

    Masoudi, Husain M.

    , Pulyui published high-quality x-ray images in journals in Paris and London. · Nikola Tesla In April 1887, Nikola Tesla began to investigate X-rays using high voltages and tubes of his own design, as well. The principle behind Tesla's device is called the Bremsstrahlung process, in which a high-energy secondary X

  15. Spatially resolved energy dispersive x-ray spectroscopic method for in-situ evaluation of mechanical properties during the growth of a C - Pt composite nanowire

    SciTech Connect (OSTI)

    Banerjee, Amit; Banerjee, S. S., E-mail: satyajit@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur, 208016 (India)

    2014-05-15T23:59:59.000Z

    A core-shell type C-Pt composite nanowire is fabricated using focused ion and electron beam induced chemical vapor deposition techniques. Using information from spatially resolved energy dispersive x-ray spectra, we detect the resonance vibration in the C-Pt composite nanowire. We use this method to measure the Young's moduli of the constituents (C, Pt) of the composite nanowire and also estimate the density of the FEB CVD grown Pt shell surrounding the C core. By measuring the resonance characteristics of the composite nanowire we estimate a Pt shell growth rate of ?0.9 nms{sup ?1}. The study is analyzed to suggest that the Pt shell growth mechanism is primarily governed by the sticking coefficient of the organometallic vapor on the C nanowire core.

  16. Advances in X-Ray Chemical Analysis, Japan, 45 (2014) ISSN 0911-7806 Report on 10th Chinese X-Ray Spectrometry Conference (CXRSC)

    E-Print Network [OSTI]

    Jun, Kawai

    and Information Technology), Dr. Yidong Zhao (Institute of High Energy Physics of Chinese Academy of Sciences-Ray Spectrometry Conference (CXRSC) Ying LIU #12;#12;45 345 Report on 10th Chinese X-Ray Spectrometry Conference (CXRSC) Adv. X-Ray. Chem. Anal., Japan 45, pp.345-348 (2014) Report on 10th Chinese X-Ray Spectrometry

  17. Gated x-ray detector for the National Ignition Facility

    SciTech Connect (OSTI)

    Oertel, John A.; Aragonez, Robert; Archuleta, Tom; Barnes, Cris; Casper, Larry; Fatherley, Valerie; Heinrichs, Todd; King, Robert; Landers, Doug; Lopez, Frank; Sanchez, Phillip; Sandoval, George; Schrank, Lou; Walsh, Peter; Bell, Perry; Brown, Matt; Costa, Robert; Holder, Joe; Montelongo, Sam; Pederson, Neal [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Lawrence Livermore National Laboratory, Livermore, California 94551-0808 (United States); VI Control Systems Ltd., Los Alamos, New Mexico 87544 (United States)

    2006-10-15T23:59:59.000Z

    Two new gated x-ray imaging cameras have recently been designed, constructed, and delivered to the National Ignition Facility in Livermore, CA. These gated x-Ray detectors are each designed to fit within an aluminum airbox with a large capacity cooling plane and are fitted with an array of environmental housekeeping sensors. These instruments are significantly different from earlier generations of gated x-ray images due, in part, to an innovative impedance matching scheme, advanced phosphor screens, pulsed phosphor circuits, precision assembly fixturing, unique system monitoring, and complete remote computer control. Preliminary characterization has shown repeatable uniformity between imaging strips, improved spatial resolution, and no detectable impedance reflections.

  18. Streaked x-ray microscopy of laser-fusion targets

    SciTech Connect (OSTI)

    Price, R.H.; Campbell, E.M.; Rosen, M.D.; Auerbach, J.M.; Phillion, D.W.; Whitlock, R.R.; Obenshain, S.P.; McLean, E.A.; Ripin, B.H.

    1982-08-01T23:59:59.000Z

    An ultrafast soft x-ray streak camera has been coupled to a Wolter axisymmetric x-ray microscope. This system was used to observe the dynamics of laser fusion targets both in self emission and backlit by laser produced x-ray sources. Spatial resolution was 7 ..mu..m and temporal resolution was 20 ps. Data is presented showing the ablative acceleration of foils to velocities near 10/sup 7/ cm/sec and the collision of an accelerated foil with a second foil, observed using 3 keV streaked x-ray backlighting. Good agreement was found between hydrocode simulations, simple models of the ablative acceleration and the observed velocities of the carbon foils.

  19. Scattering of x rays from low-Z materials

    SciTech Connect (OSTI)

    Gaines, J.L.; Kissel, L.D.; Catron, H.C.; Hansen, R.A.

    1980-08-01T23:59:59.000Z

    X rays incident on thin beryllium, boron, carbon, and other low-Z materials undergo both elastic and inelastic scattering as well as diffraction from the crystalline or crystalline-like structure of the material. Unpolarized monoenergetic x rays in the 1.5 to 8.0-keV energy range were used to determine the absolute scattering efficiency of thin beryllium, carbon, and boron foils. These measurements are compared to calculated scattering efficiencies predicted by single-atom theories. In addition, the relative scattering efficiency versus x-ray energy was measured for other low-Z foils using unpolarized bremsstrahlung x rays. In all the low-Z foils examined, we observed Bragg-like x-ray diffraction due to the ordered structure of the materials.

  20. Real-time high-resolution X-ray imaging and nuclear magnetic resonance study of the hydration of pure and Na-doped C3A in the presence of sulfates

    SciTech Connect (OSTI)

    Kirchheim,, A. P.; Dal Molin, D.C.; Emwas, Abdul-Hamid; Provis, J.L.; Fischer, P.; Monteiro, P.J.M.

    2010-12-01T23:59:59.000Z

    This study details the differences in real-time hydration between pure tricalcium aluminate (cubic C{sub 3}A or 3CaO {center_dot} Al{sub 2}O{sub 3}) and Na-doped tricalcium aluminate (orthorhombic C{sub 3}A or Na{sub 2}Ca{sub 8}Al{sub 6}O{sub 18}), in aqueous solutions containing sulfate ions. Pure phases were synthesized in the laboratory to develop an independent benchmark for the reactions, meaning that their reactions during hydration in a simulated early age cement pore solution (saturated with respect to gypsum and lime) were able to be isolated. Because the rate of this reaction is extremely rapid, most microscopy methods are not adequate to study the early phases of the reactions in the early stages. Here, a high-resolution full-field soft X-ray imaging technique operating in the X-ray water window, combined with solution analysis by {sup 27}Al nuclear magnetic resonance (NMR) spectroscopy, was used to capture information regarding the mechanism of C{sub 3}A hydration during the early stages. There are differences in the hydration mechanism between the two types of C{sub 3}A, which are also dependent on the concentration of sulfate ions in the solution. The reactions with cubic C{sub 3}A (pure) seem to be more influenced by higher concentrations of sulfate ions, forming smaller ettringite needles at a slower pace than the orthorhombic C{sub 3}A (Na-doped) sample. The rate of release of aluminate species into the solution phase is also accelerated by Na doping.

  1. Center for X-Ray Optics, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    This report discusses the following topics: Center for X-Ray Optics; Soft X-Ray Imaging wit Zone Plate Lenses; Biological X-Ray microscopy; Extreme Ultraviolet Lithography for Nanoelectronic Pattern Transfer; Multilayer Reflective Optics; EUV/Soft X-ray Reflectometer; Photoemission Microscopy with Reflective Optics; Spectroscopy with Soft X-Rays; Hard X-Ray Microprobe; Coronary Angiography; and Atomic Scattering Factors.

  2. Staff at sector 30, inelastic x-ray scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sector 30 Staff Advanced Photon Source A U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences national synchrotron x-ray research facility Search Button...

  3. Quick extended x-ray absorption fine structure instrument with millisecond time scale, optimized for in situ applications

    E-Print Network [OSTI]

    Sparks, Donald L.

    Quick extended x-ray absorption fine structure instrument with millisecond time scale, optimized of quick extended x-ray absorption fine structure QEXAFS and quick x-ray absorption near edge structure- tion spectroscopy XAS was developed in energy dispersive and quick extended x-ray absorption fine

  4. Enhanced betatron X-rays from axially modulated plasma wakefields

    E-Print Network [OSTI]

    Palastro, J P; Gordon, D

    2015-01-01T23:59:59.000Z

    In the cavitation regime of plasma-based accelerators, a population of high-energy electrons tailing the driver can undergo betatron motion. The motion results in X-ray emission, but the brilliance and photon energy are limited by the electrons' initial transverse coordinate. To overcome this, we exploit parametrically unstable betatron motion in a cavitated, axially modulated plasma. Theory and simulations are presented showing that the unstable oscillations increase both the total X-ray energy and average photon energy.

  5. Scintillating Fiber Array Characterization and Alignment for Neutron Imaging using the High Energy X-ray (HEX) Facility

    SciTech Connect (OSTI)

    Buckles, R. A., Ali, Z. A., Cradick, J. R., Traille, A. J., Warthan, W. A.

    2009-09-04T23:59:59.000Z

    The Neutron Imager diagnostic at the National Ignition Facility (NIF) located at Lawrence Livermore National Laboratory (LLNL) will produce high-resolution, gated images of neutron-generating implosions. A similar pinhole imaging experiment (PINEX) diagnostic was recently deployed at the Z facility at Sandia National Laboratories (SNL). Both the SNL and LLNL neutron imagers use similar fiber array scintillators (BCF-99-555). Despite diverse resolution and magnification requirements, both diagnostics put significant onus on the scintillator spatial quality and alignment precision to maintain optimal point spread. Characterization and alignment of the Z-PINEX scintillator and imaging system were done at NSTec/Livermore Operations in 2009, and is currently underway for the NIF Neutron Imager.

  6. Note: A novel normalization scheme for laser-based plasma x-ray sources

    SciTech Connect (OSTI)

    Zhang, B. B.; Sun, D. R.; Tao, Y., E-mail: taoy@ihep.ac.cn [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Sun, S. S. [Institute of Physics, Chinese Academy of Sciences, Beijing 100090 (China)

    2014-09-15T23:59:59.000Z

    A kHz repetition rate laser pump-X-ray probe system for ultrafast X-ray diffraction is set up based on a laser-driven plasma X-ray source. A simple and reliable normalization approach has been developed to minimize the impact of large X-ray pulse intensity fluctuation on data quality. It utilizes one single X-ray area detector to record both sample and reference signals simultaneously. Performance of this novel normalization method is demonstrated in reflectivity oscillation measurement of a superlattice sample at sub-ps resolution.

  7. High gain, Fast Scan, Broad Spectrum Parallel Beam Wavelength Dispersive X-ray Spectrometer for SEM

    SciTech Connect (OSTI)

    OHara, David

    2009-05-08T23:59:59.000Z

    During contract # DE-FG02-ER83545, Parallax Research, Inc. developed a High gain, Fast Scan Broad Spectrum Parallel beam Wavelength Dispersive X-ray Spectrometer for use on Scanning Electron Microscopes (SEM). This new spectrometer allows very fast high resolution elemental analysis of samples in an electron microscope. By comparison to previous WDS spectrometers, it can change from one energy position to another very quickly and has an extended range compared to some similar products.

  8. X-Ray Emission Spectrometer Design with Single-Shot Pump-Probe and Resonant Excitation Capabilities

    SciTech Connect (OSTI)

    Spoth, Katherine; /SUNY, Buffalo /SLAC

    2012-08-28T23:59:59.000Z

    Core-level spectroscopy in the soft X-ray regime is a powerful tool for the study of chemical bonding processes. The ultrafast, ultrabright X-ray pulses generated by the Linac Coherent Light Source (LCLS) allow these reactions to be studied in greater detail than ever before. In this study, we investigated a conceptual design of a spectrometer for the LCLS with imaging in the non-dispersive direction. This would allow single-shot collection of X-ray emission spectroscopy (XES) measurements with varying laser pump X-ray probe delay or a variation of incoming X-ray energy over the illuminated area of the sample. Ray-tracing simulations were used to demonstrate how the components of the spectrometer affect its performance, allowing a determination of the optimal final design. These simulations showed that the spectrometer's non-dispersive focusing is extremely sensitive to the size of the sample footprint; the spectrometer is not able to image a footprint width larger than one millimeter with the required resolution. This is compatible with a single shot scheme that maps out the laser pump X-ray probe delay in the non-dispersive direction as well as resonant XES applications at normal incidence. However, the current capabilities of the Soft X-Ray (SXR) beamline at the LCLS do not produce the required energy range in a small enough sample footprint, hindering the single shot resonant XES application at SXR for chemical dynamics studies at surfaces. If an upgraded or future beamline at LCLS is developed with lower monochromator energy dispersion the width can be made small enough at the required energy range to be imaged by this spectrometer design.

  9. ON RELATIVISTIC DISK SPECTROSCOPY IN COMPACT OBJECTS WITH X-RAY CCD CAMERAS

    SciTech Connect (OSTI)

    Miller, J. M.; Cackett, E. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); D'Ai, A. [Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo, Palermo (Italy); Bautz, M. W.; Nowak, M. A. [Kavli Institute for Astrophysics and Space Research, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Bhattacharyya, S. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Burrows, D. N.; Kennea, J. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, College Park, PA 16802 (United States); Fabian, A. C.; Reis, R. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 OHA (United Kingdom); Freyberg, M. J.; Haberl, F. [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse, 85748 Garching (Germany); Strohmayer, T. E. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Tsujimoto, M., E-mail: jonmm@umich.ed [Japan Aerospace Exploration Agency, Institute of Space and Astronomical Sciences, 3-1-1 Yoshino-dai, Sagamihara, Kanagawa 229-8510 (Japan)

    2010-12-01T23:59:59.000Z

    X-ray charge-coupled devices (CCDs) are the workhorse detectors of modern X-ray astronomy. Typically covering the 0.3-10.0 keV energy range, CCDs are able to detect photoelectric absorption edges and K shell lines from most abundant metals. New CCDs also offer resolutions of 30-50 (E/{Delta}E), which is sufficient to detect lines in hot plasmas and to resolve many lines shaped by dynamical processes in accretion flows. The spectral capabilities of X-ray CCDs have been particularly important in detecting relativistic emission lines from the inner disks around accreting neutron stars and black holes. One drawback of X-ray CCDs is that spectra can be distorted by photon 'pile-up', wherein two or more photons may be registered as a single event during one frame time. We have conducted a large number of simulations using a statistical model of photon pile-up to assess its impacts on relativistic disk line and continuum spectra from stellar-mass black holes and neutron stars. The simulations cover the range of current X-ray CCD spectrometers and operational modes typically used to observe neutron stars and black holes in X-ray binaries. Our results suggest that severe photon pile-up acts to falsely narrow emission lines, leading to falsely large disk radii and falsely low spin values. In contrast, our simulations suggest that disk continua affected by severe pile-up are measured to have falsely low flux values, leading to falsely small radii and falsely high spin values. The results of these simulations and existing data appear to suggest that relativistic disk spectroscopy is generally robust against pile-up when this effect is modest.

  10. On Relativistic Disk Spectroscopy in Compact Objects with X-ray CCD Cameras

    E-Print Network [OSTI]

    J. M. Miller; A. D'Ai; M. W. Bautz; S. Bhattacharyya; D. N. Burrows; E. M. Cackett; A. C. Fabian; M. J. Freyberg; F. Haberl; J. Kennea; M. A Nowak; R. C. Reis; T. E. Strohmayer; M. Tsujimoto

    2010-09-22T23:59:59.000Z

    X-ray charge-coupled devices (CCDs) are the workhorse detectors of modern X-ray astronomy. Typically covering the 0.3-10.0 keV energy range, CCDs are able to detect photoelectric absorption edges and K shell lines from most abundant metals. New CCDs also offer resolutions of 30-50 (E/dE), which is sufficient to detect lines in hot plasmas and to resolve many lines shaped by dynamical processes in accretion flows. The spectral capabilities of X-ray CCDs have been particularly important in detecting relativistic emission lines from the inner disks around accreting neutron stars and black holes. One drawback of X-ray CCDs is that spectra can be distorted by photon "pile-up", wherein two or more photons may be registered as a single event during one frame time. We have conducted a large number of simulations using a statistical model of photon pile-up to assess its impacts on relativistic disk line and continuum spectra from stellar-mass black holes and neutron stars. The simulations cover the range of current X-ray CCD spectrometers and operational modes typically used to observe neutron stars and black holes in X-ray binaries. Our results suggest that severe photon pile-up acts to falsely narrow emission lines, leading to falsely large disk radii and falsely low spin values. In contrast, our simulations suggest that disk continua affected by severe pile-up are measured to have falsely low flux values, leading to falsely small radii and falsely high spin values. The results of these simulations and existing data appear to suggest that relativistic disk spectroscopy is generally robust against pile-up when this effect is modest.

  11. Characterisation of a MeV Bremsstrahlung x-ray source produced from a high intensity laser for high areal density object radiography

    SciTech Connect (OSTI)

    Courtois, C.; Compant La Fontaine, A.; Bazzoli, S.; Bourgade, J. L.; Gazave, J.; Lagrange, J. M.; Landoas, O.; Dain, L. Le; Pichoff, N. [CEA, DAM, DIF, F-91297 Arpajon (France)] [CEA, DAM, DIF, F-91297 Arpajon (France); Edwards, R.; Aedy, C. [AWE Plc., Aldermaston, Reading RG7 4PR (United Kingdom)] [AWE Plc., Aldermaston, Reading RG7 4PR (United Kingdom); Mastrosimone, D.; Pien, G.; Stoeckl, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)] [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2013-08-15T23:59:59.000Z

    Results of an experiment to characterise a MeV Bremsstrahlung x-ray emission created by a short (<10 ps) pulse, high intensity (1.4 × 10{sup 19} W/cm{sup 2}) laser are presented. X-ray emission is characterized using several diagnostics; nuclear activation measurements, a calibrated hard x-ray spectrometer, and dosimeters. Results from the reconstructed x-ray energy spectra are consistent with numerical simulations using the PIC and Monte Carlo codes between 0.3 and 30 MeV. The intense Bremsstrahlung x-ray source is used to radiograph an image quality indicator (IQI) heavily filtered with thick tungsten absorbers. Observations suggest that internal features of the IQI can be resolved up to an external areal density of 85 g/cm{sup 2}. The x-ray source size, inferred by the radiography of a thick resolution grid, is estimated to be approximately 400 ?m (full width half maximum of the x-ray source Point Spread Function)

  12. Monitoring Long-Range Electron Transfer Pathways in Proteins by Stimulated Attosecond Broadband X-ray Raman Spectroscopy

    SciTech Connect (OSTI)

    Zhang, Yu; Biggs, Jason; Govind, Niranjan; Mukamel, Shaul

    2014-10-09T23:59:59.000Z

    Long-range electron transfer (ET) plays a key role in many biological energy conversion and synthesis processes. We show that nonlinear spectroscopy with attosecond X-ray pulses provides a real time movie of the evolving oxidation states and electron densities around atoms, and can probe these processes with high spatial and temporal resolution. This is demonstrated in a simulation study of the stimulated X-ray Raman (SXRS) signals in Re-modified azurin, which had long served as a benchmark for long-range ET in proteins. Nonlinear SXRS signals are sensitive to the local electronic structure and should offer a novel window for long-range ET.

  13. The Extreme Ultraviolet and X-Ray Sun in Time: High-Energy Evolutionary Tracks of a Solar-Like Star

    E-Print Network [OSTI]

    Tu, Lin; Güdel, Manuel; Lammer, Helmut

    2015-01-01T23:59:59.000Z

    Aims. We aim to describe the pre-main sequence and main-sequence evolution of X-ray and extreme-ultaviolet radiation of a solar mass star based on its rotational evolution starting with a realistic range of initial rotation rates. Methods. We derive evolutionary tracks of X-ray radiation based on a rotational evolution model for solar mass stars and the rotation-activity relation. We compare these tracks to X-ray luminosity distributions of stars in clusters with different ages. Results. We find agreement between the evolutionary tracks derived from rotation and the X-ray luminosity distributions from observations. Depending on the initial rotation rate, a star might remain at the X-ray saturation level for very different time periods, approximately from 10 Myr to 300 Myr for slow and fast rotators, respectively. Conclusions. Rotational evolution with a spread of initial conditions leads to a particularly wide distribution of possible X-ray luminosities in the age range of 20 to 500 Myrs, before rotational co...

  14. Epoxy replication for Wolter x-ray microscope fabrication

    SciTech Connect (OSTI)

    Priedhorsky, W.

    1981-01-01T23:59:59.000Z

    An epoxy replica of a test piece designed to simulate a Wolter x-ray microscope geometry showed no loss of x-ray reflectivity or resolution, compared to the original. The test piece was a diamond-turned cone with 1.5/sup 0/ half angle. A flat was fly-cut on one side, then super- and conventionally polished. The replica was separated at the 1.5/sup 0/-draft angle, simulating a shallow angle Wolter microscope geometry. A test with 8.34 A x rays at 0.9/sup 0/ grazing angle showed a reflectivity of 67% for the replica flat surface, and 70% for the original. No spread of the reflected beam was observed with a 20-arc second wide test beam. This test verifies the epoxy replication technique for production of Wolter x-ray microscopes.

  15. X-ray radiography for container inspection

    DOE Patents [OSTI]

    Katz, Jonathan I. (Clayton, MO); Morris, Christopher L. (Los Alamos, NM)

    2011-06-07T23:59:59.000Z

    Arrangements of X-ray inspection systems are described for inspecting high-z materials in voluminous objects such as containers. Inspection methods may involve generating a radiographic image based on detected attenuation corresponding to a pulsed beams of radiation transmitted through a voluminous object. The pulsed beams of radiation are generated by a high-energy source and transmitted substantially downward along an incident angle, of approximately 1.degree. to 30.degree., to a vertical axis extending through the voluminous object. The generated radiographic image may be analyzed to detect on localized high attenuation representative of high-z materials and to discriminate high-z materials from lower and intermediate-z materials on the basis of the high density and greater attenuation of high-z material for higher energy (3-10 MeV) X-rays, and the compact nature of threatening masses of fissionable materials.

  16. The growth of epitaxial iron oxides on platinum (111) as studied by X-ray photoelectron diffraction, scanning tunneling microscopy, and low energy electron diffraction

    SciTech Connect (OSTI)

    Kim, Y.J.

    1995-05-01T23:59:59.000Z

    Three complementary surface structure probes, x-ray photoelectron diffraction (XPD), scanning tunneling microscopy (STM), and low-energy electron diffraction (LEED) have been combined in a single instrument. This experimental system has been utilized to study the structure and growth mechanisms of iron oxide films on Pt(111); these films were formed by first depositing a single overlayer of Fe with a certain coverage in monolayers (ML`s), and then thermally oxidizing it in an oxygen atmosphere. For films up to {approximately}1 ML in thickness, a bilayer of Fe and O similar to those in FeO(111) is found to form. In agreement with prior studies, STM and LEED show this to be an incommensurate oxide film forming a lateral superlattice with short- and long-range periodicities of {approximately}3.1 {Angstrom} and {approximately}26.0 {Angstrom}. XPD in addition shows a topmost oxygen layer to be relaxed inward by -0.6 {Angstrom} compared to bulk FeO(111), and these are new structural conclusions. The oxygen stacking in the FeO(111) bilayer is dominated by one of two possible binding sites. For thicker iron oxide films from 1.25 ML to 3.0 ML, the growth mode is essentially Stranski-Krastanov: iron oxide islands form on top of the FeO(111) bilayer mentioned above. For iron oxide films of 3.0 ML thickness, x-ray photoelectron spectroscopy (XPS) yields an Fe 2p{sub 3/2} binding energy and an Fe:O stoichiometry consistent with the presence of Fe{sub 3}O{sub 4}. Our XPD data further prove this overlayer to be Fe{sub 3}O{sub 4}(111)-magnetite in two almost equally populated domains with a 180{degrees} rotation between them. The structural parameters for this Fe{sub 3}O{sub 4} overlayer generally agree with those of a previous LEED study, except that we find a significant difference in the first Fe-O interplanar spacing. This work demonstrates the considerable benefits to be derived by using this set of complementary surface structure probes in such epitaxial growth studies.

  17. Soft X-Ray and Vacuum Ultraviolet Based Spectroscopy of the Actinides

    SciTech Connect (OSTI)

    Tobin, J G

    2011-03-17T23:59:59.000Z

    The subjects of discussion included: VUV photoelectron spectroscopy, X-ray photoelectron spectroscopy, Synchrotron-radiation-based photoelectron spectroscopy, Soft x-ray absorption spectroscopy, Soft x-ray emission spectroscopy, Inverse photoelectron spectroscopy, Bremstrahlung Isochromat Spectroscopy, Low energy IPES, Resonant inverse photoelectron spectroscopy.

  18. X-ray micromodulated luminescence tomography in dual-cone ...

    E-Print Network [OSTI]

    2014-07-01T23:59:59.000Z

    Jul 16, 2014 ... ing the intensity of x-ray energy at the vertex point of a double- cone beam. ... such focusing element, but it is of low efficiency and restricted.

  19. Biological imaging by soft x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shapiro, D. [Stony Brook Univ., Stony Brook, NY (United States); Thibault, P. [Cornell Univ., Ithaca, NY (United States); Beetz, T. [Stony Brook Univ., Stony Brook, NY (United States); Brookhaven National Lab., Upton, NY (United States). Center for Functional Nanomaterials; Elser, V. [Cornell Univ., Ithaca, NY (United States); Howells, M. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source; Jacobsen, C. [Stony Brook Univ., Stony Brook, NY (United States); Brookhaven National Lab., Upton, NY (United States). Center for Functional Nanomaterials; Kirz, J. [Stony Brook Univ., Stony Brook, NY (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source; Lima, E. [Stony Brook Univ., Stony Brook, NY (United States); Miao, H. [Stony Brook Univ., Stony Brook, NY (United States); Neiman, A. M. [State Univ. of New York at Stony Brook, NY (United States); Sayre, D. [Stony Brook Univ., Stony Brook, NY (United States)

    2005-10-25T23:59:59.000Z

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffraction microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.

  20. Biological Imaging by Soft X-ray Diffraction Microscopy

    SciTech Connect (OSTI)

    Shapiro,D.; Thibault, P.; Beetz, T.; Elser, V.; Howells, M.; Jacobsen, C.; Kirz, J.; Lima, E.; Miao, H.; et al.

    2005-01-01T23:59:59.000Z

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffraction microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.

  1. The CHANDRA HETGS X-ray Grating Spectrum of Eta Car

    E-Print Network [OSTI]

    M. F. Corcoran; J. H. Swank; R. Petre; K. Ishibashi; K. Davidson; L. Townsley; R. Smith; S. White; R. Viotti; A. Damineli

    2001-09-19T23:59:59.000Z

    Eta Car may be the most massive and luminous star in the Galaxy and is suspected to be a massive, colliding wind binary system. The CHANDRA X-ray observatory has obtained a calibrated, high-resolution X-ray spectrum of the star uncontaminated by the nearby extended soft X-ray emisssion. Our 89 ksec CHANDRA observation with the High Energy Transmission Grating Spectrometer (HETGS) shows that the hot gas near the star is non-isothermal. The temperature distribution may represent the emission on either side of the colliding wind bow shock, effectively ``resolving'' the shock. If so, the pre-shock wind velocities are ~ 700 and ~ 1800 km/s in our analysis, and these velocities may be interpreted as the terminal velocities of the winds from Eta Car and from the hidden companion star. The forbidden-to-intercombination (f/i) line ratios for the He-like ions of S, Si and Fe are large, indicating that the line forming region lies far from the stellar photosphere. The iron fluorescent line at 1.93 Angstrom, first detected by ASCA, is clearly resolved from the thermal iron line in the CHANDRA grating spectrum. The Fe fluorescent line is weaker in our CHANDRA observation than in any of the ASCA spectra. The CHANDRA observation also provides an uninterrupted high-time resolution lightcurve of the stellar X-ray emission from Eta Car and suggests that there was no significant, coherent variability during the CHANDRA observation. The Eta Car CHANDRA grating spectrum is unlike recently published X-ray grating spectra of single massive stars in significant ways and is generally consistent with colliding wind emission in a massive binary.

  2. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source

    SciTech Connect (OSTI)

    Ohsuka, Shinji, E-mail: ohsuka@crl.hpk.co.jp [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu-cho, Nishi-ku, Hamamatsu-City, 431-1202 (Japan); Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); Nakano, Tomoyasu [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); Ray-Focus Co. Ltd., 6009 Shinpara, Hamakita-ku, Hamamatsu-City, 434-0003 (Japan); Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao [Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2014-09-15T23:59:59.000Z

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen K? x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-?m scale three-dimensional fine structures were resolved.

  3. X-ray backscatter imaging of nuclear materials

    DOE Patents [OSTI]

    Chapman, Jeffrey Allen; Gunning, John E; Hollenbach, Daniel F; Ott, Larry J; Shedlock, Daniel

    2014-09-30T23:59:59.000Z

    The energy of an X-ray beam and critical depth are selected to detect structural discontinuities in a material having an atomic number Z of 57 or greater. The critical depth is selected by adjusting the geometry of a collimator that blocks backscattered radiation so that backscattered X-ray originating from a depth less than the critical depth is not detected. Structures of Lanthanides and Actinides, including nuclear fuel rod materials, can be inspected for structural discontinuities such as gaps, cracks, and chipping employing the backscattered X-ray.

  4. Characterization of X-ray generator beam profiles.

    SciTech Connect (OSTI)

    Mitchell, Dean J; Harding, Lee T.; Thoreson, Gregory G.; Theisen, Lisa Anne; Parmeter, John Ethan; Thompson, Kyle Richard

    2013-07-01T23:59:59.000Z

    T to compute the radiography properties of various materials, the flux profiles of X-ray sources must be characterized. This report describes the characterization of X-ray beam profiles from a Kimtron industrial 450 kVp radiography system with a Comet MXC-45 HP/11 bipolar oil-cooled X-ray tube. The empirical method described here uses a detector response function to derive photon flux profiles based on data collected with a small cadmium telluride detector. The flux profiles are then reduced to a simple parametric form that enables computation of beam profiles for arbitrary accelerator energies.

  5. X-ray Diffraction from Membrane Protein Nanocrystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more toConsensusX-RayX-RayX-ray

  6. The BMW Deep X-ray Cluster Survey

    E-Print Network [OSTI]

    Guzzo, L; Campana, S; Covino, S; Dell'Antonio, I P; Lazzati, D; Longhetti, M; Molinari, E; Panzera, M R; Tagliaferri, G

    2001-01-01T23:59:59.000Z

    We briefly describe the main features of the Brera Multi-Wavelet (BMW) survey of serendipitous X-ray clusters, based on the still unexploited ROSAT-HRI archival observations. Cluster candidates are selected from the general BMW catalogue of 20,000 sources based exclusively on their X-ray extension. Contrary to common wisdom, a clever selection of the HRI energy channels allows us to significantly reduce the background noise, thus greatly improving the ability to detect low surface-brightness sources as clusters. The resulting sample of ~250 candidates shows a very good sky coverage down to a flux \\~3x10^-14 erg/s/cm^2 ([0.5-2.0] keV band), i.e comparable to existing PSPC-based deep survey, with a particularly interesting area of ~100 sq.deg. around fluxes ~10^-13 erg/s/cm^2, i.e. where highly-luminous, rare systems at z~0.6-1 can be detected. At the same time, the superior angular resolution of the instrument should avoid biases against intrinsically small systems, while easing the identification process (e.g...

  7. The BMW Deep X-ray Cluster Survey

    E-Print Network [OSTI]

    L. Guzzo; A. Moretti; S. Campana; S. Covino; I. Dell'Antonio; D. Lazzati; M. Longhetti; E. Molinari; M. R. Panzera; G. Tagliaferri

    2001-01-24T23:59:59.000Z

    We briefly describe the main features of the Brera Multi-Wavelet (BMW) survey of serendipitous X-ray clusters, based on the still unexploited ROSAT-HRI archival observations. Cluster candidates are selected from the general BMW catalogue of 20,000 sources based exclusively on their X-ray extension. Contrary to common wisdom, a clever selection of the HRI energy channels allows us to significantly reduce the background noise, thus greatly improving the ability to detect low surface-brightness sources as clusters. The resulting sample of ~250 candidates shows a very good sky coverage down to a flux \\~3x10^-14 erg/s/cm^2 ([0.5-2.0] keV band), i.e comparable to existing PSPC-based deep survey, with a particularly interesting area of ~100 sq.deg. around fluxes ~10^-13 erg/s/cm^2, i.e. where highly-luminous, rare systems at z~0.6-1 can be detected. At the same time, the superior angular resolution of the instrument should avoid biases against intrinsically small systems, while easing the identification process (e.g. by spotting blends and AGN contaminants). While about 20% of the candidates are already identified with groups/clusters at z0.5) bonafide cluster counterpart for ~80% of the targets.

  8. Integrated X-ray testing of the electro-optical breadboard model for the XMM reflection grating spectrometer

    SciTech Connect (OSTI)

    Bixler, J.V.; Craig, W.; Decker, T. [Lawrence Livermore National Lab., CA (United States); Aarts, H.; Boggende, T. den; Brinkman, A.C. [Space Research Organization Netherlands, Utrecht (Netherlands); Burkert, W.; Brauninger, H. [Max-Planck Institute fur Extraterrestische Physik, Testanlage (Germany); Branduardi-Raymont, G. [Univ. College London (United Kingdom); Dubbeldam, L. [Space Research Organization Netherlands, Leiden (Netherlands)] [and others

    1994-07-12T23:59:59.000Z

    X-ray calibration of the Electro-Optical Breadboard Model (EOBB) of the XXM Reflection Grating Spectrometer has been carried out at the Panter test facility in Germany. The EOBB prototype optics consisted of a four-shell grazing incidence mirror module followed by an array of eight reflection gratings. The dispersed x-rays were detected by an array of three CCDs. Line profile and efficiency measurements where made at several energies, orders, and geometric configurations for individual gratings and for the grating array as a whole. The x-ray measurements verified that the grating mounting method would meet the stringent tolerances necessary for the flight instrument. Post EOBB metrology of the individual gratings and their mountings confirmed the precision of the grating boxes fabrication. Examination of the individual grating surface`s at micron resolution revealed the cause of anomalously wide line profiles to be scattering due to the crazing of the replica`s surface.

  9. Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Xiaojing; Nelson, Johanna; Kirz, Janos; Lima, Enju; Marchesini, Stefano; Miao, Huijie; Neiman, Aaron; Shapiro, David; Steinbrener, Jan; Stewart, Andrew; Turner, Joshua; Jacobsen, Chris

    2009-11-01T23:59:59.000Z

    We report the first image of an intact, frozen hydrated eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezing the specimen in liquid ethane and maintaining it below -170 degrees C, artifacts due to dehydration, ice crystallization, and radiation damage are greatly reduced. In this example, coherent diffraction data using 520 eV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25 nm. This demonstration represents an important step towards high resolution imaging of cells in their natural, hydrated state, without limitations imposed by x-ray optics.

  10. X-Ray Emission from Jupiter, Saturn, and Earth: A Short Review

    E-Print Network [OSTI]

    Anil Bhardwaj

    2006-05-11T23:59:59.000Z

    Jupiter, Saturn, and Earth - the three planets having dense atmosphere and a well developed magnetosphere - are known to emit X-rays. Recently, Chandra X-ray Observatory has observed X-rays from these planets, and XMM-Newton has observed them from Jupiter and Saturn. These observations have provided improved morphological, temporal, and spectral characteristics of X-rays from these planets. Both auroral and non-auroral (low-latitude) 'disk' X-ray emissions have been observed on Earth and Jupiter. X-rays have been detected from Saturn's disk, but no convincing evidence for X-ray aurora on Saturn has been observed. The non-auroral disk X-ray emissions from Jupiter, Saturn, and Earth, are mostly produced due to scattering of solar X-rays. X-ray aurora on Earth is mainly generated via bremsstrahlung from precipitating electrons and on Jupiter via charge exchange of highlyionized energetic heavy ions precipitating into the polar atmosphere. Recent unpublished work suggests that at higher (>2 keV) energies electron bremsstrahlung also plays a role in Jupiter's X-ray aurora. This paper summarizes the recent results of X-ray observations on Jupiter, Saturn, and Earth mainly in the soft energy (~0.1-2.0 keV) band and provides a comparative overview.

  11. An X-ray Imaging Study of the Stellar Population in RCW49

    E-Print Network [OSTI]

    M. Tsujimoto; E. D. Feigelson; L. K. Townsley; P. S. Broos; K. V. Getman; J. Wang; G. P. Garmire; D. Baba; T. Nagayama; M. Tamura; E. B. Churchwell

    2007-05-04T23:59:59.000Z

    We present the results of a high-resolution X-ray imaging study of the stellar population in the Galactic massive star-forming region RCW49 and its central OB association Westerlund 2. We obtained a 40 ks X-ray image of a 17'x17' field using the Chandra X-ray Observatory and deep NIR images using the Infrared Survey Facility in a concentric 8'3x8'3 region. We detected 468 X-ray sources and identified optical, NIR, and Spitzer Space Telescope MIR counterparts for 379 of them. The unprecedented spatial resolution and sensitivity of the X-ray image, enhanced by optical and infrared imaging data, yielded the following results: (1) The central OB association Westerlund 2 is resolved for the first time in the X-ray band. X-ray emission is detected from all spectroscopically-identified early-type stars in this region. (2) Most (86%) X-ray sources with optical or infrared identifications are cluster members in comparison with a control field in the Galactic Plane. (3) A loose constraint (2--5 kpc) for the distance to RCW49 is derived from the mean X-ray luminosity of T Tauri stars. (4) The cluster X-ray population consists of low-mass pre--main-sequence and early-type stars as obtained from X-ray and NIR photometry. About 30 new OB star candidates are identified. (5) We estimate a cluster radius of 6'--7' based on the X-ray surface number density profiles. (6) A large fraction (90%) of cluster members are identified individually using complimentary X-ray and MIR excess emission. (7) The brightest five X-ray sources, two Wolf-Rayet stars and three O stars, have hard thermal spectra.

  12. Suppressing Thermal Energy Drift In The LLNL Flash X-Ray Accelerator Using Linear Disk Resistor Stacks

    SciTech Connect (OSTI)

    Kreitzer, B R; Houck, T L; Luchterhand, O C

    2011-07-19T23:59:59.000Z

    This paper addresses thermal drift in sodium thiosulfate liquid resistors and their replacement with linear disk resistors from HVR Advanced Power Components. Sodium thiosulfate resistors in the FXR induction linear accelerator application have a temperature coefficient of {approx}1.8%/C. The FXR Marx banks send an 8kJ pulse through eight 524 cm{sup 3} liquid resistors at a repetition rate of up to 1 every 45 seconds. Every pulse increases the temperature of the solution by {approx}0.4 C which produces a 0.7% change in resistance. The typical cooling rate is {approx}0.4 C per minute which results in {approx}0.1% energy drop per pulse during continuous pulsed operations. A radiographic accelerator is extraordinarily sensitive to energy variations. Changes in beam energy produce movement in beam transport, changes in spot size, and large dose variations. If self-heating were the only problem, we could predict the increase in input voltage required to compensate for the energy loss. However, there are other variables that influence the temperature of the resistors such as focus magnet heating, changes in room temperature, changes in cooling water, where the cell is located, etc. Additionally not all of the resistors have equivalent cooling rates and as many as 32 resistors are driven from a single power source. The FXR accelerator group elected to replace the sodium thiosulfate resistors with HVR Linear Disk Resistors in a stack type configuration. With data limited for these resistors when used in oil and at low resistance values, a full characterization needed to be performed. High currents (up to 15kA), high voltages (up to 400kV), and Fast Rise times (<10ns) made a resistor choice difficult. Other solid resistors have been tried and had problems at the connection points and with the fact that the resistivity changed as they absorbed oil. The selected HVR resistors have the advantage of being manufactured with the oil impregnated in to them so this characteristic is minimized while still offering the desired low temperature coefficient of resistance compared to sodium thiosulfate. The characterization experiments and comparison with the sodium thiosulfate liquid resistors will be fully discussed and the final design described.

  13. Soft-x-ray spectroscopy study of nanoscale materials

    SciTech Connect (OSTI)

    Guo, J.-H.

    2005-07-30T23:59:59.000Z

    The ability to control the particle size and morphology of nanoparticles is of crucial importance nowadays both from a fundamental and industrial point of view considering the tremendous amount of high-tech applications. Controlling the crystallographic structure and the arrangement of atoms along the surface of nanostructured material will determine most of its physical properties. In general, electronic structure ultimately determines the properties of matter. Soft X-ray spectroscopy has some basic features that are important to consider. X-ray is originating from an electronic transition between a localized core state and a valence state. As a core state is involved, elemental selectivity is obtained because the core levels of different elements are well separated in energy, meaning that the involvement of the inner level makes this probe localized to one specific atomic site around which the electronic structure is reflected as a partial density-of-states contribution. The participation of valence electrons gives the method chemical state sensitivity and further, the dipole nature of the transitions gives particular symmetry information. The new generation synchrotron radiation sources producing intensive tunable monochromatized soft X-ray beams have opened up new possibilities for soft X-ray spectroscopy. The introduction of selectively excited soft X-ray emission has opened a new field of study by disclosing many new possibilities of soft X-ray resonant inelastic scattering. In this paper, some recent findings regarding soft X-ray absorption and emission studies of various nanostructured systems are presented.

  14. Using X-ray catalogues to find counterparts to unassociated high-energy Fermi/LAT sources

    E-Print Network [OSTI]

    Landi, R; Stephen, J B; Masetti, N; Malizia, A; Ubertini, P

    2015-01-01T23:59:59.000Z

    The first Fermi Large Area Telescope (LAT) catalogue of sources (1FHL) emitting at high energies (above 10 GeV) reports the details of 514 objects detected in the first three years of the Fermi mission. Of these, 71 were reported as unidentified in the 1FHL catalogue, although six are likely to be associated with a supernova remnant (SNR), a Pulsar Wind Nebula (PWN) or a combination of both, thereby leaving a list of 65 still unassociated objects. Herein, we report a preliminary analysis on this sample of objects concentrating on nine 1FHL sources, which were found to have a clear optical extragalactic classification. They are all blazar, eight BL Lac and one flat spectrum radio quasar, typically at redshift greater than 0.1.

  15. Soft-x-ray

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou are hereValue ofSocioeconomic

  16. Focused X-ray source

    DOE Patents [OSTI]

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

    1990-08-21T23:59:59.000Z

    Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

  17. Imaging X-ray spectroscopy with micro-X and Chandra

    E-Print Network [OSTI]

    Rutherford, John (John Morton)

    2013-01-01T23:59:59.000Z

    High spectral resolution observations of X-ray phenomena have the potential to uncover new physics. Currently, only point sources can be probed with high resolution spectra, using gratings. Extended objects like supernova ...

  18. Variability of the Halpha emission of Cygnus X-1 and its connection with the soft X-ray radiation

    E-Print Network [OSTI]

    A. E. Tarasov; C. Brocksopp; V. M. Lyuty

    2003-02-12T23:59:59.000Z

    High-resolution Halpha monitoring of Cyg X-1, HD226868 was carried out during 1996-2002 and the resultant spectra analysed in conjunction with 1.5-12 keV X-ray monitoring. We demonstrate that the Halpha line-profiles have complex variability on different timescales, controlled in particular by the orbital period and the focused wind model of mass loss. We find that long-term variability of the mass loss by the supergiant and short-term variability due to clumpy structure of the stellar wind dominate during the low/hard X-ray state and that X-ray photoionization has a relatively small influence on the line-profile shape and EW variability. During the high/soft X-ray state and flaring the effect of photoionization the line-profile and EW of Halpha increases but is still unable to describe the loose anti-correlation between EW and the low energy X-ray emission. We propose that variability of the mass loss by the supergiant can change wind velocities in the Stromgren zone around the accretion disc of the secondary, leading to an increase in accretion rate through the disc.

  19. Hard X-ray Microscopic Images of the Human Hair

    SciTech Connect (OSTI)

    Goo, Jawoong; Jeon, Soo Young; Oh, Tak Heon; Hong, Seung Phil; Lee, Won-Soo [Department of Dermatology and Institute of Hair and Cosmetic Medicine, Yonsei University Wonju College of Medicine, Wonju (Korea, Republic of); Yon, Hwa Shik [Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2007-01-19T23:59:59.000Z

    The better visualization of the human organs or internal structure is challenging to the physicist and physicians. It can lead to more understanding of the morphology, pathophysiology and the diagnosis. Conventionally used methods to investigate cells or architectures, show limited value due to sample processing procedures and lower resolution. In this respect, Zernike type phase contrast hard x-ray microscopy using 6.95keV photon energy has advantages. We investigated hair fibers of the normal healthy persons. Coherence based phase contrast images revealed three distinct structures of hair, medulla, cortex, and cuticular layer. Some different detailed characters of each sample were noted. And further details would be shown and these results would be utilized as basic data of morphologic study of human hair.

  20. Imaging X-ray Thomson Scattering Spectrometer Design and Demonstration

    SciTech Connect (OSTI)

    Gamboa, E.J. [University of Michigan; Huntington, C.M. [University of Michigan; Trantham, M.R. [University of Michigan; Keiter, P.A [University of Michigan; Drake, R.P. [University of Michigan; Montgomery, David [Los Alamos National Laboratory; Benage, John F. [Los Alamos National Laboratory; Letzring, Samuel A. [Los Alamos National Laboratory

    2012-05-04T23:59:59.000Z

    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally-curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

  1. Gain dynamics in a soft X-ray laser ampli er perturbed by a strong injected X-ray eld

    SciTech Connect (OSTI)

    Wang, Yong [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Wang, Shoujun [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Oliva, E [Laboratoire de Physique des Gaz et des Gaz et des Plasmas] [Laboratoire de Physique des Gaz et des Gaz et des Plasmas; Lu, L [Laboratoire de Physique des Gaz et des Gaz et des Plasmas] [Laboratoire de Physique des Gaz et des Gaz et des Plasmas; Berrill, Mark A [ORNL] [ORNL; Yin, Liang [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Nejdl, J [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Luther, Brad [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Proux, C [Laboratoire d’Optique Applique´e, ENSTA, CNRS, Ecole Polytechnique] [Laboratoire d’Optique Applique´e, ENSTA, CNRS, Ecole Polytechnique; Le, T. T. [Laboratoire de Physique des Gaz et des Gaz et des Plasmas] [Laboratoire de Physique des Gaz et des Gaz et des Plasmas; Dunn, James [Lawrence Livermore National Laboratory (LLNL)] [Lawrence Livermore National Laboratory (LLNL); Ros, D [Laboratoire de Physique des Gaz et des Gaz et des Plasmas] [Laboratoire de Physique des Gaz et des Gaz et des Plasmas; Zeitoun, Philippe [École Polytechnique] [École Polytechnique; Rocca, Jorge [Colorado State University, Fort Collins] [Colorado State University, Fort Collins

    2014-01-01T23:59:59.000Z

    Seeding soft X-ray plasma ampli ers with high harmonics has been demonstrated to generate high-brightness soft X-ray laser pulses with full spatial and temporal coherence. The interaction between the injected coherent eld and the swept-gain medium has been modelled. However, no exper- iment has been conducted to probe the gain dynamics when perturbed by a strong external seed eld. Here, we report the rst X-ray pump X-ray probe measurement of the nonlinear response of a plasma ampli er perturbed by a strong soft X-ray ultra-short pulse. We injected a sequence of two time-delayed high-harmonic pulses (l518.9 nm) into a collisionally excited nickel-like molybdenum plasma to measure with femto-second resolution the gain depletion induced by the saturated ampli cation of the high-harmonic pump and its subsequent recovery. The measured fast gain recovery in 1.5 1.75 ps con rms the possibility to generate ultra-intense, fully phase-coherent soft X-ray lasers by chirped pulse ampli cation in plasma ampli ers.

  2. 54X-rays from Hot Gases Near the SN1979C Black Hole The Chandra X-Ray Observatory

    E-Print Network [OSTI]

    is in solar mass units, and R is in kilometers. Problem 1 - Combining these equations using the method-Newton and the German ROSAT observatory revealed a bright source of X-rays that has remained steady for the 12 years, or distribution of X-rays with energy, support the idea that the object in SN 1979C is a black hole being fed

  3. Systems and methods for detecting x-rays

    DOE Patents [OSTI]

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-05-02T23:59:59.000Z

    Systems and methods for detecting x-rays are disclosed herein. One or more x-ray-sensitive scintillators can be configured from a plurality of heavy element nano-sized particles and a plastic material, such as polystyrene. As will be explained in greater detail herein, the heavy element nano-sized particles (e.g., PbWO4) can be compounded into the plastic material with at least one dopant that permits the plastic material to scintillate. X-rays interact with the heavy element nano-sized particles to produce electrons that can deposit energy in the x-ray sensitive scintillator, which in turn can produce light.

  4. Comparison of low-energy x-ray and cobalt-60 irradiations of MOS devices as a function of gate bias

    SciTech Connect (OSTI)

    Shaneyfelt, M.R.; Fleetwood, D.M.; Schwank, J.R. (Sandia National Labs., Albuquerque, NM (USA)); Hughes, K.L. (L and M Technologies, Inc., Albuquerque, NM (USA))

    1991-01-01T23:59:59.000Z

    The E{sup {minus}{1/2}} electric field dependence of the saturated density of interface traps in MOS devices is used to improve estimates of charge yield during {sup 60}Co irradiations. Previous discrepancies between 10-keV x-ray and {sup 60}Co response are resolved. 14 refs., 7 figs.

  5. Small Angle X-ray Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9Morgan ManagingW.tepidumAngle X-ray Scattering

  6. SMB, X-ray Absorption Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome to theAbsorption Spectroscopy X-ray

  7. Design and Assembly of a Telecentric Zoom Lens for the Cygnus X-ray Source

    SciTech Connect (OSTI)

    Malone, R M; Brown, K K; Curtis, A H; Esquibel, D L; Frayer, D K; Frogget, B C; Furlanetto, M R; Garten, J R; Haines, T J; Howe, R A; Huerta, J A; Kaufman, M I; King, N.S. P; Lutz, S S; McGillivray, K D

    2012-10-01T23:59:59.000Z

    Cygnus is a high-energy radiographic x-ray source. The rod-pinch x-ray diode produces a point source measuring 1 mm diameter. The target object is placed 1.5 m from the x-ray source, with a large LYSO scintillator at 2.4 m. Different-sized objects are imploded within a containment vessel. A large pellicle deflects the scintillator light out of the x-ray path into an 11-element zoom lens coupled to a CCD camera. The zoom lens and CCD must be as close as possible to the scintillator to maximize light collection. A telecentric lens design minimizes image blur from a volume source. To maximize the resolution of test objects of different sizes, the scintillator and zoom lens can be translated along the x-ray axis. Zoom lens magnifications are changed when different-sized scintillators and recording cameras are used (50 or 62 mm square format). The LYSO scintillator measures 200 × 200 mm and is 5 mm thick. The scintillator produces blue light peaking at 435 nm, so special lens materials are required. By swapping out one lens element and allowing all lenses to move, the zoom lens can also use a CsI(Tl) scintillator that produces green light centered at 550 nm. All lenses are coated with anti-reflective coating for both wavelength bands. Two sets of doublets, the stop, and the CCD camera move during zoom operations. One doublet has XY compensation. The first three lenses use fused silica for radiation damage control. The 60 lb of glass inside the 340 lb mechanical structure is oriented vertically.

  8. Spectral Formation in X-Ray Pulsar Accretion Columns

    E-Print Network [OSTI]

    Peter A. Becker; Michael T. Wolff

    2005-03-03T23:59:59.000Z

    We present the first self-consistent model for the dynamics and the radiative transfer occurring in bright X-ray pulsar accretion columns, with a special focus on the role of the shock in energizing the emerging X-rays. The pressure inside the accretion column of a luminous X-ray pulsar is dominated by the photons, and consequently the equations describing the coupled radiative-dynamical structure must be solved simultaneously. Spectral formation in these sources is therefore a complex, nonlinear phenomenon. We obtain the analytical solution for the Green's function describing the upscattering of monochromatic radiation injected into the column from the thermal mound located near the base of the flow. The Green's function is convolved with a Planck distribution to model the X-ray spectrum resulting from the reprocessing of blackbody photons produced in the thermal mound. These photons diffuse through the infalling gas and eventually escape out the walls of the column, forming the observed X-ray spectrum. We show that the resulting column-integrated, phase-averaged spectrum has a power-law shape at high energies and a blackbody shape at low energies, in agreement with the observational data for many X-ray pulsars.

  9. Producing X-rays at the APS

    ScienceCinema (OSTI)

    None

    2013-04-19T23:59:59.000Z

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

  10. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs...

  11. APS X-rays Reveal Picasso's Secret

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed APS X-rays Reveal Picasso's Secret OCTOBER 15, 2012 Bookmark and Share X-rays reveal that Picasso's "Old Guitarist," at...

  12. Spectral analysis of X-ray binaries

    E-Print Network [OSTI]

    Fridriksson, Joel Karl

    2011-01-01T23:59:59.000Z

    In this thesis, I present work from three separate research projects associated with observations of X-ray binaries. Two of those revolve around spectral characteristics of neutron star low-mass X-ray binaries (NS-LMXBs), ...

  13. Microionization chamber air-kerma calibration coefficients as a function of photon energy for x-ray spectra in the range of 20-250 kVp relative to {sup 60}Co

    SciTech Connect (OSTI)

    Snow, J. R.; Micka, J. A.; DeWerd, L. A. [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)

    2013-04-15T23:59:59.000Z

    Purpose: To investigate the applicability of a wide range of microionization chambers for reference dosimetry measurements in low- and medium-energy x-ray beams. Methods: Measurements were performed with six cylindrical microchamber models, as well as one scanning chamber and two Farmer-type chambers for comparison purposes. Air-kerma calibration coefficients were determined at the University of Wisconsin Accredited Dosimetry Calibration Laboratory for each chamber for a range of low- and medium-energy x-ray beams (20-250 kVp), with effective energies ranging from 11.5 keV to 145 keV, and a {sup 60}Co beam. A low-Z proof-of-concept microchamber was developed and calibrated with and without a high-Z silver epoxy on the collecting electrode. Results: All chambers composed of low-Z materials (Z{<=} 13), including the Farmer-type chambers, the scanning chamber, and the PTW TN31014 and the proof-of-concept microchambers, exhibited air-kerma calibration coefficients with little dependence on the quality of the beam. These chambers typically exhibited variations in calibration coefficients of less than 3% with the beam quality, for medium energy beams. However, variations in air-kerma calibration coefficients of greater than 50% were measured over the range of medium-energy x-ray beams for each of the microchambers containing high-Z collecting electrodes (Z > 13). For these high-Z chambers, which include the Exradin A14SL and A16 chambers, the PTW TN31006 chamber, the IBA CC01 chamber, and the proof-of-concept chamber containing silver, the average variation in air-kerma calibration coefficients between any two calibration beams was nearly 25% over the entire range of beam qualities investigated. Conclusions: Due to the strong energy dependence observed with microchambers containing high-Z components, these chambers may not be suitable dosimeters for kilovoltage x-ray applications, as they do not meet the TG-61 requirements. It is recommended that only microchambers containing low-Z materials (Z{<=} 13) be considered for air-kerma calibrations for reference dosimetry in low- and medium-energy x-ray beams.

  14. Microgap x-ray detector

    DOE Patents [OSTI]

    Wuest, C.R.; Bionta, R.M.; Ables, E.

    1994-05-03T23:59:59.000Z

    An x-ray detector is disclosed which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope. 3 figures.

  15. Microgap x-ray detector

    DOE Patents [OSTI]

    Wuest, Craig R. (Danville, CA); Bionta, Richard M. (Livermore, CA); Ables, Elden (Livermore, CA)

    1994-01-01T23:59:59.000Z

    An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

  16. assays high resolution: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Malbet 1995-09-14 31 High-resolution x-ray telescopes CERN Preprints Summary: High-energy astrophysics is a relatively young scientific field, made possible by space-borne...

  17. analysing high resolution: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Malbet 1995-09-14 34 High-resolution x-ray telescopes CERN Preprints Summary: High-energy astrophysics is a relatively young scientific field, made possible by space-borne...

  18. Phase-sensitive X-ray imager

    DOE Patents [OSTI]

    Baker, Kevin Louis

    2013-01-08T23:59:59.000Z

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  19. Self-detection of x-ray Fresnel transmittivity using photoelectron-induced gas ionization

    E-Print Network [OSTI]

    Stoupin, Stanislav

    2015-01-01T23:59:59.000Z

    Electric response of an x-ray mirror enclosed in a gas flow ionization chamber was studied under the conditions of total external reflection for hard x-rays. It is shown that the electric response of the system as a function of the incidence angle is defined by x-ray Fresnel transmittivity and photon-electron attenuation properties of the mirror material. A simple interpretation of quantum yield of the system is presented. The approach provides non-invasive in-situ diagnostics of hard x-ray optics, easy access to complementary x-ray transmittivity data in x-ray reflectivity experiments and can also pave the way to novel schemes for angle and energy resolving x-ray detectors.

  20. ZnTe:O phosphor development for x-ray imaging applications

    SciTech Connect (OSTI)

    Kang, Z.T.; Summers, C.J.; Menkara, H.; Wagner, B.K.; Durst, R.; Diawara, Y.; Mednikova, G.; Thorson, T. [Phosphor Technology Center of Excellence, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States); Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia 30332-0826 (United States); Bruker AXS 5465 East Cheryl Parkway, Madison Wisconson 53711 (United States)

    2006-03-13T23:59:59.000Z

    An efficient ZnTe:O x-ray powder phosphor was prepared by a dry synthesis process using gaseous doping and etching medias. The x-ray luminescent properties were evaluated and compared to standard commercial phosphors exhibited an x-ray luminescent efficiency equivalent to 76% of Gd{sub 2}O{sub 2}S:Tb and an equal resolution of 2.5 lines/mm. In addition, the fast decay time, low afterglow, and superior spectral match to conventional charge-coupled devices-indicate that ZnTe:O is a very promising phosphor candidate for x-ray imaging applications.

  1. Detection of the Angular Correlation of Faint X-ray Sources

    E-Print Network [OSTI]

    A. Vikhlinin; W. Forman

    1995-10-06T23:59:59.000Z

    We have analyzed a set of deep ROSAT observations with a total sky coverage of 40 square degrees to search for clustering of faint X-ray sources. Using the resulting catalog of discrete X-ray sources, we detect, for the first time in X-rays, a positive correlation on angular scales of 0.5'-10'. When corrected for a bias due to limited spatial resolution which amplifies the correlation, the observed angular correlation function agrees well with that expected from the spatial correlation of optically selected quasars, provided that they comprise an appreciable fraction (>= ~50%) of detected X-ray sources.

  2. Ultra-Short Electron Bunch and X-Ray Temporal Diagnostics with an X-Band Transverse Deflector

    SciTech Connect (OSTI)

    Ding, Y.; Emma, P.; Frisch, J.; Huang, Z.; Loos, H.; Krejcik, P.; Wang, M-H.; /SLAC; Behrens, C.; /DESY

    2011-12-13T23:59:59.000Z

    The measurement of ultra-short electron bunches on the femtosecond time scale constitutes a very challenging problem. In X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS), generation of sub-ten femtosecond X-ray pulses is possible, and some efforts have been put into both ultra-short electron and X-ray beam diagnostics. Here we propose a single-shot method using a transverse rf deflector (X-band) after the undulator to reconstruct both the electron bunch and X-ray temporal profiles. Simulation studies show that about 1 fs (rms) time resolution may be achievable in the LCLS and is applicable to a wide range of FEL wavelengths and pulse lengths. The jitter, resolution and other related issues will be discussed. The successful operation of the Linac Coherent Light Source (LCLS), with its capability of generating free-electron laser (FEL) X-ray pulses from a few femtoseconds (fs) up to a few hundred fs, opens up vast opportunities for studying atoms and molecules on this unprecedented ultrashort time scale. However, tremendous challenges remain in the measurement and control of these ultrashort pulses with femtosecond precision, for both the electron beam (e-beam) and the X-ray pulses. For ultrashort e-beam bunch length measurements, a standard method has been established at LCLS using an S-band radio-frequency (rf) deflector, which works like a streak camera for electrons and is capable of resolving bunch lengths as short as {approx} 10 fs rms. However, the e-beam with low charges of 20 pC at LCLS, which is expected to be less than 10 fs in duration, is too short to be measured using this transverse deflector. The measurement of the electron bunch length is helpful in estimating the FEL X-ray pulse duration. However, for a realistic beam, such as that with a Gaussian shape or even a spiky profile, the FEL amplification varies along the bunch due to peak current or emittance variation. This will cause differences between the temporal shape or duration of the electron bunch and the X-ray pulse. Initial experiments at LCLS have revealed that characterization of the X-ray pulse duration on a shot-by-shot basis is critical for the interpretation of the data. However, a reliable x-ray pulse temporal diagnostic tool is not available so far at the LCLS. We propose a novel method in this paper to characterize the FEL X-ray pulse duration and shape. A transverse rf deflector is used in conjunction with an e-beam energy spectrometer, located after the FEL undulator. By measuring the difference in the e-beam longitudinal phase space between FEL-on and FEL-off, we can obtain the time-resolved energy loss and energy spread induced from the FEL radiation, allowing the FEL X-ray temporal shape to be reconstructed.

  3. Penalized Weighted Least-Squares Approach for Low-Dose X-Ray Computed Tomography

    E-Print Network [OSTI]

    Penalized Weighted Least-Squares Approach for Low-Dose X- Ray Computed Tomography Jing Wang*1, noise-resolution tradeoff, ROC curve. 1. INTRODUCTION Low-dose X-ray computed tomography (CT) imaging Military Medical University, Xi'an, Shaanxi 710032, China ABSTRACT The noise of low-dose computed

  4. X-ray source system at the MSFC x-ray calibration facility J. J. Kolodziejczak, R. A. Austin

    E-Print Network [OSTI]

    Wargelin, Bradford J.

    hyperbolic shells, which combine to form AXAF's Wolter-I High-resolution mirror assembly (HRMA), is a phase. A part of this time will be devoted exclusively to x-ray characterization of the HRMA using a set of instruments developed by personnel at the Smithsonian Astrophysical Observatory (SAO) called the HRMA X

  5. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest News ReleasesDepartmentLendingX-Ray Imaging in

  6. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest News ReleasesDepartmentLendingX-Ray Imaging

  7. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest News ReleasesDepartmentLendingX-Ray

  8. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless ImagingLensless X-Ray

  9. Eta Car and Its Surroundings: the X-ray Diagnosis

    E-Print Network [OSTI]

    M. F. Corcoran; K. Hamaguchi

    2007-03-02T23:59:59.000Z

    X-ray emission from the supermassive star Eta Carinae (\\ec) originates from hot shocked gas produced by current stellar mass loss as well as ejecta from prior eruptive events. Absorption of this emission by cool material allows the determination of the spatial and temporal distribution of this material. Emission from the shocked gas can provide important information about abundances through the study of thermal X-ray line emission. We discuss how studies of the X-ray emission from Eta Car at a variety of temporal, spatial and spectral scales and resolutions have helped refine our knowledge of both the continuous and discrete mass loss from the system, and its interactions with more extended material around the star.

  10. X-ray radiography with highly charged ions

    DOE Patents [OSTI]

    Marrs, Roscoe E. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    An extremely small (1-250 micron FWHM) beam of slow highly charged ions deexciting on an x-ray production target generates x-ray monochromatic radiation that is passed through a specimen and detected for imaging. The resolution of the x-ray radiograms is improved and such detection is achieved with relatively low dosages of radiation passing through the specimen. An apparatus containing an electron beam ion trap (and modifications thereof) equipped with a focusing column serves as a source of ions that generate radiation projected onto an image detector. Electronic and other detectors are able to detect an increased amount of radiation per pixel than achieved by previous methods and apparati.

  11. X-ray microscope assemblies. Final report and metrology report

    SciTech Connect (OSTI)

    Zehnpfennig, T.F.

    1981-04-13T23:59:59.000Z

    This is the Final Report and Metrology Report prepared under Lawrence Livermore Laboratory Subcontract 9936205, X-ray Microscope Assemblies. The purpose of this program was to design, fabricate, and perform detailed metrology on an axisymmetric grazing-incidence x-ray microscope (XRMS) to be used as a diagnostic instrument in the Lawrence Livermore Laser Fusion Program. The optical configuration chosen for this device consists of two internally polished surfaces of revolution: an hyperboloid facing the object; and a confocal, co-axial elliposid facing the image. This arrangement is known as the Wolter Type-I configuration. The grazing angle of reflection for both surfaces is approximately 1/sup 0/. The general optical performance goals under this program were to achieve a spatial resolution in the object plane in the soft x-ray region of approximately 1 micron, and to achieve an effective solid collecting angle which is an appreciable fraction of the geometric solid collecting angle.

  12. Synchronization of x-ray pulses to the pump laser in an ultrafast x-ray facility

    E-Print Network [OSTI]

    Corlett, J.N.; Barry, W.; Byrd, J.M.; Schoenlein, R.; Zholents, A.

    2002-01-01T23:59:59.000Z

    Accurate timing of ultrafast x-ray probe pulses emitted fromOF X-RAY PULSES TO THE PUMP LASER IN AN ULTRAFAST X-RAY

  13. Accuracy evaluation of a Compton X-ray spectrometer with bremsstrahlung X-rays generated by a 6 MeV electron bunch

    SciTech Connect (OSTI)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp; Arikawa, Yasunobu; Zhang, Zhe; Ikenouchi, Takahito; Morace, Alessio; Nagai, Takahiro; Abe, Yuki; Sakata, Shouhei; Inoue, Hiroaki; Utsugi, Masaru; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Nishimura, Yasuhiko; Togawa, Hiromi [Toyota Technical Development Corporation, 1-21 Imae, Hanamoto-cho, Toyota, Aichi 470-0334 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshicho, Toki, Gifu 509-5292 (Japan); Kato, Ryukou [The Institute of Science and Industrial Research, Osaka University, 2-6 Yamada-oka, Suita, Osaka (Japan)

    2014-11-15T23:59:59.000Z

    A Compton-scattering-based X-ray spectrometer is developed to obtain the energy distribution of fast electrons produced by intense laser and matter interactions. Bremsstrahlung X-rays generated by fast electrons in a material are used to measure fast electrons’ energy distribution in matter. In the Compton X-ray spectrometer, X-rays are converted into recoil electrons by Compton scattering in a converter made from fused silica glass, and a magnet-based electron energy analyzer is used to measure the energy distribution of the electrons that recoil in the direction of the incident X-rays. The spectrum of the incident X-rays is reconstructed from the energy distribution of the recoil electrons. The accuracy of this spectrometer is evaluated using a quasi-monoenergetic 6 MeV electron bunch that emanates from a linear accelerator. An electron bunch is injected into a 1.5 mm thick tungsten plate to produce bremsstrahlung X-rays. The spectrum of these bremsstrahlung X-rays is obtained in the range from 1 to 9 MeV. The energy of the electrons in the bunch is estimated using a Monte Carlo simulation of particle-matter interactions. The result shows that the spectrometer's energy accuracy is ±0.5 MeV for 6.0 MeV electrons.

  14. Characterizations of MCP performance in the hard x-ray range (6–25 keV)

    SciTech Connect (OSTI)

    Wu, Ming, E-mail: minwu@sandia.gov; Rochau, Greg [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Moy, Ken [Special Technology Laboratories, NSTec, Santa Barbara, California 93111-2335 (United States); Kruschwitz, Craig [National Security Technologies, LLC, Los Alamos Operations, Los Alamos, New Mexico 87544 (United States)

    2014-11-15T23:59:59.000Z

    MCP detector performance at hard x-ray energies from 6 to 25 keV was recently investigated using NSLS beamline X15A at BNL. Measurements were made with an NSTec Gen-II (H-CA-65) framing camera, based on a Photonis MCP with ?10 ?m in diameter pores, ?12 ?m center-center spacing, an L/D ratio of 46, and a bias angle of 8°. The MCP characterizations were focused on (1) energy and angle dependent sensitivity, (2) energy and angle dependent spatial resolution, (3) energy dependent gain performance, and (4) energy dependent dynamic range. These measurement corroborated simulation results using a Monte Carlo model that included hard x-ray interactions and the subsequent electron cascade in the MCP.

  15. A High Efficiency Grazing Incidence Pumped X-ray Laser

    SciTech Connect (OSTI)

    Dunn, J; Keenan, R; Price, D F; Patel, P K; Smith, R F; Shlyaptsev, V N

    2006-08-31T23:59:59.000Z

    The main objective of the project is to demonstrate a proof-of-principle, new type of high efficiency, short wavelength x-ray laser source that will operate at unprecedented high repetition rates (10Hz) that could be scaled to 1kHz or higher. The development of a high average power, tabletop x-ray laser would serve to complement the wavelength range of 3rd and future 4th generation light sources, e.g. the LCLS, being developed by DOE-Basic Energy Sciences. The latter are large, expensive, central, synchrotron-based facilities while the tabletop x-ray laser is compact, high-power laser-driven, and relatively inexpensive. The demonstration of such a unique, ultra-fast source would allow us to attract funding from DOE-BES, NSF and other agencies to pursue probing of diverse materials undergoing ultrafast changes. Secondly, this capability would have a profound impact on the semiconductor industry since a coherent x-ray laser source would be ideal for ''at wavelength'' {approx}13 nm metrology and microscopy of optics and masks used in EUV lithography. The project has major technical challenges. We will perform grazing-incidence pumped laser-plasma experiments in flat or groove targets which are required to improve the pumping efficiency by ten times. Plasma density characterization using our existing unique picosecond x-ray laser interferometry of laser-irradiated targets is necessary. Simulations of optical laser propagation as well as x-ray laser production and propagation through freely expanding and confined plasma geometries are essential. The research would be conducted using the Physics Directorate Callisto and COMET high power lasers. At the end of the project, we expect to have a high-efficiency x-ray laser scheme operating below 20 nm at 10Hz with a pulse duration of {approx}2 ps. This will represent the state-of-the-art in x-ray lasers and would be a major step forward from our present picosecond laser-driven x-ray lasers. There is an added bonus of creating the shortest wavelength laboratory x-ray laser, below 4.5 nm and operating in the water window, by using the high-energy capability of the Titan laser.

  16. Pore level imaging of fluid transport using synchrotron x-ray microtomography

    SciTech Connect (OSTI)

    Coles, M.E.; Hazlett, R.D.; Muegge, E.L. [Mobil Exploration and Producing Technical Center, Dallas, TX (United States); Spanne, P. [European Synchrotron Radiation Facility, 38 - Grenoble (France); Soll, W.E. [Los Alamos National Lab., NM (United States); Jones, K.W. [Brookhaven National Lab., Upton, NY (United States)

    1996-12-31T23:59:59.000Z

    Recently developed high resolution computed microtomography (CMI) using synchrotron X-ray sources is analogous to conventional medical Cr scanning and provides the ability to obtain three-dimensional images of specimens with a spatial resolution on the order of micrometers. Application of this technique to the study of core samples has previously been shown to provide excellent two- and three-dimensional high resolution descriptions of pore structure and mineral distributions of core material. Recently, computed microtomographic endpoint saturation images of a fluid filled sandstone core sample were obtained using a microtomographic apparatus and a high energy X-ray beam produced by a superconducting wiggler at the National Synchrotron Light Source at Brookhaven National Laboratory. Images of a 6 mm subsection of the one inch diameter core sample were obtained prior and subsequent to flooding to residual oil. Both oil and brine phases were observable within the imaged rock matrix. The rock matrix image data was used as input to a fluid transport simulator and the results compared with the end point saturation images and data. These high resolution images of the fluid filled pore space have not been previously available to researchers and will provide valuable insight to fluid flow, and provide data as input into and validation of high resolution porous media flow simulators, such as percolation-network and Lattice Boltzmann models.

  17. A Soft X-Ray Lag Detected in Centaurus A

    E-Print Network [OSTI]

    Tachibana, Yutaro; Ueda, Yoshihiro; Shidatsu, Megumi; Arimoto, Makoto; Yoshii, Taketoshi; Yatsu, Yoichi; Saito, Yoshihiko; Pike, Sean; Kawai, Nobuyuki

    2015-01-01T23:59:59.000Z

    We performed time lag analysis on the X-ray light curves of Centaurus A (Cen A) obtained by the Gas Slit Camera (GSC) aboard the Monitor of All-sky X-ray Image (MAXI) in three energy bands (2--4 keV, 4--10 keV, and 10--20 keV). We discovered a soft X-ray lag relative to higher energies (soft lag) on a time scale of days by employing the discrete correlation function (DCF) and the z-transformed discrete correlation function (ZDCF) method in a flare episode. A peak in the DCF and the ZDCF was observed at a soft lag of $\\sim 5$ days in 2--4 keV versus 4--10 keV and in 4--10 keV versus 10--20 keV, and $\\sim 10$ days in 2--4 keV versus 10--20 keV. We found it difficult to explain the observed X-ray variation with the one-zone synchrotron self-Compton (SSC) model, in which the soft lags reflect the different cooling times of the relativistic electrons in these three energy bands. Alternatively, if the X-ray variation was produced in a corona surrounding or along the inner part of the accretion disk, we can explain ...

  18. X-ray absorption in distant type II QSOs

    E-Print Network [OSTI]

    M. Krumpe; G. Lamer; A. Corral; A. D. Schwope; F. J. Carrera; X. Barcons; M. Page; S. Mateos; J. A. Tedds; M. G. Watson

    2008-03-10T23:59:59.000Z

    We present the results of the X-ray spectral analysis of an XMM-Newton-selected type II QSO sample with z>0.5 and 0.5-10 keV flux of 0.3-33 x 10^{-14} erg/s/cm^2. The distribution of absorbing column densities in type II QSOs is investigated and the dependence of absorption on X-ray luminosity and redshift is studied. We inspected 51 spectroscopically classified type II QSO candidates from the XMM-Newton Marano field survey, the XMM-Newton-2dF wide angle survey (XWAS), and the AXIS survey to set-up a well-defined sample with secure optical type II identifications. Fourteen type II QSOs were classified and an X-ray spectral analysis performed. Since most of our sources have only ~40 X-ray counts (PN-detector), we carefully studied the fit results of the simulated X-ray spectra as a function of fit statistic and binning method. We determined that fitting the spectra with the Cash-statistic and a binning of minimum one count per bin recovers the input values of the simulated X-ray spectra best. Above 100 PN counts, the free fits of the spectrum's slope and absorbing hydrogen column density are reliable. We find only moderate absorption (N_H=(2-10) x 10^22 cm^-2) and no obvious trends with redshift and intrinsic X-ray luminosity. In a few cases a Compton-thick absorber cannot be excluded. Two type II objects with no X-ray absorption were discovered. We find no evidence for an intrinsic separation between type II AGN and high X-ray luminosity type II QSO in terms of absorption. The stacked X-ray spectrum of our 14 type II QSOs shows no iron K-alpha line. In contrast, the stack of the 8 type II AGN reveals a very prominent iron K-alpha line at an energy of ~ 6.6 keV and an EW ~ 2 keV.

  19. Soft X-ray techniques to study mesoscale magnetism

    E-Print Network [OSTI]

    Kortright, Jeffrey B.

    2003-01-01T23:59:59.000Z

    X-Ray Techniques to Study Mesoscale Magnetism Jeffrey B.X-Ray Techniques to Study Mesoscale Magnetism Jeffrey B.

  20. Techniques for synchronization of X-Ray pulses to the pump laser in an ultrafast X-Ray facility

    E-Print Network [OSTI]

    Corlett, J.N.; Doolittle, L.; Schoenlein, R.; Staples, J.; Wilcox, R.; Zholents, A.

    2003-01-01T23:59:59.000Z

    synchronization of ultrafast x-ray pulses produced in theAccurate timing of ultrafast x-ray probe pulses emitted fromOF X-RAY PULSES TO THE PUMP LASER IN AN ULTRAFAST X-RAY

  1. Controlling X-rays With Light

    SciTech Connect (OSTI)

    Glover, Ernie; Hertlein, Marcus; Southworth, Steve; Allison, Tom; van Tilborg, Jeroen; Kanter, Elliot; Krassig, B.; Varma, H.; Rude, Bruce; Santra, Robin; Belkacem, Ali; Young, Linda

    2010-08-02T23:59:59.000Z

    Ultrafast x-ray science is an exciting frontier that promises the visualization of electronic, atomic and molecular dynamics on atomic time and length scales. A largelyunexplored area of ultrafast x-ray science is the use of light to control how x-rays interact with matter. In order to extend control concepts established for long wavelengthprobes to the x-ray regime, the optical control field must drive a coherent electronic response on a timescale comparable to femtosecond core-hole lifetimes. An intense field is required to achieve this rapid response. Here an intense optical control pulse isobserved to efficiently modulate photoelectric absorption for x-rays and to create an ultrafast transparency window. We demonstrate an application of x-ray transparencyrelevant to ultrafast x-ray sources: an all-photonic temporal cross-correlation measurement of a femtosecond x-ray pulse. The ability to control x-ray/matterinteractions with light will create new opportunities at current and next-generation x-ray light sources.

  2. Materials Chemistry and Physics 100 (2006) 3840 X-ray irradiation induced degradation of cellulose nitrate

    E-Print Network [OSTI]

    Yu, K.N.

    Abstract Energy-dispersive X-ray fluorescence (EDXRF) spectrometry was previously proposed to measure energy-dispersive X-ray fluorescence (EDXRF) spectrometry. For that method, a reference silver nitrate-ray energy is high enough to avoid total a

  3. Isotropic star in low-mass X-ray binaries and X-ray pulsars

    E-Print Network [OSTI]

    Mehedi Kalam; Sk. Monowar Hossein; Sajahan Molla

    2014-10-01T23:59:59.000Z

    We present a model for compact stars in the low mass X-ray binaries(LMXBs) and X-ray pulsars using a metric given by John J. Matese and Patrick G. Whitman \\citep{Matese and Whitman1980}. Here the field equations are reduced to a system of two algebraic equations considering the isotropic pressure. Compact star candidates 4U 1820-30(radius=10km) in LMXBs, and Her X-1(radius=7.7km), SAX J 1808.4-3658(SS1)(radius=7.07km) and SAX J 1808.4-3658(SS2)(radius=6.35km) in X-ray pulsars satisfy all the energy conditions, TOV-equation and stability condition. From our model, we have derived mass($M$), central density($\\rho_{0}$), suface density($\\rho_{b}$), central pressure($p_{0}$), surface pressure($p_{b}$) and surface red-shift($Z_{s}$) of the above mentioned stars, which are very much consistant with the observed/reported datas\\citep{N. K. Glendenning1997,Gondek2000}. We have also observe the adiabatic index($\\gamma$>4/3) of the above steller objects.

  4. Chandra Multiwavelength Project X-ray Point Source Catalog

    E-Print Network [OSTI]

    Minsun Kim; Dong-Woo Kim; Belinda J. Wilkes; Paul J. Green; Eunhyeuk Kim; Craig S. Anderson; Wayne A. Barkhouse; Nancy R. Evans; Zeljko Ivezic; Margarita Karovska; Vinay L. Kashyap; Myung Gyoon Lee; Peter Maksym; Amy E. Mossman; John D. Silverman; Harvey D. Tananbaum

    2006-11-28T23:59:59.000Z

    We present the Chandra Multiwavelength Project (ChaMP) X-ray point source catalog with ~6,800 X-ray sources detected in 149 Chandra observations covering \\~10 deg^2. The full ChaMP catalog sample is seven times larger than the initial published ChaMP catalog. The exposure time of the fields in our sample ranges from 0.9 to 124 ksec, corresponding to a deepest X-ray flux limit of f_{0.5-8.0} = 9 x 10^{-16} erg/cm2/sec. The ChaMP X-ray data have been uniformly reduced and analyzed with ChaMP-specific pipelines, and then carefully validated by visual inspection. The ChaMP catalog includes X-ray photometric data in 8 different energy bands as well as X-ray spectral hardness ratios and colors. To best utilize the ChaMP catalog, we also present the source reliability, detection probability and positional uncertainty. To quantitatively assess those parameters, we performed extensive simulations. In particular, we present a set of empirical equations: the flux limit as a function of effective exposure time, and the positional uncertainty as a function of source counts and off axis angle. The false source detection rate is ~1% of all detected ChaMP sources, while the detection probability is better than ~95% for sources with counts >30 and off axis angle <5 arcmin. The typical positional offset between ChaMP X-ray source and their SDSS optical counterparts is 0.7+-0.4 arcsec, derived from ~900 matched sources.

  5. Method and apparatus for micromachining using hard X-rays

    DOE Patents [OSTI]

    Siddons, David Peter (Shoreham, NY); Johnson, Erik D. (Ridge, NY); Guckel, Henry (Madison, WI); Klein, Jonathan L. (Madison, WI)

    1997-10-21T23:59:59.000Z

    An X-ray source such as a synchrotron which provides a significant spectral content of hard X-rays is used to expose relatively thick photoresist such that the portions of the photoresist at an exit surface receive at least a threshold dose sufficient to render the photoresist susceptible to a developer, while the entrance surface of the photoresist receives an exposure which does not exceed a power limit at which destructive disruption of the photoresist would occur. The X-ray beam is spectrally shaped to substantially eliminate lower energy photons while allowing a substantial flux of higher energy photons to pass through to the photoresist target. Filters and the substrate of the X-ray mask may be used to spectrally shape the X-ray beam. Machining of photoresists such as polymethylmethacrylate to micron tolerances may be obtained to depths of several centimeters, and multiple targets may be exposed simultaneously. The photoresist target may be rotated and/or translated in the beam to form solids of rotation and other complex three-dimensional structures.

  6. Method and apparatus for micromachining using hard X-rays

    DOE Patents [OSTI]

    Siddons, D.P.; Johnson, E.D.; Guckel, H.; Klein, J.L.

    1997-10-21T23:59:59.000Z

    An X-ray source such as a synchrotron which provides a significant spectral content of hard X-rays is used to expose relatively thick photoresist such that the portions of the photoresist at an exit surface receive at least a threshold dose sufficient to render the photoresist susceptible to a developer, while the entrance surface of the photoresist receives an exposure which does not exceed a power limit at which destructive disruption of the photoresist would occur. The X-ray beam is spectrally shaped to substantially eliminate lower energy photons while allowing a substantial flux of higher energy photons to pass through to the photoresist target. Filters and the substrate of the X-ray mask may be used to spectrally shape the X-ray beam. Machining of photoresists such as polymethylmethacrylate to micron tolerances may be obtained to depths of several centimeters, and multiple targets may be exposed simultaneously. The photoresist target may be rotated and/or translated in the beam to form solids of rotation and other complex three-dimensional structures. 21 figs.

  7. X-ray and Near-infrared Studies of a Star-forming Cloud; L1448

    E-Print Network [OSTI]

    Tsujimoto, M; Tsuboi, Y

    2005-01-01T23:59:59.000Z

    We present the results of X-ray and near-infrared (NIR) observations of L1448, a star-forming region in the Perseus cloud complex using the Chandra X-ray Observatory and the 4 m telescope at the Kitt Peak National Observatory. We detect 72 X-ray sources in a ~17 arcmin x 17 arcmin region with a ~68 ks ACIS exposure, for which we conduct follow-up NIR imaging observations in a concentric ~11 arcmin x 11 arcmin region with FLAMINGOS down to m_Ks ~ 17 mag. Twelve X-ray sources have NIR or optical counterparts. By plotting X-ray mean energy versus NIR to X-ray flux ratio, the X-ray sources are clearly separated into two groups. The X-ray spectral and temporal features as well as NIR magnitudes and colors indicate that one group mainly consists of young stellar objects (YSOs) in the cloud and the other of background extragalactic sources. Ten X-ray-emitting YSO candidates are thus newly identified, which are low-mass or brown dwarf mass sources from their NIR magnitudes. In addition, a possible X-ray signal is fou...

  8. X-ray and Near-infrared Studies of a Star-forming Cloud; L1448

    E-Print Network [OSTI]

    M. Tsujimoto; N. Kobayashi; Y. Tsuboi

    2005-06-27T23:59:59.000Z

    We present the results of X-ray and near-infrared (NIR) observations of L1448, a star-forming region in the Perseus cloud complex using the Chandra X-ray Observatory and the 4 m telescope at the Kitt Peak National Observatory. We detect 72 X-ray sources in a ~17 arcmin x 17 arcmin region with a ~68 ks ACIS exposure, for which we conduct follow-up NIR imaging observations in a concentric ~11 arcmin x 11 arcmin region with FLAMINGOS down to m_Ks ~ 17 mag. Twelve X-ray sources have NIR or optical counterparts. By plotting X-ray mean energy versus NIR to X-ray flux ratio, the X-ray sources are clearly separated into two groups. The X-ray spectral and temporal features as well as NIR magnitudes and colors indicate that one group mainly consists of young stellar objects (YSOs) in the cloud and the other of background extragalactic sources. Ten X-ray-emitting YSO candidates are thus newly identified, which are low-mass or brown dwarf mass sources from their NIR magnitudes. In addition, a possible X-ray signal is found from a mid-infrared protostar L1448 IRS 3(A). The lack of detection of this source in our deep NIR images indicates that this source has a very steep spectral slope of > 3.2 in 2--10 micron.

  9. Design and modeling of a third generation slumping tool for X-ray telescope mirrors/

    E-Print Network [OSTI]

    Al Husseini, Abdul Mohsen Z. (Abdul Mohsen Zuheir)

    2011-01-01T23:59:59.000Z

    Glass sheets with high surface quality and angular resolution of 5 arcsec are in demand for the International X-Ray Observatory. Several glass flattening techniques are presented in this thesis, including a method of ...

  10. Precision X-ray spectroscopy of 3C 273 jet knots

    E-Print Network [OSTI]

    Avara, Mark J

    2008-01-01T23:59:59.000Z

    We present results from precision X-ray spectroscopy using high-resolution ([delta lambda] = 0.01A) spectra of 3C 273 jet knots extracted from eight observations made using Chandra in conjunction with the HETGS. Using these ...

  11. Application of soft X-ray lasers for probing high density plasmas

    SciTech Connect (OSTI)

    Da Silva, L.B.; Barbee, T.W. Jr.; Cauble, R. [and others

    1996-08-01T23:59:59.000Z

    The reliability and characteristics of collisionally pumped soft x-ray lasers make them ideal for a wide variety of plasma diagnostics. These systems now operate over a wavelength range extending from 35 to 400 {Angstrom} and have output energies as high as 10 mJ in 150 ps pulses. The beam divergence of these lasers is less than 15 mrad and they have a typical linewidth of {Delta}{lambda}/{lambda} {approximately} 10{sup -4} making them the brightest xuv sources available. In this paper we will describe the use of x-ray lasers to probe high density plasmas using a variety of diagnostic techniques. Using an x-ray laser and a multilayer mirror imaging system we have studied hydrodynamic imprinting of laser speckle pattern on directly driven thin foils with 1-2 {mu}m spatial resolution. Taking advantage of recently developed multilayer beamsplitters we have constructed and used a Mach-Zehnder interferometer operating at 155 {Angstrom} to probe 1-3 mm size laser produced plasmas with peak electron densities of 4 x 10{sup 21} cm{sup -3}. A comparison of our results with computer simulations will be presented.

  12. X-ray optics developments at the APS for third-generation synchrotron radiation sources

    SciTech Connect (OSTI)

    Mills, D.M. [Argonne National Lab., IL (United States). Advanced Photon Source

    1996-09-01T23:59:59.000Z

    High brilliance third-generation synchrotron radiation sources simultaneously provide both a need and an opportunity for the development of new x-ray optical components. The high power and power densities of the x-ray beams produced by insertion devices have forced researchers to consider novel, and what may seem like exotic, approaches to the mitigation of thermal distortions that can dilute the beam brilliance delivered to the experiment or next optical component. Once the power has been filtered by such high heat load optical elements, specialized components can be employed that take advantage of the high degree of brilliance. This presentation reviews the performance of optical components that have been designed, fabricated, and tested at the Advanced Photon Source, starting with high heat load components and followed by examples of several specialized devices such as a milli-eV resolution (in-line) monochromator, a high energy x-ray phase retarder, and a phase zone plate with submicron focusing capability.

  13. Telecentric Zoom Lens Designed for the Cygnus X-Ray Source

    SciTech Connect (OSTI)

    Malone, R. M. [NSTec; Baker, S. A. [NSTec; Brown, K. K. [NSTec; Curtis, A. H. [NSTec; Esquibel, D. L. [NSTec; Frayer, D. K. [NSTec; Frogget, B. C. [NSTec; Frogget, K. G. [NSTec; Kaufman, M. I. [NSTec; Smith, A. S. [NSTec; Tibbitts, A. [NSTec; Howe, R. A. [NSTec; Huerta, J. A. [NSTec; McGillivray, K. D. [NSTec; Droemer, D. W. [NSTec; Crain, M. D. [NSTec; Haines, T. J. [LANL; King, S. P. [LANL

    2013-07-01T23:59:59.000Z

    Cygnus is a high-energy radiographic x-ray source. Three large zoom lenses have been assembled to collect images from large scintillators. A large elliptical pellicle (394 × 280 mm) deflects the scintillator light out of the x-ray path into an eleven-element zoom lens coupled to a CCD camera. The zoom lens and CCD must be as close as possible to the scintillator to maximize light collection. A telecentric lens design minimizes image blur from a volume source. To maximize the resolution of objects of different sizes, the scintillator and zoom lens are translated along the x-ray axis, and the zoom lens magnification changes. Zoom magnification is also changed when different-sized recording cameras are used (50 or 62 mm square format). The LYSO scintillator measures 200 × 200 mm and is 5 mm thick. The scintillator produces blue light peaking at 435 nm, so special lens materials are required. By swapping out one doublet and allowing all other lenses to be repositioned, the zoom lens can also use a CsI(Tl) scintillator that produces green light centered at 540 nm. All lenses have an anti-reflective coating for both wavelength bands. Two sets of doublets, the stop, the scintillator, and the CCD camera move during zoom operations. One doublet has x?y compensation. Each zoom lens uses 60 lb of glass inside the 425 lb mechanical structure and can be used in either a vertical or horizontal orientation.

  14. Standoff detection of hidden objects using backscattered ultra-intense laser-produced x-rays

    SciTech Connect (OSTI)

    Kuwabara, H. [IHI Corporation, 1, Shin-Nakahara-cho, Isogo-ku, Yokohama 235-8501 (Japan)] [IHI Corporation, 1, Shin-Nakahara-cho, Isogo-ku, Yokohama 235-8501 (Japan); Mori, Y.; Kitagawa, Y. [The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsucho, Nishiku, Hamamatsu, Shizuoka 431-1202 (Japan)] [The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsucho, Nishiku, Hamamatsu, Shizuoka 431-1202 (Japan)

    2013-08-28T23:59:59.000Z

    Ultra-intense laser-produced sub-ps X-ray pulses can detect backscattered signals from objects hidden in aluminium containers. Coincident measurements using primary X-rays enable differentiation among acrylic, copper, and lead blocks inside the container. Backscattering reveals the shapes of the objects, while their material composition can be identified from the modification methods of the energy spectra of backscattered X-ray beams. This achievement is an important step toward more effective homeland security.

  15. A Chandra Deep X-ray Exposure on the Galactic Plane and Near Infrared Identification

    E-Print Network [OSTI]

    K. Ebisawa; A. Paizis; T. J. -L. Couvoisier; P. Dubath; M. Tsujimoto; K. Hamaguchi; V. Beckmann; A. Bamba; A. Senda; M. Ueno; H. Kaneda; Y. Maeda; G. Sato; S. Yamauchi; R. Cutri; E. Nishihara

    2004-07-09T23:59:59.000Z

    Using the Chandra ACIS-I instruments, we have carried out a deep X-ray observation on the Galactic plane region at (l,b) ~ (28.5, 0.0), where no discrete X-ray sources have been known previously. We have detected, as well as strong diffuse emission, 274 new point X-ray sources (4 sigma confidence) within two partially overlapping fields (~250 arcmin^2 in total) down to the flux limit ~3 x 10^{-15} $ erg s^{-1} cm^{-2} (2 -- 10 keV) and ~ 7 x 10^{-16} erg s^{-1} cm^{-2} (0.5 -- 2 keV). We clearly resolved point sources and the Galactic diffuse emission, and found that ~ 90 % of the flux observed in our field of view originates from diffuse emission. Many point sources are detected either in the soft X-ray band (below 2 keV) or in the hard band (above 2 keV), and only a small number of sources are detected in both energy bands. On the other hand, most soft X-ray sources are considered to be nearby X-ray active stars. We have carried out a follow-up near-infrared (NIR) observation using SOFI at ESO/NTT. Most of the soft X-ray sources were identified, whereas only a small number of hard X-ray sources had counterparts in NIR. Using both X-ray and NIR information, we can efficiently classify the point X-ray sources detected in the Galactic plane. We conclude that most of the hard X-ray sources are background Active Galactic Nuclei seen through the Milky Way, whereas majority of the soft X-ray sources are nearby X-ray active stars.

  16. X-Ray Astronomy to Resonant Theranostics for Cancer Treatment

    E-Print Network [OSTI]

    Nahar, Sultana Nurun

    of Astronomy, The Ohio State University, Columbus, OH 43210, USA E-mail: nahar@astronomy.ohio. The falling particles spiral around the black hole, move faster close to it and release energy in the form jets at the center (Observed by X-ray space observatory Chandra). In the image: red indicates low-energy

  17. High speed x-ray beam chopper

    DOE Patents [OSTI]

    McPherson, Armon (Oswego, IL); Mills, Dennis M. (Naperville, IL)

    2002-01-01T23:59:59.000Z

    A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.

  18. Single shot spatial and temporal coherence properties of the SLAC linac coherent light source in the hard x-ray regime

    SciTech Connect (OSTI)

    Gutt, C.; Wochner, P.; Fischer, B.; Conrad, H.; Castro-Colin, M.; Lee, S.; Lehmkuhler, F.; Steinke, I.; Sprung, M.; Roseker, W.; Zhu, D.; Lemke, H.; Bogle, S.; Fuoss, P. H.; Stephenson, G. B.; Cammarata, M.; Fritz, D. M.; Robert, A.; Grubel, G. (Materials Science Division); (Deutsches Elektronen-Synchrotron); (Max-Planck-Institut fur Intelligene Systeme); (LCLS, SLAC Nat. Accelerator Lab.)

    2012-01-01T23:59:59.000Z

    We measured the transverse and longitudinal coherence properties of the Linac Coherent Light Source (LCLS) at SLAC in the hard x-ray regime at 9 keV photon energy on a single shot basis. Speckle patterns recorded in the forward direction from colloidal nanoparticles yielded the transverse coherence properties of the focused LCLS beam. Speckle patterns from a gold nanopowder recorded with atomic resolution allowed us to measure the shot-to-shot variations of the spectral properties of the x-ray beam. The focused beam is in the transverse direction fully coherent with a mode number close to 1. The average number of longitudinal modes behind the Si(111) monochromator is about 14.5 and the average coherence time {tau}{sub c} = (2.0 {+-} 1.0) fs. The data suggest a mean x-ray pulse duration of (29 {+-} 14) fs behind the monochromator for (100 {+-} 14) fs long electron pulses.

  19. Tunable sub-luminal propagation of narrowband x-ray pulses

    E-Print Network [OSTI]

    K. P. Heeg; J. Haber; D. Schumacher; L. Bocklage; H. -C. Wille; K. S. Schulze; R. Loetzsch; I. Uschmann; G. G. Paulus; R. Rüffer; R. Röhlsberger; J. Evers

    2014-09-01T23:59:59.000Z

    Group velocity control is demonstrated for x-ray photons of 14.4 keV energy via a direct measurement of the temporal delay imposed on spectrally narrow x-ray pulses. Sub-luminal light propagation is achieved by inducing a steep positive linear dispersion in the optical response of ${}^{57}$Fe M\\"ossbauer nuclei embedded in a thin film planar x-ray cavity. The direct detection of the temporal pulse delay is enabled by generating frequency-tunable spectrally narrow x-ray pulses from broadband pulsed synchrotron radiation. Our theoretical model is in good agreement with the experimental data.

  20. Suzaku Reveals Helium-burning Products in the X-ray Emitting Planetary Nebula BD+303639

    E-Print Network [OSTI]

    M. Murashima; M. Kokubun; K. Makishima; J. Kotoku; H. Murakami; K. Matsushita; K. Hayashida; K. Arnaud; K. Hamaguchi; H. Matsumoto

    2006-07-07T23:59:59.000Z

    BD+303639, the brightest planetary nebula at X-ray energies, was observed with Suzaku, an X-ray observatory launched on 2005 July 10. Using the X-ray Imaging Spectrometer, the K-lines from C VI, O VII, and O VIII were resolved for the first time, and C/O, N/O, and Ne/O abundance ratios determined. The C/O and Ne/O abundance ratios exceed the solar value by a factor of at least 30 and 5, respectively. These results indicate that the X-rays are emitted mainly by helium shell-burning products.

  1. Suzaku Reveals Helium-burning Products in the X-ray Emitting Planetary Nebula BD+303639

    E-Print Network [OSTI]

    Murashima, M; Makishima, K; Kotoku, J; Murakami, H; Matsushita, K; Hayashida, K; Arnaud, K; Hamaguchi, K; Matsumoto, H

    2006-01-01T23:59:59.000Z

    BD+303639, the brightest planetary nebula at X-ray energies, was observed with Suzaku, an X-ray observatory launched on 2005 July 10. Using the X-ray Imaging Spectrometer, the K-lines from C VI, O VII, and O VIII were resolved for the first time, and C/O, N/O, and Ne/O abundance ratios determined. The C/O and Ne/O abundance ratios exceed the solar value by a factor of at least 30 and 5, respectively. These results indicate that the X-rays are emitted mainly by helium shell-burning products.

  2. X-ray Image Bank Open for Business - NERSC Center News, Feb 22, 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more toConsensusX-RayX-RayX-rayX-ray Image

  3. X-ray Transient Absorption of Transition Metal Complex Excited States and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more toConsensusX-RayX-RayX-rayX-ray

  4. X-ray spectroscopy of neutron star low-mass X-ray binaries

    E-Print Network [OSTI]

    Krauss, Miriam Ilana

    2007-01-01T23:59:59.000Z

    In this thesis, I present work spanning a variety of topics relating to neutron star lowmass X-ray binaries (LMXBs) and utilize spectral information from X-ray observations to further our understanding of these sources. ...

  5. Bragg x-ray survey spectrometer for ITER

    SciTech Connect (OSTI)

    Varshney, S. K.; Jakhar, S. [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India); Barnsley, R. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); O'Mullane, M. G. [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2012-10-15T23:59:59.000Z

    Several potential impurity ions in the ITER plasmas will lead to loss of confined energy through line and continuum emission. For real time monitoring of impurities, a seven channel Bragg x-ray spectrometer (XRCS survey) is considered. This paper presents design and analysis of the spectrometer, including x-ray tracing by the Shadow-XOP code, sensitivity calculations for reference H-mode plasma and neutronics assessment. The XRCS survey performance analysis shows that the ITER measurement requirements of impurity monitoring in 10 ms integration time at the minimum levels for low-Z to high-Z impurity ions can largely be met.

  6. The NIF x-ray spectrometer calibration campaign at Omega

    SciTech Connect (OSTI)

    Pérez, F.; Kemp, G. E.; Barrios, M. A.; Pino, J.; Scott, H.; Ayers, S.; Chen, H.; Emig, J.; Colvin, J. D.; Fournier, K. B., E-mail: fournier2@llnl.gov [Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, California 94551 (United States); Regan, S. P.; Bedzyk, M.; Shoup, M. J.; Agliata, A.; Yaakobi, B.; Marshall, F. J.; Hamilton, R. A. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Jaquez, J.; Farrell, M.; Nikroo, A. [General Atomics, P.O. Box 85608, San Diego, California 92186 (United States)

    2014-11-15T23:59:59.000Z

    The calibration campaign of the National Ignition Facility X-ray Spectrometer (NXS) was carried out at the OMEGA laser facility. Spherically symmetric, laser-driven, millimeter-scale x-ray sources of K-shell and L-shell emission from various mid-Z elements were designed for the 2–18 keV energy range of the NXS. The absolute spectral brightness was measured by two calibrated spectrometers. We compare the measured performance of the target design to radiation hydrodynamics simulations.

  7. The dominant X-ray wind in massive star binaries

    E-Print Network [OSTI]

    J. M. Pittard; I. R. Stevens

    2002-04-15T23:59:59.000Z

    We investigate which shocked wind is responsible for the majority of the X-ray emission in colliding wind binaries, an issue where there is some confusion in the literature, and which we show is more complicated than has been assumed. We find that where both winds rapidly cool (typically close binaries), the ratio of the wind speeds is often more important than the momentum ratio, because it controls the energy flux ratio, and the faster wind is generally the dominant emitter. When both winds are largely adiabatic (typically long-period binaries), the slower and denser wind will cool faster and the stronger wind generally dominates the X-ray luminosity.

  8. The First Angstrom X-Ray Free-Electron Laser

    SciTech Connect (OSTI)

    Galayda, John; /SLAC

    2012-08-24T23:59:59.000Z

    The Linac Coherent Light Source produced its first x-ray laser beam on 10 April 2009. Today it is routinely producing x-ray pulses with energy >2 mJ across the operating range from 820-8,200 eV. The facility has begun operating for atomic/molecular/optical science experiments. Performance of the facility in its first user run (1 October - 21 December) and current machine development activities will be presented. Early results from the preparations for the start of the second user run is also reported.

  9. Confusion of Diffuse Objects in the X-ray Sky

    E-Print Network [OSTI]

    G. Mark Voit; August E. Evrard; Greg L. Bryan

    2000-12-08T23:59:59.000Z

    Most of the baryons in the present-day universe are thought to reside in intergalactic space at temperatures of 10^5-10^7 K. X-ray emission from these baryons contributes a modest (~10%) fraction of the ~ 1 keV background whose prominence within the large-scale cosmic web depends on the amount of non-gravitational energy injected into intergalactic space by supernovae and AGNs. Here we show that the virialized regions of groups and clusters cover over a third of the sky, creating a source-confusion problem that may hinder X-ray searches for individual intercluster filaments and contaminate observations of distant groups.

  10. Femtosecond Time-Delay X-ray Holography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. CategoryFebruaryFebruary 17,Time-Delay X-ray Holography X-ray

  11. X-ray pump optical probe cross-correlation study of GaAs

    SciTech Connect (OSTI)

    Durbin, S.M.; Clevenger, T.; Graber, T.; Henning, R. (Purdue); (UC)

    2012-09-10T23:59:59.000Z

    Ultrafast dynamics in atomic, molecular and condensed-matter systems are increasingly being studied using optical-pump, X-ray probe techniques where subpicosecond laser pulses excite the system and X-rays detect changes in absorption spectra and local atomic structure. New opportunities are appearing as a result of improved synchrotron capabilities and the advent of X-ray free-electron lasers. These source improvements also allow for the reverse measurement: X-ray pump followed by optical probe. We describe here how an X-ray pump beam transforms a thin GaAs specimen from a strong absorber into a nearly transparent window in less than 100 ps, for laser photon energies just above the bandgap. We find the opposite effect - X-ray induced optical opacity - for photon energies just below the bandgap. This raises interesting questions about the ultrafast many-body response of semiconductors to X-ray absorption, and provides a new approach for an X-ray/optical cross-correlator for synchrotron and X-ray free-electron laser applications.

  12. Phase Effects on Mesoscale Object X-ray Absorption Images

    SciTech Connect (OSTI)

    Martz, Jr., H E; Aufderheide, M B; Barty, A; Lehman, S K; Kozioziemski, B J; Schneberk, D J

    2004-09-24T23:59:59.000Z

    At Lawrence Livermore National Laboratory particular emphasis is being placed on the nondestructive characterization (NDC) of 'mesoscale' objects.[Martz and Albrecht 2003] We define mesoscale objects as objects that have mm extent with {micro}m features. Here we confine our discussions to x-ray imaging methods applicable to mesoscale object characterization. The goal is object recovery algorithms including phase to enable emerging high-spatial resolution x-ray imaging methods to ''see'' inside or image mesoscale-size materials and objects. To be successful our imaging characterization effort must be able to recover the object function to one micrometer or better spatial resolution over a few millimeters field-of-view with very high contrast.

  13. alveolitis high-resolution computed: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geiger, Cathleen 45 High-resolution x-ray telescopes CERN Preprints Summary: High-energy astrophysics is a relatively young scientific field, made possible by space-borne...

  14. New optics technology opens door to high-resolution atomic-level...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    optics technology opens door to high-resolution atomic-level hard X-ray studies June 8, 2015 Tweet EmailPrint An international collaboration involving two U.S. Department of Energy...

  15. X-ray Properties of Young Stellar Objects in OMC-2 and OMC-3 from the Chandra X-ray Observatory

    E-Print Network [OSTI]

    M. Tsujimoto; K. Koyama; Y. Tsuboi; M. Goto; N. Kobayashi

    2001-10-12T23:59:59.000Z

    We report X-ray results of the Chandra observation of Orion Molecular Cloud 2 and 3. A deep exposure of \\sim 100 ksec detects \\sim 400 X-ray sources in the field of view of the ACIS array, providing one of the largest X-ray catalogs in a star forming region. Coherent studies of the source detection, time variability, and energy spectra are performed. We classify the X-ray sources into class I, class II, and class III+MS based on the J, H, and K-band colors of their near infrared counterparts and discuss the X-ray properties (temperature, absorption, and time variability) along these evolutionary phases.

  16. Probing single magnon excitations in Sr?IrO? using O K-edge resonant inelastic x-ray scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, X.; Dean, M. P. M.; Liu, J.; Chiuzbaian, S. G.; Jaouen, N.; Nicolaou, A.; Yin, W. G.; Rayan Serrao, C.; Ramesh, R.; Ding, H.; et al

    2015-05-27T23:59:59.000Z

    Resonant inelastic X-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin-orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr?IrO?, where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edgemore »RIXS energy resolutions in the hard X-ray region is usually poor.« less

  17. Design and imaging performance of achromatic diffractive/refractive X-ray and Gamma-ray Fresnel lenses

    E-Print Network [OSTI]

    Gerald K. Skinner

    2004-07-21T23:59:59.000Z

    Achromatic combinations of a diffractive Phase Fresnel Lens and a refractive correcting element have been proposed for X-ray and gamma-ray astronomy and for microlithography, but considerations of absorption often dictate that the refractive component be given a stepped profile, resulting in a double Fresnel lens. The imaging performance of corrected Fresnel lenses, with and without `stepping' is investigated and the trade-off between resolution and useful bandwidth in different circumstances is discussed. Provided the focal ratio is large, correction lenses made of low atomic number materials can be used with X-rays in the range approximately 10--100 keV without stepping. The use of stepping extends the possibility of correction to higher aperture systems, to energies as low as a few kilo electron volts and to gamma-rays of $\\sim$ mega electron volt energy.

  18. Probing single magnon excitations in Sr?IrO? using O K-edge resonant inelastic x-ray scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, X. [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Brookhaven National Lab. (BNL), Upton, NY (United States); Collaborative Innovation Center of Quantum Matter, Beijing (China); Dean, M. P. M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Liu, J. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chiuzbaian, S. G. [Sorbonne Univ., Paris (France); Synchrotron SOLEIL, Saint-Aubin (France); Jaouen, N. [Synchrotron SOLEIL, Saint-Aubin (France); Nicolaou, A. [Synchrotron SOLEIL, Saint-Aubin (France); Yin, W. G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rayan Serrao, C. [Univ. of California, Berkeley, CA (United States); Ramesh, R. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ding, H. [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Collaborative Innovation Center of Quantum Matter, Beijing (China); Hill, J. P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-27T23:59:59.000Z

    Resonant inelastic X-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin-orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr?IrO?, where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edge RIXS energy resolutions in the hard X-ray region is usually poor.

  19. Note: Application of a pixel-array area detector to simultaneous single crystal x-ray diffraction and x-ray absorption spectroscopy measurements

    SciTech Connect (OSTI)

    Sun, Cheng-Jun, E-mail: cjsun@aps.anl.gov; Brewe, Dale L.; Heald, Steve M. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)] [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Zhang, Bangmin [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States) [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore (Singapore); NUSNNI-Nanocore, National University of Singapore, 117411 Singapore (Singapore); Chen, Jing-Sheng; Chow, G. M. [Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore (Singapore)] [Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore (Singapore); Venkatesan, T. [NUSNNI-Nanocore, National University of Singapore, 117411 Singapore (Singapore) [NUSNNI-Nanocore, National University of Singapore, 117411 Singapore (Singapore); Department of Physics, National University of Singapore, 117542 Singapore (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, 117575 Singapore (Singapore)

    2014-04-15T23:59:59.000Z

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr{sub 0.67}Sr{sub 0.33}MnO{sub 3} film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.

  20. Measurement of the energy resolution and calibration of hybrid pixel detectors with GaAs:Cr sensor and Timepix readout chip

    E-Print Network [OSTI]

    Butler, A P; Bell, S T; Chelkov, G A; Dedovich, D V; Demichev, M A; Elkin, V G; Gostkin, M I; Kotov, S A; Kozhevnikov, D A; Kruchonak, U G; Nozdrin, A A; Porokhovoy, S Yu; Potrap, I N; Smolyanskiy, P I; Zakhvatkin, M M; Zhemchugov, A S

    2015-01-01T23:59:59.000Z

    This paper describes an iterative method of per-pixel energy calibration of hybrid pixel detectors with GaAs:Cr sensor and Timepix readout chip. A convolution of precisely measured spectra of characteristic X-rays of different metals with the resolution and the efficiency of the pixel detector is used for the calibration. The energy resolution of the detector is also measured during the calibration. The use of per-pixel calibration allows to achieve a good energy resolution of the Timepix detector with GaAs:Cr sensor: 8% and 13% at 60 keV and 20 keV, respectively.

  1. Modification of the TASMIP x-ray spectral model for the simulation of microfocus x-ray sources

    SciTech Connect (OSTI)

    Sisniega, A.; Vaquero, J. J., E-mail: juanjose.vaquero@uc3m.es [Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid ES28911 (Spain); Instituto de Investigación Sanitaria Gregorio Marañón, Madrid ES28007 (Spain); Desco, M. [Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid ES28911 (Spain) [Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid ES28911 (Spain); Instituto de Investigación Sanitaria Gregorio Marañón, Madrid ES28007 (Spain); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid ES28029 (Spain)

    2014-01-15T23:59:59.000Z

    Purpose: The availability of accurate and simple models for the estimation of x-ray spectra is of great importance for system simulation, optimization, or inclusion of photon energy information into data processing. There is a variety of publicly available tools for estimation of x-ray spectra in radiology and mammography. However, most of these models cannot be used directly for modeling microfocus x-ray sources due to differences in inherent filtration, energy range and/or anode material. For this reason the authors propose in this work a new model for the simulation of microfocus spectra based on existing models for mammography and radiology, modified to compensate for the effects of inherent filtration and energy range. Methods: The authors used the radiology and mammography versions of an existing empirical model [tungsten anode spectral model interpolating polynomials (TASMIP)] as the basis of the microfocus model. First, the authors estimated the inherent filtration included in the radiology model by comparing the shape of the spectra with spectra from the mammography model. Afterwards, the authors built a unified spectra dataset by combining both models and, finally, they estimated the parameters of the new version of TASMIP for microfocus sources by calibrating against experimental exposure data from a microfocus x-ray source. The model was validated by comparing estimated and experimental exposure and attenuation data for different attenuating materials and x-ray beam peak energy values, using two different x-ray tubes. Results: Inherent filtration for the radiology spectra from TASMIP was found to be equivalent to 1.68 mm Al, as compared to spectra obtained from the mammography model. To match the experimentally measured exposure data the combined dataset required to apply a negative filtration of about 0.21 mm Al and an anode roughness of 0.003 mm W. The validation of the model against real acquired data showed errors in exposure and attenuation in line with those reported for other models for radiology or mammography. Conclusions: A new version of the TASMIP model for the estimation of x-ray spectra in microfocus x-ray sources has been developed and validated experimentally. Similarly to other versions of TASMIP, the estimation of spectra is very simple, involving only the evaluation of polynomial expressions.

  2. Phased Contrast X-Ray Imaging

    ScienceCinema (OSTI)

    Erin Miller

    2012-12-31T23:59:59.000Z

    The Pacific Northwest National Laboratory is developing a range of technologies to broaden the field of explosives detection. Phased contrast X-ray imaging, which uses silicon gratings to detect distortions in the X-ray wave front, may be applicable to mail or luggage scanning for explosives; it can also be used in detecting other contraband, small-parts inspection, or materials characterization.

  3. DEDUCING ELECTRON PROPERTIES FROM HARD X-RAY OBSERVATIONS

    E-Print Network [OSTI]

    Piana, Michele

    of the accelerated electron distribution. Keywords: Sun: flares; Sun: X-rays; Sun: acceleration; Sun: energetic distribution 31 4.5 Low-energy cutoffs in the electron distribution 32 4.6 Temperature distribution of thermal-ray emission process(es) in question with the electron distribution function, which is in turn a function

  4. Compact X-ray Light Source Workshop Report

    SciTech Connect (OSTI)

    Thevuthasan, Suntharampillai; Evans, James E.; Terminello, Louis J.; Koppenaal, David W.; Manke, Kristin L.; Plata, Charity

    2012-12-01T23:59:59.000Z

    This report, produced jointly by EMSL and FCSD, is the result of a workshop held in September 2011 that examined the utility of a compact x-ray light source (CXLS) in addressing many scientific challenges critical to advancing energy science and technology.

  5. X Ray Precursors in SGRs: Precessing Gamma Jet Tails

    E-Print Network [OSTI]

    Daniele Fargion

    2001-05-18T23:59:59.000Z

    Weak isolated X-ray precursor events before the main Gamma Ray Burst, GRB, and also rare Soft Gamma Repeaters, SGR, events are in complete disagreement with any Fireball, or Magnetar, one-shoot explosive scenarios. Fireball model in last two years has been deeply modified into a fountain beamed Jet exploding and interacting on external shells to explain GRB fine time structure. On the contrary earlier we proposed a unified scenario for both GRBs-SGRs where a precessing Gamma Jet (of different intensity) and its geometrical beaming is the source of both GRB and SGRs wide morphology. GRBs are peaked SNs Jet spinning and precessing observed along the thin Jet axis. Their mysterious weak X precursors bursts, corresponding to non-negligible energy powers, up to million Supernova ones for GRB, are gamma Jet tails beamed off-axis, observed at X-Ray tails. They are rare, about (3-6)% of all GRBs, but not unique at all. Comparable brief X-ray precursor flashes occurred in rarest and most detailed SGRs events as the 27 and the 29 August 1998 event from SGR 1900+14. The same source has been in very power-full activity on recent 18 April 2001 once again preceded by X-Ray precursors. These events are inconsistent with any Fireball or Magnetar-Mini-Fireball models. We interpret them naturally as earlier marginal blazing of outlying X conical precessing Jet, an off-axis tails surrounding a narrower gamma precessing Jet. Only when the light-house Jet is in on-axis blazing mode toward the Earth we observe the harder power-full SGR event. We predict such a rich X-Ray precursor signals (more numerous then gamma ones) during Soft Gamma Repeater peak activities; they should be abundant and within detection threshold by a permanent monitoring SGRs by Beppo-Sax WFC or Chandra X ray satellites while at peak activity.

  6. Dispute Resolution Information | Department of Energy

    Office of Environmental Management (EM)

    Negotiation Center of Excellence (NCE) Department of the Navy ADR EEOC Federal Sector Alternative Dispute Resolution EEOC Laws, Regulations & Policy Guidance Federal Energy...

  7. Quasi-periodic oscillations in accreting magnetic white dwarfs I. Observational constraints in X-ray and optical

    E-Print Network [OSTI]

    Bonnet-Bidaud, J M; Busschaert, C; Falize, E; Michaut, C

    2015-01-01T23:59:59.000Z

    Quasi-periodic oscillations (QPOs) are observed in the optical flux of some polars with typical periods of 1 to 3 s but none have been observed yet in X-rays where a significant part of the accreting energy is released. QPOs are expected and predicted from shock oscillations. Most of the polars have been observed by the XMM-Newton satellite. We made use of the homogeneous set of observations of the polars by XMM-Newton to search for the presence of QPOs in the (0.5-10 keV) energy range and to set significant upper limits for the brightest X-ray polars. We extracted high time-resolution X-ray light curves by taking advantage of the 0.07 sec resolution of the EPIC-PN camera. Among the 65 polars observed with XMM-Newton from 1998 to 2012, a sample of 24 sources was selected on the basis of their counting rate in the PN instrument to secure significant limits. We searched for QPOs using Fast Fourier Transform (FFT) methods and defined limits of detection using statistical tools. Among the sample surveyed, none sh...

  8. Fitting Narrow Emission Lines in X-ray Spectra Taeyoung Park

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    Fitting Narrow Emission Lines in X-ray Spectra Taeyoung Park Department of Statistics, Harvard University October 25, 2005 Taeyoung Park Fitting Narrow Emission Lines in X X-ray luminosity, and the emission of photons with energies is represented by a spectrum

  9. Accretion, fluorescent X-ray emission and flaring magnetic structures in YSOs

    E-Print Network [OSTI]

    F. Favata

    2004-12-20T23:59:59.000Z

    I present some recent developments on high-energy phenomena in YSOs, concentrating on the new evidence for accretion-induced X-ray emission in YSOs, for Fe 6.4 keV fluorescent emission from the disks of YSOs and for very long magnetic structures responsible for intense X-ray flares, likely connecting the star and the circumstellar disk.

  10. X-ray periodicities in sources observed by the RXTE ASM

    E-Print Network [OSTI]

    Shivamoggi, Vasudha B

    2005-01-01T23:59:59.000Z

    The X-ray intensities measured from 230 X-ray sources observed by the RXTE All-Sky Monitor (ASM) were analyzed for periodic behavior. The ASM has been observing sources for nine years in the 1.5-12 keV energy range. In ...

  11. ON RELATIVISTIC DISK SPECTROSCOPY IN COMPACT OBJECTS WITH X-RAY CCD CAMERAS

    E-Print Network [OSTI]

    Miller, J. M.

    X-ray charge-coupled devices (CCDs) are the workhorse detectors of modern X-ray astronomy. Typically covering the 0.3-10.0 keV energy range, CCDs are able to detect photoelectric absorption edges and K shell lines from ...

  12. The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser

    SciTech Connect (OSTI)

    Schlotter, W. F.; Turner, J. J.; Rowen, M.; Holmes, M.; Messerschmidt, M.; Moeller, S.; Krzywinski, J.; Lee, S.; Coffee, R.; Hays, G. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States); Heimann, P. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Krupin, O. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States); European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Soufli, R.; Fernandez-Perea, M.; Hau-Riege, S. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Kelez, N. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Beye, M.; Gerken, N.; Sorgenfrei, F.; Wurth, W. [Institute for Experimental Physics and CFEL, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); and others

    2012-04-15T23:59:59.000Z

    The soft x-ray materials science instrument is the second operational beamline at the linac coherent light source x-ray free electron laser. The instrument operates with a photon energy range of 480-2000 eV and features a grating monochromator as well as bendable refocusing mirrors. A broad range of experimental stations may be installed to study diverse scientific topics such as: ultrafast chemistry, surface science, highly correlated electron systems, matter under extreme conditions, and laboratory astrophysics. Preliminary commissioning results are presented including the first soft x-ray single-shot energy spectrum from a free electron laser.

  13. Energy resolution and efficiency of phonon-mediated KIDs for light detection

    E-Print Network [OSTI]

    Cardani, L; Cruciani, A; Di Domizio, S; Vignati, M; Bellini, F; Casali, N; Castellano, M G; Coppolecchia, A; Cosmelli, C; Tomei, C

    2015-01-01T23:59:59.000Z

    The development of sensitive cryogenic light detectors is of primary interest for bolometric experiments searching for rare events like Dark Matter interactions or Neutrinoless Double Beta Decay. Thanks to their good energy resolution and the natural multiplexed read-out, Kinetic Inductance Detectors (KIDs) are particularly suitable for this purpose. To efficiently couple KIDs-based light detectors to the large crystals used by the most advanced bolometric detectors, active surfaces of several cm$^2$ are needed. For this reason, we are developing phonon-mediated detectors. In this paper we present the first results obtained with a prototype consisting of four 40 nm thick aluminum resonators patterned on a 2x2 cm$^2$ silicon chip. The detector, exposed to optical pulses and to a $^{57}$Co X-ray source, features an energy resolution of 154+-7 eV and an efficiency of (18+-2)%.

  14. Imaging of lateral spin valves with soft x-ray microscopy

    SciTech Connect (OSTI)

    Mosendz, O.; Mihajlovic, G.; Pearson, J. E.; Fischer, P.; Im, M.-Y.; Bader, S. D.; Hoffmann, A.

    2009-05-01T23:59:59.000Z

    We investigated Co/Cu lateral spin valves by means of high-resolution transmission soft x-ray microscopy with magnetic contrast that utilizes x-ray magnetic circular dichroism (XMCD). No magnetic XMCD contrast was observed at the Cu L{sub 3} absorption edge, which should directly image the spin accumulation in Cu. Although electrical transport measurements in a non-local geometry clearly detected the spin accumulation in Cu, which remained unchanged during illumination with circular polarized x-rays at the Co and Cu L{sub 3} absorption edges.

  15. Imaging of lateral spin valves with soft x-ray microscopy.

    SciTech Connect (OSTI)

    Mosendz, O.; Mihajlovic, G.; Pearson, J. E.; Fischer, P.; Im, M.-Y.; Bader, S. D.; Hoffmann, A.; LBNL

    2009-01-01T23:59:59.000Z

    We investigated Co/Cu lateral spin valves by means of high-resolution transmission soft x-ray microscopy with magnetic contrast that utilizes x-ray magnetic circular dichroism (XMCD). No magnetic XMCD contrast was observed at the Cu L{sub 3} absorption edge, which should directly image the spin accumulation in Cu, although electrical transport measurements in a nonlocal geometry clearly detected the spin accumulation in Cu, which remained unchanged during illumination with circular polarized x rays at the Co and Cu L{sub 3} absorption edges.

  16. Note: Dynamic strain field mapping with synchrotron X-ray digital image correlation

    SciTech Connect (OSTI)

    Lu, L. [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 (China); The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207 (China); Fan, D.; Luo, S. N., E-mail: sluo@pims.ac.cn [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207 (China); Bie, B. X. [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207 (China); School of Science, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Ran, X. X.; Qi, M. L., E-mail: qiml@whut.edu.cn [School of Science, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Parab, N.; Sun, J. Z.; Liao, H. J.; Hudspeth, M. C.; Claus, B. [School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana 47907 (United States); Fezzaa, K.; Sun, T. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Chen, W. [School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana 47907 (United States); School of Material Science Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Gong, X. L., E-mail: gongxl@ustc.edu.cn [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 (China)

    2014-07-15T23:59:59.000Z

    We present a dynamic strain field mapping method based on synchrotron X-ray digital image correlation (XDIC). Synchrotron X-ray sources are advantageous for imaging with exceptional spatial and temporal resolutions, and X-ray speckles can be produced either from surface roughness or internal inhomogeneities. Combining speckled X-ray imaging with DIC allows one to map strain fields with high resolutions. Based on experiments on void growth in Al and deformation of a granular material during Kolsky bar/gas gun loading at the Advanced Photon Source beamline 32ID, we demonstrate the feasibility of dynamic XDIC. XDIC is particularly useful for dynamic, in-volume, measurements on opaque materials under high strain-rate, large, deformation.

  17. Optimal focusing for a linac-based hard x-ray source

    SciTech Connect (OSTI)

    Liu, C.; Krafft, G.; Talman, R.

    2011-03-28T23:59:59.000Z

    In spite of having a small average beam current limit, a linac can have features that make it attractive as an x-ray source: high energy, ultralow emittance and energy spread, and flexible beamline optics. Unlike a storage ring, in which an (undulator) radiation source is necessarily short and positioned at an electron beam waist, in a linac the undulator can be long and the electron beam can be adjusted to have a (virtual) waist far downstream toward the x-ray target. Using a planned CEBAF beamline as an example, this paper shows that a factor of 2000 in beam current can be overcome to produce a monochromatic hard x-ray source comparable with, or even exceeding, the performance of an x-ray line at a third generation storage ring. Optimal electron beam focusing conditions for x-ray flux density and brilliance are derived, and are verified by simulations using the SRW code.

  18. To the Graduate Council: I am submitting herewith a thesis written by Yue Zheng entitled "X-Ray Image

    E-Print Network [OSTI]

    Abidi, Mongi A.

    -ray imaging for airport luggage inspection and the characteristics of single-energy and dual-energy x-ray data single energy and dual energy x-ray images, are then presented in four categories: (1) gray based color-coding approaches and dual-energy image fusion algorithms --spatial information- based

  19. An X-ray Reprocessing Model of Disk Thermal Emission in Type 1 Seyfert Galaxies

    E-Print Network [OSTI]

    James Chiang

    2002-02-12T23:59:59.000Z

    Using a geometry consisting of a hot central Comptonizing plasma surrounded by a thin accretion disk, we model the optical through hard X-ray spectral energy distributions of the type 1 Seyfert galaxies NGC 3516 and NGC 7469. As in the model proposed by Poutanen, Krolik, & Ryde for the X-ray binary Cygnus X-1 and later applied to Seyfert galaxies by Zdziarski, Lubi\\'nski, & Smith, feedback between the radiation reprocessed by the disk and the thermal Comptonization emission from the hot central plasma plays a pivotal role in determining the X-ray spectrum, and as we show, the optical and ultraviolet spectra as well. Seemingly uncorrelated optical/UV and X-ray light curves, similar to those which have been observed from these objects can be explained by variations in the size, shape, and temperature of the Comptonizing plasma. Furthermore, by positing a disk mass accretion rate which satisfies a condition for global energy balance between the thermal Comptonization luminosity and the power available from accretion, one can predict the spectral properties of the hard X-ray continuum above $\\sim 50$ keV in type 1 Seyfert galaxies. Forthcoming measurements of the hard X-ray continuum by more sensitive hard X-ray and soft $\\gamma$-ray telescopes, in conjunction with simultaneous optical, UV, and soft X-ray monitoring, will allow the mass accretion rates to be directly constrained for these sources in the context of this model.

  20. X-ray Emission from Thunderstorms and Lightning

    ScienceCinema (OSTI)

    Joseph Dwyer

    2010-01-08T23:59:59.000Z

    How lightning is initiated in the relatively low electric fields inside thunderclouds and how it can then propagate for tens of kilometers through virgin air are two of the great unsolved problems in the atmospheric sciences.  Until very recently it was believed that lightning was entirely a conventional discharge, involving only low-energy (a few eV) electrons.  This picture changed completely a few years ago with the discovery of intense x-ray emission from both natural cloud-to-ground lightning and rocket-triggered lightning.  This energetic emission cannot be produced by a conventional discharge, and so the presence of x-rays strongly implies that runaway breakdown plays a role in lightning processes.  During runaway breakdown, electrons are accelerated through air to nearly the speed of light by strong electric fields.  These runaway electrons then emit bremsstrahlung x-rays and gamma-rays during collisions with air.  Indeed, the x-ray and gamma-ray emission produced by runaway breakdown near the tops of thunderstorms is bright enough to be seen from outer space, 600 km away.  As a result, the physics used for decades to describe thunderstorm electrification and lightning discharges is incomplete and needs to be revisited. 

  1. Soft x-ray diagnostics for pulsed power machines

    SciTech Connect (OSTI)

    Idzorek, G.C.; Coulter, W.L.; Walsh, P.J.; Montoya, R.R.

    1995-08-01T23:59:59.000Z

    A variety of soft x-ray diagnostics are being fielded on the Los Alamos National Laboratory Pegasus and Procyon pulsed power systems and also being fielded on joint US/Russian magnetized target fusion experiments known as MAGO (Magnitoye Obzhatiye). The authors have designed a low-cost modular photoemissive detector designated the XRD-96 that uses commercial 1100 series aluminum for the photocathode. In addition to photocathode detectors a number of designs using solid state silicon photodiodes have been designed and fielded. They also present a soft x-ray time-integrated pinhole camera system that uses standard type TMAX-400 photographic film that obviates the need for expensive and no longer produced zero-overcoat soft x-ray emulsion film. In a typical experiment the desired spectral energy cuts, signal intensity levels, and desired field of view will determine diagnostic geometry and x-ray filters selected. The authors have developed several computer codes to assist in the diagnostic design process and data deconvolution. Examples of the diagnostic design process and data analysis for a typical pulsed power experiment are presented.

  2. X-rays at Solid-Liquid Surfaces

    SciTech Connect (OSTI)

    Dosch, Helmut (Max Planck Institute for Metals Research) [Max Planck Institute for Metals Research

    2007-05-02T23:59:59.000Z

    Solid-liquid interfaces play an important role in many areas of current and future technologies, and in our biosphere. They play a key role in the development of nanofluidics and nanotribology, which sensitively depend on our knowledge of the microscopic structures and phenomena at the solid-liquid interface. The detailed understanding of how a fluid meets a wall is also a theoretical challenge. In particular, the phenomena at repulsive walls are of interest, since they affect many different phenomena, such as water-repellent surfaces or the role of the hydrophobic interaction in protein folding. Recent x-ray reflectivity studies of various solid-liquid interfaces have disclosed rather intriguiing phenomena, which will be discussed in this lecture: premelting of ice in contact with silica; liquid Pb in contact with Si; water in contact with hydrophobic surfaces. These experiments, carried out with high-energy x-ray microbeams, reveal detailed insight into the liquid density profile closest to the wall. A detailed insight into atomistic phenomena at solid-liquid interfaces is also a prerequisite in the microscopic control of electrochemical reactions at interfaces. Recent x-ray studies show the enormous future potential of such non-destructive analytical tools for the in situ observation of (electro-)chemical surface reactions. This lecture will review recent x-ray experiments on solid-liquid interfaces.

  3. Apparatus for generating x-ray holograms

    DOE Patents [OSTI]

    Rhodes, C.K.; Boyer, K.; Solem, J.C.; Haddad, W.S.

    1990-09-11T23:59:59.000Z

    Apparatus for x-ray microholography of living biological materials. A Fourier transform holographic configuration is described as being most suitable for the 3-dimensional recording of the physical characteristics of biological specimens. The use of a spherical scatterer as a reference and a charge-coupled device two-dimensional detector array placed in the forward direction relative to the incident x-radiation for viewing electromagnetic radiation simultaneously scattered from both the specimen and the reference scatterer permits the ready reconstruction of the details of the specimen from the fringe pattern detected by the charge-coupled device. For example, by using a nickel reference scatter at 4.5 nm, sufficient reference illumination is provided over a wide enough angle to allow similar resolution in both transverse and longitudinal directions. Both laser and synchrotron radiation sources are feasible for generating microholographs. Operation in the water window (2.4 to 4.5 nm) should provide maximum contrast for features of the specimen and spatial resolution on the order of the wavelength of x-radiation should be possible in all three dimensions, which is sufficient for the visualization of many biological features. It is anticipated that the present apparatus will find utility in other areas as well where microscopic physical details of a specimen are important. A computational procedure which enables the holographic data collected by the detector to be used to correct for misalignments introduced by inexact knowledge of the relative positions of the spherical reference scatterer and the sample under investigation has been developed. If the correction is performed prior to reconstruction, full compensation can be achieved and a faithfully reconstructed image produced. 7 figs.

  4. Apparatus for generating x-ray holograms

    DOE Patents [OSTI]

    Rhodes, Charles K. (Chicago, IL); Boyer, Keith (Los Alamos, NM); Solem, Johndale C. (Los Alamos, NM); Haddad, Waleed S. (Chicago, IL)

    1990-01-01T23:59:59.000Z

    Apparatus for x-ray microholography of living biological materials. A Fourier transform holographic configuration is described as being most suitable for the 3-dimensional recording of the physical characteristics of biological specimens. The use of a spherical scatterer as a reference and a charge-coupled device two-dimensional detector array placed in the forward direction relative to the incident x-radiation for viewing electromagnetic radiation simultaneously scattered from both the specimen and the reference scatterer permits the ready reconstruction of the details of the specimen from the fringe pattern detected by the charge-coupled device. For example, by using a nickel reference scatter at 4.5 nm, sufficient reference illumination is provided over a wide enough angle to allow similar resolution in both transverse and longitudinal directions. Both laser and synchrotron radiation sources are feasible for generating microholographs. Operation in the water window (2.4 to 4.5 nm) should provide maximum contrast for features of the specimen and spatial resolution on the order of the wavelength of x-radiation should be possible in all three dimensions, which is sufficient for the visualization of many biological features. It is anticipated that the present apparatus will find utility in other areas as well where microscopic physical details of a specimen are important. A computational procedure which enables the holographic data collected by the detector to be used to correct for misalignments introduced by inexact knowledge of the relative positions of the spherical reference scatterer and the sample under investigation has been developed. If the correction is performed prior to reconstruction, full compensation can be achieved and a faithfully reconstructed image produced.

  5. X-ray ablation measurements and modeling for ICF applications

    SciTech Connect (OSTI)

    Anderson, A.T.

    1996-09-01T23:59:59.000Z

    X-ray ablation of material from the first wall and other components of an ICF (Inertial Confinement Fusion) chamber is a major threat to the laser final optics. Material condensing on these optics after a shot may cause damage with subsequent laser shots. To ensure the successful operation of the ICF facility, removal rates must be predicted accurately. The goal for this dissertation is to develop an experimentally validated x-ray response model, with particular application to the National Ignition Facility (NIF). Accurate knowledge of the x-ray and debris emissions from ICF targets is a critical first step in the process of predicting the performance of the target chamber system. A number of 1-D numerical simulations of NIF targets have been run to characterize target output in terms of energy, angular distribution, spectrum, and pulse shape. Scaling of output characteristics with variations of both target yield and hohlraum wall thickness are also described. Experiments have been conducted at the Nova laser on the effects of relevant x-ray fluences on various materials. The response was diagnosed using post-shot examinations of the surfaces with scanning electron microscope and atomic force microscope instruments. Judgments were made about the dominant removal mechanisms for each material. Measurements of removal depths were made to provide data for the modeling. The finite difference ablation code developed here (ABLATOR) combines the thermomechanical response of materials to x-rays with models of various removal mechanisms. The former aspect refers to energy deposition in such small characteristic depths ({approx} micron) that thermal conduction and hydrodynamic motion are significant effects on the nanosecond time scale. The material removal models use the resulting time histories of temperature and pressure-profiles, along with ancillary local conditions, to predict rates of surface vaporization and the onset of conditions that would lead to spallation.

  6. Development of Hard X-ray Imaging Optics with Two Pairs of Elliptical and Hyperbolic Mirrors

    SciTech Connect (OSTI)

    Matsuyama, S.; Fujii, M.; Wakioka, T.; Mimura, H.; Handa, S.; Kimura, T. [Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Nishino, Y.; Tamasaku, K.; Makina, Y.; Ishikawa, T. [SPring-8/RIKEN, 1-1-1 Kouto, Sayoucho, Sayogun, Hyogo 679-5148 (Japan); Yamauchi, K. [Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Research Center for Ultra-Precision Science and Technology, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2010-06-23T23:59:59.000Z

    To form a magnified hard X-ray image with a 50 nm resolution, we have studied total reflection mirror optics with two pairs of elliptical and hyperbolic mirrors, which is called 'Advanced Kirkpatrick-Baez system'. A designed optical system has 200x and 300x magnifications in vertical and horizontal directions. Also diffraction limit size in the optical system is 40 nmx45 nm. We fabricated a pair of elliptical and hyperbolic mirrors for horizontal imaging with a figure accuracy of 2 nm using elastic emission machining (EEM), microstitching interferometry (MSI) and relative-angle-determinable stitching interferometry (RADSI). One-dimensional tests for forming a demagnified image of a slit were carried out at an X-ray energy of 11.5 keV at BL29XUL (EH2) of SPring-8. As a result, a shape beam with a FWHM of 78 nm was observed. This demonstrates that we realized one-dimensional Wolter optics that has a spatial resolution of 78 nm.

  7. Possibility of corrector plate tuning of x-ray focusing

    SciTech Connect (OSTI)

    Talman, Richard

    2009-05-01T23:59:59.000Z

    Schemes for focusing a hard x-ray beam to a small spot are described. The theoretical minimum spot size, assuming perfect mirror shape, is shown to be 4 nm FWHM, independent of x-ray wavelength. This is less than the 10 nm previously said to be the minimum achievable diffraction-limited x-ray spot size. While providing the penetrating power only possible with x rays, this approaches the resolution needed to image individual atoms or atomic layers. However, the perfect mirror assumption is physically unrealistic. This paper discusses the compensation of mirror shape errors by a corrector plate and shows that the tolerances for corrector plate shape are far looser than are tolerances for mirror shape. The full eventual success of achieving theoretical minimum resolution will require mirror shape precision considerably better than has been achieved at this time, though far looser than would be required for simpleminded paraboloidal focusing. Two variants of the scheme, subject to the same mathematical treatment, are described. (i) The ''corrector plate'' name is copied from the similarly functioning element of the same name in a Schmidt camera. The focusing is achieved using glancing, yet coherent, reflection from a high-Z paraboloidal mirror. The strategy is to obtain dominant focusing from reflection and to compensate with weak refractive focusing. The reflective focusing is strong and achromatic but insufficiently accurate. The refractive focusing is weak and chromatic but highly accurate. The corrector plate improves resolution the way eyeglasses help a person to see. It can, for example, be ''fitted'' the same trial-and-error way an optometrist establishes a prescription for glasses. Dimensional tolerances for the compensator are far looser than would be needed for a mirror to achieve the same resolution. Unlike compound refractive lenses, attenuation will be small, at least for wavelengths longer than 1 A, because the compensation layer is thin. (ii) For this variant, the corrector plate is a washer-shaped refractive or Fresnel lens, and the mirror is (theoretically) a perfect cone. All focusing is provided by the lens. Even though the cone provides no focusing, it improves the resolution by increasing the numerical aperture of the device. Compared to a paraboloidal shape, it is assumed that the conical shape can be more accurately fabricated. Of the two variants, only the first variant is, in principle, capable of achieving the theoretical minimum resolution. Configurations are suggested, in both case (i) and case (ii), that use currently possible construction precisions to produce resolutions better than have been achieved to date. However, both results will remain well above the theoretical minimum until fabrication techniques have been developed that provide greater precision than is possible at this time.

  8. Hard X-ray Fluorescence Measurements of Heteroepitaxial Solid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hard X-ray Fluorescence Measurements of Heteroepitaxial Solid Oxide Fuel Cell Cathode Materials. Hard X-ray Fluorescence Measurements of Heteroepitaxial Solid Oxide Fuel Cell...

  9. Manipulating X-rays with Tiny Mirrors | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for controlling X-rays. MEMS, or microelectromechanical systems, allow shrinking the optics to the microscale creating ultrafast devices for reflecting X-rays at precise times...

  10. Fuel Injection and Spray Research Using X-Ray Diagnostics

    Broader source: Energy.gov (indexed) [DOE]

    temperature ambient (plastic windows) 5 Radiography - Monochromatic x-rays - Absorption of x-rays by the fuel - Ensemble averaged (flux limited) - Room temperature ambient...

  11. Fuel Injection and Spray Research Using X-Ray Diagnostics

    Broader source: Energy.gov (indexed) [DOE]

    by ECN using several different techniques - Silicone molds (Valencia) - X-ray absorption tomography (CAT) - X-Ray phase contrast imaging (Argonne) - Microscopy (Sandia) ...

  12. X-ray induced optical reflectivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Durbin, Stephen M.

    2012-01-01T23:59:59.000Z

    The change in optical reflectivity induced by intense x-ray pulses can now be used to study ultrafast many body responses in solids in the femtosecond time domain. X-ray absorption creates photoelectrons and core level holes subsequently filled by Auger or fluorescence processes, and these excitations ultimately add conduction and valence band carriers that perturb optical reflectivity.Optical absorption associated with band filling and band gap narrowing is shown to explain the basic features found in recent measurements on an insulator (silicon nitride, Si3N4), a semiconductor(gallium arsenide,GaAs), and a metal (gold,Au), obtained with ?100 fs x-ray pulses at 500-2000 eV and probed with 800 nm laser pulses. In particular GaAs exhibits an abrupt drop in reflectivity, persisting only for a time comparable to the x-ray excitation pulse duration, consistent with prompt band gap narrowing.

  13. Columbia University X-Ray Measurements

    E-Print Network [OSTI]

    Columbia University X-Ray Measurements of the Levitated Dipole Experiment J. L. Ellsworth, J. Kesner MIT Plasma Science and Fusion Center D.T. Garnier, A.K. Hansen, M.E. Mauel Columbia University

  14. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field...

  15. Polarized X-Rays Reveal Molecular Alignment in Printed Electronics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum38 (1996)representativePolarized X-Rays

  16. Probing bismuth ferrite nanoparticles by hard x-ray photoemission: Anomalous occurrence of metallic bismuth

    SciTech Connect (OSTI)

    Chaturvedi, Smita; Rajendra, Ranguwar; Ballav, Nirmalya; Kulkarni, Sulabha, E-mail: s.kulkarni@iiserpune.ac.in [Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008 (India); Sarkar, Indranil [DESY Photon Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg (Germany); Shirolkar, Mandar M. [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Jeng, U-Ser; Yeh, Yi-Qi [National Synchrotron Radiation Research Center, 101, Hsin-Ann Road, Science Park, Hsinchu 3007-6, Taiwan (China)

    2014-09-08T23:59:59.000Z

    We have investigated bismuth ferrite nanoparticles (?75?nm and ?155?nm) synthesized by a chemical method, using soft X-ray (1253.6?eV) and hard X-ray (3500, 5500, and 7500?eV) photoelectron spectroscopy. This provided an evidence for the variation of chemical state of bismuth in crystalline, phase pure nanoparticles. X-ray photoelectron spectroscopy analysis using Mg K? (1253.6?eV) source showed that iron and bismuth were present in both Fe{sup 3+} and Bi{sup 3+} valence states as expected for bismuth ferrite. However, hard X-ray photoelectron spectroscopy analysis of the bismuth ferrite nanoparticles using variable photon energies unexpectedly showed the presence of Bi{sup 0} valence state below the surface region, indicating that bismuth ferrite nanoparticles are chemically inhomogeneous in the radial direction. Consistently, small-angle X-ray scattering reveals a core-shell structure for these radial inhomogeneous nanoparticles.

  17. High Performance X-Ray Transmission Windows Based on Graphenic Carbon

    E-Print Network [OSTI]

    Huebner, Sebastian; Kapser, Stefan; Pahlke, Andreas; Kreupl, Franz

    2015-01-01T23:59:59.000Z

    A novel x-ray transmission window based on graphenic carbon has been developed with superior performance compared to beryllium transmission windows that are currently used in the field. Graphenic carbon in combination with an integrated silicon frame allows for a window design which does not use a mechanical support grid or additional light blocking layers. Compared to beryllium, the novel x-ray transmission window exhibits an improved transmission in the low energy region ($0.1 hbox{keV}-3 hbox{keV}$ ) while demonstrating excellent mechanical stability, as well as light and vacuum tightness. Therefore, the newly established graphenic carbon window, can replace beryllium in x-ray transmission windows with a nontoxic and abundant material. Index terms: Beryllium, Carbon, Graphene, Thin films, X-ray applications, X-ray detectors

  18. Soft X-ray spectral variability of AM Herculis

    E-Print Network [OSTI]

    K. Beuermann; E. El Kholy; K. Reinsch

    2008-02-19T23:59:59.000Z

    Polars (AM Herculis binaries) are a prominent class of bright soft X-ray sources, many of which were discovered with ROSAT. We present a homogenous analysis of all the pointed ROSAT PSPC observations of polars subdivided into two papers that discuss the prototype polar AM Her in detail and summarize the class properties of all other polars. We derive the high-state soft X-ray flux and short-term spectral variability of AM Her using a new detector response matrix and a confirmed flux calibration of the ROSAT PSPC below 0.28 keV. The best-fit mean single-blackbody temperature and integrated bright-phase energy flux of AM Her in its April 1991 high state are 27.2 +/- 1.0 eV and (2.6 +/- 0.6) x 10^-9 erg cm^-2s^-1, respectively. The total blackbody flux of a multi-temperature model that fits both the soft X-ray and the fluctuating far-ultraviolet components is Fbb = (4.5 +/- 1.5) x 10^-9 erg cm^-2s^-1. The total accretion luminosity at a distance of 80 pc, Lbb = (2.1 +/- 0.7) x 10^33 erg s-1, implies an accretion rate of Mdot = (2.4 +/- 0.8) x 10^-10 Msun yr^-1 for an 0.78 Msun white dwarf. The soft X-ray flux displays significant variability on time scales down to 200 ms. Correlated spectral and count-rate variations are seen in flares on time scales down to 1 s, demonstrating the heating and cooling associated with individual accretion events. Our spectral and temporal analysis provides direct evidence for the blobby accretion model and suggests a connection between the soft X-ray and the fluctuating far-ultraviolet components.

  19. Transient x-ray diffraction and its application to materials science and x-ray optics

    SciTech Connect (OSTI)

    Hauer, A.A.; Kopp, R.; Cobble, J.; Kyrala, G.; Springer, R. [and others

    1997-12-01T23:59:59.000Z

    Time resolved x-ray diffraction and scattering have been applied to the measurement of a wide variety of physical phenomena from chemical reactions to shock wave physics. Interest in this method has heightened in recent years with the advent of versatile, high power, pulsed x-ray sources utilizing laser plasmas, electron beams and other methods. In this article, we will describe some of the fundamentals involved in time resolved x-ray diffraction, review some of the history of its development, and describe some recent progress in the field. In this article we will emphasize the use of laser-plasmas as the x-ray source for transient diffraction.

  20. Bent crystal spectrometer for both frequency and wavenumber resolved x-ray scattering at a seeded free-electron laser

    E-Print Network [OSTI]

    Zastrau, Ulf; Foerster, Eckhart; Galtier, Eric Ch; Gamboa, Eliseo; Glenzer, Siegfried H; Heimann, Philipp; Marschner, Heike; Nagler, Bob; Schropp, Andreas; Wehrhan, Ortrud; Lee, Hae Ja

    2014-01-01T23:59:59.000Z

    We present a cylindrically curved GaAs x-ray spectrometer with energy resolution $\\Delta E/E = 1.1\\cdot 10^{-4}$ and wave-number resolution of $\\Delta k/k = 3\\cdot 10^{-3}$, allowing plasmon scattering at the resolution limits of the Linac Coherent Light Source (LCLS) x-ray free-electron laser. It spans scattering wavenumbers of 3.6 to $5.2/$\\AA\\ in 100 separate bins, with only 0.34\\% wavenumber blurring. The dispersion of 0.418~eV/$13.5\\,\\mu$m agrees with predictions within 1.3\\%. The reflection homogeneity over the entire wavenumber range was measured and used to normalize the amplitude of scattering spectra. The proposed spectrometer is superior to a mosaic HAPG spectrometer when the energy resolution needs to be comparable to the LCLS seeded bandwidth of 1~eV and a significant range of wavenumbers must be covered in one exposure.

  1. Bent crystal spectrometer for both frequency and wavenumber resolved x-ray scattering at a seeded free-electron laser

    SciTech Connect (OSTI)

    Zastrau, Ulf, E-mail: ulf.zastrau@uni-jena.de [Institute of Optics and Quantum Electronics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Fletcher, Luke B.; Galtier, Eric Ch.; Gamboa, Eliseo; Glenzer, Siegfried H.; Heimann, Philipp; Nagler, Bob; Schropp, Andreas; Lee, Hae Ja [Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Förster, Eckhart [Institute of Optics and Quantum Electronics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Helmholtz Institute Jena, Fröbelstieg 3, 07743 Jena (Germany); Marschner, Heike; Wehrhan, Ortrud [Institute of Optics and Quantum Electronics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany)

    2014-09-15T23:59:59.000Z

    We present a cylindrically curved GaAs x-ray spectrometer with energy resolution ?E/E = 1.1 ×?10{sup ?4} and wave-number resolution of ?k/k = 3 ×?10{sup ?3}, allowing plasmon scattering at the resolution limits of the Linac Coherent Light Source (LCLS) x-ray free-electron laser. It spans scattering wavenumbers of 3.6 to 5.2/Å in 100 separate bins, with only 0.34% wavenumber blurring. The dispersion of 0.418 eV/13.5??m agrees with predictions within 1.3%. The reflection homogeneity over the entire wavenumber range was measured and used to normalize the amplitude of scattering spectra. The proposed spectrometer is superior to a mosaic highly annealed pyrolytic graphite spectrometer when the energy resolution needs to be comparable to the LCLS seeded bandwidth of 1 eV and a significant range of wavenumbers must be covered in one exposure.

  2. Soft x-ray backlighting of cryogenic implosions using a narrowband crystal imaging system (invited)

    SciTech Connect (OSTI)

    Stoeckl, C., E-mail: csto@lle.rochester.edu; Bedzyk, M.; Brent, G.; Epstein, R.; Fiksel, G.; Guy, D.; Goncharov, V. N.; Hu, S. X.; Ingraham, S.; Jacobs-Perkins, D. W.; Jungquist, R. K.; Marshall, F. J.; Mileham, C.; Nilson, P. M.; Sangster, T. C.; Shoup, M. J.; Theobald, W. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2014-11-15T23:59:59.000Z

    A high-performance cryogenic DT inertial confinement fusion implosion experiment is an especially challenging backlighting configuration because of the high self-emission of the core at stagnation and the low opacity of the DT shell. High-energy petawatt lasers such as OMEGA EP promise significantly improved backlighting capabilities by generating high x-ray intensities and short emission times. A narrowband x-ray imager with an astigmatism-corrected bent quartz crystal for the Si He{sub ?} line at ?1.86 keV was developed to record backlit images of cryogenic direct-drive implosions. A time-gated recording system minimized the self-emission of the imploding target. A fast target-insertion system capable of moving the backlighter target ?7 cm in ?100 ms was developed to avoid interference with the cryogenic shroud system. With backlighter laser energies of ?1.25 kJ at a 10-ps pulse duration, the radiographic images show a high signal-to-background ratio of >100:1 and a spatial resolution of the order of 10 ?m. The backlit images can be used to assess the symmetry of the implosions close to stagnation and the mix of ablator material into the dense shell.

  3. The cosmic X-ray and gamma-ray background from dark matter annihilation

    E-Print Network [OSTI]

    Zavala, Jesus; Slatyer, Tracy R; Loeb, Abraham; Springel, Volker

    2011-01-01T23:59:59.000Z

    (Abridged) The extragalactic background light (EBL) observed at multiple wavelengths is a promising tool to probe the nature of dark matter since it might contain a significant contribution from gamma-rays produced promptly by dark matter annihilation. Additionally, the electrons and positrons produced in the annihilation give energy to the CMB photons to populate the EBL with X-rays and gamma-rays. We here create full-sky maps of the radiation from both of these contributions using the high-resolution Millennium-II simulation. We use upper limits on the contributions of unknown sources to the EBL to constrain the intrinsic properties of dark matter using a model-independent approach that can be employed as a template to test different particle physics models (including those with a Sommerfeld enhancement). These upper limits are based on observations spanning eight orders of magnitude in energy (from soft X-rays measured by CHANDRA to gamma-rays measured by Fermi), and on expectations for the contributions f...

  4. Simultaneous measurements of several state variables in shocked carbon by imaging x-ray scattering

    SciTech Connect (OSTI)

    Gamboa, E. J., E-mail: eliseo@umich.edu; Drake, R. P.; Keiter, P. A.; Trantham, M. R. [University of Michigan, Ann Arbor, Michigan 48109 (United States)] [University of Michigan, Ann Arbor, Michigan 48109 (United States); Falk, K.; Montgomery, D. S.; Benage, J. F. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-04-15T23:59:59.000Z

    We apply the novel experimental technique of imaging x-ray Thomson scattering to measure the spatial profiles of the temperature, ionization state, relative material density, and the shock speed in a high-energy density system. A blast wave driven in a low-density foam is probed with 90? scattering of 7.8?keV helium-like nickel x-rays, which are spectrally dispersed and resolved in one spatial dimension by a doubly curved crystal. The inferred properties of the shock are shown to be self-consistent with 1D analytical estimates. These high-resolution measurements enable a direct comparison of the observed temperature with the results from hydrodynamic simulations. We find good agreement with the simulations for the temperature at the shock front but discrepancies in the modeling of the spatial temperature profile and shock speed. These results indicate the challenges in modeling the shock dynamics of structured materials like foams, commonly used in many high-energy density and laboratory astrophysics experiments.

  5. Solar Flare Element Abundances from the Solar Assembly for X-rays (SAX) on MESSENGER

    E-Print Network [OSTI]

    Dennis, B R; Schwartz, R A; Tolbert, A K; Starr, R D; Nittler, L R

    2015-01-01T23:59:59.000Z

    X-ray spectra in the range $1.5-8.5$~keV have been analyzed for 526 large flares detected with the Solar Assembly for X-rays (SAX) on the Mercury {\\em MESSENGER} spacecraft between 2007 and 2013. For each flare, the temperature and emission measure of the emitting plasma were determined from the spectrum of the continuum. In addition, with the SAX energy resolution of 0.6 keV (FWHM) at 6~keV, the intensities of the clearly resolved Fe-line complex at 6.7~keV and the Ca-line complex at 3.9~keV were determined, along with those of unresolved line complexes from S, Si, and Ar at lower energies. Comparisons of these line intensities with theoretical spectra allow the abundances of these elements relative to hydrogen to be derived, with uncertainties due to instrument calibration and the unknown temperature distribution of the emitting plasma. While significant deviations are found for the abundances of Fe and Ca from flare to flare, the abundances averaged over all flares are found to be enhanced over photospheri...

  6. Molecular orientation in soft matter thin films studied by resonant soft X-ray reflectivity

    SciTech Connect (OSTI)

    Mezger, Markus; Jerome, Blandine; Kortright, Jeffrey B.; Valvidares, Manuel; Gullikson, Eric; Giglia, Angelo; Mahne, Nicola; Nannarone, Stefano

    2011-01-12T23:59:59.000Z

    We present a technique to study depth profiles of molecular orientation in soft matter thin films with nanometer resolution. The method is based on dichroism in resonant soft X-ray reflectivity using linear s- and p-polarization. It combines the chemical sensitivity of Near-Edge X-ray Absorption Fine Structure spectroscopy to specific molecular bonds and their orientation relative to the polarization of the incident beam with the precise depth profiling capability of X-ray reflectivity. We demonstrate these capabilities on side chain liquid crystalline polymer thin films with soft X-ray reflectivity data at the carbon K edge. Optical constants of the anisotropic refractive index ellipsoid were obtained from a quantitative analysis using the Berreman formalism. For films up to 50 nm thickness we find that the degree of orientation of the long axis exhibits no depth variation and isindependent of the film thickness.

  7. Fiber fed x-ray/gamma ray imaging apparatus

    DOE Patents [OSTI]

    Hailey, C.J.; Ziock, K.P.

    1992-06-02T23:59:59.000Z

    X-ray/gamma ray imaging apparatus is disclosed for detecting the position, energy, and intensity of x-ray/gamma ray radiation comprising scintillation means disposed in the path of such radiation and capable of generating photons in response to such radiation; first photodetection means optically bonded to the scintillation means and capable of generating an electrical signal indicative of the intensity, and energy of the radiation detected by the scintillation means; second photodetection means capable of generating an electrical signal indicative of the position of the radiation in the radiation pattern; and means for optically coupling the scintillation means to the second photodetection means. The photodetection means are electrically connected to control and storage means which may also be used to screen out noise by rejecting a signal from one photodetection means not synchronized to a signal from the other photodetection means; and also to screen out signals from scattered radiation. 6 figs.

  8. Alignment and Testing of a Telecentric Zoom Lens Used for the Cygnus X-ray Source

    SciTech Connect (OSTI)

    Malone, R. M. [NSTec; Baker, S. A. [NSTec; Brown, K. K. [NSTec; Castaneda, J. J. [NSTec; Curtis, A. H. [NSTec; Danielson, J. [NSTec; Droemer, D. W. [NSTec; Esquibel, D. L. [NSTec; Haines, T. J. [LANL; Hollabaugh, J. S. [NSTec; Howe, R. A. [NSTec; Huerta, J. A. [NSTec; King, N. S. P. [LANL; Lutz, S. S. [NSTec; Kaufman, M. I. [NSTec; McGillivray, K. D. [NSTec; Smith, A. D. [NSTec; Stokes, B. M. [NSTec; Tibbitts, A. [NSTec

    2013-09-01T23:59:59.000Z

    Cygnus is a high-energy radiographic x-ray source. Three large zoom lenses have been assembled to collect images from large scintillators. A large elliptical pellicle (394 × 280 mm) deflects the scintillator light out of the x-ray path into an eleven-element zoom lens coupled to a CCD camera. The zoom lens and CCD must be as close as possible to the scintillator to maximize light collection. A telecentric lens design minimizes image blur from a volume source. To maximize the resolution of objects of different sizes, the scintillator and zoom lens are translated along the x-ray axis, and the zoom lens magnification changes. Zoom magnification is also changed when different-sized recording cameras are used (50 or 62 mm square format). The LYSO scintillator measures 200 × 200 mm and is 5 mm thick. The scintillator produces blue light peaking at 435 nm, so special lens materials are required. By swapping out one doublet and allowing all other lenses to be repositioned, the zoom lens can also use a CsI(Tl) scintillator that produces green light centered at 540 nm (for future operations). All lenses have an anti-reflective coating for both wavelength bands. Two sets of doublets, the stop, the scintillator, and the CCD camera move during zoom operations. One doublet has x-y compensation. Alignment of the optical elements was accomplished using counter propagating laser beams and monitoring the retro-reflections and steering collections of laser spots. Each zoom lens uses 60 lb of glass inside the 425 lb mechanical structure, and can be used in either vertical or horizontal orientation.

  9. Differential phase contrast X-ray imaging system and components

    DOE Patents [OSTI]

    Stutman, Daniel; Finkenthal, Michael

    2014-07-01T23:59:59.000Z

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  10. Reflection soft X-ray microscope and method

    DOE Patents [OSTI]

    Suckewer, S.; Skinner, C.H.; Rosser, R.

    1993-01-05T23:59:59.000Z

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  11. Calibrations of a multichannel soft x-ray spectrometer

    SciTech Connect (OSTI)

    Blake, R.L.; Hockaday, R.G.; Grosso, J.S.

    1986-01-01T23:59:59.000Z

    A time resolved, 14 channel spectrometer with an absolutely calibrated response, was developed to cove an x-ray photon energy spectrum from 70 to 650 eV. The spectrometer utilized a combination of thin film prefilters, layered synthetic microstructure (LSM) diffractors, metal coated plastic scintillators, and photomultiplier detector tubes. Calibration of the spectrometer was done piecemeal for each component with standard techniques and the component calibrations were convolved to get a complete spectrometer response function. The two calibration procedures were compared.

  12. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources

    SciTech Connect (OSTI)

    Shavorskiy, Andrey; Slaughter, Daniel S.; Zegkinoglou, Ioannis; Rude, Bruce S.; Bluhm, Hendrik [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Neppl, Stefan; Cryan, James P.; Siefermann, Katrin R.; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Ziemkiewicz, Michael P.; Fraund, Matthew W.; Khurmi, Champak; Wright, Travis W.; Schoenlein, Robert W.; Gessner, Oliver, E-mail: ogessner@lbl.gov [Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Hertlein, Marcus P.; Tyliszczak, Tolek [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Huse, Nils [Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Physics Department, University of Hamburg and Max-Planck Institute for Structure and Dynamics of Matter, 22761 Hamburg (Germany); and others

    2014-09-15T23:59:59.000Z

    An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ?0.1 mm spatial resolution and ?150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy E{sub p} = 150 eV and an electron kinetic energy range KE = 503–508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ?9 ns at a pass energy of 50 eV and ?1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular spread with the retarding ratio can be well approximated by applying Liouville's theorem of constant emittance to the electron trajectories inside the lens system. The performance of the setup is demonstrated by characterizing the laser fluence-dependent transient surface photovoltage response of a laser-excited Si(100) sample.

  13. Image plates as x-ray detectors in plasma physics experiments

    SciTech Connect (OSTI)

    Gales, S.G.; Bentley, C.D. [AWE Aldermaston, Reading RG7 4PR (United Kingdom)

    2004-10-01T23:59:59.000Z

    The performance of image plates based on the photostimulable phosphor BaF(Br,l):Eu{sup 2+} has been investigated and compared with x-ray film. Evaluation of detective quantum efficiency (DQE), sensitivity, dynamic range, and linearity was carried out for several types of commercially available image plate, using the Excalibur soft x-ray calibration facility at AWE. Image plate response was found to be linear over a dynamic range of 5 orders of magnitude. One type of image plate was found to have a number of advantages for soft x-ray detection, with a measured sensitivity 1 order of magnitude greater than that of Kodak Industrex CX and DEF-5 x-ray film. The DQE of this plate was found to be superior to that of film at low [less than 10{sup 3} photons/(50 {mu}m){sup 2}] and high fluxes [greater than 10{sup 4} photons/(50 {mu}m){sup 2}]. The spatial resolution of image plates, scanned with several models of commercial image plate readers, has been evaluated using a USAF resolution test target. The highest spatial resolution measured is 35 {mu}m. Though this is significantly lower than the resolution possible with film, it is sufficient for many applications. Image plates were fielded in a refractive x-ray lens imaging diagnostic on the 1 TW Helen laser and these results are discussed.

  14. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, Malcolm S. (Berkeley, CA); Jacobsen, Chris (Sound Beach, NY)

    1997-01-01T23:59:59.000Z

    Methods for forming X-ray images having 0.25 .mu.m minimum line widths on X-ray sensitive material are presented. A holgraphic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required.

  15. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, M.S.; Jacobsen, C.

    1997-03-18T23:59:59.000Z

    Methods for forming X-ray images having 0.25 {micro}m minimum line widths on X-ray sensitive material are presented. A holographic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required. 15 figs.

  16. Oscillations During Thermonuclear X-ray Bursts

    E-Print Network [OSTI]

    Tod E. Strohmayer

    2001-01-12T23:59:59.000Z

    High amplitude, nearly coherent X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries, a long sought goal of X-ray astronomy. Studies carried out over the past year have led to the discovery of burst oscillations in four new sources, bringing to ten the number with confirmed burst oscillations. I review the status of our knowledge of these oscillations and indicate how they can be used to probe the physics of neutron stars. For a few burst oscillation sources it has been proposed that the strongest and most ubiquitous frequency is actually the first overtone of the spin frequency and hence that two nearly antipodal hot spots are present on the neutron star. This inference has important implications for both the physics of thermonuclear burning as well as the mass - radius relation for neutron stars, so its confirmation is crucial. I discuss recent attempts to confirm this hypothesis for 4U 1636-53, the source for which a signal at the putative fundamental (290 Hz) has been claimed.

  17. In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries

    E-Print Network [OSTI]

    Cui, Yi

    In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries Johanna Information ABSTRACT: Rechargeable lithium-sulfur (Li-S) batteries hold great potential for high of these batteries for commercial use. The two primary obstacles are the solubility of long chain lithium

  18. X-Ray Data from the X-Ray Data Booklet Online

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thompson, Albert C.; Attwood, David T.; Gullikson, Eric M.; Howells, Malcolm R.; Kortright, Jeffrey B.; Robinson, Arthur L.; Underwood, James H.; Kim, Kwang-Je; Kirz, Janos; Lindau, Ingolf; Pianetta, Piero; Winick, Herman; Williams, Gwyn P.; Scofield, James H.

    The original X-Ray Data Booklet, published in 1985, became a classic reference source. The online version has been significantly revised and updated to reflect today's science. Hundreds of pages of authoritative data provide the x-ray properties of elements, information on synchrotron radiation, scattering processes, optics and detectors, and other related calculations, formulas, and data tables.

  19. R&D for a Soft X-Ray Free Electron Laser Facility

    E-Print Network [OSTI]

    Staples, John

    2009-01-01T23:59:59.000Z

    wavelength seed, and ultrafast pulses. Understanding gainedlasers to produce ultrafast x-ray pulses at the ALS in a “is home to the PULSE Institute for ultrafast energy science,

  20. X-ray imaging with monochromatic and small focal spot size sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of x-ray energy and intensity (under investigation) Measurements at the Elettra (Trieste) synchrotron Edge Response Function at ATF * Spot size * He Pipe added * 10 7 10 8...

  1. Flat Quartz-Crystal X-ray Spectrometer for Nuclear Forensics Applications

    E-Print Network [OSTI]

    Goodsell, Alison

    2012-10-19T23:59:59.000Z

    structure. The higher energy background radiation was blocked from reaching the detector using a customized collimator and shielding system. A flat quartz-crystal x-ray spectrometer system was designed specifically to fit the constraints and requirements...

  2. A proposal for a generation of two-color ultra-short x-ray pulses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in this paper. II. Method The following conditions were assumed to be essential for a new proposal: a) photon energies for the first and the second x-ray pulses can be...

  3. SciTech Connect: Validations of Time-Resolved X-Ray Emissions...

    Office of Scientific and Technical Information (OSTI)

    Validations of Time-Resolved X-Ray Emissions Spectroscopy for Analysis of Mn-Based Natural and Artifical Sunlight-to-Energy Assemblies Citation Details In-Document Search Title:...

  4. 12.141 Electron Microprobe Analysis by Wavelength Dispersive X-ray Spectrometry, January (IAP) 2006

    E-Print Network [OSTI]

    Chatterjee, Nilanjan

    Introduction to the theory of x-ray microanalysis through the electron microprobe including ZAF matrix corrections. Techniques to be discussed are wavelength and energy dispersive spectrometry, scanning backscattered ...

  5. Quantitative Compositional Mapping of Core-Shell Polymer Microspheres by Soft X-ray Spectromicroscopy

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    of the radiation damage caused by the high-energy electron beams.17-19 Recently, analytical soft X-ray microscopy cannot always be sure whether features observed by electron (or optical) microscopy arise from chemical

  6. X-ray Properties of Low-Mass Pre-Main Sequence Stars in the Orion Trapezium Cluster

    E-Print Network [OSTI]

    Schulz, Norbert S; Guenther, Moritz; Testa, Paola; Canizares, Claude R

    2015-01-01T23:59:59.000Z

    The Chandra High Energy Transmission Gratings (HETG) Orion Legacy Project (HOLP) is the first comprehensive set of observations of a very young massive stellar cluster which provides high resolution X-ray spectra of very young stars over a wide mass range (0.7 - 2.3 Msun). In this paper, we focus on the six brightest X-ray sources with T Tauri stellar counterparts which are well-characterized at optical and infra-red wavelengths. All stars show column densities which are substantially smaller than expected from optical extinction indicating that the sources are located on the near side of the cluster with respect to the observer as well as that these stars are embedded in more dusty environments. Stellar X-ray luminosities are well above $10^{31}$ erg/s, in some cases exceeding $10^{32}$ erg/s for a substantial amount of time. The stars during these observations show no flares but are persistently bright. The spectra can be well fit with two temperature plasma components of 10 MK and 40 MK, of which the latte...

  7. Evidence Against BALS in the X-ray Bright QSO PG1416-129

    E-Print Network [OSTI]

    Paul J. Green; Thomas L. Aldcroft; Smita Mathur; Norbert Schartel

    1997-02-24T23:59:59.000Z

    Recent results from the ROSAT All Sky Survey, and from deep ROSAT pointings reveal that broad absorption line quasars (BALQSOs) are weak in the soft X-ray bandpass (with optical-to-X-ray spectral slope alpha_{ox}>1.8) in comparison to QSOs with normal OUV spectra (mean alpha_{ox}=1.4). One glaring exception appeared to be the nearby BALQSO PG1416-129, which is a bright ROSAT source showing no evidence for intrinsic soft X-ray absorption. We present here our new HST FOS spectrum of PG1416-129, in which we find no evidence for BALs. We show that the features resulting in the original BAL classification, based on IUE spectra, were probably spurious. On the basis of UV, X-ray and optical evidence, we conclude that PG1416-129, is not now, and has never been a BALQSO. Our result suggests that weak soft X-ray emission is a defining characteristic of true BALQSOs. If BALQSOs indeed harbor normal intrinsic spectral energy distributions, their observed soft X-ray weakness is most likely the result of absorption. The ubiquitous occurrence of weak soft X-ray emission with UV absorption (BALs) thus suggests absorbers in each energy regime that are physically associated, if not identical.

  8. Evaluating the Performance of a Commercial Silicon Drift Detector for X-ray Microanalysis

    SciTech Connect (OSTI)

    Kenik, Edward A [ORNL

    2011-01-01T23:59:59.000Z

    Silicon drift detectors (SDDs) are rapidly becoming the energy dispersive spectrometer (EDS) of choice, especially for scanning electron microscopy x-ray microanalysis. The complementary features of large active areas (i.e., high collection angle) and high count rate capability of these detector contribute to their popularity, as well as the absence of liquid nitrogen cooling and good energy resolution of these detectors. The performance of an EDAX Apollo 40 SDD on a JEOL 6500F SEM is discussed. The larger detector resulted in an significant increase (~3.5x) in geometric collection efficiency compared to the original 10mm2 Si(Li) detector that it replaced. The SEM can provide high beam currents (up to 200nA in some conditions) at small probe diameters. The high count rate capability of the SDD and the high current capability of the SEM compliment each other and provide excellent EDS analytical capabilities for both single point and spectrum imaging applications.

  9. Sandia Energy - High-Resolution Computational Algorithms for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Resolution Computational Algorithms for Simulating Offshore Wind Farms Home Stationary Power Energy Conversion Efficiency Wind Energy Offshore Wind High-Resolution...

  10. Frontiers in X-Ray Science

    SciTech Connect (OSTI)

    Linda Young

    2011-02-23T23:59:59.000Z

    The year 2010 marked the fiftieth anniversary of the optical laser and the first anniversary of the world's first hard x-ray free-electron laser, the Linac Coherent Light Source (LCLS) at SLAC. This exciting, new accelerator-based source of x-rays provides peak brilliances roughly a billion times greater than currently available from synchrotron sources such as the Advanced Photon Source at Argonne, and thus explores a qualitatively different parameter space. This talk will describe the first experiments at the LCLS aimed at understanding the nature of high intensity x-ray interactions, related applications in ultrafast imaging on the atomic scale and sketch nascent plans for the extension of both linac and storage-ring based photon sources.

  11. The X-ray/submillimetre link

    E-Print Network [OSTI]

    O. Almaini

    2000-01-07T23:59:59.000Z

    It is widely believed that most of the cosmic X-ray background (XRB) is produced by a vast, hitherto undetected population of obscured AGN. Deep X-ray surveys with Chandra and XMM will soon test this hypothesis. Similarly, recent sub-mm surveys with SCUBA have revealed an analogous population of exceptionally luminous, dust-enshrouded {\\em star-forming} galaxies at high redshift. There is now growing evidence for an intimate link between these obscured populations. There are currently large uncertainties in the models, but several independent arguments lead to the conclusion that a significant fraction of the SCUBA sources ($10-30% $) will contain quasars. Recent observational studies of SCUBA survey sources appear to confirm these predictions, although the relative roles of AGN and star-forming activity in heating the dust are unclear. Forthcoming surveys combining X-ray and sub-mm observations will provide a very powerful tool for disentangling these processes.

  12. X-ray atlas of rheumatic diseases

    SciTech Connect (OSTI)

    Dihlmann, W.

    1986-01-01T23:59:59.000Z

    This atlas comprises instructive X-rays of the various inflammatory rheumatic joint diseases in all stages at the extremities and the spinal column. In addition, the complex pattern of the wide range of arthroses, also known as degenerative rheumatic disease is included. Besides the instructive pointers to X-ray diagnosis, the book is also a guide to differential diagnosis. Hence, this book is actually an X-ray atlas of joint diseases in general. Selected Contents: Introduction: What Does ''Rheumatism'' Actually Mean./Radiographic Methodology in Rheumatic Diseases of the Locomotor System/The Mosaic of Arthritis/Adult Rheumatoid Arthritis/Seronegative Spondylarthritis/Classic Collagen Diseases/Enthesiopathies/Gout-Pseudogout

  13. X-ray reflectivity and surface roughness

    SciTech Connect (OSTI)

    Ocko, B.M.

    1988-01-01T23:59:59.000Z

    Since the advent of high brightness synchrotron radiation sources there has been a phenomenal growth in the use of x-rays as a probe of surface structure. The technique of x-ray reflectivity is particularly relevant to electrochemists since it is capable of probing the structure normal to an electrode surface in situ. In this paper the theoretical framework for x-ray reflectivity is reviewed and the results from previous non-electrochemistry measurements are summarized. These measurements are from the liquid/air interface (CCl/sub 4/), the metal crystal vacuum interface (Au(100)), and from the liquid/solid interface(liquid crystal/silicon). 34 refs., 5 figs.

  14. LCLS - The X-ray Laser Has Turned On

    SciTech Connect (OSTI)

    Bergmann, Uwe (Linac Coherent Light Source) [Linac Coherent Light Source

    2010-11-03T23:59:59.000Z

    On April 10, 2009 the Linac Coherent Light Source (LCLS), the world's first hard x-ray free electron laser, was brought to lasing. Producing an x-ray beam with over a billion times higher peak brightness that then most powerful existing syncrotron sources, it marked the beginning of a new era of science. The LCLS pulses arrive at a rate of 60 - 120 Hz in an energy range from 480 eV to 10 keV, with pulse lengths as short as a few fs to about 300 fs. Since October 2009, users have been performing experiments at the LCLS, and currently three of the six planned instruments are available. Although we stand only at the beginning of LCLS science, there is no doubt about the strong sense of early excitement.

  15. Relativistic Effects on Reflection X-ray Spectra of AGN

    SciTech Connect (OSTI)

    Lee, Khee-Gan; /University Coll. London; Fuerst, Steven V.; /KIPAC, Menlo Park; Brandwardi-Raymond, Graziella; Wu, Kinwah; Crowley, Oliver; /University Coll. London

    2007-01-05T23:59:59.000Z

    We have calculated the reflection component of the X-ray spectra of active galactic nuclei (AGN) and shown that they can be significantly modified by the relativistic motion of the accretion flow and various gravitational effects of the central black hole. The absorption edges in the reflection spectra suffer severe energy shifts and smearing. The degree of distortion depends on the system parameters, and the dependence is stronger for some parameters such as the inner radius of the accretion disk and the disk viewing inclination angles. The relativistic effects are significant and are observable. Improper treatment of the reflection component of the X-ray continuum in spectral fittings will give rise to spurious line-like features, which will mimic the fluorescent emission lines and mask the relativistic signatures of the lines.

  16. Hard X-ray observations of Cygnus X-1 with the Miso telescope

    SciTech Connect (OSTI)

    Perotti, F.; Della Ventura, A.; Villa, G.

    1984-01-01T23:59:59.000Z

    The black hole candidate Cygnus X-1 was observed in the hard X-ray - soft gamma-ray energy range by the Miso telescope on two different occasions: in September 1979 and May 1980. Two hard X-ray states of the source have beem measured: in 1979 the observed spectrum confirms the superlow state measured in the same period by the HEAO-3 satellite, while in 1980 the Miso X-ray data are consistent with the so-called low state of Cygnus X-1. In both occasions, no gamma-ray excess has been observed above 200 keV. 9 references.

  17. Cumulative luminosity functions of the X-ray point source population in M31

    E-Print Network [OSTI]

    L. Shaw Greening; C. Tonkin; R. Barnard; U. Kolb; J. P. Osborne

    2005-09-20T23:59:59.000Z

    We present preliminary results from a detailed analysis of the X-ray point sources in the XMM-Newton survey of M31. These sources are expected to be mostly X-ray binaries. We have so far studied 225 of the 535 sources found by automated source detection. Only sources which were present in all three EPIC images were considered. X-ray binaries are identified by their energy spectrum and power density spectrum. Unlike in other surveys we have obtained source luminosities from freely fit emission models. We present uncorrected luminosity functions of the sources analysed so far.

  18. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more toConsensusX-RayX-Ray Imaging ofX-Ray

  19. Resolving the Hard X-ray Emission of GX 5-1 with INTEGRAL

    E-Print Network [OSTI]

    A. Paizis; K. Ebisawa; T. Tikkanen; J. Rodriguez; J. Chenevez; E. Kuulkers; O. Vilhu; T. J. -L. Courvoisier

    2005-07-15T23:59:59.000Z

    We present the study of one year of INTEGRAL data on the neutron star low mass X-ray binary GX 5-1. Thanks to the excellent angular resolution and sensitivity of INTEGRAL, we are able to obtain a high quality spectrum of GX 5-1 from ~5 keV to ~100 keV, for the first time without contamination from the nearby black hole candidate GRS 1758-258 above 20 keV. During our observations, GX 5-1 is mostly found in the horizontal and normal branch of its hardness intensity diagram. A clear hard X-ray emission is observed above ~30 keV which exceeds the exponential cut-off spectrum expected from lower energies. This spectral flattening may have the same origin of the hard components observed in other Z sources as it shares the property of being characteristic to the horizontal branch. The hard excess is explained by introducing Compton up-scattering of soft photons from the neutron star surface due to a thin hot plasma expected in the boundary layer. The spectral changes of GX 5-1 downward along the "Z" pattern in the hardness intensity diagram can be well described in terms of monotonical decrease of the neutron star surface temperature. This may be a consequence of the gradual expansion of the boundary layer as the mass accretion rate increases.

  20. Synchrotron-based X-ray fluorescence imaging and elemental mapping from biological samples

    SciTech Connect (OSTI)

    D Rao; M Swapna; R Cesareo; A Brunetti; T Akatsuka; T Yuasa; T Takeda; G Gigante

    2011-12-31T23:59:59.000Z

    The present study utilized the new hard X-ray microspectroscopy beamline facility, X27A, available at NSLS, BNL, USA, for elemental mapping. This facility provided the primary beam in a small spot of the order of {approx}10 {mu}m, for focussing. With this spatial resolution and high flux throughput, the synchrotron-based X-ray fluorescent intensities for Mn, Fe, Zn, Cr, Ti and Cu were measured using a liquid-nitrogen-cooled 13-element energy-dispersive high-purity germanium detector. The sample is scanned in a 'step-and-repeat' mode for fast elemental mapping measurements and generated elemental maps at 8, 10 and 12 keV, from a small animal shell (snail). The accumulated trace elements, from these biological samples, in small areas have been identified. Analysis of the small areas will be better suited to establish the physiology of metals in specific structures like small animal shell and the distribution of other elements.