Powered by Deep Web Technologies
Note: This page contains sample records for the topic "x-ray energy resolution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Polarization Dependent High Energy Resolution X-ray Absorption Study of Dicesium Uranyl Tetrachloride  

Science Journals Connector (OSTI)

Tonya Vitova *†, Jennifer C. Green ‡, Robert G. Denning ‡, Matthias Löble †, Kristina Kvashnina §, Joshua J. Kas ?, Kevin Jorissen ?, John J. Rehr ?, Thomas Malcherek ?, and Melissa A. Denecke † ... This study confirms theoretically predicted electronic transitions to U 6dxy (6d?) orbital and measures relative energies of U 5f?, 5f?, 5f?, and 5f? orbitals of oriented uranyl (UVIO22+) in the same spectrum with remarkable energy resolution. ... We have obtained angle-resolved electronic structure information for oriented Cs2UO2Cl4 crystal, specifically relative energies of 5f and 6d valence orbitals probed with extraordinary energy resolution by polarization dependent high energy resolution X-ray absorption near edge structure (PD-HR-XANES) and compare these with predictions from quantum chemical Amsterdam density functional theory (ADF) and ab initio real space multiple-scattering Green’s function based FEFF codes. ...

Tonya Vitova; Jennifer C. Green; Robert G. Denning; Matthias Löble; Kristina Kvashnina; Joshua J. Kas; Kevin Jorissen; John J. Rehr; Thomas Malcherek; Melissa A. Denecke

2014-12-08T23:59:59.000Z

2

High energy resolution inelastic x-ray scattering at the SRI-CAT  

SciTech Connect

This report is a combination of vugraphs and two papers. The vugraphs give information on the beamline at the APS for IXS and the science addressable by IXS. They also cover the 10 milli-eV resolution spectrometer and the 200 milli-eV resolution spectrometer. The first paper covers the performance of the focusing Ge(444) backscattering analyzers for the inelastic x-ray scattering. The second paper discusses inelastic x-ray scattering from TiC and Ti single crystals.

Macrander, A.T.

1996-08-01T23:59:59.000Z

3

Multiple Crystal Cavities for Unlimited X-ray Energy Resolution and  

NLE Websites -- All DOE Office Websites (Extended Search)

An Intriguing Twist in the Structure of a Cobalt Oxide Catalyst An Intriguing Twist in the Structure of a Cobalt Oxide Catalyst Breaking Records in Neurological Microradiology Exposing Valence-Bond Model Inadequacies Plants' Rapid Response System Revealed Rewriting the Organofluorine Playbook Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Multiple Crystal Cavities for Unlimited X-ray Energy Resolution and Coherence AUGUST 21, 2012 Bookmark and Share Fabry-Perot resonance spectra (right) of a single-cavity resonator, two cascaded resonators, and a monolithic two-cavity resonator, respectively. Note the significant background of T1 as the Bragg reflectivity from a 10-μm diamond plate is only 59%. By comparison, spectra T2 and T3 are very

4

Sapphire analyzers for high-resolution x-ray spectroscopy.  

SciTech Connect

We present a sapphire (Al{sub 2}O{sub 3}) analyzer for high-resolution X-ray spectroscopy with 31-meV energy resolution. The analyzer is designed for resonant inelastic X-ray scattering (RIXS) measurements at the CuK{sub a} absorption edge near 8990 eV. The performance of the analyzer is demonstrated by measuring phonon excitations in beryllium because of its known dynamical structure and high counting rates.

Yavas, H.; Alp, E.; Sinn, H.; Alatas, A.; Said, A.; Shvydko, Y.; Toellner, T.; Khachatryan, R.; Billinge, S.; Hasan, Z.; Sturhahn, W.; Michigan State Univ.; Princeton Univ.; DESY

2007-11-11T23:59:59.000Z

5

Photon Sciences | Beamlines | SRX: Submicron Resolution X-ray Spectroscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

SRX: Submicron Resolution X-ray Spectroscopy SRX: Submicron Resolution X-ray Spectroscopy Poster | Fact Sheet | Preliminary Design Report Scientific Scope Scientific communities such as environmental sciences, life sciences, and material sciences have identified the need to develop analytical resources to advance the understanding of complex natural and engineered systems that are heterogeneous on the micron to nanometer scale. These needs for high intensity x-ray nanoprobes resulted in the commitment of the NSLS-II Project to build the Submicron Resolution X-ray (SRX) Spectroscopy beamline showing a unique combination of high spectral resolution over a very broad energy range and very high beam intensity in a sub-micrometer spot. NSLS-II will provide one of the best sources in the world for such an instrument.

6

High energy resolution hard X-ray and gamma-ray imagers using CdTe diode devices  

E-Print Network (OSTI)

We developed CdTe double-sided strip detectors (DSDs or cross strip detectors) and evaluated their spectral and imaging performance for hard X-rays and gamma-rays. Though the double-sided strip configuration is suitable for imagers with a fine position resolution and a large detection area, CdTe diode DSDs with indium (In) anodes have yet to be realized due to the difficulty posed by the segmented In anodes. CdTe diode devices with aluminum (Al) anodes were recently established, followed by a CdTe device in which the Al anodes could be segmented into strips. We developed CdTe double-sided strip devices having Pt cathode strips and Al anode strips, and assembled prototype CdTe DSDs. These prototypes have a strip pitch of 400 micrometer. Signals from the strips are processed with analog ASICs (application specific integrated circuits). We have successfully performed gamma-ray imaging spectroscopy with a position resolution of 400 micrometer. Energy resolution of 1.8 keV (FWHM: full width at half maximum) was ob...

Watanabe, Shin; Aono, Hiroyuki; Takeda, Shin'ichiro; Odaka, Hirokazu; Kokubun, Motohide; Takahashi, Tadayuki; Nakazawa, Kazuhiro; Tajima, Hiroyasu; Onishi, Mitsunobu; Kuroda, Yoshikatsu

2008-01-01T23:59:59.000Z

7

High energy resolution hard X-ray and gamma-ray imagers using CdTe diode devices  

E-Print Network (OSTI)

We developed CdTe double-sided strip detectors (DSDs or cross strip detectors) and evaluated their spectral and imaging performance for hard X-rays and gamma-rays. Though the double-sided strip configuration is suitable for imagers with a fine position resolution and a large detection area, CdTe diode DSDs with indium (In) anodes have yet to be realized due to the difficulty posed by the segmented In anodes. CdTe diode devices with aluminum (Al) anodes were recently established, followed by a CdTe device in which the Al anodes could be segmented into strips. We developed CdTe double-sided strip devices having Pt cathode strips and Al anode strips, and assembled prototype CdTe DSDs. These prototypes have a strip pitch of 400 micrometer. Signals from the strips are processed with analog ASICs (application specific integrated circuits). We have successfully performed gamma-ray imaging spectroscopy with a position resolution of 400 micrometer. Energy resolution of 1.8 keV (FWHM: full width at half maximum) was obtained at 59.54 keV. Moreover, the possibility of improved spectral performance by utilizing the energy information of both side strips was demonstrated. We designed and fabricated a new analog ASIC, VA32TA6, for the readout of semiconductor detectors, which is also suitable for DSDs. A new feature of the ASIC is its internal ADC function. We confirmed this function and good noise performance that reaches an equivalent noise charge of 110 e- under the condition of 3-4 pF input capacitance.

Shin Watanabe; Shin-nosuke Ishikawa; Hiroyuki Aono; Shin'ichiro Takeda; Hirokazu Odaka; Motohide Kokubun; Tadayuki Takahashi; Kazuhiro Nakazawa; Hiroyasu Tajima; Mitsunobu Onishi; Yoshikatsu Kuroda

2008-11-04T23:59:59.000Z

8

High energy resolution five-crystal spectrometer for high quality fluorescence and absorption measurements on an x-ray absorption spectroscopy beamline  

SciTech Connect

Fluorescence detection is classically achieved with a solid state detector (SSD) on x-ray absorption spectroscopy (XAS) beamlines. This kind of detection however presents some limitations related to the limited energy resolution and saturation. Crystal analyzer spectrometers (CAS) based on a Johann-type geometry have been developed to overcome these limitations. We have tested and installed such a system on the BM30B/CRG-FAME XAS beamline at the ESRF dedicated to the structural investigation of very dilute systems in environmental, material and biological sciences. The spectrometer has been designed to be a mobile device for easy integration in multi-purpose hard x-ray synchrotron beamlines or even with a laboratory x-ray source. The CAS allows to collect x-ray photons from a large solid angle with five spherically bent crystals. It will cover a large energy range allowing to probe fluorescence lines characteristic of all the elements from Ca (Z = 20) to U (Z = 92). It provides an energy resolution of 1-2 eV. XAS spectroscopy is the main application of this device even if other spectroscopic techniques (RIXS, XES, XRS, etc.) can be also achieved with it. The performances of the CAS are illustrated by two experiments that are difficult or impossible to perform with SSD and the complementarity of the CAS vs SSD detectors is discussed.

Llorens, Isabelle [CEA/DSM/INAC/SP2M/NRS, F-38054 Grenoble cedex 9 (France); Synchrotron SOLEIL - MARS beamline, L'Orme des Merisiers, F-91192 Gif sur Yvette (France); Lahera, Eric; Delnet, William; Proux, Olivier [Observatoire des Sciences de l'Univers de Grenoble, UMS 832 CNRS Universite Joseph Fourier, F-38041 Grenoble cedex 9 (France); BM30B/FAME beamline, ESRF, F-38043 Grenoble cedex 9 (France); Braillard, Aurelien; Hazemann, Jean-Louis; Prat, Alain; Testemale, Denis [BM30B/FAME beamline, ESRF, F-38043 Grenoble cedex 9 (France); Institut Neel, UPR 2940 CNRS, F-38042 Grenoble cedex 9 (France); Dermigny, Quentin; Gelebart, Frederic; Morand, Marc; Shukla, Abhay [Institut de Mineralogie et de Physique des Milieux Condenses, UMR 7590, 4 place Jussieu, F-75005 Paris (France); Bardou, Nathalie [Laboratoire de Photonique et de Nanostructures, UPR 20 CNRS, Route de Nozay, F-91460 Marcoussis (France); Ulrich, Olivier [CEA/DSM/INAC/SP2M/NRS, F-38054 Grenoble cedex 9 (France); BM32/IF beamline, ESRF, F-38043 Grenoble cedex 9 (France); Arnaud, Stephan; Berar, Jean-Francois; Boudet, Nathalie; Caillot, Bernard [Institut Neel, UPR 2940 CNRS, F-38042 Grenoble cedex 9 (France); BM02/D2AM beamline, ESRF, F-38043 Grenoble cedex 9 (France); Chaurand, Perrine; Rose, Jerome [Centre Europeen de Recherche et d'Enseignement des Geosciences de l'Environnement, UMR 7730, F-13545 Aix en Provence (France); and others

2012-06-15T23:59:59.000Z

9

High-quality quartz single crystals for high-energy-resolution inelastic X-ray scattering analyzers  

Science Journals Connector (OSTI)

High-quality quartz (-SiO2) crystals are characterized, and their use for inelastic X-ray scattering analyzers is presented and discussed.

H?nnicke, M.G.

2013-06-07T23:59:59.000Z

10

High energy resolution five-crystal spectrometer for high quality fluorescence and absorption measurements on an X-ray Absorption  

E-Print Network (OSTI)

-ray photons from a large solid angle with five spherically bent crystals. It will cover a large energy rangeHigh energy resolution five-crystal spectrometer for high quality fluorescence and absorption however presents some limitations related to the limited energy resolution and saturation. Crystal

Paris-Sud XI, Université de

11

A Laboratory-based Hard X-ray Monochromator for High-Resolution X-ray Emission Spectroscopy and X-ray Absorption Near Edge Structure Measurements  

E-Print Network (OSTI)

We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low poer x-ray (bremsstrahlung) tube source, a spherically-bent crystal analyzer (SBCA), and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of 5 keV to 10 keV while also dmeonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy (XES) comparable to those achived at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure (XANES), the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-powered line-foc...

Seidler, G T; Remesnik, A J; Pacold, J I; Ball, N A; Barry, N; Styczinski, M; Hoidn, O R

2014-01-01T23:59:59.000Z

12

High resolution collimator system for X-ray detector  

DOE Patents (OSTI)

High resolution in an X-ray computerized tomography (CT) inspection system is achieved by using a collimator/detector combination to limit the beam width of the X-ray beam incident on a detector element to the desired resolution width. In a detector such as a high pressure Xenon detector array, a narrow tapered collimator is provided above a wide detector element. The collimator slits have any desired width, as small as a few mils at the top, the slit width is easily controlled, and they are fabricated on standard machines. The slit length determines the slice thickness of the CT image.

Eberhard, Jeffrey W. (Schenectady, NY); Cain, Dallas E. (Scotia, NY)

1987-01-01T23:59:59.000Z

13

High-Resolution X-ray Imaging of the Colliding Wind Shock in WR147  

E-Print Network (OSTI)

We analyze new high-resolution Chandra X-ray images of the Wolf-Rayet binary system WR147. This system contains a WN8 star with an early-type companion located 0.6'' to its north, and is the only known early-type binary with a separation on the sky large enough for the wind-wind collision between the stars to currently be resolved at X-ray energies. The 5 ksec Chandra HRC-I image provides the first direct evidence for spatially extended X-ray emission in an early-type binary system. The X-ray emission peaks close to the position of the radio bow shock and north of the WN8 star. A deeper X-ray image is needed to accurately determine the degree of spatial extension, to exactly align the X-ray and optical/radio frames, and to determine whether part of the detected X-ray emission arises in the individual stellar winds. Simulated X-ray images of the wind-wind collision have a FWHM consistent with the data, and maximum likelihood fits suggest that a deeper observation may also constrain the inclination and wind momentum ratio of this system. However, as the WR wind dominates the colliding wind X-ray emission it appears unlikely that the mass-loss rate and the terminal velocity of the companion wind can be separately determined from X-ray observations. We also note an inconsistency between numerical and analytical estimates of the X-ray luminosity ratio of the stronger and weaker wind components, and conclude that the analytical results are in error.

J. M. Pittard; I. R. Stevens; P. M. Williams; A. M. T. Pollock; S. L. Skinner; M. F. Corcoran; A. F. J. Moffat

2002-04-12T23:59:59.000Z

14

TENDER ENERGY X-RAY ABSORPTION  

NLE Websites -- All DOE Office Websites (Extended Search)

TENDER ENERGY X-RAY ABSORPTION TENDER ENERGY X-RAY ABSORPTION SPECTROSCOPY (TES) Project Team: S. Bare 1,2 , J. Brandes 3 , T. Buonassisi 4 , J. Chen 5,2 , M. Croft 6 , E. DiMasi 7 , A. Frenkel 8,2 , D. Hesterberg 9 , S. Hulbert 7,2 , S. Khalid 7 , S. Myneni 10 , P. Northrup 7,11 , E.T. Rasbury 11 , B. Ravel 12 , R. Reeder 11 , J. Rodriguez 7,2 , D. Sparks 5,13 , V. Stojanoff 7 , G. Waychunas 14 1 UOP LLC, 2 Synchrotron Catalysis Consortium, 3 Skidaway Inst. of Oceanography, 4 MIT Laboratory for Photovoltaics Research, 5 Univ. of Delaware, 6 Rutgers Univ., 7 Brookhaven National Lab, 8 Yeshiva Univ., 9 North Carolina State Univ., 10 Princeton Univ., 11 Stony Brook Univ., 12 NIST, 13 Delaware Environmental Inst., 14 Lawrence Berkeley National Lab TECHNIQUES: High performance and in-situ X-ray absorption spectroscopy and spatially-resolved XAS of

15

Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas  

SciTech Connect

A new imaging high resolution x-ray crystal spectrometer (XCS) has been developed to measure continuous profiles of ion temperature and rotation velocity in fusion plasmas. Following proof-of-principle tests on the Alcator C-Mod tokamak and the NSTX spherical tokamak, and successful testing of a new silicon, pixilated detector with 1 MHz count rate capability per pixel, an imaging XCS is being designed to measure full profiles of Ti and v? on C-Mod. The imaging XCS design has also been adopted for ITER. Ion-temperature uncertainty and minimum measurable rotation velocity are calculated for the C-Mod spectrometer. The affects of x-ray and uclear-radiation background on the measurement uncertainties are calculated to predict performance on ITER.

Hill, K W; Broennimann, Ch; Eikenberry, E F; Ince-Cushman, A; Lee, S G; Rice, J E; Scott, S

2008-01-29T23:59:59.000Z

16

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution  

NLE Websites -- All DOE Office Websites (Extended Search)

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print Wednesday, 31 August 2005 00:00...

17

The Road to Ultrahigh-Resolution X-ray Spectrometers | Advanced Photon  

NLE Websites -- All DOE Office Websites (Extended Search)

How Atoms Behave: Characteristics of Microstructural Avalanches How Atoms Behave: Characteristics of Microstructural Avalanches Iodate Refuses to Intimidate Creating the Heart of a Planet in the Heart of a Gem How a Powerful Antibody Neutralizes HIV Taking a Page from Nature to Build Better Nanomaterials Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed The Road to Ultrahigh-Resolution X-ray Spectrometers NOVEMBER 22, 2011 Bookmark and Share Basic phenomena underlying the AD&AT x-ray optics. In x-ray Bragg diffraction from atomic planes composing nonzero angle η to the crystal entrance face, the crystal acts (a) like an optical prism dispersing the photons into a divergent x-ray fan with photons of different energies E

18

Final report: high resolution lensless 3D imaging of nanostructures with coherent x-rays  

SciTech Connect

Final report on the project "High resolution lensless 3D imaging of nanostructures with coherent x-rays"

Jacobsen, Chris

2014-12-07T23:59:59.000Z

19

Chest x-Rays | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chest x-Rays Chest x-Rays Chest x-Rays Chest X-ray B-Reading The B-reading is a special reading of a standard chest x-ray film performed by a physician certified by the National Institute for Occupational Safety and Health (NIOSH). The reading looks for changes on the chest x-ray that may indicate exposure and disease caused by agents such as asbestos or silica. The B-reading is considered a special reading because doctors who are certified by NIOSH to perform B-readings use a specific protocol to read and record the findings as developed by the International Labour Organization (ILO). The ILO's protocol provides rules for systematically examining the x-ray in a step-by-step method and recording certain abnormalities or changes on the chest x-ray that can be attributable to

20

A high-resolution large-acceptance analyzer for X-ray fluorescence and Raman spectroscopy  

SciTech Connect

A newly designed multi-crystal X-ray spectrometer and its applications in the fields of X-ray fluorescence and X-ray Raman spectroscopy are described. The instrument is based on 8 spherically curved Si crystals, each with a 3.5 inch diameter form bent to a radius of 86 cm. The crystals are individually aligned in the Rowland geometry capturing a total solid angle of 0.07 sr. The array is arranged in a way that energy scans can be performed by moving the whole instrument, rather than scanning each crystal by itself. At angles close to back scattering the energy resolution is between 0.3 and 1 eV depending on the beam dimensions at the sample. The instrument is mainly designed for X-ray absorption and fluorescence spectroscopy of transition metals in dilute systems such as metalloproteins. First results of the Mn K{beta} (3p -> 1s) emission in photosystem II are shown. An independent application of the instrument is the technique of X-ray Raman spectroscopy which can address problems similar to those in traditional soft X-ray absorption spectroscopies, and initial results are presented.

Bergmann, Uwe; Cramer, Stephen P.

2001-08-02T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray energy resolution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

High Resolution X-Ray Scattering at Sector 3, Advanced Photon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sector 3 Beamlines Staff Publications Conferences IXN group Sector 3 : High Resolution X-ray Scattering Sector 3 is operated by the Inelastic X-ray Nuclear Resonant Scattering...

22

Modeling the high resolution X-ray spectra from the relativistic jets of the X-ray binary SS 433  

E-Print Network (OSTI)

We test the physical model of the relativistic jets in the galactic X-ray binary SS 433 that was proposed by Marshall et al. 2002 (Paper I) using additional observations from the Chandra High Energy Transmission Grating ...

Lopez, Laura Ann, 1982-

2004-01-01T23:59:59.000Z

23

A versatile medium-resolution x-ray emission spectrometer for diamond anvil cell applications  

SciTech Connect

We present design and performance details for a polycapillary-coupled x-ray spectrometer that provides very high collection efficiency at a moderate energy resolution suitable for many studies of nonresonant x-ray emission spectroscopy, especially for samples of heavy elements under high pressures. Using a single Bragg analyzer operating close to backscattering geometry so as to minimize the effect of the weak divergence of the quasicollimated exit beam from the polycapillary optic, this instrument can maintain a typical energy resolution of 5 eV over photon energies from 5 keV to 10 keV. We find dramatically improved count rates as compared to a traditional higher-resolution instrument based on a single spherically bent crystal analyzer.

Mortensen, D. R.; Seidler, G. T. [Physics Department, University of Washington, Seattle, Washington 98195-1560 (United States)] [Physics Department, University of Washington, Seattle, Washington 98195-1560 (United States); Bradley, J. A.; Lipp, M. J.; Evans, W. J. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Chow, P.; Xiao, Y.-M.; Boman, G. [HPCAT, Carnegie Institution of Washington, Argonne, Illinois 60439 (United States)] [HPCAT, Carnegie Institution of Washington, Argonne, Illinois 60439 (United States); Bowden, M. E. [Pacific Northwest National Laboratory, Richland, Washington 99354 (United States)] [Pacific Northwest National Laboratory, Richland, Washington 99354 (United States)

2013-08-15T23:59:59.000Z

24

Optimization of <= 200 um pitch CZT detectors for future high-resolution X-ray instrumentation in astrophysics  

E-Print Network (OSTI)

Cadmium Zinc Telluride and Cadmium Telluride are the detector materials of choice for the detection of X-rays in the X-ray energy band E >= 5keV with excellent spatial and spectral resolution and without cryogenic cooling. Owing to recent breakthroughs in grazing incidence mirror technology, next-generation hard X-ray telescopes will achieve angular resolution between 5 and 10 arc seconds - about an order of magnitude better than that of the NuSTAR hard X-ray telescope. As a consequence, the next generation of X-ray telescopes will require pixelated X-ray detectors with pixels on a grid with a lattice constant of energy threshold of less than 5keV and an energy resolution of less than one keV. The science drivers for a high angular-resolution X-ray mission include studies and measurements of black hole spins, the cosmic evolution of super-massive black holes, active galactic nuclei feedback, and the behaviour of matter at very high densities. In this...

Zajczyk, Anna; Dowkontt, Paul; Guo, Qingzhen; Kislat, Fabian; Krawczynski, Henric; De Geronimo, Gianluigi; Li, Shaorui; Beilicke, Matthias

2015-01-01T23:59:59.000Z

25

A Novel High-Resolution Alignment Technique for XFEL Using Undulator X-ray Beams  

E-Print Network (OSTI)

1 A Novel High-Resolution Alignment Technique for XFEL Using Undulator X-ray Beams Bingxin Yang Abstract We propose a novel alignment technique utilizing the x-ray beam of an undulator in conjunction a stable and reproducible x-ray beam axis (XBA). Targets are precisely positioned on the XBA using

Kemner, Ken

26

Ris-M-2751 X-Ray Energy Dispersive  

E-Print Network (OSTI)

(PHOT) k«V 50 Risø National Laboratory, DK-4000 Roskilde, Denmark October 1988 #12;Ris*-M-2751 X-ray energy is impinging on the sample (Fig. lb). Its wavelength (photon energy) is in the course of measurements changedm ii. S Risø-M-2751 X-Ray Energy Dispersive Diffraction Lecture Notes Bronislaw Buras BaKo 30 40 E

27

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution  

NLE Websites -- All DOE Office Websites (Extended Search)

New Zone Plate for Soft X-Ray New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print Wednesday, 31 August 2005 00:00 Analytical tools that combine spatial resolution with elemental and chemical identification at the nanometer scale along with large penetration depth are indispensable for the life and physical sciences. The XM-1 soft x-ray microscope at the ALS produces images that not only reveal structures but can identify their chemical elements and measure magnetic and other properties as well. Now a new method for creating optical devices with nanoscale accuracy has allowed researchers in Berkeley Lab's Center for X-Ray Optics (CXRO), which built and operates the XM-1, to achieve an extraordinary resolution of better than 15 nm, with the promise of even higher resolution in the near future.

28

The High Resolution X-Ray Imaging Detector Planes for the MIRAX Mission  

E-Print Network (OSTI)

The MIRAX X-ray observatory, the first Brazilian-led astrophysics space mission, is designed to perform an unprecedented wide-field, wide-band hard X-ray (5-200 keV) survey of Galactic X-ray transient sources. In the current configuration, MIRAX will carry a set of four coded-mask telescopes with high spatial resolution Cadmium Zinc Telluride (CZT) detector planes, each one consisting of an array of 64 closely tiled CZT pixelated detectors. Taken together, the four telescopes will have a total detection area of 959 cm^2, a large field of view (60x60 degrees FWHM), high angular resolution for this energy range (6 arcmin) and very good spectral resolution (~2 keV @ 60 keV). A stratospheric balloon-borne prototype of one of the MIRAX telescopes has been developed, tested and flown by the Harvard-Smithsonian Center for Astrophysics (CfA) as part of the ProtoEXIST program. In this paper we show results of validation and calibration tests with individual CZT detectors of the ProtoEXIST second generation experiment ...

Rodrigues, Barbara H G; Allen, Branden; Hong, Jaesub; Barthelmy, Scott; Braga, Joao; D'Amico, Flavio; Rothschild, Richard E

2013-01-01T23:59:59.000Z

29

Polarization Entangled Photons at X-Ray Energies  

E-Print Network (OSTI)

We show that polarization entangled photons at x-ray energies can be generated via spontaneous parametric down conversion. Each of the four Bell states can be generated by choosing the angle of incidence and polarization of the pumping beam.

S. Shwartz; S. E. Harris

2010-12-16T23:59:59.000Z

30

Exploring electronic structure through high-resolution hard x-ray  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploring electronic structure through high-resolution hard x-ray Exploring electronic structure through high-resolution hard x-ray spectroscopies Tuesday, July 23, 2013 - 11:00am SLAC, Conference Room 137-322 Presented by Dimosthenis Sokaras, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory Modern high brilliance beamlines coupled with recent advances in hard-x-ray optics are establishing high-resolution hard x-ray spectroscopies as a powerful analytical tool for routine electronic structure investigations. Their advantageous characteristics like the chemical sensitivity or the hard x-rays penetration depth, that permits the implementation of difficult sample environments, expand the applicability of the relevant studies to multidisciplinary scientific fields. Simultaneously, the experimental

31

Monochromatic x-ray radiography for areal-density measurement of inertial fusion energy fuel in fast ignition experiment  

SciTech Connect

Ultrafast, two-dimensional x-ray imaging is an important diagnostics for the inertial fusion energy research, especially in investigating implosion dynamics at the final stage of the fuel compression. Although x-ray radiography was applied to observing the implosion dynamics, intense x-rays emitted from the high temperature and dense fuel core itself are often superimposed on the radiograph. This problem can be solved by coupling the x-ray radiography with monochromatic x-ray imaging technique. In the experiment, 2.8 or 5.2 keV backlight x-rays emitted from laser-irradiated polyvinyl chloride or vanadium foils were selectively imaged by spherically bent quartz crystals with discriminating the out-of-band emission from the fuel core. This x-ray radiography system achieved 24 {mu}m and 100 ps of spatial and temporal resolutions, respectively.

Fujioka, Shinsuke; Fujiwara, Takashi; Tanabe, Minoru; Nishimura, Hiroaki; Nagatomo, Hideo; Ohira, Shinji; Shiraga, Hiroyuki; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita Osaka, 565-0871 (Japan); Inubushi, Yuichi [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

2010-10-15T23:59:59.000Z

32

Variation of Q with energy in mosaic analyzers for inelastic x-ray measurements  

SciTech Connect

Curved mosaic graphite analyzers have been used for many years for inelastic scattering measurements with both conventional x-ray sources as well as synchrotron sources (1). The trend in recent years has been to use spherically bent perfect crystal analyzers to collect large solid angles with high energy resolution. Although, these spherical analyzers achieve excellent energy resolution, the large solid angle limits the Q resolution. For cylindrically bent mosaic graphite, it is possible to obtain good energy and Q resolution simultaneously, while maintaining a large solid angle by collecting a range of energies dispersed along a linear position detector. However, if the mosaic spread of the crystal is less than the acceptance angle subtended in the scattering plane, the energy spectrum from a mosaic analyzer as collected in a linear detector will have Q varying with energy. The resolution and the variation in Q with energy along a linear detector are discussed in relation to inelastic x-ray scattering measurements.

Tischler, J. Z.; Larson, B. C. [Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6030 (United States); Zschack, Paul [Univ. of Illinois, UNICAT, Bldg. 438D, Argonne National Lab., Argonne, Illinois 60439-4863 (United States)

1997-07-01T23:59:59.000Z

33

Observation of correlated X-ray scattering at atomic resolution  

Science Journals Connector (OSTI)

...order, such as proteins in solution...to study such disordered matter. The...X-rays from an ensemble of identical...signal from an ensemble in three dimensions...experiments on disordered ensembles-such as proteins in solution-may...

2014-01-01T23:59:59.000Z

34

High-resolution imaging with soft x-rays  

Science Journals Connector (OSTI)

...concave surface of the larger mirror, where a second reflection...the surface of the spherical mirrors is the main limitation, and...achievable and will permit a Schwarzschild x-ray microscope to have...be able to test spherical mirrors to within 6 angstroms by next...

AL Robinson

1982-01-08T23:59:59.000Z

35

The high resolution X-ray imaging detector planes for the MIRAX mission  

Science Journals Connector (OSTI)

The MIRAX X-ray observatory, the first Brazilian-led astrophysics space mission, is designed to perform an unprecedented wide-field, wide-band hard X-ray (5–200 keV) survey of Galactic X-ray transient sources. In the current configuration, MIRAX will carry a set of four coded-masks telescopes with high spatial resolution Cadmium Zinc Telluride (CZT) detector planes, each one consisting of an array of 64 closely tiled CZT pixelated detectors. Taken together, the four telescopes will have a total detection area of 959 cm2, a large field of view (60° ? 60° FWHM), high angular resolution for this energy range (6 arcmin) and very good spectral resolution ( ~ 2 keV @ 60 keV). A stratospheric balloon-borne prototype of one of the MIRAX telescopes has been developed, tested and flown by the Harvard-Smithsonian Center for Astrophysics (CfA) as part of the ProtoEXIST program. In this paper we show results of validation and calibration tests with individual CZT detectors of the ProtoEXIST second generation experiment (P2). Each one of 64 detector units of the P2 detector plane consists of an ASIC, developed by Caltech for the NuSTAR telescope, hybridized to a CZT crystal with 0.6 mm pixel size. The performance of each detector was evaluated using radioactive sources in the laboratory. The calibration results show that the P2 detectors have average energy resolution of ~ 2.1 keV @ 60 keV and 2.3 @ 122 keV. P2 was also successfully tested on near-space environment on a balloon flight, demonstrating the detector unit readiness for integration on a space mission telescope, as well as satisfying all MIRAX mission requirements.

B H G Rodrigues; J E Grindlay; B Allen; J Hong; S Barthelmy; J Braga; F D'Amico; R E Rothschild

2013-01-01T23:59:59.000Z

36

The High Resolution X-Ray Imaging Detector Planes for the MIRAX Mission  

E-Print Network (OSTI)

The MIRAX X-ray observatory, the first Brazilian-led astrophysics space mission, is designed to perform an unprecedented wide-field, wide-band hard X-ray (5-200 keV) survey of Galactic X-ray transient sources. In the current configuration, MIRAX will carry a set of four coded-mask telescopes with high spatial resolution Cadmium Zinc Telluride (CZT) detector planes, each one consisting of an array of 64 closely tiled CZT pixelated detectors. Taken together, the four telescopes will have a total detection area of 959 cm^2, a large field of view (60x60 degrees FWHM), high angular resolution for this energy range (6 arcmin) and very good spectral resolution (~2 keV @ 60 keV). A stratospheric balloon-borne prototype of one of the MIRAX telescopes has been developed, tested and flown by the Harvard-Smithsonian Center for Astrophysics (CfA) as part of the ProtoEXIST program. In this paper we show results of validation and calibration tests with individual CZT detectors of the ProtoEXIST second generation experiment (P2). Each one of 64 detector units of the P2 detector plane consists of an ASIC, developed by Caltech for the NuSTAR telescope, hybridized to a CZT crystal with 0.6 mm pixel size. The performance of each detector was evaluated using radioactive sources in the laboratory. The calibration results show that the P2 detectors have average energy resolution of ~2.1 keV @ 60 keV and ~2.3 keV @ 122 keV. P2 was also successfully tested on near-space environment on a balloon flight, demonstrating the detector unit readiness for integration on a space mission telescope, as well as satisfying all MIRAX mission requirements.

Barbara H. G. Rodrigues; Jonathan E. Grindlay; Branden Allen; Jaesub Hong; Scott Barthelmy; Joao Braga; Flavio D'Amico; Richard E. Rothschild

2013-08-14T23:59:59.000Z

37

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution  

NLE Websites -- All DOE Office Websites (Extended Search)

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print Analytical tools that combine spatial resolution with elemental and chemical identification at the nanometer scale along with large penetration depth are indispensable for the life and physical sciences. The XM-1 soft x-ray microscope at the ALS produces images that not only reveal structures but can identify their chemical elements and measure magnetic and other properties as well. Now a new method for creating optical devices with nanoscale accuracy has allowed researchers in Berkeley Lab's Center for X-Ray Optics (CXRO), which built and operates the XM-1, to achieve an extraordinary resolution of better than 15 nm, with the promise of even higher resolution in the near future.

38

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution  

NLE Websites -- All DOE Office Websites (Extended Search)

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print Analytical tools that combine spatial resolution with elemental and chemical identification at the nanometer scale along with large penetration depth are indispensable for the life and physical sciences. The XM-1 soft x-ray microscope at the ALS produces images that not only reveal structures but can identify their chemical elements and measure magnetic and other properties as well. Now a new method for creating optical devices with nanoscale accuracy has allowed researchers in Berkeley Lab's Center for X-Ray Optics (CXRO), which built and operates the XM-1, to achieve an extraordinary resolution of better than 15 nm, with the promise of even higher resolution in the near future.

39

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution  

NLE Websites -- All DOE Office Websites (Extended Search)

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print Analytical tools that combine spatial resolution with elemental and chemical identification at the nanometer scale along with large penetration depth are indispensable for the life and physical sciences. The XM-1 soft x-ray microscope at the ALS produces images that not only reveal structures but can identify their chemical elements and measure magnetic and other properties as well. Now a new method for creating optical devices with nanoscale accuracy has allowed researchers in Berkeley Lab's Center for X-Ray Optics (CXRO), which built and operates the XM-1, to achieve an extraordinary resolution of better than 15 nm, with the promise of even higher resolution in the near future.

40

Ultrahigh resolution soft x-ray emission spectrometer at BL07LSU in SPring-8  

SciTech Connect

An extremely high resolution flat field type slit less soft x-ray emission spectrometer has been designed and constructed for the long undulator beamline BL07LSU in SPring-8. By optimizing the ruling parameters of two cylindrical gratings, a high energy resolution {Delta}E < 100 meV and/or an E/{Delta}E{approx} 10 000 are expected for the energy range of 350 eV - 750 eV taking into account the broadening by the spatial resolution (25 {mu}m) of a CCD detector. A coma-free operation mode proposed by Strocov et al., is also applied to eliminate both defocus and coma aberrations. The spectrometer demonstrated experimentally that E/{Delta}E= 10 050 and 8046 for N 1s (402.1 eV) and Mn 2p (641.8 eV) edges, respectively.

Harada, Yoshihisa [Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, Hongo, Bunkyo, Tokyo 113-8656 (Japan); Synchrotron Radiation Research Organization, University of Tokyo, Koto, Shingu-cho, Tatsuno, Hyogo 679-5165 (Japan); RIKEN/SPring-8, Sayo-cho, Sayo, Hyogo 679-5148 (Japan); CREST, Japan Science and Technology (JST), Kawaguchi, Saitama 332-0012 (Japan); Kobayashi, Masaki [Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, Hongo, Bunkyo, Tokyo 113-8656 (Japan); Synchrotron Radiation Research Organization, University of Tokyo, Koto, Shingu-cho, Tatsuno, Hyogo 679-5165 (Japan); RIKEN/SPring-8, Sayo-cho, Sayo, Hyogo 679-5148 (Japan); Niwa, Hideharu [Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, Hongo, Bunkyo, Tokyo 113-8656 (Japan); Synchrotron Radiation Research Organization, University of Tokyo, Koto, Shingu-cho, Tatsuno, Hyogo 679-5165 (Japan); Senba, Yasunori; Ohashi, Haruhiko [Japan Synchrotron Radiation Research Institute (JASRI), Koto, Sayo-cho, Sayo, Hyogo 679-5198 (Japan); Tokushima, Takashi; Horikawa, Yuka [RIKEN/SPring-8, Sayo-cho, Sayo, Hyogo 679-5148 (Japan); Shin, Shik [RIKEN/SPring-8, Sayo-cho, Sayo, Hyogo 679-5148 (Japan); CREST, Japan Science and Technology (JST), Kawaguchi, Saitama 332-0012 (Japan); Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581 (Japan); Oshima, Masaharu [Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, Hongo, Bunkyo, Tokyo 113-8656 (Japan); Synchrotron Radiation Research Organization, University of Tokyo, Koto, Shingu-cho, Tatsuno, Hyogo 679-5165 (Japan); CREST, Japan Science and Technology (JST), Kawaguchi, Saitama 332-0012 (Japan)

2012-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray energy resolution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

High-Resolution Structure of the Photosynthetic Mn4Ca Catalyst from X-ray Spectroscopy  

E-Print Network (OSTI)

the Photosynthetic Mn 4 Ca Catalyst from X-ray Spectroscopystructure of the Mn 4 Ca catalyst at high-resolution whichthe structure of Mn 4 Ca catalyst as it cycles through the

Yano, Junko

2008-01-01T23:59:59.000Z

42

Single atom identification by energy dispersive x-ray spectroscopy  

SciTech Connect

Using aberration-corrected scanning transmission electron microscope and energy dispersive x-ray spectroscopy, single, isolated impurity atoms of silicon and platinum in monolayer and multilayer graphene are identified. Simultaneously acquired electron energy loss spectra confirm the elemental identification. Contamination difficulties are overcome by employing near-UHV sample conditions. Signal intensities agree within a factor of two with standardless estimates.

Lovejoy, T. C.; Dellby, N.; Krivanek, O. L. [Nion, 1102 8th St., Kirkland, Washington 98033 (United States); Ramasse, Q. M. [SuperSTEM Laboratory, STFC Daresbury, Keckwick Lane, Daresbury WA4 4AD (United Kingdom); Falke, M.; Kaeppel, A.; Terborg, R. [Bruker Nano GmbH, Schwarzschildstr. 12, 12489 Berlin (Germany); Zan, R. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom)

2012-04-09T23:59:59.000Z

43

High-Energy Diffraction-Enhanced X-ray Imaging  

SciTech Connect

In order to apply the diffraction-enhanced X-ray imaging (DEI) method for much wider variety of samples, we have developed the high-energy DEI system. The energy of X-ray was increased up to 70 keV to achieve high permeability for heavy elements. The diffraction of Si(440) was used to keep large field of view. Demonstrative observation of an electrical cable was performed using the X-ray emitted from the vertical wiggler. The obtained images visualized not only the core and ground wire made of copper but also the isolator and outer jacket made of polymer clearly. The comparison of images obtained by the DEI and the absorption-contrast imaging showed that the sensitivity of DEI is about 10 times higher than that of the absorption method for light elements, and 3 times for heavy elements.

Yoneyama, Akio; Ueda, Kazuhiro [Advanced Research Laboratory, Hitachi Ltd., 2520, Akanuma, Hatoyama, Saitama, 350-0395 (Japan); Takeda, Tohoru [Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa 228-8555 (Japan); Yamazaki, Takanori [Research and Development Laboratory, Hitachi Cable, Ltd., 5-1-1, Hidakacho, Hitachi, Ibaraki, 319-1414 (Japan); Hyodo, Kazuyuki [Institute of Materials Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan)

2010-06-23T23:59:59.000Z

44

Simultaneous High-Resolution 2-Dimensional Spatial and 1-Dimensional Picosecond Streaked X-ray Pinhole Imaging  

SciTech Connect

A Kentech x-ray streak camera was run at the LLNL Compact Multipulse Terawatt (COMET) laser to record simultaneous space- and time-resolved measurements of picosecond laser-produced plasmas. Four different x-ray energy channels were monitored using broad-band filters to record the time history of Cu targets heated at irradiances of 10{sup 16} - 10{sup 19} W/cm{sup 2}. Through the Cu filter channel, a time-resolution below 3ps was obtained. Additionally, an array of 10 {micro}m diameter pinholes was placed in front of the camera to produce multiple time-resolved x-ray images on the photocathode and time-integrated images on the phosphor with 10 and 15 times magnification, respectively, with spatial resolution of <13 {micro}m.

Steel, A B; Nagel, S R; Dunn, J; Baldis, H A

2012-05-03T23:59:59.000Z

45

High resolution, high rate x-ray spectrometer  

DOE Patents (OSTI)

It is an object of the invention to provide a pulse processing system for use with detected signals of a wide dynamic range which is capable of very high counting rates, with high throughput, with excellent energy resolution and a high signal-to-noise ratio. It is a further object to provide a pulse processing system wherein the fast channel resolving time is quite short and substantially independent of the energy of the detected signals. Another object is to provide a pulse processing system having a pile-up rejector circuit which will allow the maximum number of non-interfering pulses to be passed to the output. It is also an object of the invention to provide new methods for generating substantially symmetrically triangular pulses for use in both the main and fast channels of a pulse processing system.

Goulding, F.S.; Landis, D.A.

1983-07-14T23:59:59.000Z

46

Optimizing Transition Edge Sensors for High?Resolution X?ray Spectroscopy  

Science Journals Connector (OSTI)

Transition Edge Sensors (TES) have found applications as astronomical detectors ranging from the microwave to the gamma ray energy bands. Each energy band however imposes a different set of requirements on the TES such as energy and timing resolution focal plane coverage and the mechanisms by which the signal is coupled to the detector. This paper focuses on the development of TESs optimized for the 0.1–10 keV energy range at the NASA Goddard Space Flight Center. Such detectors are suitable candidates for some of the upcoming X?ray observatories such as NeXT and Constellation?X. Ongoing efforts at producing characterizing and modeling such devices as well as the latest results are discussed.

Tarek Saab; Simon R. Bandler; Kevin Boyce; James A. Chervenak; Enectali Figueroa?Feliciano; Naoko Iyomoto; Richard L. Kelley; Caroline A. Kilbourne; Frederick S. Porter; John E. Sadleir

2006-01-01T23:59:59.000Z

47

Optimizing Transition Edge Sensors for High-Resolution X-ray Spectroscopy  

SciTech Connect

Transition Edge Sensors (TES) have found applications as astronomical detectors ranging from the microwave to the gamma ray energy bands. Each energy band, however, imposes a different set of requirements on the TES such as energy and timing resolution, focal plane coverage, and the mechanisms by which the signal is coupled to the detector. This paper focuses on the development of TESs optimized for the 0.1-10 keV energy range at the NASA Goddard Space Flight Center. Such detectors are suitable candidates for some of the upcoming X-ray observatories such as NeXT and Constellation-X. Ongoing efforts at producing, characterizing, and modeling such devices, as well as the latest results, are discussed.

Saab, Tarek [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bandler, Simon R.; Boyce, Kevin; Chervenak, James A.; Figueroa-Feliciano, Enectali; Iyomoto, Naoko; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.; Sadleir, John E

2006-09-07T23:59:59.000Z

48

Acoustically Mounted Microcrystals Yield High-Resolution X-ray Structures  

SciTech Connect

We demonstrate a general strategy for determining structures from showers of microcrystals. It uses acoustic droplet ejection to transfer 2.5 nL droplets from the surface of microcrystal slurries, through the air, onto mounting micromesh pins. Individual microcrystals are located by raster-scanning a several-micrometer X-ray beam across the cryocooled micromeshes. X-ray diffraction data sets merged from several micrometer-sized crystals are used to determine 1.8 {angstrom} resolution crystal structures.

Soares, Alexei S.; Engel, Matthew A.; Stearns, Richard; Datwani, Sammy; Olechno, Joe; Ellson, Richard; Skinner, John M.; Allaire, Marc; Orville, Allen M. (Labcyte); (BNL)

2012-10-25T23:59:59.000Z

49

High-energy x-ray diffractometer for nondestructive strain depth profile measurement  

SciTech Connect

We describe a lab-based high-energy x-ray diffraction system and a new approach to nondestructively measuring strain profiles in polycrystalline samples. This technique utilizes the tungsten K{sub ?1} characteristic radiation from a standard industrial x-ray tube. We introduce a simulation model that is used to determine strain values from data collected with this system. Examples of depth profiling are shown for shot peened aluminum and titanium samples. Profiles to 1 mm depth in aluminum and 300 ?m depth in titanium with a depth resolution of 20 ?m are presented.

Al-Shorman, M. Y. [Department of Physics, Yarmouk University, 21163 Irbid (Jordan)] [Department of Physics, Yarmouk University, 21163 Irbid (Jordan); Jensen, T. C.; Gray, J. N. [Center for Nondestructive Evaluation, Iowa State University, Ames, Iowa 50011 (United States)] [Center for Nondestructive Evaluation, Iowa State University, Ames, Iowa 50011 (United States)

2013-12-15T23:59:59.000Z

50

Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy  

SciTech Connect

To extend soft x-ray microscopy to a resolution of order 10 nm or better, we developed a new nanofabrication process for Fresnel zone plate lenses. The new process, based on the double patterning technique, has enabled us to fabricate high quality gold zone plates with 12 nm outer zones. Testing of the zone plate with the full-field transmission x-ray microscope, XM-1, in Berkeley, showed that the lens clearly resolved 12 nm lines and spaces. This result represents a significant step towards 10 nm resolution and beyond.

Chao, W.; Kim, J.; Rekawa, S.; Fischer, P.; Anderson, E. H.

2009-06-05T23:59:59.000Z

51

High-Resolution Structure of the Photosynthetic Mn4Ca Catalyst from X-ray Spectroscopy  

SciTech Connect

The application of high-resolution X-ray spectroscopy methods to study the photosynthetic water oxidizing complex, which contains a unique hetero-nuclear catalytic Mn4Ca cluster, are described. Issues of X-ray damage especially at the metal sites in the Mn4Ca cluster are discussed. The structure of the Mn4Ca catalyst at high-resolution which has so far eluded attempts of determination by X-ray diffraction, EXAFS and other spectroscopic techniques has been addressed using polarized EXAFS techniques applied to oriented PS II membrane preparations and PS II single crystals. A review of how the resolution of traditional EXAFS techniques can be improved, using methods such as range-extended EXAFS is presented, and the changes that occur in the structure of the cluster as it advances through the catalytic cycle are described. X-ray absorption and emission techniques (XANES and K? emission) have been used earlier to determine the oxidation states of the Mn4Ca cluster, and in this report we review the use of X-ray resonant Raman spectroscopy to understand the electronic structure of the Mn4Ca cluster as it cycles through the intermediate S-states.

Yachandra, Vittal; Yano, Junko; Kern, Jan; Pushkar, Yulia; Sauer, Kenneth; Glatzel, Pieter; Bergmann, Uwe; Messinger, Johannes; Zouni, Athina; Yachandra, Vittal K.

2007-08-01T23:59:59.000Z

52

Triple-Energy X-Ray Absorptiometry for Determination of the Bone Mineral Content in Vivo  

Science Journals Connector (OSTI)

Dual-energy X-ray absorptiometry (DXA) is a ... method for the determination of the bone mineral content in vivo. It has a high precision ... bone. The present work describes a triple-energy X-ray absorptiometry ...

Janos Szücs; Ragnar Jonson; Tommy Hansson

1993-01-01T23:59:59.000Z

53

Detection limits of high temperature superconducting materials on various substrates by energy dispersive X-ray fluorescence and proton induced X-ray emission methods  

Science Journals Connector (OSTI)

Application of energy dispersive X-ray fluorescence (EDXRF) and proton induced X-ray emission (PIXE) methods has been demonstrated for determining the elemental composition of thin film superconducting materia...

M Lal; H N Bajpai; D Joseph; R K Choudhury

1990-04-01T23:59:59.000Z

54

Scintillator Evaluation for High-Energy X-Ray Diagnostics  

SciTech Connect

This report presents results derived from a digital radiography study performed using x-rays from a 2.3 MeV, rod-pinch diode. Detailed is a parameter study of cerium-doped lutetium ortho-silicate (LSO) scintillator thickness, as it relates to system resolution and detection quantum efficiency (DQE). Additionally, the detection statistics of LSO were compared with that of CsI(Tl). As a result of this study we found the LSO scintillator with a thickness of 3 mm to yield the highest system DQE over the range of spatial frequencies from 0.75 to 2.5 mm{sup -1}.

S. S. Lutz; S. A. Baker

2001-09-01T23:59:59.000Z

55

An Exact Modeling of Signal Statistics in Energy-integrating X-ray Computed Tomography  

E-Print Network (OSTI)

assumption was made that the number of x-ray quanta within an energy interval in the spectrum followsAn Exact Modeling of Signal Statistics in Energy-integrating X-ray Computed Tomography Yi Fan1 School of Medicine, Atlanta, GA 30322 ABSTRACT Energy-integrating detection of x-ray sources is widely

56

High spatial resolution X-ray and gamma ray imaging system using diffraction crystals  

DOE Patents (OSTI)

A method and a device for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation are provided. The device comprises a plurality of arrays, with each array comprising a plurality of elements comprising a first collimator, a diffracting crystal, a second collimator, and a detector.

Smither, Robert K. (Hinsdale, IL)

2011-05-17T23:59:59.000Z

57

X-ray Structure of Mercerized Cellulose II at 1 Å Resolution  

Science Journals Connector (OSTI)

A revised crystal structure for mercerized cellulose based on high-resolution synchrotron X-ray data collected from ramie fibers is reported (space group P21, a = 8.10(3) Å, b = 9.03(3) Å, c = 10.31(5) Å, ? = 117.10(5)°; 751 reflections in 304 composite ...

Paul Langan; Yoshiharu Nishiyama; Henri Chanzy

2001-04-18T23:59:59.000Z

58

Toward atomic resolution diffractive imaging of isolated molecules with x-ray free-electron lasers  

E-Print Network (OSTI)

We give a detailed account of the theoretical analysis and the experimental results of an x-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Coherent Light Source [Phys. Rev. Lett. 112, 083002 (2014)]. This experiment is the first step toward coherent diffractive imaging of structures and structural dynamics of isolated molecules at atomic resolution, i. e., picometers and femtoseconds, using x-ray free-electron lasers.

Stern, Stephan; Filsinger, Frank; Rouzée, Arnaud; Rudenko, Artem; Johnsson, Per; Martin, Andrew V; Barty, Anton; Bostedt, Christoph; Bozek, John D; Coffee, Ryan N; Epp, Sascha; Erk, Benjamin; Foucar, Lutz; Hartmann, Robert; Kimmel, Nils; Kühnel, Kai-Uwe; Maurer, Jochen; Messerschmidt, Marc; Rudek, Benedikt; Starodub, Dmitri G; Thøgersen, Jan; Weidenspointner, Georg; White, Thomas A; Stapelfeldt, Henrik; Rolles, Daniel; Chapman, Henry N; Küpper, Jochen

2014-01-01T23:59:59.000Z

59

Recent progress of avalanche photodiodes in high-resolution X-rays and Gamma-rays detection  

E-Print Network (OSTI)

We have studied the performance of large area avalanche photodiodes (APDs) recently developed by Hamamatsu Photonics K.K, in high-resolution X-rays and Gamma-rays detections. We show that reach-through APD can be an excellent soft X-ray detector operating at room temperature or moderately cooled environment. We obtain the best energy resolution ever achieved with APDs, 6.4 % for 5.9 keV X-rays, and obtain the energy threshold as low as 0.5 keV measured at -20deg. Thanks to its fast timing response, signal carriers in the APD device are collected within a short time interval of 1.9 nsec (FWHM). This type of APDs can therefore be used as a low-energy, high-counting particle monitor onboard the forthcoming Pico-satellite Cute1.7. As a scintillation photon detector, reverse-type APDs have a good advantage of reducing the dark noise significantly. The best FWHM energy resolutions of 9.4+-0.3 % and 4.9+-0.2 % were obtained for 59.5 keV and 662 keV Gamma-rays, respectively, as measured with a CsI(Tl) crystal. Combination of APDs with various other scintillators (BGO, GSO, and YAP) also showed better results than that obtained with a photomultiplier tube (PMT). These results suggest that APD could be a promising device for replacing traditional PMT usage in some applications. In particular 2-dim APD array, which we present in this paper, will be a promising device for a wide-band X-ray and Gamma-ray imaging detector in future space research and nuclear medicine.

J. Kataoka; T. Saito; Y. Kuramoto; T. Ikagawa; Y. Yatsu; J. Kotoku; M. Arimoto; N. Kawai; Y. Ishikawa; N. Kawabata

2006-02-17T23:59:59.000Z

60

High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity  

SciTech Connect

X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.

Wang, Xin [Univ. of California, Davis, CA (United States). Dept. of Applied Science]|[Lawrence Berkeley National Lab., CA (United States)

1996-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray energy resolution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A Curved Image-Plate Detector System for High-Resolution Synchrotron X-ray Diffraction  

SciTech Connect

The developed curved image plate (CIP) is a one-dimensional detector which simultaneously records high-resolution X-ray diffraction (XRD) patterns over a 38.7 2{theta} range. In addition, an on-site reader enables rapid extraction, transfer and storage of X-ray intensity information in {le}30 s, and further qualifies this detector to study kinetic processes in materials science. The CIP detector can detect and store X-ray intensity information linearly proportional to the incident photon flux over a dynamical range of about five orders of magnitude. The linearity and uniformity of the CIP detector response is not compromised in the unsaturated regions of the image plate, regardless of saturation in another region. The speed of XRD data acquisition together with excellent resolution afforded by the CIP detector is unique and opens up wide possibilities in materials research accessible through X-ray diffraction. This article presents details of the basic features, operation and performance of the CIP detector along with some examples of applications, including high-temperature XRD.

Sarin, P.; Haggerty, R; Yoon, W; Knapp, M; Berghaeuser, A; Zschack, P; Karapetrova, E; Yang, N; Kriven, W

2009-01-01T23:59:59.000Z

62

Regularized energy-dependent solar flare hard x-ray spectral index  

E-Print Network (OSTI)

The deduction from solar flare X-ray photon spectroscopic data of the energy dependent model-independent spectral index is considered as an inverse problem. Using the well developed regularization approach we analyze the energy dependency of spectral index for a high resolution energy spectrum provided by Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The regularization technique produces much smoother derivatives while avoiding additional errors typical of finite differences. It is shown that observations imply a spectral index varying significantly with energy, in a way that also varies with time as the flare progresses. The implications of these findings are discussed in the solar flare context.

Eduard P. Kontar; Alexander L. MacKinnon

2005-06-05T23:59:59.000Z

63

Prototype grooved and spherically bent Si backscattering crystal analyzer for meV resolution inelastic x-ray scattering  

SciTech Connect

The high-order backscattering reflections from single crystals of silicon have mrad rocking curve widths that can be exploited to produce meV energy-resolution focusing analyzer crystals for use in inelastic x-ray scattering experiments at third-generation synchrotron sources. The first generation of these analyzers has been limited in efficiency principally by slope and/or figure errors. We calculate the effect of slope errors on the theoretical energy resolution and focus spot size of a typical analyzer design using a ray-tracing code to ensure that there are no unforeseen contributions to the energy resolution and efficiency. We also present measurements of the slope errors of the atomic planes for a prototype, spherically bent, strain-relief grooved analyzer as proof that it is in principle possible to obtain the slope and figure error limits required for a high efficiency meV resolution backscattering crystal.

Blasdell, R.C.; Macrander, A.T. (Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439-4814 (United States))

1995-02-01T23:59:59.000Z

64

Optical analysis of an ultra-high resolution two-mirror soft x-ray microscope  

Science Journals Connector (OSTI)

Promoted by the successful application of multilayer coated optics in soft x-ray imaging experiments in solar physics and projection lithography, several groups have designed, analyzed, fabricated, and are testing Schwarzschild multilayer soft x-ray microscopes. Simulations have indicated that diffraction limited performance of a spherical Schwarzschild microscope operating near 100 Å will be limited to systems with a small numerical aperture of approximately 0.15 and a corresponding resolution, based on the Rayleigh criterion, of 3.3 times the wavelength of the incident radiation. In principle, a two aspherical mirror Head microscope, which satisfies the constant optical path length condition and the Abbé sine condition, should achieve diffraction limited performance for very large numerical apertures. For a practical soft x-ray microscope, surface contour errors, microroughness, reflectance of multilayer coatings, and variation of the angle of incidence over the multilayer substrates become significant factors in degrading system resolution and must be controlled before an ultra-high resolution, two-mirror microscope will be realized. For a 30x reflecting microscope with a numerical aperture ranging from 0.15 to 0.35, the effects on resolution of surface contour errors, tilts, and misalignments of the optics have been studied. Graded spacing of the multilayer coatings on the mirror substrates are required of a fast, two-mirror microscope.

David L. Shealy; Cheng Wang; Richard B. Hoover

1995-01-01T23:59:59.000Z

65

Multicavity X-Ray Fabry-Perot Resonance with Ultrahigh Resolution and Contrast  

Science Journals Connector (OSTI)

Realization of x-ray Fabry-Perot (FP) resonance in back-Bragg-reflection crystal cavities has been proposed and explored for many years, but to date no satisfactory performance has been achieved. Here we show that single-cavity crystal resonators intrinsically have limited finesse and efficiency. To break this limit, we demonstrate that monolithic multicavity resonators with equal-width cavities and specific plate thickness ratios can generate ultrahigh-resolution FP resonance with high efficiency, steep peak tails, and ultrahigh contrast simultaneously. The resonance mechanism is similar to that of sequentially cascaded single-cavity resonators. The ultranarrow-bandwidth FP resonance is anticipated to have various applications, including modern ultrahigh-resolution or precision x-ray monochromatization, spectroscopy, coherence purification, coherent diffraction, phase contrast imaging, etc.

X. R. Huang, D. P. Siddons, A. T. Macrander, R. W. Peng, and X. S. Wu

2012-05-31T23:59:59.000Z

66

X-Ray Fluorescence (XRF) | Open Energy Information  

Open Energy Info (EERE)

X-Ray Fluorescence (XRF) X-Ray Fluorescence (XRF) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: X-Ray Fluorescence (XRF) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Bulk and trace element analysis of rocks, minerals, and sediments. Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png X-Ray Fluorescence (XRF): X-Ray Fluorescence is a lab-based technique used for bulk chemical analysis of rock, mineral, sediment, and fluid samples. The technique depends on the fundamental principles of x-ray interactions with solid materials, similar

67

Definition: X-Ray Diffraction (XRD) | Open Energy Information  

Open Energy Info (EERE)

X-Ray Diffraction (XRD) X-Ray Diffraction (XRD) Jump to: navigation, search Dictionary.png X-Ray Diffraction (XRD) X-Ray Diffraction (XRD) is a laboratory-based technique commonly used for identification of crystalline materials and analysis of unit cell dimensions. One of two primary types of XRD analysis (X-ray powder diffraction and single-crystal XRD) is commonly applied to samples to obtain specific information about the crystalline material under investigation. X-ray powder diffraction is widely used in geology, environmental science, material science, and engineering to rapidly identify unknown crystalline substances (typically in less than 20 minutes). A pure, finely ground, and homogenized sample is required for determination of the bulk composition. Additional uses include detailed

68

X-Ray Diffraction (XRD) | Open Energy Information  

Open Energy Info (EERE)

X-Ray Diffraction (XRD) X-Ray Diffraction (XRD) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: X-Ray Diffraction (XRD) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png X-Ray Diffraction (XRD): X-Ray Diffraction (XRD) is a laboratory-based technique commonly used for identification of crystalline materials and analysis of unit cell dimensions. One of two primary types of XRD analysis (X-ray powder diffraction and single-crystal XRD) is commonly applied to samples to

69

Portable X-Ray Diffraction (XRD) | Open Energy Information  

Open Energy Info (EERE)

Portable X-Ray Diffraction (XRD) Portable X-Ray Diffraction (XRD) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Portable X-Ray Diffraction (XRD) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Data Collection and Mapping Parent Exploration Technique: Data Collection and Mapping Information Provided by Technique Lithology: Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Portable X-Ray Diffraction (XRD): Portable X-Ray Diffraction (XRD) is a field-based technique that can be used for identification of crystalline materials and analysis of unit cell dimensions. Portable XRD analysis is similar to X-ray powder diffraction,

70

Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution  

SciTech Connect

Substantial improvements in the nanofabrication and characteristics of gold Fresnel zone plates yielded unprecedented resolution levels in hard-x-ray microscopy. Tests performed on a variety of specimens with 8-10 keV photons demonstrated a first-order lateral resolution below 40 nm based on the Rayleigh criterion. Combined with the use of a phase contrast technique, this makes it possible to view features in the 30 nm range; good-quality images can be obtained at video rate, down to 50 ms/frame. The important repercussions on materials science, nanotechnology, and the life sciences are discussed.

Chu, Y. S.; Yi, J. M.; De Carlo, F.; Shen, Q.; Lee, Wah-Keat [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Wu, H. J.; Wang, C. L.; Wang, J. Y.; Liu, C. J.; Wang, C. H. [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Wu, S. R.; Chien, C. C. [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Department of Engineering Science and System, National Tsing Hua University, Hsinchu 300, Taiwan (China); Hwu, Y. [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Department of Engineering Science and System, National Tsing Hua University, Hsinchu 300, Taiwan (China); Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 202, Taiwan (China); National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan (China); Tkachuk, A.; Yun, W.; Feser, M. [Xradia Inc., 5052 Commercial Circle, Concord, California 94520 (United States); Liang, K. S. [National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan (China); Yang, C. S. [Center for Nanomedicine, National Health Research Institutes, Miaoli 350, Taiwan (China); Je, J. H. [X-ray Imaging Center, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Margaritondo, G. [Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

2008-03-10T23:59:59.000Z

71

High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals  

DOE Patents (OSTI)

A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.

Smither, Robert K. (Hinsdale, IL)

2008-12-23T23:59:59.000Z

72

LM Completes X-Ray Film Digitization Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completes X-Ray Film Digitization Project Completes X-Ray Film Digitization Project LM Completes X-Ray Film Digitization Project January 7, 2013 - 12:02pm Addthis Nearly 400,000 x-rays of former DOE contractor employees have been digitized to support LM records retention requirements. Nearly 400,000 x-rays of former DOE contractor employees have been digitized to support LM records retention requirements. What does this project do? Goal 2. Preserve, protect, and share records and information The U.S. Department of Energy (DOE) Office of Legacy Management (LM) has successfully completed a project to digitize nearly 400,000 medical x-rays of former DOE contractor employees. The x-rays, from the Rocky Flats and Grand Junction, Colorado; Fernald, Mound, and Ashtabula, Ohio; and Pinellas, Florida; sites, are needed to

73

Combined energy dispersive EXAFS and x?ray diffraction  

Science Journals Connector (OSTI)

An in situ experiment to measure both x?ray absorption spectroscopy and x?ray diffraction of aurichalcite is described. The experiment uses position sensitive detectors to enable both data sets to be collected while the sample is slowly decomposed in air and then reduced in hydrogen. ?

A. J. Dent; M. P. Wells; R. C. Farrow; C. A. Ramsdale; G. E. Derbyshire; G. N. Greaves; J. W. Couves; J. M. Thomas

1992-01-01T23:59:59.000Z

74

A Combinational Approach to the Fusion, De-noising and Enhancement of Dual-Energy X-Ray Luggage Images  

E-Print Network (OSTI)

density materials such as metal are dark in both low and high-energy X-ray images, but areas of lighter of materials in luggage. They fuse a low-energy X-ray image and a high-energy X-ray image into a single image buildings. These systems utilize X-rays of two different energies. The high-energy X-ray is generated

Abidi, Mongi A.

75

X-Ray Spectra for Bone Quality Assessment Using Energy Dispersive Counting and Imaging Detectors with Dual Energy Method  

Science Journals Connector (OSTI)

The aim of the present study was the optimization of dual energy x-ray spectra through the estimation of ... monoenergetic x-ray beams provides the optimum dual energy pairs minimizing the CV. Single and double ....

P. Sotiropoulou; G. Fountos; N. Martini…

2014-01-01T23:59:59.000Z

76

High-resolution x-ray spectroscopy with the EBIT Calorimeter Spectrometer  

SciTech Connect

The EBIT Calorimeter Spectrometer (ECS) is a production-class 36 pixel x-ray calorimeter spectrometer that has been continuously operating at the Electron Beam Ion Trap (EBIT) facility at Lawrence Livermore National Laboratory for almost 2 years. The ECS was designed to be a long-lifetime, turn-key spectrometer that couples high performance with ease of operation and minimal operator intervention. To this end, a variant of the Suzaku/XRS spaceflight detector system has been coupled to a low-maintenance cryogenic system consisting of a long-lifetime liquid He cryostat, and a closed cycle, {sup 3}He pre-cooled adiabatic demagnetization refrigerator. The ECS operates for almost 3 weeks between cryogenic servicing and the ADR operates at 0.05 K for more than 60 hours between automatic recycles under software control. Half of the ECS semiconductor detector array is populated with mid-band pixels that have a resolution of 4.5 eV FWHM, a bandpass from 0.05-12 keV, and a quantum efficiency of 95% at 6 keV. The other half of the array has thick HgTe absorbers that have a bandpass from 0.3 to over 100 keV, an energy resolution of 33 eV FWHM, and a quantum efficiency of 32% at 60 keV. In addition, the ECS uses a real-time, autonomous, data collection and analysis system developed for the Suzaku/XRS instrument and implemented in off-the-shelf hardware for the ECS. Here we will discuss the performance of the ECS instrument and its implementation as a turnkey cryogenic detector system.

Porter, F. Scott; Adams, Joseph S.; Kelley, Richard L.; Kilbourne, Caroline A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Beiersdorfer, Peter; Brown, Gregory V.; Clementson, Joel; Frankel, Miriam [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Kahn, Steven M. [Stanford University, Stanford, CA 94305 (United States)

2009-12-16T23:59:59.000Z

77

High-resolution x-ray spectroscopy with the EBIT Calorimeter Spectrometer  

SciTech Connect

The EBIT Calorimeter Spectrometer (ECS) is a production-class 36 pixel x-ray calorimeter spectrometer that has been continuously operating at the Electron Beam Ion Trap (EBIT) facility at Lawrence Livermore National Laboratory for almost 2 years. The ECS was designed to be a long-lifetime, turn-key spectrometer that couples high performance with ease of operation and minimal operator intervention. To this end, a variant of the Suzaku/XRS spaceflight detector system has been coupled to a low-maintenance cryogenic system consisting of a long-lifetime liquid He cryostat, and a closed cycle, {sup 3}He pre-cooled adiabatic demagnetization refrigerator. The ECS operates for almost 3 weeks between cryogenic servicing and the ADR operates at 0.05 K for more than 60 hours between automatic recycles under software control. Half of the ECS semiconductor detector array is populated with mid-band pixels that have a resolution of 4.5 eV FWHM, a bandpass from 0.05-12 keV, and a quantum efficiency of 95% at 6 keV. The other half of the array has thick HgTe absorbers that have a bandpass from 0.3 to over 100 keV, an energy resolution of 33 eV FWHM, and a quantum efficiency of 32% at 60 keV. In addition, the ECS uses a real-time, autonomous, data collection and analysis system developed for the Suzaku/XRS instrument and implemented in off-the-shelf hardware for the ECS. Here we will discuss the performance of the ECS instrument and its implementation as a turnkey cryogenic detector system.

Porter, F S; Adams, J S; Beiersdorfer, P; Brown, G V; Clementson, J; Frankel, M; Kahn, S M; Kelley, R L; Kilbourne, C A

2009-10-01T23:59:59.000Z

78

Hybrid diamond-silicon angular-dispersive x-ray monochromator with 0.25-meV energy bandwidth and high spectral efficiency  

Science Journals Connector (OSTI)

We report on the design, implementation, and performance of an x-ray monochromator with ultra-high energy resolution (?E/E ? 2.7 × 10?8) and...

Stoupin, S; Shvyd’ko, Y V; Shu, D; Blank, V D; Terentyev, S A; Polyakov, S N; Kuznetsov, M S; Lemesh, I; Mundboth, K; Collins, S P; Sutter, J P; Tolkiehn, M

2013-01-01T23:59:59.000Z

79

X-ray Spectrometry  

Science Journals Connector (OSTI)

These provide excellent energy resolution for a wide range of X-ray energies, from the optical range up to several kiloelectronvolts. ... The Astro-E2 launched in 2005 was the first mission that contained a low-temperature microcalorimeter-based observatory, and three more low-temperature detector-based observatories are being developed (NeXT, Constellation-X, ZEUS). ...

Imre Szalóki; János Osán; René E. Van Grieken

2006-05-10T23:59:59.000Z

80

Probing dark energy with the next generation X-ray surveys of galaxy clusters  

Science Journals Connector (OSTI)

......Papers Probing dark energy with the next generation X-ray surveys of galaxy clusters...optical [e.g. Dark Energy Survey (DES),3 EUCLID...X-ray cluster surveys for the class of...called early dark energy (EDE; Wetterich......

B. Sartoris; S. Borgani; P. Rosati; J. Weller

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray energy resolution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Microcalorimeter-type energy dispersive X-ray spectrometer for a transmission electron microscope  

Science Journals Connector (OSTI)

......Microscopy (1986) New York: Plenum Press. 4...Garratt-Reed A J , Bell D C. Energy-Dispersive X-ray...Microscopy (1996) New York: Plenum Press. 19...Microcalorimeter-type energy dispersive X-ray...electron microscope. | A new energy dispersive......

Toru Hara; Keiichi Tanaka; Keisuke Maehata; Kazuhisa Mitsuda; Noriko Y. Yamasaki; Mitsuaki Ohsaki; Katsuaki Watanabe; Xiuzhen Yu; Takuji Ito; Yoshihiro Yamanaka

2010-02-01T23:59:59.000Z

82

High-resolution x-ray-emission study of 1s4p and 1s3d two-electron photoexcitations in Kr  

Science Journals Connector (OSTI)

High-energy-resolution photoexcited KN2,3 x-ray-emission measurements were carried out on krypton with the excitation energy tuned around the 1s4p and 1s3d double-excitation thresholds. Comprehensive two-dimensional resonant inelastic x-ray-scattering maps were recorded for the range of excitation and emission energies corresponding to both types of double excitations. The double-excitation signal could be clearly resolved from the dominant 1s ionization signal. The latter was subtracted from the measured maps, yielding isolated 1s4p and 1s3d photoexcitation spectra. Both two-electron excitation spectra are well described by a model spectrum built of consecutive bound-bound discrete transitions and shake-up and shake-off channels giving precise energies and intensities of the corresponding contributions. The obtained results are compared with other existing experimental values based on x-ray-absorption measurements and theoretical predictions.

M. Kav?i?; M. Žitnik; D. Sokaras; T.-C. Weng; R. Alonso-Mori; D. Nordlund; J.-Cl. Dousse; J. Hoszowska

2014-08-21T23:59:59.000Z

83

Interferometric phase detection at x-ray energies via Fano resonance control  

E-Print Network (OSTI)

Modern x-ray light sources promise access to structure and dynamics of matter in largely unexplored spectral regions. However, the desired information is encoded in the light intensity and phase, whereas detectors register only the intensity. This phase problem is ubiquitous in crystallography and imaging, and impedes the exploration of quantum effects at x-ray energies. Here, we demonstrate phase-sensitive measurements characterizing the quantum state of a nuclear two-level system at hard x-ray energies. The nuclei are initially prepared in a superposition state. Subsequently, the relative phase of this superposition is interferometrically reconstructed from the emitted x-rays. Our results form a first step towards x-ray quantum state tomography, and provide new avenues for structure determination and precision metrology via x-ray Fano interference.

K. P. Heeg; C. Ott; D. Schumacher; H. -C. Wille; R. Röhlsberger; T. Pfeifer; J. Evers

2014-11-06T23:59:59.000Z

84

Definition: Portable X-Ray Diffraction (XRD) | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Portable X-Ray Diffraction (XRD) Jump to: navigation, search Dictionary.png Portable X-Ray Diffraction (XRD) Portable X-Ray Diffraction (XRD) is a field-based technique that can be used for identification of crystalline materials and analysis of unit cell dimensions. Portable XRD analysis is similar to X-ray powder diffraction, which has traditionally been used in geology, environmental science, material science, and engineering to rapidly identify unknown crystalline substances. Portable XRD analysis allows for simpler sample preparation, faster analytical times than traditional methods (less than 2 minutes), and can be performed at the sampling site in the field. A pure, finely ground

85

Energy weighted x-ray dark-field imaging  

Science Journals Connector (OSTI)

The dark-field image obtained in grating-based x-ray phase-contrast imaging can provide information about the objects’ microstructures on a scale smaller than the pixel size...

Pelzer, Georg; Zang, Andrea; Anton, Gisela; Bayer, Florian; Horn, Florian; Kraus, Manuel; Rieger, Jens; Ritter, Andre; Wandner, Johannes; Weber, Thomas; Fauler, Alex; Fiederle, Michael; Wong, Winnie S; Campbell, Michael; Meiser, Jan; Meyer, Pascal; Mohr, Jürgen; Michel, Thilo

2014-01-01T23:59:59.000Z

86

Taheri-Saramad x-ray detector (TSXD): A novel high spatial resolution x-ray imager based on ZnO nano scintillator wires in polycarbonate membrane  

SciTech Connect

A novel x-ray imager based on ZnO nanowires is designed and fabricated. The proposed architecture is based on scintillation properties of ZnO nanostructures in a polycarbonate track-etched membrane. Because of higher refractive index of ZnO nanowire compared to the membrane, the nanowire acts as an optical fiber that prevents the generated optical photons to spread inside the detector. This effect improves the spatial resolution of the imager. The detection quantum efficiency and spatial resolution of the fabricated imager are 11% and <6.8 ?m, respectively.

Taheri, A., E-mail: at1361@aut.ac.ir; Saramad, S.; Ghalenoei, S.; Setayeshi, S. [Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of)] [Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of)

2014-01-15T23:59:59.000Z

87

Two-dimensional Detector for High Resolution Soft X-ray Imaging  

SciTech Connect

A new two-dimensional (2D) detector for detecting soft X-ray (SX) images was developed. The detector has a scintillator plate to convert a SX image into a visible (VI) one, and a relay optics to magnify and detect the converted VI image. In advance of the fabrication of the detector, quantum efficiencies of scintillators were investigated. As a result, a Ce:LYSO single crystal on which Zr thin film was deposited was used as an image conversion plate. The spatial resolution of fabricated detector is 3.0 {mu}m, and the wavelength range which the detector has sensitivity is 30-6 nm region.

Ejima, Takeo; Ogasawara, Shodo; Hatano, Tadashi; Yanagihara, Mihiro; Yamamoto, Masaki [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University (Japan)

2010-06-23T23:59:59.000Z

88

Automatic detection of bone fragments in poultry using multi-energy x-rays  

DOE Patents (OSTI)

At least two linear arrays of x-ray detectors are placed below a conveyor belt in a poultry processing plant. Multiple-energy x-ray sources illuminate the poultry and are detected by the detectors. Laser profilometry is used to measure the poultry thickness as the x-ray data is acquired. The detector readout is processed in real time to detect the presence of small highly attenuating fragments in the poultry, i.e., bone, metal, and cartilage.

Gleason, Shaun S. (Knoxville, TN); Paulus, Michael J. (Knoxville, TN); Mullens, James A. (Knoxville, TN)

2002-04-09T23:59:59.000Z

89

Energy Spectra and Normalized Power Spectral Densities of X-Ray Nova GS 2000+25  

Science Journals Connector (OSTI)

......research-article Papers 2020 8320 Energy Spectra and Normalized...224-0817 The X-ray energy spectra and Normalized...Conf. Proc. 115, High Energy Transients in Astrophysics, ed. Woosley S. E. (New York: AIP), 31. White N......

Kentaro Terada; Shunji Kitamoto; Hitoshi Negoro; Sayuri Iga

2002-08-25T23:59:59.000Z

90

High resolution X-ray spectroscopy with XMM-Newton and Chandra, MSSL, 24 -25 October 2002 1 HIGH RESOLUTION X-RAY SPECTROSCOPY WITH  

E-Print Network (OSTI)

of the system, the density and absorp- tion of the wind, eclipses, or variability due to the inclination that the soft X-rays ( #24; wind produced by the common mechanism that are much narrower ( #24; wind

Guedel, Manuel

91

The suppression of fluorescence peaks in energy-dispersive X-ray diffraction  

Science Journals Connector (OSTI)

It is shown experimentally that diffraction peaks which are normally obscured by fluorescence peaks in energy-dispersive X-ray diffraction can be revealed by tuning of the X-ray tube excitation voltage in order to suppress the fluorescence peaks.

Hansford, G.M.

2014-09-30T23:59:59.000Z

92

High resolution biomedical imaging system with direct detection of x-rays via a charge coupled device  

DOE Patents (OSTI)

An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD. 13 figs.

Atac, M.; McKay, T.A.

1998-04-21T23:59:59.000Z

93

High resolution biomedical imaging system with direct detection of x-rays via a charge coupled device  

DOE Patents (OSTI)

An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD.

Atac, Muzaffer (Wheaton, IL); McKay, Timothy A. (Ann Arbor, MI)

1998-01-01T23:59:59.000Z

94

Coronal Evolution of the Sun in Time: High-Resolution X-Ray Spectroscopy of Solar Analogs with Different Ages  

E-Print Network (OSTI)

(abridged) We investigate the long-term evolution of X-ray coronae of solar analogs based on high-resolution X-ray spectroscopy and photometry with XMM-Newton. Six nearby main-sequence G stars with ages between ~0.1 Gyr and \\~1.6 Gyr and rotation periods between ~1d and 12.4d have been observed. We derive coronal element abundances and the coronal emission measure distribution (EMD). The abundances change from an inverse-First Ionization Potential (FIP) distribution in stars with ages around 0.1 Gyr to a solar-type FIP distribution in stars at ages of 0.3 Gyr and beyond. The coronal EMDs show shapes characterized by power-laws on each side of the EMD peak. The latter shifts from temperatures of about 10 MK in the most rapidly rotating, young stars to temperatures around 4 MK in the oldest target considered here. The power-law index on the cooler side of the EMD exceeds expected slopes for static loops, with typical values being 1.5-3. We interpret this slope with a model in which the coronal emission is due to a superposition of stochastically occurring flares, with an occurrence rate that is distributed in radiated energy E as a power-law, dN/dE ~ E^-a. Our EMDs indicate a ~ 2.2-2.8, in excellent agreement with values previously derived from light curves of magnetically active stars. We derive the range of flare energies required to explain the light-curve modulation. In an overall scenario, we propose that flaring activity plays a larger role in more active stars. In this model, the higher flare rate is responsible both for the higher average coronal temperature and the high coronal X-ray luminosity, two parameters that are indeed found to be correlated.

A. Telleschi; M. Guedel; K. Briggs; M. Audard; J. -U. Ness; S. L. Skinner

2005-03-24T23:59:59.000Z

95

High-resolution X-ray diffraction analyses of protein crystals  

Science Journals Connector (OSTI)

...illustration of the X-ray optical system used in the current study...illustrates the X-ray optical system that was used for this study...in a novel X-ray optical system (Matyi et al. 1999), produced...well as a two-dimensional collimation of the incident beam. Both...

1999-01-01T23:59:59.000Z

96

Low Dose Radiation Research Program: A Variable-Energy Soft X-Ray  

NLE Websites -- All DOE Office Websites (Extended Search)

A Variable-Energy Soft X-Ray Microprobe to Investigate Mechanisms of A Variable-Energy Soft X-Ray Microprobe to Investigate Mechanisms of the Radiation-Induced Bystander Effect. Authors: Melvyn Folkard, Borivoj Vojnovic, Giuseppe Schettino, Kirk Atkinson, Kevin M Prise, Barry D Michael Institutions: Gray Cancer Institute, PO BO Box100, Mount Vernon Hospital, Northwood, HA6 2JR, UK The Gray Cancer Institute (GCI) has pioneered the use of X-ray focussing techniques to develop systems for micro-irradiating individual cells and sub-cellular targets. Our prototype X-ray microprobe was developed alongside our existing charged-particle microbeam to address problems specific to low LET radiations, or where very precise targeting accuracy and dose delivery are required. This facility was optimised for focusing 278 eV CK X-rays; however there are a number of reasons for extending the

97

Low Dose Radiation Research Program: A Variable-Energy Soft X-Ray  

NLE Websites -- All DOE Office Websites (Extended Search)

A Variable-Energy Soft X-Ray Microprobe to Investigate Mechanisms of A Variable-Energy Soft X-Ray Microprobe to Investigate Mechanisms of the Radiation -Induced Bystander Effect. Authors: Melvyn Folkard, Borivoj Vojnovic, Giuseppe Schettino, Kirk Atkinson, Kevin M Prise, Barry D Michael Institutes: Gray Cancer Institute, PO Box 100, Mount Vernon Hospital, Northwood, HA6 2JR, UK For over a decade, the Gray Cancer Institute (GCI) has been actively engaged in the development and use of micro-irradiation techniques applied to radiobiological research. Our initial investigations made use of a charged-particle microbeam capable of irradiating individual cells with collimated energetic protons or 3He ions. By the end of the 1990's, a second facility had been constructed, which uses diffractive X-ray optics to focus ultrasoft X-rays to a sub-micron spot. The X-ray microprobe was

98

The response of the chlorobenzene-ethanol-trimethylpentane dosimeter to medium energy X-rays  

Science Journals Connector (OSTI)

Energy dependence of the radiation chemical yield of hydrochloric acid, G(HCl), of chlorobenzene-ethanol-trimethylpentane (CET) dosimetry system was investigated to medium energy X-rays (210, 150 and 120 kV maxim...

S. Miljani?; D. Ražem

1997-08-01T23:59:59.000Z

99

High-resolution Bent-crystal Spectrometer for the Ultra-soft X-ray Region  

DOE R&D Accomplishments (OSTI)

A multichannel vacuum Brag-crystal spectrometer has been developed for high-resolution measurements of the line emission from tokamak plasmas in the wavelength region between 4 and 25 angstrom. The spectrometer employs a bent crystal in Johann geometry and a microchannel-plate intensified photodiode array. The instrument is capable of measuring high-resolution spectra (lambda/..delta..lambda approx. 3000) with fast time resolution (4 msec per spectrum) and good spatial resolution (3 cm). The spectral bandwidth is ..delta..lambda/lambda{sub 0} = 8 angstrom. A simple tilt mechanism allows access to different wavelength intervals. In order to illustrate the utility of the new spectrometer, time- and space-resolved measurements of the n = 3 to n = 2 spectrum of selenium from the Princeton Large Torus tokamak plasmas are presented. The data are used to determine the plasma transport parameters and to infer the radial distribution of fluorinelike, neonlike, and sodiumlike ions of selenium in the plasma. The new ultra-soft x-ray spectrometer has thus enabled us to demonstrate the utility of high-resolution L-shell spectroscopy of neonlike ions as a fusion diagnostic.

Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K. W.; Hulse, R. A.; Walling, R. S.

1988-10-00T23:59:59.000Z

100

PUBLISHED ONLINE: 17 JANUARY 2010 | DOI: 10.1038/NPHYS1506 High-reflectivity high-resolution X-ray crystal  

E-Print Network (OSTI)

of X-ray free-electron laser oscillators (XFELOs), next-generation hard-X-ray sources of the highest-resolution X-ray crystal optics with diamonds Yuri V. Shvyd'ko1 *, Stanislav Stoupin1 , Alessandro Cunsolo1,2 , Ayman H. Said1 and Xianrong Huang2 Owing to the depth to which hard X-rays penetrate into most materials

Loss, Daniel

Note: This page contains sample records for the topic "x-ray energy resolution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Breast Density Assessment in Adolescent Girls Using Dual-Energy X-ray Absorptiometry: A Feasibility Study  

Science Journals Connector (OSTI)

...Assessment in Adolescent Girls Using Dual-Energy X-ray Absorptiometry: A Feasibility...explored a commercially available dual-energy X-ray absorptiometer (DXA) system...Prev 2008;17(7):1709-13) Dual-energy X-ray Absorptiometry|breast density...

John A. Shepherd; Serghei Malkov; Bo Fan; Aurelie Laidevant; Rachel Novotny; Gertraud Maskarinec

2008-07-01T23:59:59.000Z

102

High-resolution multi-MeV x-ray radiography using relativistic laser-solid interaction  

SciTech Connect

When high intensity ({>=}10{sup 19} W cm{sup -2}) laser light interacts with matter, multi-MeV electrons are produced. These electrons can be utilized to generate a MeV bremsstrahlung x-ray emission spectrum as they propagate into a high-Z solid target positioned behind the interaction area. The short duration (<10 ps) and the small diameter (<500 {mu}m) of the x-ray pulse combined with the MeV x-ray spectrum offers an interesting alternative to conventional bremsstrahlung x-ray sources based on an electron accelerator used to radiograph dense, rapidly moving objects. In experiments at the Omega EP laser, a multi-MeV x-ray source is characterized consistently with number of independent diagnostics. An unfiltered x-ray dose of approximately 2 rad in air at 1 m and a source diameter of less than 350 {mu}m are inferred. Radiography of a complex and high area density (up to 61 g/cm{sup 2}) object is then performed with few hundred microns spatial resolution.

Courtois, C.; Compant La Fontaine, A.; Barbotin, M.; Bazzoli, S.; Brebion, D.; Bourgade, J. L.; Gazave, J.; Lagrange, J. M.; Landoas, O.; Le Dain, L.; Lefebvre, E.; Pichoff, N. [CEA, DAM, DIF, F-91297 Arpajon (France); Edwards, R.; Aedy, C.; Biddle, L.; Drew, D.; Gardner, M.; Ramsay, M.; Simons, A.; Sircombe, N. [AWE Plc., Aldermaston, Reading RG7 4PR (United Kingdom)

2011-02-15T23:59:59.000Z

103

Nano structure of low crystallinity carbon materials analyzed by using high energy X-ray diffraction  

Science Journals Connector (OSTI)

In this study, we tried to characterize a kind of low crystallinity carbon materials. The structure of polyparaphenylene(PPP)-based carbon was analyzed by means of high energy X-ray diffraction using the apparatu...

Kyoichi Oshida; Tatsuo Nakazawa; Kozo Osawa…

2009-06-01T23:59:59.000Z

104

Instantaneous x-ray radiation energy from laser produced polystyrene plasmas for shock ignition conditions  

SciTech Connect

Laser target energy coupling mechanism is crucial in the shock ignition (SI) scheme, and x-ray radiation energy is a non-negligible portion of the laser produced plasma energy. To evaluate the x-ray radiation energy amount at conditions relevant to SI scheme, instantaneous x-ray radiation energy is investigated experimentally with continuum phase plates smoothed lasers irradiating layer polystyrene targets. Comparative laser pulses without and with shock spike are employed. With the measured x-ray angular distribution, full space x-ray radiation energy and conversion efficiency are observed. Instantaneous scaling law of x-ray conversion efficiency is obtained as a function of laser intensity and time. It should be pointed out that the scaling law is available for any laser pulse shape and intensity, with which irradiates polystyrene planar target with intensity from 2 × 10{sup 14} to 1.8 × 10{sup 15} W/cm{sup 2}. Numerical analysis of the laser energy transformation is performed, and the simulation results agree with the experimental data.

Shang, Wanli; Wei, Huiyue; Li, Zhichao; Yi, Rongqing; Zhu, Tuo; Song, Tianmin; Huang, Chengwu; Yang, Jiamin [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)] [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)

2013-10-15T23:59:59.000Z

105

Absolute x-ray energy calibration over a wide energy range using a diffraction-based iterative method  

E-Print Network (OSTI)

Mineral Physics Institute, Stony Brook University, Stony Brook, New York 11794, USA 2 DepartmentAbsolute x-ray energy calibration over a wide energy range using a diffraction-based iterative;REVIEW OF SCIENTIFIC INSTRUMENTS 83, 063901 (2012) Absolute x-ray energy calibration over a wide energy

Duffy, Thomas S.

106

Low Dose Radiation Research Program: A Variable Energy Soft X-ray  

NLE Websites -- All DOE Office Websites (Extended Search)

Variable Energy Soft X-ray Microprobe to Investigate Mechanisms of the Variable Energy Soft X-ray Microprobe to Investigate Mechanisms of the Radiation-Induced Bystander Effect Melvyn Folkard Gray Cancer Institute Why This Project The aim of this project is to determine the effects of low radiation doses using a machine that makes it possible to radiate one cell at a time. Our soft X-ray microprobe can irradiate individual cells, or locations within cells with defined doses and with sub-micron precision. We can use low doses approaching that of a single electron track, which is of relevance to environmental level exposures. Much of our work is concentrating on irradiating specified individual cells within cell populations to identify "bystander responses" where non-radiated cells respond to signals from nearby radiated cells. Higher energy x-rays are being generated to extend

107

Boundary displacement measurements using multi-energy soft x-rays  

SciTech Connect

The Multi-Energy Soft X-ray (ME-SXR) system on NSTX provides radial profiles of soft X-ray emission, measured through a set of filters with varying thickness, which have been used to reconstruct the electron temperature on fast time scales (?10?kHz). In addition to this functionality, here we show that the ME-SXR system can be used to measure the boundary displacement of the NSTX plasma with a few mm spatial resolution during magnetohydrodyamic (MHD) activity. Boundary displacement measurements can serve to inform theoretical predictions of neoclassical toroidal viscosity, and will be used to investigate other edge phenomena on NSTX-U. For example, boundary measurements using filtered SXR measurements can provide information on pedestal steepness and dynamic evolution leading up to and during edge localized modes (ELMs). Future applications include an assessment of a simplified, filtered SXR edge detection system as well as its suitability for real-time non-magnetic boundary feedback for ELMs, MHD, and equilibrium position control.

Tritz, K., E-mail: ktritz@pppl.gov; Stutman, D. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Diallo, A.; LeBlanc, B. P. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Sabbagh, S. [Department of Applied Physics and Mathematics, Columbia University, New York City, New York 10027 (United States)

2014-11-15T23:59:59.000Z

108

Low Dose Radiation Research Program: A Variable Energy Soft X-ray  

NLE Websites -- All DOE Office Websites (Extended Search)

Variable Energy Soft X-ray Microprobe to Investigate Mechanisms of Variable Energy Soft X-ray Microprobe to Investigate Mechanisms of the Radiation Induced Bystander Effect. Authors: Melvyn Folkard, Borivoj Vojnovic, Giuseppe Schettino, Kevin M Prise and Barry D Michael. Institutions: Gray Cancer Institute. We are currently engaged on two projects in the Low-dose Program: "Low dose studies with focused X-rays in cell and tissue models: mechanisms of bystander and genomic instability responses" (DE-FG07-99ER62877) and "Mechanistic modeling of bystander effects: An integrated theoretical and experimental approach" (DE-FG02-02ER63305). Central to both of these studies is a unique micro irradiation facility that uses ultrasoft X-rays focused to a sub micron beam for individual cell and sub cellular targeting. This facility allows us to selectively irradiate individual

109

MeV-Energy X Rays from Inverse Compton Scattering with Laser-Wakefield Accelerated Electrons  

Science Journals Connector (OSTI)

We report the generation of MeV x rays using an undulator and accelerator that are both driven by the same 100-terawatt laser system. The laser pulse driving the accelerator and the scattering laser pulse are independently optimized to generate a high energy electron beam (>200??MeV) and maximize the output x-ray brightness. The total x-ray photon number was measured to be ?1×107, the source size was 5???m, and the beam divergence angle was ?10??mrad. The x-ray photon energy, peaked at 1 MeV (reaching up to 4 MeV), exceeds the thresholds of fundamental nuclear processes (e.g., pair production and photodisintegration).

S. Chen; N. D. Powers; I. Ghebregziabher; C. M. Maharjan; C. Liu; G. Golovin; S. Banerjee; J. Zhang; N. Cunningham; A. Moorti; S. Clarke; S. Pozzi; D. P. Umstadter

2013-04-10T23:59:59.000Z

110

X-Ray Photoelectron Spectroscopy XPS Mark Engelhard  

E-Print Network (OSTI)

X-Ray Photoelectron Spectroscopy XPS Mark Engelhard 1 #12;EMSL XPS Instrumentation 2 Physical Electronics Quantera XPS High Energy Resolution Focused X-ray Beam Capability Catalysis reaction and processing chamber with inert atmosphere glove box connected to a PHI Quantera Scanning X-ray Microprobe

111

Model-based image reconstruction for dual-energy X-ray CT with fast KVP switching  

Science Journals Connector (OSTI)

The most recent generation of X-ray CT systems can collect dual energy (DE) sinograms by rapidly switching the X-ray tube voltage between two levels for alternate projection views. This reduces motion artifacts in DE imaging, but yields sinograms that ... Keywords: dualenergy X-ray computed tomography, model-based image reconstruction, penalized likelihood

Wonseok Huh; Jeffrey A. Fessler

2009-06-01T23:59:59.000Z

112

X-ray bang-time and fusion reaction history at picosecond resolution using RadOptic detection  

SciTech Connect

We report recent progress in the development of RadOptic detectors, radiation to optical converters, that rely upon x-ray absorption induced modulation of the optical refractive index of a semiconductor sensor medium to amplitude modulate an optical probe beam. The sensor temporal response is determined by the dynamics of the electron-hole pair creation and subsequent relaxation in the sensor medium. Response times of a few ps have been demonstrated in a series of experiments conducted at the LLNL Jupiter Laser Facility (JLF). This technology will enable x-ray bang-time and fusion burn-history measurements with {approx} ps resolution.

Vernon, S. P.; Lowry, M. E.; Baker, K. L.; Bennett, C. V.; Celeste, J. R.; Cerjan, C.; Haynes, S.; Hernandez, V. J.; Hsing, W. W.; LaCaille, G. A.; London, R. A.; Moran, B.; Schach von Wittenau, A.; Steele, P. T.; Stewart, R. E. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States)

2012-10-15T23:59:59.000Z

113

X-ray bang-time and fusion reaction history at picosecond resolution using RadOptic detectiona)  

Science Journals Connector (OSTI)

We report recent progress in the development of RadOptic detectors radiation to optical converters that rely upon x-ray absorption induced modulation of the optical refractive index of a semiconductorsensor medium to amplitude modulate an optical probe beam. The sensor temporal response is determined by the dynamics of the electron-hole pair creation and subsequent relaxation in the sensor medium. Response times of a few ps have been demonstrated in a series of experiments conducted at the LLNL Jupiter Laser Facility (JLF). This technology will enable x-ray bang-time and fusion burn-history measurements with ? ps resolution.

S. P. Vernon; M. E. Lowry; K. L. Baker; C. V. Bennett; J. R. Celeste; C. Cerjan; S. Haynes; V. J. Hernandez; W. W. Hsing; G. A. LaCaille; R. A. London; B. Moran; A. Schach von Wittenau; P. T. Steele; R. E. Stewart

2012-01-01T23:59:59.000Z

114

X-ray bang-time and fusion reaction history at ~ps resolution using RadOptic detection  

SciTech Connect

We report recent progress in the development of RadOptic detectors, radiation to optical converters, that rely upon x-ray absorption induced modulation of the optical refractive index of a semiconductor sensor medium to amplitude modulate an optical probe beam. The sensor temporal response is determined by the dynamics of the electron-hole pair creation and subsequent relaxation in the sensor medium. Response times of a few ps have been demonstrated in a series of experiments conducted at the LLNL Jupiter Laser Facility. This technology will enable x-ray bang-time and fusion burn-history measurements with {approx} ps resolution.

Vernon, S P; Lowry, M E; Baker, K L; Bennett, C V; Celeste, J R; Cerjan, C; Haynes, S; Hernandez, V J; Hsing, W W; London, R A; Moran, B; von Wittenau, A S; Steele, P T; Stewart, R E

2012-05-01T23:59:59.000Z

115

A 1.5 A resolution X-ray structure of the catalytic module of Caldicellulosiruptor bescii family 3 pectate lyase  

NLE Websites -- All DOE Office Websites (Extended Search)

1498 1498 doi:10.1107/S1744309111038449 Acta Cryst. (2011). F67, 1498-1500 Acta Crystallographica Section F Structural Biology and Crystallization Communications ISSN 1744-3091 A 1.5 A Ëš resolution X-ray structure of the catalytic module of Caldicellulosiruptor bescii family 3 pectate lyase Markus Alahuhta, a Puja Chandrayan, b Irina Kataeva, b Michael W. W. Adams, b Michael E. Himmel a and Vladimir V. Lunin a * a BioSciences Center, National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401, USA, and b Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-7229, USA Correspondence e-mail: vladimir.lunin@nrel.gov Received 17 August 2011 Accepted 19 September 2011 PDB Reference: family 3 pectate lyase catalytic module, 3t9g. A 1.5 A Ëš resolution X-ray structure of the catalytic module of Caldicellulosi- ruptor bescii

116

X-ray Spectrometry  

Science Journals Connector (OSTI)

The segmented STJ operated at total count rates of above 105 counts/s, and the best-achieved energy resolution of their single STJ was found to be 10 eV for X-ray energies below 1 keV. ... The Mo?Au TES, with an operating temperature of 230 mK, was developed for the Constellation-X mission and the energy resolution of the spectrometer is ?28 eV at 3.3 keV. ...

Imre Szalóki; Szabina B. Török; Jasna Injuk; René E. Van Grieken

2002-05-18T23:59:59.000Z

117

Upgrades of the high resolution imaging x-ray crystal spectrometers on experimental advanced superconducting tokamak  

SciTech Connect

Two imaging x-ray crystal spectrometers, the so-called 'poloidal' and 'tangential' spectrometers, were recently implemented on experimental advanced superconducting tokamak (EAST) to provide spatially and temporally resolved impurity ion temperature (T{sub i}), electron temperature (T{sub e}) and rotation velocity profiles. They are derived from Doppler width of W line for Ti, the intensity ratio of Li-like satellites to W line for Te, and Doppler shift of W line for rotation. Each spectrometer originally consisted of a spherically curved crystal and a two-dimensional multi-wire proportional counter (MWPC) detector. Both spectrometers have now been upgraded. The layout of the tangential spectrometer was modified, since it had to be moved to a different port, and the spectrometer was equipped with two high count rate Pilatus detectors (Model 100 K) to overcome the count rate limitation of the MWPC and to improve its time resolution. The poloidal spectrometer was equipped with two spherically bent crystals to record the spectra of He-like and H-like argon simultaneously and side by side on the original MWPC. These upgrades are described, and new results from the latest EAST experimental campaign are presented.

Lu, B.; Wang, F.; Fu, J.; Li, Y.; Wan, B. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Shi, Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); National Fusion Research Institute, 52 Eoeun-Dong, Yusung-Gu, Daejeon (Korea, Republic of); Bitter, M.; Hill, K. W. [Princeton Plasma Physics Laboratory, MS37-B332, Princeton, New Jersey 08543-0451 (United States); Lee, S. G. [National Fusion Research Institute, 52 Eoeun-Dong, Yusung-Gu, Daejeon (Korea, Republic of)

2012-10-15T23:59:59.000Z

118

Runaway electron energy measurement using hard x-ray spectroscopy in 'Damavand' tokamak  

SciTech Connect

Set of experiments has been developed to study existing runaway electrons in ''Damavand'' tokamak plasma upon characteristics of hard x-ray emissions produced by collision of the runaway electrons with the plasma particles and limiters. As a first step, spatial distribution of hard x-ray emissions on the equatorial plane of the torus was considered. Obtained spectra of hard x-ray emissions for different alignments of shielded detector indicate isotropic emissivity in the equatorial plane. This is in agreement with wide angle cone of bremsstrahlung radiations, deduced from the mean value of energy of the runaway electrons. The mean energy was calculated from the slope of the energy spectrum of hard x-ray photons. In the second stage in order to investigate time evolution of energy of the runaway electrons, similar technique were applied to obtain hard x-ray energy in every 3 ms intervals, from the beginning to the end of plasma. The mean energy of the runaway electrons increases during the ramp up phase and reaches its maximum between 3 and 9 ms after plasma formation. Also considering the time dependence of the counted photons in each energy range shows that energetic photons are emitted during the ramp up phase of the plasma current in Damavand tokamak.

Rasouli, C.; Farahbod, A. H.; Rasouli, H.; Lamehi, M. [School of Plasma Physics and Nuclear Fusion, Institute of Nuclear Science and Technology, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of); Iraji, D. [Centre de Recherches en Physique des Plasmas, Association EURATOM-Confederation Suisse, Ecole Polytechnique Federale de Lausanne, CH-1015 (Switzerland); Akhtari, K. [Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran (Iran, Islamic Republic of); Modarresi, H. [Department of Mechanical Engineering, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of)

2009-01-15T23:59:59.000Z

119

Plasma Diagnostic Calibration and Characterizations with High Energy X-rays  

SciTech Connect

National Security Technologies’ High Energy X-ray (HEX) Facility is unique in the U.S. Department of Energy complex. The HEX provides fluorescent X-rays of 5 keV to 100 keV with fluence of 10^5–10^6 photons/cm^2/second at the desired line energy. Low energy lines can be filtered, and both filters and fluorescers can be changed rapidly. We present results of calibrating image plates (sensitivity and modulation transfer function), a Bremsstrahlung spectrometer (stacked filters and image plates), and the National Ignition Facility’s Filter- Fluorescer Experiment (FFLEX) high energy X-ray spectrometer. We also show results of a scintillator light yield and alignment study for a neutron imaging system.

Zaheer Ali

2009-06-05T23:59:59.000Z

120

Thin optic surface analysis for high resolution X-ray telescopes  

E-Print Network (OSTI)

The art of glass developed throughout the years has covered artifacts ranging from crude ornaments to high precision optics used in flat panel displays, hard disk drives, and x-ray telescopes. Methods for manufacturing ...

Akilian, Mireille

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray energy resolution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Pulse energy measurement at the hard x-ray laser in Japan  

SciTech Connect

The pulse energies of a free electron laser have accurately been measured in the hard x-ray spectral range. In the photon energy regime from 4.4 keV to 16.8 keV, pulse energies up to 100 {mu}J were obtained at the hard x-ray laser facility SACLA (SPring-8 Angstrom Compact free-electron LAser). Two independent methods, using a cryogenic radiometer and a gas monitor detector, were applied and agreement within 3.3% was achieved. Based on our validated pulse energy measurement, a SACLA online monitor detector could be calibrated for all future experiments.

Kato, M.; Tanaka, T.; Saito, N. [National Institute of Advanced Industrial Science and Technology (AIST), NMIJ, Tsukuba 305-8568 (Japan); RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Kurosawa, T. [National Institute of Advanced Industrial Science and Technology (AIST), NMIJ, Tsukuba 305-8568 (Japan); Richter, M. [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, D-10587 Berlin (Germany); Sorokin, A. A. [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22603 Hamburg (Germany); Ioffe Physico-Technical Institute, RAS, Polytekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Tiedtke, K. [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22603 Hamburg (Germany); Kudo, T.; Yabashi, M. [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Tono, K. [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Ishikawa, T. [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

2012-07-09T23:59:59.000Z

122

WHOLE CELL TOMOGRAPHY/MOLECULAR BIOLOGY/STRUCTURAL BIOLOGY: Affordable x-ray microscopy with nanoscale resolution  

SciTech Connect

Biological research spans 10 orders of magnitude from angstroms to meters. While electron microscopy can reveal structural details at most of these spatial length scales, transmission electron tomography only reliably reconstructs three-dimensional (3-D) volumes of cellular material with a spatial resolution between 1-5 nm from samples less than 500 nm thick1. Most biological cells are 2-30 times thicker than this threshold, which means that a cell must be cut into consecutive slices with each slice reconstructed individually in order to approximate the contextual information of the entire cell. Fortunately, due to a larger penetration depth2, X-ray computed tomography bypasses the need to physically section a cell and enables imaging of intact cells and tissues on the micrometer or larger scale with tens to hundreds of nanometer spatial resolution. While the technique of soft x-ray microscopy has been extensively developed in synchrotron facilities, advancements in laboratory x-ray source designs now increase its accessibility by supporting commercial systems suitable for a standard laboratory. In this paper, we highlight a new commercial compact cryogenic soft x-ray microscope designed for a standard laboratory setting and explore its capabilities for mesoscopic investigations of intact prokaryotic and eukaryotic cells.

Evans, James E.; Blackborow, Paul; Horne, Stephen J.; Gelb, Jeff

2013-03-01T23:59:59.000Z

123

Coronal Evolution of the Sun in Time: High-Resolution X-Ray Spectroscopy of Solar Analogs with Different Ages  

Science Journals Connector (OSTI)

We investigate the long-term evolution of X-ray coronae of solar analogs based on high-resolution X-ray spectroscopy and photometry with XMM-Newton. Six nearby main-sequence G stars with ages between ?0.1 and ?1.6 Gyr and rotation periods between ?1 and 12.4 days have been observed. We use the X-ray spectra to derive coronal element abundances of C, N, O, Ne, Mg, Si, S, and Fe and the coronal emission measure distribution (EMD). We find that the abundances change from an inverse first ionization potential (FIP) distribution in stars with ages around 0.1 Gyr to a solar-type FIP distribution in stars at ages of 0.3 Gyr and beyond. This transformation is coincident with a steep decline of nonthermal radio emission. The results are in qualitative agreement with a simple model in which the stream of electrons in magnetic fields suppresses diffusion of low-FIP ions from the chromosphere into the corona. The coronal emission measure distributions show shapes characterized by power laws on each side of the EMD peak. The latter shifts from temperatures of about 10 MK in the most rapidly rotating, young stars to temperatures around 4 MK in the oldest target considered here. The power-law index on the cooler side of the EMD exceeds expected slopes for static loops, with typical values being 1.5-3. We interpret this slope with a model in which the coronal emission is due to a superposition of stochastically occurring flares, with an occurrence rate that is distributed in radiated energy E as a power law, dN/dE ? E-?, as previously found for solar and stellar flares. We obtain the relevant power-law index ? from the slope of the high-temperature tail of the EMD. Our EMDs indicate ? ? 2.2-2.8, in excellent agreement with values previously derived from light curves of magnetically active stars. Modulation with timescales reminiscent of flares is found in the light curves of all our targets. Several strong flares are also observed. We use our ?-values to simulate light curves and compare them with the observed light curves. We thus derive the range of flare energies required to explain the light-curve modulation. More active stars require a larger range of flare energies than less active stars within the framework of this simplistic model. In an overall scenario, we propose that flaring activity plays a larger role in more active stars. In this model, the higher flare rate is responsible both for the higher average coronal temperature and the high coronal X-ray luminosity, two parameters that are indeed found to be correlated.

Alessandra Telleschi; Manuel Güdel; Kevin Briggs; Marc Audard; Jan-Uwe Ness; Stephen L. Skinner

2005-01-01T23:59:59.000Z

124

Low-energy X-ray fluorescence microscopy opening new opportunities for bio-related research  

Science Journals Connector (OSTI)

...and (g) zinc. Photon energy: 1467 eV. Dwell time...magnesium. Excitation photon energy 1686 eV. Dwell time per...Development of a low-energy X-ray fluorescence system...Spence), pp. 835-926. New York, NY: Springer. ( doi...

2009-01-01T23:59:59.000Z

125

In situ X-ray Characterization of Energy Storage Materials | Stanford  

NLE Websites -- All DOE Office Websites (Extended Search)

X-ray Characterization of Energy Storage Materials X-ray Characterization of Energy Storage Materials Tuesday, July 9, 2013 - 11:00am SLAC, Conference Room 137-322 Presented by Johanna Nelson, Stanford Postdoctoral Scholar, SSRL MSD Hard X-ray Department A key factor in the global move towards clean, renewable energy is the electrification of the automobile. Current battery technology limits EV (electric vehicles) to a short travel range, slow recharge, and costly price tag. Li-ion batteries promise the high specific capacity required for EVs to travel 300+ miles on a single charge with a number of possible earth abundant anode and cathode materials; however, set backs such as capacity fading hinder the full capability of these rechargeable batteries. In order to accurately characterize the dynamic electrochemical processes at the

126

X-ray Spectral Survey of WGACAT Quasars, II: Optical and Radio Properties of Quasars with Low Energy X-ray Cut-offs  

E-Print Network (OSTI)

We have selected quasars with X-ray colors suggestive of a low energy cut-off, from the ROSAT PSPC pointed archive. We examine the radio and optical properties of these 13 quasars. Five out of the seven quasars with good optical spectra show associated optical absorption lines, with two having high delta-v candidate systems. Two other cut-off quasars show reddening associated with the quasar. We conclude that absorption is highly likely to be the cause of the X-ray cut-offs, and that the absorbing material associated with the quasars, not intervening along the line-of-sight. The suggestion that Gigahertz Peaked Sources are associated with X-ray cut-offs remains unclear with this expanded sample.

Martin Elvis; Fabrizio Fiore; Paolo Giommi; Paolo Padovani

1997-08-05T23:59:59.000Z

127

Energy Dispersive X-ray Fluorescence Analysis of Sulfur in Biomass  

Science Journals Connector (OSTI)

An energy dispersive X-ray fluorescence (ED-XRF) spectroscopy method was developed to analyze low ppm level sulfur (S) in biomass feedstocks and in subsequent residues from pretreatment reactions. ... Representative biomass feedstocks and pretreatment residues were analyzed for S. ... The goal of this project was to determine whether an energy dispersive X-ray fluorescence (ED-XRF) spectroscopy method is effective in conducting sulfur analysis of woody biomass feedstocks at an appropriately useful sensitivity, especially when used to effectively monitor the extent of sulfur removal after biomass pretreatment reactions. ...

J. Michael Robinson; Staci R. Barrett; Kevin Nhoy; Rajesh K. Pandey; Joseph Phillips; Oscar M. Ramirez; Richard I. Rodriguez

2009-03-06T23:59:59.000Z

128

Technical note Energy response of the new EBT2 radiochromic film to x-ray radiation  

E-Print Network (OSTI)

.5% from 50 kVp to 10 MV. This produces a slightly smaller and thus even more energy independent film thanTechnical note Energy response of the new EBT2 radiochromic film to x-ray radiation Martin J Science, City University of Hong Kong, Kowloon Tong, Hong Kong b Illawarra Cancer Care Centre, Department

Yu, K.N.

129

An X-ray Galaxy Cluster Survey for Investigations of Dark Energy  

E-Print Network (OSTI)

The amount and nature of dark energy (DE) can be tightly constrained by measuring the spatial correlation features and evolution of a sample of ~ 100,000 galaxy clusters over the redshift range 0X-ray survey will discover all collapsed structures with mass above 3.5e14 solar masss at redshifts z<2 (i.e. the full range where such objects are expected) in the high Galactic latitude sky. Above this mass threshold the tight correlations between X-ray observables and mass allow direct interpretation of the data. We describe the constraints on Dark Energy that can be inferred from such a survey, using powerful self-calibration techniques to relate the X-ray observables (luminosity and temperature) to the underlying mass.

Z. Haiman; S. Allen; N. Bahcall; M. Bautz; H. Boehringer; S. Borgani; G. Bryan; B. Cabrera; C. Canizares; O. Citterio; A. Evrard; A. Finoguenov; R. Griffiths; G. Hasinger; P. Henry; K. Jahoda; G. Jernigan; S. Kahn; D. Lamb; S. Majumdar; J. Mohr; S. Molendi; R. Mushotzky; G. Pareschi; J. Peterson; R. Petre; P. Predehl; A. Rasmussen; G. Ricker; P. Ricker; P. Rosati; A. Sanderson; A. Stanford; M. Voit; S. Wang; N. White; S. White

2005-07-01T23:59:59.000Z

130

Structural and dynamical studies of superacids and superacidic solutions using neutron and high energy X-ray scattering.  

E-Print Network (OSTI)

?? The diffusive motions of the Brønsted superacid, hydrogen fluoride, have been studied using quasielastic neutron scattering. Neutron and high energy X-ray diffraction measurements on… (more)

Molaison, Jamie John

2006-01-01T23:59:59.000Z

131

Relative x-ray collection efficiency, spatial resolution, and spectral resolution of spherically-bent quartz, mica, germanium, and pyrolytic graphite crystals  

Science Journals Connector (OSTI)

Abstract The relative x-ray collection efficiency, spatial resolution, and spectral resolution of spherically-bent quartz, mica, and germanium crystals were compared with cylindrically and spherically-bent highly oriented pyrolytic graphite (HOPG) and spherically-bent highly annealed pyrolytic graphite (HAPG) mosaic crystals. The crystals were characterized using Mn-K-?1 (5898.8 eV) and Mn-K-?2 (5887.6 eV) x-rays generated from a Manson x-ray source. The HOPG and HAPG crystals had about (10–100)× higher x-ray collection efficiency than the quartz, mica, and germanium crystals. However, good spatial resolutions were obtained with the quartz (49 ?m), mica (61 ?m), and germanium (275 ?m) crystals, while the HOPG and HAPG crystals provided no useful spatial resolving power. Deconvolution of the spectral broadening due to the Mn-K-?1 intrinsic width (2.33 eV), source size (320 ?m), and image plate detector resolution (63 ?m) demonstrated the spectral resolutions (E/?E) of the quartz (3800–6600), mica (4600), and germanium (3400–4500) crystals to be considerably higher than that of the HOPG (1200–2400) and HAPG (2500) crystals.

T. Ao; E.C. Harding; J.E. Bailey; G. Loisel; S. Patel; D.B. Sinars; L.P. Mix; D.F. Wenger

2014-01-01T23:59:59.000Z

132

The energy dependence of lithium formate and alanine EPR dosimeters for medium energy x rays  

SciTech Connect

Purpose: To perform a systematic investigation of the energy dependence of alanine and lilthium formate EPR dosimeters for medium energy x rays. Methods: Lithium formate and alanine EPR dosimeters were exposed to eight different x-ray beam qualities, with nominal potentials ranging from 50 to 200 kV. Following ionometry based on standards of absorbed dose to water, the dosimeters were given two different doses of approximately 3 and 6 Gy for each radiation quality, with three dosimeters for each dose. A reference series was also irradiated to three different dose levels at a {sup 60}Co unit. The dose to water energy response, that is, the dosimeter reading per absorbed dose to water relative to that for {sup 60}Co {gamma}-rays, was estimated for each beam quality. In addition, the energy response was calculated by Monte Carlo simulations and compared to the experimental energy response. Results: The experimental energy response estimates ranged from 0.89 to 0.94 and from 0.68 to 0.90 for lithium formate and alanine, respectively. The uncertainties in the experimental energy response estimates were typically 3%. The relative effectiveness, that is, the ratio of the experimental energy response to that following Monte Carlo simulations was, on average, 0.96 and 0.94 for lithium formate and alanine, respectively. Conclusions: This work shows that lithium formate dosimeters are less dependent on x-ray energy than alanine. Furthermore, as the relative effectiveness for both lithium formate and alanine were systematically less than unity, the yield of radiation-induced radicals is decreased following x-irradiation compared to irradiation with {sup 60}Co {gamma}-rays.

Waldeland, Einar; Hole, Eli Olaug; Sagstuen, Einar; Malinen, Eirik [Department of Medical Physics, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo (Norway) and Department of Physics, University of Oslo, P.O. Box 1048, Blindern, N-0316 Oslo (Norway); Department of Physics, University of Oslo, P.O. Box 1048, Blindern, N-0316 Oslo (Norway); Department of Medical Physics, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo (Norway) and Department of Physics, University of Oslo, P.O. Box 1048, Blindern, N-0316 Oslo (Norway)

2010-07-15T23:59:59.000Z

133

Thermal Acoustic Sensor for High Pulse Energy X-ray FEL Beams  

SciTech Connect

The pulse energy density of X-ray FELs will saturate or destroy conventional X-ray diagnostics, and the use of large beam attenuation will result in a beam that is dominated by harmonics. We present preliminary results at the LCLS from a pulse energy detector based on the thermal acoustic effect. In this type of detector an X-ray resistant material (boron carbide in this system) intercepts the beam. The pulse heating of the target material produces an acoustic pulse that can be detected with high frequency microphones to produce a signal that is linear in the absorbed energy. The thermal acoustic detector is designed to provide first- and second-order calorimetric measurement of X-ray FEL pulse energy. The first-order calorimetry is a direct temperature measurement of a target designed to absorb all or most of the FEL pulse power with minimal heat leak. The second-order measurement detects the vibration caused by the rapid thermoelastic expansion of the target material each time it absorbs a photon pulse. Both the temperature change and the amplitude of the acoustic signal are directly related to the photon pulse energy.

Smith, T.J.; Frisch, J.C.; Kraft, E.M.; Loos, J.; /SLAC; Bentsen, G.S.; /Rochester U.

2011-12-13T23:59:59.000Z

134

Quick-scanning x-ray absorption spectroscopy system with a servo-motor-driven channel-cut monochromator with a temporal resolution of 10 ms  

SciTech Connect

We have developed a quick-scanning x-ray absorption fine structure (QXAFS) system and installed it at the recently constructed synchrotron radiation beamline BL33XU at the SPring-8. Rapid acquisition of high-quality QXAFS data was realized by combining a servo-motor-driven Si channel-cut monochromator with a tapered undulator. Two tandemly aligned monochromators with channel-cut Si(111) and Si(220) crystals covered energy ranges of 4.0-28.2 keV and 6.6-46.0 keV, respectively. The system allows the users to adjust instantly the energy ranges of scans, the starting angles of oscillations, and the frequencies. The channel-cut crystals are cooled with liquid nitrogen to enable them to withstand the high heat load from the undulator radiation. Deformation of the reflecting planes is reduced by clamping each crystal with two cooling blocks. Performance tests at the Cu K-edge demonstrated sufficiently high data quality for x-ray absorption near-edge structure and extended x-ray absorption fine-structure analyses with temporal resolutions of up to 10 and 25 ms, respectively.

Nonaka, T.; Dohmae, K.; Araki, T.; Hayashi, Y.; Hirose, Y. [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan); Uruga, T.; Yamazaki, H.; Tanida, H.; Goto, S. [JASRI/Spring-8, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Mochizuki, T. [JASRI/Spring-8, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Toyama Corp., Zama, Kanagawa 228-0003 (Japan)

2012-08-15T23:59:59.000Z

135

E-Print Network 3.0 - anomalous x-ray fluorescence Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

in the emission of a fluorescent X-ray. As a rule of thumb 15... Optimization of X-ray energy resolution from a horizontally focused ... Source: Hendrickson, Wayne A. -...

136

Production and application of a novel energy-tunable X-ray source at the RPI LINAC  

E-Print Network (OSTI)

Production and application of a novel energy-tunable X-ray source at the RPI LINAC Bryndol Sones energy linewidth for example, Si(400) FWHM of 134 eV at 9.0 keV (2%). Per electron, the photon production-monochromatic, energy-tunable, and polarized X-ray source derived from the interaction of relativistic electrons

Danon, Yaron

137

In situ X-ray Characterization of Energy Storage Materials |...  

NLE Websites -- All DOE Office Websites (Extended Search)

in the global move towards clean, renewable energy is the electrification of the automobile. Current battery technology limits EV (electric vehicles) to a short travel range,...

138

High-energy x-ray production with pyroelectric crystals Jeffrey A. Geuthera  

E-Print Network (OSTI)

Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New, preventing the change in the polarization from reaching levels useful for x-ray production. In a vacuum surface2 and their acceleration to energies of nearly 200 keV. If these en- ergetic electrons strike

Danon, Yaron

139

Energy sources for X-ray cluster emission  

Science Journals Connector (OSTI)

... Instead it would envelop them. Abell clusters 399 and 401 may be examples of the overheating case6. Conversely, if the heat input was too small then the clusterwould not be ... thin to optically thick material13. Consequently the spectrum is expec-ted to consist of a thermal bremsstrahlung low energy part fromthe optically thick region and a high energy inverse Compton part ...

P. D. MORLEY; R. W. TUCKER

1979-03-15T23:59:59.000Z

140

Report on Ultra-high Resolution Gamma- / X-ray Analysis of Uranium Skull Oxide  

SciTech Connect

We have utilized the high energy resolution and high peak-to-background ratio of superconducting TES {gamma}-detectors at very low energies for non-destructive analysis of a skull oxide derived from reprocessed nuclear fuel. Specifically, we demonstrate that superconducting detectors can separate and analyze the strong actinide emission lines in the spectral region below 60 keV that are often obscured in {gamma}-measurements with conventional Ge detectors.

Friedrich, S; Velazquez, M; Drury, O; Salaymeh, S

2009-11-02T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray energy resolution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

High-resolution chemical imaging of gold nanoparticles using hard x-ray ptychography  

SciTech Connect

We combine resonant scattering with (ptychographic) scanning coherent diffraction microscopy to determine the chemical state of gold nanoparticles with high spatial resolution. Ptychographic images of the sample are recorded for a series of energies around the gold L{sub 3} absorption edge. From these data, chemical information in the form of absorption and resonant scattering spectra is reconstructed at each location in the sample. For gold nanoparticles of about 100 nm diameter, a spatial resolution of about 20-30 nm is obtained. In the future, this microscopy approach will open the way to operando studies of heterogeneous catalysts on the nanometer scale.

Hoppe, R.; Patommel, J.; Schroer, C. G. [Institute of Structural Physics, Technische Universitaet Dresden, D-01062 Dresden (Germany)] [Institute of Structural Physics, Technische Universitaet Dresden, D-01062 Dresden (Germany); Reinhardt, J. [Institute of Structural Physics, Technische Universitaet Dresden, D-01062 Dresden (Germany) [Institute of Structural Physics, Technische Universitaet Dresden, D-01062 Dresden (Germany); Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany)] [Germany; Hofmann, G.; Grunwaldt, J.-D. [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany)] [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Damsgaard, C. D. [Center for Electron Nanoscopy and Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark)] [Center for Electron Nanoscopy and Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark); Wellenreuther, G.; Falkenberg, G. [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany)] [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany)

2013-05-20T23:59:59.000Z

142

X-ray Microscopy and Imaging: 2-BM  

NLE Websites -- All DOE Office Websites (Extended Search)

BM BM Introduction The 2-BM beamline offers measurement capabilities for x-ray microtomography, x-ray topography and x-ray microdiffraction. X-ray microtomography and x-ray diffraction instruments are installed on separate optical tables for independent operation with fast switch over time. Optically-coupled high-resolution CCD system is used for microtomography and topography with up to 1 micron spatial resolution. X-ray microdiffraction setup consists of KB microfocussing mirrors (~3 micron minimum spot), four-circle Huber diffractometer, high-precision translation sample stage, two orthogonally-mounted video cameras for viewing sample, fluorescence detector (Si-drift diode) and diffraction detector (a scintillation detector or a CCD). Three different levels of monochromaticity are available. Conventional monochromatic x-rays from a double-bounced Si (111) crystal monochromator (DCM, D E/E=1E-4), wide band-pass monochromatic x-rays from a double multilayer monochromator (DMM, D E/E=1~4E-2) and pink beam. The available x-ray range is from 5 keV to 30 keV. The lower limit is due to the x-ray windows and the upper limit is due to the critical angle of the x-ray mirror. Two different coatings (Cr and Pt) for the x-ray mirror allow either 20 keV or 30 keV energy cutoff.

143

Feasibility of using intermediate x-ray energies for highly conformal extracranial radiotherapy  

SciTech Connect

Purpose: To investigate the feasibility of using intermediate energy 2 MV x-rays for extracranial robotic intensity modulated radiation therapy. Methods: Two megavolts flattening filter free x-rays were simulated using the Monte Carlo code MCNP (v4c). A convolution/superposition dose calculation program was tuned to match the Monte Carlo calculation. The modeled 2 MV x-rays and actual 6 MV flattened x-rays from existing Varian Linacs were used in integrated beam orientation and fluence optimization for a head and neck, a liver, a lung, and a partial breast treatment. A column generation algorithm was used for the intensity modulation and beam orientation optimization. Identical optimization parameters were applied in three different planning modes for each site: 2, 6 MV, and dual energy 2/6 MV. Results: Excellent agreement was observed between the convolution/superposition and the Monte Carlo calculated percent depth dose profiles. For the patient plans, overall, the 2/6 MV x-ray plans had the best dosimetry followed by 2 MV only and 6 MV only plans. Between the two single energy plans, the PTV coverage was equivalent but 2 MV x-rays improved organs-at-risk sparing. For the head and neck case, the 2MV plan reduced lips, mandible, tongue, oral cavity, brain, larynx, left and right parotid gland mean doses by 14%, 8%, 4%, 14%, 24%, 6%, 30% and 16%, respectively. For the liver case, the 2 MV plan reduced the liver and body mean doses by 17% and 18%, respectively. For the lung case, lung V20, V10, and V5 were reduced by 13%, 25%, and 30%, respectively. V10 of heart with 2 MV plan was reduced by 59%. For the partial breast treatment, the 2 MV plan reduced the mean dose to the ipsilateral and contralateral lungs by 27% and 47%, respectively. The mean body dose was reduced by 16%. Conclusions: The authors showed the feasibility of using flattening filter free 2 MV x-rays for extracranial treatments as evidenced by equivalent or superior dosimetry compared to 6 MV plans using the same inverse noncoplanar intensity modulated planning method.

Dong, Peng; Yu, Victoria; Nguyen, Dan; Demarco, John; Low, Daniel A.; Sheng, Ke, E-mail: ksheng@mednet.ucla.edy [Department of Radiation Oncology, University of California Los Angeles, California 90095 (United States)] [Department of Radiation Oncology, University of California Los Angeles, California 90095 (United States); Woods, Kaley; Boucher, Salime [RadiaBeam Technologies, Santa Monica, California 90404 (United States)] [RadiaBeam Technologies, Santa Monica, California 90404 (United States)

2014-04-15T23:59:59.000Z

144

7 Å Resolution in Protein 2-Dimentional-Crystal X-Ray Diffraction at Linac Coherent Light Source  

SciTech Connect

Membrane proteins arranged as two-dimensional (2D) crystals in the lipid en- vironment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. X-ray diffraction from individual 2D crystals did not represent a suitable investigation tool because of radiation damage. The recent availability of ultrashort pulses from X-ray Free Electron Lasers (X-FELs) has now provided a mean to outrun the damage. Here we report on measurements performed at the LCLS X-FEL on bacteriorhodopsin 2D crystals mounted on a solid support and kept at room temperature. By merg- ing data from about a dozen of single crystal diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 °A, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase of resolution. The presented results pave the way to further X-FEL studies on 2D crystals, which may include pump-probe experiments at subpicosecond time resolution.

Pedrini, Bill; Tsai, Ching-Ju; Capitani, Guido; Padeste, Celestino; Hunter, Mark; Zatsepin, Nadia A.; Barty, Anton; Benner, Henry; Boutet, Sebastien; Feld, Geoffrey K.; Hau-Riege, Stefan; Kirian, Rick; Kupitz, Christopher; Messerschmidt, Marc; Ogren, John I.; Pardini, Tommaso; Segelke, Brent; Williams, Garth J.; Spence , John C.; Abela, Rafael; Coleman, Matthew A.; Evans, James E.; Schertler, Gebhard; Frank, Matthias; Li, Xiao-Dan

2014-06-09T23:59:59.000Z

145

Does the optical-to-X-ray energy distribution of quasars depend on optical luminosity?  

E-Print Network (OSTI)

We report on a detailed analysis of the correlation between the optical-UV (Lo) and X-ray (Lx) luminosities of quasars by means of Monte Carlo simulations, using a realistic luminosity function. We find, for a quasar population with an intrinsically constant, mean X-ray loudness alpha_ox, that the simulated alpha_ox - Lo relation can exhibit various `apparent' properties, including an increasing alpha_ox with Lo, similar to what has been found from observations. The determining factor for this behavior turns out to be the relative strength of the dispersions of the luminosities, i.e. their deviations from the mean spectral energy distribution at the optical and X-ray bands, such that a dispersion larger for the optical luminosity than for the X-ray luminosity tends to result in an apparent correlation. We suggest that the observed alpha_ox - Lo correlation can be attributed, at least to some extent, to such an effect, and is thus not an underlying physical property. The consequences of taking into account the luminosity dispersions in an analysis of the observed luminosity correlations is briefly discussed. We note that similar considerations might also apply for the Baldwin effect.

W. Yuan; J. Siebert; W. Brinkmann

1998-05-09T23:59:59.000Z

146

Monte Carlo estimation of photoneutrons contamination from high-energy X-ray medical accelerators in treatment room and maze: a simplified model  

Science Journals Connector (OSTI)

......contamination from high-energy X-ray medical accelerators...Neutron measurements around high energy X-ray radiotherapy machines. (1986) New York: American Institute of Physics...Elsalim M. Neutron fluence and energy spectra around the Varian......

Mansour Zabihzadeh; Mohammad Reza Ay; Mahmoud Allahverdi; Asghar Mesbahi; Seyed Rabee Mahdavi; Majid Shahriari

2009-07-01T23:59:59.000Z

147

High-resolution X-ray spectroscopy of hollow atoms created in plasma heated by subpicosecond laser radiation  

SciTech Connect

The investigations of ultrashort (0.4-0.6 ps) laser pulse radiation interaction with solid targets have been carried out. The Trident subpicosecond laser system was used for plasma creation. The X-ray plasma emission was investigated with the help of high-resolution spectrographs with spherically bent mica crystals. It is shown that when high contrast ultrashort laser pulses were used for plasma heating its emission spectra could not be explained in terms of commonly used theoretical models, and transitions in so called {open_quotes}hollow atoms{close_quotes} must be taken into account for adequate description of plasma radiation.

Faenov, A.Ya.; Magunov, A.I.; Pikuz, T.A. [Multicharged Ions Spectra Data Center of VNIIFTRI, Moscow (Russian Federation)] [and others

1997-10-01T23:59:59.000Z

148

High-resolution, high-transmission soft x-ray spectrometer for the study of biological samples  

SciTech Connect

We present a variable line-space grating spectrometer for soft x-rays that covers the photon energy range between 130 and 650 eV. The optical design is based on the Hettrick-Underwood principle and tailored to synchrotron-based studies of radiation-sensitive biological samples. The spectrometer is able to record the entire spectral range in one shot, i.e., without any mechanical motion, at a resolving power of 1200 or better. Despite its slitless design, such a resolving power can be achieved for a source spot as large as 30x3000 mu m2, which is important for keeping beam damage effects in radiation-sensitive samples low. The high spectrometer efficiency allows recording of comprehensive two-dimensional resonant inelastic soft x-ray scattering (RIXS) maps with good statistics within several minutes. This is exemplarily demonstrated for a RIXS map of highly oriented pyrolytic graphite, which was taken within 10 min.

Fuchs, Oliver; Weinhardt, L.; Blum, M.; Weigand, M.; Umbach, E.; Bar, M.; Heske, Clemens; Denlinger, Jonathan; Chuang, Y.-D.; McKinney, Wayne; Hussain, Zahid; Gullikson, Eric; Jones, M.; Batson, Phil; Nelles, B.; Follath, R.

2009-03-09T23:59:59.000Z

149

Performance of a high-resolution, synchrotron-based, small-angle x-ray scattering instrument  

SciTech Connect

We describe the construction and performance of a small-angle x-ray scattering (SAXS) instrument which we have used on several beam lines at the National Synchrotron Light Source. The analyzer crystal was a channel cut Si(1,1,1) designed for use at {lambda}=1.54 A with a measured efficiency of 60{percent} and an angular resolution full width at half maximum of 0.001{degree}. In the case of strongly scattering samples (i.e., powders), momentum transfer {ital q} between 1{times}10{sup {minus}4} A{lt}{ital q}{lt}0.1 A{sup {minus}1} could be studied with over eight decades of dynamic intensity range. We demonstrate the versatility of this instrument by performing scattering experiments on a variety of spherical latex samples spanning the size range from 50 to 800 nm, liquid crystal samples with sharp, asymmetrical Bragg peaks, and metal clusters with sizes less than 10 nm. Small-angle x-ray scattering data for the larger polystyrene samples is compared with light scattering data and theoretical structure factors, and the relative roles of instrument smearing, sample polydispersity, and interparticle interference are elucidated. In the case of the liquid crystal samples, the high resolution of the instrument allows structural features to be observed that were previously obscured by the instrumental resolution in other small-angle neutron and synchroton-based Kratky camera data taken on the same samples. {copyright} {ital 1996 American Institute of Physics.}

Wilcoxon, J.P.; Craft, S.A. [Nanostructured Materials Division, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)] [Nanostructured Materials Division, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Thurston, T.R. [Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)] [Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)

1996-09-01T23:59:59.000Z

150

Photon interference effect in x-ray absorption spectra over a wide energy range Y. Nishino and T. Ishikawa  

E-Print Network (OSTI)

. Therefore the atomic absorption coeffi- cient a is given by a a PI a ES a Incoh , 1 where a PI , a ESPhoton interference effect in x-ray absorption spectra over a wide energy range Y. Nishino and T Received 3 July 2002; published 12 September 2002 We consider fundamental structures in x-ray absorption

Korecki, Pawe³

151

High-Energy X-ray Studies of Real Materials Under Real Conditions and in Real Time  

SciTech Connect

High-energy x-rays from 3rd generation synchrotron sources, including the APS, possess a unique combination of high penetration power and high spatial, reciprocal space, and temporal resolution. These characteristics can be exploited to non-destructively measure phase, texture and strain distributions under extreme environments including thermo-mechanical loading, high-pressure, irradiation and supercritical environments. Over the past several years, the 1-ID beamline has developed a number of programs for these purposes, namely (i) high-energy diffraction microscopy, in which grain and sub-grain volumes are mapped in polycrystalline aggregates, and (ii) combined small-and wide-angle x-ray scattering which permits information over a broad range of length scales to be collected from the same (micron-level) volume. These programs have been increasingly used to test and extend predictive simulations of materials behavior over size scales ranging from nm to mm. Select studies will be presented including nucleation and growth of nanomaterials, void and structural evolution in complex composites under thermo-mechanical and irradiated environments, and microstructural changes in layered systems including thermal-barrier coatings, batteries and fuel cells. Finally, extension of these programs, through the planned APS upgrade, to higher spatio-temporal resolution will be described.

Almer, Jonathan (ANL) [ANL

2011-05-11T23:59:59.000Z

152

High-Energy X-ray Diffraction Study of Internal Stresses in Metal Matrix  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Energy X-ray Diffraction Study of Internal Stresses in Metal Matrix High-Energy X-ray Diffraction Study of Internal Stresses in Metal Matrix Composites Metal matrix composites (MMCs) comprise an intriguing new class of materials coming to prominence in the aerospace, electronics, and automotive industries. Internal stresses play an important role in the behavior and successful application of MMCs and multi-phase alloys. These stresses form during processing and service due to transformation or thermal expansion mismatch, as well as elastic and plastic mismatch during deformation. In order to develop a deeper understanding of the thermo-mechanical behavior of these materials, it is of key interest to examine the development of mean stresses in the phases of the composite as a function of time upon changes of temperature and/or external load.

153

High-energy X-rays shine light on mystery of Picasso's paints | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

energy X-rays shine light on mystery of Picasso's paints energy X-rays shine light on mystery of Picasso's paints By Tona Kunz * February 6, 2013 Tweet EmailPrint LEMONT, Ill. - The Art Institute of Chicago teamed up with Argonne National Laboratory to help unravel a decades-long debate among art scholars about what kind of paint Picasso used to create his masterpieces. The results published last month in the journal Applied Physics A: Materials Science & Processing add significant weight to the widely held theory that Picasso was one of the first master painters to use common house paint rather than traditional artists' paint. That switch in painting material gave birth to a new style of art marked by canvasses covered in glossy images with marbling, muted edges, and occasional errant paint drips, but devoid of brush marks. Fast-drying enamel house paint enabled

154

Development of a dual MCP framing camera for high energy x-rays  

SciTech Connect

Recently developed diagnostic techniques at LLNL require recording backlit images of extremely dense imploded plasmas using hard x-rays, and demand the detector to be sensitive to photons with energies higher than 50 keV [R. Tommasini et al., Phys. Phys. Plasmas 18, 056309 (2011); G. N. Hall et al., “AXIS: An instrument for imaging Compton radiographs using ARC on the NIF,” Rev. Sci. Instrum. (these proceedings)]. To increase the sensitivity in the high energy region, we propose to use a combination of two MCPs. The first MCP is operated in a low gain regime and works as a thick photocathode, and the second MCP works as a high gain electron multiplier. We tested the concept of this dual MCP configuration and succeeded in obtaining a detective quantum efficiency of 4.5% for 59 keV x-rays, 3 times larger than with a single plate of the thickness typically used in NIF framing cameras.

Izumi, N., E-mail: izumi2@llnl.gov; Hall, G. N.; Carpenter, A. C.; Allen, F. V.; Cruz, J. G.; Felker, B.; Hargrove, D.; Holder, J.; Lumbard, A.; Montesanti, R.; Palmer, N. E.; Piston, K.; Stone, G.; Thao, M.; Vern, R.; Zacharias, R.; Landen, O. L.; Tommasini, R.; Bradley, D. K.; Bell, P. M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

2014-11-15T23:59:59.000Z

155

The Absorption of High Energy X-Rays in Various Materials  

Science Journals Connector (OSTI)

Effective absorption cross sections of the x-rays exciting the well-known Cu63(?,n)Cu62 reaction have been measured in a number of elements. In agreement with other workers, the experimental cross sections have been found to be lower than those predicted by theory by a fraction roughly proportional to Z2, which amounts to about 10 percent for Pb. By using the results of these measurements as a standard, the effective energies, with Pb absorbers, of the x-rays exciting the Cu12(?,n)C11, Mo92(?,n)Mo91, and Ag107(?,n)Ag106 reactions have been found to be 26.0±1.4, 17.0±1.0, and 16.1±0.9 Mev, respectively, in good agreement with resonance peak energies obtained by more elaborate methods.

H. Janzen

1952-11-01T23:59:59.000Z

156

Assessment of the possibilities of the dual-energy X-ray absorptiometry of multicomponent samples with variable content  

Science Journals Connector (OSTI)

Possibility of the employment of a linear coupling equation of mass attenuation coefficients for two energies for the density determination by dual-energy X-ray absorptiometry of multicomponent samples with varia...

N. A. Antropov; D. A. Karpov; Yu. Yu. Kryuchkov

2012-09-01T23:59:59.000Z

157

High-Resolution Soft X-Ray Spectral Analysis in the CK Region of Titanium Carbide (TiC) using the DV-X alpha Molecular Orbital Method  

SciTech Connect

We used the DV-X alpha method to analyze the high-resolution soft X-ray emission and absorption spectra in the CK region of titanium carbide (TiC). The spectral profiles of the X-ray emission and absorption can be ssuscfucelly reproduced by the occupied and unoccupied density of states (DOS ), respectively, in the C2p orbitals of the center carbon atoms in a Ti62C63 cluster model, suggesting that the center carbon atom in a large cluster model expanded to the cubic-structured 53 (= 125) atoms provides sufficient DOS for the X-ray spectral analysis of rock-salt structured metal carbides.

Shimomura, Kenta; Muramatsu, Yasuji; Denlinger, Jonathan D.; Gullikson, Eric M.

2008-10-31T23:59:59.000Z

158

Photon Sciences | Beamlines | IXS: Inelastic X-ray Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

IXS: Inelastic X-ray Scattering IXS: Inelastic X-ray Scattering Poster | Fact Sheet | Preliminary Design Report Scientific Scope Many hot topics related to the high frequency dynamics of condensed matter require both a narrower and steeper resolution function and access to a broader dynamic range than what are currently available. This represents a sort of "no man's land" that falls right in the dynamic gap lying between the high frequency spectroscopies, such as inelastic x-ray scattering (IXS), and the low frequency ones. New IXS spectrometers with improved energy and momentum resolutions would be required to fill this gap. To achieve this goal, a new x-ray optics concept for both the monochromatization and energy analysis of x-rays will be implemented at the NSLS-II Inelastic X-ray Scattering beamline. This solution exploits the

159

Microdosimetric predictions of RBE for low-energy X-rays and low-energy fast neutrons  

E-Print Network (OSTI)

MICRODOSIMETRIC PREDICTIONS OF RBE FOR LOW-ENERGY X-RAYS AND LOW-ENERGY FAST NEUTRONS A Thesis by EUGENE WAYNE POTTER Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE December 1977 Major Subject: Nuclear Engineering MICRODOSIMETRIC PREDICTIONS OF RSE FOR LOW-ENERGY X-RAYS AND LOW-ENERGY FAST NEUTRONS A Thesis by EUGENE WAYNE POTTER Approved as to style and c tent by: a an of 'ttee Head p...

Potter, Eugene Wayne

2012-06-07T23:59:59.000Z

160

Back-scattering channel-cut high-resolution monochromator for inelastic x-ray scattering  

SciTech Connect

We report on a design and on some experimental results for the performance of a new high energy resolution monochromator. It is a large channel-cut Si crystal with a 197 mm separation between the two faces designed to operate in a near-backscattering regime. The device was tested as a second monochromator on Sector 3 of the Synchrotron Radiation Instrumentation Collaborative Access Team (SRI-CAT) at the Advanced Photon Source using the Si(777) reflection at a photon energy of 13.84 keV. The same monochromator can be used for other energies with reflections of the type (hhh). Special care has been taken to equalize the temperature of the two faces by employing a Peltier heat pump. A Si(111) double-crystal pre-monochromator designed to withstand the high heat load of the undulator radiation was used upstream on the beamline. The measured throughput efficiency of the Si(777) channel-cut monochromator was less ideal by a factor of 1.9. Dynamical diffraction theory was used to calculate the throughput of an ideally perfect crystal.

Kushnir, V.I.; Abbamonte, P.M.; Macrander, A.T.; Schwoerer-Boehning, M.

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray energy resolution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Beyond 3-D X-ray Imaging: Methodology Development and Applications in  

NLE Websites -- All DOE Office Websites (Extended Search)

Beyond 3-D X-ray Imaging: Methodology Development and Applications in Beyond 3-D X-ray Imaging: Methodology Development and Applications in Material Science Thursday, September 6, 2012 - 10:45am SLAC, Bldg. 137, Room 226 Yijin Liu Seminar There was a revolutionary development of X-ray imaging over the past few decades. The most substantial advancements in this field are closely related to the availability of the new generation of X-ray sources and the advanced X-ray optics. The advanced X-ray Optics along with novel methodology has made it possible to extract information that is related to different interactions between the X-rays and the specimen at very fine spatial resolution. The energy tunability of the X-rays has made it possible to combine the energy scan with imaging technique. And the brilliance of the X-ray source has made it practical for many sophisticated

162

Time resolved studies on X-rays and charged particles emission from a low energy plasma focus device  

Science Journals Connector (OSTI)

The time resolved studies on soft X-ray, hard X-ray, electron beam and ion beam emissions from a low energy plasma focus device are carried out simultaneously by employing a photodiode X-ray spectrometer, a scintillator photomultiplier tube, a combination of Faraday cup and Rogowski coil assembly and a biased Faraday cup, respectively. The soft X-ray is seen to be emitted in short multiple pulses corresponding to different pinch stages where as it is a single for hard X-ray, which corresponds to only maximum pinch stage. Similarly, multiple pulses of electron beam is found, which also corresponds to different pinch stages and these pulses are analogous with the soft X-ray pulses. The effective hard X-ray photon energy is estimated by foil absorption technique and found to be around 110 keV, which is consistent with the observed electron beam energy distribution. The simultaneous investigation of the electron and ion beam shows that both are accelerated by the same local field generated during the pinching process. The detailed results of time resolved studies on various radiations are incorporated in this Letter.

N.K. Neog; S.R. Mohanty; T.K. Borthakur

2008-01-01T23:59:59.000Z

163

A new method for nondestructive evaluation of solid wood moisture content based on dual-energy X-ray absorptiometry  

Science Journals Connector (OSTI)

This paper presents a new method to determine the moisture content of solid wood based on the principle of dual-energy X-ray absorptiometry. The study investigates the ... obtained equation is proposed to calcula...

Takashi Tanaka; Yasuo Kawai

2013-11-01T23:59:59.000Z

164

Accuracy and precision of lumbar bone mineral content by dual-energy X-ray absorptiometry in live female monkeys  

Science Journals Connector (OSTI)

Dual-energy X-ray absorptiometry (DXA) was used...in vivo bone mineral content (BMC) of lumbar vertebrae in 20...Macaca fascicularis). The ash weight of the third lumbar vertebra (L3) was compared to the measured...

M. J. Jayo; S. E. Rankin; D. S. Weaver; C. S. Carlson…

1991-01-01T23:59:59.000Z

165

A high-resolution soft x-ray spectrometer on the MAST tokamak  

SciTech Connect

A curved crystal spectrometer in Johann configuration has been implemented on MAST to obtain values for electron temperature, ion temperature and toroidal velocity. The spectrometer is used to examine medium Z impurities in the soft x-ray region by utilising a Silicon (111) crystal, bent using a 4 pin bending jig, and a CCD detector ({delta}t=8 ms). Helium-like Argon emissions from 3.94 to 4.00 A have been examined using a crystal radius of 859.77 mm. The Bragg angle and crystal radius can be adjusted with relative ease. The spectrometer can be scanned toroidally and poloidally to include a radial view which facilitates absolute velocity measurements by assuming radial velocity =0. Doppler shifts of 2.3x10{sup -5} A (1.8 kms{sup -1}) can be measured. The line of sight is shared with a neutral particle analyzer, which enables in situ ion temperature comparisons. Ray tracing has been used for the development of new imaging spectrometers, using spherical/toroidal crystals, planned to be implemented on MAST.

Nelson, M.J.; Barnsley, R.; Keenan, F.; Meyer, H.; Bunting, C.A.; Carolan, P.G.; Conway, N.J.; Cunningham, G.; Lehane, I.; Tournianski, M.R. [Queens University, Belfast, N. Ireland BT7 1NN (United Kingdom); EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

2004-10-01T23:59:59.000Z

166

Tunable X-ray source  

DOE Patents (OSTI)

A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

Boyce, James R. (Williamsburg, VA)

2011-02-08T23:59:59.000Z

167

Energy distribution measurement of narrow-band ultrashort x-ray beams via K-edge filters subtraction  

SciTech Connect

The characterization of novel x-ray sources includes the measurement of the photon flux and the energy distribution of the produced beam. The aim of BEATS2 experiment at the SPARC-LAB facility of the INFN National Laboratories of Frascati (Rome, Italy) is to investigate possible medical applications of an x-ray source based on Thomson relativistic back-scattering. This source is expected to produce a pulsed quasi-monochromatic x-ray beam with an instantaneous flux of 10{sup 20} ph/s in pulses 10 ps long and with an average energy of about 20 keV. A direct measurement of energy distribution of this beam is very difficult with traditional detectors because of the extremely high photon flux. In this paper, we present a method for the evaluation of the energy distribution of quasi-monochromatic x-ray beams based on beam filtration with K-edge absorbing foils in the energy range of interest (16-22 keV). The technique was tested measuring the energy distribution of an x-ray beam having a spectrum similar to the expected one (SPARC-LAB Thomson source) by using a tungsten anode x-ray tube properly filtered and powered. The energy distribution obtained has been compared with the one measured with a HPGe detector showing very good agreement.

Cardarelli, Paolo; Di Domenico, Giovanni; Marziani, Michele; Mucollari, Irena; Pupillo, Gaia; Sisini, Francesco; Taibi, Angelo; Gambaccini, Mauro [Dipartimento di Fisica, Universita di Ferrara and INFN - Ferrara, via Saragat 1, I-44122 Ferrara (Italy)

2012-10-01T23:59:59.000Z

168

The Constellation X-ray mission  

Science Journals Connector (OSTI)

The Constellation-X mission is a large collecting area X-ray facility, emphasizing observations at high spectral resolution (E/?E?300–3000) while covering a broad energy band (0.25–40 keV). By increasing the telescope aperture and utilizing efficient spectrometers the mission will achieve a factor of 100 increased sensitivity over current high-resolution X-ray spectroscopy missions. The use of focussing optics across the 10–40 keV band will provide a similar factor of 100 increased sensitivity in this band. Key technologies under development for the mission include lightweight high throughput X-ray optics, multilayer coatings to enhance the hard X-ray performance of X-ray optics, micro-calorimeter spectrometer arrays with 2 eV resolution, low-power and low-weight CCD arrays, lightweight gratings and hard X-ray detectors. When observations commence towards the end of the next decade, Constellation-X will address many pressing questions concerning the extremes of gravity and the evolution of the Universe.

N.E White; H Tananbaum

1999-01-01T23:59:59.000Z

169

Modeling energy dependence of the inner-shell x-ray emission produced by femtosecond-pulse laser irradiation of xenon clusters  

Science Journals Connector (OSTI)

We employ the Los Alamos suite of atomic physics codes to model the inner-shell x-ray emission spectrum of xenon and compare results with those obtained via high-resolution x-ray spectroscopy of xenon clusters irradiated by 30fs Ti:Sapphire laser pulses. We find that the commonly employed configuration-average approximation breaks down and significant spin-orbit splitting necessitates a detailed level accounting. We reproduce an interesting spectral trend for a series of experimental spectra taken with varying pulse energy for fixed pulse duration. To simulate the experimental measurements at increasing beam energies, we find that spectral modeling requires an increased hot electron fraction, but decreased atomic density and bulk electron temperature. We believe these latter conditions to be a result of partial cluster destruction due to the increased energy in the laser prepulse.

Timothy C. Berkelbach; James Colgan; Joseph Abdallah; Jr.; Anatoly Ya. Faenov; Tatiana A. Pikuz; Yuji Fukuda; Koichi Yamakawa

2009-01-14T23:59:59.000Z

170

Modeling energy dependence of the inner-shell x-ray emission produced by femtosecond-pulse laser irradiation of xenon clusters  

SciTech Connect

We employ the Los Alamos suite of atomic physics codes to model the inner-shell x-ray emission spectrum of xenon and compare results with those obtained via high-resolution x-ray spectroscopy of xenon clusters irradiated by 30 fs Ti:Sa laser pulses. We find that the commonly employed configuration average approximation breaks down and significant spin-orbit splitting necessitates a detailed level accounting. Additionally, we reproduce an interesting spectral trend for a series of experimental spectra taken with varying pulse energy for fixed pulse duration. To simulate the experimental measurements at increasing beam energies, we find that spectral modeling requires an increased hot electron fraction, but decreased atomic density and bulk electron temperature. We believe these latter conditions to be a result of partial cluster destruction due to the increased energy in the laser prepulse.

Colgan, James P [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

171

X-ray Emission from Massive Stars  

E-Print Network (OSTI)

X-ray Emission from Massive Stars David Cohen Department of Physics and Astronomy Swarthmore #12;What is the mechanism by which massive stars produce x-rays? New results from the Chandra X-ray Observatory ­ high-resolution x-ray spectroscopy: measuring Doppler broadening in emission lines Testing

Cohen, David

172

Use of a capillary X-ray focused beam to investigate the chemical composition of CdZnTe wafers with high resolution CdZnTe detectors  

SciTech Connect

The control of the concentration of Zn and its fluctuation in the high pressure Bridgman grown CdZnTe crystals is part of the characterization work on the ternary grown ingots grown in house. In order to reach both high sensitivity and high position resolution, the authors have developed a new system consisting of a X-ray generator, coupled to a focusing X-ray capillary, delivering intense beams in the micron scale, since the intensity gain is around a factor of 100 compared to conventional methods. The characteristic X-rays are measured through a high resolution CdZnTe detector (225 eV at 5.9 keV FWHM) cooled by a Peltier system. The results of the investigations on different kinds of crystals will be discussed.

Fougeres, P. [EURORAD, Strasbourg (France); Burggraf, Ch.; Burggraf, Chr.; Koebel, J.M.; Regal, R.; Hage-Ali, M.; Krauth, A.; Siffert, P. [CNRS, Strasbourg (France). Lab. PHASE; Koenig, C. [Univ. Louis Pasteur, Schiltigheim (France)

1998-12-31T23:59:59.000Z

173

A Suzaku Search for Nonthermal Emission at Hard X-Ray Energies in the Coma Cluster  

Science Journals Connector (OSTI)

The brightest cluster radio halo known resides in the Coma cluster of galaxies. The relativistic electrons producing this diffuse synchrotron emission should also produce inverse Compton emission that becomes competitive with thermal emission from the intracluster medium (ICM) at hard X-ray energies. Thus far, claimed detections of this emission in Coma are controversial. We present a Suzaku HXD-PIN observation of the Coma cluster in order to nail down its nonthermal hard X-ray content. The contribution of thermal emission to the HXD-PIN spectrum is constrained by simultaneously fitting thermal and nonthermal models to it and a spatially equivalent spectrum derived from an XMM-Newton mosaic of the Coma field. We fail to find statistically significant evidence for nonthermal emission in the spectra which are better described by only a single- or multitemperature model for the ICM. Including systematic uncertainties, we derive a 90% upper limit on the flux of nonthermal emission of 6.0 ? 10–12 erg s–1 cm–2 (20-80 keV, for ? = 2.0), which implies a lower limit on the cluster-averaged magnetic field of B>0.15 ?G. Our flux upper limit is 2.5 times lower than the detected nonthermal flux from RXTE and BeppoSAX. However, if the nonthermal hard X-ray emission in Coma is more spatially extended than the observed radio halo, the Suzaku HXD-PIN may miss some fraction of the emission. A detailed investigation indicates that ~50%-67% of the emission might go undetected, which could make our limit consistent with that of Rephaeli & Gruber and Fusco-Femiano et al. The thermal interpretation of the hard Coma spectrum is consistent with recent analyses of INTEGRAL and Swift data.

Daniel R. Wik; Craig L. Sarazin; Alexis Finoguenov; Kyoko Matsushita; Kazuhiro Nakazawa; Tracy E. Clarke

2009-01-01T23:59:59.000Z

174

High-Resolution Soft X-Ray Photoionization Studies of Selected Molecules  

E-Print Network (OSTI)

energies than tl'e fundamental electronic transition, withsidebands from fundamental electronic transitions in athe ground electronic state. From a fundamental viewpoint,

Hudson, E.A.

2009-01-01T23:59:59.000Z

175

High-resolution, high-transmission soft x-ray spectrometer for the study of biological samples  

SciTech Connect

We present a variable line-space grating spectrometer for soft s-rays that coverst the photon energy range between 130 and 650 eV. The optical design is based on the Hettrick-Underwood principle and tailored to synchrotron-based studies of radiation-sensitive biological samples. The spectrometer is able to record the entire spectral range in one shot, i.e., without any mechanical motion, at a resolving power of 1200 or better. Despite is slitless design, such a resolving power can be achieved for a source spot as large as (30 x 3000) micrometers squared, which is important for keeping beam damage effects in radiation-sensitive samples low. The high spectrometer efficiency allows recording of comprehensive two-dimensional resonant inelastic soft x-ray scatters (RIXS) maps with good statistics within several minutes. This is exemplarily demonstrated for a RIXS map of highly oriented pyrolytic graphite, which was taken with 10 min.

Fuchs, Oliver; Weinhardt, L.; Blum, M.; Welgand, M.; Umbach, E.; Bar, M.; Heske, C.; Denlinger, J.; Chuang, Y.-D.; McKinney, W.; Hussain, Z.; Gullikson, E.; Jones, M.; Batson, P.; Nelles, B.; Follath, R.

2009-06-11T23:59:59.000Z

176

The Prospects for Constraining Dark Energy withFuture X-ray Cluster Gas Mass Fraction Measurements  

SciTech Connect

We examine the ability of a future X-ray observatory, with capabilities similar to those planned for the Constellation-X mission, to constrain dark energy via measurements of the cluster X-ray gas mass fraction, fgas. We find that fgas measurements for a sample of {approx}500 hot (kT{approx}> 5keV), X-ray bright, dynamically relaxed clusters, to a precision of {approx}5 percent, can be used to constrain dark energy with a Dark Energy Task Force (DETF; Albrecht et al. 2006) figure of merit of 20-50. Such constraints are comparable to those predicted by the DETF for other leading, planned 'Stage IV' dark energy experiments. A future fgas experiment will be preceded by a large X-ray or SZ survey that will find hot, X-ray luminous clusters out to high redshifts. Short 'snapshot' observations with the new X-ray observatory should then be able to identify a sample of {approx}500 suitably relaxed systems. The redshift, temperature and X-ray luminosity range of interest has already been partially probed by existing X-ray cluster surveys which allow reasonable estimates of the fraction of clusters that will be suitably relaxed for fgas work to be made; these surveys also show that X-ray flux contamination from point sources is likely to be small for the majority of the targets of interest. Our analysis uses a Markov Chain Monte Carlo method which fully captures the relevant degeneracies between parameters and facilities the incorporation of priors and systematic uncertainties in the analysis. We explore the effects of such uncertainties, for scenarios ranging from optimistic to pessimistic. We conclude that the fgas experiment offers a competitive and complementary approach to the best other large, planned dark energy experiments. In particular, the fgas experiment will provide tight constraints on the mean matter and dark energy densities, with a peak sensitivity for dark energy work at redshifts midway between those of supernovae and baryon acoustic oscillation/weak lensing/cluster number counts experiments. In combination, these experiments should enable a precise measurement of the evolution of dark energy.

Rapetti, David; Allen, Steven W.

2007-10-15T23:59:59.000Z

177

X-ray Imaging Shows Feather Patterns of First Birds | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

X-ray Imaging Shows Feather Patterns of First Birds X-ray Imaging Shows Feather Patterns of First Birds X-ray Imaging Shows Feather Patterns of First Birds June 30, 2011 - 2:56pm Addthis A collage of images. Top, optical images of: blue jay feather, squid, and fossil fish with feather. Bottom: x-ray images showing the distribution of copper (red) in the same organisms. | Photo Courtesy of Gregory Stewart, SLAC National Accelerator Laboratory A collage of images. Top, optical images of: blue jay feather, squid, and fossil fish with feather. Bottom: x-ray images showing the distribution of copper (red) in the same organisms. | Photo Courtesy of Gregory Stewart, SLAC National Accelerator Laboratory Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What are the key facts? Through x-ray fluorescent imaging techniques developed at the

178

High-resolution X-ray characterization of mid-IR Al0.45Ga0.55As/GaAs Quantum Cascade Laser structures  

Science Journals Connector (OSTI)

Abstract In this paper, the X-ray diffraction profiles of Quantum Cascade Laser (QCL) structures have been investigated. The examined structures were grown by molecular beam epitaxy. The crystallographic characterization was carried out using high resolution X-ray diffractometer. The information about thickness of individual layers and periodicity of the structures was derived from simulation of diffraction profiles calculated using dynamical diffraction theory. The influence of interface roughness on the shape of satellite peaks was studied. The particular attention has been paid to the analysis of the broadening of satellite peaks. The presented results show that broadening is due to the variation of thickness of individual layers.

J. Kubacka-Traczyk; I. Sankowska; O.H. Seeck; K. Kosiel; M. Bugajski

2014-01-01T23:59:59.000Z

179

Low-energy x-ray dosimetry studies (7 to 17.5 keV) with synchroton radiation  

SciTech Connect

Unique properties of synchrotron radiation (SR), such as its high intensity, brightness, polarization, and broad spectral distribution (extending from x-ray to infra-red wavelengths) make it an attractive light source for numerous experiments. As SR facilities are rapidly being built all over the world, they introduce the need for low-energy x-ray dosemeters because of the potential radiation exposure to experimenters. However, they also provide a unique opportunity for low-energy x-ray dosimetry studies because of the availability of monochromatic x-ray beams. Results of such studies performed at the Stanford Synchrotron Radiation Laboratory are described. Lithium fluoride TLDs (TLD-100) of varying thicknesses (0.015 to 0.08 cm) were exposed free in air to monochromatic x-rays (7 to 17.5 keV). These exposures were monitored with ionization chambers. The response (nC/Gy) was found to increase with increasing TLD thickness and with increasing beam energy. A steeper increase in response with increasing energy was observed with the thicker TLDs. The responses at 7 and 17.5 keV were within a factor of 2.3 and 5.2 for the 0.015 and 0.08 cm-thick TLDs, respectively. The effects of narrow (beam size smaller than the dosemeter) and broad (beam size larger than the dosemeter) beams on the response of the TLDs are also reported.

Ipe, N.E.; Bellamy, H.; Flood, J.R. [and others

1995-06-01T23:59:59.000Z

180

High altitude balloon flights of position sensitive CdZnTe detectors for high energy X-ray astronomy  

Science Journals Connector (OSTI)

Cadmium Zinc Telluride (CZT) is a semiconductor detector well suited for high energy X-ray astronomy. The High-Energy X-ray Imaging Spectrometer (HEXIS) program is developing this technology for use in a hard X-ray all-sky survey and as a focal plane imager for missions such as FAR_XITE and Constellation X. We have designed a novel electrode geometry that improves interaction localization and depth of interaction determination. The HEXIS program has flown two high altitude balloon payloads from Ft. Summer NM to investigate background properties and shielding effects on a position sensitive CZT detector in the energy range of 20–350 keV.

Kimberly R. Slavis; Paul Dowkontt; Fred Duttweiler; John Epstein; Paul L. Hink; George L. Huszar; Philippe C. Leblanc; James L. Matteson; Robert T. Skelton; Ed Stephan

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray energy resolution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fitting X-ray Afterglow Light curves of Gamma-ray Bursts by Using the Magnetar Energy Injection Model  

Science Journals Connector (OSTI)

The central compact object for some gamma-ray bursts (GRBs) may be a strongly magnetized millisecond pulsar. It can inject energy to the outer shock of the GRB by through the magnetic dipole radiation, and therefore causes the shallow decay of the early afterglow. Recently, from a large number of GRB X-ray afterglows observed by Swift/XRT(X-ray telescope), it is revealed that many of them exhibit the shallow decay about 102?104 s after the burst prompt emission. We have fitted the X-ray afterglow light curves of 11 \\{GRBs\\} by using the energy injection model of a magnetar with the rotation period in the millisecond order of magnitude. The obtained result shows the validity and universality of the magnetar energy injection model in explaining the shallow decay of afterglows, and simultaneously provides some constraints on the magnetic field strength and rotation period of the central magnetar.

Fang-Hao Hu

2012-01-01T23:59:59.000Z

182

Single-cell resolution in high-resolution synchrotron X-ray CT imaging with gold nanoparticles  

Science Journals Connector (OSTI)

It is demonstrated that single-cell resolution can be obtained ex vivo in the brain of small animals using gold nanoparticles with the synchrotron-based computed tomography technique.

Sch?ltke, E.

2013-12-11T23:59:59.000Z

183

Atomic-scale chemical quantification of oxide interfaces using energy-dispersive X-ray spectroscopy  

SciTech Connect

Atomic-scale quantification of chemical composition across oxide interfaces is important for understanding physical properties of epitaxial oxide nanostructures. Energy-dispersive X-ray spectroscopy (EDS) in an aberration-corrected scanning transmission electron microscope was used to quantify chemical composition across the interface of ferromagnetic La{sub 0.7}Sr{sub 0.3}MnO{sub 3} and antiferromagnetic BiFeO{sub 3} quantum structure. This research demonstrates that chemical composition at atomic columns can be quantified by Gaussian peak-fitting of EDS compositional profiles across the interface. Cation diffusion was observed at both A- and B-sublattice sites; and asymmetric chemical profiles exist across the interface, consistent with the previous studies.

Lu, Ping; Van Benthem, Mark [Sandia National Laboratories, P.O. Box 5800, MS 1411, Albuquerque, New Mexico 87185-1411 (United States)] [Sandia National Laboratories, P.O. Box 5800, MS 1411, Albuquerque, New Mexico 87185-1411 (United States); Xiong, Jie; Jia, Quanxi [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2013-04-29T23:59:59.000Z

184

Note: Characterization of a high-photon-energy X-ray imager  

SciTech Connect

The Bragg angle, rocking curve, and reflection efficiency of a quartz crystal x-ray imager (Miller indices 234) were measured at photon energy of 15.6909 keV, corresponding to the K{sub ?2} line of Zr, using the X15A beamline at the National Synchrotron Light Source at Brookhaven National Laboratory. One flat and three spherically curved samples were tested. The peak reflectivity of the best-performing crystal was determined to be (3.6 ± 0.7) × 10{sup ?4} with a rocking-curve full width at half maximum of 0.09°. The Zr K{sub ?2} emission was imaged from a hot Zr plasma generated by a 10-J multiterawatt laser.

Storm, M.; Schiebel, P.; Freeman, R. R.; Akli, K. U. [Department of Physics, The Ohio State University, 191 West Woodruff Road, Columbus, Ohio 43210 (United States)] [Department of Physics, The Ohio State University, 191 West Woodruff Road, Columbus, Ohio 43210 (United States); Eichman, B.; Theobald, W.; Mileham, C.; Stoeckl, C.; Begishev, I. A.; Fiksel, G. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)] [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Zhong, Z. [The National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)] [The National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States); Stephens, R. B. [General Atomics, 3550 General Atomics Court, San Diego, California 92121-1200 (United States)] [General Atomics, 3550 General Atomics Court, San Diego, California 92121-1200 (United States)

2013-10-15T23:59:59.000Z

185

X-ray diffraction experiments with femtosecond time D. VON DER LINDE and K. SOKOLOWSKI-TINTEN  

E-Print Network (OSTI)

X-ray diffraction experiments with femtosecond time resolution D. VON DER LINDE and K. SOKOLOWSKI-essen.de (Received 4 March 2002) Abstract. Intense ultrashort laser pulses enable the generation of subpico- second X-ray pulses in the multi-kilovolt range of photon energies. These X- ray pulses have opened the door

von der Linde, D.

186

X-Ray Observations of Radio Galaxies  

E-Print Network (OSTI)

We review some of the ways that X-ray observations provide unique information on radio galaxies. Thermal bremsstrahlung X-ray emission provides detailed data on ambient densities and temperatures. These parameters in turn can be used for pressure balance calculations and can demonstrate how the ambient gas affects radio source structure. Additionally, many signatures of the interaction of radio jets and lobes with the hot gas are found in high resolution X-ray maps. Non-thermal X-ray emission from knots and hotspots of radio jets can give us constraints on the relativistic electron population for energies greater that that normally sampled in the radio (in the case of synchrotron emission) or can give us an independent estimate of the average magnetic field strength (if inverse Compton emission is the origin of the X-rays). From recent ROSAT HRI observations of 3C 390.3 and 3C 120, we show evidence that X-ray emission from knots and hotspots appears to be associated with regions of large gradients in the radio surface brightness; i.e. at the location of powerful shocks.

D. E. Harris

1998-04-20T23:59:59.000Z

187

Relationship between dislocations and residual stresses in cold-drawn pearlitic steel analyzed by energy-dispersive X-ray diffraction  

SciTech Connect

We analyzed the dislocation distribution of cold-drawn pearlitic-steel wire by using the line-profile analysis based on the energy dispersive X-ray diffraction (EDXD). Although this line-profile analysis requires a high resolution in reciprocal space, the resolution for EDXD is generally poor due to the energy resolution of the detector. Our analysis demonstrated that the resolution in the reciprocal space can be maximized at small scattering angles. Using the line-profile analysis based on the EDXD, the microstructural parameters such as the crystallite size and the dislocation density of the ferrite phase in the pearlitic steel were successfully analyzed. In addition, the distribution of the residual stress of the ferrite phase of a pearlitic steel wire was also analyzed using the EDXD measurement. - Highlights: • Energy dispersive X-ray diffraction is applied to the line-profile analysis. • Distribution of dislocations in ferrite in the pearlitic steel wire is analyzed. • Relationship between dislocations and residual stress is discussed.

Sato, Shigeo, E-mail: s.sato@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Wagatsuma, Kazuaki [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Suzuki, Shigeru [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Kumagai, Masayoshi; Imafuku, Muneyuki [Faculty of Engineering, Tokyo City University, Tokyo 158-8557 (Japan); Tashiro, Hitoshi [Gyoda 361-0011 (Japan); Kajiwara, Kentaro [Japan Synchrotron Radiation Research Institute, Sayo 679-5198 (Japan); Shobu, Takahiasa [Japan Atomic Energy Agency, Sayo 679-5184 (Japan)

2013-09-15T23:59:59.000Z

188

Hand-held X-Ray Fluorescence (XRF) | Open Energy Information  

Open Energy Info (EERE)

Hand-held X-Ray Fluorescence (XRF) Hand-held X-Ray Fluorescence (XRF) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Hand-held X-Ray Fluorescence (XRF) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Data Collection and Mapping Parent Exploration Technique: Data Collection and Mapping Information Provided by Technique Lithology: Bulk and trace element analysis of rocks, minerals, and sediments. Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Hand-held X-Ray Fluorescence (XRF): Hand-held X-Ray Fluorescence is a portable analytical technique derived from the instrumentation used in traditional lab-based XRF analysis. The technique is used for bulk chemical analysis of rock, mineral, and sediment

189

Space X-ray Solves Mysteries of Black Holes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space X-ray Solves Mysteries of Black Holes Space X-ray Solves Mysteries of Black Holes Space X-ray Solves Mysteries of Black Holes March 13, 2013 - 3:57pm Addthis Space X-ray Solves Mysteries of Black Holes Anne M. Stark Senior Public Information Officer, Lawrence Livermore National Laboratory "We know that black holes have a strong link to their host galaxy." Astrophysicist Bill Craig, a member of the LLNL team An international team including Lawrence Livermore National Laboratory scientists has definitively measured the spin rate of a supermassive black hole for the first time. The findings, made by the two X-ray space observatories, NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) and the European Space Agency's XMM-Newton, solve a long-standing debate about similar measurements in

190

The World's First Free-Electron X-ray Laser | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Free-Electron X-ray Laser First Free-Electron X-ray Laser The World's First Free-Electron X-ray Laser August 17, 2010 - 6:19pm Addthis The World's First Free-Electron X-ray Laser John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Yesterday, Secretary Chu participated in the dedication of the world's first free-electron and most powerful X-ray laser, the Linac Coherent Light Source (LCLS). In light of this occasion (pun intended), we posted an in-depth look at the innovative nature of this new instrument and its potential to tackle some of life's biggest mysteries. The Secretary seemed just as geeked about the possibilities of the LCLS, stating that "this is a new instrument that will enable us to see the structure of materials that we could not determine by any other means ... Knowing those

191

Learning to Apply Metrology Principles to the Measurement of X-ray Intensities in the 500 eV to 110 keV Energy Range  

SciTech Connect

National Security Technologies, LLC (NSTec), Livermore Operations, has two optical radiation calibration laboratories accredited by “the National Voluntary Laboratories Accreditation Program (NVLAP) which is the accrediting body of” the National Institute of Standards and Technology (NIST), and is now working towards accreditation for its X-ray laboratories. NSTec operates several laboratories with X-ray sources that generate X-rays in the energy range from 50 eV to 115 keV. These X-ray sources are used to characterize and calibrate diagnostics and diagnostic components used by the various national laboratories, particularly for plasma analysis on the Lawrence Livermore National Laboratory (LLNL) National Ignition Facility (NIF). Because X-ray photon flux measurement methods that can be accredited, i.e., traceable to NIST, have not been developed for sources operating in these energy ranges, NSTec, NIST, and the National Voluntary Accreditation Program (NVLAP) together have defined a path toward the development and validation of accredited metrology methods for X-ray energies. The methodology developed for the high energy X-ray (HEX) Laboratory was NSTec’s starting point for X-ray metrology accreditation and will be the basis for the accredited processes in the other X-ray laboratories. This paper will serve as a teaching tool, by way of this example using the NSTec X-ray sources, for the process and methods used in developing an accredited traceable metrology.

Haugh, M. J.; Pond, T.; Silbernagel, C.; Torres, P.; Marlett, K.; Goldin, F.; Cyr, S.

2011-02-08T23:59:59.000Z

192

Using X-Ray Computed Tomography in Pore Structure Characterization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Using X-Ray Computed Tomography in Pore Structure Characterization for a Berea Sandstone: Resolution Effect. Using X-Ray Computed Tomography in Pore Structure Characterization for...

193

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 58, NO. 6, DECEMBER 2011 2961 Low-Energy X-ray and Ozone-Exposure Induced  

E-Print Network (OSTI)

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 58, NO. 6, DECEMBER 2011 2961 Low-Energy X-ray and Ozone principles calculations of the relevant binding energies, and reaction and diffusion barriers for oxygen) has not been evaluated in a low-energy X-ray radiation environment [15], a case in which displacement

Weiss, Sharon

194

A new method of observing weak extended x-ray sources with the Reuven Ramaty High-Energy Solar Spectroscopic Imager  

E-Print Network (OSTI)

A new method of observing weak extended x-ray sources with the Reuven Ramaty High-Energy Solar, for observing weak extended x-ray sources with the Reuven Ramaty High-Energy Solar Spectroscopic Imager RHESSI. INTRODUCTION The Reuven Ramaty High-Energy Solar Spectroscopic Imager, RHESSI,1 is a space-based solar x

California at Berkeley, University of

195

Three-dimensional plastic response in polycrystalline copper via near-field high-energy X-ray diffraction microscopy  

Science Journals Connector (OSTI)

The evolution of the crystallographic orientation field in a polycrystalline sample of copper is mapped in three dimensions as tensile strain is applied. Using forward-modeling analysis of high-energy X-ray diffraction microscopy data, the ability to track intragranular orientation variations is demonstrated.

Li, S.F.

2012-10-25T23:59:59.000Z

196

Probing buried layers by photoelectron spectromicroscopy with hard x-ray excitation  

SciTech Connect

We report about a proof-of-principle experiment which explores the perspectives of performing hard x-ray photoemission spectromicroscopy with high lateral resolution. Our results obtained with an energy-filtered photoemission microscope at the PETRA III storage ring facility using hard x-ray excitation up to 6.5 keV photon energy demonstrate that it is possible to obtain selected-area x-ray photoemission spectra from regions less than 500 nm in diameter.

Wiemann, C.; Patt, M.; Cramm, S. [Peter Gruenberg Institute (PGI-6) and JARA-FIT, Research Centre Juelich, D-52425 Juelich (Germany); Escher, M.; Merkel, M. [FOCUS GmbH, D-65510 Huenstetten (Germany); Gloskovskii, A. [Institut fuer Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universitaet Mainz, D-55128 Mainz (Germany); Thiess, S.; Drube, W. [DESY Photon Science, Deutsches Elektronen-Synchrotron, D-22603 Hamburg (Germany); Schneider, C. M. [Peter Gruenberg Institute (PGI-6) and JARA-FIT, Research Centre Juelich, D-52425 Juelich (Germany); Fakultaet f. Physik and Center for Nanointegration Duisburg-Essen (CENIDE), Universitaet Duisburg-Essen, D-47048 Duisburg (Germany)

2012-05-28T23:59:59.000Z

197

STELLAR CORONAE, SOLAR FLARES: A DETAILED COMPARISON OF {sigma} GEM, HR 1099, AND THE SUN IN HIGH-RESOLUTION X-RAYS  

SciTech Connect

The Chandra High Energy Transmission Grating Spectrometer (HETG) spectra of the coronally active binary stars {sigma} Gem and HR 1099 are among the highest fluence observations for such systems taken at high spectral resolution in X-rays with this instrument. This allows us to compare their properties in detail to solar flare spectra obtained with the Russian CORONAS-F spacecraft's RESIK instrument at similar resolution in an overlapping bandpass. Here we emphasize the detailed comparisons of the 3.3-6.1 A region (including emission from highly ionized S, Si, Ar, and K) from solar flare spectra to the corresponding {sigma} Gem and HR 1099 spectra. We also model the larger wavelength range of the HETG, from 1.7 to 25 A - having emission lines from Fe, Ca, Ar, Si, Al, Mg, Ne, O, and N-to determine coronal temperatures and abundances. {sigma} Gem is a single-lined coronally active long-period binary which has a very hot corona. HR 1099 is a similar, but shorter period, double-lined system. With very deep HETG exposures we can even study emission from some of the weaker species, such as K, Na, and Al, which are important since they have the lowest first ionization potentials, a parameter well known to be correlated with elemental fractionation in the solar corona. The solar flare temperatures reach Almost-Equal-To 20 MK, comparable to the {sigma} Gem and HR 1099 coronae. During the Chandra exposures, {sigma} Gem was slowly decaying from a flare and its spectrum is well characterized by a collisional ionization equilibrium plasma with a broad temperature distribution ranging from 2 to 60 MK, peaking near 25 MK, but with substantial emission from 50 MK plasma. We have detected K XVIII and Na XI emission which allow us to set limits on their abundances. HR 1099 was also quite variable in X-rays, also in a flare state, but had no detectable K XVIII. These measurements provide new comparisons of solar and stellar coronal abundances, especially at the lowest first ionization potential (FIP) values. The low FIP elements do not show enhancement in the stellar coronae as they do in the Sun, except perhaps for K in {sigma} Gem. While {sigma} Gem and HR 1099 differ in their emission measure distributions, they have very similar elemental abundances.

Huenemoerder, David P. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 70 Vassar St., Cambridge, MA 02139 (United States); Phillips, Kenneth J. H. [Visiting Scientist, Space Research Center, Polish Academy of Sciences, 51-622, Kopernika 11, Wroclaw (Poland); Sylwester, Janusz; Sylwester, Barbara, E-mail: dph@space.mit.edu, E-mail: kennethjhphillips@yahoo.com, E-mail: js@cbk.pan.wroc.pl, E-mail: bs@cbk.pan.wroc.pl [Space Research Center, Polish Academy of Sciences, 51-622, Kopernika 11, Wroclaw (Poland)

2013-05-10T23:59:59.000Z

198

X-Ray Diffraction The X-Ray Diffraction facility is equipped with state-of-the-art  

E-Print Network (OSTI)

X-Ray Diffraction The X-Ray Diffraction facility is equipped with state-of-the-art diffractometers offering both single crystal and powder X-Ray diffraction. Powder X-Ray Diffraction High resolution data For more details on powder X-Ray analysis contact Dr J Hriljac on 0121 414 4458 or email: j

Birmingham, University of

199

On the variation of solar flare coronal x-ray source sizes with energy  

E-Print Network (OSTI)

Observations with {\\em RHESSI} have enabled the detailed study of the structure of dense hard X-ray coronal sources in solar flares. The variation of source extent with electron energy has been discussed in the context of streaming of non-thermal particles in a one-dimensional cold-target model, and the results used to constrain both the physical extent of, and density within, the electron acceleration region. Here we extend this investigation to a more physically realistic model of electron transport that takes into account the finite temperature of the ambient plasma, the initial pitch-angle distribution of the accelerated electrons, and the effects of collisional pitch-angle scattering. The finite temperature results in the thermal diffusion of electrons, that leads to the observationally-inferred value of the acceleration region volume being an overestimate of its true value. The different directions of the electron trajectories, a consequence of both the non-zero injection pitch-angle and scattering with...

Jeffrey, Natasha L S; Bian, Nicolas H; Emslie, A Gordon

2014-01-01T23:59:59.000Z

200

Facilities and techniques for x-ray diagnostic calibration in the 100-eV to 100-keV energy range  

SciTech Connect

The Lawrence Livermore National Laboratory (LLNL) has been a pioneer in the field of x-ray diagnostic calibration for more than 20 years. We have built steady state x-ray sources capable of supplying fluorescent lines of high spectral purity in the 100-eV to 100-keV energy range, and these sources have been used in the calibration of x-ray detectors, mirrors, crystals, filters, and film. This paper discusses our calibration philosophy and techniques, and describes some of our x-ray sources. Examples of actual calibration data are presented as well.

Gaines, J.L.; Wittmayer, F.J.

1986-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray energy resolution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The evolution of Ga and As core levels in the formation of Fe/GaAs (001):A high resolution soft x-ray photoelectron spectroscopic study  

SciTech Connect

A high resolution soft x-ray photoelectron spectroscopic study of Ga and As 3d core levels has been conducted for Fe/GaAs (001) as a function of Fe thickness. This work has provided unambiguous evidence of substrate disrupting chemical reactions induced by the Fe overlayer--a quantitative analysis of the acquired spectra indicates significantly differing behavior of Ga and As during Fe growth, and our observations have been compared with existing theoretical models. Our results demonstrate that the outdiffusing Ga and As remain largely confined to the interface region, forming a thin intermixed layer. Whereas at low coverages Fe has little influence on the underlying GaAs substrate, the onset of substrate disruption when the Fe thickness reaches 3.5 Angstrom results in major changes in the energy distribution curves (EDCs) of both As and Ga 3d cores. Our quantitative analysis suggests the presence of two additional As environments of metallic character: one bound to the interfacial region and another which, as confirmed by in situ oxidation experiments, surface segregates and persists over a wide range of overlayer thickness. Analysis of the corresponding Ga 3d EDCs found not two, but three additional environments--also metallic in nature. Two of the three are interface resident whereas the third undergoes outdiffusion at low Fe coverages. Based on the variations of the integrated intensities of each component, we present a schematic of the proposed chemical makeup of the Fe/GaAs (001) system.

Thompson, Jamie; Neal, James; Shen, Tiehan; Morton, Simon; Tobin, James; Waddill, George Dan; Matthew, Jim; Greig, Denis; Hopkinson, Mark

2008-07-14T23:59:59.000Z

202

X-ray Spectroscopy of Cool Stars  

E-Print Network (OSTI)

High-resolution X-ray spectroscopy has addressed not only various topics in coronal physics of stars, but has also uncovered important features relevant for our understanding of stellar evolution and the stellar environment. I summarize recent progress in coronal X-ray spectroscopy and in particular also discuss new results from studies of X-rays from pre-main sequence stars.

M. Guedel

2006-09-11T23:59:59.000Z

203

A Variable-Energy Soft X-Ray Microprobe to Investigate Mechanisms of the Radiation-Induced Bystander Effect.  

SciTech Connect

The Gray Cancer Institute has pioneered the use of X ray focussing techniques to develop systems for micro irradiating individual cells and sub cellular targets in vitro. Cellular micro irradiation is now recognised as a highly versatile technique for understanding how ionising radiation interacts with living cells and tissues. The strength of the technique lies in its ability to deliver precise doses of radiation to selected individual cells (or sub cellular targets). The application of this technique in the field of radiation biology continues to be of great interest for investigating a number of phenomena currently of concern to the radiobiological community. One important phenomenon is the so called ‘bystander effect’ where it is observed that unirradiated cells can also respond to signals transmitted by irradiated neighbours. Clearly, the ability of a microbeam to irradiate just a single cell or selected cells within a population is well suited to studying this effect. Our prototype ‘tabletop’ X-ray microprobe was optimised for focusing 278 eV C-K X rays and has been used successfully for a number of years. However, we have sought to develop a new variable energy soft X-ray microprobe capable of delivering focused CK (0.28 keV), Al-K (1.48 keV) and notably, Ti-K (4.5 keV) X rays. Ti-K X rays are capable of penetrating several cell layers and are therefore much better suited to studies involving tissues and multi cellular layers. In our new design, X-rays are generated by the focussed electron bombardment of a material whose characteristic-K radiation is required. The source is mounted on a 1.5 x 1.0 metre optical table. Electrons are generated by a custom built gun, designed to operate up to 15 kV. The electrons are focused using a permanent neodymium iron boron magnet assembly. Focusing is achieved by adjusting the accelerating voltage and by fine tuning the target position via a vacuum position feedthrough. To analyze the electron beam properties, a custom built microscope is used to image the focussed beam on the target, through a vacuum window. The X-rays are focussed by a zone plate optical assembly mounted to the end of a hollow vertical tube that can be precisely positioned above the X ray source. The cell finding and positioning stage comprises an epi-fluorescence microscope and a feedback controlled 3 axis cell positioning stage, also mounted on the optical table. Independent vertical micro positioning of the microscope objective turret allows the focus of the microscope and the X ray focus to coincide in space (i.e. at the point where the cell should be positioned for exposure). The whole microscope stage assembly can be precisely raised or lowered, to cater for large differences in the focal length of the X ray zone plates. The facility is controlled by PC and the software provides full status and control of the source and makes use of a dual-screen for control and display during the automated cell finding and irradiation procedures.

Folkard, Melvyn; Vojnovic, Borivoj; Schettino, Giuseppe; Atkinson, Kirk; Prise, Kevin, M.; Michael, Barry, D.

2007-01-23T23:59:59.000Z

204

Photodiode-Based X-Ray Beam-Position Monitor With High Spatial-Resolution for the NSLS-II Beamlines  

SciTech Connect

We developed a photodiode-based monochromatic X-ray beam-position monitor (X-BPM) with high spatial resolution for the project beamlines of the NSLS-II. A ring array of 32 Si PIN-junction photodiodes were designed for use as a position sensor, and a low-noise HERMES4 ASIC chip was integrated into the electronic readout system. A series of precision measurements to characterize electrically the Si-photodiode sensor and the ASIC chip demonstrated that the inherent noise is sufficiently below tolerance levels. Following up modeling of detector's performance, including geometrical optimization using a Gaussian beam, we fabricated and assembled a first prototype. In this paper, we describe the development of this new state-of-the-art X-ray BPM along the beamline, in particular, downstream from the monochromator.

Yoon, P.S.; Siddons, D. P.

2009-05-25T23:59:59.000Z

205

Application of PILATUS II Detector Modules for High Resolution X-Ray Imaging Crystal Spectrometers on the Alcator C-Mod Tokamak  

SciTech Connect

A new type of X-ray imaging crystal spectrometer for Doppler measurements of the radial profiles of the ion temperature and plasma rotation velocity in tokamak plasmas is presently being developed in a collaboration between various laboratories. The spectrometer will consist of a spherically bent crystal and a two-dimensional position sensitive detector; and it will record temporally and spatially resolved X-ray line spectra from highly-charged ions. The detector must satisfy challenging requirements with respect to count rate and spatial resolution. The paper presents the results from a recent test of a PILATUS II detector module on Alcator C-Mod, which demonstrate that the PILATUS II detector modules will satisfy these requirements.

M.L. Bitter, Ch. Borennimann, E.F. Eikenberry, K.W. Hill, A. Ince-Chushman, S.G. Lee, J.E. Rice, and S. Scott.

2007-07-23T23:59:59.000Z

206

E-Print Network 3.0 - alxga1-xas high-energy x-ray Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

All rights reserved. X-ray Diffraction Activity... Background Information The X-ray powder Diffractometer uses different ... Source: Cohen, Itai - Department of Physics, Cornell...

207

Compact x-ray source and panel  

DOE Patents (OSTI)

A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

Sampayon, Stephen E. (Manteca, CA)

2008-02-12T23:59:59.000Z

208

Spectroscopic imaging, diffraction, and holography with x-ray photoemission  

SciTech Connect

X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over length scales from about a micron all the way down to atomic resolution. Examples of these probes include photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity, and length scales can be very different, these X-ray techniques share a common goal of combining a capability for structure determination with chemical-state specificity. This workshop will address recent advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both theoretical and experimental fronts. A particular emphasis will be on novel structure determinations with atomic resolution using photoelectrons.

Not Available

1992-02-01T23:59:59.000Z

209

THE SAP3 COMPUTER PROGRAM FOR QUANTITATIVE MULTIELEMENT ANALYSIS BY ENERGY DISPERSIVE X-RAY FLUORESCENCE  

SciTech Connect

SAP3 is a dual-function FORTRAN computer program which performs peak analysis of energy-dispersive x-ray fluorescence spectra and then quantitatively interprets the results of the multielement analysis. It was written for mono- or bi-chromatic excitation as from an isotopic or secondary excitation source, and uses the separate incoherent and coherent backscatter intensities to define the bulk sample matrix composition. This composition is used in performing fundamental-parameter matrix corrections for self-absorption, enhancement, and particle-size effects, obviating the need for specific calibrations for a given sample matrix. The generalized calibration is based on a set of thin-film sensitivities, which are stored in a library disk file and used for all sample matrices and thicknesses. Peak overlap factors are also determined from the thin-film standards, and are stored in the library for calculating peak overlap corrections. A detailed description is given of the algorithms and program logic, and the program listing and flow charts are also provided. An auxiliary program, SPCAL, is also given for use in calibrating the backscatter intensities. SAP3 provides numerous analysis options via seventeen control switches which give flexibility in performing the calculations best suited to the sample and the user needs. User input may be limited to the name of the library, the analysis livetime, and the spectrum filename and location. Output includes all peak analysis information, matrix correction factors, and element concentrations, uncertainties and detection limits. Twenty-four elements are typically determined from a 1024-channel spectrum in one-to-two minutes using a PDP-11/34 computer operating under RSX-11M.

Nielson,, K. K.; Sanders,, R. W.

1982-04-01T23:59:59.000Z

210

Short-range and long-range order of phyllomanganate nanoparticles determined using high-energy X-ray scattering  

Science Journals Connector (OSTI)

High-energy X-ray scattering data from turbostratic phyllomanganate nanosheets are analyzed in real-space by pair distribution function analysis and in reciprocal space by the Bragg-rod method and the Debye equation. The elastic deformation of the two-dimensional nanocrystals is modeled with (1) a new empirical strain function in Bragg-rod calculations and (2) explicit spherical and cylindrical mandrels implemented in the Debye equation.

Manceau, A.

2013-01-17T23:59:59.000Z

211

A new spectrometer design for the x-ray spectroscopy of laser-produced plasmas with high (sub-ns) time resolution  

SciTech Connect

This paper describes a new type of x-ray crystal spectrometer, which can be used in combination with gated x-ray detectors to obtain spectra from laser-produced plasmas with a high (sub-ns) time resolution. The spectrometer consists of a convex, spherically bent crystal, which images individual spectral lines as perfectly straight lines across multiple, sequentially gated, strip detectors. Since the Bragg-reflected rays are divergent, the distance between detector and crystal is arbitrary, so that this distance can be appropriately chosen to optimize the experimental arrangement with respect to the detector parameters. The spectrometer concept was verified in proof-of-principle experiments by imaging the L?{sub 1}- and L?{sub 2}-lines of tungsten, at 9.6735 and 9.96150 keV, from a micro-focus x-ray tube with a tungsten target onto a two-dimensional pixilated Pilatus detector, using a convex, spherically bent Si-422 crystal with a radius of curvature of 500 mm.

Bitter, M., E-mail: bitter@pppl.gov; Hill, K. W.; Efthimion, P. C.; Delgado-Aparicio, L.; Pablant, N. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Lu, Jian [Department of Engineering, Chongqing University, Chongqing 400044 (China); Beiersdorfer, P.; Chen, Hui [Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2014-11-15T23:59:59.000Z

212

On forbidden high-energy electrons as a source of background in X-ray and gamma-ray observations  

E-Print Network (OSTI)

The study is devoted to a problem of electron-induced contaminant to X-ray and gamma-ray astrophysical measurements on board low-orbiting satellites. We analyzed enhancements of electron fluxes in energy range 100 - 300 keV observed at equatorial and low latitudes by a fleet of NOAA/POES low-orbiting satellites over the time period from 2003 to 2005. It was found that 100-300 keV electron fluxes in the forbidden zone below the inner radiation belt enhanced by several orders of magnitude during geomagnetic storms and/or under strong compressions of the magnetosphere. The enhancements are related to high substorm activity and occurred at any local time. Intense fluxes of the energetic electrons in the forbidden zone can be considered as an essential contaminant to X-ray and gamma-ray measurements at low-latitude and low-altitude orbits.

Suvorova, Alla V

2014-01-01T23:59:59.000Z

213

Constellation-X Spectroscopy X-Ray Telescope Segmented Optic Assembly and Alignment Implementation  

E-Print Network (OSTI)

. ABSTRACT The Constellation-X mission will perform X-Ray science with improvements in energy resolutionConstellation-X Spectroscopy X-Ray Telescope Segmented Optic Assembly and Alignment Implementation and effective area over its predecessor missions. The primary instrument on each of the four Constellation

214

Calibration of X-ray detectors in the 8 to 115 keV energy range and their application to diagnostics on the National Ignition Facility  

SciTech Connect

The calibration of X-ray diagnostics is of paramount importance to the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). National Security Technologies LLC (NSTec) fills this need by providing a wide variety of calibration and diagnostic development services in support of the ongoing research efforts at NIF. The X-ray source in the High Energy X-ray lab utilizes induced fluorescence in a variety of metal foils to produce a beam of characteristic X rays ranging from 8 to 111 keV. Presented are the methods used for calibrating a High Purity Germanium detector, which has been absolutely calibrated using radioactive check sources, compared against a silicon photodiode calibrated at Physikalisch Technische Bundesanstalt (PTB). Also included is a limited presentation of results from the recent calibration of the upgraded Filter Fluorescer X ray Spectrometer.

J. J. Lee, M. J. Haugh, G. LaCaille, and P. Torres

2012-10-01T23:59:59.000Z

215

National Ignition Facility core x-ray streak camera  

SciTech Connect

The National Ignition Facility (NIF) core x-ray streak camera will be used for laser performance verification experiments as well as a wide range of physics experiments in the areas of high-energy-density science, inertial confinement fusion, and basic science. The x-ray streak camera system is being designed to record time-dependent x-ray emission from NIF targets using an interchangeable family of snouts for measurements such as one-dimensional (1D) spatial imaging or spectroscopy. the NIF core x-ray streak camera will consist of an x-ray-sensitive photocathode that detects x rays with 1D spatial resolution coupled to an electron streak tube to detect a continuous time history of the x rays incident on the photocathode over selected time periods. A charge-coupled-device (CCD) readout will record the signal from the streak tube. The streak tube, CCD, and associated electronics will reside in an electromagnetic interference, and electromagnetic pulse protected, hermetically sealed, temperature-controlled box whose internal pressure is approximately 1 atm. The streak tube itself will penetrate through the wall of the box into the target chamber vacuum. We are working with a goal of a spatial resolution of 15 lp/mm with 50% contrast transfer function at the photocathode and adjustment sweep intervals of 1--50 ns. The camera spectral sensitivity extends from soft x rays to 20 keV x rays, with varying quantum efficiency based on photocathode selection. The system will have remote control, monitoring, and Ethernet communications through an embedded controller. The core streak camera will be compatible with the instrument manipulators at the OMEGA (University of Rochester) and NIF facilities.

Kimbrough, J. R.; Bell, P. M.; Christianson, G. B.; Lee, F. D.; Kalantar, D. H.; Perry, T. S.; Sewall, N. R.; Wootton, A. J.

2001-01-01T23:59:59.000Z

216

X-ray Spectroscopy of Cooling Cluster  

SciTech Connect

We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolution X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radiative cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We discuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling.

Peterson, J.R.; /SLAC; Fabian, A.C.; /Cambridge U., Inst. of Astron.

2006-01-17T23:59:59.000Z

217

X-ray Spectroscopy of Cooling Clusters  

E-Print Network (OSTI)

We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolution X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radiative cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We discuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling.

J. R. Peterson; A. C. Fabian

2005-12-21T23:59:59.000Z

218

Energy-Dispersive X-ray analysis of the mineral content of corn bran treated in vitro and by passage through the pig Gastrointestinal tract  

Science Journals Connector (OSTI)

Energy-dispersive X-ray (EDX) analysis was ... a method for examining the mineral contents of corn bran loaded in vitro or passed through ... tract of pigs. Particles of dry-milled corn pericarp treated in vitro ...

Frederick R. Dintzis; Frederick L. Baker…

219

An Improved Method to Derive the Lower Energy Cutoff of non-Thermal Electrons From Hard x-Rays of Solar Flares  

Science Journals Connector (OSTI)

By changing a dimensionless calculation to a dimensional one, introducing a more accurate bremsstrahlung cross section, and using a more reasonable fitting energy range, we have recalculated the hard X-ray bre...

W.Q. Gan; Y.P. Li; J. Chang; James M. Tiernan

2002-05-01T23:59:59.000Z

220

Spectrum bandwidth narrowing of Thomson scattering X-rays with energy chirped electron beams from laser wakefield acceleration  

SciTech Connect

We study incoherent Thomson scattering between an ultrashort laser pulse and an electron beam accelerated from a laser wakefield. The energy chirp effects of the accelerated electron beam on the final radiation spectrum bandwidth are investigated. It is found that the scattered X-ray radiation has the minimum spectrum width and highest intensity as electrons are accelerated up to around the dephasing point. Furthermore, it is proposed that the electron acceleration process inside the wakefield can be studied by use of 90° Thomson scattering. The dephasing position and beam energy chirp can be deduced from the intensity and bandwidth of the scattered radiation.

Xu, Tong; Chen, Min, E-mail: minchen@sjtu.edu.cn; Li, Fei-Yu; Yu, Lu-Le [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)] [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Sheng, Zheng-Ming, E-mail: zmsheng@sjtu.edu.cn [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China) [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Zhang, Jie [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China) [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China)

2014-01-06T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray energy resolution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

All-laser-driven, MeV-energy X-ray source for detection of SNM Sudeep Banerjee, Nathan Powers, Vidya Ramanathan, Nathaniel Cunningham, Nate Chandler-Smith, Shouyuan  

E-Print Network (OSTI)

All-laser-driven, MeV-energy X-ray source for detection of SNM Sudeep Banerjee, Nathan Powers, MI 48109. A quasi-monoenergetic MeV x-ray source based on laser-driven electron acceleration per laser shot. Characterization of such a high-flux high energy x-ray beam is in progress. Quasi

Umstadter, Donald

222

Developments in limited data image reconstruction techniques for ultrahigh-resolution x-ray tomographic imaging of microchips  

SciTech Connect

The use of soft x-ray (about 1.8 KeV) nanotomography techniques for the evaluation and failure mode analysis of microchips was investigated. Realistic numerical simulations of the imaging process were performed and a specialized approach to image reconstruction from limited projection data was devised. Prior knowledge of the structure and its component materials was used to eliminate artifacts in the reconstructed images so that defects and deviations from the original design could be visualized. Simulated data sets were generated with a total of 21 projections over three different angular ranges: -50 to +50, - 80 to +80 and -90 to +90 degrees. In addition, a low level of illumination was assumed. It was shown that sub-micron defects within one cell of a microchip (< 10 pm3) could be imaged in 3-D using such an approach.

Haddad, W.S.; Trebes, J.E.

1997-08-20T23:59:59.000Z

223

High energy x-ray scattering studies of the local order in liquid Al  

SciTech Connect

The x-ray structure factors and densities for liquid aluminum from 1123 K to 1273 K have been measured using the beamline electrostatic levitator. Atomic structures as a function of temperature have been constructed from the diffraction data with reverse Monte Carlo simulations. An analysis of the local atomic structures in terms of the Honeycutt-Andersen indices indicates a high degree of icosahedral and distorted icosahedral order, a modest amount of body-centered cubic order, and marginal amounts of face-centered cubic and hexagonal close-packed order.

Mauro, N.A.; Bendert, J.C.; Vogt, A.J.; Gewin, J.M.; Kelton, K.F. (WU)

2012-10-23T23:59:59.000Z

224

In situ diagnostic of liquid water distribution in cathode catalyst layer in an operating PEMFC by high-resolution soft X-ray radiography  

Science Journals Connector (OSTI)

To investigate the water transport behavior in the cathode catalyst layer (CCL) of an operating proton exchange membrane fuel cell (PEMFC), we examined transversal liquid water distributions in the CCL by using high-resolution soft X-ray radiography. The liquid water concentration gradient across the CCL was observed at a spatial resolution of 1.5 ?m. More liquid water accumulated in the CCL at the gas diffusion layer side than at the polymer electrolyte membrane side. The effect of accumulated liquid water in the CCL on the charge-transfer resistance was confirmed by electrochemical impedance spectroscopy. Liquid water accumulation in the CCL corresponds to deterioration of charge-transfer in the electrode.

Phengxay Deevanhxay; Takashi Sasabe; Shohji Tsushima; Shuichiro Hirai

2012-01-01T23:59:59.000Z

225

Calcium binding in. alpha. -amylases: An X-ray diffraction study at 2. 1- angstrom resolution of two enzymes from Aspergillus  

SciTech Connect

X-ray diffraction analysis (at 2.1-{angstrom} resolution) of an acid alpha-amylase from Aspergillus niger allowed a detailed description of the stereochemistry of the calcium-binding sites. The primary site (which is essential in maintaining proper folding around the active site) contains a tightly bound Ca{sup 2+} with an unusually high number of eight ligands. A secondary binding site was identified at the bottom of the substrate binding cleft; it involves the residues presumed to play a catalytic role (Asp206 and Glu230). This explains the inhibitory effect of calcium observed at higher concentrations. Neutral Aspergillus oryzae (TAKA) {alpha}-amylase was also refined in a new crystal at 2.1-{angstrom} resolution. The structure of this homologous (over 80%) enzyme and addition kinetic studies support all the structural conclusions regarding both calcium-binding sites.

Boel, E.; Jensen, V.J.; Petersen, S.B.; Thim, L. Woldike, H.F. (NOVO-Nordisk Industri AS, Bagsvaerd (Denmark)); Brady, L.; Brzozowski, AM.; Derewenda, Z.; Dodson, G.G.; Swift, H. (Univ. of York (England))

1990-07-03T23:59:59.000Z

226

Mass and energy of erupting solar plasma observed with the X-Ray Telescope on Hinode  

E-Print Network (OSTI)

We investigate seven eruptive plasma observations by Hinode/XRT. Their corresponding EUV and/or white light CME features are visible in some events. Five events are observed in several passbands in X-rays, which allows the determination of the eruptive plasma temperature using a filter ratio method. We find that the isothermal temperatures vary from 1.6 to 10 MK. These temperatures are an average weighted toward higher temperature plasma. We determine the mass constraints of eruptive plasmas by assuming simplified geometrical structures of the plasma with isothermal plasma temperatures. This method provides an upper limit to the masses of the observed eruptive plasmas in X-ray passbands since any clumping causes the overestimation of the mass. For the other two events, we assume the temperatures are at the maximum temperature of the XRT temperature response function, which gives a lower limit of the masses. We find that the masses in XRT, ~3x10 13 - 5x10 14 g, are smaller in their upper limit than total masse...

Lee, Jin-Yi; Reeves, Katharine K; Moon, Yong-Jae; Kim, Kap-Sung

2014-01-01T23:59:59.000Z

227

Tokamak x ray diagnostic instrumentation  

SciTech Connect

Three classes of x-ray diagnostic instruments enable measurement of a variety of tokamak physics parameters from different features of the x-ray emission spectrum. (1) The soft x-ray (1 to 50 keV) pulse-height-analysis (PHA) diagnostic measures impurity concentrations from characteristic line intensities and the continuum enhancement, and measures the electron temperature from the continuum slope. (2) The Bragg x-ray crystal spectrometer (XCS) measures the ion temperature and neutral-beam-induced toroidal rotation velocity from the Doppler broadening and wavelength shift, respectively, of spectral lines of medium-Z impurity ions. Impurity charge state distributions, precise wavelengths, and inner-shell excitation and recombination rates can also be studied. X rays are diffracted and focused by a bent crystal onto a position-sensitive detector. The spectral resolving power E/..delta..E is greater than 10/sup 4/ and time resolution is 10 ms. (3) The x-ray imaging system (XIS) measures the spatial structure of rapid fluctuations (0.1 to 100 kHZ) providing information on MHD phenomena, impurity transport rates, toroidal rotation velocity, plasma position, and the electron temperature profile. It uses an array of silicon surface-barrier diodes which view different chords of the plasma through a common slot aperture and operate in current (as opposed to counting) mode. The effectiveness of shields to protect detectors from fusion-neutron radiation effects has been studied both theoretically and experimentally.

Hill, K.W.; Beiersdorfer, P.; Bitter, M.; Fredrickson, E.; Von Goeler, S.; Hsuan, H.; Johnson, L.C.; Liew, S.L.; McGuire, K.; Pare, V.

1987-01-01T23:59:59.000Z

228

Simulations of Microchannel Plate Sensitivity to <20 keV X-rays as a Function of Energy and Incident Angle  

SciTech Connect

We present results of Monte Carlo simulations of microchannel plate (MCP) response to x-rays in the 250 eV to 20 keV energy range as a function of both x-ray energy and impact angle. The model is based on the model presented in Rochau et al. (2006). However, while the Rochau et al. (2006) model was two-dimensional, and their results only went to 5 keV, our results have been expanded to 20 keV, and our model has been incorporated into a three-dimensional Monte Carlo MCP model that we have developed over the past several years (Kruschwitz et al. 2011). X-ray penetration through multiple MCP pore walls is increasingly important above 5 keV. The effect of x-ray penetration through multiple pores on MCP performance was studied and is presented.

Kruschwitz, Craig [NSTec; Wu, M. [SNL; Rochau, G. A. [SNL

2013-06-13T23:59:59.000Z

229

High-energy x-ray microscopy of laser-fusion plasmas at the National Ignition Facility  

SciTech Connect

Multi-keV x-ray microscopy will be an important laser-produced plasma diagnostic at future megajoule facilities such as the National Ignition Facility (NIF).In preparation for the construction of this facility, we have investigated several instrumentation options in detail, and we conclude that near normal incidence single spherical or toroidal crystals may offer the best general solution for high-energy x-raymicroscopy at NIF and at similar large facilities. Kirkpatrick-Baez microscopes using multi-layer mirrors may also be good secondary options, particularly if apertures are used to increase the band-width limited field of view.

Koch, J.A.; Landen, O.L.; Hammel, B.A. [and others

1997-08-26T23:59:59.000Z

230

Fluorescence-type Monochromatic X-ray Beam-position Monitor with High-spatial Resolution for the NSLS-II Beamlines  

SciTech Connect

We developed a fluorescence-type monochromatic X-ray beam-position monitor (X-BPM) with high-spatial resolution for end-station experiments at the initial project beamlines of the NSLS-II. We designed a ring array of multi-segmented Si PIN-junction photodiodes to use as a position sensor. Further, we integrated a low-noise charge-preamplification HERMES4 ASIC chip into an electronic readout system for photon-counting application. A series of precision measurements to characterize electronically the Si-photodiode sensor and the ASIC chip demonstrated that the inherent noise from the detector system is sufficiently low to meet our stringent requirements. Using a Gaussian beam, we parametrically modeled the optimum working distance to ensure the detector's best performance. Based upon the results from the parametric modeling, prototypes of the next versions of the X-BPM are being developed. In this paper, we describe the methodology for developing the new compact monochromatic X-ray BPM, including its instrumentation, detector modeling, and future plan.

Yoon, Phil S. [Experimental Facility Division, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973 (United States); Siddons, D. Peter [Experimental Systems, NSLS, Brookhaven National Laboratory, Upton, NY 11973 (United States)

2010-06-23T23:59:59.000Z

231

Diffracted X-ray tracking for monitoring intramolecular motion in individual protein molecules using broad band X-ray  

SciTech Connect

Diffracted X-ray tracking (DXT) enables the tilting and twisting motions of single protein molecules to be monitored with micro- to milliradian resolution using a highly brilliant X-ray source with a wide energy bandwidth. We have developed a technique to monitor single molecules using gold nanocrystals attached to individual protein molecules using the BL28B2 beamline at SPring-8. In this paper we present the installation of a single toroidal X-ray mirror at BL28B2 to focus X-rays in an energy range of 10–20 keV (?E/E = 82% for an X-ray with a wide energy bandwidth). With this beamline we tracked diffraction spots from gold nanocrystals over a wide angle range than that using quasi-monochromatic X-rays. Application of the wide angle DXT technique to biological systems enabled us to observe the on-site motions of single protein molecules that have been functionalized in vivo. We further extend the capability of DXT by observing the fractional tilting and twisting motions of inner proteins under various conditions. As a proof of this methodology and to determine instrumental performance the intramolecular motions of a human serum albumin complex with 2-anthracenecarboxylic acid was investigated using the BL28B2 beamline. The random tilting and twisting intramolecular motions are shown to be directly linked to the movement of individual protein molecules in the buffer solution.

Ichiyanagi, Kouhei; Sasaki, Yuji C. [Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 609 Kiban Building 5-1-5 Kashiwanoha, Kahiwashi, Chiba 277-8561 (Japan) [Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 609 Kiban Building 5-1-5 Kashiwanoha, Kahiwashi, Chiba 277-8561 (Japan); Japan Science and Technology Agency, CREST, CREST, Sasaki-Team, 609 Kiban Building, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Sekiguchi, Hiroshi; Hoshino, Masato; Kajiwara, Kentaro; Senba, Yasunori; Ohashi, Haruhiko; Ohta, Noboru [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)] [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Hoshisashi, Kentaro; Jae-won, Chang; Tokue, Maki; Matsushita, Yufuku [Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 609 Kiban Building 5-1-5 Kashiwanoha, Kahiwashi, Chiba 277-8561 (Japan)] [Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 609 Kiban Building 5-1-5 Kashiwanoha, Kahiwashi, Chiba 277-8561 (Japan); Nishijima, Masaki; Inoue, Yoshihisa [Department of Applied Chemistry and Office for University-Industry Collaboration, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)] [Department of Applied Chemistry and Office for University-Industry Collaboration, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Yagi, Naoto [Japan Science and Technology Agency, CREST, CREST, Sasaki-Team, 609 Kiban Building, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan) [Japan Science and Technology Agency, CREST, CREST, Sasaki-Team, 609 Kiban Building, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

2013-10-15T23:59:59.000Z

232

Theory of angular dispersive imaging hard x-ray spectrographs  

E-Print Network (OSTI)

A spectrograph is an optical instrument that disperses photons of different energies into distinct directions and space locations, and images photon spectra on a position-sensitive detector. Spectrographs consist of collimating, angular dispersive, and focusing optical elements. Bragg reflecting crystals arranged in an asymmetric scattering geometry are used as the dispersing elements. A ray-transfer matrix technique is applied to propagate x-rays through the optical elements. Several optical designs of hard x-ray spectrographs are proposed and their performance is analyzed. Spectrographs with an energy resolution of 0.1 meV and a spectral window of imaging up to a few tens of meVs are shown to be feasible for inelastic x-ray scattering (IXS) spectroscopy applications. In another example, a spectrograph with a 1-meV spectral resolution and 85-meV spectral window of imaging is considered for Cu K-edge resonant IXS (RIXS).

Shvyd'ko, Yuri

2015-01-01T23:59:59.000Z

233

Lowering the background level and the energy threshold of Micromegas x-ray detectors for axion searches  

E-Print Network (OSTI)

Axion helioscopes search for solar axions by their conversion in x-rays in the presence of high magnetic fields. The use of low background x-ray detectors is an essential component contributing to the sensitivity of these searches. In this work, we review the recent advances on Micromegas detectors used in the CERN Axion Solar Telescope (CAST) and proposed for the future International Axion Observatory (IAXO). The actual setup in CAST has achieved background levels below 10$^{-6}$ keV$^{-1}$ cm$^{-2}$ s$^{-1}$, a factor 100 lower than the first generation of Micromegas detectors. This reduction is based on active and passive shielding techniques, the selection of radiopure materials, offline discrimination techniques and the high granularity of the readout. We describe in detail the background model of the detector, based on its operation at CAST site and at the Canfranc Underground Laboratory (LSC), as well as on Geant4 simulations. The best levels currently achieved at LSC are low than 10$^{-7}$ keV$^{-1}$ cm$^{-2}$ s$^{-1}$ and show good prospects for the application of this technology in IAXO. Finally, we present some ideas and results for reducing the energy threshold of these detectors below 1 keV, using high-transparent windows, autotrigger electronics and studying the cluster shape at different energies. As a high flux of axion-like-particles is expected in this energy range, a sub-keV threshold detector could enlarge the physics case of axion helioscopes.

F. J. Iguaz; S. Aune; F. Aznar; J. F. Castel; T. Dafni; M. Davenport; E. Ferrer-Ribas; J. Galan; J. A. Garcia; J. G. Garza; I. Giomataris; I. G. Irastorza; T. Papaevangelou; A. Rodriguez; A. Tomas; T. Vafeiadis; S. C. Yildiz

2015-01-07T23:59:59.000Z

234

Pixel detectors for x-ray imaging spectroscopy in space  

Science Journals Connector (OSTI)

Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 ? 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

J Treis; R Andritschke; R Hartmann; S Herrmann; P Holl; T Lauf; P Lechner; G Lutz; N Meidinger; M Porro; R H Richter; F Schopper; H Soltau; L Strüder

2009-01-01T23:59:59.000Z

235

Miniature x-ray source  

DOE Patents (OSTI)

A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

Trebes, James E. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA)

2000-01-01T23:59:59.000Z

236

HIGH BRILLIANCE X-RAY SCATTERING FOR  

NLE Websites -- All DOE Office Websites (Extended Search)

BRILLIANCE X-RAY SCATTERING FOR BRILLIANCE X-RAY SCATTERING FOR LIFE SCIENCES (LIX) Group Leader: Lin Yang Proposal Team: O. Bilsel 1 , B. Hsiao 2 , H. Huang 3 , T. Irving 4 , A. Menzel 5 , L. Pollack 6 , C. Riekel 7 , J. Rubert 8 , H. Tsuruta 9 , L. Yang 10 1 University of Massachusetts, 2 Stony Brook University, 3 Rice University, 4 IIT, 5SLS, 6 Cornell University, 7 European Synchrotron Radiation Facility, 8 NEU, 9 Stanford Synchrotron Radiation Lightsource, 10 Brookhaven National Laboratory TECHNIQUES AND CAPABILITIES APPLICATIONS ADDITIONAL INFORMATION * Energy range 2-20keV using undulator source. Simultaneous SAXS/WAXS to cover 0.003-3Å -1 at 12keV with 1 micron spot size * Time-resolved solution scattering with resolution of (1) microseconds to milliseconds using continuous-flow mixing (5µm x 10µm spot size) and (2) milliseconds using stopped-

237

Constraining H{sub 0} in general dark energy models from Sunyaev-Zeldovich/X-ray technique and complementary probes  

SciTech Connect

In accelerating dark energy models, the estimates of the Hubble constant, H{sub 0}, from Sunyaev-Zel'dovich effect (SZE) and X-ray surface brightness of galaxy clusters may depend on the matter content (?{sub M}), the curvature (?{sub K}) and the equation of state parameter (?). In this article, by using a sample of 25 angular diameter distances of galaxy clusters described by the elliptical ? model obtained through the SZE/X-ray technique, we constrain H{sub 0} in the framework of a general ?CDM model (arbitrary curvature) and a flat XCDM model with a constant equation of state parameter ? = p{sub x}/?{sub x}. In order to avoid the use of priors in the cosmological parameters, we apply a joint analysis involving the baryon acoustic oscillations (BAO) and the CMB Shift Parameter signature. By taking into account the statistical and systematic errors of the SZE/X-ray technique we obtain for nonflat ?CDM model H{sub 0} = 74{sup +5.0}{sub ?4.0} km s{sup ?1} Mpc{sup ?1}(1?) whereas for a flat universe with constant equation of state parameter we find H{sub 0} = 72{sup +5.5}{sub ?4.0} km s{sup ?1} Mpc{sup ?1}(1?). By assuming that galaxy clusters are described by a spherical ? model these results change to H{sub 0} = 62{sup +8.0}{sub ?7.0} and H{sub 0} = 59{sup +9.0}{sub ?6.0} km s{sup ?1} Mpc{sup ?1}(1?), respectively. The results from elliptical description are in good agreement with independent studies from the Hubble Space Telescope key project and recent estimates based on the Wilkinson Microwave Anisotropy Probe, thereby suggesting that the combination of these three independent phenomena provides an interesting method to constrain the Hubble constant. As an extra bonus, the adoption of the elliptical description is revealed to be a quite realistic assumption. Finally, by comparing these results with a recent determination for a flat ?CDM model using only the SZE/X-ray technique and BAO, we see that the geometry has a very weak influence on H{sub 0} estimates for this combination of data.

Holanda, R.F.L.; Lima, J.A.S. [Departamento de Astronomia (IAGUSP), Universidade de São Paulo, Rua do Matão 1226, 05508-900, São Paulo, SP (Brazil); Cunha, J.V. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia 166, 09210-170, Santo André, SP (Brazil); Marassi, L., E-mail: holanda@astro.iag.usp.br, E-mail: jvcunha@ufpa.br, E-mail: luciomarassi@ect.ufrn.br, E-mail: limajas@astro.iag.usp.br [Escola de Ciência e Tecnologia, UFRN, 59072-970, Natal, RN (Brazil)

2012-02-01T23:59:59.000Z

238

Hard x-ray imaging from explorer  

SciTech Connect

Coded aperture X-ray detectors were applied to obtain large increases in sensitivity as well as angular resolution. A hard X-ray coded aperture detector concept is described which enables very high sensitivity studies persistent hard X-ray sources and gamma ray bursts. Coded aperture imaging is employed so that approx. 2 min source locations can be derived within a 3 deg field of view. Gamma bursts were located initially to within approx. 2 deg and X-ray/hard X-ray spectra and timing, as well as precise locations, derived for possible burst afterglow emission. It is suggested that hard X-ray imaging should be conducted from an Explorer mission where long exposure times are possible.

Grindlay, J.E.; Murray, S.S.

1981-11-01T23:59:59.000Z

239

Rise Time Measurement for Ultrafast X-Ray Pulses  

DOE Patents (OSTI)

A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

2005-04-05T23:59:59.000Z

240

Theory of low energy excitations in resonant inelastic x-ray scattering for rare-earth systems: Yb compounds as typical examples  

Science Journals Connector (OSTI)

Theoretical predictions are given for low energy excitations, such as crystal field excitations and Kondo resonance excitations, to be detected by high-resolution measurements of resonant inelastic x-ray scattering (RIXS) of rare-earth materials with Yb compounds as typical examples. Crystal field excitations in the Yb 3d RIXS of a Yb3+ ion in the cubic crystal field are formulated, and the calculation of RIXS spectra for YbN is done. Kondo resonance excitations revealed in the Yb 3d RIXS spectra are calculated for mixed-valence Yb compounds, Yb1-xLuxAl3, in the leading term approximation of the 1/Nf expansion method with a single impurity Anderson model. It is emphasized that the high-resolution RIXS with polarization dependence is a powerful tool to study the crystal field levels together with their symmetry and also the Kondo bound state in rare-earth compounds. Some in-depth discussions are given on the polarization effects of RIXS, including 4d and 2p RIXS spectra, the coherence effect of the Kondo bound states, and the importance of the high-resolution RIXS spectra for condensed matter physics under extreme conditions.

A. Kotani

2011-04-25T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray energy resolution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Two-dimensional position-sensitive gaseous detectors for high-resolution neutron and X-ray diffraction  

Science Journals Connector (OSTI)

Two-dimensional position-sensitive gaseous detectors have been developed at the Geesthacht Neutron Facility (GeNF) for high-resolution...2, 3He/CF4 and Xe/CO2, respectively. One neutron detector is used at the AR...

M. Marmotti; M. Haese-Seiller; R. Kampmann

2002-12-01T23:59:59.000Z

242

Cation sorption on the muscovite (001) surface in chloride solutions using high-resolution X-ray reflectivity  

E-Print Network (OSTI)

Cation sorption on the muscovite (001) surface in chloride solutions using high-resolution X of cation sorption at the (001) muscovite-water interface were investigated in 0.01 and 0.5 m KCl, Cs negative charge arising from structural heteroionic substitutions. This charge is balanced by the sorption

Jacobsen, Steven D.

243

Measurement of the x-ray mass attenuation coefficients of gold in the 38?50-keV energy range  

SciTech Connect

We used synchrotron x rays to measure the x-ray mass attenuation coefficients of gold at nine energies from 38 to 50 keV with accuracies of 0.1%. Our results are much more accurate than previous measurements in this energy range. A comparison of our measurements with calculated mass attenuation coefficients shows that our measurements fall almost exactly midway between the XCOM and FFAST calculated theoretical values, which differ from one another in this energy region by about 4%, even though the range includes no absorption edge. The consistency and accuracy of these measurements open the way to investigations of the x-ray attenuation in the region of the L absorption edge of gold.

Islam, M.T.; Rae, N.A.; Glover, J.L.; Barnea, Z.; de Jonge, M.D.; Tran, C.Q.; Wang, J.; Chantler, C.T. (Melbourne)

2010-11-12T23:59:59.000Z

244

X-ray lasers and methods utilizing two component driving illumination provided by optical laser means of relatively low energy and small physical size  

DOE Patents (OSTI)

An X-ray laser (10), and related methodology, are disclosed wherein an X-ray laser target (12) is illuminated with a first pulse of optical laser radiation (14) of relatively long duration having scarcely enough energy to produce a narrow and linear cool plasma of uniform composition (38). A second, relatively short pulse of optical laser radiation (18) is uniformly swept across the length, from end to end, of the plasma (38), at about the speed of light, to consecutively illuminate continuously succeeding portions of the plasma (38) with optical laser radiation having scarcely enough energy to heat, ionize, and invert them into the continuously succeeding portions of an X-ray gain medium. This inventive double pulse technique results in a saving of more than two orders of magnitude in driving optical laser energy, when compared to the conventional single pulse approach.

Rosen, Mordecai D. (Berkeley, CA); Matthews, Dennis L. (El Granada, CA)

1991-01-01T23:59:59.000Z

245

Neutrons from high?energy x?ray medical accelerators: An estimate of risk to the radiotherapy patient  

Science Journals Connector (OSTI)

The problem of neutrons produced by many of the high?energy x?ray therapy machines (10 MV and above) is reviewed and the possible risk their presence poses to radiotherapy patients is estimated. A review of the regulatory background containing a summary of the recommendations of the U. S. Council of State Governments (USCSG) and of the International Electro?Technical Commission (IEC) as well as an indication that recommendations will be forthcoming from the National Council on Radiation Protection (NCRP) and the International Commission of Radiological Protection (ICRP) is presented. The neutrons in question are produced by high?energy photons(x rays) incident on the various materials of the target flattening filter collimators and other essential components of the equipment. The neutron yield (per treatmentdose) increases rapidly as the megavoltage is increased from 10 to 20 MV but remains approximately constant above this. Measurements and calculations of the quantity quality and spatial distribution of these neutrons and their concomitant dose are summarized. Values of the neutrondose are presented as entrance dose midline dose (10?cm depth) and integral dose both within and outside of the treatment volume. These values are much less than the unavoidable photondoses which are largely responsible for treatment side effects. For typical equipment the average neutron integral dose from accelerator?produced neutrons is about 4–7 g?cGy (per treatment cGy) depending on the treatment plan. This translates into an average dose of neutrons [averaged over the body of a typical 70?kg (154 1b) patient] of 0.06–0.10 cGy for a treatment of 1000 cGy. Using these neutrondoses and the best available neutron risk coefficients it is estimated that 50×10? 6 fatal malignancies per year due to the neutrons may follow a typical treatment course of 5000 rads of 25?MV x rays. This is only about 1/60th of the average incidence of malignancies for the general population. Thus the cancer risk to the radiotherapy patient from accelerator?produced neutrons poses an additional risk to the patient that is negligible in comparison.

Ravinder Nath; Edward R. Epp; John S. Laughlin; William P. Swanson; Victor P. Bond

1984-01-01T23:59:59.000Z

246

Reduction in the intensity of solar X-ray emission in the 2- to 15-keV photon energy range and heating of the solar corona  

SciTech Connect

The time profiles of the energy spectra of low-intensity flares and the structure of the thermal background of the soft X-ray component of solar corona emission over the period of January-February, 2003, are investigated using the data of the RHESSI project. A reduction in the intensity of X-ray emission of the solar flares and the corona thermal background in the 2- to 15-keV photon energy range is revealed. The RHESSI data are compared with the data from the Interball-Geotail project. A new mechanism of solar corona heating is proposed on the basis of the results obtained.

Mirzoeva, I. K., E-mail: colombo2006@mail.ru [Russian Academy of Sciences, Space Research Institute (Russian Federation)

2013-04-15T23:59:59.000Z

247

Quantitative Evaluation of Radiation Damage to Polyethylene Terephthalate by Soft X-rays and High-energy Electrons  

E-Print Network (OSTI)

Quantitative Evaluation of Radiation Damage to Polyethylene Terephthalate by Soft X-rays and High to polyethylene terephthalate (PET) caused by soft X-rays and energetic electrons have been measured using to polyethylene terephalate (PET) by TEM-EELS versus nonspatially resolved NEXAFS.5 That study also reported

Hitchcock, Adam P.

248

The constellation X-ray mission  

Science Journals Connector (OSTI)

The Constellation-X mission is a large collecting area X-ray facility emphasizing observations at high spectral resolution (E/?E?300–3000) while covering a broad energy band (0.25–40 keV). This mission will achieve a factor of 100 increased sensitivity over current capabilities and is optimized to observe the effects of extreme gravity close to black holes and test models for the formation of large scale structure in the Universe. It is apart of NASA’s strategic plan for launch towards the end of the first decade of the 21st century.

N. E. White; H. Tananbaum

2001-01-01T23:59:59.000Z

249

X-ray Observations of Mrk 231  

E-Print Network (OSTI)

This paper presents new X-ray observations of Mrk 231, an active galaxy of particular interest due to its large infrared luminosity and the presence of several blueshifted broad absorption line (BAL) systems, a phenomenon observed in a small fraction of QSOs. A ROSAT HRI image of Mrk 231 is presented, this shows an extended region of soft X-ray emission, covering several tens of kpc, consistent with the extent of the host galaxy. An ASCA observation of Mrk 231 is also presented. Hard X-rays are detected but the data show no significant variability in X-ray flux. The hard X-ray continuum is heavily attenuated and X-ray column estimates range from ~ 2 x 10^{22} - 10^{23} cm^{-2} depending on whether the material is assumed to be neutral or ionized, and on the model assumed for the extended X-ray component. These ASCA data provide only the second hard X-ray spectrum of a BAL AGN presented to date. The broad-band spectral-energy-distribution of the source is discussed. While Mrk 231 is X-ray weak compared to Seyfert 1 galaxies, it has an optical-to-X-ray spectrum typical of a QSO.

T. J. Turner

1998-08-10T23:59:59.000Z

250

Tailoring a plasma focus as hard x-ray source for imaging  

Science Journals Connector (OSTI)

An investigation on temporal and spatial properties of hard x-rays (15–88 keV) emitted in a 5.3 kJ plasma focus using Si pin diodes and a pinhole camera is reported. The maximum yield of hard x-rays of 15–88 keV range is estimated about 4.7 J and corresponding efficiency for x-ray generation is 0.09%. The x-rays with energy > 15 ? keV have 15–20 ns pulse duration and ? 1 ? mm source size. This radiation is used for contact x-ray imaging of biological and compound objects and spatial resolution of ? 50 ? ? m is demonstrated.

S. Hussain; M. Shafiq; M. Zakaullah

2010-01-01T23:59:59.000Z

251

Photon Sciences | Beamlines | XPD: X-ray Powder Diffraction  

NLE Websites -- All DOE Office Websites (Extended Search)

XPD: X-ray Powder Diffraction XPD: X-ray Powder Diffraction Poster | Fact Sheet | Preliminary Design Report Scientific Scope XPD is a tunable facility with the ability to collect diffraction data at high x-ray energies (40keV-80keV), offering rapid acquisition (millisecond) and high angular resolution capabilities on the same instrument. XPD addresses future scientific challenges in, for example, hydrogen storage, CO2 sequestration, advanced structural ceramics, catalysis, and materials processing. Such materials of high technological value often are complex, nanostructured and heterogeneous. The scientific grand challenge is to obtain robust and quantitative (micro)structural information, not only in the ground state at ambient conditions, but also in situ or in operando with varying temperature, pressure, magnetic/electric/stress

252

The Large Observatory For X-ray Timing: LOFT  

E-Print Network (OSTI)

LOFT, the Large Observatory for X-ray Timing, is a new space mission concept devoted to observations of Galactic and extra-Galactic sources in the X-ray domain with the main goals of probing gravity theory in the very strong field environment of black holes and other compact objects, and investigating the state of matter at supra-nuclear densities in neutron stars. The instruments on-board LOFT, the Large area detector and the Wide Field Monitor combine for the first time an unprecedented large effective area (~10 m2 at 8 keV) sensitive to X-ray photons mainly in the 2-30 keV energy range and a spectral resolution approaching that of CCD-based telescopes (down to 200 eV at 6 keV). LOFT is currently competing for a launch of opportunity in 2022 together with the other M3 mission candidates of the ESA Cosmic Vision Program.

Bozzo, E

2013-01-01T23:59:59.000Z

253

Thermal gradient crystals as tuneable monochromator for high energy X-rays  

SciTech Connect

At the high energy synchrotron radiation beamline BW5 at DORIS III at DESY a new monochromator providing broad energy bandwidth and high reflectivity is in use. On a small 10x10x5 mm{sup 3} silicon crystal scattering at the (311) reflection a thermal gradient is applied, which tunes the scattered energy bandwidth. The (311) reflection strongly suppresses the higher harmonics allowing the use of an image plate detector for crystallography. The monochromator can be used at photon energies above 60 keV.

Ruett, U.; Schulte-Schrepping, H.; Heuer, J.; Zimmermann, M. von [Hamburger Synchrotron Strahlungslabor (HASYLAB), at Deutsches Elektronensychrotron (DESY), Notkestr. 85, 22603 Hamburg (Germany)

2010-06-23T23:59:59.000Z

254

Chest x-Rays  

Energy.gov (U.S. Department of Energy (DOE))

The B-reading is a special reading of a standard chest x-ray film performed by a physician certified by the National Institute for Occupational Safety and Health (NIOSH). The reading looks for changes on the chest x-ray that may indicate exposure and disease caused by agents such as asbestos or silica.

255

X-ray beamsplitter  

DOE Patents (OSTI)

An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

1987-08-07T23:59:59.000Z

256

X-ray beamsplitter  

DOE Patents (OSTI)

An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

Ceglio, Natale M. (Livermore, CA); Stearns, Daniel S. (Mountain View, CA); Hawryluk, Andrew M. (Modesto, CA); Barbee, Jr., Troy W. (Palo Alto, CA)

1989-01-01T23:59:59.000Z

257

X-ray binaries  

E-Print Network (OSTI)

We review the nuclear astrophysics aspects of accreting neutron stars in X-ray binaries. We summarize open astrophysical questions in light of recent observations and their relation to the underlying nuclear physics. Recent progress in the understanding of the nuclear physics, especially of X-ray bursts, is also discussed.

H. Schatz; K. E. Rehm

2006-08-01T23:59:59.000Z

258

Bis(4-methyl­anilinium) and bis­(4-iodo­anilinium) penta­molybdates from laboratory X-ray powder data and total energy minimization  

Science Journals Connector (OSTI)

The crystal structures of bis­(4-methyl­anilinium) and bis­(4-iodo­anilinium) penta­molybdates were determined using laboratory X-ray data and refined by total energy minimization methods. The obtained structures present alternating organic cation and inorganic polyanion layers bound by weak bonding (apart from ionic inter­actions).

Oszajca, M.

2013-10-31T23:59:59.000Z

259

Changes in Bone Mineral, Lean Body Mass and Fat Content as Measured by Dual Energy X-ray Absorptiometry: A Longitudinal Study  

Science Journals Connector (OSTI)

Bone mineral density (BMD) and soft tissue composition were measured by dual energy X-ray absorptiometry (DXA) 3–4 years apart in 273 men and women aged 23–90. We found different rates of BMD loss in differen...

M. K. Karlsson; K. J. Obrant; B. E. Nilsson; O. Johnell

2000-02-01T23:59:59.000Z

260

Soft X-Ray Emission in the Water Window Region with Nitrogen Filling in a Low Energy Plasma Focus  

Science Journals Connector (OSTI)

For operation of the plasma focus in nitrogen, a focus pinch compression temperature...6–2 × 106...K) is found to be suitable for good yield of nitrogen soft X-rays in the water window region. Using this temperat...

M. Akel; S. Lee

2013-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray energy resolution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

X-ray laser microscope apparatus  

DOE Patents (OSTI)

A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

Suckewer, Szymon (Princeton, NJ); DiCicco, Darrell S. (Plainsboro, NJ); Hirschberg, Joseph G. (Coral Gables, FL); Meixler, Lewis D. (East Windsor, NJ); Sathre, Robert (Princeton, NJ); Skinner, Charles H. (Lawrenceville, NJ)

1990-01-01T23:59:59.000Z

262

Development of x-ray laminography under an x-ray microscopic condition  

SciTech Connect

An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatial resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique.

Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa; Suzuki, Yoshio; Yagi, Naoto [Japan Synchrotron Radiation Research Institute JASRI/SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

2011-07-15T23:59:59.000Z

263

Aneta Siemiginowska Chandra X-ray Center  

E-Print Network (OSTI)

-ray and gamma-ray · High Energy Sky · Chandra X-ray Observatory · examples of typical X-ray data, · an example of a data analysis process · statistical challenges · what do we learn from the data? #12;What is Astronomy and phenomena do we study and how? Solar System: Sun and sollar wind, planets, moons, asteroids, comets Our

Wolfe, Patrick J.

264

High-Resolution Soft X-Ray Spectral Analysis in the CK Region of Titanium Carbide (TiC) using the DV-X alpha Molecular Orbital Method  

E-Print Network (OSTI)

in the CK Region of Titanium Carbide (TiC) using the DV-X?USA Keyword titanium carbide, soft X-ray spectroscopy,C K region of titanium carbide (TiC). The spectral profiles

Shimomura, Kenta

2010-01-01T23:59:59.000Z

265

SOFT X-RAY EMISSIONS FROM PLANETS, MOONS, AND COMETS A. Bhardwaj(1)  

E-Print Network (OSTI)

SOFT X-RAY EMISSIONS FROM PLANETS, MOONS, AND COMETS A. Bhardwaj(1) , G. R. Gladstone(2) , R. F to radiate in the soft x-ray energy ( the generation of soft x-rays from these objects, whereas in the hard x-ray energy range (>10 keV) x-rays mainly

Johnson, Robert E.

266

Application of neutron activation analysis and high resolution x-ray spectrometry for the determination of trace quantities of elements with short-lived activation products  

E-Print Network (OSTI)

Conversion Interferences and Errors 3, PROCEDURES AND EXPERIMENTAL SETUP Sample Preparation Pneumatic Sample Transfer System Sample Irradiation X-ray Spectrometry Data Reduction 4. DISCUSSION AND RESULTS System Analysis Analysis Problems.... C. Roentgen made the classic observation that a highly penatrative radiation, unknown at that time, was produced when fast electrons impinged on matter. This radiation, which h called x-rays, was being studied in all parts of the world less than...

Marshall, John Richard

1974-01-01T23:59:59.000Z

267

TheChandraViewofRadiativeandKineticEnergyDissipationin The X-rayView of Radiative and  

E-Print Network (OSTI)

Energy Dissipation in AGN Dan Evans (MIT Kavli Institute), Herman Marshall (MIT), Stefano Bianchi (Roma Tre), Patrick Ogle (Caltech), James Reeves (Keele) Mike Nowak (MIT), Norbert Schulz (MIT), Anna Lia Effect of AGN? #12;[OIII] arcs [OIII] knots Radio ejecta Chandra 0.3-2 keV 3'' = 1 kpc Bianchi, Evans, et

Evans, Dan

268

X-ray microscopy using grazing-incidence reflection optics  

SciTech Connect

The Kirkpatrick-Baez microscopes are described along with their role as the workhorse of the x-ray imaging devices. This role is being extended with the development of a 22X magnification Kirkpatrick-Baez x-ray microscope with multilayer x-ray mirrors. These mirrors can operate at large angles, high x-ray energies, and have a narrow, well defined x-ray energy bandpass. This will make them useful for numerous experiments. However, where a large solid angle is needed, the Woelter microscope will still be necessary and the technology needed to build them will be useful for many other types of x-ray optics.

Price, R.H.

1981-08-06T23:59:59.000Z

269

Photon Sciences | Beamlines | HXN: Hard X-ray Nanoprobe  

NLE Websites -- All DOE Office Websites (Extended Search)

HXN: Hard X-ray Nanoprobe HXN: Hard X-ray Nanoprobe Poster | Fact Sheet | Preliminary Design Report Scientific Scope The Hard X-ray Nanoprobe beamline and endstation instruments (HXN) will be designed and constructed to explore new frontiers of hard x-ray microscopy applications with the highest achievable spatial resolution. Currently the available spatial resolution for scientific applications, provided by scanning x-ray microscopes in the hard x-ray regime, is limited to ~50nm, which is still insufficient for probing the nanoscale interfacial structures critical in determining properties and functionalities of material and biological systems. The HXN beamline aims to enable x-ray experiments at spatial resolutions ranging from 10 to 30 nm with an ultimate goal of ~1 nm. Beamline Description

270

X-ray laser  

DOE Patents (OSTI)

An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

Nilsen, Joseph (Livermore, CA)

1991-01-01T23:59:59.000Z

271

Constraining the density dependence of the nuclear symmetry energy from an X-ray bursting neutron star  

E-Print Network (OSTI)

Neutrons stars lighter than the Sun are basically composed of nuclear matter of density up to around twice normal nuclear density. In our recent analyses, we showed that possible simultaneous observations of masses and radii of such neutron stars could constrain $\\eta\\equiv(K_0L^2)^{1/3}$, a combination of the incompressibility of symmetric nuclear matter $K_0$ and the density derivative of the nuclear symmetry energy $L$ that characterizes the theoretical mass-radius relation. In this paper, we focus on the mass-radius constraint of the X-ray burster 4U 1724-307 given by Suleimanov et al. (2011). We therefrom obtain the constraint that $\\eta$ should be larger than around 130 MeV, which in turn leads to $L$ larger than around 110, 98, 89, and 78 MeV for $K_0=180$, 230, 280, and 360 MeV. Such a constraint on $L$ is more or less consistent with that obtained from the frequencies of quasi-periodic oscillations in giant flares observed in soft-gamma repeaters.

Sotani, Hajime; Oyamatsu, Kazuhiro

2015-01-01T23:59:59.000Z

272

Constraining the density dependence of the nuclear symmetry energy from an X-ray bursting neutron star  

E-Print Network (OSTI)

Neutrons stars lighter than the Sun are basically composed of nuclear matter of density up to around twice normal nuclear density. In our recent analyses, we showed that possible simultaneous observations of masses and radii of such neutron stars could constrain $\\eta\\equiv(K_0L^2)^{1/3}$, a combination of the incompressibility of symmetric nuclear matter $K_0$ and the density derivative of the nuclear symmetry energy $L$ that characterizes the theoretical mass-radius relation. In this paper, we focus on the mass-radius constraint of the X-ray burster 4U 1724-307 given by Suleimanov et al. (2011). We therefrom obtain the constraint that $\\eta$ should be larger than around 130 MeV, which in turn leads to $L$ larger than around 110, 98, 89, and 78 MeV for $K_0=180$, 230, 280, and 360 MeV. Such a constraint on $L$ is more or less consistent with that obtained from the frequencies of quasi-periodic oscillations in giant flares observed in soft-gamma repeaters.

Hajime Sotani; Kei Iida; Kazuhiro Oyamatsu

2015-01-08T23:59:59.000Z

273

X-ray Diffuse Scattering Measurements of Nucleation Dynamics...  

NLE Websites -- All DOE Office Websites (Extended Search)

X-ray Diffuse Scattering Measurements of Nucleation Dynamics at Femtosecond Resolution Real-time measurement and control of the non-equilibrium properties of materials represents...

274

X-ray absorption spectroscopy  

E-Print Network (OSTI)

009-9473-8 REVIEW X-ray absorption spectroscopy Junko Yano Æand application of X-ray absorption spectroscopy, bothX-ray absorption near-edge structure (XANES) and extended X-

Yano, Junko; Yachandra, Vittal K.

2009-01-01T23:59:59.000Z

275

X-ray Absorption Spectroscopy  

E-Print Network (OSTI)

type: Review X-ray Absorption Spectroscopy Junko Yano andPhotosystem II; XAS, X-ray absorption spectroscopy; EXAFS,X-ray absorption fine structure; EPR, electron paramagnetic

Yano, Junko

2010-01-01T23:59:59.000Z

276

Quantitative x-ray imager (abstract)  

SciTech Connect

We report on development of a quantitative x-ray imager (QXI) for the national Inertial Confinement Fusion Program. Included in this development is a study of photocathode response as a function of photon energy, 2--17.5 keV, which is related to diagnostic development on the National Ignition Facility (NIF). The QXI is defined as being a quantative imager due to the repeated characterization. This instrument is systematically checked out, electronically as well as its photocathode x-ray response, both on a direct current and pulsed x-ray sources, before and after its use on a shot campaign. The QXI is a gated x-ray imager1 used for a variety of experiments conducted in the Inertial Confinement Fusion and Radiation Physics Program. The camera was assembled in Los Alamos and has been under development since 1997 and has now become the workhorse framing camera by the program. The electronics were built by Grant Applied Physics of San Fransisco, CA.2 The QXI has been used at the LANL Trident, LLNL Nova, and University of Rochester Laboratory OMEGA laser facilities. The camera consists of a grated microchannel plate (MCP), a phosphor coated fiberoptic faceplate coupled to film for data readout, along with high speed electronic pulsers to drive the x-ray detector. The QXI has both a two-strip and a four-strip detection head and has the ability to individually bias the gain of each of the strips. The timing of the QXI was done at the Trident short pulse laboratory, using 211 nm light. Single strip jitter was looked at as well and determined to be <25 ps. Flatfielding of the photocathode across the MCP was done with the Trident main laser with 150 J on a gold disk with a 1 ns. Spatial resolution was determined to be <5 {mu}m by using the same laser conditions as before and a backlit 1000 lp/in. grid. The QXI has been used on cylindrical implosion work at the Nova Laser Facility, and on direct-drive cylinder mix and indirect-drive high convergence implosion experiments at OMEGA. Its two-strip module has provided the capability to look at point backlighters, as part of technique development for experiments on the NIF. Its next use will be in March 2000 with its off axis viewer nose at Omega, providing a perpendicular view of Rayleigh--Taylor spike dissipation.

Evans, Scott C.; Archuleta, Tom N.; Oertel, John A.; Walsh, Peter J.

2001-01-01T23:59:59.000Z

277

X-ray Absorption and Emission Spectroscopy Study of the Effect of Doping on the Low Energy Electronic Structure of PrFeAsO1-[delta  

E-Print Network (OSTI)

X-ray Absorption and Emission Spectroscopy Study of theusing soft X-ray absorption and emission spectroscopy. The2. (a) Oxygen 1s x-ray absorption spectra of PrFeAsO 1-? (?

Freelon, Byron

2010-01-01T23:59:59.000Z

278

X-Ray Generators  

Science Journals Connector (OSTI)

There are many types of X-ray generators sold commercially. The following are some of ... that should be considered when selecting a particular generator for a particular purpose. All the companies listed below s...

Reuben Rudman

1972-01-01T23:59:59.000Z

279

Spatially Resolving a Starburst Galaxy at Hard X-ray Energies: NuSTAR, Chandra, AND VLBA Observations of NGC 253  

E-Print Network (OSTI)

Prior to the launch of NuSTAR, it was not feasible to spatially resolve the hard (E > 10 keV) emission from galaxies beyond the Local Group. The combined NuSTAR dataset, comprised of three ~165 ks observations, allows spatial characterization of the hard X-ray emission in the galaxy NGC 253 for the first time. As a follow up to our initial study of its nuclear region, we present the first results concerning the full galaxy from simultaneous NuSTAR, Chandra, and VLBA monitoring of the local starburst galaxy NGC 253. Above ~10 keV, nearly all the emission is concentrated within 100" of the galactic center, produced almost exclusively by three nuclear sources, an off-nuclear ultraluminous X-ray source (ULX), and a pulsar candidate that we identify for the first time in these observations. We detect 21 distinct sources in energy bands up to 25 keV, mostly consisting of intermediate state black hole X-ray binaries. The global X-ray emission of the galaxy - dominated by the off-nuclear ULX and nuclear sources, whic...

Wik, Daniel R; Hornschemeier, Ann E; Yukita, Mihoko; Ptak, Andrew; Zezas, Andreas; Antoniou, Vallia; Argo, Megan K; Bechtol, Keith; Boggs, Steven; Christensen, Finn; Craig, William; Hailey, Charles; Harrison, Fiona; Krivanos, Roman; Maccarone, Thomas J; Stern, Daniel; Venters, Tonia; Zhang, William W

2014-01-01T23:59:59.000Z

280

Quantitative Measurements of X-ray Intensity  

SciTech Connect

This chapter describes the characterization of several X-ray sources and their use in calibrating different types of X-ray cameras at National Security Technologies, LLC (NSTec). The cameras are employed in experimental plasma studies at Lawrence Livermore National Laboratory (LLNL), including the National Ignition Facility (NIF). The sources provide X-rays in the energy range from several hundred eV to 110 keV. The key to this effort is measuring the X-ray beam intensity accurately and traceable to international standards. This is accomplished using photodiodes of several types that are calibrated using radioactive sources and a synchrotron source using methods and materials that are traceable to the U.S. National Institute of Standards and Technology (NIST). The accreditation procedures are described. The chapter begins with an introduction to the fundamental concepts of X-ray physics. The types of X-ray sources that are used for device calibration are described. The next section describes the photodiode types that are used for measuring X-ray intensity: power measuring photodiodes, energy dispersive photodiodes, and cameras comprising photodiodes as pixel elements. Following their description, the methods used to calibrate the primary detectors, the power measuring photodiodes and the energy dispersive photodiodes, as well as the method used to get traceability to international standards are described. The X-ray source beams can then be measured using the primary detectors. The final section then describes the use of the calibrated X-ray beams to calibrate X-ray cameras. Many of the references are web sites that provide databases, explanations of the data and how it was generated, and data calculations for specific cases. Several general reference books related to the major topics are included. Papers expanding some subjects are cited.

Haugh, M. J., Schneider, M.

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray energy resolution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Femtosecond x-ray absorption spectroscopy with hard x-ray free electron laser  

SciTech Connect

We have developed a method of dispersive x-ray absorption spectroscopy with a hard x-ray free electron laser (XFEL), generated by a self-amplified spontaneous emission (SASE) mechanism. A transmission grating was utilized for splitting SASE-XFEL light, which has a relatively large bandwidth (?E/E ? 5 × 10{sup ?3}), into several branches. Two primary split beams were introduced into a dispersive spectrometer for measuring signal and reference spectra simultaneously. After normalization, we obtained a Zn K-edge absorption spectrum with a photon-energy range of 210 eV, which is in excellent agreement with that measured by a conventional wavelength-scanning method. From the analysis of the difference spectra, the noise ratio was evaluated to be ?3 × 10{sup ?3}, which is sufficiently small to trace minute changes in transient spectra induced by an ultrafast optical laser. This scheme enables us to perform single-shot, high-accuracy x-ray absorption spectroscopy with femtosecond time resolution.

Katayama, Tetsuo; Togashi, Tadashi; Tono, Kensuke; Kameshima, Takashi [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan)] [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Inubushi, Yuichi; Sato, Takahiro; Hatsui, Takaki; Yabashi, Makina [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)] [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Obara, Yuki; Misawa, Kazuhiko [Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan)] [Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Bhattacharya, Atanu; Kurahashi, Naoya [Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan)] [Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Ogi, Yoshihiro [Molecular Reaction Dynamics Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako 351-0198 (Japan)] [Molecular Reaction Dynamics Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako 351-0198 (Japan); Suzuki, Toshinori [Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan) [Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Molecular Reaction Dynamics Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako 351-0198 (Japan)

2013-09-23T23:59:59.000Z

282

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Lensless X-Ray Imaging in Reflection Lensless X-Ray Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

283

X-ray views of neutron star low-mass X-ray binaries  

E-Print Network (OSTI)

A neutron star low-mass X-ray binary is a binary stellar system with a neutron star and a low-mass companion star rotating around each other. In this system the neutron star accretes mass from the companion, and as this matter falls into the deep potential well of the neutron star, the gravitational potential energy is released primarily in the X-ray wavelengths. Such a source was first discovered in X-rays in 1962, and this discovery formally gave birth to the "X-ray astronomy". In the subsequent decades, our knowledge of these sources has increased enormously by the observations with several X-ray space missions. Here we give a brief overview of our current understanding of the X-ray observational aspects of these systems.

Sudip Bhattacharyya

2010-02-24T23:59:59.000Z

284

A System for Conducting Sophisticated Mechanical Tests in Situ with High Energy Synchrotron X-Rays Final Technical Report  

SciTech Connect

This is the final technical report for the SBIR Phase I project titled 'A System for Conducting Sophisticated Mechanical Tests in Situ with High Energy Synchrotron X-Rays.' Experiments using diffraction of synchrotron radiation that help scientists understand engineering material failure modes, such as fracture and fatigue, require specialized machinery. This machinery must be able to induce these failure modes in a material specimen while adhering to strict size, weight, and geometric limitations prescribed by diffraction measurement techniques. During this Phase I project, Mechanical Solutions, Inc. (MSI) developed one such machine capable of applying uniaxial mechanical loading to a material specimen in both tension and compression, with zero backlash while transitioning between the two. Engineers currently compensate for a lack of understanding of fracture and fatigue by employing factors of safety in crucial system components. Thus, mechanical and structural parts are several times bigger, thicker, and heavier than they need to be. The scientific discoveries that result from diffraction experiments which utilize sophisticated mechanical loading devices will allow for broad material, weight, fuel, and cost savings in engineering design across all industries, while reducing the number of catastrophic failures in transportation, power generation, infrastructure, and all other engineering systems. With an existing load frame as the starting point, the research focused on two main areas: (1) the design of a specimen alignment and gripping system that enables pure uniaxial tension and compression loading (and no bending, shear, or torsion), and (2) development of a feedback control system that is adaptive and thus can maintain a load set point despite changing specimen material properties (e.g. a decreasing stiffness during yield).

Jeremy Weiss

2012-08-02T23:59:59.000Z

285

Development of heavy mineral and heavy element database of soil sediments in Japan using synchrotron radiation X-ray powder diffraction and high-energy (116 keV) X-ray fluorescence analysis: 1. Case study of Kofu and Chiba region  

Science Journals Connector (OSTI)

We have started the construction of a nationwide forensic soil sediment database for Japan based on the heavy mineral and trace heavy element compositions of stream sediments collected at 3024 points all over Japan obtained by high-resolution synchrotron X-ray powder diffraction (SR-XRD) and high-energy synchrotron X-ray fluorescence analysis (HE-SR-XRF). In this study, the performance of both techniques was demonstrated by analyzing soil sediments from two different geological regions, the Kofu and Chiba regions in Kanto province, to construct database that can be applied in the future to provenance analysis of soil evidence from a crime scene. The sediments from the quaternary volcanic lithology of the Chiba region were found to be dominated by heavy minerals of volcanic origin – orthopyroxene, clinopyroxene, and amphibole, and the \\{REEs\\} (rare earth elements) within the region showed similar geochemical behavior. On the other hand, four distinct heavy mineral groups were identified in the sediments of the Kofu region, where there is a great variety of underlying bedrock, and the geochemical behavior of the \\{REEs\\} in the sediments also varied accordingly to their geological origins. As such, our study shows that high-resolution SR-XRD data can provide information on the spatial distribution patterns of heavy minerals in stream sediments, playing an important role in determining their likely geographical origin. Meanwhile, the highly sensitive HE-SR-XRF data allow us to study the geochemical behavior of trace heavy elements, especially the \\{REEs\\} in the sediments, providing additional support to further constrain the likely geographical origin of the sediments determined by heavy minerals.

Willy Shun Kai Bong; Izumi Nakai; Shunsuke Furuya; Hiroko Suzuki; Yoshinari Abe; Keiichi Osaka; Takuya Matsumoto; Masayoshi Itou; Noboru Imai; Toshio Ninomiya

2012-01-01T23:59:59.000Z

286

Low-energy x-ray and electron physics and applications to diagnostics development for laser-produced plasma research. Final report, April 30, 1980-April 29, 1981  

SciTech Connect

This final report describes a collaborative extension of an ongoing research program in low-energy x-ray and electron physics into particular areas of immediate need for the diagnostics of plasmas as involved in laser-produced fusion research. It has been for the continued support for one year of a post-doctoral research associate and for three student research assistants who have been applied to the following specific efforts: (1) the continuation of our research on the absolute characterization of x-ray photocathode systems for the 0.1 to 10 keV photon energy region. The research results were applied collaboratively to the design, construction and calibration of photocathodes for time-resolved detection with the XRD and the streak and framing cameras; (2) the design, construction and absolute calibration of optimized, bolt-on spectrographs for the absolute measurement of laser-produced plasma spectra.

Henke, B.L.

1981-08-01T23:59:59.000Z

287

Small Angle X-Ray Scattering Detector  

DOE Patents (OSTI)

A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

Hessler, Jan P.

2004-06-15T23:59:59.000Z

288

High-Resolution Soft X-Ray Spectral Analysis in the CK Region of Titanium Carbide (TiC) using the DV-X alpha Molecular Orbital Method  

E-Print Network (OSTI)

1 XRD pattern of the measured TiC powder sample. Figure 2XAS. Intensity (arb. units) TiC X-ray: Cu K? voltage: 40 kVintensity (arb. units) CK-XES TiC b a c HOPG e f CK-XAS TiC

Shimomura, Kenta

2010-01-01T23:59:59.000Z

289

Full-field Transmission X-ray Microscopy | Stanford Synchrotron Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

BL6-2c / Transmission X-ray Microscopy BL6-2c / Transmission X-ray Microscopy Home Researchers Publications Science Highlights Department of Energy Office of Science Search form Search Search TXM Search Full-field Transmission X-ray Microscopy Capabilities Full-field TXM is an excellent method to examine nanoscale heterogeneties in many materials, including complex hierarchical systems such as catalysts, fuel cells and battery electrodes, and biological and environmental samples, at 30 nm resolution.The transmission X-ray microscope (TXM) on beam line 6-2c at SSRL is capable of 2D imaging and tomography, as well as spectroscopic imaging for 2D and 3D elemental mapping and chemical mapping over tens of microns (up to mm in 2D). The field of view (FOV) is 30 microns, but mosaic images can be collected to

290

Double-Layer Silicon PIN Photodiode X-Ray Detector for a Future X-ray Timing Mission  

E-Print Network (OSTI)

A double-layer silicon detector consisting of two 500micron-thick silicon PIN photodiodes with independent readouts was mounted in a vacuum chamber and tested with X-ray sources. The detector is sensitive from 1-30 keV with an effective area of 6 mm^2. The detector performs best at -35 C with an energy resolution of 220 eV (FWHM, full width at half maximum) at 5.9 keV, and is able to operate at room temperature, +25 C, with moderate resolution around 760 eV (FWHM). The response of the top layer sensor is highly uniform across the sensitive area. This large-format silicon detector is appropriate for future X-ray timing missions.

Hua Feng; Philip Kaaret; Hans Andersson

2006-06-01T23:59:59.000Z

291

X-ray beam finder  

DOE Patents (OSTI)

An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

Gilbert, H.W.

1983-06-16T23:59:59.000Z

292

High-energy radiation visualizer (HERV): A new system for imaging in x-ray and gamma-ray emission regions  

SciTech Connect

The authors present a description and results of the operation for {gamma}-ray and X-ray objects for the compact visualization system high-energy radiation visualizer (HERV). The imaging in this system is based on use of a conical collimator, scintillator plate, and image intensifier as a detector and CCD matrix as a readout device. The use of HERV as a two-dimensional X-ray image visualizer for the Compton scatter inspection system was considered and first results are discussed. The possibility of using different hexagonal-coded apertures imaging for HERV is discussed and results of Monte Carlo simulation and experiments with optical analog of coded aperture are presented.

Sudarkin, A.N.; Ivanov, O.P.; Stepanov, V.E.; Volkovich, A.G.; Turin, A.S.; Danilovich, A.S.; Rybakov, D.D.; Urutskoev, L.I. [RECOM Ltd., Moscow (Russian Federation)] [RECOM Ltd., Moscow (Russian Federation)

1996-08-01T23:59:59.000Z

293

Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell Xiaojing Huang,1  

E-Print Network (OSTI)

Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell Xiaojing Huang,1 Johanna Nelson,1 eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezingV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25

Mohseni, Hooman

294

X-ray four-wave mixing in molecules Satoshi Tanaka  

E-Print Network (OSTI)

X-ray four-wave mixing in molecules Satoshi Tanaka Department of Chemistry, University of Rochester radiation intense light sources have opened up a new era in soft x-ray spectroscopy. The dramatic improvements of spectral resolution in x-ray absorption1,2 and x-ray photoemission spectra3 have revealed

Mukamel, Shaul

295

Predicted X-ray backgrounds for the International X-ray Observatory  

E-Print Network (OSTI)

The background that will be observed by IXO's X-ray detectors naturally separates into two components: (1) a Cosmic X-ray Background (CXB), primarily due to unresolved point sources at high energies (E>2 keV), along with ...

Bautz, Marshall W.

296

THE SWIFT/BAT HARD X-RAY TRANSIENT MONITOR  

SciTech Connect

The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations.

Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.; Pearlman, A. B.; Baumgartner, W. H.; Cummings, J. R. [Center for Research and Exploration in Space Science and Technology (CRESST) and NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Romano, P. [INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Via U. La Malfa 153, I-90146 Palermo (Italy); Kennea, J. A. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Bloom, J. S. [Department of Astronomy, University of California, Berkeley, Berkeley, CA 94720-3411 (United States); Barthelmy, S. D.; Gehrels, N.; Lien, A. Y.; Markwardt, C. B.; Ukwatta, T. N. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Palmer, D. M. [Los Alamos National Laboratory, B244, Los Alamos, NM 87545 (United States); Sakamoto, T. [Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5258 (Japan); Stamatikos, M. [Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States)

2013-11-01T23:59:59.000Z

297

Imaging of high-energy x-ray emission from cryogenic thermonuclear fuel implosions on the NIF  

SciTech Connect

Accurately assessing and optimizing the implosion performance of inertial confinement fusion capsules is a crucial step to achieving ignition on the NIF. We have applied differential filtering (matched Ross filter pairs) to provide broadband time-integrated absolute x-ray self-emission images of the imploded core of cryogenic layered implosions. This diagnostic measures the temperature- and density-sensitive bremsstrahlung emission and provides estimates of hot spot mass, mix mass, and pressure.

Ma, T.; Izumi, N.; Tommasini, R.; Bradley, D. K.; Bell, P.; Cerjan, C. J.; Dixit, S.; Doeppner, T.; Jones, O.; Landen, O. L.; LePape, S.; Mackinnon, A. J.; Park, H.-S.; Patel, P. K.; Prasad, R. R.; Ralph, J.; Smalyuk, V. A.; Springer, P. T.; Suter, L.; Town, R. P. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

2012-10-15T23:59:59.000Z

298

X-ray source for mammography  

DOE Patents (OSTI)

An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

Logan, Clinton M. (Pleasanton, CA)

1994-01-01T23:59:59.000Z

299

X-ray source for mammography  

DOE Patents (OSTI)

An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.

Logan, C.M.

1994-12-20T23:59:59.000Z

300

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging in Reflection Print X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

Note: This page contains sample records for the topic "x-ray energy resolution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging in Reflection Print X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

302

Argonne CNM: X-Ray Microscopy Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Microscopy Facilities X-Ray Microscopy Facilities The Hard X-Ray Nanoprobe (HXN) facility provides scanning fluorescence, scanning diffraction, and full-field transmission and tomographic imaging capabilities with a spatial resolution of 30 nm over a spectral range of 6-12 keV. Modes of Operation Full-Field Transmission Imaging and Nanotomography X-ray transmission imaging uses both the absorption and phase shift of the X-ray beam by the sample as contrast mechanisms. Absorption contrast is used to map the sample density. Elemental constituents can be located by using differential edge contrast in this mode. Phase contrast can be highly sensitive to edges and interfaces even when the X-ray absorption is weak. These contrast mechanisms are exploited to image samples rapidly in full-field transmission mode under various environmental conditions, or combined with nanotomography methods to study the three-dimensional structure of complex and amorphous nanomaterials with the HXN.

303

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Reflection Print Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

304

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Reflection Print Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

305

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

306

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

307

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

308

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

309

Installation of soft X-ray array diagnostics and its application to tomography reconstruction using synthetic KSTAR X-ray images  

SciTech Connect

Four-array system of soft X-ray diagnostics was installed on KSTAR tokamak. Each array has 32 viewing chords of two photo-diode array detectors with spatial resolution of 2 cm. To estimate signals from the soft X-ray radiation power, typical n{sub e}, T{sub e}, and argon impurity line radiation profiles in KSTAR are chosen. The photo-diodes were absolutely calibrated as a function of the incident photon energy in 2–40 keV range with a portable X-ray tube. Two-dimensional T{sub e} image properties by multi-energy method were simulated and visualized with six combinations of beryllium filter sets within the dynamic range of signal ratio.

Lee, Seung Hun; Jang, Juhyeok; Hong, Joohwan; Jang, Siwon; Choe, Wonho, E-mail: wchoe@kaist.ac.kr [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Impurity and Edge Research Center, Daejeon 305-701 (Korea, Republic of); Pacella, D.; Romano, A.; Gabellieri, L. [Associazione Euratom-ENEA sulla Fusione, C.R. Frascati 00044 (Italy); Kim, Junghee [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Major of Nuclear Fusion and Plasma Science Department, Korea University of Science and Technology, Daejeon 305-350 (Korea, Republic of)

2014-11-15T23:59:59.000Z

310

Rotational Doppler effect in x-ray photoionization  

SciTech Connect

The energy of the photoelectron experiences a red or blue Doppler shift when the molecule recedes from the detector or approaches him. This results in a broadening of the photoelectron line due to the translational thermal motion. However, the molecules also have rotational degrees of freedom and we show that the translational Doppler effect has its rotational counterpart. This rotational Doppler effect leads to an additional broadening of the spectral line of the same magnitude as the Doppler broadening caused by translational thermal motion. The rotational Doppler broadening as well as the rotational recoil broadening is sensitive to the molecular orbital from which the photoelectron is ejected. This broadening should be taken into account in analysis of x-ray photoemission spectra of super-high resolution and it can be directly observed using x-ray pump-probe spectroscopy.

Sun Yuping; Wang Chuankui [College of Physics and Electronics, Shandong Normal University, 250014 Jinan (China); Theoretical Chemistry, Roslagstullsbacken 15, Royal Institute of Technology, S-106 91 Stockholm (Sweden); Gel'mukhanov, Faris [Theoretical Chemistry, Roslagstullsbacken 15, Royal Institute of Technology, S-106 91 Stockholm (Sweden)

2010-11-15T23:59:59.000Z

311

Rotational Doppler effect in x-ray photoionization  

Science Journals Connector (OSTI)

The energy of the photoelectron experiences a red or blue Doppler shift when the molecule recedes from the detector or approaches him. This results in a broadening of the photoelectron line due to the translational thermal motion. However, the molecules also have rotational degrees of freedom and we show that the translational Doppler effect has its rotational counterpart. This rotational Doppler effect leads to an additional broadening of the spectral line of the same magnitude as the Doppler broadening caused by translational thermal motion. The rotational Doppler broadening as well as the rotational recoil broadening is sensitive to the molecular orbital from which the photoelectron is ejected. This broadening should be taken into account in analysis of x-ray photoemission spectra of super-high resolution and it can be directly observed using x-ray pump-probe spectroscopy.

Yu-Ping Sun; Chuan-Kui Wang; Faris Gel’mukhanov

2010-11-10T23:59:59.000Z

312

Lowering the background level and the energy threshold of Micromegas x-ray detectors for axion searches  

E-Print Network (OSTI)

Axion helioscopes search for solar axions by their conversion in x-rays in the presence of high magnetic fields. The use of low background x-ray detectors is an essential component contributing to the sensitivity of these searches. In this work, we review the recent advances on Micromegas detectors used in the CERN Axion Solar Telescope (CAST) and proposed for the future International Axion Observatory (IAXO). The actual setup in CAST has achieved background levels below 10$^{-6}$ keV$^{-1}$ cm$^{-2}$ s$^{-1}$, a factor 100 lower than the first generation of Micromegas detectors. This reduction is based on active and passive shielding techniques, the selection of radiopure materials, offline discrimination techniques and the high granularity of the readout. We describe in detail the background model of the detector, based on its operation at CAST site and at the Canfranc Underground Laboratory (LSC), as well as on Geant4 simulations. The best levels currently achieved at LSC are low than 10$^{-7}$ keV$^{-1}$ ...

Iguaz, F J; Aznar, F; Castel, J F; Dafni, T; Davenport, M; Ferrer-Ribas, E; Galan, J; Garcia, J A; Garza, J G; Giomataris, I; Irastorza, I G; Papaevangelou, T; Rodriguez, A; Tomas, A; Vafeiadis, T; Yildiz, S C

2015-01-01T23:59:59.000Z

313

Soft x-ray imaging for spheromak-like plasmas (abstract)  

Science Journals Connector (OSTI)

A pinhole soft x-rayimagingcamera is being developed for use on the Caltech solar prominence simulation experiment and also the Caltech spheromak experiment. The camera is based upon a commercial gated intensifier which produces an image on a phosphor screen. Moderate signal level excellent time resolution and reasonable imaging have been obtained but there has not been any determination of the x-ray energy spectrum. An estimation of the spectrum is now underway using filtered AXUV diodes and it is expected that knowledge of the x-ray energy will enable further optimization of the camera.

P. M. Bellan; J. F. Hansen; S. Zweben; D. Stutman

2001-01-01T23:59:59.000Z

314

HIGH-ENERGY X-RAYS FROM J174545.5-285829, THE CANNONBALL: A CANDIDATE PULSAR WIND NEBULA ASSOCIATED WITH Sgr A EAST  

E-Print Network (OSTI)

We report the unambiguous detection of non-thermal X-ray emission up to 30 keV from the Cannonball, a few-arcsecond long diffuse X-ray feature near the Galactic Center, using the NuSTAR X-ray observatory. The Cannonball ...

Nynka, Melania

315

Compton backscattered collimated x-ray source  

DOE Patents (OSTI)

A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

Ruth, R.D.; Huang, Z.

1998-10-20T23:59:59.000Z

316

Compton backscattered collmated X-ray source  

DOE Patents (OSTI)

A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

2000-01-01T23:59:59.000Z

317

Compton backscattered collimated x-ray source  

DOE Patents (OSTI)

A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

1998-01-01T23:59:59.000Z

318

New intraoral x-ray fluorographic imaging for dentistry  

SciTech Connect

A new dental x-ray fluorographic unit has been developed. This unit is composed of small intraoral x-ray tube, a compact x-ray image intensifier, and a high-resolution TV system. The purposes for developing this equipment were to (1) directly observe the tooth during endodontic procedures and (2) reduce x-ray exposure to the patient and the dentist. The radiation exposure can be reduced to about 1/600 the exposure used with conventional dental film. In clinical trials, a satisfactory fluorographic dental image for endodontic treatment was obtained with this new device.

Higashi, T.; Osada, T.; Aoyama, W.; Iguchi, M.; Suzuki, S.; Kanno, M.; Moriya, K.; Yoshimura, M.; Tusuda, M.

1983-06-01T23:59:59.000Z

319

Formation of microbeam using tabletop soft X-ray laser  

Science Journals Connector (OSTI)

An X-ray microprobe with a sub-micron size beam and high intensity can provide X-ray analyses with a remarkable spatial resolution. We have performed focusing of an X-ray laser output into a sub-micron beam for the first time. In our experiment, an X-ray laser of Li-like Al 3d–4f transition at 15.47 nm was delivered from an unstable cavity consisting of a concave mirror and a flat mirror with a square orifice of 100×100 ?m in size. The beam from the orifice was then focused by using a Schwarzschild mirror coated with a Mo/Si multilayer. An X-ray beam size with a diameter of about 0.45 ?m and an estimated photon number of about 2×106 photons per shot was achieved. Such sources could be well suited for the realization of X-ray microprobes.

Tadayuki Ohchi; Naohiro Yamaguchi; Chiemi Fujikawa; Tamio Hara

1999-01-01T23:59:59.000Z

320

X-ray variability in M87  

E-Print Network (OSTI)

We present the evidence for X-ray variability from the core and from knot A in the M87 jet based on data from two observations with the Einstein Observatory High Resolution Imager (HRI) and three observations with the ROSAT HRI. The core intensity showed a 16% increase in 17 months ('79-'80); a 12% increase in the 3 years '92 to '95; and a 17% drop in the last half of 1995. The intensity of knot A appears to have decreased by 16% between 92Jun and 95Dec. Although the core variability is consistent with general expectations for AGN nuclei, the changes in knot A provide constraints on the x-ray emission process and geometry. Thus we predict that the x-ray morphology of knot A will differ significantly from the radio and optical structure.

D. E. Harris; J. A. Biretta; W. Junor

1996-12-05T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray energy resolution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

X-ray Pinhole Camera Measurements  

SciTech Connect

The development of the rod pinch diode [1] has led to high-resolution radiography for dynamic events such as explosive tests. Rod pinch diodes use a small diameter anode rod, which extends through the aperture of a cathode plate. Electrons borne off the aperture surface can self-insulate and pinch onto the tip of the rod, creating an intense, small x-ray source (Primary Pinch). This source has been utilized as the main diagnostic on numerous experiments that include high-value, single-shot events. In such applications there is an emphasis on machine reliability, x-ray reproducibility, and x-ray quality [2]. In tests with the baseline rod pinch diode, we have observed that an additional pinch (Secondary Pinch) occurs at the interface near the anode rod and the rod holder. This suggests that stray electrons exist that are not associated with the Primary Pinch. In this paper we present measurements on both pinches using an x-ray pinhole camera. The camera is placed downstream of the Primary Pinch at an angle of 60° with respect to the diode centerline. This diagnostic will be employed to diagnose x-ray reproducibility and quality. In addition, we will investigate the performance of hybrid diodes relating to the formation of the Primary and Secondary Pinches.

Nelson, D. S. [NSTec; Berninger, M. J. [NSTec; Flores, P. A. [NSTec; Good, D. E. [NSTec; Henderson, D. J. [NSTec; Hogge, K. W. [NSTec; Huber, S. R. [NSTec; Lutz, S. S. [NSTec; Mitchell, S. E. [NSTec; Howe, R. A. [NSTec; Mitton, C. V. [NSTec; Molina, I. [NSTec; Bozman, D. R. [SNL; Cordova, S. R. [SNL; Mitchell, D. R. [SNL; Oliver, B. V. [SNL; Ormond, E. C. [SNL

2013-07-01T23:59:59.000Z

322

Warm absorbers in X-rays (WAX), a comprehensive high resolution grating spectral study of a sample of Seyfert galaxies: I. A global view and frequency of occurrence of warm absorbers  

E-Print Network (OSTI)

We present results from a homogeneous analysis of the broadband 0.3-10 keV CCD resolution as well as of soft X-ray high-resolution grating spectra of a hard X-ray flux-limited sample of 26 Seyfert galaxies observed with XMM-Newton. Our goal is to characterise the warm absorber (WA) properties along the line-of-sight to the active nucleus. We significantly detect WAs in $65\\%$ of the sample sources. Our results are consistent with WAs being present in at least half of the Seyfert galaxies in the nearby Universe, in agreement with previous estimates . We find a gap in the distribution of the ionisation parameter in the range $0.5warm absorber flow is probably constituted by a clumpy distribution of discrete clouds rather than a continuous medium. The distribution of the WA column densities for the sources with broad Fe K$\\alpha$ lines are similar to those sources which do not have broadened emission l...

Laha, Sibasish; Dewangan, Gulab C; Chakravorty, Susmita; Kembhavi, Ajit K

2014-01-01T23:59:59.000Z

323

The Hard X-Ray Nanoprobe Beamline at Argonne National Laboratory  

Science Journals Connector (OSTI)

The hard X-ray nanoprobe at the Advanced Photon Source provides characterizing of composition and structure of nanoscale materials and devices with high spatial-resolution using x-ray...

Maser, Jörg; Holt, Martin V; Winarski, Robert P; Rose, Volker; Stephenson, Gregory Brian; Fuesz, Peter

324

A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility  

SciTech Connect

A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors (GXD) it records sixteen time-gated spectra between 250 and 1000eV with 100ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and VUV beamline at the National Synchrotron Light Source (NSLS), evidence a <100{micro}m spatial resolution in combination with a source-size limited spectral resolution that is <10eV at photon energies of 300eV.

Moore, A S; Guymer, T M; Kline, J L; Morton, J; Taccetti, M; Lanier, N E; Bentley, C; Workman, J; Peterson, B; Mussack, K; Cowan, J; Prasad, R; Richardson, M; Burns, S; Kalantar, D H; Benedetti, L R; Bell, P; Bradley, D; Hsing, W; Stevenson, M

2012-05-01T23:59:59.000Z

325

A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility  

SciTech Connect

A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors it records 16 time-gated spectra between 250 and 1000 eV with 100 ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300 eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and vacuum ultraviolet beamline at the National Synchrotron Light Source, evidence a <100 {mu}m spatial resolution in combination with a source-size limited spectral resolution that is <10 eV at photon energies of 300 eV.

Moore, A. S.; Guymer, T. M.; Morton, J.; Bentley, C.; Stevenson, M. [Directorate Science and Technology, AWE Aldermaston, Reading, RG7 4PR (United Kingdom); Kline, J. L.; Taccetti, M.; Lanier, N. E.; Workman, J.; Peterson, B.; Mussack, K.; Cowan, J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Prasad, R.; Richardson, M.; Burns, S.; Kalantar, D. H.; Benedetti, L. R.; Bell, P.; Bradley, D.; Hsing, W. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States)

2012-10-15T23:59:59.000Z

326

Soft x-ray images of the laser entrance hole of ignition hohlraums  

SciTech Connect

Hohlraums are employed at the national ignition facility to convert laser energy into a thermal x-radiation drive, which implodes a fusion capsule, thus compressing the fuel. The x-radiation drive is measured with a low spectral resolution, time-resolved x-ray spectrometer, which views the region around the hohlraum's laser entrance hole. This measurement has no spatial resolution. To convert this to the drive inside the hohlraum, the size of the hohlraum's opening ('clear aperture') and fraction of the measured x-radiation, which comes from this opening, must be known. The size of the clear aperture is measured with the time integrated static x-ray imager (SXI). A soft x-ray imaging channel has been added to the SXI to measure the fraction of x-radiation emitted from inside the clear aperture. A multilayer mirror plus filter selects an x-ray band centered at 870 eV, near the peak of the x-ray spectrum of a 300 eV blackbody. Results from this channel and corrections to the x-radiation drive are discussed.

Schneider, M. B.; Meezan, N. B.; Alvarez, S. S.; Alameda, J.; Baker, S.; Bell, P. M.; Bradley, D. K.; Callahan, D. A.; Celeste, J. R.; Dewald, E. L.; Dixit, S. N.; Doeppner, T.; Eder, D. C.; Edwards, M. J.; Fernandez-Perea, M.; Hau-Riege, S.; Hsing, W.; Izumi, N.; Jones, O. S.; Kalantar, D. H. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

2012-10-15T23:59:59.000Z

327

Impact of Mg concentration on energy-band-depth profile of Mg-doped InN epilayers analyzed by hard X-ray photoelectron spectroscopy  

SciTech Connect

The electronic structures of Mg-doped InN (Mg-InN) epilayers with the Mg concentration, [Mg], ranging from 1 × 10{sup 19} to 5 × 10{sup 19} cm{sup ?3} were systematically investigated by soft and hard X-ray photoelectron spectroscopies. The angle-resolved results on the core-level and valence band photoelectron spectra as a function of [Mg] revealed that the energy band of Mg-InN showed downward bending due to the n{sup +} surface electron accumulation and p type layers formed in the bulk. With an increase in [Mg], the energy-band changed from monotonic to two-step n{sup +}p homojunction structures. The oxygen concentration rapidly increased at the middle-bulk region (?4.5 to ?7.5 nm) from the surface, which was one of the reasons of the transformation of two-step energy band.

Imura, M.; Tsuda, S.; Nagata, T.; Takeda, H.; Liao, M. Y.; Koide, Y. [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)] [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Yang, A. L.; Yamashita, Y.; Yoshikawa, H.; Kobayashi, K. [NIMS/SPring-8, NIMS, 1-1-1 Koto, Sayo-cho, Sayo, Hyogo 679-5148 (Japan)] [NIMS/SPring-8, NIMS, 1-1-1 Koto, Sayo-cho, Sayo, Hyogo 679-5148 (Japan); Yamaguchi, T. [Faculty of Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachiouji, Tokyo 192-0015 (Japan) [Faculty of Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachiouji, Tokyo 192-0015 (Japan); Faculty of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577 (Japan); Kaneko, M.; Uematsu, N.; Wang, K.; Araki, T. [Faculty of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577 (Japan)] [Faculty of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577 (Japan); Nanishi, Y. [Faculty of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577 (Japan) [Faculty of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577 (Japan); Faculty of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)

2013-10-14T23:59:59.000Z

328

Incoherent x-ray scattering in single molecule imaging  

E-Print Network (OSTI)

Imaging of the structure of single proteins or other biomolecules with atomic resolution would be enormously beneficial to structural biology. X-ray free-electron lasers generate highly intense and ultrashort x-ray pulses, providing a route towards imaging of single molecules with atomic resolution. The information on molecular structure is encoded in the coherent x-ray scattering signal. In contrast to crystallography there are no Bragg reflections in single molecule imaging, which means the coherent scattering is not enhanced. Consequently, a background signal from incoherent scattering deteriorates the quality of the coherent scattering signal. This background signal cannot be easily eliminated because the spectrum of incoherently scattered photons cannot be resolved by usual scattering detectors. We present an ab initio study of incoherent x-ray scattering from individual carbon atoms, including the electronic radiation damage caused by a highly intense x-ray pulse. We find that the coherent scattering pa...

Slowik, Jan Malte; Dixit, Gopal; Jurek, Zoltan; Santra, Robin

2014-01-01T23:59:59.000Z

329

Chain-length dependent growth dynamics of n-alkanes on silica investigated by energy-dispersive x-ray reflectivity in situ and in real-time  

SciTech Connect

We compare the growth dynamics of the three n-alkanes C{sub 36}H{sub 74}, C{sub 40}H{sub 82}, and C{sub 44}H{sub 90} on SiO{sub 2} using real-time and in situ energy-dispersive x-ray reflectivity. All molecules investigated align in an upright-standing orientation on the substrate and exhibit a transition from layer-by-layer growth to island growth after about 4 monolayers under the conditions employed. Simultaneous fits of the reflected intensity at five distinct points in reciprocal space show that films formed by longer n-alkanes roughen faster during growth. This behavior can be explained by a chain-length dependent height of the Ehrlich-Schwoebel barrier. Further x-ray diffraction measurements after growth indicate that films consisting of longer n-alkanes also incorporate more lying-down molecules in the top region. While the results reveal behavior typical for chain-like molecules, the findings can also be useful for the optimization of organic field effect transistors where smooth interlayers of n-alkanes without coexistence of two or more molecular orientations are required.

Weber, C.; Rukat, T.; Schaefer, P.; Kowarik, S. [Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, 12489 Berlin (Germany); Frank, C.; Schreiber, F. [Institut fuer Angewandte Physik, Universitaet Tuebingen, Auf der Morgenstelle 10, 72076 Tuebingen (Germany); Bommel, S. [Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, 12489 Berlin (Germany); Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg (Germany); Leitenberger, W. [Institut fuer Physik, Universitaet Potsdam, Karl-Liebknecht-Strasse 24/25,14476 Potsdam-Golm (Germany)

2012-05-28T23:59:59.000Z

330

E-Print Network 3.0 - anomalous x-ray diffraction Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory Superconducting wiggler 7. Low-energy Anomalous X-ray... 1. High-energy x-ray micro-mapping of materials for advanced energy and structural engineering......

331

The first X-ray diffraction measurements on Mars  

Science Journals Connector (OSTI)

The X-ray diffraction/X-ray fluorescence instrument CheMin on the Curiosity rover is a shoebox-sized device using transmission geometry and an energy-discriminating CCD detector. The instrument has returned the first X-ray diffraction data for soil and drilled samples from Mars outcrops, revealing a suite of primary basaltic minerals, amorphous components and varied hydrous alteration products including phyllosilicates.

Bish, D.

2014-10-21T23:59:59.000Z

332

Beyond hard x-ray photoelectron spectroscopy: Simultaneous combination with x-ray diffraction  

SciTech Connect

Hard x-ray photoelectron spectroscopy (HAXPES) is a powerful and novel emerging technique for the nondestructive determination of electronic properties and chemical composition of bulk, buried interfaces and surfaces. It benefits from the exceptionally large escape depth of high kinetic energy photoelectrons, increasing the information depth up to several tens of nanometers. Complementing HAXPES with an atomic structure sensitive technique (such as x-ray diffraction) opens a new research field with major applications for materials science. At SpLine, the Spanish CRG beamline at the European Synchrotron Radiation Facility, we have developed a novel experimental set-up that combines HAXPES and x-ray diffraction (x-ray reflectivity, surface x-ray diffraction, grazing incidence x-ray diffraction, and reciprocal space maps). Both techniques can be operated simultaneously on the same sample and using the same excitation source. The set-up includes a robust 2S + 3D diffractometer hosting a ultrahigh vacuum chamber equipped with a unique photoelectron spectrometer (few eV < electron kinetic energy < 15 keV), x-ray tube (Mg/Ti), 15 keV electron gun, and auxiliary standard surface facilities (molecular beam epitaxy evaporator, ion gun, low energy electron diffraction, sample heating/cooling system, leak valves, load-lock sample transfer, etc.). This end-station offers the unique possibility of performing simultaneous HAXPES + x-ray diffraction studies. In the present work, we describe the experimental set-up together with two experimental examples that emphasize its outstanding capabilities: (i) nondestructive characterization of the Si/Ge and HfO{sub 2}/SiO{sub 2} interfaces on Ge-based CMOS devices, and (ii) strain study on La{sub 0.7}Ca{sub 0.3}MnO{sub 3} ultrathin films grown on SrTiO{sub 3}(001) substrate.

Rubio-Zuazo, Juan; Castro, German R. [SpLine, Spanish CRG beamline at the European Synchrotron Radiation Facility, B.P. 220, F-38043 Grenoble (France) and ICMM-CSIC Cantoblanco, E-28049 Madrid (Spain)

2013-05-15T23:59:59.000Z

333

Comparison of SOFC Cathode Microstructure Quantified using X-ray Nanotomography and Focused Ion Beam - Scanning Electron Microscopy  

SciTech Connect

X-ray nanotomography and focused ion beam scanning electron microscopy (FIB?SEM) have been applied to investigate the complex 3D microstructure of solid oxide fuel cell (SOFC) electrodes at spatial resolutions of 45 nm and below. The application of near edge differential absorption for x-ray nanotomography and energy selected backscatter detection for FIB–SEM enable elemental mapping within the microstructure. Using these methods, non?destructive 3D x-ray imaging and FIB–SEM serial sectioning have been applied to compare three?dimensional elemental mapping of the LSM, YSZ, and pore phases in the SOFC cathode microstructure. The microstructural characterization of an SOFC cathode is reported based on these measurements. The results presented demonstrate the viability of x-ray nanotomography as a quantitative characterization technique and provide key insights into the SOFC cathode microstructure.

Nelson, George J.; Harris, William H.; Lombardo, Jeffrey J.; Izzo, Jr., John R.; Chiu, W. K. S.; Tanasini, Pietro; cantoni, Marco; Van herle, Jan; Comninellis, Christos; Andrews, Joy C.; Liu, Yijin; Pianetta, Piero; Chu, Yong

2011-01-01T23:59:59.000Z

334

Nonlinear X-ray Compton Scattering  

E-Print Network (OSTI)

X-ray scattering is a weak linear probe of matter. It is primarily sensitive to the position of electrons and their momentum distribution. Elastic X-ray scattering forms the basis of atomic structural determination while inelastic Compton scattering is often used as a spectroscopic probe of both single-particle excitations and collective modes. X-ray free-electron lasers (XFELs) are unique tools for studying matter on its natural time and length scales due to their bright and coherent ultrashort pulses. However, in the focus of an XFEL the assumption of a weak linear probe breaks down, and nonlinear light-matter interactions can become ubiquitous. The field can be sufficiently high that even non-resonant multiphoton interactions at hard X-rays wavelengths become relevant. Here we report the observation of one of the most fundamental nonlinear X-ray-matter interactions, the simultaneous Compton scattering of two identical photons producing a single photon at nearly twice the photon energy. We measure scattered...

Fuchs, Matthias; Chen, Jian; Ghimire, Shambhu; Shwartz, Sharon; Kozina, Michael; Jiang, Mason; Henighan, Thomas; Bray, Crystal; Ndabashimiye, Georges; Bucksbaum, P H; Feng, Yiping; Herrmann, Sven; Carini, Gabriella; Pines, Jack; Hart, Philip; Kenney, Christopher; Guillet, Serge; Boutet, Sebastien; Williams, Garth; Messerschmidt, Marc; Seibert, Marvin; Moeller, Stefan; Hastings, Jerome B; Reis, David A

2015-01-01T23:59:59.000Z

335

X-ray Absorption Spectroscopy  

SciTech Connect

This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

Yano, Junko; Yachandra, Vittal K.

2009-07-09T23:59:59.000Z

336

X-ray fluorescence mapping  

NLE Websites -- All DOE Office Websites (Extended Search)

biololgical cells, over the measurement of impurities in solar cells, to the rare earth content of geological materials. A somewhat 'typical' layout for a X-ray fluorescence...

337

APS 7-BM Beamline: X-Ray Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Useful Websites Useful Websites X-Ray Interactions with Matter from CRXO at LBNL. Intuitive interface for x-ray transmission and reflectivity for a wide range of materials. X-Ray Data Booklet from LBNL. Slightly outdated in places, but many useful tables of edge energies, fluorescence lines, and crystal lattice spacings. NIST XCOM Database. Powerful database of photoelectric absorption, elastic scattering, and Compton scattering cross-sections for a wide range of materials. X-Ray Server. Maintained by Sergey Stepanov at GMCA at the APS, this website has several powerful calculators for simulating x-ray reflection and diffraction. Software X-Ray Oriented Programs (XOP). This program, written by scientists at the ESRF and APS, is widely used in the synchrotron research community.

338

Displaced Vertices from X-ray Lines  

E-Print Network (OSTI)

We present a simple model of weak-scale thermal dark matter that gives rise to X-ray lines. Dark matter consists of two nearly degenerate states near the weak scale, which are populated thermally in the early universe via co-annihilation with slightly heavier states that are charged under the Standard Model. The X-ray line arises from the decay of the heavier dark matter component into the lighter one via a radiative dipole transition, at a rate that is slow compared to the age of the universe. The model predicts observable signatures at the LHC in the form of exotic events with missing energy and displaced leptons and jets. As an application, we show how this model can explain the recently observed 3.55 keV X-ray line.

Adam Falkowski; Yonit Hochberg; Joshua T. Ruderman

2014-09-09T23:59:59.000Z

339

A low-cost X-ray-transparent experimental cell for synchrotron-based X-ray microtomography studies under geological reservoir conditions  

Science Journals Connector (OSTI)

An X-ray-transparent experimental environment that allows time-resolved studies of porous rocks under geological reservoir conditions using high-energy synchrotron X-ray microtomography is presented.

Fusseis, F.

2013-12-05T23:59:59.000Z

340

Cosmology with X-ray Cluster Baryons  

SciTech Connect

X-ray cluster measurements interpreted with a universal baryon/gas mass fraction can theoretically serve as a cosmological distance probe. We examine issues of cosmological sensitivity for current (e.g., Chandra X-ray Observatory, XMM-Newton) and next generation (e.g., Con-X, XEUS) observations, along with systematic uncertainties and biases. To give competitive next generation constraints on dark energy, we find that systematics will need to be controlled to better than 1percent and any evolution in f_gas (and other cluster gas properties) must be calibrated so the residual uncertainty is weaker than (1+z)0.03.

Linder, Eric V.

2007-04-10T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray energy resolution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

SOFT INELASTIC X-RAY SCATTERING (SIX) Group Leader: Ignace Jarrige  

NLE Websites -- All DOE Office Websites (Extended Search)

INELASTIC X-RAY SCATTERING (SIX) INELASTIC X-RAY SCATTERING (SIX) Group Leader: Ignace Jarrige 1 Proposal Team: D. Arena 1 , A. Baron 2 , Y. Cai 1 , Y.-D. Chuang 3 , F. de Groot 4 , J. Guo 3 , J.P. Hill 1 , S. Hulbert 1 , C. McGuinness 5 , R. Reininger 9 , J.E. Rubenson 6 , C. Sanchez-Hanke 1 , T. Schmitt 7 , K. Smith 8 1 Brookhaven National Laboratory, 2 SPring-8, 3 Lawrence Berkeley Laboratory, 4 Utrecht University, 5 Trinity College Dublin, 6 Uppsala University, 7 Paul Scherrer Institute, 8 Boston University, 9 Argonne National Laboratory TECHNIQUE AND CAPABILITIES APPLICATIONS ADDITIONAL INFORMATION * Resonant inelastic x-ray scattering (RIXS) at unprecedented resolution (10 meV @ 1000 eV) to revolutionize study of low energy excitations in many important materials. * Continuously tunable momentum transfer (q) to study the

342

In Situ X-Ray Probing Reveals Fingerprints of Surface Platinum Oxide  

SciTech Connect

In situ x-ray absorption spectroscopy (XAS) at the Pt L{sub 3} edge is a useful probe for Pt-O interactions at polymer electrolyte membrane fuel cell (PEMFC) cathodes. We show that XAS using the high energy resolution fluorescence detection (HERFD) mode, applied to a well-defined monolayer Pt/Rh(111) sample where the bulk penetrating hard x-rays probe only surface Pt atoms, provides a unique sensitivity to structure and chemical bonding at the Pt-electrolyte interface. Ab initio multiple-scattering calculations using the FEFF8 code and complementary extended x-ray absorption fine structure (EXAFS) results indicate that the commonly observed large increase of the white-line at high electrochemical potentials on PEMFC cathodes originates from platinum oxide formation, whereas previously proposed chemisorbed oxygen-containing species merely give rise to subtle spectral changes.

Friebel, Daniel

2011-08-24T23:59:59.000Z

343

Small Angle X-Ray Scattering Detector  

DOE Patents (OSTI)

A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., q.sub.max /q.sub.min.congruent.100.

Hessler, Jan P. (Downers Grove, IL)

2004-06-15T23:59:59.000Z

344

The ASTRO-H X-ray Astronomy Satellite  

E-Print Network (OSTI)

The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions developed by the Institute of Space and Astronautical Science (ISAS), with a planned launch in 2015. The ASTRO-H mission is equipped with a suite of sensitive instruments with the highest energy resolution ever achieved at E > 3 keV and a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. The simultaneous broad band pass, coupled with the high spectral resolution of Delta E < 7 eV of the micro-calorimeter, will enable a wide variety of important science themes to be pursued. ASTRO-H is expected to provide breakthrough results in scientific areas as diverse as the large-scale structure of the Universe and its evolution, the behavior of matter in the gravitational strong field regime, the physical conditions in sites of cosmic-ray acceleration, and the distribution of dark matter in galaxy clusters at different redshifts.

Takahashi, Tadayuki; Kelley, Richard; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steve; Anabuki, Naohisa; Angelini, Lorella; Arnaud, Keith; Asai, Makoto; Audard, Marc; Awaki, Hisamitsu; Azzarello, Philipp; Baluta, Chris; Bamba, Aya; Bando, Nobutaka; Bautz, Marshall; Bialas, Thomas; Blandford, Roger; Boyce, Kevin; Brenneman, Laura; Brown, Greg; Cackett, Edward; Canavan, Edgar; Chernyakova, Maria; Chiao, Meng; Coppi, Paolo; Costantini, Elisa; de Plaa, Jelle; Herder, Jan-Willem den; DiPirro, Michael; Done, Chris; Dotani, Tadayasu; Doty, John; Ebisawa, Ken; Eckart, Megan; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew; Ferrigno, Carlo; Foster, Adam; Fujimoto, Ryuichi; Fukazawa, Yasushi; Funk, Stefan; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi; Gandhi, Poshak; Gilmore, Kirk; Guainazzi, Matteo; Haas, Daniel; Haba, Yoshito; Hamaguchi, Kenji; Harayama, Atsushi; Hatsukade, Isamu; Hayashi, Takayuki; Hayashi, Katsuhiro; Hayashida, Kiyoshi; Hiraga, Junko; Hirose, Kazuyuki; Hornschemeier, Ann; Hoshino, Akio; Hughes, John; Hwang, Una; Iizuka, Ryo; Inoue, Yoshiyuki; Ishibashi, Kazunori; Ishida, Manabu; Ishikawa, Kumi; Ishimura, Kosei; Ishisaki, Yoshitaka; Ito, Masayuki; Iwata, Naoko; Iyomoto, Naoko; Jewell, Chris; Kaastra, Jelle; Kallman, Timothy; Kamae, Tuneyoshi; Kataoka, Jun; Katsuda, Satoru; Katsuta, Junichiro; Kawaharada, Madoka; Kawai, Nobuyuki; Kawano, Taro; Kawasaki, Shigeo; Khangulyan, Dmitry; Kilbourne, Caroline; Kimball, Mark; Kimura, Masashi; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Konami, Saori; Kosaka, Tatsuro; Koujelev, Alex; Koyama, Katsuji; Krimm, Hans; Kubota, Aya; Kunieda, Hideyo; LaMassa, Stephanie; Laurent, Philippe; Lebrun, Franccois; Leutenegger, Maurice; Limousin, Olivier; Loewenstein, Michael; Long, Knox; Lumb, David; Madejski, Grzegorz; Maeda, Yoshitomo; Makishima, Kazuo; Markevitch, Maxim; Masters, Candace; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; Mcguinness, Daniel; McNamara, Brian; Miko, Joseph; Miller, Jon; Miller, Eric; Mineshige, Shin; Minesugi, Kenji; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Koji; Mori, Hideyuki; Moroso, Franco; Muench, Theodore; Mukai, Koji; Murakami, Hiroshi; Murakami, Toshio; Mushotzky, Richard; Nagano, Housei; Nagino, Ryo; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Namba, Yoshiharu; Natsukari, Chikara; Nishioka, Yusuke; Nobukawa, Masayoshi; Noda, Hirofumi; Nomachi, Masaharu; Dell, Steve O'; Odaka, Hirokazu; Ogawa, Hiroyuki; Ogawa, Mina; Ogi, Keiji; Ohashi, Takaya; Ohno, Masanori; Ohta, Masayuki; Okajima, Takashi; Okamoto, Atsushi; Okazaki, Tsuyoshi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, St'ephane; Parmar, Arvind; Petre, Robert; Pinto, Ciro; Pohl, Martin; Pontius, James; Porter, F Scott; Pottschmidt, Katja; Ramsey, Brian; Reis, Rubens; Reynolds, Christopher; Ricci, Claudio; Russell, Helen; Safi-Harb, Samar; Saito, Shinya; Sakai, Shin-ichiro; Sameshima, Hiroaki; Sato, Goro; Sato, Yoichi; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Serlemitsos, Peter; Seta, Hiromi; Shibano, Yasuko; Shida, Maki; Shimada, Takanobu; Shinozaki, Keisuke; Shirron, Peter; Simionescu, Aurora; Simmons, Cynthia; Smith, Randall; Sneiderman, Gary; Soong, Yang; Stawarz, Lukasz; Sugawara, Yasuharu; Sugita, Hiroyuki; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Hiroaki; Takeda, Shin-ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tamura, Keisuke; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki; Tashiro, Makoto; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi; Uchida, Hiroyuki; Uchiyama, Yasunobu; Uchiyama, Hideki; Ueda, Yoshihiro; Ueda, Shutaro; Ueno, Shiro; Uno, Shinichiro; Urry, Meg; Ursino, Eugenio; de Vries, Cor; Wada, Atsushi; Watanabe, Shin; Watanabe, Tomomi; Werner, Norbert; White, Nicholas; Wilkins, Dan; Yamada, Takahiro; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Yoshida, Atsumasa; Yuasa, Takayuki; Zhuravleva, Irina; Zoghbi, Abderahmen; ZuHone, John

2014-01-01T23:59:59.000Z

345

Dynamic screening x-ray energy shifts and collisional line broadening of 2p-1s transitions in 2 MeV/AMU H- and He-like Ne, Mg, and S ions traveling in solids  

E-Print Network (OSTI)

University in partial fulfillment of the requirements for the degree of BASTER OF SCIENCE December 1983 Na)or Sub)ect: Chemistry DYNAMIC SCREENING X-RAY ENERGY SHIFTS AND COLLISIONAL LINE BROADENING OF 2p-1s TRANSITIONS IN 2 Mev/AMU H- AND HE-LIKE NE...) December 1983 ABSTRACT Dynamic Screening X-Ray Energy Shifts and Collisional Line Broadening of 2p-1s Transitions in 2 Mev/AMU H- and He-like Ne, Mg, and S Tons Traveling in Solids (December 1983) Richard Jay Maurer, B. S. College of Charleston...

Maurer, Richard Jay

2012-06-07T23:59:59.000Z

346

X-ray shearing interferometer  

DOE Patents (OSTI)

An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

Koch, Jeffrey A. (Livermore, CA)

2003-07-08T23:59:59.000Z

347

X-Ray Interactions with Matter from the Center for X-Ray Optics (CXRO)  

DOE Data Explorer (OSTI)

The primary interactions of low-energy x-rays within condensed matter, viz. photoabsorption and coherent scattering, are described for photon energies outside the absorption threshold regions by using atomic scattering factors. The atomic scattering factors may be accurately determined from the atomic photoabsorption cross sections using modified Kramers-Kronig dispersion relations. From a synthesis of the currently available experimental data and recent theoretical calculations for photoabsorption, the angle-independent, forward-scattering components of the atomic scattering factors have been thus semiempirically determined and tabulated here for 92 elements and for the region 50-30,000 eV. Atomic scattering factors for all angles of coherent scattering and at the higher photon energies are obtained from these tabulated forward-scattering values by adding a simple angle-dependent form-factor correction. The incoherent scattering contributions that become significant for the light elements at the higher photon energies are similarly determined. The basic x-ray interaction relations that are used in applied x-ray physics are presented here in terms of the atomic scattering factors. The bulk optical constants are also related to the atomic scattering factors. These atomic and optical relations are applied to the detailed calculation of the reflectivity characteristics of a series of practical x-ray mirror, multilayer, and crystal monochromators. Comparisons of the results of this semiempirical,"atom-like", description of x-ray interactions for the low-energy region with those of experiment and ab initio theory are presented.

Henke, B.L.; Gullikson, E.M.; Davis, J.C.

348

Breast Density Assessment in Adolescent Girls Using Dual-Energy X-ray Absorptiometry: A Feasibility Study  

Science Journals Connector (OSTI)

...four measures of dietary quality (total energy, % energy from fat, FV...servings). Overall, dietary quality was poor, with mean...differences in dietary quality by drinking status; mean daily total energy intake was higher among...

John A. Shepherd; Serghei Malkov; Bo Fan; Aurelie Laidevant; Rachel Novotny; and Gertraud Maskarinec

2008-07-01T23:59:59.000Z

349

X-ray attenuation properties of stainless steel (u)  

SciTech Connect

Stainless steel vessels are used to enclose solid materials for studying x-ray radiolysis that involves gas release from the materials. Commercially available stainless steel components are easily adapted to form a static or a dynamic condition to monitor the gas evolved from the solid materials during and after the x-ray irradiation. Experimental data published on the x-ray attenuation properties of stainless steel, however, are very scarce, especially over a wide range of x-ray energies. The objective of this work was to obtain experimental data that will be used to determine how a poly-energetic x-ray beam is attenuated by the stainless steel container wall. The data will also be used in conjunction with MCNP (Monte Carlos Nuclear Particle) modeling to develop an accurate method for determining energy absorbed in known solid samples contained in stainless steel vessels. In this study, experiments to measure the attenuation properties of stainless steel were performed for a range of bremsstrahlung x-ray beams with a maximum energy ranging from 150 keV to 10 MeV. Bremsstrahlung x-ray beams of these energies are commonly used in radiography of engineering and weapon components. The weapon surveillance community has a great interest in understanding how the x-rays in radiography affect short-term and long-term properties of weapon materials.

Wang, Lily L [Los Alamos National Laboratory; Berry, Phillip C [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

350

Burning plasmas with ultrashort soft-x-ray flashing  

SciTech Connect

Fast ignition with narrow-band coherent x-ray pulses has been revisited for cryogenic deuterium-tritium (DT) plasma conditions achieved on the OMEGA Laser System. In contrast to using hard-x-rays (hv = 3-6 keV) proposed in the original x-ray fast-ignition proposal, we find that soft-x-ray sources with hv Almost-Equal-To 500 eV photons can be suitable for igniting the dense DT-plasmas achieved on OMEGA. Two-dimensional radiation-hydrodynamics simulations have identified the break-even conditions for realizing such a 'hybrid' ignition scheme (direct-drive compression with soft-x-ray heating) with 50-{mu}m-offset targets: {approx}10 ps soft-x-ray pulse (hv Almost-Equal-To 500 eV) with a total energy of 500-1000 J to be focused into a 10 {mu}m spot-size. A variety of x-ray pulse parameters have also been investigated for optimization. It is noted that an order of magnitude increase in neutron yield has been predicted even with x-ray energy as low as {approx}50 J. Scaling this idea to a 1 MJ large-scale target, a gain above {approx}30 can be reached with the same soft-x-ray pulse at 1.65 kJ energy. Even though such energetic x-ray sources do not currently exist, we hope that the proposed ignition scheme may stimulate efforts on generating powerful soft-x-ray sources in the near future.

Hu, S. X.; Goncharov, V. N.; Skupsky, S. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

2012-07-15T23:59:59.000Z

351

Columbia University X-Ray Measurements  

E-Print Network (OSTI)

V-720 keV · NaI 2x2x2" detector views an energy range of 1 keV-3 MeV Store signal in the tree. computer configuration. Plasmas were created using multi-frequency ECRH, and we find that most of the plasma energy is stored in the fast electrons. The energy spectrum of the x-ray emission below 740 keV is measured

352

Measuring the power spectrum of density fluctuations at intermediate redshift with X-ray background observations  

Science Journals Connector (OSTI)

......arguments at soft X-ray energies (see, e.g., Car- rera, Fabian...telescopes working up to energies #10 keV. This is...flux downwards. An alternative way of using an X-ray...ROSAT at soft X-ray energies (Voges 1993) and......

X. Barcons; A. C. Fabian; F. J. Carrera

1998-01-01T23:59:59.000Z

353

X-ray spectroscopy of manganese clusters  

SciTech Connect

Much of this thesis represents the groundwork necessary in order to probe Mn clusters more productively than with conventional Mn K-edge XAS and is presented in Part 1. Part 2 contains the application of x-ray techniques to Mn metalloproteins and includes a prognosis at the end of each chapter. Individual Mn oxidation states are more readily distinguishable in Mn L-edge spectra. An empirical mixed valence simulation routine for determining the average Mn oxidation state has been developed. The first Mn L-edge spectra of a metalloprotein were measured and interpreted. The energy of Mn K{beta} emission is strongly correlated with average Mn oxidation state. K{beta} results support oxidation states of Mn(III){sub 2}(IV){sub 2} for the S{sub 1} state of Photosystem II chemical chemically reduced preparations contain predominantly Mn(II). A strength and limitation of XAS is that it probes all of the species of a particular element in a sample. It would often be advantageous to selectively probe different forms of the same element. The first demonstration that chemical shifts in x-ray fluorescence energies can be used to obtain oxidation state-selective x-ray absorption spectra is presented. Spin-dependent spectra can also be used to obtain a more simplified picture of local structure. The first spin-polarized extended x-ray absorption fine structure using Mn K{beta} fluorescence detection is shown.

Grush, M.M. [Univ. of California, Davis, CA (United States). Dept. of Applied Science; [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

1996-06-01T23:59:59.000Z

354

X-ray Structure of the Magnesium(II),ADP,Vanadate Complex of the Dictyostelium discoideum Myosin Motor Domain to 1.9 Resolution,  

E-Print Network (OSTI)

Motor Domain to 1.9 � Resolution, Clyde A. Smith§ and Ivan Rayment* Institute for Enzyme Research on the -phosphate of ADP and a water molecule at bond distances of 2.1 and 2.3 �, respectively. The long length ligands and water structure surrounding the -phosphate pocket are oriented to stabilize a water molecule

Rayment, Ivan

355

X-Ray Source Based on the Parametric X-Rays  

E-Print Network (OSTI)

Prospects of parametric x-rays (PXR) application for the development of a tuneable quasi-monochromatic x-ray source for medical imaging are discussed. Analysis of basic requirements for electron accelerator shows that it must be relatively low-energy and high-current linac. In comparison with known ultra-relativistic cases, at low energies PXR properties will be modified to a great extent by multiple scattering of the electrons. PXR intensity dependence on target thickness and beam energy are calculated taking multiple scattering into account. It is concluded that PXR source based on real medical accelerators is feasible and can provide x-ray flux needful for obtaining high quality medical images.

Alexander Lobko; Olga Lugovskaya

2005-09-02T23:59:59.000Z

356

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Biological Imaging by Soft X-Ray Diffraction Microscopy Biological Imaging by Soft X-Ray Diffraction Microscopy Print Wednesday, 30 November 2005 00:00 Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

357

Resolute Marine Energy Inc | Open Energy Information  

Open Energy Info (EERE)

Resolute Marine Energy Inc Resolute Marine Energy Inc Jump to: navigation, search Name Resolute Marine Energy Inc Address 3 Post Office Square 3rd floor Place Massachusetts Zip 02109-3905 Country United States Sector Marine and Hydrokinetic Product Resolute is a wave-power technology developer operating in Massachusetts. Year founded 2007 Number of employees 12 Phone number 917-626-6790 Website http://www.resolutemarine.com References Resolute Marine Energy LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Ocean Trials Ver 2 SurgeWEC Ocean Testing 1 This company is involved in the following MHK Technologies: AirWEC SurgeWEC

358

Optics for X-Ray Laser and Laser Plasma Soft X-Ray Radiation  

Science Journals Connector (OSTI)

Focusing X-ray grazing incidence optics for X-ray laser and laser plasma soft X-ray radiation has been studied. ... computer code. Parabolic axisymmetric mirror for focusing Princeton X-ray laser beam and ellipso...

L. Pina; A. Inneman; R. Hudec

1996-01-01T23:59:59.000Z

359

Cryogenic X-Ray Diffraction Microscopy for Biological Samples  

Science Journals Connector (OSTI)

X-ray diffraction microscopy (XDM) is well suited for nondestructive, high-resolution biological imaging, especially for thick samples, with the high penetration power of x rays and without limitations imposed by a lens. We developed nonvacuum, cryogenic (cryo-) XDM with hard x rays at 8 keV and report the first frozen-hydrated imaging by XDM. By preserving samples in amorphous ice, the risk of artifacts associated with dehydration or chemical fixation is avoided, ensuring the imaging condition closest to their natural state. The reconstruction shows internal structures of intact D. radiodurans bacteria in their natural contrast.

Enju Lima; Lutz Wiegart; Petra Pernot; Malcolm Howells; Joanna Timmins; Federico Zontone; Anders Madsen

2009-11-05T23:59:59.000Z

360

Cryogenic X-ray Diffraction Microscopy for Biological Samples  

SciTech Connect

X-ray diffraction microscopy (XDM) is well suited for nondestructive, high-resolution biological imaging, especially for thick samples, with the high penetration power of x rays and without limitations imposed by a lens. We developed nonvacuum, cryogenic (cryo-) XDM with hard x rays at 8 keV and report the first frozen-hydrated imaging by XDM. By preserving samples in amorphous ice, the risk of artifacts associated with dehydration or chemical fixation is avoided, ensuring the imaging condition closest to their natural state. The reconstruction shows internal structures of intact D. radiodurans bacteria in their natural contrast.

E Lima; L Wiegart; P Pernot; M Howells; J Timmins; F Zontone; A Madsen

2011-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray energy resolution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Diffraction with a coherent X-ray beam: dynamics and imaging  

Science Journals Connector (OSTI)

Techniques for coherent X-ray scattering measurements are detailed. Applications in the study of the dynamics of fluctuations and in lensless high-resolution imaging are described.

Livet, F.

2007-02-15T23:59:59.000Z

362

SMB, X-Ray Spectroscopy & Imaging  

NLE Websites -- All DOE Office Websites (Extended Search)

Home X-Ray Spectroscopy & Imaging X-Ray Spectroscopy & Imaging SSRL has five hard X-ray Spectroscopy beamlines and three Microfocus Imaging beamlines dedicated to Biological and...

363

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Reflection Lensless X-Ray Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has...

364

Coal Combustion Fly Ash Characterization: Electron Spectroscopy for Chemical Analysis, Energy Dispersive X-ray Analysis, and Scanning Electron Microscopy  

Science Journals Connector (OSTI)

The surface and bulk properties of five samples of fly ash have been examined by electron spectroscopy for chemical analysis (ESCA), scanning electron microscopy (SEM) and energy...

Rothenberg, S J; Denee, P; Holloway, P

1980-01-01T23:59:59.000Z

365

Sharper Focusing of Hard X-rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Sharper Focusing of Hard X-rays FROM: Physics News Update Number 773 #1, April 12, 2006, by Phil Schewe and Ben Stein Note: This text has been slightly modified from the original. Sharper focusing of hard x-rays has been achieved with a device developed at Argonne National Lab. Because of their high energy, x-rays are hard to focus: they can be reflected from a surface but only at a glancing angle (less than a tenth of a degree); they can be refracted but the index of refraction is very close to 1, so that making efficient lenses becomes a problem; and they can be diffracted, but the relatively thick, variable pitch grating required for focusing is tricky to achieve. The Argonne device is of the diffraction type, and it consists of a stack of alternating layers of metal and silicon, made by depositing progressively thicker layers. When the x-rays fall on such a structure, nearly edge-on, what they see is a grating (called a linear zone plate) consisting of a sort of bar-code pattern.

366

Generation of first hard X-ray pulse at Tsinghua Thomson Scattering X-ray Source  

SciTech Connect

Tsinghua Thomson Scattering X-ray Source (TTX) is the first-of-its-kind dedicated hard X-ray source in China based on the Thomson scattering between a terawatt ultrashort laser and relativistic electron beams. In this paper, we report the experimental generation and characterization of the first hard X-ray pulses (51.7 keV) via head-on collision of an 800 nm laser and 46.7 MeV electron beams. The measured yield is 1.0 Multiplication-Sign 10{sup 6} per pulse with an electron bunch charge of 200 pC and laser pulse energy of 300 mJ. The angular intensity distribution and energy spectra of the X-ray pulse are measured with an electron-multiplying charge-coupled device using a CsI scintillator and silicon attenuators. These measurements agree well with theoretical and simulation predictions. An imaging test using the X-ray pulse at the TTX is also presented.

Du Yingchao; Yan Lixin; Hua Jianfei; Du Qiang; Zhang Zhen; Li Renkai; Qian Houjun; Huang Wenhui; Chen Huaibi; Tang Chuanxiang [Accelerator Laboratory, Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084 (China); Key Laboratory of High Energy Radiation Imaging Fundamental Science for National Defense, Tsinghua University, Beijing 100084 (China)

2013-05-15T23:59:59.000Z

367

X-ray Imaging Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging and Spectro-microscopy: Imaging and Spectro-microscopy: the Present and the Future Stanford Synchrotron Radiation Laboratory October 8-9, 2002 Organizers: John Miao & Keith Hodgson A workshop on "X-ray Imaging and Spectro-microscopy: the Present and the Future" was held on October 8-9, 2002. This workshop, organized by John Miao (SSRL) and Keith Hodgson (SSRL) provided a forum to discuss the scientific applications of a variety of imaging and spectro-microscopic techniques, including photoemission electron microscopy (PEEM), angle resolved photoemission spectroscopy (ARPES), coherent diffraction imaging, x-ray microscopy, micro-tomography, holographic imaging, and x-ray micro-probe. Twelve invited speakers discussed the important scientific applications of these techniques, and also predicted the future scientific directions with the advance of instrumentation and x-ray sources. The workshop was well attended with over fifty registered attendees.

368

E-Print Network 3.0 - alpha tagged x-ray Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

-X-ray pinhole camera -Fast electron beam spatial distribution 5m... ? Fusion Energy Fast Ignition Optimisation high power laser-driven ion -Cu K-alpha imaging system -X-ray... and...

369

Center for X-Ray Optics, 1992  

SciTech Connect

This report discusses the following topics: Center for X-Ray Optics; Soft X-Ray Imaging wit Zone Plate Lenses; Biological X-Ray microscopy; Extreme Ultraviolet Lithography for Nanoelectronic Pattern Transfer; Multilayer Reflective Optics; EUV/Soft X-ray Reflectometer; Photoemission Microscopy with Reflective Optics; Spectroscopy with Soft X-Rays; Hard X-Ray Microprobe; Coronary Angiography; and Atomic Scattering Factors.

Not Available

1993-08-01T23:59:59.000Z

370

X-ray Stacking 2008-Apr-22 Astrostats X-ray Stacking  

E-Print Network (OSTI)

X-ray Stacking 2008-Apr-22 Astrostats X-ray Stacking Tom Aldcroft SAO/CXC #12;X-ray Stacking 2008 analysis for a sample Stacking ­ mean properties of sample Chandra X-ray data (faint point sources) are photon-limited with low background => stacking in X-rays is very effective #12;X-ray Stacking 2008-Apr-22

Wolfe, Patrick J.

371

X-RAYING THE BEATING HEART OF A NEWBORN STAR: ROTATIONAL MODULATION OF HIGH-ENERGY RADIATION FROM V1647 Ori  

SciTech Connect

We report a periodicity of {approx}1 day in the highly elevated X-ray emission from the protostar V1647 Ori during its two recent multiple-year outbursts of mass accretion. This periodicity is indicative of protostellar rotation at near-break-up speed. Modeling of the phased X-ray light curve indicates that the high-temperature ({approx}50 MK), X-ray-emitting plasma, which is most likely heated by accretion-induced magnetic reconnection, resides in dense ({approx}> 5 Multiplication-Sign 10{sup 10} cm{sup -3}), pancake-shaped magnetic footprints where the accretion stream feeds the newborn star. The sustained X-ray periodicity of V1647 Ori demonstrates that such protostellar magnetospheric accretion configurations can be stable over timescales of years.

Hamaguchi, Kenji [CRESST and X-ray Astrophysics Laboratory NASA/GSFC, Greenbelt, MD 20771 (United States); Grosso, Nicolas [Observatoire Astronomique de Strasbourg, Universite de Strasbourg, CNRS, UMR 7550, 11 rue de l'Universite, 67000 Strasbourg (France); Kastner, Joel H.; Richmond, Michael; Principe, David [Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Weintraub, David A.; Teets, William K. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Petre, Robert, E-mail: Kenji.Hamaguchi@nasa.gov [X-Ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2012-07-20T23:59:59.000Z

372

Dilation x-ray imager a new/faster gated x-ray imager for the NIF  

SciTech Connect

As the yield on implosion shots increases it is expected that the peak x-ray emission reduces to a duration with a FWHM as short as 20 ps for {approx}7 Multiplication-Sign 10{sup 18} neutron yield. However, the temporal resolution of currently used gated x-ray imagers on the NIF is 40-100 ps. We discuss the benefits of the higher temporal resolution for the NIF and present performance measurements for dilation x-ray imager, which utilizes pulse-dilation technology [T. J. Hilsabeck et al., Rev. Sci. Instrum. 81, 10E317 (2010)] to achieve x-ray imaging with temporal gate times below 10 ps. The measurements were conducted using the COMET laser, which is part of the Jupiter Laser Facility at the Lawrence Livermore National Laboratory.

Nagel, S. R.; Bell, P. M.; Bradley, D. K.; Ayers, M. J.; Barrios, M. A.; Felker, B.; Smith, R. F.; Collins, G. W.; Jones, O. S.; Piston, K.; Raman, K. S. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Hilsabeck, T. J.; Kilkenny, J. D.; Chung, T.; Sammuli, B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Hares, J. D.; Dymoke-Bradshaw, A. K. L. [Kentech Instruments Ltd., Wallingford, Oxfordshire OX10 (United Kingdom)

2012-10-15T23:59:59.000Z

373

Center for X-Ray Optics, 1991  

SciTech Connect

This report discusses: Soft-X-Ray imaging with zone-plate lenses; multilayer reflective optics; and spectroscopy with x-rays.

Not Available

1992-03-01T23:59:59.000Z

374

SMB, X-ray Absorption Spectroscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Absorption Spectroscopy X-ray Absorption Spectroscopy X-ray absorption spectroscopy (XAS) is a well-established technique for simultaneous local geometric and electronic structure...

375

High resolution X-ray spectroscopy with XMM-Newton and Chandra, MSSL, 24 -25 October 2002 1 CORONAE OF COOL STARS  

E-Print Network (OSTI)

coronal plasma three to four orders of magnitude above photospheric levels; the interactions with non-thermal to derive pressures, emitting masses and volumes and therefore the thermal energy in the plasma, but challenging plasma physical sources of violent energy release by others, magnetized outer atmospheres of cool

Guedel, Manuel

376

Current Problems for X-ray Emission from Radio Jets  

E-Print Network (OSTI)

A list is presented of known extragalactic radio jets which also have associated X-ray emission. The canonical emission processes for the production of X-rays are reviewed and the sources are categorized on the basis of our current understanding. Although it seems clear that the X-ray emission is non-thermal, the two competing processes, synchrotron and inverse Compton emissions, arise from extremely high energy (synchrotron) or extremely low energy (beaming models with IC emission), relativistic electrons. Only synchrotron self-Compton emission from a few hotspots provides information on the `normal' energy range of the electrons responsible for the observed radio emission.

D. E. Harris

2000-12-17T23:59:59.000Z

377

A highly modular beamline electrostatic levitation facility, optimized for in situ high-energy x-ray scattering studies of equilibrium and supercooled liquids  

SciTech Connect

High-energy x-ray diffraction studies of metallic liquids provide valuable information about structural evolution on the atomic length scale, leading to insights into the origin of the nucleation barrier and the processes of supercooling and glass formation. The containerless processing of the beamline electrostatic levitation (BESL) facility allows coordinated thermophysical and structural studies of equilibrium and supercooled liquids to be made in a contamination-free, high-vacuum ({approx}10{sup -8} Torr) environment. To date, the incorporation of electrostatic levitation facilities into synchrotron beamlines has been difficult due to the large footprint of the apparatus and the difficulties associated with its transportation and implementation. Here, we describe a modular levitation facility that is optimized for diffraction studies of high-temperature liquids at high-energy synchrotron beamlines. The modular approach used in the apparatus design allows it to be easily transported and quickly setup. Unlike most previous electrostatic levitation facilities, BESL can be operated by a single user instead of a user team.

Mauro, N.A.; Kelton, K.F. (WU)

2011-10-27T23:59:59.000Z

378

High energy X-ray diffraction study of a dental ceramics–titanium functional gradient material prepared by field assisted sintering technique  

Science Journals Connector (OSTI)

Abstract A functional gradient material with eleven layers composed of a dental ceramics and titanium was successfully consolidated using field assisted sintering technique in a two-step sintering process. High energy X-ray diffraction studies on the gradient were performed at High Energy Material Science beamline at Desy in Hamburg. Phase composition, crystal unit edges and lattice mismatch along the gradient were determined applying Rietveld refinement procedure. Phase analysis revealed that the main crystalline phase present in the gradient is ?-Ti. Crystallinity increases stepwisely along the gradient with a decreasing increment between every next layer, following rather the weight fraction of titanium. The crystal unit edge a of titanium remains approximately constant with a value of 2.9686(1) Å, while c is reduced with increasing amount of titanium. In the layer with pure titanium the crystal unit edge c is constant with a value of 4.7174(2) Å. The lattice mismatch leading to an internal stress was calculated over the whole gradient. It was found that the maximal internal stress in titanium embedded in the studied gradient is significantly smaller than its yield strength, which implies that the structure of titanium along the whole gradient is mechanically stable.

K. Witte; W. Bodnar; N. Schell; H. Lang; E. Burkel

2014-01-01T23:59:59.000Z

379

Fresnel and refractive lenses for X-rays  

Science Journals Connector (OSTI)

We present a Gaussian beam analysis of X-ray refractive and Fresnel lenses. The X-ray refractive lens is featured by an intrinsic soft (Gaussian) aperture due to strong absorption of X-rays by materials. We defined a parameter N0, the critical Fresnel number (CFN), to describe this optical property. The values of N0 for all practical materials are below 1000 for photon energies exceeding 30 eV, still lower for high-Z materials. The maximum effective Fresnel number of a lens is determined by its material to be 2N0 and its maximum enhancement of X-ray intensity is limited to (2?N0)2, independent of its shape. We found that the refractive lens is likely to be useful for manipulating nearly diffraction limited beam in the hard X-ray region and its application is severely restricted by available fabrication capabilities today. X-ray Fresnel lenses, both in cylindrical and linear forms, are proposed as superior focusing elements for hard X-rays. Their high efficiency, up to 100% in optimal construction, will enable us to manipulate beams with multiple lenses and obtain higher performance optics. Their design and fabrication are discussed in reference to those of X-ray Fresnel zone plates and micro Fresnel lenses for optoelectronics.

B.X. Yang

1993-01-01T23:59:59.000Z

380

A compact scanning soft X-ray microscope  

SciTech Connect

Soft x-ray microscopes operating at wavelengths between 2.3 nm and 4.4 nm are capable of imaging wet biological cells with a resolution many times that of a visible light microscope. Several such soft x-ray microscopes have been constructed. However, with the exception of contact microscopes, all use synchrotrons as the source of soft x-ray radiation and Fresnel zone plates as the focusing optics. These synchrotron based microscopes are very successful but have the disadvantage of limited access. This dissertation reviews the construction and performance of a compact scanning soft x-ray microscope whose size and accessibility is comparable to that of an electron microscope. The microscope uses a high-brightness laser-produced plasma as the soft x-ray source and normal incidence multilayer-coated mirrors in a Schwarzschild configuration as the focusing optics. The microscope operates at a wavelength of 14 nm, has a spatial resolution of 0.5 {mu}m, and has a soft x-ray photon flux through the focus of 10{sup 4}-10{sup 5} s{sup {minus}1} when operated with only 170 mW of average laser power. The complete system, including the laser, fits on a single 4{prime} x 8{prime} optical table. The significant components of the compact microscope are the laser-produced plasma (LPP) source, the multilayer coatings, and the Schwarzschild objective. These components are reviewed, both with regard to their particular use in the current microscope and with regard to extending the microscope performance to higher resolution, higher speed, and operation at shorter wavelengths. Measurements of soft x-ray emission and debris emission from our present LPP source are presented and considerations given for an optimal LPP source. The LPP source was also used as a broadband soft x-ray source for measurement of normal incidence multilayer mirror reflectance in the 10-25 nm spectral region.

Trail, J.A.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray energy resolution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Element-specific structure of materials with intrinsic disorder by high-energy resonant x-ray diffraction and differential atomic pair-distribution functions: A study of PtPd nanosized catalysts  

Science Journals Connector (OSTI)

We demonstrate how high-energy resonant x-ray diffraction (XRD) and differential atomic-pair-distribution function (PDF) analysis can be used to characterize the atomic ordering in materials of limited structural coherence with both excellent spatial resolution and element specificity. First we prove that this experimental approach is feasible by probing the K-absorption edge of Au(?81?keV) atoms in chemically ordered and disordered bulk Cu3Au alloys. The resulting Au-differential PDFs show very clearly the different ways Au atoms are known to occupy the sites of otherwise identical cubic lattices of those materials. Next we apply it to a more complex material: PtPd alloy and core-shell nanosized (?2–4?nm) particles by probing the K-absorption edge of Pt(?78?keV). The resulting Pt-differential atomic PDFs reveal how exactly the atomic ordering of catalytically active Pt atoms is affected by the nanoparticles’ design, thus providing a firm structural basis for understanding their properties. The work is a step forward in expanding the limits of applicability of nontraditional XRD to the rapidly growing field of materials of unusual structural complexity.

V. Petkov and S. D. Shastri

2010-04-21T23:59:59.000Z

382

Hard X-ray tails and cyclotron features in X-ray pulsars  

E-Print Network (OSTI)

We review the physical processes occurring in the magnetosphere of accreting X-ray pulsars, with emphasis on those processes that give rise to observable effects in their high (E>10 keV) energy spectra. In the second part we compare the empirical spectral laws used to fit the observed spectra with theoretical models, at the light of the BeppoSAX results on the broad-band characterization of the X-ray pulsar continuum, and the discovery of new (multiple) cyclotron resonance features.

Mauro Orlandini; Daniele Dal Fiume

2001-07-27T23:59:59.000Z

383

X-ray radiography for container inspection  

DOE Patents (OSTI)

Arrangements of X-ray inspection systems are described for inspecting high-z materials in voluminous objects such as containers. Inspection methods may involve generating a radiographic image based on detected attenuation corresponding to a pulsed beams of radiation transmitted through a voluminous object. The pulsed beams of radiation are generated by a high-energy source and transmitted substantially downward along an incident angle, of approximately 1.degree. to 30.degree., to a vertical axis extending through the voluminous object. The generated radiographic image may be analyzed to detect on localized high attenuation representative of high-z materials and to discriminate high-z materials from lower and intermediate-z materials on the basis of the high density and greater attenuation of high-z material for higher energy (3-10 MeV) X-rays, and the compact nature of threatening masses of fissionable materials.

Katz, Jonathan I. (Clayton, MO); Morris, Christopher L. (Los Alamos, NM)

2011-06-07T23:59:59.000Z

384

A Superconducting Tunnel Junction X-ray Spectrometer without Liquid Cryogens  

SciTech Connect

Superconducting tunnel junctions (STJs) are being developed as X-ray detectors because they combine the high energy resolution of cryogenic detector technologies with the high count rate capabilities of athermal devices. We have built STJ spectrometers for chemical analysis of dilute samples by high-resolution soft X-ray spectroscopy at the synchrotron. The instruments use 36 pixels of 200 {micro}m x 200 {micro}m Nb-Al-AlOx-Al-Nb STJs with 165 nm thick Nb absorber films. They have achieved an energy resolution of {approx}10-20 eV FWHM for X-ray energies below 1 keV, and can be operated at a total count rate of {approx}10{sup 6} counts/s. For increased user-friendliness, we have built a liquid-cryogen-free refrigerator based on a two-stage pulse tube cryocooler in combination with a two-stage adiabatic demagnetization stage. It holds the STJ detector at the end of a 40-cm-long cold finger, and attains the required operating temperature of {approx}0.3 K at the push of a button. We describe the instrument performance and present speciation measurements on Eu dopant activators in the novel scintillator material SrI{sub 2} to illustrate the potential for STJ spectrometers at the synchrotron.

Friedrich, S; Hertrich, T; Drury, O B; Cherepy, N J; Hohne, J

2008-06-15T23:59:59.000Z

385

Application of synchrotron radiation to x-ray fluorescence analysis of trace elements  

SciTech Connect

The development of synchrotron radiation x-ray sources has provided the means to greatly extend the capabilities of x-ray fluorescence analysis for determinations of trace element concentrations. A brief description of synchrotron radiation properties provides a background for a discussion of the improved detection limits compared to existing x-ray fluorescence techniques. Calculated detection limits for x-ray microprobes with micrometer spatial resolutions are described and compared with experimental results beginning to appear from a number of laboratories. The current activities and future plans for a dedicated x-ray microprobe beam line at the National Synchrotron Light Source (NSLS) of Brookhaven National Laboratory are presented.

Gordon, B.M.; Jones, K.W.; Hanson, A.L.

1986-08-01T23:59:59.000Z

386

Elemental relationships in rock varnish as seen with SEM/EDX (scanning electron microscopy/energy dispersive x-ray) elemental line profiling  

SciTech Connect

The heterogeneous nature of rock varnish requires a thorough survey of elemental and mineralogic compositions before relating chemical variability of rock varnish to past geochemical environments. Elemental relationships in rock varnish can be examined using scanning electron microscopy (SEM) in conjunction with an elemental line profiling routine using semi-quantitative, energy dispersive x-ray (EDX) analysis. Results of SEM/EDX analysis suggest: variations in cation concentrations used in varnish cation ratio dating relate more specifically to variations in detritus within the varnish than to element mobility as defined by weathering indices; Mn concentration rather than Mn:Fe ratios may be a more appropriate indicator of paleoclimatic fluctuations; and the Mn-oxide phase existing in varnish is most likely a Ba-enriched phase rather than birnessite. Element line profiling offers great potential for gaining insights into geochemical processes affecting the deposition and diagenesis of rock varnish and for testing hypotheses relating to its chemical variability. 27 refs., 9 figs.

Raymond, R. Jr.; Reneau, S.L.; Harrington, C.D.

1990-01-01T23:59:59.000Z

387

Monochromatic x-ray sampling streak imager for fast-ignitor plasma observation  

SciTech Connect

Ultrafast two-dimensional (2D) x-ray imaging is required to investigate the dynamics of fast-heated core plasma in inertial confinement fusion research. A novel x-ray imager, consisting of two toroidally bent Bragg crystals and an ultrafast 2D x-ray imaging camera, has been demonstrated. Sequential and 2D monochromatic x-ray images of laser-imploded core plasma were obtained with a temporal resolution of 20 ps, a spatial resolution of 31 {mu}m, and a spectral resolution of over 200, simultaneously.

Tanabe, Minoru; Fujiwara, Takashi; Fujioka, Shinsuke; Nishimura, Hiroaki; Shiraga, Hiroyuki; Azechi, Hiroshi; Mima, Kunioki [Institute of Laser Engineering, Osaka University, 2-6 Yamada-Oka, Suita, Osaka 565-0871 (Japan)

2008-10-15T23:59:59.000Z

388

Long-term X-ray stability and UV variability of the ionized absorption in NGC 3783  

E-Print Network (OSTI)

We present the results of recent Chandra High-Energy Transmission Grating Spectrometer and Hubble Space Telescope Cosmic Origins Spectrograph observations of the nearby Seyfert 1 galaxy NGC 3783 which shows a strong, non-varying X-ray warm absorber and physically related and kinematically varying UV absorption. We compare our new observations to high-resolution, high signal-to-noise archival data from 2001, allowing a unique investigation into the long-term variations of the absorption over a 12 yr period. We find no statistically significant changes in the physical properties of the X-ray absorber, but there is a significant drop of ~40% in the UV and X-ray flux, and a significant flattening of the underlying X-ray power-law slope. Large kinematic changes are seen in the UV absorbers, possibly due to radial deceleration of the material. Similar behavior is not observed in the X-ray data, likely due to its lower velocity resolution, which shows an outflow velocity of v ~ -655 km/s in both epochs. The narrow i...

Scott, A E; Behar, E; Crenshaw, D M; Gabel, J R; Gibson, R R; Kaspi, S; Kraemer, S B; Turner, T J

2014-01-01T23:59:59.000Z

389

X-ray optics for scanning fluorescence microscopy and other applications  

SciTech Connect

Scanning x-ray fluorescence microscopy is analogous to scanning electron microscopy. Maps of chemical element distribution are produced by scanning with a very small x-ray beam. Goal is to perform such scanning microscopy with resolution in the range of <1 to 10 {mu}m, using standard laboratory x-ray tubes. We are investigating mirror optics in the Kirkpatrick-Baez (K-B) configuration. K-B optics uses two curved mirrors mounted orthogonally along the optical axis. The first mirror provides vertical focus, the second mirror provides horizontal focus. We have used two types of mirrors: synthetic multilayers and crystals. Multilayer mirrors are used with lower energy radiation such as Cu K{alpha}. At higher energies such as Ag K{alpha}, silicon wafers are used in order to increase the incidence angles and thereby the photon collection efficiency. In order to increase the surface area of multilayers which reflects x-rays at the Bragg angle, we have designed mirrors with the spacing between layers graded along the optic axis in order to compensate for the changing angle of incidence. Likewise, to achieve a large reflecting surface with silicon, the wafers are placed on a specially designed lever arm which is bent into a log spiral by applying force at one end. In this way, the same diffracting angle is maintained over the entire surface of the wafer, providing a large solid angle for photon collection.

Ryon, R.W. [Lawrence Livermore National Lab., CA (United States); Warburton, W.K. [X-Ray Instrumentation Associates, Menlo Park, CA (United States)

1992-05-01T23:59:59.000Z

390

The Constellation X-ray mission: science goals and mission implementation  

Science Journals Connector (OSTI)

The Constellation-X mission is a large collecting area X-ray observatory emphasizing high spectral resolution (R=E/?E from 300 to 3000) and a broad energy band (0.25–60 keV). By increasing the telescope aperture and utilizing efficient spectrometers the mission will achieve a factor of 20–100 increased sensitivity over current high resolution X-ray spectroscopy missions. The use of focusing optics across the 10–60 keV band will provide a similar factor of 100 increased sensitivity in this band. The Constellation-X design divides the collecting area across four separate spacecraft, launched two at a time. Constellation-X will address many topics including observing the formation and evolution of clusters of galaxies, constraining the Baryon content of the Universe, observing the effects of strong gravity close to the event horizon of super-massive black holes and the evolution of AGN with redshift.

Nicholas E. White; Robert Petre

2004-01-01T23:59:59.000Z

391

X-ray Emission from Massive Stars  

E-Print Network (OSTI)

X-ray Emission from Massive Stars David Cohen Department of Physics and Astronomy Swarthmore be related to the production of X-rays on massive stars. If so, massive stars' X-rays are much different than those found our own Sun and other cooler stars like the Sun that produce X-rays via magnetic activity

Cohen, David

392

Characterisation of a MeV Bremsstrahlung x-ray source produced from a high intensity laser for high areal density object radiography  

SciTech Connect

Results of an experiment to characterise a MeV Bremsstrahlung x-ray emission created by a short (<10 ps) pulse, high intensity (1.4 × 10{sup 19} W/cm{sup 2}) laser are presented. X-ray emission is characterized using several diagnostics; nuclear activation measurements, a calibrated hard x-ray spectrometer, and dosimeters. Results from the reconstructed x-ray energy spectra are consistent with numerical simulations using the PIC and Monte Carlo codes between 0.3 and 30 MeV. The intense Bremsstrahlung x-ray source is used to radiograph an image quality indicator (IQI) heavily filtered with thick tungsten absorbers. Observations suggest that internal features of the IQI can be resolved up to an external areal density of 85 g/cm{sup 2}. The x-ray source size, inferred by the radiography of a thick resolution grid, is estimated to be approximately 400 ?m (full width half maximum of the x-ray source Point Spread Function)

Courtois, C.; Compant La Fontaine, A.; Bazzoli, S.; Bourgade, J. L.; Gazave, J.; Lagrange, J. M.; Landoas, O.; Dain, L. Le; Pichoff, N. [CEA, DAM, DIF, F-91297 Arpajon (France)] [CEA, DAM, DIF, F-91297 Arpajon (France); Edwards, R.; Aedy, C. [AWE Plc., Aldermaston, Reading RG7 4PR (United Kingdom)] [AWE Plc., Aldermaston, Reading RG7 4PR (United Kingdom); Mastrosimone, D.; Pien, G.; Stoeckl, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)] [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

2013-08-15T23:59:59.000Z

393

Soft X-Ray and Vacuum Ultraviolet Based Spectroscopy of the Actinides  

SciTech Connect

The subjects of discussion included: VUV photoelectron spectroscopy, X-ray photoelectron spectroscopy, Synchrotron-radiation-based photoelectron spectroscopy, Soft x-ray absorption spectroscopy, Soft x-ray emission spectroscopy, Inverse photoelectron spectroscopy, Bremstrahlung Isochromat Spectroscopy, Low energy IPES, Resonant inverse photoelectron spectroscopy.

Tobin, J G

2011-03-17T23:59:59.000Z

394

Integral and temporal characteristics of soft X-rays of the PF-4 plasma focus setup  

Science Journals Connector (OSTI)

Soft X-rays of a setup with a power from 1.5 to 5 kJ, operating with argon, were measured using X-ray pinhole cameras and SPPD 11-04 detectors. Integral measurements of X-rays in energy ranges above 1.2, 1.5, ...

S. P. Eliseev; V. Ya. Nikulin; P. V. Silin

2009-01-01T23:59:59.000Z

395

Ultrashort x-ray backlighters and applications  

SciTech Connect

Previously, using ultrashort laser pulses focused onto solid targets, we have experimentally studied a controllable ultrafast broadband radiation source in the extreme ultraviolet for time-resolved dynamical studies in ultrafast science [J. Workman, A. Maksimchuk, X. Llu, U. Ellenberger, J. S. Coe, C.-Y. Chien, and D. Umstadter, ``Control of Bright Picosecond X-Ray Emission from Intense Sub- Picosecond Laser-Plasma Interactions,`` Phys. Rev. Lett. 75, 2324 (1995)]. Once armed with a bright ultrafast broadband continuum x-ray source and appropriate detectors, we used the source as a backlighter to study a remotely produced plasma. The application of the source to a problem relevant to high-density matter completes the triad: creating and controlling, efficiently detecting, and applying the source. This work represented the first use of an ultrafast laser- produced x-ray source as a time-resolving probe in an application relevant to atomic, plasma and high-energy-density matter physics. Using the x-ray source as a backlighter, we adopted a pump-probe geometry to investigate the dynamic changes in electronic structure of a thin metallic film as it is perturbed by an ultrashort laser pulse. Because the laser deposits its energy in a skin depth of about 100 {Angstrom} before expansion occurs, up to gigabar pressure shock waves lasting picosecond in duration have been predicted to form in these novel plasmas. This raises the possibility of studying high- energy-density matter relevant to inertial confinement fusion (ICF) and astrophysics in small-scale laboratory experiments. In the past, time-resolved measurements of K-edge shifts in plasmas driven by nanosecond pulses have been used to infer conditions in highly compressed materials. In this study, we used 100-fs laser pulses to impulsively drive shocks into a sample (an untamped 1000 {Angstrom} aluminum film on 2000 {Angstrom} of parylene-n), measuring L-edge shifts.

Umstadter, D., University of Michigan

1997-08-01T23:59:59.000Z

396

Soft x-ray pulse height analyzer in the HT-7 tokamak  

SciTech Connect

A new soft x-ray pulse height analyzer (PHA), based on a Silicon Drift Detector (SDD) linear array consisting of 15 SDD detectors, has been installed in the HT-7 tokamak. The energy resolution of 150-180 eV at photon energy of 6 keV is achieved for the SDD with Peltier cooling. The effective time response of the SDD PHA is 50 ms. The profiles of electron temperature and the intensity of metallic impurities can be obtained with a spatial resolution of 3 cm. The performance and first experimental results from the new PHA system are presented.

Shi Yuejiang; Chen Zhongyong; Wan Baonian; Lv Bo; Hu Liqun; Lin Shiyao; Hu Qinsheng; Qian Jinping; Liu Haiqing; Liu Shengxia; Xu Yucun; Shan Jiafang; Li Jiangang [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China)

2004-11-01T23:59:59.000Z

397

X-ray backscatter imaging of nuclear materials  

DOE Patents (OSTI)

The energy of an X-ray beam and critical depth are selected to detect structural discontinuities in a material having an atomic number Z of 57 or greater. The critical depth is selected by adjusting the geometry of a collimator that blocks backscattered radiation so that backscattered X-ray originating from a depth less than the critical depth is not detected. Structures of Lanthanides and Actinides, including nuclear fuel rod materials, can be inspected for structural discontinuities such as gaps, cracks, and chipping employing the backscattered X-ray.

Chapman, Jeffrey Allen; Gunning, John E; Hollenbach, Daniel F; Ott, Larry J; Shedlock, Daniel

2014-09-30T23:59:59.000Z

398

Dynamic model of anisotropic x-ray refraction  

Science Journals Connector (OSTI)

General mechanisms of anisotropic x-ray refraction at the resonance energy are investigated on the basis of dynamic-scattering theory. The deductions show that x rays within the crystals that have anisotropic susceptibility are completely polarized and have two elliptical polarization states. Analytical expressions of the elliptical axes, refractive indices, and absorption coefficients for these two types of polarized waves are obtained in terms of the anisotropic components of the susceptibility tensor. Anisotropic birefringence and dichroism effects associated with the polarization properties of the x-ray waves are also illustrated theoretically.

X. R. Huang, Yong Li, W. J. Liu, and S. S. Jiang

1997-11-01T23:59:59.000Z

399

Characterization of X-ray generator beam profiles.  

SciTech Connect

T to compute the radiography properties of various materials, the flux profiles of X-ray sources must be characterized. This report describes the characterization of X-ray beam profiles from a Kimtron industrial 450 kVp radiography system with a Comet MXC-45 HP/11 bipolar oil-cooled X-ray tube. The empirical method described here uses a detector response function to derive photon flux profiles based on data collected with a small cadmium telluride detector. The flux profiles are then reduced to a simple parametric form that enables computation of beam profiles for arbitrary accelerator energies.

Mitchell, Dean J; Harding, Lee T.; Thoreson, Gregory G.; Theisen, Lisa Anne; Parmeter, John Ethan; Thompson, Kyle Richard

2013-07-01T23:59:59.000Z

400

Ultrafast X-ray Absorption Spectroscopy using Laser-Driven Electron X-ray Sources (LEXS)  

E-Print Network (OSTI)

: ultrafast x-rays, x-ray absorption spectroscopy, terawatt lasers, ultrafast reaction dynamics, atomic motion atomic motion by scrutinizing the changes in x- ray absorption spectra during reactions. FirstUltrafast X-ray Absorption Spectroscopy using Laser-Driven Electron X-ray Sources (LEXS) Guangjun

Guo, Ting

Note: This page contains sample records for the topic "x-ray energy resolution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

CHEMICAL APPLICATIONS OF INELASTIC X-RAY SCATTERING  

SciTech Connect

Inelastic x-ray scattering (IXS), complementary to other more established inelastic scattering probes, such as light scattering, electron scattering, and neutron scattering, is becoming an important experimental technique in the study of elementary excitations in condensed matters. Over the past decade, IXS with total energy resolution of few meV has been achieved, and is being used routinely in the study of phonon dispersions in solids and liquids as well as dynamics in disordered and biological systems. In the study of electronic excitations, IXS with total energy resolution on the order of 100 meV to 1 eV is gaining wider applications also. For example, IXS has been used to study collective excitations of valence electrons, single electron excitations of valence electrons, as well as core electron excitations. In comparison with the alternative scattering techniques mentioned above, IXS has several advantages. First, IXS probes the full momentum transfer range of the dielectric response of the sample, whereas light scattering is limited to very small momentum transfers, and electron scattering suffers the effects of multiple scattering at large momentum transfers. Second, since IXS measures the bulk properties of the sample it is not surface sensitive, therefore it does not require special preparation of the sample. The greater flexibility in sample conditions and environments makes IXS an ideal probe in the study of liquids and samples under extreme temperature, pressure, and magnetic field. Third, the tunability of synchrotron radiation sources enables IXS to exploit element specificity and resonant enhancement of scattering cross sections. Fourth, IXS is unique in the study of dynamics of liquids and amorphous solids because it can probe the particular region of energy-momentum transfer phase space, which is inaccessible to inelastic neutron scattering. On the other hand, the main disadvantages of IXS are the small cross sections and the strong absorption of x-rays in high Z elements.

HAYASHI,H.; UDAGAWA,Y.; GILLET,J.M.; CALIEBE,W.A.; KAO,C.C.

2001-08-01T23:59:59.000Z

402

Focused X-ray source  

DOE Patents (OSTI)

Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

1990-08-21T23:59:59.000Z

403

Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell  

SciTech Connect

We report the first image of an intact, frozen hydrated eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezing the specimen in liquid ethane and maintaining it below -170 deg. C, artifacts due to dehydration, ice crystallization, and radiation damage are greatly reduced. In this example, coherent diffraction data using 520 eV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25 nm. This demonstration represents an important step towards high resolution imaging of cells in their natural, hydrated state, without limitations imposed by x-ray optics.

Huang Xiaojing; Nelson, Johanna; Lima, Enju; Miao, Huijie; Steinbrener, Jan; Stewart, Andrew; Turner, Joshua J.; Jacobsen, Chris [Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800 (United States); Kirz, Janos [Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800 (United States); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Marchesini, Stefano; Shapiro, David [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Neiman, Aaron M. [Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215 (United States)

2009-11-06T23:59:59.000Z

404

Energy resolution and related charge carrier mobility in LaBr{sub 3}:Ce scintillators  

SciTech Connect

The scintillation response of LaBr{sub 3}:Ce scintillation crystals was studied as function of temperature and Ce concentration with synchrotron X-rays between 9 keV and 100 keV. The results were analyzed using the theory of carrier transport in wide band gap semiconductors to gain new insights into charge carrier generation, diffusion, and capture mechanisms. Their influence on the efficiency of energy transfer and conversion from X-ray or ?-ray photon to optical photons and therefore on the energy resolution of lanthanum halide scintillators was studied. From this, we will propose that scattering of carriers by both the lattice phonons and by ionized impurities are key processes determining the temperature dependence of carrier mobility and ultimately the scintillation efficiency and energy resolution. When assuming about 100 ppm ionized impurity concentration in 0.2% Ce{sup 3+} doped LaBr{sub 3,} mobilities are such that we can reproduce the observed temperature dependence of the energy resolution, and in particular, the minimum in resolution near room temperature is reproduced.

Khodyuk, I. V.; Quarati, F. G. A.; Alekhin, M. S.; Dorenbos, P. [Luminescence Materials Research Group, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, Delft, 2629JB (Netherlands)] [Luminescence Materials Research Group, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, Delft, 2629JB (Netherlands)

2013-09-28T23:59:59.000Z

405

Study of the electrode material and insulator length effect on high-energy X-rays emitted by a 4-kJ plasma focus device  

Science Journals Connector (OSTI)

In this paper, behavior of hard X-ray (HXR) anisotropy and its intensity along the anode bar of the APF plasma focus device (16 kV, 36 ?F, 115...Z anode insert materials not only increases the intensity of HXR si...

M. Habibi

2012-07-01T23:59:59.000Z

406

Inner-Shell Excitation Spectroscopy of Fused-Ring Aromatic Molecules by Electron Energy Loss and X-ray Raman Techniques  

E-Print Network (OSTI)

Versity, Hamilton, ON, L8S 4M1, Canada, Department of Chemistry, Utrecht UniVersity, 3584 CA Utrecht, The Netherlands, Schlumberger-Doll Research, Ridgefield, Connecticut 06877, Department of Applied Science, Uni that could be applied without modifying the hydrocarbon material. Inelastic X-ray Raman scattering (XRS)2

Hitchcock, Adam P.

407

X-ray microlaminography with polycapillary optics K. M. Dbrowski, D. T. Dul, A. Wrbel, and P. Korecki  

E-Print Network (OSTI)

X-ray microlaminography with polycapillary optics K. M. Dbrowski, D. T. Dul, A. Wróbel, and P://apl.aip.org/features/most_downloaded Information for Authors: http://apl.aip.org/authors #12;X-ray microlaminography with polycapillary optics K. M demonstrate layer-by-layer x-ray microimaging using polycapillary optics. The depth resolution is achieved

Korecki, Pawe³

408

The Hard X-ray Sky: Recent Observational Progress  

SciTech Connect

The last fifty years have witnessed the birth, development, and maturation to full potential of hard X-ray astrophysics. The primary force driving the history of the field has been the development of space-based instrumentation optimized for getting the maximum science out of observations of high-energy photons from astrophysical sources. Hard X-ray telescopes are leading research in areas such as galactic diffuse emission, galactic transients, and active galactic nuclei.

Gehrels, Neil [NASA/GSFC/ASD/Code 661, Greenbelt, Md 20071 (United States); Cannizzo, John K. [CRESST/UMBC/NASA/GSFC/ASD/Code 661, Greenbelt, Md 20071 (United States)

2009-05-11T23:59:59.000Z

409

Simple Tools for Characterization of Synchrotron Beam Flux, Energy Resolution and Stability  

SciTech Connect

Flux is a simple yet key indicator of overall beamline alignment. For many synchrotron measurements, the energy resolution and reproducibility are important characteristics as well. However, many beamlines do not have diffractometers capable of measuring the energy resolution in the experimental hutches. For absolute flux measurements, we have found that thickness calibrated Si photodiodes make very convenient, robust detectors capable of handling a wide flux range. For measuring the energy resolution, we have developed a simple, portable instrument analyzer applicable to any beamline with a scanning monochromator. This same instrument is capable of measuring the energy stability and reproducibility as well. We have used these to characterize many of the beamlines on the NSLS X-ray ring, and will present the methods and our experience to date to demonstrate their usefulness.

Dvorak, J.; Berman, L.; Hulbert, S.L.; Siddons, D.P.; Wallwork, K.

2009-09-27T23:59:59.000Z

410

Analysis of Intrinsically Disordered Proteins by Small-Angle X-ray Scattering  

Science Journals Connector (OSTI)

Small-angle scattering of X-rays (SAXS) is a method for the low-resolution structural characterization of biological macromolecules in solution. The technique is highly complementary to the high-resolution method...

Pau Bernadó; Dmitri I. Svergun

2012-01-01T23:59:59.000Z

411

Fast microtomography using bright monochromatic x-rays  

SciTech Connect

A fast microtomography system for high-resolution high-speed imaging has been developed using bright monochromatic x-rays at the BL29XU beamline of SPring-8. The shortest scan time for microtomography we attained was 0.25 s in 1.25 {mu}m effective pixel size by combining the bright monochromatic x-rays, a fast rotating sample stage, and a high performance x-ray imaging detector. The feasibility of the tomography system was successfully demonstrated by visualization of rising bubbles in a viscous liquid, an interesting issue in multiphase flow physics. This system also provides a high spatial (a measurable feature size of 300 nm) or a very high temporal (9.8 {mu}s) resolution in radiographs.

Jung, J. W.; Lee, J. S.; Park, S. J.; Chang, S.; Pyo, J. [X-ray Imaging Center, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784 (Korea, Republic of); Department of Materials Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784 (Korea, Republic of); Kwon, N.; Kim, J. [X-ray Imaging Center, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784 (Korea, Republic of); School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kohmura, Y.; Nishino, Y.; Yamamoto, M.; Ishikawa, T. [RIKEN/SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148 (Japan); Je, J. H. [X-ray Imaging Center, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784 (Korea, Republic of); Department of Materials Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784 (Korea, Republic of); School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); RIKEN/SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148 (Japan)

2012-09-15T23:59:59.000Z

412

Gain dynamics in a soft X-ray laser ampli er perturbed by a strong injected X-ray eld  

SciTech Connect

Seeding soft X-ray plasma ampli ers with high harmonics has been demonstrated to generate high-brightness soft X-ray laser pulses with full spatial and temporal coherence. The interaction between the injected coherent eld and the swept-gain medium has been modelled. However, no exper- iment has been conducted to probe the gain dynamics when perturbed by a strong external seed eld. Here, we report the rst X-ray pump X-ray probe measurement of the nonlinear response of a plasma ampli er perturbed by a strong soft X-ray ultra-short pulse. We injected a sequence of two time-delayed high-harmonic pulses (l518.9 nm) into a collisionally excited nickel-like molybdenum plasma to measure with femto-second resolution the gain depletion induced by the saturated ampli cation of the high-harmonic pump and its subsequent recovery. The measured fast gain recovery in 1.5 1.75 ps con rms the possibility to generate ultra-intense, fully phase-coherent soft X-ray lasers by chirped pulse ampli cation in plasma ampli ers.

Wang, Yong [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Wang, Shoujun [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Oliva, E [Laboratoire de Physique des Gaz et des Gaz et des Plasmas] [Laboratoire de Physique des Gaz et des Gaz et des Plasmas; Lu, L [Laboratoire de Physique des Gaz et des Gaz et des Plasmas] [Laboratoire de Physique des Gaz et des Gaz et des Plasmas; Berrill, Mark A [ORNL] [ORNL; Yin, Liang [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Nejdl, J [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Luther, Brad [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Proux, C [Laboratoire d’Optique Applique´e, ENSTA, CNRS, Ecole Polytechnique] [Laboratoire d’Optique Applique´e, ENSTA, CNRS, Ecole Polytechnique; Le, T. T. [Laboratoire de Physique des Gaz et des Gaz et des Plasmas] [Laboratoire de Physique des Gaz et des Gaz et des Plasmas; Dunn, James [Lawrence Livermore National Laboratory (LLNL)] [Lawrence Livermore National Laboratory (LLNL); Ros, D [Laboratoire de Physique des Gaz et des Gaz et des Plasmas] [Laboratoire de Physique des Gaz et des Gaz et des Plasmas; Zeitoun, Philippe [École Polytechnique] [École Polytechnique; Rocca, Jorge [Colorado State University, Fort Collins] [Colorado State University, Fort Collins

2014-01-01T23:59:59.000Z

413

Magnetic fields of neutron stars in X-ray binaries  

E-Print Network (OSTI)

A substantial fraction of the known neutron stars resides in X-ray binaries -- systems in which one compact object accretes matter from a companion star. Neutron stars in X-ray binaries have magnetic fields among the highest found in the Universe, spanning at least the range from $\\sim10^8$ to several 10$^{13}$ G. The magnetospheres around these neutron stars have a strong influence on the accretion process, which powers most of their emission. The magnetic field intensity and geometry, are among the main factors responsible for the large variety of spectral and timing properties observed in the X-ray energy range, making these objects unique laboratories to study the matter behavior and the radiation processes in magnetic fields unaccessible on Earth. In this paper we review the main observational aspects related to the presence of magnetic fields in neutron star X-ray binaries and some methods that are used to estimate their strength.

Revnivtsev, Mikhail

2014-01-01T23:59:59.000Z

414

Optical and X-ray Variability of AGNs  

E-Print Network (OSTI)

I present new comparisons of AGN optical, UV, and X-ray variations. These reveal complex relationships between the different passbands that can change with time in a given object. While there is evidence from several objects that X-ray and optical activity levels are correlated on long timescales, variations on shorter timescales can occur independently. It is proposed that the combination of correlated and uncorrelated short-timescale variability is a consequence of anisotropic high-energy emission. It is also argued that the correlation between X-ray and optical variability on long timescales must be due to a common underlying factor and not to reprocessing of X-ray radiation.

C. Martin Gaskell

2006-12-30T23:59:59.000Z

415

A Position Sensitive X-ray Spectrophotometer using Microwave Kinetic Inductance Detectors  

E-Print Network (OSTI)

The surface impedance of a superconductor changes when energy is absorbed and Cooper pairs are broken to produce single electron (quasiparticle) excitations. This change may be sensitively measured using a thin-film resonant circuit called a microwave kinetic inductance detector (MKID). The practical application of MKIDs for photon detection requires a method of efficiently coupling the photon energy to the MKID. We present results on position sensitive X-ray detectors made by using two aluminum MKIDs on either side of a tantalum photon absorber strip. Diffusion constants, recombination times, and energy resolution are reported. MKIDs can easily be scaled into large arrays.

Benjamin A. Mazin; Megan E. Eckart; Bruce Bumble; Sunil Golwala; Peter K. Day; Jonas Zmuidzinas; Fiona A. Harrison

2006-10-04T23:59:59.000Z

416

Ultrafast x-ray diffraction of laser-irradiated crystals  

SciTech Connect

An apparatus has been developed for measuring time-dependent x-ray diffraction. X-ray pulses from an Advanced Light Source bend magnet are diffracted by a sagittally-focusing Si(111) crystal and then by a sample crystal, presently InSb(111). Laser pulses with 100 fs duration and a repetition rate of 1 KHz irradiate the sample inducing a phase transition. Two types of detectors are being employed: an x-ray streak camera and an avalanche photodiode. The streak camera is driven by a photoconductive switch and has a 2 ps temporal resolution determined by trigger jitter. The avalanche photodiode has high quantum efficiency and sufficient time resolution to detect single x-ray pulses in ALS two bunch or camshaft operation. A beamline is under construction dedicated for time resolved and micro-diffraction experiments. In the new beamline a toroidal mirror collects 3 mrad horizontally and makes a 1:1 image of the bend magnet source in the x-ray hutch. A laser induced phase transition has been observed in InSb occurring within 70 ps.

Heimann, P.A. [Lawrence Berkeley National Lab., CA (US). Advanced Light Source; Larsson, J. [Univ. of California, Berkeley, CA (US). Physics Dept.; Chang, Z. [Univ. of Michigan, Ann Arbor, MI (US). Center for Ultrafast Optical Science

1997-09-01T23:59:59.000Z

417

Microgap x-ray detector  

DOE Patents (OSTI)

An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

Wuest, Craig R. (Danville, CA); Bionta, Richard M. (Livermore, CA); Ables, Elden (Livermore, CA)

1994-01-01T23:59:59.000Z

418

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs...

419

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities...

420

Producing X-rays at the APS  

ScienceCinema (OSTI)

An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

None

2013-04-19T23:59:59.000Z

Note: This page contains sample records for the topic "x-ray energy resolution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

SMB, X-ray Fluorescence Imaging  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluorescence Imaging X-ray Fluorescence Imaging X-ray fluorescence imaging utilizes the high brightness of SPEAR3 and focused beam generated by the uses of K-B optics, capillaries...

422

X-ray Photoelectron Spectroscopy Studies of Oxidized and Reduced CeO?(111) Surfaces  

SciTech Connect

We have studied the electronic structure of oxidized and reduced CeO? (111) surfaces using X-ray photoelectron spectroscopy (XPS). The 50 nm thick Co?(111) film was grown on a YSZ(111) substrate using oxygen plasma assisted molecular beam epitaxy (OPA-MBE). This film has been characterized using in-situ RHEED (reflection high energy electron diffraction) and ex-situ XRD (X-ray diffraction), HRTEM (high resolution transmission electron microscopy) and RBS (Rutherford backscattering spectroscopy). The lattice mismatch between CeO?(111) and YSZ(111) is less than 5% and yields a flat surface that is comprised of an equivalent number of Ce?? and O?? ions. Oxidation with O? at 773 K under UHV conditions was sufficient to fully oxidize the CeO?(111). Surface reduction was carried out by annealing in UHV at 973 K.

Engelhard, Mark H.; Azad, Samina; Peden, Charles HF; Thevuthasan, Suntharampillai

2004-12-01T23:59:59.000Z

423

RYLLA. [X-ray transport code  

SciTech Connect

This paper describes a computer code, RYLLA, which models the deposition of x-rays into thin metal slabs, and transports the resulting photoelectrons, finding the distribution of electrons leaving the slab from both the front and back surfaces. The slab must be homogeneous, but can contain a mixture of up to 5 different elements. Due to the short electron mean free path at low electron energies, RYLLA should be used only for studying thin slabs, roughly < 100 mg/cm/sup 2/ for low Z metals, and < 10 mg/cm/sup 2/ for high Z metals. X-ray energies should be in the range of 1 to 150 keV, as they are deposited only via photoionization and Compton scattering processes. Following photoionization, a hole exists in the electron cloud of the absorbing atom. This fills either by Auger or fluoresence, resulting in lower energy holes which are also filled. Fluoresence photons are transported and absorbed in the same manner as the primary photons, except that they are isotropically produced. Once all photons have been transported and absorbed, and all holes have been filled, a space- and energy-dependent electron source spectrum has been obtained. This is used in a discrete ordinate expansion solution of the 1-D transport equation, which gives the output electron spectra at the two slab surfaces. This paper discusses both the physics and coding of RYLLA. Examples of user input are given, as are some comparisons with other codes.

Hyde, R.A.

1983-06-08T23:59:59.000Z

424

X-Ray Diffraction on NIF  

SciTech Connect

The National Ignition Facility (NIF) is currently a 192 beam, 1.6 MJ laser. NIF Ramp-Compression Experiments have already made the relevant exo-planet pressure range from 1 to 50 Mbar accessible. We Proposed to Study Carbon Phases by X-Ray Diffraction on NIF. Just a few years ago, ultra-high pressure phase diagrams for materials were very 'simple'. New experiments and theories point out surprising and decidedly complex behavior at the highest pressures considered. High pressures phases of aluminum are also predicted to be complex. Recent metadynamics survey of carbon proposed a dynamic pathway among multiple phases. We need to develop diagnostics and techniques to explore this new regime of highly compressed matter science. X-Ray Diffraction - Understand the phase diagram/EOS/strength/texture of materials to 10's of Mbar. Strategy and physics goals: (1) Powder diffraction; (2) Begin with diamond; (3) Continue with metals etc.; (4) Explore phase diagrams; (5) Develop liquid diffraction; and (6) Reduce background/improve resolution.

Eggert, J H; Wark, J

2012-02-15T23:59:59.000Z

425

Chandra X-ray Observatory Center  

E-Print Network (OSTI)

Chandra X-ray Observatory Center Harvard-Smithsonian Center for Astrophysics 60 Garden St in hot gas about 250 million light years from Earth. (Credit: X-ray: NASA/CXC/SAO/E.Bulbul, et al-Newton has revealed a mysterious X-ray signal in the data. This signal is represented in the circled data

426

X-Ray Absorption Spectroscopy of Metallobiomolecules  

E-Print Network (OSTI)

2/9/07 1 X-Ray Absorption Spectroscopy of Metallobiomolecules The Outskirts of Structural Biology 9, 07] This is a tutorial about the use of X-ray Absorption Spectroscopy (XAS) in biology, RG; Eisenberger, P; Kincaid, BM "X-ray Absorption Spectroscopy of Biological Molecules" Annu. Rev

Scott, Robert A.

427

Chandra X-ray Observatory Center  

E-Print Network (OSTI)

Chandra X-ray Observatory Center Harvard-Smithsonian Center for Astrophysics 60 Garden St million light years from Earth. (Credit: X-ray: NASA/CXC/Wesleyan Univ./R.Kilgard, et al; Optical: NASA with optical data from the Hubble Space Telescope (red, green, and blue). The X-ray data reveal hundreds

428

X-Ray Physics Evan Berkowitz  

E-Print Network (OSTI)

X-Ray Physics Evan Berkowitz Junior, MIT Department of Physics (Dated: October 25, 2006) We measure a variety of phenomena related to X-Ray absorption and production. We present data which conforms within, as are 22 Na electron-positron annhilation lines. The importance of understanding x-rays is demonstrated

429

Chandra X-ray Observatory Center  

E-Print Network (OSTI)

Chandra X-ray Observatory Center Harvard-Smithsonian Center for Astrophysics 60 Garden St 200 million light years from Earth. (Credit: X-ray: NASA/CXC/UAH/M.Sun et al; Optical: NASA, ESA, & the Hubble Heritage Team (STScI/AURA) Caption: This composite image from the Chandra X-ray Observatory (blue

430

X-Ray Absorption Spectroscopy of Metallobiomolecules  

E-Print Network (OSTI)

9/6/09 1 X-Ray Absorption Spectroscopy of Metallobiomolecules The Outskirts of Structural Biology 6, 09] This is a tutorial about the use of X-ray Absorption Spectroscopy (XAS) in biology, RG; Eisenberger, P; Kincaid, BM "X-ray Absorption Spectroscopy of Biological Molecules" Annu. Rev

Scott, Robert A.

431

Chandra X-ray Observatory Center  

E-Print Network (OSTI)

Chandra X-ray Observatory Center Harvard-Smithsonian Center for Astrophysics 60 Garden St. Cambridge, MA 02138 USA http://chandra.harvard.edu Four Supernova Remnants: NASA's Chandra X-ray Observatory's Chandra X-ray Observatory, four newly processed images of supernova remnants dramatically illustrate

432

Energy resolution of the CdTe-XPAD detector:calibration and potential for Laue diffractionmeasurements on protein crystals  

SciTech Connect

The XPAD3S-CdTe, a CdTe photon-counting pixel array detector, has been used to measure the energy and the intensity of the white-beam diffraction from a lysozyme crystal. A method was developed to calibrate the detector in terms of energy, allowing incident photon energy measurement to high resolution (approximately 140 eV), opening up new possibilities in energy-resolved X-ray diffraction. In order to demonstrate this, Laue diffraction experiments were performed on the bending-magnet beamline METROLOGIE at Synchrotron SOLEIL. The X-ray energy spectra of diffracted spots were deduced from the indexed Laue patterns collected with an imaging-plate detector and then measured with both the XPAD3S-CdTe and the XPAD3S-Si, a silicon photon-counting pixel array detector. The predicted and measured energy of selected diffraction spots are in good agreement, demonstrating the reliability of the calibration method. These results open up the way to direct unit-cell parameter determination and the measurement of high-quality Laue data even at low resolution. Based on the success of these measurements, potential applications in X-ray diffraction opened up by this type of technology are discussed.

Medjoubi K.; Idir M.; Thompson, A.; Berar, J-F.; Clemens, J-C.; Delpierre, P.; Da Silva, P.; Dinkespiler, B.; Itie, J-P.; Legrand, P.; Menneglier, C.; Mercere, P.; Picca, F.; Samama J-P.

2012-02-02T23:59:59.000Z

433

Experimental Results and Modeling of Low-Heat-Capacity TES Microcalorimeters for Soft-X-ray Spectroscopy  

SciTech Connect

Transition-edge-sensor (TES) X-ray microcalorimeters have mostly been targeted at mid-band energies from 0.05-10 keV and high energies to above 100 keV. However, many other optimizations are possible. Here we present results from devices optimized for soft X-ray applications. For spectroscopy below 1 keV, the X-ray stopping power and heat capacity (C) of the TES itself are high enough that we can omit a separate absorber. The resulting devices have low C and the best-achievable energy resolution should be under 1 eV. We are interested in pursuing such devices primarily for astrophysical applications and laboratory astrophysics at LLNL's Electron-Beam Ion Trap. To this end, we have studied arrays in which 'bare' TESs are interspersed with broad-band pixels that have absorbers. By extending the absorbers to cover the area where the leads contact the low-energy pixels, we have eliminated a significant source of non-Gaussian detector response. The bare devices are in a different regime from our typical devices in that C is ten times lower and the conductance to the bath is four times lower. We have explored this regime through simultaneous fitting of noise and impedance data. These data cannot be fit by the simple model we employ to describe our typical broad-band devices. In this contribution we present X-ray spectra and the results from modeling.

Eckart, Megan E. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); NASA Postdoctoral Program Fellow (United States); Adams, Joseph S.; Smith, Stephen J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); CRESST and University of Maryland, Baltimore County, MD 21250 (United States); Bandler, Simon R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); CRESST and University of Maryland, College Park, MD 20742 (United States); Brekosky, Regis P.; Chervenak, James A.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Scott Porter, F.; Sadleir, John E. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2009-12-16T23:59:59.000Z

434

High-Speed X-ray Phase Imaging with Grating Interferometer and White Synchrotron Light  

SciTech Connect

Taking advantage of the fact that an X-ray Talbot interferometer functions with X-rays of a broad energy band width, high-speed X-ray phase imaging and tomography have been achieved by using white synchrotron light. An X-ray phase tomogram could be measured with a 0.25 s exposure. Furthermore, a series of X-ray phase tomograms, in other words, a four-dimensional X-ray phase tomogram, could be reconstructed with a tomogram frame rate of 25.5 fps. This achievement advances X-ray phase imaging/tomography from a technique for static imaging to one for dynamic imaging of weakly absorbing objects.

Momose, Atsushi; Yashiro, Wataru; Huang, Shaohua; Kuwabara, Hiroaki; Kawabata, Katsuyuki [Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoka, Kashiwa, Chiba 277-8561 (Japan)

2010-06-23T23:59:59.000Z

435

High intensity line source for x-ray spectrometer calibration  

SciTech Connect

A high intensity electron-impact x-ray source using a one-dimensional Pierce lens has been built for the purpose of calibrating a bent crystal x-ray spectrometer. This source focuses up to 100 mA of 20-keV electrons to a line on a liquid-cooled anode. The line (which can serve as a virtual slit for the spectrometer) measures approximately 800 ..mu.. x 2 cm. The source is portable and therefore adaptable to numerous types of spectrometer applications. One particular application, the calibration of a high resolution (r = 10/sup 4/) time-resolved cyrstal spectrometer, will be discussed in detail.

Thoe, R.S.

1986-06-01T23:59:59.000Z

436

Using Light to Control How X Rays Interact with Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

ultrafast x-ray spectroscopy. ALS femtosecond spectroscopy beamline layout. Femtosecond x-ray and laser pulses derive from a single 800-nm laser oscillator. Femtosecond x rays...

437

X-RAY SPECTROMETRY X-Ray Spectrom. 2007; 36: 336342  

E-Print Network (OSTI)

X-RAY SPECTROMETRY X-Ray Spectrom. 2007; 36: 336­342 Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/xrs.980 Fish otolith trace element maps: new approaches with synchrotron microbeam x-ray of elements as they accrete through a fish's life. We apply synchrotron microbeam x-ray fluorescence methods

Limburg, Karin E.

438

X-ray Pulsations in the Supersoft X-ray Binary CAL 83  

E-Print Network (OSTI)

X-ray data reveal that the supersoft X-ray binary CAL 83 exhibits 38.4 minute pulsations at some epochs. These X-ray variations are similar to those found in some novae and are likely to be caused by nonradial pulsations the white dwarf. This is the first detection of pulsations in a classical supersoft X-ray binary.

P. C. Schmidtke; A. P. Cowley

2005-09-28T23:59:59.000Z

439

E-Print Network 3.0 - ambient-pressure x-ray photoelectron Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectroscopie Electronique, Summary: of an X-ray source from measurements of the kinetic energy and intensity of the photoelectrons emitted... applications in electron probe...

440

Convection in X-ray Bursts Michael Zingale Stony Brook University  

NLE Websites -- All DOE Office Websites (Extended Search)

many stellar systems dominated by convective transport of energy - Supernovae (both thermonuclear and gravitational) - X-ray bursts and novae (thermonuclear explosion of accreted...

Note: This page contains sample records for the topic "x-ray energy resolution" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Soft x-ray laser holography with wavelength P. W. Wachulak, M. C. Marconi,* R. A. Bartels, C. S. Menoni, and J. J. Rocca  

E-Print Network (OSTI)

Soft x-ray laser holography with wavelength resolution P. W. Wachulak, M. C. Marconi,* R. A the tabletop acquisition of soft x-ray holographic images of nanostructures with a spatial resolution of 46 using a compact, tabletop capillary-discharge soft x-ray laser emitting at 46.9 nm in a high

Rocca, Jorge J.

442

X-ray transmissive debris shield  

DOE Patents (OSTI)

An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

Spielman, R.B.

1996-05-21T23:59:59.000Z

443

X-ray transmissive debris shield  

DOE Patents (OSTI)

An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

Spielman, Rick B. (Albuquerque, NM)

1996-01-01T23:59:59.000Z

444

K?K? X-Ray Transition-Probability Ratios for Elements 18?Z?39  

Science Journals Connector (OSTI)

K?K? x-ray transition-probability ratios for 16 elements in the range 18?Z?39 were measured with a high-resolution Si(Li) detector. The K vacancies were produced by a heavily filtered bremsstrahlung beam from a commercial x-ray tube. Our results agree qualitatively with the theoretical calculations of Scofield but are consistently about 15% higher.

V. W. Slivinsky and P. J. Ebert

1972-04-01T23:59:59.000Z

445

X-ray Microscopy and Imaging (XSD-XMI)  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging (XMI) Imaging (XMI) About XMI Science and Research Beamlines Highlights Software and Tools Intranet Search APS... Argonne Home > Advanced Photon Source > Contacts FAQs Beamlines News Publications APS Email Portal APS Intranet APS Phonebook APS Quick Links for Users APS Safety and Training Welcome to the X-ray Microscopy and Imaging group (XMI)! X-ray Microscopy and Imaging is part of the X-ray Science Division at the Advanced Photon Source. We develop and support a diverse and multidisciplinary user research program at Sectors 2 and 32 of the APS, with the overall goal to image and study materials structures at spatial and temporal resolutions that are most scientifically relevant to the cutting-edge advances in materials, biological, environmental, and biomedical sciences. To achieve this goal, we actively engage in various research activities including

446

X-ray Phase Contrast analysis - Digital wavefront development  

SciTech Connect

Optical schemes that enable imaging of the phase shift produced by an object have become popular in the x-ray region, where phase can be the dominant contrast mechanism. The propagation-based technique consists of recording the interference pattern produced by choosing one or several sample-to-detector distances. Pioneering studies, carried out making use of synchrotron radiation, demonstrated that this technique results in a dramatic increase of image contrast and detail visibility, allowing the detection of structures invisible with conventional techniques. An experimental and theoretical study of in-line hard x-ray phase-contrast imaging had been performed. The theoretical description of the technique is based on Fresnel diffraction. As an illustration of the potential of this quantitative imaging technique, high-resolution x-ray phase contrast images of simple objects will be presented.

Idir, Mourad [Metrology Beamline, Synchrotron SOLEIL, Gif-sur-Yvette (France); Potier, Jonathan [Phaseview, Palaiseau (France); Universite Paul Sabatier-Toulouse III, Metrology Beamline, Synchrotron SOLEIL, Gif-sur-Yvette (France); Fricker, Sebastien [Phaseview, Palaiseau (France); Snigirev, Anatoly; Snigireva, Irina [ESRF, Grenoble (France); Modi, M. H. [X-ray Optics Section, Raja Ramanna Centre for Advanced Technology, Indore (India)

2010-06-23T23:59:59.000Z

447

X-ray lithography using holographic images  

DOE Patents (OSTI)

A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

Howells, Malcolm R. (Berkeley, CA); Jacobsen, Chris (Sound Beach, NY)

1995-01-01T23:59:59.000Z

448

Plasma focus x?ray source for lithography  

Science Journals Connector (OSTI)

A bright and reliable x?ray source for lithography has been developed using plasma focus.Discharge with constant pressure gas one of the features of plasma focus makes the x?ray source system simple and lengthens lifetime. A fine ceramicinsulator made of alumina in place of a conventional Pyrex glass insulator improves system reliability. The system operates for more than 105discharges without maintenance. The lifetime of the system is ten times longer than that of a conventional plasma focusdevice. The resolution of a pattern printed by multishot exposure depends not only on the diameter of pinched plasma but also on the variation of source position. A new spherical electrode surrounding the plasma?focusing space is added to stabilize the location of the spot on the axis by eddy currents which exert the Lorentz force on the plasma. The spot position deviation has become negligibly small as compared with the pinched plasma diameter. The x?ray source size for neon is 1 mm in diameter and 10 mm in length. Consequently 0.4??m fine pattern has been printed with this source. Neon radiates intense x rays in opposite voltage polarity to that of a conventional plasma focus. Polarity inversion enables a very thin beryllium window to be located on the axis with the assistance of magnetic deflector and plasma stop. An x?ray intensity of 5 mJ/cm2/shot 25 cm from the source with an irradiance of 10 mW/cm2 at the 2?Hz repetition rate has been obtained. The plasma focus is a promising x?ray source for lithography from the viewpoint of intensity resolution and lifetime.

Yasuo Kato; Isao Ochiai; Yoshio Watanabe; Seiichi Murayama

1988-01-01T23:59:59.000Z

449

X-ray spectrometers with cylindrical, spherical and toroidal dispersive elements  

SciTech Connect

This paper describes a series of crystal spectrometers for soft x-ray diagnostics of pulsed plasmas. Most use high quality quartz crystals with different orientations of their crystal planes, attached by optical contact to spherical and toroidal substrates. The authors developed special procedures to attach spherical Johansson quartz crystals with optical contact, and to mount Cauchois type (transmission) crystals. Some mica crystals can be connected to the substrate with glue. The spectrometers cover an extended energy range, from the low end (0.7 keV) in reflection with a Johann or Johannson configuration to the high end (200 keV) with the Cauchois crystal. They use film as x-ray detector. They pay special attention to spectral and spatial resolutions. These characteristics are modeled analytically and compared with experimental calibration. Some crystals have spectral resolution better than 9 x 10{sup {minus}5}, and spatial resolution of a few microns. One of these is a uniquely large (100 mm by 40 mm) quartz crystal bent to a 3,770 mm radius. The spectrometer was used on a 500 kA plasma focus, with enough resolution to estimate temperature and density of the argon plasma from the line shapes, and the fraction of current in an electron beam from the line's polarization. Compared to a conventional spectrometer with a cylindrically bent crystal, the spectrometer with a chemically polished spherical crystal has much better resolution of the fine structure.

Baronova, E.O.; Lider, V.V.; Stepanenko, M.M.; Vikhrev, V.V.; Pereira, N.R.

1999-07-01T23:59:59.000Z

450

13 - X-ray and Neutron Scattering  

Science Journals Connector (OSTI)

Abstract This chapter describes the use of neutrons and X-rays as probes in the study of structural and dynamic properties of metallic materials. Crystalline materials are characterized by their diffraction peaks related to their average crystallographic structure. In real crystals, locally displaced atoms and chemically (or isotopically for neutrons) different species may lead not only to changes of peak shapes and positions, but also to additional (diffuse) scattering between Bragg peak, including scattering around the primary beam (small-angle scattering). All these features can be used to extract information about the state of a sample, its compositional and structural variations on a scale depending on the scattering, in static and time-resolved kinetic studies. Energy-resolved scattering also offers an insight into solid-state dynamics on a microscopic scale. Some of the most important methods will be described and illustrated by instructive examples. The presentation offers a combined view of neutron and X-ray scattering, with the necessary simplifications dictated by space limitations. The special properties of thermal neutrons and of hard X-rays (now widely available at synchrotron radiation sources), their mutual combination, and combinations with other methods, in particular electron microscopy, offer ample opportunity to better understand and control materials properties. After a brief introduction to scattering from real crystals and some general ideas about long-range strains and Bragg peaks, the vicinity of Bragg peaks (displacement scattering at large scattering angles), the scattering far away from Bragg peaks (chemical heterogeneities, short-range order), and, in greater detail, small-angle scattering (which is not sensitive to the extent of crystallinity, but to nanoscale variations of chemical composition and of magnetization, precipitation) will be described, along with classical and more recent applications related to short-range ordering and precipitation in bulk and nanostructured alloys. Some other fields are only briefly addressed (grazing-incidence studies of surfaces, radiography, absorption spectroscopies, coherent X-rays). The final section offers some information on the influence of defects on lat