National Library of Energy BETA

Sample records for x-ray diffraction imaging

  1. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Biological Imaging by Soft X-Ray Diffraction Microscopy Print Wednesday, 30 November 2005 00:00 Electron and x-ray...

  2. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods (see previous highlight, "Demonstration of Coherent X-Ray Diffraction Imaging"). Experimental diffraction data used as input to the difference map algorithm....

  3. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  4. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  5. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  6. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  7. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  8. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  9. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  10. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  11. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in...

  12. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in ...

  13. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Biological Imaging by Soft X-Ray Diffraction Microscopy Print Wednesday, 30 November 2005 00:00 Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes

  14. Biological imaging by soft x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shapiro, D.; Thibault, P.; Beetz, T.; Elser, V.; Howells, M.; Jacobsen, C.; Kirz, J.; Lima, E.; Miao, H.; Neiman, A. M.; et al

    2005-10-25

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffractionmore » microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.« less

  15. X-ray image reconstruction from a diffraction pattern alone

    SciTech Connect (OSTI)

    Marchesini, Stefano

    2015-03-16

    X-ray diffraction pattern of a sample of 50 nm colloidal gold particles, recorded at a wavelength of 2.1 nm.

  16. High resolution x-ray and gamma ray imaging using diffraction...

    Office of Scientific and Technical Information (OSTI)

    High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals Title: High resolution x-ray and gamma ray imaging using diffraction lenses ...

  17. An image focusing means by using an opaque object to diffract x-rays

    DOE Patents [OSTI]

    Sommargren, Gary E.; Weaver, H. Joseph

    1991-01-01

    The invention provides a method and apparatus for focusing and imaging x-rays. An opaque sphere is used as a diffractive imaging element to diffract x-rays from an object so that the divergent x-ray wavefronts are transformed into convergent wavefronts and are brought to focus to form an image of the object with a large depth of field.

  18. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with...

  19. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and angles of x rays scattered from the sample rather than transmitted through it). Shapiro et al. have now chimed in with the first lensless imaging of a sample as complex as a...

  20. Femtosecond diffractive imaging with a soft-X-ray free-electron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the FLASH soft-X-ray free-electron laser to record a coherent X-ray diffraction ... of 60,000 K. No evidence of sample damage could be seen in the reconstructed image. ...

  1. X-ray Imaging Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    microscopy (PEEM), angle resolved photoemission spectroscopy (ARPES), coherent diffraction imaging, x-ray microscopy, micro-tomography, holographic imaging, and x-ray...

  2. Coherent x-ray diffraction imaging of paint pigmentparticles by scanning a phase plate modulator

    SciTech Connect (OSTI)

    Chu Y. S.; Chen B.; Zhang F.; Berenguer F.; Bean R.; Kewish C.; Vila-Comamala J.; Rodenburg J.; Robinson I.

    2011-10-19

    We have implemented a coherent x-ray diffraction imaging technique that scans a phase plate to modulate wave-fronts of the x-ray beam transmitted by samples. The method was applied to measure a decorative alkyd paint containing iron oxide red pigment particles. By employing an iterative algorithm for wave-front modulation phase retrieval, we obtained an image of the paint sample that shows the distribution of the pigment particles and is consistent with the result obtained from a transmission x-ray microscope. The technique has been experimentally proven to be a feasible coherent x-ray imaging method with about 120 nm spatial resolution and was shown to work well with industrially relevant specimens.

  3. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    objects opaque to visible light, and tomographic techniques related to those used in CAT scans give access to three-dimensional images. The rub is that lenses that can focus x...

  4. High spatial resolution X-ray and gamma ray imaging system using diffraction crystals

    DOE Patents [OSTI]

    Smither, Robert K.

    2011-05-17

    A method and a device for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation are provided. The device comprises a plurality of arrays, with each array comprising a plurality of elements comprising a first collimator, a diffracting crystal, a second collimator, and a detector.

  5. Transient x-ray diffraction with simultaneous imaging under high strain-rate loading

    SciTech Connect (OSTI)

    Fan, D.; E, J. C.; Zhao, F.; Luo, S. N.; Lu, L.; Li, B.; Qi, M. L.; Sun, T.; Fezzaa, K.; Chen, W.

    2014-11-15

    Real time, in situ, multiframe, diffraction, and imaging measurements on bulk samples under high and ultrahigh strain-rate loading are highly desirable for micro- and mesoscale sciences. We present an experimental demonstration of multiframe transient x-ray diffraction (TXD) along with simultaneous imaging under high strain-rate loading at the Advanced Photon Source beamline 32ID. The feasibility study utilizes high strain-rate Hopkinson bar loading on a Mg alloy. The exposure time in TXD is 2–3 μs, and the frame interval is 26.7–62.5 μs. Various dynamic deformation mechanisms are revealed by TXD, including lattice expansion or compression, crystal plasticity, grain or lattice rotation, and likely grain refinement, as well as considerable anisotropy in deformation. Dynamic strain fields are mapped via x-ray digital image correlation, and are consistent with the diffraction measurements and loading histories.

  6. Method for characterizing mask defects using image reconstruction from X-ray diffraction patterns

    DOE Patents [OSTI]

    Hau-Riege, Stefan Peter

    2007-05-01

    The invention applies techniques for image reconstruction from X-ray diffraction patterns on the three-dimensional imaging of defects in EUVL multilayer films. The reconstructed image gives information about the out-of-plane position and the diffraction strength of the defect. The positional information can be used to select the correct defect repair technique. This invention enables the fabrication of defect-free (since repaired) X-ray Mo--Si multilayer mirrors. Repairing Mo--Si multilayer-film defects on mask blanks is a key for the commercial success of EUVL. It is known that particles are added to the Mo--Si multilayer film during the fabrication process. There is a large effort to reduce this contamination, but results are not sufficient, and defects continue to be a major mask yield limiter. All suggested repair strategies need to know the out-of-plane position of the defects in the multilayer.

  7. High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals

    DOE Patents [OSTI]

    Smither, Robert K.

    2008-12-23

    A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.

  8. Coherent X-ray diffraction imaging and characterization of strain in silicon-on-insulator nanostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiong, Gang; Moutanabbir, Oussama; Reiche, Manfred; Harder, Ross; Robinson, Ian

    2014-12-06

    Coherent X-ray diffraction imaging (CDI) has emerged in the last decade as a promising high resolution lens-less imaging approach for the characterization of various samples. It has made significant technical progress through developments in source, algorithm and imaging methodologies thus enabling important scientific breakthroughs in a broad range of disciplines. In this report, we will introduce the principles of forward scattering CDI and Bragg geometry CDI (BCDI), with an emphasis on the latter. BCDI exploits the ultra-high sensitivity of the diffraction pattern to the distortions of crystalline lattice. Its ability of imaging strain on the nanometer scale in three dimensionsmore » is highly novel. We will present the latest progress on the application of BCDI in investigating the strain relaxation behavior in nanoscale patterned strained silicon-on-insulator (sSOI) materials, aiming to understand and engineer strain for the design and implementation of new generation semiconductor devices.« less

  9. Coherent X-ray diffraction imaging and characterization of strain in silicon-on-insulator nanostructures

    SciTech Connect (OSTI)

    Xiong, Gang; Moutanabbir, Oussama; Reiche, Manfred; Harder, Ross; Robinson, Ian

    2014-12-06

    Coherent X-ray diffraction imaging (CDI) has emerged in the last decade as a promising high resolution lens-less imaging approach for the characterization of various samples. It has made significant technical progress through developments in source, algorithm and imaging methodologies thus enabling important scientific breakthroughs in a broad range of disciplines. In this report, we will introduce the principles of forward scattering CDI and Bragg geometry CDI (BCDI), with an emphasis on the latter. BCDI exploits the ultra-high sensitivity of the diffraction pattern to the distortions of crystalline lattice. Its ability of imaging strain on the nanometer scale in three dimensions is highly novel. We will present the latest progress on the application of BCDI in investigating the strain relaxation behavior in nanoscale patterned strained silicon-on-insulator (sSOI) materials, aiming to understand and engineer strain for the design and implementation of new generation semiconductor devices.

  10. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rodriguez, Jose A.; Xu, Rui; Chen, Chien -Chun; Huang, Zhifeng; Jiang, Huaidong; Chen, Allan L.; Raines, Kevin S.; Pryor, Jr., Alan; Nam, Daewoong; Wiegart, Lutz; et al

    2015-09-01

    Here, a structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 Kev X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and themore » three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. Finally, it is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres.« less

  11. Beyond crystallography: Diffractive imaging using coherent x-ray light sources

    SciTech Connect (OSTI)

    Miao, J.; Ishikawa, T.; Robinson, I. K.; Murnane, M. M.

    2015-04-30

    X-ray crystallography has been central to the development of many fields of science over the past century. It has now matured to a point that as long as good-quality crystals are available, their atomic structure can be routinely determined in three dimensions. However, many samples in physics, chemistry, materials science, nanoscience, geology, and biology are noncrystalline, and thus their three-dimensional structures are not accessible by traditional x-ray crystallography. Overcoming this hurdle has required the development of new coherent imaging methods to harness new coherent x-ray light sources. Here we review the revolutionary advances that are transforming x-ray sources and imaging in the 21st century.

  12. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the

  13. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the

  14. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the

  15. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging

  16. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging

  17. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging

  18. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging

  19. Communication: X-ray coherent diffractive imaging by immersion in nanodroplets

    SciTech Connect (OSTI)

    Tanyag, Rico Mayro P.; Bernando, Charles; Jones, Curtis F.; Bacellar, Camila; Ferguson, Ken R.; Anielski, Denis; Boll, Rebecca; Carron, Sebastian; Cryan, James P.; Englert, Lars; Epp, Sascha W.; Erk, Benjamin; Foucar, Lutz; Gomez, Luis F.; Hartmann, Robert; Neumark, Daniel M.; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Siefermann, Katrin R.; Ullrich, Joachim; Weise, Fabian; Bostedt, Christoph; Gessner, Oliver; Vilesov, Andrey F.

    2015-10-14

    Lensless x-ray microscopy requires the recovery of the phase of the radiation scattered from a specimen. Here, we demonstrate a de novo phase retrieval technique by encapsulating an object in a superfluid helium nanodroplet, which provides both a physical support and an approximate scattering phase for the iterative image reconstruction. The technique is robust, fast-converging, and yields the complex density of the immersed object. As a result, images of xenon clusters embedded in superfluid helium droplets reveal transient configurations of quantum vortices in this fragile system.

  20. Communication: X-ray coherent diffractive imaging by immersion in nanodroplets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tanyag, Rico Mayro P.; Bernando, Charles; Jones, Curtis F.; Bacellar, Camila; Ferguson, Ken R.; Anielski, Denis; Boll, Rebecca; Carron, Sebastian; Cryan, James P.; Englert, Lars; et al

    2015-10-14

    Lensless x-ray microscopy requires the recovery of the phase of the radiation scattered from a specimen. Here, we demonstrate a de novo phase retrieval technique by encapsulating an object in a superfluid helium nanodroplet, which provides both a physical support and an approximate scattering phase for the iterative image reconstruction. The technique is robust, fast-converging, and yields the complex density of the immersed object. As a result, images of xenon clusters embedded in superfluid helium droplets reveal transient configurations of quantum vortices in this fragile system.

  1. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that

  2. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that

  3. Simultaneous X-ray diffraction and phase-contrast imaging for investigating material deformation mechanisms during high-rate loading

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hudspeth, M.; Sun, T.; Parab, N.; Guo, Z.; Fezzaa, K.; Luo, S.; Chen, W.

    2015-01-01

    Using a high-speed camera and an intensified charge-coupled device (ICCD), a simultaneous X-ray imaging and diffraction technique has been developed for studying dynamic material behaviors during high-rate tensile loading. A Kolsky tension bar has been used to pull samples at 1000 s–1and 5000 s–1strain-rates for super-elastic equiatomic NiTi and 1100-O series aluminium, respectively. By altering the ICCD gating time, temporal resolutions of 100 ps and 3.37 µs have been achieved in capturing the diffraction patterns of interest, thus equating to single-pulse and 22-pulse X-ray exposure. Furthermore, the sample through-thickness deformation process has been simultaneously imagedviaphase-contrast imaging. It is also shownmore » that adequate signal-to-noise ratios are achieved for the detected white-beam diffraction patterns, thereby allowing sufficient information to perform quantitative data analysis diffractionviain-house software (WBXRD_GUI). Finally, of current interest is the ability to evaluate crystald-spacing, texture evolution and material phase transitions, all of which will be established from experiments performed at the aforementioned elevated strain-rates.« less

  4. A grating-based single-shot x-ray phase contrast and diffraction method for in vivo imaging

    SciTech Connect (OSTI)

    Bennett, Eric E.; Kopace, Rael; Stein, Ashley F.; Wen Han

    2010-11-15

    Purpose: The purpose of this study is to develop a single-shot version of the grating-based phase contrast x-ray imaging method and demonstrate its capability of in vivo animal imaging. Here, the authors describe the principle and experimental results. They show the source of artifacts in the phase contrast signal and optimal designs that minimize them. They also discuss its current limitations and ways to overcome them. Methods: A single lead grid was inserted midway between an x-ray tube and an x-ray camera in the planar radiography setting. The grid acted as a transmission grating and cast periodic dark fringes on the camera. The camera had sufficient spatial resolution to resolve the fringes. Refraction and diffraction in the imaged object manifested as position shifts and amplitude attenuation of the fringes, respectively. In order to quantify these changes precisely without imposing a fixed geometric relationship between the camera pixel array and the fringes, a spatial harmonic method in the Fourier domain was developed. The level of the differential phase (refraction) contrast as a function of hardware specifications and device geometry was derived and used to guide the optimal placement of the grid and object. Both ex vivo and in vivo images of rodent extremities were collected to demonstrate the capability of the method. The exposure time using a 50 W tube was 28 s. Results: Differential phase contrast images of glass beads acquired at various grid and object positions confirmed theoretical predictions of how phase contrast and extraneous artifacts vary with the device geometry. In anesthetized rats, a single exposure yielded artifact-free images of absorption, differential phase contrast, and diffraction. Differential phase contrast was strongest at bone-soft tissue interfaces, while diffraction was strongest in bone. Conclusions: The spatial harmonic method allowed us to obtain absorption, differential phase contrast, and diffraction images, all from a

  5. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Work performed on ALS Beamline 12.0.2.2 Citation: J.J. Turner et al., "X-Ray Diffraction Microscopy of Magnetic Structures," Phys....

  6. X-ray Diffraction and Multi-Frame Phase Contrast Imaging Diagnostics for IMPULSE at the Advanced Photon Source

    SciTech Connect (OSTI)

    Iverson, Adam; Carlson, Carl; Young, Jason; Curtis, Alden; Jensen, Brian; Ramos, Kyle; Yeager, John; Montgomery, David; Fezza, Kamel

    2013-07-08

    The diagnostic needs of any dynamic loading platform present unique technical challenges that must be addressed in order to accurately measure in situ material properties in an extreme environment. The IMPULSE platform (IMPact system for Ultrafast Synchrotron Experiments) at the Advanced Photon Source (APS) is no exception and, in fact, may be more challenging, as the imaging diagnostics must be synchronized to both the experiment and the 60 ps wide x-ray bunches produced at APS. The technical challenges of time-resolved x-ray diffraction imaging and high-resolution multi-frame phase contrast imaging (PCI) are described in this paper. Example data from recent IMPULSE experiments are shown to illustrate the advances and evolution of these diagnostics with a focus on comparing the performance of two intensified CCD cameras and their suitability for multi-frame PCI. The continued development of these diagnostics is fundamentally important to IMPULSE and many other loading platforms and will benefit future facilities such as the Dynamic Compression Sector at APS and MaRIE at Los Alamos National Laboratory.

  7. Category:X-Ray Diffraction (XRD) | Open Energy Information

    Open Energy Info (EERE)

    X-Ray Diffraction (XRD) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the X-Ray Diffraction (XRD) page? For detailed information on...

  8. Femtosecond diffractive imaging with a soft-X-ray free-electron laser (CXIDB ID 3)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chapman, H. N.

    2011-02-23

    The diffraction pattern of this entry corresponds to the one shown in **figure 2a** of the corresponding citation.

  9. Femtosecond diffractive imaging with a soft-X-ray free-electron laser (CXIDB ID 3)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chapman, H. N.

    The diffraction pattern of this entry corresponds to the one shown in **figure 2a** of the corresponding citation.

  10. X-Ray Diffraction Project Final Report, Fiscal Year 2006

    SciTech Connect (OSTI)

    Dane V. Morgan

    2006-10-01

    An x-ray diffraction diagnostic system was developed for determining real-time shock-driven lattice parameter shifts in single crystals at the gas gun at TA-IV at Sandia National Laboratories (SNL). The signal-to-noise ratio and resolution of the system were measured using imaging plates as the detector and by varying the slit width. This report includes tests of the x-ray diffraction system using a phosphor coupled to a charge-coupled device (CCD) camera by a coherent fiber-optic bundle. The system timing delay was measured with a newly installed transistor-transistor logic (TTL) bypass designed to reduce the x-ray delay time. The axial misalignment of the Bragg planes was determined with respect to the optical axis for a set of eight LiF [lithium fluoride] crystals provided by SNL to determine their suitability for gas gun experiments.

  11. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing...

  12. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing ...

  13. Transient x-ray diffraction and its application to materials science and x-ray optics

    SciTech Connect (OSTI)

    Hauer, A.A.; Kopp, R.; Cobble, J.; Kyrala, G.; Springer, R.

    1997-12-01

    Time resolved x-ray diffraction and scattering have been applied to the measurement of a wide variety of physical phenomena from chemical reactions to shock wave physics. Interest in this method has heightened in recent years with the advent of versatile, high power, pulsed x-ray sources utilizing laser plasmas, electron beams and other methods. In this article, we will describe some of the fundamentals involved in time resolved x-ray diffraction, review some of the history of its development, and describe some recent progress in the field. In this article we will emphasize the use of laser-plasmas as the x-ray source for transient diffraction.

  14. Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Xiaojing; Nelson, Johanna; Kirz, Janos; Lima, Enju; Marchesini, Stefano; Miao, Huijie; Neiman, Aaron M.; Shapiro, David; Steinbrener, Jan; Stewart, Andrew; et al

    2009-11-01

    We report the first image of an intact, frozen hydrated eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezing the specimen in liquid ethane and maintaining it below -170 °C, artifacts due to dehydration, ice crystallization, and radiation damage are greatly reduced. In this example, coherent diffraction data using 520 eV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25 nm. This demonstration represents an important step towards high resolution imaging of cells in their natural, hydrated state, without limitations imposed by x-ray optics.

  15. Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell

    SciTech Connect (OSTI)

    Huang Xiaojing; Nelson, Johanna; Lima, Enju; Miao, Huijie; Steinbrener, Jan; Stewart, Andrew; Turner, Joshua J.; Jacobsen, Chris; Kirz, Janos; Marchesini, Stefano; Shapiro, David; Neiman, Aaron M.

    2009-11-06

    We report the first image of an intact, frozen hydrated eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezing the specimen in liquid ethane and maintaining it below -170 deg. C, artifacts due to dehydration, ice crystallization, and radiation damage are greatly reduced. In this example, coherent diffraction data using 520 eV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25 nm. This demonstration represents an important step towards high resolution imaging of cells in their natural, hydrated state, without limitations imposed by x-ray optics.

  16. X-Ray Diffraction Microscopy of Magnetic Structures (Journal...

    Office of Scientific and Technical Information (OSTI)

    Prev Next Title: X-Ray Diffraction Microscopy of Magnetic Structures Authors: Turner, Joshua J. ; Huang, Xiaojing ; Krupin, Oleg ; Seu, Keoki A. ; Parks, Daniel ; Kevan,...

  17. Portable X-Ray Diffraction (XRD) | Open Energy Information

    Open Energy Info (EERE)

    X-ray powder diffraction, which has traditionally been used in geology, environmental science, material science, and engineering to rapidly identify unknown crystalline...

  18. X-Ray Diffraction (XRD) | Open Energy Information

    Open Energy Info (EERE)

    under investigation. X-ray powder diffraction is widely used in geology, environmental science, material science, and engineering to rapidly identify unknown crystalline substances...

  19. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light ... wavelengths relevant to atomic and molecular phenomena) with the advantages of ...

  20. High-Energy X-Ray Diffraction Analysis Tool

    Energy Science and Technology Software Center (OSTI)

    2011-11-29

    The functionality of heRXD includes the following: distance and angular calibration and viewing flat-panel detector images used for X-ray diffraction; image (polar) rebinning or "caking"; line position fitting in powder diffraction images; image segmentation or "blob finding"; crystal orentation indesing; and lattice vector refinement. These functionalities encompass a critical set analyzing teh data for high-energy diffraction measurements that are currently performed at synchrotron sources such as the Advanced Photon Source (APS). The software design modularmore » and open source under LGPL. The intent is to provide a common framework and graphical user interface that has the ability to utillize internal as well as external subroutines to provide various optins for performing the fuctionalities listed above. The software will initially be deployed at several national user facilities--including APS, ALS, and CHESS--and then made available for download using a hosting service such as sourceforge.« less

  1. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, Malcolm R.; Jacobsen, Chris

    1995-01-01

    A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

  2. X-ray imaging crystal spectrometer for extended X-ray sources

    DOE Patents [OSTI]

    Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  3. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Lensless X-Ray Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are

  4. SMB, X-Ray Spectroscopy & Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home » X-Ray Spectroscopy & Imaging X-Ray Spectroscopy & Imaging SSRL has five hard X-ray Spectroscopy beamlines and three Microfocus Imaging beamlines dedicated to Biological and Biomedical research funded by the NIH and DOE-BER. The SMB group supports and develops technical instrumentation and theoretical methods for state-of-the-art tender and hard X-ray spectroscopy and EXAFS studies on metalloproteins, cofactors and metals in medicine. The SMB group has also contributed to the

  5. Lensless Imaging of Whole Biological Cells with Soft X-Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging of Whole Biological Cells with Soft X-Rays Print A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells,...

  6. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C. H.; et al

    2006-01-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore » resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less

  7. Gated monochromatic x-ray imager

    SciTech Connect (OSTI)

    Oertel, J.A.; Archuleta, T.; Clark, L.

    1995-09-01

    We have recently developed a gated monochromatic x-ray imaging diagnostic for the national Inertial-Confinement Fusion (ICF) program. This new imaging system will be one of the primary diagnostics to be utilized on University of Rochester`s Omega laser fusion facility. The new diagnostic is based upon a Kirkpatrick-Baez (KB) microscope dispersed by diffraction crystals, as first described by Marshall and Su. The dispersed images are gated by four individual proximity focused microchannel plates and recorded on film. Spectral coverage is tunable up to 8 keV, spectral resolution has been measured at 20 eV, temporal resolution is 80 ps, and spatial resolution is better than 10 {mu}m.

  8. Phased Contrast X-Ray Imaging

    ScienceCinema (OSTI)

    Erin Miller

    2012-12-31

    The Pacific Northwest National Laboratory is developing a range of technologies to broaden the field of explosives detection. Phased contrast X-ray imaging, which uses silicon gratings to detect distortions in the X-ray wave front, may be applicable to mail or luggage scanning for explosives; it can also be used in detecting other contraband, small-parts inspection, or materials characterization.

  9. X-Ray Diffraction > Analytical Resources > Research > The Energy Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center at Cornell Analytical Resources In This Section Differential Electrochemical Mass Spectroscopy (DEMS) Electron Microscopy X-Ray Diffraction X-Ray Diffraction

  10. Lensless Imaging of Whole Biological Cells with Soft X-Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Whole Biological Cells with Soft X-Rays Print A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the...

  11. Lensless imaging of nanoporous glass with soft X-rays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Turner, Joshua J.; Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Jacobsen, Chris

    2013-06-01

    Coherent soft X-ray diffraction has been used to image nanoporous glass structure in two dimensions using different methods. The merit of the reconstructions was judged using a new method of Fourier phase correlation with a final, refined image. The porous structure was found to have a much larger average size then previously believed.

  12. X-ray Diffraction from Membrane Protein Nanocrystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-ray Diffraction from Membrane Protein Nanocrystals Authors: Hunter, M.S., DePonte, D.P., Shapiro, D.A., Kirian, R.A., Wang, X., Starodub, D., Marchesini, S., Weierstall, U., Doak, R.B., Spence, J.C.H., and Fromme, P. Title: X-ray Diffraction from Membrane Protein Nanocrystals Source: Biophysical Journal Year: 2011 Volume: 100 Pages: 198-206 ABSTRACT: Membrane proteins constitute >30% of the proteins in an average cell, and yet the number of currently known structures of unique membrane

  13. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stephano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane andmore » freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.« less

  14. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    SciTech Connect (OSTI)

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stephano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the ?-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.

  15. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, M.S.; Jacobsen, C.

    1997-03-18

    Methods for forming X-ray images having 0.25 {micro}m minimum line widths on X-ray sensitive material are presented. A holographic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required. 15 figs.

  16. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, Malcolm S.; Jacobsen, Chris

    1997-01-01

    Methods for forming X-ray images having 0.25 .mu.m minimum line widths on X-ray sensitive material are presented. A holgraphic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required.

  17. X-ray micro-diffraction studies of heterogeneous interfaces between...

    Office of Scientific and Technical Information (OSTI)

    Article: X-ray micro-diffraction studies of heterogeneous interfaces between cementitious materials and geological formations Citation Details In-Document Search Title: X-ray ...

  18. Serial femtosecond X-ray diffraction of enveloped virus microcrystals

    SciTech Connect (OSTI)

    Lawrence, Robert M.; Conrad, Chelsie E.; Zatsepin, Nadia A.; Grant, Thomas D.; Liu, Haiguang; James, Daniel; Nelson, Garrett; Subramanian, Ganesh; Aquila, Andrew; Hunter, Mark S.; Liang, Mengning; Boutet, Sbastien; Coe, Jesse; Spence, John C. H.; Weierstall, Uwe; Liu, Wei; Fromme, Petra; Cherezov, Vadim; Hogue, Brenda G.

    2015-08-20

    Serial femtosecond crystallography (SFX) using X-ray free-electron lasers has produced high-resolution, room temperature, time-resolved protein structures. We report preliminary SFX of Sindbis virus, an enveloped icosahedral RNA virus with ~700 diameter. Microcrystals delivered in viscous agarose medium diffracted to ~40 resolution. Small-angle diffuse X-ray scattering overlaid Bragg peaks and analysis suggests this results from molecular transforms of individual particles. Viral proteins undergo structural changes during entry and infection, which could, in principle, be studied with SFX. This is a pertinent step toward determining room temperature structures from virus microcrystals that may enable time-resolved studies of enveloped viruses.

  19. Serial femtosecond X-ray diffraction of enveloped virus microcrystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lawrence, Robert M.; Conrad, Chelsie E.; Zatsepin, Nadia A.; Grant, Thomas D.; Liu, Haiguang; James, Daniel; Nelson, Garrett; Subramanian, Ganesh; Aquila, Andrew; Hunter, Mark S.; et al

    2015-08-20

    Serial femtosecond crystallography (SFX) using X-ray free-electron lasers has produced high-resolution, room temperature, time-resolved protein structures. We report preliminary SFX of Sindbis virus, an enveloped icosahedral RNA virus with ~700 Å diameter. Microcrystals delivered in viscous agarose medium diffracted to ~40 Å resolution. Small-angle diffuse X-ray scattering overlaid Bragg peaks and analysis suggests this results from molecular transforms of individual particles. Viral proteins undergo structural changes during entry and infection, which could, in principle, be studied with SFX. This is a pertinent step toward determining room temperature structures from virus microcrystals that may enable time-resolved studies of enveloped viruses.

  20. Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Xiaojing; Miao, Huijie; Steinbrener, Jan; Nelson, Johanna; Shapiro, David; Stewart, Andrew; Turner, Joshua; Jacobsen, Chris

    2009-01-01

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution imagesmore » using fewer photons. As a result, this can be an important advantage for studying radiation-sensitive biological and soft matter specimens.« less

  1. Detecting rare, abnormally large grains by x-ray diffraction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detecting rare, abnormally large grains by x-ray diffraction - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense

  2. Imaging X-ray Thomson Scattering Spectrometer Design and Demonstration

    SciTech Connect (OSTI)

    Gamboa, E.J.; Huntington, C.M.; Trantham, M.R.; Keiter, P.A; Drake, R.P.; Montgomery, David; Benage, John F.; Letzring, Samuel A.

    2012-05-04

    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally-curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

  3. Ultrafast resonant soft x-ray diffraction dynamics of the charge...

    Office of Scientific and Technical Information (OSTI)

    Ultrafast resonant soft x-ray diffraction dynamics of the charge density wave in TbTe 3 ... Title: Ultrafast resonant soft x-ray diffraction dynamics of the charge density wave in ...

  4. High-pressure X-ray diffraction, Raman, and computational studies...

    Office of Scientific and Technical Information (OSTI)

    X-ray diffraction, Raman, and computational studies of MgCl2 up to 1 Mbar: Extensive ... Citation Details In-Document Search Title: High-pressure X-ray diffraction, Raman, and ...

  5. X-Ray Diffraction Observations of a Charge-Density-Wave Order...

    Office of Scientific and Technical Information (OSTI)

    X-Ray Diffraction Observations of a Charge-Density-Wave Order in Superconducting Ortho-II ... Citation Details In-Document Search Title: X-Ray Diffraction Observations of a ...

  6. Time-resolved x-ray diffraction across water-ices VI/VII transformatio...

    Office of Scientific and Technical Information (OSTI)

    Conference: Time-resolved x-ray diffraction across water-ices VIVII transformations using dynamic-DAC Citation Details In-Document Search Title: Time-resolved x-ray diffraction ...

  7. High-pressure X-ray diffraction, Raman, and computational studies...

    Office of Scientific and Technical Information (OSTI)

    High-pressure X-ray diffraction, Raman, and computational studies of MgCl2 up to 1 Mbar: ... Citation Details In-Document Search Title: High-pressure X-ray diffraction, Raman, and ...

  8. Femtosecond X-ray Diffraction From Two-Dimensional Protein Crystals...

    Office of Scientific and Technical Information (OSTI)

    Femtosecond X-ray Diffraction From Two-Dimensional Protein Crystals Citation Details In-Document Search Title: Femtosecond X-ray Diffraction From Two-Dimensional Protein Crystals...

  9. Differential phase contrast X-ray imaging system and components

    DOE Patents [OSTI]

    Stutman, Daniel; Finkenthal, Michael

    2014-07-01

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  10. X-ray imaging of Nonlinear Resonant Gyrotropic Magnetic Vortex...

    Office of Scientific and Technical Information (OSTI)

    X-ray imaging of Nonlinear Resonant Gyrotropic Magnetic Vortex Core Motion in Circular Permalloy Disks Citation Details In-Document Search Title: X-ray imaging of Nonlinear ...

  11. X-Ray Diffraction of Heterogeneous Solid Hydrogen - Oral Presentation

    SciTech Connect (OSTI)

    Levitan, Abraham

    2015-08-24

    Angularly resolved x-ray diffraction at 5.5 keV establishes the structure of a 5 μm diameter solid hydrogen jet, providing a foundation for analysis of hydrogen in a warm dense matter state. The jet was composed of approximately 65% ± 5% HCP and 35% ± 5% FCC by volume with an average crystallite size on the order of hundreds of nanometers. Broadening in the angularly resolved spectrum provided strong evidence for anisotropic strain up to approximately 3 % in the HCP lattice. Finally, we found no evidence for orientational ordering of the crystal domains.

  12. The three dimensional X-ray diffraction technique

    SciTech Connect (OSTI)

    Jensen, D. Juul; Poulsen, H.F.

    2012-10-15

    This introductory tutorial describes the so called 3 dimensional X-ray diffraction (3DXRD) technique, which allows bulk non-destructive structural characterizations of crystalline materials. The motivations and history behind the development of this technique are described and its potentials are sketched. Examples of the use of the technique are given and future trends and developments are suggested. The primary aim of the paper is to give 3DXRD novices an easy introduction to the technique and to describe a way from a dream to reality and new results.

  13. Ultrafast X-Ray Diffraction of Heterogeneous Solid Hydrogen

    SciTech Connect (OSTI)

    Levitan, Abraham

    2015-08-19

    Angularly resolved x-ray diffraction at 5.5 keV establishes the structure of a 5 µm diameter solid hydrogen jet, providing a foundation for analysis of hydrogen in a warm dense matter state. The jet was composed of approximately 65 % ± 5% HCP and 35 % ± 5% FCC by volume with an average crystallite size on the order of hundreds of nanometers. Broadening in the angularly resolved spectrum provided strong evidence for anisotropic strain up to approximately 3 % in the HCP lattice. Finally, we found no evidence for orientational ordering of the crystal domains.

  14. Apparatus for X-ray diffraction microscopy and tomography of cryo specimens

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Beetz, T.; Howells, M. R.; Jacobsen, C.; Kao, C. -C.; Kirz, J.; Lima, E.; Mentes, T. O.; Miao, H.; Sanchez-Hanke, C.; Sayre, D.; et al

    2005-03-14

    An apparatus for diffraction microscopy of biological and materials science specimens is described. In this system, a coherent soft X-ray beam is selected with a pinhole, and the illuminated specimen is followed by an adjustable beamstop and CCD camera to record diffraction data from non-crystalline specimens. In addition, a Fresnel zone plate can be inserted to allow for direct imaging. The system makes use of a cryogenic specimen holder with cryotransfer capabilities to allow frozen hydrated specimens to be loaded. The specimen can be tilted over a range of ± 80 ° degrees for three-dimensional imaging; this is done bymore » computer-controlled motors, enabling automated alignment of the specimen through a tilt series. The system is now in use for experiments in soft X-ray diffraction microscopy.« less

  15. Variable-metric diffraction crystals for x-ray optics

    SciTech Connect (OSTI)

    Smither, R.K.; Fernandez, P.B. )

    1992-02-01

    A variable-metric (VM) crystal is one in which the spacing between the crystalline planes changes with position in the crystal. This variation can be either parallel to the crystalline planes or perpendicular to the crystalline planes of interest and can be produced by either introducing a thermal gradient in the crystal or by growing a crystal made of two or more elements and changing the relative percentages of the two elements as the crystal is grown. A series of experiments were performed in the laboratory to demonstrate the principle of the variable-metric crystal and its potential use in synchrotron beam lines. One of the most useful applications of the VM crystal is to increase the number of photons per unit bandwidth in a diffracted beam without losing any of the overall intensity. In a normal synchrotron beam line that uses a two-crystal monochromator, the bandwidth of the diffracted photon beam is determined by the vertical opening angle of the beam which is typically 0.10--0.30 mrad or 20--60 arcsec. When the VM crystal approach is applied, the bandwidth of the beam can be made as narrow as the rocking curve of the diffracting crystal, which is typically 0.005--0.050 mrad or 1--10 arcsec. Thus a very large increase of photons per unit bandwidth (or per unit energy) can be achieved through the use of VM crystals. When the VM principle is used with bent crystals, new kinds of x-ray optical elements can be generated that can focus and defocus x-ray beams much like simple lenses where the focal length of the lens can be changed to match its application. Thus both large magnifications and large demagnifications can be achieved as well as parallel beams with narrow bandwidths.

  16. Phase-sensitive X-ray imager

    DOE Patents [OSTI]

    Baker, Kevin Louis

    2013-01-08

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  17. Bimolecular Imaging with femtosecond X-ray pulses | Stanford Synchrotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Lightsource Bimolecular Imaging with femtosecond X-ray pulses Wednesday, June 22, 2016 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Marvin Seibert, Uppsala University Program Description This talk will be part review, part outlook of the potential for imaging biological structures with fs X-ray pulses, from the first experiments at LCLS to the current single particle imaging initiative. Bimolecular Imaging with femtosecond X-ray pulses

  18. High-resolution diffraction microscopy using the plane-wave field of a nearly diffraction limited focused x-ray beam

    SciTech Connect (OSTI)

    Takahashi, Yukio; Nishino, Yoshinori; Ishikawa, Tetsuya; Tsutsumi, Ryosuke; Kubo, Hideto; Furukawa, Hayato; Mimura, Hidekazu; Matsuyama, Satoshi; Zettsu, Nobuyuki; Matsubara, Eiichiro; Yamauchi, Kazuto

    2009-08-01

    X-ray waves in the center of the beam waist of nearly diffraction limited focused x-ray beams can be considered to have amplitude and phase that are both almost uniform, i.e., they are x-ray plane waves. Here we report the results of an experimental demonstration of high-resolution diffraction microscopy using the x-ray plane wave of the synchrotron x-ray beam focused using Kirkpatrik-Baez mirrors. A silver nanocube with an edge length of {approx}100 nm is illuminated with the x-ray beam focused to a {approx}1 {mu}m spot at 12 keV. A high-contrast symmetric diffraction pattern of the nanocube is observed in the forward far field. An image of the nanocube is successfully reconstructed by an iterative phasing method and its half-period resolution is 3.0 nm. This method does not only dramatically improve the spatial resolution of x-ray microscopy but also is a key technology for realizing single-pulse diffractive imaging using x-ray free-electron lasers.

  19. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). ...

  20. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light ...

  1. Single-crystal X-ray diffraction at extreme conditions: a review...

    Office of Scientific and Technical Information (OSTI)

    Title: Single-crystal X-ray diffraction at extreme conditions: a review Authors: Ballaran, Tiziana Boffa ; Kurnosov, Alexander ; Trots, Dmytro 1 + Show Author Affiliations ...

  2. Realizing in-plane surface diffraction by x-ray multiple-beam diffraction with large incidence angle

    SciTech Connect (OSTI)

    Huang, Xian-Rong Gog, Thomas; Assoufid, Lahsen; Peng, Ru-Wen; Siddons, D. P.

    2014-11-03

    Based on rigorous dynamical-theory calculations, we demonstrate the principle of an x-ray multiple-beam diffraction (MBD) scheme that overcomes the long-lasting difficulties of high-resolution in-plane diffraction from crystal surfaces. This scheme only utilizes symmetric reflection geometry with large incident angles but activates the out-of-plane and in-plane diffraction processes simultaneously and separately in the continuous MBD planes. The in-plane diffraction is realized by detoured MBD, where the intermediate diffracted waves propagate parallel to the surface, which corresponds to an absolute Bragg surface diffraction configuration that is extremely sensitive to surface structures. A series of MBD diffraction and imaging techniques may be developed from this principle to study surface/interface (misfit) strains, lateral nanostructures, and phase transitions of a wide range of (pseudo)cubic crystal structures, including ultrathin epitaxial films and multilayers, quantum dots, strain-engineered semiconductor or (multi)ferroic materials, etc.

  3. X-ray diffraction study of crystalline barium titanate ceramics

    SciTech Connect (OSTI)

    Zali, Nurazila Mat; Mahmood, Che Seman; Mohamad, Siti Mariam; Foo, Choo Thye; Murshidi, Julie Adrianny

    2014-02-12

    In this study, BaTiO{sub 3} ceramics have been prepared via solid-state reaction method. The powders were calcined for 2 hours at different temperatures ranging from 600C to 1200C. Using X-ray diffraction with a Rietveld analysis, the phase formation and crystal structure of the BaTiO{sub 3} powders were studied. Change in crystallite size and tetragonality as a function of calcination temperature were also discussed. It has been found that the formation of pure perovskite phase of BaTiO{sub 3} began at calcination condition of 1000 C for 2 hours. The crystal structure of BaTiO{sub 3} formed is in the tetragonal structure. The second phases of BaCO{sub 3} and TiO{sub 2} existed with calcination temperature below 1000 C. Purity, crystallite size and tetragonality of BaTiO{sub 3} powders were found to increase with increasing calcination temperature.

  4. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light ... wavelengths relevant to atomic and molecular phenomena) with the advantages of ...

  5. X-ray image intensifier phosphor

    DOE Patents [OSTI]

    D'Silva, A.P.; Fassel, V.A.

    1975-12-01

    Y/sub 1-x/Gd/sub x/.PO$sub 4$:Tb$sup 3+$ is an effective phosphor for use in X-ray intensifier screens and in nuclear radiation detection systems.

  6. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be reconstructed by a single Fourier transform; this is known as Fourier transform holography. The problem of getting sufficiently coherent x-rays onto and off of the sample in a...

  7. Lensless Imaging of Whole Biological Cells with Soft X-Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Whole Biological Cells with Soft X-Rays Print A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the highest resolution-11 to 13 nanometers (billionths of a meter)-ever obtained with this method for biological specimens. Their success indicates that full 3-D tomography of whole cells at equivalent resolution should soon be possible. The National Center for X-Ray Tomography at ALS Beamline 2.1 images

  8. Lensless Imaging of Whole Biological Cells with Soft X-Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Whole Biological Cells with Soft X-Rays Print A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the highest resolution-11 to 13 nanometers (billionths of a meter)-ever obtained with this method for biological specimens. Their success indicates that full 3-D tomography of whole cells at equivalent resolution should soon be possible. The National Center for X-Ray Tomography at ALS Beamline 2.1 images

  9. Lensless Imaging of Whole Biological Cells with Soft X-Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Whole Biological Cells with Soft X-Rays Print A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the highest resolution-11 to 13 nanometers (billionths of a meter)-ever obtained with this method for biological specimens. Their success indicates that full 3-D tomography of whole cells at equivalent resolution should soon be possible. The National Center for X-Ray Tomography at ALS Beamline 2.1 images

  10. Lensless Imaging of Whole Biological Cells with Soft X-Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Whole Biological Cells with Soft X-Rays Print A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the highest resolution-11 to 13 nanometers (billionths of a meter)-ever obtained with this method for biological specimens. Their success indicates that full 3-D tomography of whole cells at equivalent resolution should soon be possible. The National Center for X-Ray Tomography at ALS Beamline 2.1 images

  11. Lensless Imaging of Whole Biological Cells with Soft X-Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Whole Biological Cells with Soft X-Rays Print A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the highest resolution-11 to 13 nanometers (billionths of a meter)-ever obtained with this method for biological specimens. Their success indicates that full 3-D tomography of whole cells at equivalent resolution should soon be possible. The National Center for X-Ray Tomography at ALS Beamline 2.1 images

  12. Lensless Imaging of Whole Biological Cells with Soft X-Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Whole Biological Cells with Soft X-Rays Lensless Imaging of Whole Biological Cells with Soft X-Rays Print Wednesday, 26 May 2010 00:00 A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the highest resolution-11 to 13 nanometers (billionths of a meter)-ever obtained with this method for biological specimens. Their success indicates that full 3-D tomography of whole cells at equivalent resolution

  13. Lensless Imaging of Whole Biological Cells with Soft X-Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Whole Biological Cells with Soft X-Rays Print A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the highest resolution-11 to 13 nanometers (billionths of a meter)-ever obtained with this method for biological specimens. Their success indicates that full 3-D tomography of whole cells at equivalent resolution should soon be possible. The National Center for X-Ray Tomography at ALS Beamline 2.1 images

  14. Lensless Imaging of Whole Biological Cells with Soft X-Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Whole Biological Cells with Soft X-Rays Print A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the highest resolution-11 to 13 nanometers (billionths of a meter)-ever obtained with this method for biological specimens. Their success indicates that full 3-D tomography of whole cells at equivalent resolution should soon be possible. The National Center for X-Ray Tomography at ALS Beamline 2.1 images

  15. Lensless Imaging of Whole Biological Cells with Soft X-Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Whole Biological Cells with Soft X-Rays Print A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the highest resolution-11 to 13 nanometers (billionths of a meter)-ever obtained with this method for biological specimens. Their success indicates that full 3-D tomography of whole cells at equivalent resolution should soon be possible. The National Center for X-Ray Tomography at ALS Beamline 2.1 images

  16. Lensless Imaging of Whole Biological Cells with Soft X-Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Whole Biological Cells with Soft X-Rays Print A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the highest resolution-11 to 13 nanometers (billionths of a meter)-ever obtained with this method for biological specimens. Their success indicates that full 3-D tomography of whole cells at equivalent resolution should soon be possible. The National Center for X-Ray Tomography at ALS Beamline 2.1 images

  17. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This method can be used at any coherent light source, such as x-ray free-electron lasers, where ultra-short pulses would freeze-frame magnetic changes, offering the potential for ...

  18. Self-terminating diffraction gates femtosecond X-ray nanocrystallograp...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    without the requirement for the pulse to terminate before the onset of sample damage. ... indicate that current X-ray free-electron laser technology5 should enable structural ...

  19. Time-resolved x-ray diffraction across water-ices VI/VII transformatio...

    Office of Scientific and Technical Information (OSTI)

    diffraction across water-ices VIVII transformations using dynamic-DAC Citation Details In-Document Search Title: Time-resolved x-ray diffraction across water-ices VIVII ...

  20. Nanoscale Imaging of Strain using X-Ray Bragg Projection Ptychography |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Nanoscale Imaging of Strain using X-Ray Bragg Projection Ptychography October 1, 2012 Tweet EmailPrint Users of the Center for Nanoscale Materials (CNM) from IBM exploited nanofocused X-ray Bragg projection ptychography to determine the lattice strain profile in an epitaxial SiGe stressor layer of a silicon prototype device. The theoretical and experimental framework of this new coherent diffraction strain imaging approach was developed by Argonne's Materials

  1. Note: Electrochemical cell for in operando X-ray diffraction measurements on a conventional X-ray diffractometer

    SciTech Connect (OSTI)

    Hartung, Steffen; Bucher, Nicolas; Bucher, Ramona; Srinivasan, Madhavi

    2015-08-15

    Electrochemical in operando X-ray diffraction (XRD) is a powerful method to analyze structural changes of energy storage materials while inserting/de-inserting charge carriers, such as Li- or Na-ions, into/from a host structure. The design of an XRD in operando cell is presented, which enables the use of thin (6 μm) aluminum foil as X-ray window as a non-toxic alternative to conventional beryllium windows. Owing to the reduced thickness, diffraction patterns and their changes during cycling can be observed with excellent quality, which was demonstrated for two cathode materials for sodium-ion batteries in a half-cell set-up, P2-Na{sub 0.7}MnO{sub 2} and Na{sub 2.55}V{sub 6}O{sub 16} ⋅ 0.6H{sub 2}O.

  2. X-ray imaging reveals secrets in battery materials | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-ray imaging reveals secrets in battery materials June 22, 2015 Tweet EmailPrint Imaging and data analysis techniques offer new approach to probing material properties In a new...

  3. X-Ray Imaging Crystal Spectrometer for Extended X-Ray Sources

    SciTech Connect (OSTI)

    Bitter, Manfred L.; Fraekel, Benjamin; Gorman, James L.; Hill, Kenneth W.; Roquemore, Lane A.; Stodiek, Wolfgang; Goeler, Schweickhard von

    1999-05-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokamak fusion experiment to provide spatially and temporally resolved data on plasma parameters such as ion temperature, toroidal and poloidal rotation, electron temperature, impurity ion charge-state distributions, and impurity transport. The imaging properties of these spherically or toroidally curved crystals provide both spectrally and spatially resolved X-ray data from the plasma using only one small spherically or toroidally curved crystal, thus eliminating the requirement for a large array of crystal spectrometers and the need to cross-calibrate the various crystals.

  4. Towards three-dimensional and attosecond x-ray imaging at the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    x-ray wavelength appears desirable to achieve maximal spatial resolution in x-ray diffraction experiments, longer wavelengths turns out to enable the identification of...

  5. Anti-contamination device for cryogenic soft X-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; Turner, Joshua; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Jacobsen, Chris

    2011-05-01

    Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.

  6. X-ray Microscopy and Imaging (XSD-XMI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and (c) technical R&D in collaborations with other groups on nano-focusing x-ray optics, image contrast mechanisms, phase-retrieval methodology, detectors and data...

  7. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, X. Edward; Gao, Xiang; Barty, Anton; Kang, Yanyong; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; et al

    2016-04-12

    Here, serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solvedmore » with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.« less

  8. Dose optimization in cardiac x-ray imaging

    SciTech Connect (OSTI)

    Gislason-Lee, Amber J.; McMillan, Catherine; Cowen, Arnold R.; Davies, Andrew G.

    2013-09-15

    Purpose: The aim of this research was to optimize x-ray image quality to dose ratios in the cardiac catheterization laboratory. This study examined independently the effects of peak x-ray tube voltage (kVp), copper (Cu), and gadolinium (Gd) x-ray beam filtration on the image quality to radiation dose balance for adult patient sizes.Methods: Image sequences of polymethyl methacrylate (PMMA) phantoms representing two adult patient sizes were captured using a modern flat panel detector based x-ray imaging system. Tin and copper test details were used to simulate iodine-based contrast medium and stents/guide wires respectively, which are used in clinical procedures. Noise measurement for a flat field image and test detail contrast were used to calculate the contrast to noise ratio (CNR). Entrance surface dose (ESD) and effective dose measurements were obtained to calculate the figure of merit (FOM), CNR{sup 2}/dose. This FOM determined the dose efficiency of x-ray spectra investigated. Images were captured with 0.0, 0.1, 0.25, 0.4, and 0.9 mm Cu filtration and with a range of gadolinium oxysulphide (Gd{sub 2}O{sub 2}S) filtration.Results: Optimum x-ray spectra were the same for the tin and copper test details. Lower peak tube voltages were generally favored. For the 20 cm phantom, using 2 Lanex Fast Back Gd{sub 2}O{sub 2}S screens as x-ray filtration at 65 kVp provided the highest FOM considering ESD and effective dose. Considering ESD, this FOM was only marginally larger than that from using 0.4 mm Cu at 65 kVp. For the 30 cm phantom, using 0.25 mm copper filtration at 80 kVp was most optimal; considering effective dose the FOM was highest with no filtration at 65 kVp.Conclusions: These settings, adjusted for x-ray tube loading limits and clinically acceptable image quality, should provide a useful option for optimizing patient dose to image quality in cardiac x-ray imaging. The same optimal x-ray beam spectra were found for both the tin and copper details, suggesting

  9. 7 Resolution in Protein 2-Dimentional-Crystal X-Ray Diffraction...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: 7 Resolution in Protein 2-Dimentional-Crystal X-Ray Diffraction at Linac Coherent Light Source Citation Details In-Document Search Title: 7 Resolution in...

  10. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction...

    Office of Scientific and Technical Information (OSTI)

    DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration Citation Details In-Document Search Title: DIOPTAS: a program for reduction of ...

  11. Method for improve x-ray diffraction determinations of residual stress in nickel-base alloys

    DOE Patents [OSTI]

    Berman, Robert M.; Cohen, Isadore

    1990-01-01

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys which comprises covering part of a predetermined area of the surface of a nickel-base alloy with a dispersion, exposing the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample.

  12. Method for improving x-ray diffraction determinations of residual stress in nickel-base alloys

    DOE Patents [OSTI]

    Berman, R.M.; Cohen, I.

    1988-04-26

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys is discussed. Part of a predetermined area of the surface of a nickel-base alloy is covered with a dispersion. This exposes the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose, since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample. 2 figs.

  13. Measurement of piezoelectric constants of lanthanum-gallium tantalate crystal by X-ray diffraction methods

    SciTech Connect (OSTI)

    Blagov, A. E.; Marchenkov, N. V. Pisarevsky, Yu. V.; Prosekov, P. A.; Kovalchuk, M. V.

    2013-01-15

    A method for measuring piezoelectric constants of crystals of intermediate systems by X-ray quasi-multiple-wave diffraction is proposed and implemented. This technique makes it possible to determine the piezoelectric coefficient by measuring variations in the lattice parameter under an external electric field. This method has been approved, its potential is evaluated, and a comparison with high-resolution X-ray diffraction data is performed.

  14. X-ray diffraction characterization of suspended structures forMEMS applications

    SciTech Connect (OSTI)

    Goudeau, P.; Tamura, N.; Lavelle, B.; Rigo, S.; Masri, T.; Bosseboeuf, A.; Sarnet, T.; Petit, J.-A.; Desmarres, J.-M.

    2005-09-15

    Mechanical stress control is becoming one of the major challenges for the future of micro and nanotechnologies. Micro scanning X-ray diffraction is one of the promising techniques that allows stress characterization in such complex structures at sub micron scales. Two types of MEMS structure have been studied: a bilayer cantilever composed of a gold film deposited on poly-silicon and a boron doped silicon bridge. X-ray diffraction results are discussed in view of numerical simulation experiments.

  15. Application of Image And X-Ray Microtomography Technique To Quantify...

    Office of Scientific and Technical Information (OSTI)

    Application of Image And X-Ray Microtomography Technique To Quantify Filler Distribution ... Citation Details In-Document Search Title: Application of Image And X-Ray Microtomography ...

  16. Development of a High Resolution X-Ray Imaging Crystal Spectrometer

    Office of Scientific and Technical Information (OSTI)

    Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of ... Development of a High Resolution X-Ray Imaging Crystal Spectrometer for ...

  17. Development of a High Resolution X-Ray Imaging Crystal Spectrometer...

    Office of Scientific and Technical Information (OSTI)

    Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of ... Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of ...

  18. Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Seibert, M. Marvin; Ekeberg, Tomas; Maia, Filipe R.N.C.

    2011-02-02

    These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 1 are the pattern and configuration files for the pattern showed in Figure 2a in the paper.

  19. Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Seibert, M. Marvin; Ekeberg, Tomas; Maia, Filipe R.N.C.

    These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 1 are the pattern and configuration files for the pattern showed in Figure 2a in the paper.

  20. Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 2)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Seibert, M. Marvin; Ekeberg, Tomas

    2011-02-02

    These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 2 are the pattern and configuration files for the pattern showed in Figure 2b in the paper.

  1. In-situ X-ray diffraction system using sources and detectors at fixed angular positions

    DOE Patents [OSTI]

    Gibson, David M.; Gibson, Walter M.; Huang, Huapeng

    2007-06-26

    An x-ray diffraction technique for measuring a known characteristic of a sample of a material in an in-situ state. The technique includes using an x-ray source for emitting substantially divergent x-ray radiation--with a collimating optic disposed with respect to the fixed source for producing a substantially parallel beam of x-ray radiation by receiving and redirecting the divergent paths of the divergent x-ray radiation. A first x-ray detector collects radiation diffracted from the sample; wherein the source and detector are fixed, during operation thereof, in position relative to each other and in at least one dimension relative to the sample according to a-priori knowledge about the known characteristic of the sample. A second x-ray detector may be fixed relative to the first x-ray detector according to the a-priori knowledge about the known characteristic of the sample, especially in a phase monitoring embodiment of the present invention.

  2. Frontiers in imaging magnetism with polarized x-rays

    SciTech Connect (OSTI)

    Fischer, Peter

    2015-01-08

    Although magnetic imaging with polarized x-rays is a rather young scientific discipline, the various types of established x-ray microscopes have already taken an important role in state-of-the-art characterization of the properties and behavior of spin textures in advanced materials. The opportunities ahead will be to obtain in a unique way indispensable multidimensional information of the structure, dynamics and composition of scientifically interesting and technologically relevant magnetic materials.

  3. A New Scheme for Stigmatic X-ray Imaging with Large Magnification...

    Office of Scientific and Technical Information (OSTI)

    F; Beiersdorfer, P; Wang, E; Sanchez del Rio, M; Caughey, T A 70 PLASMA PHYSICS AND FUSION TECHNOLOGY X-ray Imaging X-ray Imaging This paper describes a new x-ray scheme for...

  4. In situ laser heating and radial synchrotron x-ray diffraction in a diamond anvil cell

    SciTech Connect (OSTI)

    Kunz, Martin; Caldwell, Wendel A.; Miyagi, Lowell; Wenk, Hans-Rudolf

    2007-06-15

    We report a first combination of diamond anvil cell radial x-ray diffraction with in situ laser heating. The laser-heating setup of ALS beamline 12.2.2 was modified to allow one-sided heating of a sample in a diamond anvil cell with an 80 W yttrium lithium fluoride laser while probing the sample with radial x-ray diffraction. The diamond anvil cell is placed with its compressional axis vertical, and perpendicular to the beam. The laser beam is focused onto the sample from the top while the sample is probed with hard x-rays through an x-ray transparent boron-epoxy gasket. The temperature response of preferred orientation of (Fe,Mg)O is probed as a test experiment. Recrystallization was observed above 1500 K, accompanied by a decrease in stress.

  5. Quality experimental and calculated powder x-ray diffraction

    SciTech Connect (OSTI)

    Sullenger, D.B.; Cantrell, J.S.; Beiter, T.A.; Tomlin, D.W.

    1996-08-01

    For several years, we have submitted quality powder XRD patterns to the International Centre for Diffraction Data for inclusion as reference standards in their Powder Diffraction File. The procedure followed is described; examples used are {beta}-UH{sub 3}, {alpha}- BaT{sub 2}, alpha-lithium disilicate ({alpha}-Li{sub 2}Si{sub 2}O{sub 5}), and 2,2`,4,4`,6,6`hexanitroazobenzene-III (HNAB-III).

  6. Quantitative determination of mineral composition by powder X-ray diffraction

    DOE Patents [OSTI]

    Pawloski, Gayle A.

    1986-01-01

    An external standard intensity ratio method is used for quantitatively determining mineralogic compositions of samples by x-ray diffraction. The method uses ratios of x-ray intensity peaks from a single run. Constants are previously determined for each mineral which is to be quantitatively measured. Ratios of the highest intensity peak of each mineral to be quantified in the sample and the highest intensity peak of a reference mineral contained in the sample are used to calculate sample composition.

  7. Quantitative determination of mineral composition by powder x-ray diffraction

    DOE Patents [OSTI]

    Pawloski, G.A.

    1984-08-10

    An external standard intensity ratio method is used for quantitatively determining mineralogic compositions of samples by x-ray diffraction. The method uses ratios of x-ray intensity peaks from a single run. Constants are previously determined for each mineral which is to be quantitatively measured. Ratios of the highest intensity peak of each mineral to be quantified in the sample and the highest intensity peak of a reference mineral contained in the sample are used to calculate sample composition.

  8. X-ray diffraction and EXAFS analysis of materials for lithium-based rechargeable batteries

    SciTech Connect (OSTI)

    Sharkov, M. D., E-mail: mischar@mail.ioffe.ru; Boiko, M. E.; Bobyl, A. V.; Ershenko, E. M.; Terukov, E. I. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Zubavichus, Y. V. [National Research Centre Kurchatov Institute (Russian Federation)

    2013-12-15

    Lithium iron phosphate LiFePO{sub 4} (triphylite) and lithium titanate Li{sub 4}Ti{sub 5}O{sub 12} are used as components of a number of active materials in modern rechargeable batteries. Samples of these materials are studied by X-ray diffraction and extended X-ray absorption fine structure (EXAFS) spectroscopy. Hypotheses about the phase composition of the analyzed samples are formulated.

  9. Development of a High Resolution X-Ray Imaging Crystal Spectrometer...

    Office of Scientific and Technical Information (OSTI)

    The affects of x-ray and nuclear-radiation background on the measurement uncertainties are ... Resource Relation: Related Information: Invention Disclosure. Title X-ray Imaging Crystal ...

  10. A general theory of interference fringes in x-ray phase grating imaging

    SciTech Connect (OSTI)

    Yan, Aimin; Wu, Xizeng E-mail: liu@ou.edu; Liu, Hong E-mail: liu@ou.edu

    2015-06-15

    Purpose: The authors note that the concept of the Talbot self-image distance in x-ray phase grating interferometry is indeed not well defined for polychromatic x-rays, because both the grating phase shift and the fractional Talbot distances are all x-ray wavelength-dependent. For x-ray interferometry optimization, there is a need for a quantitative theory that is able to predict if a good intensity modulation is attainable at a given grating-to-detector distance. In this work, the authors set out to meet this need. Methods: In order to apply Fourier analysis directly to the intensity fringe patterns of two-dimensional and one-dimensional phase grating interferometers, the authors start their derivation from a general phase space theory of x-ray phase-contrast imaging. Unlike previous Fourier analyses, the authors evolved the Wigner distribution to obtain closed-form expressions of the Fourier coefficients of the intensity fringes for any grating-to-detector distance, even if it is not a fractional Talbot distance. Results: The developed theory determines the visibility of any diffraction order as a function of the grating-to-detector distance, the phase shift of the grating, and the x-ray spectrum. The authors demonstrate that the visibilities of diffraction orders can serve as the indicators of the underlying interference intensity modulation. Applying the theory to the conventional and inverse geometry configurations of single-grating interferometers, the authors demonstrated that the proposed theory provides a quantitative tool for the grating interferometer optimization with or without the Talbot-distance constraints. Conclusions: In this work, the authors developed a novel theory of the interference intensity fringes in phase grating x-ray interferometry. This theory provides a quantitative tool in design optimization of phase grating x-ray interferometers.

  11. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ordering of spins that gives rise to chiral vortex phases ("skyrmions") in magnetic systems. The ability to directly image the Bragg planes or surfaces where such order...

  12. Developments in time-resolved high pressure x-ray diffraction using rapid compression and decompression

    SciTech Connect (OSTI)

    Smith, Jesse S.; Sinogeikin, Stanislav V.; Lin, Chuanlong; Rod, Eric; Bai, Ligang; Shen, Guoyin

    2015-07-15

    Complementary advances in high pressure research apparatus and techniques make it possible to carry out time-resolved high pressure research using what would customarily be considered static high pressure apparatus. This work specifically explores time-resolved high pressure x-ray diffraction with rapid compression and/or decompression of a sample in a diamond anvil cell. Key aspects of the synchrotron beamline and ancillary equipment are presented, including source considerations, rapid (de)compression apparatus, high frequency imaging detectors, and software suitable for processing large volumes of data. A number of examples are presented, including fast equation of state measurements, compression rate dependent synthesis of metastable states in silicon and germanium, and ultrahigh compression rates using a piezoelectric driven diamond anvil cell.

  13. Diffraction crystals for sagittally focusing x-rays

    DOE Patents [OSTI]

    Ice, G.E.; Sparks, C.J. Jr.

    1982-06-07

    The invention is a new type of diffraction crystal designed for sagittally focusing photons of various energies. The invention is based on the discovery that such focusing is not obtainable with conventional crystals because of distortion resulting from anticlastic curvature. The new crystal comprises a monocrystalline base having a front face contoured for sagittally focusing photons and a back face provided with rigid, upstanding, stiffening ribs restricting anticlastic curvature. When mounted in a suitable bending device, the reflecting face of the crystal can be adjusted to focus photons having any one of a range of energies.

  14. Diffraction crystal for sagittally focusing x-rays

    DOE Patents [OSTI]

    Ice, Gene E.; Sparks, Jr., Cullie J.

    1984-01-01

    The invention is a new type of diffraction crystal designed for sagittally focusing photons of various energies. The invention is based on the discovery that such focusing is not obtainable with conventional crystals because of distortion resulting from anticlastic curvature. The new crystal comprises a monocrystalline base having a front face contoured for sagittally focusing photons and a back face provided with rigid, upstanding, stiffening ribs restricting anticlastic curvature. When mounted in a suitable bending device, the reflecting face of the crystal can be adjusted to focus photons having any one of a range of energies.

  15. Crystallization and preliminary X-ray diffraction study of porcine carboxypeptidase B

    SciTech Connect (OSTI)

    Akparov, V. Kh.; Timofeev, V. I. Kuranova, I. P.

    2015-05-15

    Crystals of porcine pancreatic carboxypeptidase B have been grown in microgravity by the capillary counter-diffusion method through a gel layer. The X-ray diffraction study showed that the crystals belong to sp. gr. P4{sub 1}2{sub 1}2 and have the following unit-cell parameters: a = b = 79.58 Å, c = 100.51 Å; α = β = γ = 90.00°. The X-ray diffraction data set suitable for the determination of the three-dimensional structure at atomic resolution was collected from one of the grown crystals at the SPring 8 synchrotron facility to 0.98 Å resolution.

  16. Imaging single cells in a beam of live cyanobacteria with an X-ray laser

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schot, Gijs, vander

    2015-02-10

    This entry contains ten diffraction patterns, and reconstructions images, of individual living Cyanobium gracile cells, imaged using 517 eV X-rays from the LCLS XFEL. The Hawk software package was used for phasing. The Uppsala aerosol injector was used for sample injection, assuring very low noise levels. The cells come from various stages of the cell cycle, and were imaged in random orientations.

  17. In situ laser heating and radial synchrotron X-ray diffraction ina diamond anvil cell

    SciTech Connect (OSTI)

    Kunz, Martin; Caldwell, Wendel A.; Miyagi, Lowell; Wenk,Hans-Rudolf

    2007-06-29

    We report a first combination of diamond anvil cell radialx-ray diffraction with in situ laser heating. The laser-heating setup ofALS beamline 12.2.2 was modified to allow one-sided heating of a samplein a diamond anvil cell with an 80 W yttrium lithium fluoride laser whileprobing the sample with radial x-ray diffraction. The diamond anvil cellis placed with its compressional axis vertical, and perpendicular to thebeam. The laser beam is focused onto the sample from the top while thesample is probed with hard x-rays through an x-ray transparentboron-epoxy gasket. The temperature response of preferred orientation of(Fe,Mg)O is probed as a test experiment. Recrystallization was observedabove 1500 K, accompanied by a decrease in stress.

  18. Phase Effects on Mesoscale Object X-ray Absorption Images

    SciTech Connect (OSTI)

    Martz, Jr., H E; Aufderheide, M B; Barty, A; Lehman, S K; Kozioziemski, B J; Schneberk, D J

    2004-09-24

    At Lawrence Livermore National Laboratory particular emphasis is being placed on the nondestructive characterization (NDC) of 'mesoscale' objects.[Martz and Albrecht 2003] We define mesoscale objects as objects that have mm extent with {micro}m features. Here we confine our discussions to x-ray imaging methods applicable to mesoscale object characterization. The goal is object recovery algorithms including phase to enable emerging high-spatial resolution x-ray imaging methods to ''see'' inside or image mesoscale-size materials and objects. To be successful our imaging characterization effort must be able to recover the object function to one micrometer or better spatial resolution over a few millimeters field-of-view with very high contrast.

  19. Proton-induced x-ray fluorescence CT imaging

    SciTech Connect (OSTI)

    Bazalova-Carter, Magdalena Xing, Lei; Ahmad, Moiz; Matsuura, Taeko; Takao, Seishin; Shirato, Hiroki; Umegaki, Kikuo; Matsuo, Yuto; Fahrig, Rebecca

    2015-02-15

    Purpose: To demonstrate the feasibility of proton-induced x-ray fluorescence CT (pXFCT) imaging of gold in a small animal sized object by means of experiments and Monte Carlo (MC) simulations. Methods: First, proton-induced gold x-ray fluorescence (pXRF) was measured as a function of gold concentration. Vials of 2.2 cm in diameter filled with 0%–5% Au solutions were irradiated with a 220 MeV proton beam and x-ray fluorescence induced by the interaction of protons, and Au was detected with a 3 × 3 mm{sup 2} CdTe detector placed at 90° with respect to the incident proton beam at a distance of 45 cm from the vials. Second, a 7-cm diameter water phantom containing three 2.2-diameter vials with 3%–5% Au solutions was imaged with a 7-mm FWHM 220 MeV proton beam in a first generation CT scanning geometry. X-rays scattered perpendicular to the incident proton beam were acquired with the CdTe detector placed at 45 cm from the phantom positioned on a translation/rotation stage. Twenty one translational steps spaced by 3 mm at each of 36 projection angles spaced by 10° were acquired, and pXFCT images of the phantom were reconstructed with filtered back projection. A simplified geometry of the experimental data acquisition setup was modeled with the MC TOPAS code, and simulation results were compared to the experimental data. Results: A linear relationship between gold pXRF and gold concentration was observed in both experimental and MC simulation data (R{sup 2} > 0.99). All Au vials were apparent in the experimental and simulated pXFCT images. Specifically, the 3% Au vial was detectable in the experimental [contrast-to-noise ratio (CNR) = 5.8] and simulated (CNR = 11.5) pXFCT image. Due to fluorescence x-ray attenuation in the higher concentration vials, the 4% and 5% Au contrast were underestimated by 10% and 15%, respectively, in both the experimental and simulated pXFCT images. Conclusions: Proton-induced x-ray fluorescence CT imaging of 3%–5% gold solutions in a

  20. A laboratory based system for Laue micro x-ray diffraction

    SciTech Connect (OSTI)

    Advanced Light Source; Tamura, Nobumichi; Lynch, P.A.; Stevenson, A.W.; Liang, D.; Parry, D.; Wilkins, S.; Tamura, N.

    2007-02-28

    A laboratory diffraction system capable of illuminating individual grains in a polycrystalline matrix is described. Using a microfocus x-ray source equipped with a tungsten anode and prefigured monocapillary optic, a micro-x-ray diffraction system with a 10 mum beam was developed. The beam profile generated by the ellipsoidal capillary was determined using the"knife edge" approach. Measurement of the capillary performance, indicated a beam divergence of 14 mrad and a useable energy bandpass from 5.5 to 19 keV. Utilizing the polychromatic nature of the incident x-ray beam and application of the Laue indexing software package X-Ray Micro-Diffraction Analysis Software, the orientation and deviatoric strain of single grains in a polycrystalline material can be studied. To highlight the system potential the grain orientation and strain distribution of individual grains in a polycrystalline magnesium alloy (Mg 0.2 wt percent Nd) was mapped before and after tensile loading. A basal (0002) orientation was identified in the as-rolled annealed alloy; after tensile loading some grains were observed to undergo an orientation change of 30 degrees with respect to (0002). The applied uniaxial load was measured as an increase in the deviatoric tensile strain parallel to the load axis (37 References).

  1. Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array

    SciTech Connect (OSTI)

    Lyubimov, Artem Y.; Murray, Thomas D.; Koehl, Antoine; Araci, Ismail Emre; Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Cohen, Aina E.; Soltis, S. Michael; Baxter, Elizabeth L.; Brewster, Aaron S.; Sauter, Nicholas K.; Brunger, Axel T.; Berger, James M.

    2015-03-27

    X-ray free-electron lasers (XFELs) promise to enable the collection of interpretable diffraction data from samples that are refractory to data collection at synchrotron sources. At present, however, more efficient sample-delivery methods that minimize the consumption of microcrystalline material are needed to allow the application of XFEL sources to a wide range of challenging structural targets of biological importance. Here, a microfluidic chip is presented in which microcrystals can be captured at fixed, addressable points in a trap array from a small volume (<10 µl) of a pre-existing slurry grown off-chip. The device can be mounted on a standard goniostat for conducting diffraction experiments at room temperature without the need for flash-cooling. Proof-of-principle tests with a model system (hen egg-white lysozyme) demonstrated the high efficiency of the microfluidic approach for crystal harvesting, permitting the collection of sufficient data from only 265 single-crystal still images to permit determination and refinement of the structure of the protein. This work shows that microfluidic capture devices can be readily used to facilitate data collection from protein microcrystals grown in traditional laboratory formats, enabling analysis when cryopreservation is problematic or when only small numbers of crystals are available. Such microfluidic capture devices may also be useful for data collection at synchrotron sources.

  2. Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lyubimov, Artem Y.; Murray, Thomas D.; Koehl, Antoine; Araci, Ismail Emre; Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Cohen, Aina E.; Soltis, S. Michael; Baxter, Elizabeth L.; Brewster, Aaron S.; et al

    2015-03-27

    X-ray free-electron lasers (XFELs) promise to enable the collection of interpretable diffraction data from samples that are refractory to data collection at synchrotron sources. At present, however, more efficient sample-delivery methods that minimize the consumption of microcrystalline material are needed to allow the application of XFEL sources to a wide range of challenging structural targets of biological importance. Here, a microfluidic chip is presented in which microcrystals can be captured at fixed, addressable points in a trap array from a small volume (<10 µl) of a pre-existing slurry grown off-chip. The device can be mounted on a standard goniostat formore » conducting diffraction experiments at room temperature without the need for flash-cooling. Proof-of-principle tests with a model system (hen egg-white lysozyme) demonstrated the high efficiency of the microfluidic approach for crystal harvesting, permitting the collection of sufficient data from only 265 single-crystal still images to permit determination and refinement of the structure of the protein. This work shows that microfluidic capture devices can be readily used to facilitate data collection from protein microcrystals grown in traditional laboratory formats, enabling analysis when cryopreservation is problematic or when only small numbers of crystals are available. Such microfluidic capture devices may also be useful for data collection at synchrotron sources.« less

  3. Cyclic olefin homopolymer-based microfluidics for protein crystallization and in situ X-ray diffraction

    SciTech Connect (OSTI)

    Emamzadah, Soheila [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Department of Biochemistry, University of Geneva, CH-1205 Geneva (Switzerland); Petty, Tom J. [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Biomedical Graduate Studies Genomics and Computational Biology Group, University of Pennsylvania, Philadelphia, PA 19104 (United States); De Almeida, Victor [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Department of Biochemistry, University of Geneva, CH-1205 Geneva (Switzerland); Nishimura, Taisuke [Department of Plant Biology, University of Geneva, CH-1205 Geneva (Switzerland); Joly, Jacques; Ferrer, Jean-Luc [Institut de Biologie Structurale J.-P. Ebel, CEA-CNRS-University J. Fourier, 38027 Grenoble CEDEX 1 (France); Halazonetis, Thanos D., E-mail: thanos.halazonetis@unige.ch [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Department of Biochemistry, University of Geneva, CH-1205 Geneva (Switzerland)

    2009-09-01

    A cyclic olefin homopolymer-based microfluidics system has been established for protein crystallization and in situ X-ray diffraction. Microfluidics is a promising technology for the rapid identification of protein crystallization conditions. However, most of the existing systems utilize silicone elastomers as the chip material which, despite its many benefits, is highly permeable to water vapour. This limits the time available for protein crystallization to less than a week. Here, the use of a cyclic olefin homopolymer-based microfluidics system for protein crystallization and in situ X-ray diffraction is described. Liquid handling in this system is performed in 2 mm thin transparent cards which contain 500 chambers, each with a volume of 320 nl. Microbatch, vapour-diffusion and free-interface diffusion protocols for protein crystallization were implemented and crystals were obtained of a number of proteins, including chicken lysozyme, bovine trypsin, a human p53 protein containing both the DNA-binding and oligomerization domains bound to DNA and a functionally important domain of Arabidopsis Morpheus molecule 1 (MOM1). The latter two polypeptides have not been crystallized previously. For X-ray diffraction analysis, either the cards were opened to allow mounting of the crystals on loops or the crystals were exposed to X-rays in situ. For lysozyme, an entire X-ray diffraction data set at 1.5 resolution was collected without removing the crystal from the card. Thus, cyclic olefin homopolymer-based microfluidics systems have the potential to further automate protein crystallization and structural genomics efforts.

  4. Alignment of an x-Ray Imager Line of Sight in the National Ignition...

    Office of Scientific and Technical Information (OSTI)

    Alignment of an x-Ray Imager Line of Sight in the National Ignition Facility (NIF) Target ... Title: Alignment of an x-Ray Imager Line of Sight in the National Ignition Facility (NIF) ...

  5. Radiation Hardening of Gated X-ray Imagers for the National Ignition...

    Office of Scientific and Technical Information (OSTI)

    Radiation Hardening of Gated X-ray Imagers for the National Ignition Facility Citation Details In-Document Search Title: Radiation Hardening of Gated X-ray Imagers for the National ...

  6. Alignment of an x-Ray Imager Line of Sight in the National Ignition...

    Office of Scientific and Technical Information (OSTI)

    Conference: Alignment of an x-Ray Imager Line of Sight in the National Ignition Facility ... Citation Details In-Document Search Title: Alignment of an x-Ray Imager Line of Sight in ...

  7. X-ray imaging for studying behavior of liquids at high pressures...

    Office of Scientific and Technical Information (OSTI)

    X-ray imaging for studying behavior of liquids at high pressures and high temperatures using Paris-Edinburgh press Citation Details In-Document Search Title: X-ray imaging for ...

  8. Wide-angle point-to-point x-ray imaging with almost arbitrarily...

    Office of Scientific and Technical Information (OSTI)

    Wide-angle point-to-point x-ray imaging with almost arbitrarily large angles of incidence Citation Details In-Document Search Title: Wide-angle point-to-point x-ray imaging with ...

  9. Objectives and layout of a high-resolution x-ray imaging crystal...

    Office of Scientific and Technical Information (OSTI)

    x-ray imaging crystal spectrometer for the large helical device Citation Details In-Document Search Title: Objectives and layout of a high-resolution x-ray imaging ...

  10. A New Scheme for Stigmatic X-ray Imaging with Large Magnification...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: A New Scheme for Stigmatic X-ray Imaging with Large Magnification Citation Details In-Document Search Title: A New Scheme for Stigmatic X-ray Imaging with Large ...

  11. X-ray imaging crystal spectroscopy for use in plasma transport...

    Office of Scientific and Technical Information (OSTI)

    X-ray imaging crystal spectroscopy for use in plasma transport research Citation Details In-Document Search Title: X-ray imaging crystal spectroscopy for use in plasma transport ...

  12. Development of an x-ray imaging system for the Laser Megajoule...

    Office of Scientific and Technical Information (OSTI)

    Development of an x-ray imaging system for the Laser Megajoule (LMJ) Citation Details In-Document Search Title: Development of an x-ray imaging system for the Laser Megajoule (LMJ) ...

  13. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Wednesday, 25 November 2009 00:00 Magnetic...

  14. Atomic data for the ITER Core Imaging X-ray Spectrometer (Conference...

    Office of Scientific and Technical Information (OSTI)

    Atomic data for the ITER Core Imaging X-ray Spectrometer Citation Details In-Document Search Title: Atomic data for the ITER Core Imaging X-ray Spectrometer You are accessing a ...

  15. X-ray tests of a two-dimensional stigmatic imaging scheme with...

    Office of Scientific and Technical Information (OSTI)

    X-ray tests of a two-dimensional stigmatic imaging scheme with variable magnifications Citation Details In-Document Search Title: X-ray tests of a two-dimensional stigmatic imaging ...

  16. Fast soft x-ray images of magnetohydrodynamic phenomena in NSTX...

    Office of Scientific and Technical Information (OSTI)

    Fast soft x-ray images of magnetohydrodynamic phenomena in NSTX Citation Details In-Document Search Title: Fast soft x-ray images of magnetohydrodynamic phenomena in NSTX A variety ...

  17. A high-resolution imaging x-ray crystal spectrometer for high...

    Office of Scientific and Technical Information (OSTI)

    A high-resolution imaging x-ray crystal spectrometer for high energy density plasmas Citation Details In-Document Search Title: A high-resolution imaging x-ray crystal spectrometer ...

  18. A high-resolution imaging X-ray crystal spectrometer for high...

    Office of Scientific and Technical Information (OSTI)

    A high-resolution imaging X-ray crystal spectrometer for high energy density (HED) plasmas Citation Details In-Document Search Title: A high-resolution imaging X-ray crystal ...

  19. Fiber fed x-ray/gamma ray imaging apparatus

    DOE Patents [OSTI]

    Hailey, C.J.; Ziock, K.P.

    1992-06-02

    X-ray/gamma ray imaging apparatus is disclosed for detecting the position, energy, and intensity of x-ray/gamma ray radiation comprising scintillation means disposed in the path of such radiation and capable of generating photons in response to such radiation; first photodetection means optically bonded to the scintillation means and capable of generating an electrical signal indicative of the intensity, and energy of the radiation detected by the scintillation means; second photodetection means capable of generating an electrical signal indicative of the position of the radiation in the radiation pattern; and means for optically coupling the scintillation means to the second photodetection means. The photodetection means are electrically connected to control and storage means which may also be used to screen out noise by rejecting a signal from one photodetection means not synchronized to a signal from the other photodetection means; and also to screen out signals from scattered radiation. 6 figs.

  20. Fiber fed x-ray/gamma ray imaging apparatus

    DOE Patents [OSTI]

    Hailey, Charles J.; Ziock, Klaus-Peter

    1992-01-01

    X-ray/gamma ray imaging apparatus is disclosed for detecting the position, energy, and intensity of x-ray/gamma ray radiation comprising scintillation means disposed in the path of such radiation and capable of generating photons in response to such radiation; first photodetection means optically bonded to the scintillation means and capable of generating an electrical signal indicative of the intensity, and energy of the radiation detected by the scintillation means; second photodetection means capable of generating an electrical signal indicative of the position of the radiation in the radiation pattern; and means for optically coupling the scintillation means to the second photodetection means. The photodetection means are electrically connected to control and storage means which may also be used to screen out noise by rejecting a signal from one photodetection means not synchronized to a signal from the other photodetection means; and also to screen out signals from scattered radiation.

  1. Real-time Studies of Shocked Polycrystalline Materials with Single-Pulse X-ray Diffraction

    SciTech Connect (OSTI)

    Dane V. Morgan

    2011-05-25

    Characteristic K-α x-rays used for single-pulse XRD are conventionally produced by a 37-stage high-voltage Marx pulse generator coupled to a vacuum needle-and-washer x-ray diode via coaxial transmission line. A large field-of-view x-ray image plate detection system typically enables observation of several Debye-Scherrer rings. Recently, we have developed a fiber-optic reducer, coupled to a CCD camera, to obtain low-noise, large field-of-view images. The direct beam spot is produced by bremsstrahlung radiation attenuated by a twomillimeter tungsten beam stop. Determination of the direct beam position is necessary to perform the ring integration.

  2. Simulations of in situ x-ray diffraction from uniaxially compressed highly textured polycrystalline targets

    SciTech Connect (OSTI)

    McGonegle, David Wark, Justin S.; Higginbotham, Andrew; Milathianaki, Despina; Remington, Bruce A.

    2015-08-14

    A growing number of shock compression experiments, especially those involving laser compression, are taking advantage of in situ x-ray diffraction as a tool to interrogate structure and microstructure evolution. Although these experiments are becoming increasingly sophisticated, there has been little work on exploiting the textured nature of polycrystalline targets to gain information on sample response. Here, we describe how to generate simulated x-ray diffraction patterns from materials with an arbitrary texture function subject to a general deformation gradient. We will present simulations of Debye-Scherrer x-ray diffraction from highly textured polycrystalline targets that have been subjected to uniaxial compression, as may occur under planar shock conditions. In particular, we study samples with a fibre texture, and find that the azimuthal dependence of the diffraction patterns contains information that, in principle, affords discrimination between a number of similar shock-deformation mechanisms. For certain cases, we compare our method with results obtained by taking the Fourier transform of the atomic positions calculated by classical molecular dynamics simulations. Illustrative results are presented for the shock-induced α–ϵ phase transition in iron, the α–ω transition in titanium and deformation due to twinning in tantalum that is initially preferentially textured along [001] and [011]. The simulations are relevant to experiments that can now be performed using 4th generation light sources, where single-shot x-ray diffraction patterns from crystals compressed via laser-ablation can be obtained on timescales shorter than a phonon period.

  3. Goniometer-based femtosecond X-ray diffraction of mutant 30S ribosomal subunit crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dao, E. Han; Sierra, Raymond G.; Laksmono, Hartawan; Lemke, Henrik T.; Alonso-Mori, Roberto; Coey, Aaron; Larsen, Kevin; Baxter, Elizabeth L.; Cohen, Aina E.; Soltis, S. Michael; et al

    2015-04-30

    In this work, we collected radiation-damage-free data from a set of cryo-cooled crystals for a novel 30S ribosomal subunit mutant using goniometer-based femtosecond crystallography. Crystal quality assessment for these samples was conducted at the X-ray Pump Probe end-station of the Linac Coherent Light Source (LCLS) using recently introduced goniometer-based instrumentation. These 30S subunit crystals were genetically engineered to omit a 26-residue protein, Thx, which is present in the wild-type Thermus thermophilus 30S ribosomal subunit. We are primarily interested in elucidating the contribution of this ribosomal protein to the overall 30S subunit structure. To assess the viability of this study, femtosecondmore » X-ray diffraction patterns from these crystals were recorded at the LCLS during a protein crystal screening beam time. During our data collection, we successfully observed diffraction from these difficult-to-grow 30S ribosomal subunit crystals. Most of our crystals were found to diffract to low resolution, while one crystal diffracted to 3.2 Å resolution. These data suggest the feasibility of pursuing high-resolution data collection as well as the need to improve sample preparation and handling in order to collect a complete radiation-damage-free data set using an X-ray Free Electron Laser.« less

  4. Goniometer-based femtosecond X-ray diffraction of mutant 30S ribosomal subunit crystals

    SciTech Connect (OSTI)

    Dao, E. Han; Sierra, Raymond G.; Laksmono, Hartawan; Lemke, Henrik T.; Alonso-Mori, Roberto; Coey, Aaron; Larsen, Kevin; Baxter, Elizabeth L.; Cohen, Aina E.; Soltis, S. Michael; DeMirci, Hasan

    2015-04-30

    In this work, we collected radiation-damage-free data from a set of cryo-cooled crystals for a novel 30S ribosomal subunit mutant using goniometer-based femtosecond crystallography. Crystal quality assessment for these samples was conducted at the X-ray Pump Probe end-station of the Linac Coherent Light Source (LCLS) using recently introduced goniometer-based instrumentation. These 30S subunit crystals were genetically engineered to omit a 26-residue protein, Thx, which is present in the wild-type Thermus thermophilus 30S ribosomal subunit. We are primarily interested in elucidating the contribution of this ribosomal protein to the overall 30S subunit structure. To assess the viability of this study, femtosecond X-ray diffraction patterns from these crystals were recorded at the LCLS during a protein crystal screening beam time. During our data collection, we successfully observed diffraction from these difficult-to-grow 30S ribosomal subunit crystals. Most of our crystals were found to diffract to low resolution, while one crystal diffracted to 3.2 Å resolution. These data suggest the feasibility of pursuing high-resolution data collection as well as the need to improve sample preparation and handling in order to collect a complete radiation-damage-free data set using an X-ray Free Electron Laser.

  5. Final report: high resolution lensless 3D imaging of nanostructures with coherent x-rays

    SciTech Connect (OSTI)

    Jacobsen, Chris

    2014-12-07

    Final report on the project "High resolution lensless 3D imaging of nanostructures with coherent x-rays"

  6. An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Howells, M. R.; Beetz, T.; Chapman, H. N.; Cui, C.; Holton, J. M.; Jacobsen, C. J.; Kirz, J.; Lima, E.; Marchesini, S.; Miao, H.; et al

    2008-11-17

    X-ray diffraction microscopy (XDM) is a new form of x-ray imaging that is being practiced at several third-generation synchrotron-radiation x-ray facilities. Nine years have elapsed since the technique was first introduced and it has made rapid progress in demonstrating high-resolution three-dimensional imaging and promises few-nm resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, and it is expected that the principal limitation to resolution will be radiation damage for life science and the coherent power of available x-ray sources for material science. In this paper wemore » address the question of the role of radiation damage. We use a statistical analysis based on the so-called "dose fractionation theorem" of Hegerl and Hoppe to calculate the dose needed to make an image of a single life-science sample by XDM with a given resolution. We find that for simply-shaped objects the needed dose scales with the inverse fourth power of the resolution and present experimental evidence to support this finding. To determine the maximum tolerable dose we have assembled a number of data taken from the literature plus some measurements of our own which cover ranges of resolution that are not well covered otherwise. The conclusion of this study is that, based on the natural contrast between protein and water and "Rose-criterion" image quality, one should be able to image a frozen-hydrated biological sample using XDM at a resolution of about 10 nm.« less

  7. X-ray Image Bank Open for Business - NERSC Center News, Feb 22...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    use light sources to shoot intense x-ray beams into molecules, such as proteins, in order to understand their shapes and structures. The resulting diffraction patterns are...

  8. Application of x-ray imaging to oil refinery processes

    SciTech Connect (OSTI)

    Gamblin, B.R.; Newton, D.; Smith, G.B.

    1996-12-31

    X-ray imaging is a non-intrusive method of visualizing the flow patterns of rapidly changing multiphase systems and is based on the variation in the absorbance of X-rays by the different phases. BP has applied the X-ray technique to a variety of problems encountered within the oil and petrochemical industries in which two or three phases are present e.g. Fluid Catalytic Cracking (riser, stripper, regenerator) and three phase systems such as slurry bubble column reactors. In general, to obtain the maximum productivity from these units it is essential to optimize the contacting between a catalyst and a process fluid or fluids. This work reports on laboratory experimental work in which full scale refinery components were visualized in order to characterize the existing designs. Modified designs were then tested and evaluated before implementation on the refinery unit. Economic assessments of some of the benefits which can be realized in an oil refinery as a result of such design improvements are also presented. 3 refs., 1 fig.

  9. Elimination of higher-order diffraction using zigzag transmission grating in soft x-ray region

    SciTech Connect (OSTI)

    Zang, H. P.; Wang, C. K.; Gao, Y. L.; Zhou, W. M.; Kuang, L. Y.; Wei, L.; Fan, W.; Zhang, W. H.; Zhao, Z. Q.; Cao, L. F.; Gu, Y. Q.; Zhang, B. H.; Jiang, G.; Zhu, X. L.; Xie, C. Q.; Zhao, Y. D.; Cui, M. Q.

    2012-03-12

    We present a realization of the sinusoidal transmission function using a series of zigzag-profiled strips where the transmission takes on the binary values 0 and 1 in a two-dimensional distribution. A zigzag transmission grating of 1000 line/mm has been fabricated and demonstrated on the soft x-ray beam of synchrotron radiation. The axial single-order diffraction indicates that the zigzag transmission grating is adequate for spectroscopic application.

  10. Precise orientation of single crystals by a simple x-ray diffraction rocking curve method

    SciTech Connect (OSTI)

    Doucette, L.D.; Pereira da Cunha, M.; Lad, R.J.

    2005-03-01

    A simple method has been developed for accurately measuring the crystallographic orientation of a single crystal boule, employing a conventional four-circle x-ray diffraction arrangement in the rocking curve mode which relaxes the need for precise instrument and/or reference alignment. By acquiring a total of eight rocking curve measurements at specific orientations about the specimen azimuth, the absolute miscut angle between a crystal surface and the desired crystallographic plane can be resolved to within {+-}0.01 deg.

  11. Measuring the x-ray resolving power of bent potassium acid phthalate diffraction crystals

    SciTech Connect (OSTI)

    Haugh, M. J. Jacoby, K. D.; Wu, M.; Loisel, G. P.

    2014-11-15

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories in Albuquerque, New Mexico. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a double crystal diffractometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  12. Experimental developments to obtain real-time x-ray diffraction measurements in plate impact experiments

    SciTech Connect (OSTI)

    Gupta, Y.M.; Zimmerman, K.A.; Rigg, P.A.; Zaretsky, E.B.; Savage, D.M.; Bellamy, P.M.

    1999-10-01

    An experimental facility was developed to obtain real-time, quantitative, x-ray diffraction data in laboratory plate impact experiments. A powder gun, to generate plane wave loading in samples, was designed and built specifically to permit flash x-ray diffraction measurements in shock-compression experiments. Spatial resolution and quality of the diffracted signals were improved significantly over past attempts through partial collimation of the incident beam and the use of two-dimensional detectors to record data from shocked crystals. The experimental configuration and synchronization issues are discussed, and relevant details of the x-ray system and the powder gun are described. Representative results are presented from experiments designed to determine unit cell compression in shock-compressed LiF single crystals subjected to both elastic and elastic-plastic deformation, respectively. The developments described here are expected to be useful for examining lattice deformation and structural changes in shock wave compression studies. {copyright} {ital 1999 American Institute of Physics.}

  13. Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading

    SciTech Connect (OSTI)

    Lambert, P. K.; Hustedt, C. J.; Zhao, M.; Ananiadis, A. G.; Hufnagel, T. C.; Vecchio, K. S.; Huskins, E. L.; Casem, D. T.; Gruner, S. M.; Tate, M. W.; Philipp, H. T.; Purohit, P.; Weiss, J. T.; Woll, A. R.; Kannan, V.; Ramesh, K. T.; Kenesei, P.; Okasinski, J. S.; Almer, J.

    2014-09-15

    We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of ∼10{sup 3}–10{sup 4} s{sup −1} in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10–20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (∼40 μs) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation.

  14. Multilayer graphene stacks grown by different methods-thickness measurements by X-ray diffraction, Raman spectroscopy and optical transmission

    SciTech Connect (OSTI)

    Tokarczyk, M. Kowalski, G.; Kępa, H.; Grodecki, K.; Drabińska, A.; Strupiński, W.

    2013-12-15

    X-ray diffraction, Raman spectroscopy and Optical absorption estimates of the thickness of graphene multi layer stacks (number of graphene layers) are presented for three different growth techniques. The objective of this work was focused on comparison and reconciliation of the two already widely used methods for thickness estimates (Raman and Absorption) with the calibration of the X-ray method as far as Scherer constant K is concerned and X-ray based Wagner-Aqua extrapolation method.

  15. X-ray third-order nonlinear dynamical diffraction in a crystal

    SciTech Connect (OSTI)

    Balyan, M. K.

    2015-12-15

    The dynamic diffraction of an X-ray wave in a crystal with a third-order nonlinear response to external field strength has been theoretically investigated. General equations for the wave propagation in crystal and nonlinear Takagi equations for both ideal and deformed crystals are derived. Integrals of motion are determined for the nonlinear problem of dynamic diffraction. The results of the numerical calculations of reflectivity in the symmetric Laue geometry for an incident plane wave and the intensity distributions on the output crystal surface for a point source are reported as an example.

  16. A versatile high-resolution x-ray imager (HRXI) for laser-plasma...

    Office of Scientific and Technical Information (OSTI)

    x-ray imager (HRXI) devoted to laser-plasma experiments combines two state-of-the-art technologies developed in France: a high-resolution x-ray microscope and a high-speed...

  17. Imaging Antifungal Drug Molecules in Action using Soft X-Ray...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    development. Cell CAT Scans: 3-D Cell Imaging Routine medical x rays, such as chest x rays, can be used to identify a number of diseases. But this technique only produces...

  18. A NOVEL X-RAY IMAGING CRYSTAL SPECTROMETER FOR DOPPLER MEASUREMENTS...

    Office of Scientific and Technical Information (OSTI)

    X-RAY IMAGING CRYSTAL SPECTROMETER FOR DOPPLER MEASUREMENTS OF ION TEMPERATURE AND PLASMA ROTATION VELOCITY PROFILES Citation Details In-Document Search Title: A NOVEL X-RAY ...

  19. Magnetic imaging with full-field soft X-ray microscopies (Journal...

    Office of Scientific and Technical Information (OSTI)

    X-ray microscopies Citation Details In-Document Search Title: Magnetic imaging with full-field soft X-ray microscopies You are accessing a document from the Department of ...

  20. A Versatile High-Resolution X-Ray Imager (HRXI) for Laser-Plasma...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: A Versatile High-Resolution X-Ray Imager (HRXI) for Laser-Plasma Experiments on OMEGA Citation Details In-Document Search Title: A Versatile High-Resolution X-Ray ...

  1. X-Ray Line-Shape Diagnostics and Novel Stigmatic Imaging Schemes...

    Office of Scientific and Technical Information (OSTI)

    X-Ray Line-Shape Diagnostics and Novel Stigmatic Imaging Schemes for the National Ignition Facility Citation Details In-Document Search Title: X-Ray Line-Shape Diagnostics and ...

  2. Real-time, high-resolution x-ray diffraction measurements on shocked crystals at a synchrotron facility

    SciTech Connect (OSTI)

    Gupta, Y. M.; Turneaure, Stefan J.; Perkins, K.; Zimmerman, K.; Arganbright, N.; Shen, G.; Chow, P.

    2012-12-15

    The Advanced Photon Source (APS) at Argonne National Laboratory was used to obtain real-time, high-resolution x-ray diffraction measurements to determine the microscopic response of shock-compressed single crystals. Disk shaped samples were subjected to plane shock wave compression by impacting them with half-inch diameter, flat-faced projectiles. The projectiles were accelerated to velocities ranging between 300 and 1200 m/s using a compact powder gun designed specifically for use at a synchrotron facility. The experiments were designed to keep the sample probed volume under uniaxial strain and constant stress for a duration longer than the 153.4 ns spacing between x-ray bunches. X-rays from a single pulse (<100 ps duration) out of the periodic x-ray pulses emitted by the synchrotron were used for the diffraction measurements. A synchronization and x-ray detection technique was developed to ensure that the measured signal was obtained unambiguously from the desired x-ray pulse incident on the sample while the sample was in a constant uniaxial strain state. The synchronization and x-ray detection techniques described can be used for a variety of x-ray measurements on shock compressed solids and liquids at the APS. Detailed procedures for applying the Bragg-Brentano parafocusing approach to single crystals at the APS are presented. Analytic developments to determine the effects of crystal substructure and non-ideal geometry on the diffraction pattern position and shape are presented. Representative real-time x-ray diffraction data, indicating shock-induced microstructural changes, are presented for a shock-compressed Al(111) sample. The experimental developments presented here provided, in part, the impetus for the Dynamic Compression Sector (DCS) currently under development at the APS. Both the synchronization/x-ray detection methods and the analysis equations for high-resolution single crystal x-ray diffraction can be used at the DCS.

  3. Continuous motion scan ptychography: Characterization for increased speed in coherent x-ray imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deng, Junjing; Nashed, Youssef S. G.; Chen, Si; Phillips, Nicholas W.; Peterka, Tom; Ross, Rob; Vogt, Stefan; Jacobsen, Chris; Vine, David J.

    2015-02-23

    Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The objects complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous fly-scan mode for ptychographic data collection in whichmorethe sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.less

  4. X-ray diffraction in the pulsed laser heated diamond anvil cell

    SciTech Connect (OSTI)

    Goncharov, Alexander F.; Struzhkin, Viktor V.; Dalton, D. Allen; Prakapenka, Vitali B.; Kantor, Innokenty; Rivers, Mark L.

    2010-11-15

    We have developed in situ x-ray synchrotron diffraction measurements of samples heated by a pulsed laser in the diamond anvil cell at pressure up to 60 GPa. We used an electronically modulated 2-10 kHz repetition rate, 1064-1075 nm fiber laser with 1-100 {mu}s pulse width synchronized with a gated x-ray detector (Pilatus) and time-resolved radiometric temperature measurements. This enables the time domain measurements as a function of temperature in a microsecond time scale (averaged over many events, typically more than 10 000). X-ray diffraction data, temperature measurements, and finite element calculations with realistic geometric and thermochemical parameters show that in the present experimental configuration, samples 4 {mu}m thick can be continuously temperature monitored (up to 3000 K in our experiments) with the same level of axial and radial temperature uniformities as with continuous heating. We find that this novel technique offers a new and convenient way of fine tuning the maximum sample temperature by changing the pulse width of the laser. This delicate control, which may also prevent chemical reactivity and diffusion, enables accurate measurement of melting curves, phase changes, and thermal equations of state.

  5. Automated high pressure cell for pressure jump x-ray diffraction

    SciTech Connect (OSTI)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M.; Terrill, Nick J.; Rogers, Sarah E.

    2010-06-15

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  6. Dimensionality and noise in energy selective x-ray imaging

    SciTech Connect (OSTI)

    Alvarez, Robert E.

    2013-11-15

    Purpose: To develop and test a method to quantify the effect of dimensionality on the noise in energy selective x-ray imaging.Methods: The Cramr-Rao lower bound (CRLB), a universal lower limit of the covariance of any unbiased estimator, is used to quantify the noise. It is shown that increasing dimensionality always increases, or at best leaves the same, the variance. An analytic formula for the increase in variance in an energy selective x-ray system is derived. The formula is used to gain insight into the dependence of the increase in variance on the properties of the additional basis functions, the measurement noise covariance, and the source spectrum. The formula is also used with computer simulations to quantify the dependence of the additional variance on these factors. Simulated images of an object with three materials are used to demonstrate the trade-off of increased information with dimensionality and noise. The images are computed from energy selective data with a maximum likelihood estimator.Results: The increase in variance depends most importantly on the dimension and on the properties of the additional basis functions. With the attenuation coefficients of cortical bone, soft tissue, and adipose tissue as the basis functions, the increase in variance of the bone component from two to three dimensions is 1.4 10{sup 3}. With the soft tissue component, it is 2.7 10{sup 4}. If the attenuation coefficient of a high atomic number contrast agent is used as the third basis function, there is only a slight increase in the variance from two to three basis functions, 1.03 and 7.4 for the bone and soft tissue components, respectively. The changes in spectrum shape with beam hardening also have a substantial effect. They increase the variance by a factor of approximately 200 for the bone component and 220 for the soft tissue component as the soft tissue object thickness increases from 1 to 30 cm. Decreasing the energy resolution of the detectors increases

  7. X-ray diffraction study of short-period AlN/GaN superlattices

    SciTech Connect (OSTI)

    Kyutt, R. N. Shcheglov, M. P.; Ratnikov, V. V.; Yagovkina, M. A.; Davydov, V. Yu.; Smirnov, A. N.; Rozhavskaya, M. M.; Zavarin, E. E.; Lundin, V. V.

    2013-12-15

    The structure of short-period hexagonal GaN/AlN superlattices (SLs) has been investigated by X-ray diffraction. The samples have been grown by metalorganic vapor-phase epitaxy (MOVPE) in a horizontal reactor at a temperature of 1050°C on (0001)Al{sub 2}O{sub 3} substrates using GaN and AlN buffer layers. The SL period changes from 2 to 6 nm, and the thickness of the structure varies in a range from 0.3 to 1 μm. The complex of X-ray diffraction techniques includes a measurement of θ-2θ rocking curves of symmetric Bragg reflection, the construction of intensity maps for asymmetric reflections, a measurement and analysis of peak broadenings in different diffraction geometries, a precise measurement of lattice parameters, and the determination of radii of curvature. The thickness and strain of separate SL layers are determined by measuring the θ-2θ rocking curves subsequent simulation. It is shown that most SL samples are completely relaxed as a whole. At the same time, relaxation is absent between sublayers, which is why strains in the AlN and GaN sublayers (on the order of 1.2 × 10{sup −2}) have different signs. An analysis of diffraction peak half-widths allows us to determine the densities of individual sets of dislocations and observe their change from buffer layers to SLs.

  8. 7 Resolution in Protein 2-Dimentional-Crystal X-Ray Diffraction at Linac Coherent Light Source

    SciTech Connect (OSTI)

    Pedrini, Bill; Tsai, Ching-Ju; Capitani, Guido; Padeste, Celestino; Hunter, Mark; Zatsepin, Nadia A.; Barty, Anton; Benner, Henry; Boutet, Sebastien; Feld, Geoffrey K.; Hau-Riege, Stefan; Kirian, Rick; Kupitz, Christopher; Messerschmidt, Marc; Ogren, John I.; Pardini, Tommaso; Segelke, Brent; Williams, Garth J.; Spence , John C.; Abela, Rafael; Coleman, Matthew A.; Evans, James E.; Schertler, Gebhard; Frank, Matthias; Li, Xiao-Dan

    2014-06-09

    Membrane proteins arranged as two-dimensional (2D) crystals in the lipid en- vironment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. X-ray diffraction from individual 2D crystals did not represent a suitable investigation tool because of radiation damage. The recent availability of ultrashort pulses from X-ray Free Electron Lasers (X-FELs) has now provided a mean to outrun the damage. Here we report on measurements performed at the LCLS X-FEL on bacteriorhodopsin 2D crystals mounted on a solid support and kept at room temperature. By merg- ing data from about a dozen of single crystal diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 A, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase of resolution. The presented results pave the way to further X-FEL studies on 2D crystals, which may include pump-probe experiments at subpicosecond time resolution.

  9. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOE Patents [OSTI]

    Perez-Mendez, Victor; Goodman, Claude A.

    1996-01-01

    Apparatus for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels.

  10. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOE Patents [OSTI]

    Perez-Mendez, V.; Goodman, C.A.

    1996-08-20

    Apparatus is disclosed for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels. 12 figs.

  11. Data preparation and evaluation techniques for x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Steinbrener, Jan; Nelson, Johanna; Huang, Xiaojing; Marchesini, Stefano; Shapiro, David; Turner, Joshua J.; Jacobsen, Chris

    2010-01-01

    The post-experiment processing of X-ray Diffraction Microscopy data is often time-consuming and difficult. This is mostly due to the fact that even if a preliminary result has been reconstructed, there is no definitive answer as to whether or not a better result with more consistently retrieved phases can still be obtained. In addition, we show here that the first step in data analysis, the assembly of two-dimensional diffraction patterns from a large set of raw diffraction data, is crucial to obtaining reconstructions of highest possible consistency. We have developed software that automates this process and results in consistently accurate diffractionmore » patterns. We have furthermore derived some criteria of validity for a tool commonly used to assess the consistency of reconstructions, the phase retrieval transfer function, and suggest a modified version that has improved utility for judging reconstruction quality.« less

  12. Fixture for supporting and aligning a sample to be analyzed in an x-ray diffraction apparatus

    DOE Patents [OSTI]

    Green, L.A.; Heck, J.L. Jr.

    1985-04-23

    A fixture is provided for supporting and aligning small samples of material on a goniometer for x-ray diffraction analysis. A sample-containing capillary is accurately positioned for rotation in the x-ray beam by selectively adjusting the fixture to position the capillary relative to the x and y axes thereof to prevent wobble and position the sample along the z axis or the axis of rotation. By employing the subject fixture relatively small samples of materials can be analyzed in an x-ray diffraction apparatus previously limited to the analysis of much larger samples.

  13. Fixture for supporting and aligning a sample to be analyzed in an X-ray diffraction apparatus

    DOE Patents [OSTI]

    Green, Lanny A.; Heck, Jr., Joaquim L.

    1987-01-01

    A fixture is provided for supporting and aligning small samples of material on a goniometer for X-ray diffraction analysis. A sample-containing capillary is accurately positioned for rotation in the X-ray beam by selectively adjusting the fixture to position the capillary relative to the x and y axes thereof to prevent wobble and position the sample along the z axis or the axis of rotation. By employing the subject fixture relatively small samples of materials can be analyzed in an X-ray diffraction apparatus previously limited to the analysis of much larger samples.

  14. Atomic motion of resonantly vibrating quartz crystal visualized by time-resolved X-ray diffraction

    SciTech Connect (OSTI)

    Aoyagi, Shinobu; Osawa, Hitoshi; Sugimoto, Kunihisa; Fujiwara, Akihiko

    2015-11-16

    Transient atomic displacements during a resonant thickness-shear vibration of AT-cut α-quartz are revealed by time-resolved X-ray diffraction under an alternating electric field. The lattice strain resonantly amplified by the alternating electric field is ∼10{sup 4} times larger than that induced by a static electric field. The resonantly amplified lattice strain is achieved by fast displacements of oxygen anions and collateral resilient deformation of Si−O−Si angles bridging rigid SiO{sub 4} tetrahedra, which efficiently transduce electric energy into elastic energy.

  15. Beyond 3-D X-ray Imaging: Methodology Development and Applications in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Science | Stanford Synchrotron Radiation Lightsource Beyond 3-D X-ray Imaging: Methodology Development and Applications in Material Science Thursday, September 6, 2012 - 10:45am SLAC, Bldg. 137, Room 226 Yijin Liu Seminar There was a revolutionary development of X-ray imaging over the past few decades. The most substantial advancements in this field are closely related to the availability of the new generation of X-ray sources and the advanced X-ray optics. The advanced X-ray Optics

  16. The Coherent X-ray Imaging (CXI) Instrument at the Linac Coherent Light Source (LCLS)

    SciTech Connect (OSTI)

    Boutet, Sebastien; Williams, Garth J.; ,

    2011-08-16

    The Linac Coherent Light Source (LCLS) has become the first ever operational hard X-ray Free Electron Laser in 2009. It will operate as a user facility capable of delivering unique research opportunities in multiple fields of science. The LCLS and the LCLS Ultrafast Science Instruments (LUSI) construction projects are developing instruments designed to make full use of the capabilities afforded by the LCLS beam. One such instrument is being designed to utilize the LCLS coherent beam to image with high resolution any sub-micron object. This instrument is called the Coherent X-ray Imaging (CXI) instrument. This instrument will provide a flexible optical system capable of tailoring key beam parameters for the users. A suite of shot-to-shot diagnostics will also be provided to characterize the beam on every pulse. The provided instrumentation will include multi-purpose sample environments, sample delivery and a custom detector capable of collecting 2D data at 120 Hz. In this article, the LCLS will be briefly introduced along with the technique of Coherent X-ray Diffractive Imaging (CXDI). A few examples of scientific opportunities using the CXI instrument will be described. Finally, the conceptual layout of the instrument will be presented along with a description of the key requirements for the overall system and specific devices required.

  17. Hyperspectral image reconstruction for x-ray fluorescence tomography

    SciTech Connect (OSTI)

    Grsoy, Do?a; Bier, Tekin; Lanzirotti, Antonio; Newville, Matthew G.; De Carlo, Francesco

    2015-01-01

    A penalized maximum-likelihood estimation is proposed to perform hyperspectral (spatio-spectral) image reconstruction for X-ray fluorescence tomography. The approach minimizes a Poisson-based negative log-likelihood of the observed photon counts, and uses a penalty term that has the effect of encouraging local continuity of model parameter estimates in both spatial and spectral dimensions simultaneously. The performance of the reconstruction method is demonstrated with experimental data acquired from a seed of arabidopsis thaliana collected at the 13-ID-E microprobe beamline at the Advanced Photon Source. The resulting element distribution estimates with the proposed approach show significantly better reconstruction quality than the conventional analytical inversion approaches, and allows for a high data compression factor which can reduce data acquisition times remarkably. In particular, this technique provides the capability to tomographically reconstruct full energy dispersive spectra without compromising reconstruction artifacts that impact the interpretation of results.

  18. Hyperspectral image reconstruction for x-ray fluorescence tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Grsoy, Do?a; Bier, Tekin; Lanzirotti, Antonio; Newville, Matthew G.; De Carlo, Francesco

    2015-01-01

    A penalized maximum-likelihood estimation is proposed to perform hyperspectral (spatio-spectral) image reconstruction for X-ray fluorescence tomography. The approach minimizes a Poisson-based negative log-likelihood of the observed photon counts, and uses a penalty term that has the effect of encouraging local continuity of model parameter estimates in both spatial and spectral dimensions simultaneously. The performance of the reconstruction method is demonstrated with experimental data acquired from a seed of arabidopsis thaliana collected at the 13-ID-E microprobe beamline at the Advanced Photon Source. The resulting element distribution estimates with the proposed approach show significantly better reconstruction quality than the conventional analytical inversionmoreapproaches, and allows for a high data compression factor which can reduce data acquisition times remarkably. In particular, this technique provides the capability to tomographically reconstruct full energy dispersive spectra without compromising reconstruction artifacts that impact the interpretation of results.less

  19. Characteristics of a molybdenum X-pinch X-ray source as a probe source for X-ray diffraction studies

    SciTech Connect (OSTI)

    Zucchini, F.; Chauvin, C.; Combes, P.; Sol, D.; Loyen, A.; Roques, B.; Grunenwald, J.; Bland, S. N.

    2015-03-15

    X-ray emission from a molybdenum X-pinch has been investigated as a potential probe for the high pressure states made in dynamic compression experiments. Studies were performed on a novel 300 kA, 400 ns generator which coupled the load directly to a low inductance capacitor and switch combination. The X-pinch load consisted of 4 crossed molybdenum wires of 13 μm diameter, crossed at an angle of 62°. The load height was 10 mm. An initial x-ray burst generated at the wire crossing point, radiated in the soft x-ray range (hυ < 10 keV). This was followed, 2–5 ns later, by at least one harder x-ray burst (hυ > 10 keV) whose power ranged from 1 to 7 MW. Time integrated spectral measurements showed that the harder bursts were dominated by K-alpha emission; though, a lower level, wide band continuum up to at least 30 keV was also present. Initial tests demonstrated that the source was capable of driving Laue diffraction experiments, probing uncompressed samples of LiF and aluminium.

  20. Investigation of the hard x-ray background in backlit pinhole imagers

    SciTech Connect (OSTI)

    Fein, J. R. Holloway, J. P.; Peebles, J. L.; Keiter, P. A.; Klein, S. R.; Kuranz, C. C.; Manuel, M. J.-E.; Drake, R. P.

    2014-11-15

    Hard x-rays from laser-produced hot electrons (>10 keV) in backlit pinhole imagers can give rise to a background signal that decreases signal dynamic range in radiographs. Consequently, significant uncertainties are introduced to the measured optical depth of imaged plasmas. Past experiments have demonstrated that hard x-rays are produced when hot electrons interact with the high-Z pinhole substrate used to collimate the softer He-? x-ray source. Results are presented from recent experiments performed on the OMEGA-60 laser to further study the production of hard x-rays in the pinhole substrate and how these x-rays contribute to the background signal in radiographs. Radiographic image plates measured hard x-rays from pinhole imagers with Mo, Sn, and Ta pinhole substrates. The variation in background signal between pinhole substrates provides evidence that much of this background comes from x-rays produced in the pinhole substrate itself. A Monte Carlo electron transport code was used to model x-ray production from hot electrons interacting in the pinhole substrate, as well as to model measurements of x-rays from the irradiated side of the targets, recorded by a bremsstrahlung x-ray spectrometer. Inconsistencies in inferred hot electron distributions between the different pinhole substrate materials demonstrate that additional sources of hot electrons beyond those modeled may produce hard x-rays in the pinhole substrate.

  1. Dark-field X-ray imaging of unsaturated water transport in porous materials

    SciTech Connect (OSTI)

    Yang, F. E-mail: michele.griffa@empa.ch; Di Bella, C.; Lura, P.; Prade, F.; Herzen, J.; Sarapata, A.; Pfeiffer, F.; Griffa, M. E-mail: michele.griffa@empa.ch; Jerjen, I.

    2014-10-13

    We introduce in this Letter an approach to X-ray imaging of unsaturated water transport in porous materials based upon the intrinsic X-ray scattering produced by the material microstructural heterogeneity at a length scale below the imaging system spatial resolution. The basic principle for image contrast creation consists in a reduction of such scattering by permeation of the porosity by water. The implementation of the approach is based upon X-ray dark-field imaging via Talbot-Lau interferometry. The proof-of-concept is provided by performing laboratory-scale dark-field X-ray radiography of mortar samples during a water capillary uptake experiment. The results suggest that the proposed approach to visualizing unsaturated water transport in porous materials is complementary to neutron and magnetic resonance imaging and alternative to standard X-ray imaging, the latter requiring the use of contrast agents because based upon X-ray attenuation only.

  2. Crystallization and preliminary X-ray diffraction study of phosphoribosyl pyrophosphate synthetase from E. Coli

    SciTech Connect (OSTI)

    Timofeev, V. I. Abramchik, Yu. A. Zhukhlistova, N. E. Kuranova, I. P.

    2015-09-15

    Enzymes of the phosphoribosyl pyrophosphate synthetase family (PRPPS, EC 2.7.6.1) catalyze the formation of 5-phosphoribosyl pyrophosphate (5-PRPP) from adenosine triphosphate and ribose 5-phosphate. 5-Phosphoribosyl pyrophosphate is an important intermediate in the synthesis of purine, pyrimidine, and pyridine nucleotides, as well as of the amino acids histidine and tryptophan. The crystallization conditions for E. coli PRPPS were found by the vapor-diffusion technique and were optimized to apply the capillary counter-diffusion technique. The X-ray diffraction data set was collected from the crystals grown by the counter-diffusion technique using a synchrotron radiation source to 3.1-Å resolution. The crystals of PRPPS belong to sp. gr. P6{sub 3}22 and have the following unit-cell parameters: a = b = 104.44 Å, c = 124.98 Å, α = β = 90°, γ = 120°. The collected X-ray diffraction data set is suitable for the solution of the three-dimensional structure of PRPPS at 3.1-Å resolution.

  3. Dynamic in-situ X-ray Diffraction of Catalyzed Alanates

    SciTech Connect (OSTI)

    Gross, K.J.; Sandrock, G.; Thomas, G.J.

    2000-11-01

    The discovery that hydrogen can be reversible absorbed and desorbed from NaAlH{sub 4} by the addition of catalysts has created an entirely new prospect for lightweight hydrogen storage. NaAlH{sub 4} releases hydrogen through the following set of decomposition reactions: NaAlH{sub 4} {r_arrow} 1/3({alpha}-Na{sub 3}AlH{sub 6}) + 2/3Al + H{sub 2} {r_arrow} NaH + Al + 3/2H{sub 2}. These decomposition reactions as well as the reverse recombination reactions were directly observed using time-resolved in-situ x-ray powder diffraction. These measurements were performed under conditions similar to those found in PEM fuel cell operations (hydrogen absorption: 50--70 C, 10--15 bar Hz, hydrogen resorption: 80--110 C, 5--100 mbar H{sub 2}). Catalyst doping was found to dramatically improve kinetics under these conditions. In this study, the alanate was doped with a catalyst by dry ball-milling NaAlH{sub 4} with 2 mol.% solid TiCl{sub 3}. X-ray diffraction clearly showed that TiCl{sub 3} reacts with NaAlH{sub 4} to form NaCl during the doping process. Partial desorption of NaAlH{sub 4} was even observed to occur during the catalyst doping process.

  4. X-ray and neutron diffraction of Er-hydride films.

    SciTech Connect (OSTI)

    Rodriguez, Mark Andrew

    2004-10-01

    The outline of this report is: (1) structures of hexagonal Er meal, ErH{sub 2} fluorite, and molybdenum; (2) texture issues and processing effects; (3) idea of pole figure integration; and (4) promising neutron diffraction work. Summary of this report are: (1) ErD{sub 2} and ErT{sub 2} film microstructures are strongly effected by processing conditions; (2) both x-ray and neutron diffraction are being pursued to help diagnose structure/property issues regarding ErT{sub 2} films and these correlations to He retention/release; (3) texture issues are great challenges for determination of site occupancy; and (4) work on pole-figure-integration looks to have promise addressing texture issues in ErD{sub 2} and ErT{sub 2} films.

  5. Method and apparatus for molecular imaging using x-rays at resonance wavelengths

    DOE Patents [OSTI]

    Chapline, G.F. Jr.

    Holographic x-ray images are produced representing the molecular structure of a microscopic object, such as a living cell, by directing a beam of coherent x-rays upon the object to produce scattering of the x-rays by the object, producing interference on a recording medium between the scattered x-rays from the object and unscattered coherent x-rays and thereby producing holograms on the recording surface, and establishing the wavelength of the coherent x-rays to correspond with a molecular resonance of a constituent of such object and thereby greatly improving the contrast, sensitivity and resolution of the holograms as representations of molecular structures involving such constituent. For example, the coherent x-rays may be adjusted to the molecular resonant absorption line of nitrogen at about 401.3 eV to produce holographic images featuring molecular structures involving nitrogen.

  6. Method and apparatus for molecular imaging using X-rays at resonance wavelengths

    DOE Patents [OSTI]

    Chapline, Jr., George F.

    1985-01-01

    Holographic X-ray images are produced representing the molecular structure of a microscopic object, such as a living cell, by directing a beam of coherent X-rays upon the object to produce scattering of the X-rays by the object, producing interference on a recording medium between the scattered X-rays from the object and unscattered coherent X-rays and thereby producing holograms on the recording surface, and establishing the wavelength of the coherent X-rays to correspond with a molecular resonance of a constituent of such object and thereby greatly improving the contrast, sensitivity and resolution of the holograms as representations of molecular structures involving such constituent. For example, the coherent X-rays may be adjusted to the molecular resonant absorption line of nitrogen at about 401.3 eV to produce holographic images featuring molecular structures involving nitrogen.

  7. Combining X-ray Absorption and X-ray Diffraction Techniques for in Situ Studies of Chemical Transformations in Heterogeneous Catalysis: Advantages and Limitations

    SciTech Connect (OSTI)

    Frenkel, A.I.; Hanson, J.; Wang, Q.; Marinkovic, N.; Chen, J.G.; Barrio, L.; Si, R.; Lopez Camara, A.; Estrella, A.M.; Rodriguez, J.A.

    2011-08-05

    Recent advances in catalysis instrumentations include synchrotron-based facilities where time-resolved X-ray scattering and absorption techniques are combined in the same in situ or operando experiment to study catalysts at work. To evaluate the advances and limitations of this method, we performed a series of experiments at the new XAFS/XRD instrument in the National Synchrotron Light Source. Nearly simultaneous X-ray diffraction (XRD) and X-ray absorption fine-structure (XAFS) measurements of structure and kinetics of several catalysts under reducing or oxidizing conditions have been performed and carefully analyzed. For CuFe{sub 2}O{sub 4} under reducing conditions, the combined use of the two techniques allowed us to obtain accurate data on kinetics of nucleation and growth of metallic Cu. For the inverse catalyst CuO/CeO{sub 2} that underwent isothermal reduction (with CO) and oxidation (with O{sub 2}), the XAFS data measured in the same experiment with XRD revealed strongly disordered Cu species that went undetected by diffraction. These and other examples emphasize the unique sensitivity of these two complementary methods to follow catalytic processes in the broad ranges of length and time scales.

  8. Combining X-ray Absorption and X-ray Diffraction Techniques for in Situ Studies of Chemical Transformations in Heterogeneous Catalysis:Advantages and Limitations

    SciTech Connect (OSTI)

    A Frenkel; Q Wang; N Marinkovic; J Chen; L Barrio; R Si; A Lopez Camara; A Estella; J Rodriquez; J Hanson

    2011-12-31

    Recent advances in catalysis instrumentations include synchrotron-based facilities where time-resolved X-ray scattering and absorption techniques are combined in the same in situ or operando experiment to study catalysts at work. To evaluate the advances and limitations of this method, we performed a series of experiments at the new XAFS/XRD instrument in the National Synchrotron Light Source. Nearly simultaneous X-ray diffraction (XRD) and X-ray absorption fine-structure (XAFS) measurements of structure and kinetics of several catalysts under reducing or oxidizing conditions have been performed and carefully analyzed. For CuFe{sub 2}O{sub 4} under reducing conditions, the combined use of the two techniques allowed us to obtain accurate data on kinetics of nucleation and growth of metallic Cu. For the inverse catalyst CuO/CeO{sub 2} that underwent isothermal reduction (with CO) and oxidation (with O{sub 2}), the XAFS data measured in the same experiment with XRD revealed strongly disordered Cu species that went undetected by diffraction. These and other examples emphasize the unique sensitivity of these two complementary methods to follow catalytic processes in the broad ranges of length and time scales.

  9. High-pressure X-ray diffraction and X-ray emission studies on iron-bearing silicate perovskite under high pressures

    SciTech Connect (OSTI)

    Lin, Jung-Fu; Speciale, Sergio; Prakapenka, Vitali B.; Dera, Przemek; Lavina, Babara; Watson, Heather C.

    2010-06-22

    Iron-bearing silicate perovskite is believed to be the most abundant mineral of the Earth's lower mantle. Recent studies have shown that Fe{sup 2+} exists predominantly in the intermediate-spin state with a total spin number of 1 in silicate perovskite in the lower part of the lower mantle. Here we have measured the spin states of iron and the pressure-volume relation in silicate perovskite [(Mg{sub 0.6},Fe{sub 0.4})SiO{sub 3}] at pressure conditions relevant to the lowermost mantle using in situ X-ray emission and X-ray diffraction in a diamond cell. Our results showed that the intermediate-spin Fe{sup 2+} is stable in the silicate perovskite up to {approx} 125 GPa but starts to transition to the low-spin state at approximately 135 GPa. Concurrent X-ray diffraction measurements showed a decrease of approximately 1% in the unit cell volume in the silicate perovskite [(Mg{sub 0.6},Fe{sub 0.4})SiO{sub 3}], which is attributed to the intermediate-spin to the low-spin transition. The transition pressure coincides with the pressure conditions of the lowermost mantle, raising the possibility of the existence of the silicate perovskite phase with the low-spin Fe{sup 2+} across the transition from the post-perovskite to the perovskite phases in the bottom of the D{double_prime} layer.

  10. Monochromatic x-ray sampling streak imager for fast-ignitor plasma observation

    SciTech Connect (OSTI)

    Tanabe, Minoru; Fujiwara, Takashi; Fujioka, Shinsuke; Nishimura, Hiroaki; Shiraga, Hiroyuki; Azechi, Hiroshi; Mima, Kunioki

    2008-10-15

    Ultrafast two-dimensional (2D) x-ray imaging is required to investigate the dynamics of fast-heated core plasma in inertial confinement fusion research. A novel x-ray imager, consisting of two toroidally bent Bragg crystals and an ultrafast 2D x-ray imaging camera, has been demonstrated. Sequential and 2D monochromatic x-ray images of laser-imploded core plasma were obtained with a temporal resolution of 20 ps, a spatial resolution of 31 {mu}m, and a spectral resolution of over 200, simultaneously.

  11. A high-resolution imaging X-ray crystal spectrometer for intense...

    Office of Scientific and Technical Information (OSTI)

    for intense laser plasma interaction experiments Citation Details In-Document Search Title: A high-resolution imaging X-ray crystal spectrometer for intense laser plasma ...

  12. Systems and methods for detecting an image of an object using multi-beam imaging from an X-ray beam having a polychromatic distribution

    DOE Patents [OSTI]

    Parham, Christopher A; Zhong, Zhong; Pisano, Etta; Connor, Jr., Dean M

    2015-03-03

    Systems and methods for detecting an image of an object using a multi-beam imaging system from an x-ray beam having a polychromatic energy distribution are disclosed. According to one aspect, a method can include generating a first X-ray beam having a polychromatic energy distribution. Further, the method can include positioning a plurality of monochromator crystals in a predetermined position to directly intercept the first X-ray beam such that a plurality of second X-ray beams having predetermined energy levels are produced. Further, an object can be positioned in the path of the second X-ray beams for transmission of the second X-ray beams through the object and emission from the object as transmitted X-ray beams. The transmitted X-ray beams can each be directed at an angle of incidence upon one or more crystal analyzers. Further, an image of the object can be detected from the beams diffracted from the analyzer crystals.

  13. Quantitative Microstructural Imaging by Scanning Laue X-ray Micro- and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanodiffraction Quantitative Microstructural Imaging by Scanning Laue X-ray Micro- and Nanodiffraction Quantitative Microstructural Imaging by Scanning Laue X-ray Micro- and Nanodiffraction Print Monday, 20 June 2016 09:26 Synchrotron Laue x-ray microdiffraction turns 20 this year. The June 2016 issue of MRS Bulletin is dedicated to synchrotron radiation research in materials science and features a review article on the current capabilities, latest technical developments, and emerging

  14. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    SciTech Connect (OSTI)

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-08-11

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 l) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (1015 m) loaded into the chips yielded a complete, high-resolution (<1.6 ) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.

  15. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-08-11

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  16. An experimental system for high temperature X-ray diffraction studies with in situ mechanical loading

    SciTech Connect (OSTI)

    Oswald, Benjamin B.; Pagan, Darren C.; Miller, Matthew P.; Schuren, Jay C.

    2013-03-15

    An experimental system with in situ thermomechanical loading has been developed to enable high energy synchrotron x-ray diffraction studies of crystalline materials. The system applies and maintains loads of up to 2250 N in uniaxial tension or compression at a frequency of up to 100 Hz. The furnace heats the specimen uniformly up to a maximum temperature of 1200 Degree-Sign C in a variety of atmospheres (oxidizing, inert, reducing) that, combined with in situ mechanical loading, can be used to mimic processing and operating conditions of engineering components. The loaded specimen is reoriented with respect to the incident beam of x-rays using two rotational axes to increase the number of crystal orientations interrogated. The system was used at the Cornell High Energy Synchrotron Source to conduct experiments on single crystal silicon and polycrystalline Low Solvus High Refractory nickel-based superalloy. The data from these experiments provide new insights into how stresses evolve at the crystal scale during thermomechanical loading and complement the development of high-fidelity material models.

  17. Multiple x-ray diffraction to determine transverse and longitudinal lattice deformation in shocked lithium fluoride

    SciTech Connect (OSTI)

    Rigg, P. A.; Gupta, Y. M.

    2001-03-01

    Experimental and analytic developments are described that utilize multiple x-ray diffraction to determine real-time, lattice deformation in directions parallel and perpendicular to shock-wave propagation in single crystals. Using a monochromatic x-ray source, two Bragg reflections were obtained simultaneously from LiF crystals shocked along the [111] and [100] directions. Symmetry permitted the transverse lattice deformation to be determined by measuring interplanar spacing longitudinally and in one other direction. We chose this to be a [110] direction in both cases because the intensity of the (220) reflection is high and because the transverse deformation component from this measurement is relatively large. Due to the complex geometry involved, an analytic model was required to calculate the (220) peak shift under the deformation conditions of interest. This model was used both to design experiments and to analyze the results. It was determined that shock compression below 4 GPa along the [111] orientation -- which results in macroscopic elastic deformation -- produced, as expected, no transverse lattice deformation. In contrast, shock compression along the [100] orientation -- which results in macroscopic elastic-plastic deformation -- produced equal interplanar spacing changes along the longitudinal and transverse directions. The analytic developments and the implications of our results are discussed.

  18. X-ray backscatter imaging of nuclear materials

    DOE Patents [OSTI]

    Chapman, Jeffrey Allen; Gunning, John E; Hollenbach, Daniel F; Ott, Larry J; Shedlock, Daniel

    2014-09-30

    The energy of an X-ray beam and critical depth are selected to detect structural discontinuities in a material having an atomic number Z of 57 or greater. The critical depth is selected by adjusting the geometry of a collimator that blocks backscattered radiation so that backscattered X-ray originating from a depth less than the critical depth is not detected. Structures of Lanthanides and Actinides, including nuclear fuel rod materials, can be inspected for structural discontinuities such as gaps, cracks, and chipping employing the backscattered X-ray.

  19. The MPI/AIT X-ray Imager (MAXI): High speed pn-CCD's for x-ray detection

    SciTech Connect (OSTI)

    Strueder, L.; Braeuninger, H.; Meier, M.; Predehl, P.; Reppin, C.; Sterzik, M.; Truemper, J. . Inst. fuer Astrophysik); Cattaneo, P.; Hauff, D.; Lutz, G.; Schuster, K.F.; Schwarz, A. . Werner-Heisenberg-Inst. fuer Physik); Kenziorra, E.; Staubert, A. (Tuebingen

    1989-06-01

    MAXI (MPI/AIT X-RAY Imager) is part of a proposal submitted to the European Space Agency (ESA) as focal plane instrumentation of the X-ray Multi Mission (XMM). Within a collaboration of 13 European institutes we have proposed a fully depleted (sensitive) pn CCD of 280 {mu}m thickness with a homogeneous sensitive area of 36 cm{sup 2} and a pixel size of 150 {times} 150 {mu}m{sup 2} which is well matched with the telescope's angular resolution of 30 arcsec, translating to a position resolution of approximately 1 mm in the focal plane. The X-ray sensitivity is higher than 90% from 250 eV up to 10 keV, the readout time in the full frame mode of the complete focal plane will be 2 ms with a readout noise of better than 5 e{sup {minus}} (rms). Prototypes of all individual components of the camera system have been fabricated and tested. The camera concept will be presented. The measured transfer properties of the CCD and the on-chip electronics will be treated. Taking into account the coupling of the on-chip amplifier to the following front-end electronics the expected performance will be derived.

  20. Lensless Imaging of Magnetic Nanostructures by X-ray Spectro...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J. Lning, W. F. Schlotter and J. Sthr (SSRL) The unprecedented properties of X-ray free electron lasers (X-FELs) under development world wide will open the door for entirely...

  1. An Improved X-ray Diffraction Method For Cellulose Crystallinity Measurement

    SciTech Connect (OSTI)

    Ju, Xiaohui; Bowden, Mark E.; Brown, Elvie E.; Zhang, Xiao

    2015-06-01

    We show in this work a modified X-ray diffraction method to determine cellulose crystallinity index (CrI). Nanocrystalline cellulose (NCC) dervided from bleached wood pulp was used as a model substrate. Rietveld refinement was applied with consideration of March-Dollase preferred orientation at the (001) plane. In contrast to most previous methods, three distinct amorphous peaks identified from new model samples which are used to calculate CrI. A 2 theta range from 10° to 75° was found to be more suitable to determine CrI and crystallite structural parameters such as d-spacing and crystallite size. This method enables a more reliable measurement of CrI of cellulose and may be applicable to other types of cellulose polymorphs.

  2. Structural Characterization of a Plutonium Sequestering Agent Complex by Synchrotron X-ray Diffraction

    SciTech Connect (OSTI)

    Gorden, A.E.V. |; Szigethy, G.; Tiedemann, B.E.F.; Xu, J.; Shuh, D.K.; Raymond, K.N. |

    2007-07-01

    New ligands and materials are required that can coordinate, sense, and purify actinides for selective extraction and reduction of toxic, radioactive wastes from the mining and purification of actinides. The similarities in the chemical, biological transport, and distribution properties of Fe(III) and Pu(IV) inspired a bio-mimetic approach to the development of sequestering agents for actinides. A detailed evaluation of the structure and bonding of actinide coordinating ligands like these is important for the design of new selective ligand systems. Knowing the difficulty with working with the crystals resulting from these ligand systems and safe handling considerations for working with Pu, procedures were developed that utilize the Advanced Light Source of Lawrence Berkeley National Laboratory to determine the solid-state structures of Pu complexes by X-ray diffraction. (au0011tho.

  3. Quantification of thin film crystallographic orientation using X-ray diffraction with an area detector

    SciTech Connect (OSTI)

    Baker, Jessica L; Jimison, Leslie H; Mannsfeld, Stefan; Volkman, Steven; Yin, Shong; Subramanian, Vivek; Salleo, Alberto; Alivisatos, A Paul; Toney, Michael F

    2010-02-19

    As thin films become increasingly popular (for solar cells, LEDs, microelectronics, batteries), quantitative morphological information is needed to predict and optimize the film's electronic, optical and mechanical properties. This quantification can be obtained quickly and easily with X-ray diffraction using an area detector and synchrotron radiation in two simple geometries. In this paper, we describe a methodology for constructing complete pole figures for thin films with fiber texture (isotropic in-plane orientation). We demonstrate this technique on semicrystalline polymer films, self-assembled nanoparticle semiconductor films, and randomly-packed metallic nanoparticle films. This method can be immediately implemented to help understand the relationship between film processing and microstructure, enabling the development of better and less expensive electronic and optoelectronic devices.

  4. Kinetics of Methane Hydrate Decomposition Studied via in Situ Low Temperature X-ray Powder Diffraction

    SciTech Connect (OSTI)

    Everett, Susan M; Rawn, Claudia J; Keffer, David J.; Mull, Derek L; Payzant, E Andrew; Phelps, Tommy Joe

    2013-01-01

    Gas hydrates are known to have a slowed decomposition rate at ambient pressure and temperatures below the melting point of ice termed self-preservation or anomalous preservation. As hydrate exothermically decomposes, gas is released and water of the clathrate cages transforms into ice. Two regions of slowed decomposition for methane hydrate, 180 200 K and 230 260 K, were observed, and the kinetics were studied by in situ low temperature x-ray powder diffraction. The kinetic constants for ice formation from methane hydrate were determined by the Avrami model within each region and activation energies, Ea, were determined by the Arrhenius plot. Ea determined from the data for 180 200 K was 42 kJ/mol and for 230 260 K was 22 kJ/mol. The higher Ea in the colder temperature range was attributed to a difference in the microstructure of ice between the two regions.

  5. X-ray diffraction of solid tin to 1.2 TPa

    SciTech Connect (OSTI)

    Lazicki, A.; Rygg, J. R.; Coppari, F.; Smith, R.; Fratanduono, D.; Kraus, R. G.; Collins, G. W.; Briggs, R.; Braun, D. G.; Swift, D. C.; Eggert, J. H.

    2015-08-12

    In this study, we report direct in situ measurements of the crystal structure of tin between 0.12 and 1.2 TPa, the highest stress at which a crystal structure has ever been observed. Using angle-dispersive powder x-ray diffraction, we find that dynamically compressed Sn transforms to the body-centered-cubic (bcc) structure previously identified by ambient-temperature quasistatic-compression studies and by zero-kelvin density-functional theory predictions between 0.06 and 0.16 TPa. However, we observe no evidence for the hexagonal close-packed (hcp) phase found by those studies to be stable above 0.16 TPa. Instead, our results are consistent with bcc up to 1.2 TPa. We conjecture that at high temperature bcc is stabilized relative to hcp due to differences in vibrational free energy.

  6. X-ray diffraction of solid tin to 1.2 TPa

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lazicki, A.; Rygg, J. R.; Coppari, F.; Smith, R.; Fratanduono, D.; Kraus, R. G.; Collins, G. W.; Briggs, R.; Braun, D. G.; Swift, D. C.; et al

    2015-08-12

    In this study, we report direct in situ measurements of the crystal structure of tin between 0.12 and 1.2 TPa, the highest stress at which a crystal structure has ever been observed. Using angle-dispersive powder x-ray diffraction, we find that dynamically compressed Sn transforms to the body-centered-cubic (bcc) structure previously identified by ambient-temperature quasistatic-compression studies and by zero-kelvin density-functional theory predictions between 0.06 and 0.16 TPa. However, we observe no evidence for the hexagonal close-packed (hcp) phase found by those studies to be stable above 0.16 TPa. Instead, our results are consistent with bcc up to 1.2 TPa. We conjecturemore » that at high temperature bcc is stabilized relative to hcp due to differences in vibrational free energy.« less

  7. Purification, crystallization, and preliminary X-ray diffraction study of purine nucleoside phosphorylase from E. coli

    SciTech Connect (OSTI)

    Abramchik, Yu. A. Timofeev, V. I. Zhukhlistova, N. E.; Muravieva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2015-07-15

    Crystals of E. coli purine nucleoside phosphorylase were grown in microgravity by the capillary counter-diffusion method through a gel layer. The X-ray diffraction data set suitable for the determination of the three-dimensional structure at atomic resolution was collected from one crystal at the Spring-8 synchrotron facility to 0.99 Å resolution. The crystals belong to sp. gr. P2{sub 1} and have the following unit-cell parameters: a = 74.1 Å, b = 110.2 Å, c = 88.2 Å, α = γ = 90°, β = 111.08°. The crystal contains six subunits of the enzyme comprising a hexamer per asymmetric unit. The hexamer is the biological active form of E. coli. purine nucleoside phosphorylase.

  8. X-ray shearing interferometer

    DOE Patents [OSTI]

    Koch, Jeffrey A.

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  9. Apparatus for obtaining an X-ray image

    DOE Patents [OSTI]

    Watanabe, Eiji

    1979-01-01

    A computed tomography apparatus in which a fan-shaped X-ray beam is caused to pass through a section of an object, enabling absorption detection on the opposite side of the object by a detector comprising a plurality of discrete detector elements. An electron beam generating the X-ray beam by impacting upon a target is caused to rotate over the target.

  10. Image segmentation of nanoscale Zernike phase contrast X-ray computed tomography images

    SciTech Connect (OSTI)

    Kumar, Arjun S.; Mandal, Pratiti; Zhang, Yongjie; Litster, Shawn

    2015-05-14

    Zernike phase contrast is a useful technique for nanoscale X-ray computed tomography (CT) imaging of materials with a low X-ray absorption coefficient. It enhances the image contrast by phase shifting X-ray waves to create changes in amplitude. However, it creates artifacts that hinder the use of traditional image segmentation techniques. We propose an image restoration method that models the X-ray phase contrast optics and the three-dimensional image reconstruction method. We generate artifact-free images through an optimization problem that inverts this model. Though similar approaches have been used for Zernike phase contrast in visible light microscopy, this optimization employs an effective edge detection method tailored to handle Zernike phase contrast artifacts. We characterize this optics-based restoration method by removing the artifacts in and thresholding multiple Zernike phase contrast X-ray CT images to produce segmented results that are consistent with the physical specimens. We quantitatively evaluate and compare our method to other segmentation techniques to demonstrate its high accuracy.