Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wyoming thrust belt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

San Juan Montana Thrust Belt WY Thrust Belt Black Warrior  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwardsSafeguards andSan Juan Montana Thrust Belt WY

2

Structure of the eastern Red Rocks and Wind Ridge thrust faults, Wyoming: how a thrust fault gains displacement along strike  

E-Print Network [OSTI]

STRUCTURE OF THE EASTERN RED ROCKS AND WIND RIDGE THRUST FAULTS, WYOMING: HOW A THRUST FAULT GAINS DISPLACEMENT ALONG STRIKE A Thesis by BRENT STANLEY HUNTSMAN Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1983 Major Subject: Geology STRUCTURE OF THE EASTERN RED ROCKS AND WIND RIDGE THRUST FAULTS, WYOMING: HOW A THRUST FAULT GAINS DISPLACEMENT ALONG STRIKE A Thesis by BRENT STANLEY HUNTSMAN...

Huntsman, Brent Stanley

1983-01-01T23:59:59.000Z

3

Emplacement of the Moxa Arch and interaction with the Western Overthrust Belt, Wyoming  

E-Print Network [OSTI]

of MASTER OF SCIENCE May 1986 Major Subject: Geology EMPLACEMENT OF THE MOXA ARCH AND INTERACTION WITH THE WESTERN OVERTHRUST BELT, WYOMING A Thesis by DAVID HARRY KRAIG Approved as to style and content by: David V. Wiltschko (Chairman of Committee... College B. S. The University of New Mexico Chairman of Advisory Committee: Dr. David V. Wiltschko The northern segment of the Moxa Arch is modeled as uplifted along a low-angle thrust (Moxa thrust, MT). The west-verging MT cuts up section from...

Kraig, David Harry

1986-01-01T23:59:59.000Z

4

Late Cenozoic partitioning of oblique plate convergence in the Zagros fold-and-thrust belt (Iran)  

E-Print Network [OSTI]

Late Cenozoic partitioning of oblique plate convergence in the Zagros fold-and-thrust belt (Iran of oblique plate convergence in the Zagros fold-and-thrust belt (Iran), Tectonics, 25, TC3002, doi:10.1029/2005TC001860. 1. Introduction [2] The Zagros fold-and-thrust belt of southern Iran, the longest

Paris-Sud XI, Université de

5

Structural geology of the northern termination of the Crawford Thrust, western Wyoming  

E-Print Network [OSTI]

Comparison with Previous Work CONCLUSIONS. REFERENCES CITED. VITA, 106 107 116 177 136 139 144 1X LIST OF FIGUPES F IGUPE PAGE Generalized map of the Utah-Wyoming-Idaho Th!ust Belt, showing study area location.... . . . . . . . . , . . . . . . . Strati graphi c column for the Utah-Wyom; ng- Idaho !hrust Belt Examples of Listric Normal faults From Wyoming. . 14 Cross sections A-A' through C-C' tron Brown and Spang ('l9/8) 21 Cross sections D-D' through ! -F' from Brown and Spang (1978) 22...

Evans, James Paul

1983-01-01T23:59:59.000Z

6

At several localities around the world, thrust belts have developed on both sides of  

E-Print Network [OSTI]

of the Eastern Greater Antilles arc (Hispaniola and Puerto Rico), whereas a south-verging thrust belt called; Fig. 2). The Eastern Greater Antilles arc (Hispaniola and Puerto Rico) of the northeastern Caribbean

ten Brink, Uri S.

7

The Role of Climate in the Deformation of a Fold and Thrust Belt  

E-Print Network [OSTI]

and uplifted in large folds. In order to test this and related ideas in a natural example, we have compared modeled rainfall to measured thrust sheet displacement, geometry, and internal deformation in the Appalachian fold and thrust belt. We use mean annual...

Steen, Sean Kristian

2012-02-14T23:59:59.000Z

8

Gravity interpretation of the northern Overthrust Belt, Idaho and Wyoming  

E-Print Network [OSTI]

sequence thickness westward from about 15 miles (2a. l km) east of the Idaho-Wyoming State line, to a site of maximum deposition somewhere in the west (Armstrong and Oriel, 1965). In western Wyoming, Drdovic-ian rocks are represented by the Upper... 1n southeastern Idaho by the Laketown Dolomite. The lim1ted geoqraph1c extent of the Silurian is considered to be the result of subsequent erosion rather than non-deposition (Armstrong and Oriel, 1965). In western Wyoming, the Devonian age rocks...

Silver, Wendy Ilene

1979-01-01T23:59:59.000Z

9

Growth and erosion of fold-and-thrust belts with an application to the Aconcagua fold-and-thrust belt, Argentina  

E-Print Network [OSTI]

-and-thrust belt, Argentina G. E. Hilley1 and M. R. Strecker Institut fu¨r Geowissenschaften, Universita¨t Potsdam, Potsdam, Germany V. A. Ramos Department de Geologia, Universidad de Buenos Aires, Buenos Aires, Argentina in the central Andes of Argentina where wedge development over time is well constrained. We solve

Hilley, George

10

Implications of thermal events on thrust emplacement sequence in the Appalachian fold and thrust belt: Some new vitrinite reflectance data  

SciTech Connect (OSTI)

Interpretation of existing geothermometry data combined with new vitrinite reflectance data, within the framework of a detailed composite tectonic setting, elucidates the evolution of structural sequencing of thrust sheets during the Alleghanian event in the Valley and Ridge Province in Virginia. That the Pulaski thrust sheet preceded the Saltville thrust sheet in the emplacement sequence, and that both reached thermal maxima prior to, or during, respective emplacement may be inferred from vitrinite and other geothermometry data. In contrast, the Narrows and St. Clair thrust sheets probably each attained their thermal maximum after emplacement. New vitrinite reflectance data are consistent with CAI and other temperature-sensitive information heretofore ascertained in the Valley and Ridge Province and support previously established maximum temperatures of ca. 200C for strata of the Saltville thrust sheet as young as Mississippian. R{sub max} values from Mississippian coals in the Price Formation of the Saltville sheet, beneath but near the Pulaski thrust, range from 1.61% to 2.60%. At the structural front of the fold and thrust belt, a single Mississippian coal sample from the Bluefield Formation yields an R{sub max} value of 1.35%. Those coals showing highest R{sub max} values are more intensely fractured with secondary minerals filling the fractures. Warm fluids introduced during tectonic events may have played at least as important a role as that of combined stratigraphic and tectonic burial.

Lewis, S.E.; Hower, J.C. (Montana Tech, Butte (USA))

1990-11-01T23:59:59.000Z

11

Seismological evidence for crustal-scale thrusting in the Zagros mountain belt (Iran)  

E-Print Network [OSTI]

Seismological evidence for crustal-scale thrusting in the Zagros mountain belt (Iran) Anne Paul 1 Grenoble Cedex, France 2 International Institute of Earthquake Engineering and Seismology, Tehran, Iran 3 that the crust of Zagros underthrusts the crust of central Iran along the MZT considered as a crustal

Paris-Sud XI, Université de

12

Mass movement-induced fold-and-thrust belt structures in unconsolidated sediments in Lake Lucerne (Switzerland)  

E-Print Network [OSTI]

Mass movement-induced fold-and-thrust belt structures in unconsolidated sediments in Lake Lucerne-lying, unconsolidated sediment at the foot of subaqueous slopes. These deformation structures appear beneath wedges

Gilli, Adrian

13

The vertical separation of mainshock rupture and microseismicity at Qeshm island in the Zagros fold-and-thrust belt, Iran  

E-Print Network [OSTI]

-and-thrust belt, Iran E. Nissen a, , F. Yamini-Fard b , M. Tatar b , A. Gholamzadeh b,1 , E. Bergman c , J Engineering and Seismology, PO Box 19395-3913, Tehran, Iran c Department of Physics, University of Colorado rights reserved. 1. Introduction The Zagros mountains in south-western Iran are one of the most rapidly

Elliott, John

14

Thermal and Structural Constraints on the Tectonic Evolution of the Idaho-Wyoming-Utah Thrust Belt  

E-Print Network [OSTI]

temperature of 240?C ?20 (Brandon et al., 1998). Similar to apatite the amount of annealing depends on the time-temperature history of the crystal. The temperatures that zircon anneals is variable based on fission damage dosage which is a function of its... age and U concentration. Zircons with significant amounts of radiation damage anneal more quickly and have a lower annealing temperature than those that do not (Brandon et al., 1998) (Fig. 10). Generally the older the zircon grain the more likely...

Chapman, Shay Michael

2013-08-09T23:59:59.000Z

15

Thrust belt architecture of the central and southern Western Foothills of Taiwan  

E-Print Network [OSTI]

is an inverted basin. Most of the faults of the Western Foothills started their activity before the deposition of the Cholan Fm (~3.5 Ma). There is not a strict forward-breaking thrust sequence in Taiwan. Out-of-sequence faulting may be due to localized erosion...

Rodriguez-Roa, Fernando Antonio

2009-05-15T23:59:59.000Z

16

Structure and evolution of the active fold and thrust belt of southwestern Taiwan using GPS geodesy  

E-Print Network [OSTI]

the westernmost exposed thrusts in this area (Figs. 3 and 4). The Chukou fault terminates to the north at the Chuchi uunsverse fault, and to the south is inferred to merge, and transfer displacement with, the Lunhou fault (Lin, 1996) just east of the Nanliao... surveys were then conducted in early 1996 and 1997 across the island using both these new monuments and pre-existing ones. These surveys were conducted with survey-grade GPS receivers on 4 to 12 sites simultaneously, with an average site occupation time...

Hickman, John Bibb

2012-06-07T23:59:59.000Z

17

Laramide deformation of the Rocky Mountain Foreland, southeastern corner of the Bighorn Basin, Wyoming  

E-Print Network [OSTI]

opening of a spreading center near the North Pole, oriented nearly parallel to the northern border of the United States, forced the North American plate to be pushed southwestward, resulting in the apparent rotation of the stress field and formation... Mountain Foreland includes a large area extending from northern New Mexico to southwestern Montana, and fmm the eastern limits of the Black Hills of South Dakota to the thrust belt of western Wyoming (Gries, 1983). In contrast to the consistent northerly...

Derr, Douglas Neanion

2012-06-07T23:59:59.000Z

18

Conditions during syntectonic vein formation in the footwall of the Absaroka thrust fault of the Idaho-Wyoming-Utah fold and thrust belt  

E-Print Network [OSTI]

the calcite strain gauge technique of Groshong (1972, 1974). 14 Scatter plot of all measured homogenization (Th) and melting temperature (Tm) pairs. . 30 15 P-T diagram used to calculate inclusion entrapment temperatures. . . . . . 31 16 The equilibrium... types of equations of state for the chemical system under scrutiny. Variables associated with a typical equation of state include the measured Th, the measured Tm and a computed fluid density. The microcomputer program FLINCOR (Brown, 1989) was used...

Lambert, George Randall

1993-01-01T23:59:59.000Z

19

Solid bitumen at Atigun Gorge, central Brooks Range front: Implications for oil exploration in the North Slope fold and thrust belt  

SciTech Connect (OSTI)

The Atigun Gorge area of the north-central Brooks range is a structurally complex region in which a sequence of north-verging duplex structures involving Paleozoic and Mesozoic Ellesmerian continental margin deposits are structurally overlain by a south-verging thrust of Brookian foreland basin deposits of Albian age. The resulting structural triangle zone is marked by numerous small-scale thrusts involving Permian and Triassic strata in which solid bitumen, occupying fissures up to 10 cm wide and several meters in length, has been found. The presence of aromatics in the odorless, black material was confirmed by ultraviolet fluorescence following extraction in dichloromethane. The occurrence of solid bitumen at Atigun Gorge adds to a growing inventory of hydrocarbon-filled fractures found mostly in Cretaceous rocks in the Brooks Range foothills. These occurrences are consistent with a model of hydrocarbon generation beneath the northern margin of the Brooks Range. The regional distribution of vitrinite reflectance isograds suggests that the northern margin of the Brooks Range and the adjoining foreland basin deposits of the North Slope have experienced similar thermal histories. The 0.6% vitrinite reflectance isograd intersects the land surface along the southern margin of the foreland and the 2.0% isograd lies within the northern part of the range. Although these relations suggest the possibility of petroleum resources at shallow depths beneath the Brooks Range foothills, they also indicate that a considerable amount of differential uplift has occurred, probably resulting in redistribution and some leakage of any oil and gas accumulations.

Howell, D.G.; Johnsson, M.J.; Bird, K.J. (U.S. Geological Survey, Menlo Park, CA (United States))

1991-03-01T23:59:59.000Z

20

Wyomings Rosy Financial Picture  

E-Print Network [OSTI]

the Wyoming economy as coal, natural gas, oil, and trona (aeconomy in the months ahead (Mast 2009). Natural gas makes

Schuhmann, Robert A.; Skopek, Tracy A.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wyoming thrust belt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Wyomings Rosy Financial Picture  

E-Print Network [OSTI]

J. (2011b) Wyoming Clean Coal Efforts Advance, Casperadministra- tion pushes for clean-coal and carbon capture

Schuhmann, Robert A.; Skopek, Tracy A.

2012-01-01T23:59:59.000Z

22

Energy Development Opportunities for Wyoming  

SciTech Connect (OSTI)

The Wyoming Business Council, representing the states interests, is participating in a collaborative evaluation of energy development opportunities with the NGNP Industry Alliance (an industry consortium), the University of Wyoming, and the US Department of Energys Idaho National Laboratory. Three important energy-related goals are being pursued by the State of Wyoming: Ensuring continued reliable and affordable sources of energy for Wyomings industries and people Restructuring the coal economy in Wyoming Restructuring the natural gas economy in Wyoming

Larry Demick

2012-11-01T23:59:59.000Z

23

Measuring axial pump thrust  

DOE Patents [OSTI]

An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices. 1 fig.

Suchoza, B.P.; Becse, I.

1988-11-08T23:59:59.000Z

24

Measuring axial pump thrust  

DOE Patents [OSTI]

An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices.

Suchoza, Bernard P. (McMurray, PA); Becse, Imre (Washington, PA)

1988-01-01T23:59:59.000Z

25

Wyoming Natural Gas Summary  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet) Wyoming Natural3.40

26

Laramie, Wyoming December, 1999  

E-Print Network [OSTI]

://www.wsgsweb.uwyo.edu Front cover: Coalbed methane drilling rig on location, southeastern edge of the Washakie Basin, southern Wyoming. This rig is exploring for coalbed methane in coals of the Almond Formation, Mesaverde Group ........................................................... 28 Coalbed methane developments...................................................... 28 Regulatory

Laughlin, Robert B.

27

Wyoming's Budget: From Champagne to Soda Pop  

E-Print Network [OSTI]

and Skopek: Wyomings Budget: From Champagne to Soda Popconstruction money from budget cuts, Casper Star-Tribune.proposes leaner state budget. Associated Press. Neary,

Schuhmann, Robert A; Skopek, Tracy A

2011-01-01T23:59:59.000Z

28

Wyoming Water Resources Center Annual Technical Report  

E-Print Network [OSTI]

by the United States Geological Survey, State Water Resources Research Institute Program allowed the Wyoming and Natural Resources, and at Wyoming State Water Plan meetings. We attended conferences hosted by the WyomingWyoming Water Resources Center Annual Technical Report FY 1999 Introduction Research Program

29

Laterally bendable belt conveyor  

DOE Patents [OSTI]

An endless, laterally flexible and bendable belt conveyor particularly adapted for coal mining applications in facilitating the transport of the extracted coal up- or downslope and around corners in a continuous manner is disclosed. The conveying means includes a flat rubber belt reinforced along the middle portion thereof along which the major portion of the belt tension is directed so as to cause rotation of the tubular shaped belt when trammed around lateral turns thus preventing excessive belt bulging distortion between adjacent belt supports which would inhibit belt transport. Pretension induced into the fabric reinforced flat rubber belt by conventional belt take-up means supports the load conveyed when the belt conveyor is making lateral turns. The carrying and return portions of the belt are supported and formed into a tubular shape by a plurality of shapers positioned along its length. Each shaper is supported from above by a monorail and includes clusters of idler rollers which support the belt. Additional cluster rollers in each shaper permit the belt supporting roller clusters to rotate in response to the belt's operating tension imposed upon the cluster rollers by induced lateral belt friction forces. The freely rotating roller clusters thus permit the belt to twist on lateral curves without damage to itself while precluding escape of the conveyed material by effectively enclosing it in the tube-shaped, inner belt transport length.

Peterson, William J. (Coraopolis, PA)

1985-01-01T23:59:59.000Z

30

A two-dimensional finite difference model of the effects of erosion on the evolution of pore pressure within a moving thrust sheet  

E-Print Network [OSTI]

stratigraphy typical ol North American thrust belts (Figure 3) where the horizontal permeability of Layer 3 is ten times the vertical permeability. 49 23 a) Total pore pressure, b) excess pore pressure, c) ). , and d) temperature, for a stratigraphy... typical of North American thrust belts (Figure 3) where the horizontal pcrmcahility of Layer 3 is one-hundred times the vertical permeability. 50 24 a) Total pore pressure, b) excess porc prcssure, c) X, and d) tcmpcraturc, for "standard" model...

Sales, James Gregory

1994-01-01T23:59:59.000Z

31

Wyoming Natural Gas Processed in Wyoming (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet) Wyoming Natural Gas

32

CFES RESEARCH THRUSTS: Energy Storage  

E-Print Network [OSTI]

CFES RESEARCH THRUSTS: Energy Storage Wind Energy Solar Energy Smart Grids Smart Buildings For our with the student to finalize the project plan. To sponsor an Energy Scholar, a company agrees to: Assign

L, James Jian-Qiang

33

Wyoming DOE EPSCoR  

SciTech Connect (OSTI)

All of the research and human resource development projects were systemic in nature with real potential for becoming self sustaining. They concentrated on building permanent structure, such as faculty expertise, research equipment, the SEM Minority Center, and the School of Environment and Natural Resources. It was the intent of the DOE/EPSCoR project to permanently change the way Wyoming does business in energy-related research, human development for science and engineering careers, and in relationships between Wyoming industry, State Government and UW. While there is still much to be done, the DOE/EPSCoR implementation award has been successful in accomplishing that change and enhancing UW's competitiveness associated with coal utilization, electrical energy efficiency, and environmental remediation.

Gern, W.A.

2004-01-15T23:59:59.000Z

34

LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming...  

Energy Savers [EERE]

Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood What does this project...

35

Wyoming's Budget: From Champagne to Soda Pop  

E-Print Network [OSTI]

the Wyoming economy as coal, natural gas, oil, and trona (aeconomy in the months ahead (Mast, 7/4/09). Natural gas

Schuhmann, Robert A; Skopek, Tracy A

2011-01-01T23:59:59.000Z

36

,"Wyoming Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",10,"Monthly","112014","1151989" ,"Release...

37

,"Wyoming Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

38

Wyoming Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

39

Wyoming Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

40

wyoming  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve Class3a.86,77,1996 N| Updated0

Note: This page contains sample records for the topic "wyoming thrust belt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Energy Incentive Programs, Wyoming | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessin Jamaica,IdahoWyoming Energy Incentive Programs, Wyoming

42

SLH Timing Belt Powertrain  

SciTech Connect (OSTI)

The main goal of this proposal was to develop and test a novel powertrain solution for the SLH hydroEngine?, a low-cost, efficient low-head hydropower technology. Nearly two-thirds of U.S. renewable electricity is produced by hydropower (EIA 2010). According to the U.S. Department of Energy; this amount could be increased by 50% with small hydropower plants, often using already-existing dams (Hall 2004). There are more than 80,000 existing dams, and of these, less than 4% generate power (Blankinship 2009). In addition, there are over 800 irrigation districts in the U.S., many with multiple, non-power, low-head drops. These existing, non-power dams and irrigation drops could be retrofitted to produce distributed, baseload, renewable energy with appropriate technology. The problem is that most existing dams are low-head, or less than 30 feet in height (Ragon 2009). Only about 2% of the available low-head hydropower resource in the U.S. has been developed, leaving more than 70 GW of annual mean potential low-head capacity untapped (Hall 2004). Natel Energy, Inc. is developing a low-head hydropower turbine that operates efficiently at heads less than 6 meters and is cost-effective for deployment across multiple low-head structures. Because of the unique racetrack-like path taken by the prime-movers in the SLH, a flexible powertrain is required. Historically, the only viable technological solution was roller chain. Despite the having the ability to easily attach blades, roller chain is characterized by significant drawbacks, including high cost, wear, and vibration from chordal action. Advanced carbon-#12;fiber-reinforced timing belts have been recently developed which, coupled with a novel belt attachment system developed by Natel Energy, result in a large reduction in moving parts, reduced mass and cost, and elimination of chordal action for increased fatigue life. The work done in this project affirmatively addressed each of the following 3 major uncertainties concerning a timing-belt based hydroEngine ?powertrain: 1. Can a belt handle the high torques and power loads demanded by the SLH? (Yes.) 2. Can the SLH blades be mounted to belt with a connection that can withstand the loads encountered in operation? (Yes.) 3. Can the belt, with blade attachments, live through the required cyclic loading? (Yes.) The research adds to the general understanding of sustainable small hydropower systems by using innovative system testing to develop and demonstrate performance of a novel powertrain solution, enabling a new type of hydroelectric turbine to be commercially developed. The technical effectiveness of the methods investigated has been shown to be positive through an extensive design and testing process accommodating many constraints and goals, with a major emphasis on high cycle fatigue life. Economic feasibility of the innovations has been demonstrated through many iterations of design for manufacturability and cost reduction. The project is of benefit to the public because it has helped to develop a solution to a major problem -- despite the large available potential for new low-head hydropower, high capital costs and high levelized cost of electricity (LCOE) continue to be major barriers to project development. The hydroEngine? represents a significant innovation, leveraging novel fluid mechanics and mechanical configuration to allow lower-cost turbine manufacture and development of low head hydropower resources.

Schneider, Abe

2014-04-09T23:59:59.000Z

43

Wyoming Water Resources Center Annual Technical Report  

E-Print Network [OSTI]

of America, Boulder, CO. #12;Problem and Research Objectives: Coal bed methane (CBM) development, 2001). CBM extraction involves pumping methane and ground water out of coal seams. The gas and water://wwweng.uwyo.edu/civil/research/water/epmodeler.html. University of Wyoming, Laramie. 4. Wilkerson, G. V., 2002. A GIS model for evaluating the impacts of coal bed

44

National Park Service- Yellowstone National Park, Wyoming  

Broader source: Energy.gov [DOE]

Yellowstone National Park, Wyoming, has many historical sites within its boundaries. One of these is the Lamar Buffalo Ranch, a ranch that was set up in the early 1900s to breed buffalo for replacement stock within the park during a time when their numbers were very low. The ranch buildings are currently being used by the Yellowstone Association Institute for ecology classes.

45

Other Kuiper Belts  

E-Print Network [OSTI]

When a main sequence star evolves into a red giant and its Kuiper Belt Object's (KBO's) reach a temperature of about 170 K, the dust released during the rapid ice-sublimation of these cometary bodies may lead to a detectable infrared excess at 25 microns, depending upon the mass of the KBO's. Analysis of IRAS data for 66 first ascent red giants with 200 L(Sun) < L < 300 L(Sun) within 150 pc of the Sun provides an upper limit to the mass in KBO's at 45 AU orbital radius that is usually less than about 0.1 M(Earth). With improved infrared data, we may detect systems of KBO's around first ascent red giants that are analogs to our Solar System's KBO's.

M. Jura

2003-11-28T23:59:59.000Z

46

Wyoming Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0...

47

COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA  

E-Print Network [OSTI]

in the Powder River Basin in Wyoming and Montana (fig. PQ-1) is considered to be "clean coal." For the location

48

SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING  

E-Print Network [OSTI]

;PROJECT OVERVIEW ·Site Location·Site Location ·Fremont , Wyoming ·Existing Uranium Mine Permit 381C·Existing Uranium Mine Permit 381C ·Historical Operation ·Western Nuclear Crooks Gap Project ·Mined 1956 ­ 1988 and Open Pit Mining ·Current Mine Permit (381C) ·Updating POO, Reclamation Plan & Bond ·Uranium Recovery

49

EA-1581: Sand Hills Wind Project, Wyoming  

Broader source: Energy.gov [DOE]

The Bureau of Land Management, with DOEs Western Area Power Administration as a cooperating agency, was preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action had been implemented, Western would have interconnected the proposed facility to an existing transmission line. This project has been canceled.

50

Jackson, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy2005) |JMalucelliIowaWyoming: Energy Resources Jump

51

Cody, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby,Sullivan,Information Feed Jump to:Electric Coop, IncWyoming:

52

Seismic signatures of the Lodgepole fractured reservoir in Utah-Wyoming overthrust belt  

SciTech Connect (OSTI)

In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft. For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.

Parra, J.; Collier, H.; Angstman, B.

1997-08-01T23:59:59.000Z

53

Morphotectonics of the central Muertos thrust belt and Muertos Trough (northeastern Caribbean)  

E-Print Network [OSTI]

of the ongoing east­west differential motion between the Hispaniola and the Puerto Rico­Virgin Islands blocks on the north slope of the islands of Hispaniola and Puerto Rico (e.g., Larue and Ryan, 1998; Dolan et al., 1998

ten Brink, Uri S.

54

Late Cretaceous extension in the hinterland of the Sevier thrust belt,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN) JumpLarderello

55

Chemical analyses of selected thermal springs and wells in Wyoming  

SciTech Connect (OSTI)

Basic chemical data for 27 selected thermal well and springs in Wyoming are presented. The samples were gathered from 1979 through 1982 in an effort to define geothermal resources in Wyoming. The basic data for the 27 analyzed samples generally include location, temperature, flow, date analyzed, and a description of what the sample is from. The chemical analyses for the sample are listed.

Heasler, H.P.

1984-06-01T23:59:59.000Z

56

Wyoming Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet)CubicProduction

57

Wyoming Shale Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet)CubicProductionProved

58

Wyoming Carbon Capture and Storage Institute  

SciTech Connect (OSTI)

This report outlines the accomplishments of the Wyoming Carbon Capture and Storage (CCS) Technology Institute (WCTI), including creating a website and online course catalog, sponsoring technology transfer workshops, reaching out to interested parties via news briefs and engaging in marketing activities, i.e., advertising and participating in tradeshows. We conclude that the success of WCTI was hampered by the lack of a market. Because there were no supporting financial incentives to store carbon, the private sector had no reason to incur the extra expense of training their staff to implement carbon storage. ii

Nealon, Teresa

2014-06-30T23:59:59.000Z

59

DOE - Office of Legacy Management -- Wyoming  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof Energy AMDCoal_Budget_Fact_Sheet.pdfConnecticutUtahWyoming

60

Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEditWisconsin: EnergyEdison,Wind EnergyWindWyoming:

Note: This page contains sample records for the topic "wyoming thrust belt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alternative Fuels Data Center: Wyoming Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropane TankWashington Information toWyoming

62

Fuel Optimal Thrust Allocation in Dynamic Positioning  

E-Print Network [OSTI]

vessels with diesel-electric power system. In this paper the focus is on using the thrust allocation to make the diesel generators on board the vessel work more fuel efficiently, by reducing the total fuel consumption of all online diesel generators. A static model for the fuel consumption of a diesel generator

Johansen, Tor Arne

63

The evolution and hydrocarbon habitat of the Papuan fold belt, PNG  

SciTech Connect (OSTI)

After over 70 years of hydrocarbon exploration in the Papuan fold belt of PNG (Papua New Guinea) there have been a number of hydrocarbon discoveries over recent years that have confirmed its potential as a significant producing province. The Papuan basin developed during the early Mesozoic as part of the northeast corner of the Australian passive margin. The basin's tertiary evolution and the development of the Papuan fold belt within the Papuan basin has evolved in response to oblique convergence between the northerly moving Australian plate and westerly moving Pacific plate. Restacking of the Mesozoic passive margin sequence within the Papuan Basin was initiated in the early miocene by southward abduction of the Solomon Sea plate and the subsequent collision, in the late Miocene, of the Melanesian Island arc along the northeastern margin of PNG. This later collision provided the driving mechanism for the development of the papuan thrust belt. To date, all the significant hydrocarbon discoveries made within the Papuan fold belt have been located within the frontal zone of the fold belt, which is characterized by relatively simple ramp anticlines and thick-skinned inversion structures. The primary proven reservoir fairway is the Jurassic Toro formation, which is a sequence of stacked submarine bars prograding out across a shallow-marine low-gradient shelf. Geochemical analysis of produced hydrocarbons and samples collected from the many surface seeps found in the fold belt indicate two main families of oil. A model explains the distribution of hydrocarbons discovered to date, which involves Jurassic and Cretaceous source intervals and a complex history of secondary migration and entrapment. The unique technical problems associated with exploration of the Papuan fold belt leave many elements of the proven play systems uncertain, but in so doing, they present many challenges and opportunities for the future.

Dalton, D.G.; Smith, R.I.; Cawley, S.J. (BP Australia Ltd., Melbourne, Victoria (Australia))

1990-05-01T23:59:59.000Z

64

Impacts of Minnesota's Primary Seat Belt Law  

E-Print Network [OSTI]

checkpoints · Motorcycle helmet mandate · Graduated driver's licenses · Automated speed Belt Law 71% 73% 73% Sobriety Checkpoints 83% 82% 82% Motorcycle Helmet Belt Law 77% 77% 70% Sobriety Checkpoints 91% 91% 90% Motorcycle Helmet

Minnesota, University of

65

Oil springs and flat top anticlines, Carbon County Wyoming: An unusual fold pair  

SciTech Connect (OSTI)

Oil Springs Anticline, northwest of Medicine Bow, Wyoming, and located at the northeast corner of the Hanna Basin, lies near the junction of the Freezeout Hills Anticline, the Shirley thrust fault and the Flat Top Anticline. The surface fold as defined by the outcrop of the Wall Creek Sandstone Member of the Frontier Formation is disharmonic to deeper structure at the level of the Jurassic Sundance Formation. The fold is wedged between two major folds and is the result of a space problem between larger structural elements. The controlling Flat Top Anticline is an excellent example of a fold controlled by a well constrained fault in the Precambrian crystalline basement. The basement is bowed upward and outward to the northwest in the hanging wall of the Flat Top Anticline. The purpose of this paper is to describe the geologic structure of the Oil Springs and Flat Top anticlines and their relationship to the Freezeout Hills and the Hanna Basin. Commercial production of petroleum and natural gas occurs on the west flank of the Laramie-Cooper Lake Basin as far north as the northeast corner of the Hanna Basin. Stone reviewed the producing formations in the Laramie and eastern Hanna basins and noted that 11 commercial accumulations of petroleum and natural gas are directly related to anticlinal structures. Production derived from the Permian-Pennsylvanian Tensleep Sandstone in this region has a special geologic framework. Fields that produce from the Tensleep Sandstone are well defined anticlines bounded by faults or fault systems, a situation also reported by Biggs and Espach, Blackstone and in the Wyoming Geological Association Symposium. The Tensleep Sandstone reservoirs in these faulted anticlines are in juxtaposition to potential source rocks of either Jurassic or Cretaceous age in the footwalls of the faults. 17 refs., 9 figs., 1 tab.

Blackstone, D.L. Jr. (Univ. of Wyoming, Laramie, WY (United States))

1994-04-01T23:59:59.000Z

66

EA-1610: Windy Hollow Wind Project, Laramie County, Wyoming  

Broader source: Energy.gov [DOE]

This EA will evaluate the environmental impacts of a proponent request to interconnect their proposed Windy Hollow Wind Project in Laramie County, Wyoming, to DOEs Western Area Power Administrations transmission system.

67

Wyoming Coalbed Methane Proved Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

68

Wyoming Coalbed Methane Proved Reserves Extensions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

69

Wyoming Coalbed Methane Proved Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

70

Wyoming Coalbed Methane Proved Reserves Sales (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

71

Microsoft Word - Nuclear_hybrid_systems_for_Wyoming_-__final...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of primary energy resources in the forms of coal, natural gas, wind, uranium, and oil shale. Most of Wyoming's coal and gas resources are exported from the state in unprocessed...

72

Overview of Energy Development Opportunities for Wyoming  

SciTech Connect (OSTI)

An important opportunity exists for the energy future of Wyoming that will Maintain its coal industry Add substantive value to its indigenous coal and natural gas resources Improve dramatically the environmental impact of its energy production capability Increase its Gross Domestic Product These can be achieved through development of a carbon conversion industry that transforms coal and natural gas to synthetic transportation fuels, chemical feedstocks, and chemicals that are the building blocks for the chemical industry. Over the longer term, environmentally clean nuclear energy can provide the substantial energy needs of a carbon conversion industry and be part of the mix of replacement technologies for the current fleet of aging coal-fired electric power generating stations.

Larry Demick

2012-11-01T23:59:59.000Z

73

Structural analysis of the Sheep Mountain anticline, Bighorn Basin, Wyoming  

E-Print Network [OSTI]

STRUCTURAL ANALYSIS OF THE SHEEP MOUNTAIN ANTICLINE, BIGHORN BASIN, WYOMING A Thesis by JEFFREY HUGH HENNIER Submitted to the Graduate College of Texas AIIM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 1984 Major Subject: Geology STRUCTURAL ANALYSIS OF THE SHEEP MOUNTAIN ANTICLINE, BIGHORN BASIN, WYOMING A Thesis by JEFFREY HUGH HENNIER Approved as to style and content by: o n . pan (Chairman of Committee) Ear R. os sn (Member...

Hennier, Jeffrey Hugh

1984-01-01T23:59:59.000Z

74

Synchronous and Cogged Fan Belt Performance Assessment  

SciTech Connect (OSTI)

The GSA Regional GPG Team commissioned the National Renewable Energy Laboratory (NREL) to perform monitoring of cogged V-belts and synchronous belts on both a constant volume and a variable air volume fan at the Byron G. Rodgers Federal Building and U.S. Courthouse in Denver, Colorado. These motor/fan combinations were tested with their original, standard V-belts (appropriately tensioned by an operation and maintenance professional) to obtain a baseline for standard operation. They were then switched to the cogged V-belts, and finally to synchronous belts. The power consumption by the motor was normalized for both fan speed and air density changes. This was necessary to ensure that the power readings were not influenced by a change in rotational fan speed or by the power required to push denser air. Finally, energy savings and operation and maintenance savings were compiled into an economic life-cycle cost analysis of the different belt options.

Cutler, D.; Dean, J.; Acosta, J.

2014-02-01T23:59:59.000Z

75

Sodium-Copper Exchange on Wyoming Montmorillonite in Chloride, Perchlorate, Nitrate, and Sulfate Solutions  

E-Print Network [OSTI]

Sodium-Copper Exchange on Wyoming Montmorillonite in Chloride, Perchlorate, Nitrate, and Sulfate. The copper exchange capacity (CuEC) and Na-Cu exchange reactions on Wyoming montmo- rillonite were studied

Sparks, Donald L.

76

Expansion and Enhacement of the Wyoming Coalbed Methane Clearinghouse Website to the Wyoming Energy Resources Information Clearinghouse.  

SciTech Connect (OSTI)

Energy development is expanding across the United States, particularly in western states like Wyoming. Federal and state land management agencies, local governments, industry and non-governmental organizations have realized the need to access spatially-referenced data and other non-spatial information to determine the geographical extent and cumulative impacts of expanding energy development. The Wyoming Energy Resources Information Clearinghouse (WERIC) is a web-based portal which centralizes access to news, data, maps, reports and other information related to the development, management and conservation of Wyoming??s diverse energy resources. WERIC was established in 2006 by the University of Wyoming??s Ruckelshaus Institute of Environment and Natural Resources (ENR) and the Wyoming Geographic Information Science Center (WyGISC) with funding from the US Department of Energy (DOE) and the US Bureau of Land Management (BLM). The WERIC web portal originated in concept from a more specifically focused website, the Coalbed Methane (CBM) Clearinghouse. The CBM Clearinghouse effort focused only on coalbed methane production within the Powder River Basin of northeast Wyoming. The CBM Clearinghouse demonstrated a need to expand the effort statewide with a comprehensive energy focus, including fossil fuels and renewable and alternative energy resources produced and/or developed in Wyoming. WERIC serves spatial data to the greater Wyoming geospatial community through the Wyoming GeoLibrary, the WyGISC Data Server and the Wyoming Energy Map. These applications are critical components that support the Wyoming Energy Resources Information Clearinghouse (WERIC). The Wyoming GeoLibrary is a tool for searching and browsing a central repository for metadata. It provides the ability to publish and maintain metadata and geospatial data in a distributed environment. The WyGISC Data Server is an internet mapping application that provides traditional GIS mapping and analysis functionality via the web. It is linked into various state and federal agency spatial data servers allowing users to visualize multiple themes, such as well locations and core sage grouse areas, in one domain. Additionally, this application gives users the ability to download any of the data being displayed within the web map. The Wyoming Energy Map is the newest mapping application developed directly from this effort. With over a 100 different layers accessible via this mapping application, it is the most comprehensive Wyoming energy mapping application available. This application also provides the public with the ability to create cultural and wildlife reports based on any location throughout Wyoming and at multiple scales. The WERIC website also allows users to access links to federal, state, and local natural resource agency websites and map servers; research documents about energy; and educational information, including information on upcoming energy-relate conferences. The WERIC website has seen significant use by energy industry consultants, land management agencies, state and local decision-makers, non-governmental organizations and the public. Continued service to these sectors is desirable but some challenges remain in keeping the WERIC site viable. The most pressing issue is finding the human and financial resources to keep the site continually updated. Initially, the concept included offering users the ability to maintain the site themselves; however, this has proven not to be a viable option since very few people contributed. Without user contributions, the web page relied on already committed university staff to publish and link to the appropriate documents and web-pages. An option that is currently being explored to address this issue is development of a partnership with the University of Wyoming, School of Energy Resources (SER). As part of their outreach program, SER may be able to contribute funding for a full-time position dedicated to maintenance of WERIC.

Hulme, Diana; Hamerlinck, Jeffrey; Bergman, Harold; Oakleaf, Jim

2010-03-26T23:59:59.000Z

77

Secondary Production of Massive Quarks in Thrust  

E-Print Network [OSTI]

We present a factorization framework that takes into account the production of heavy quarks through gluon splitting in the thrust distribution for e+ e- --> hadrons. The explicit factorization theorems and some numerical results are displayed in the dijet region where the kinematic scales are widely separated, which can be extended systematically to the whole spectrum. We account for the necessary two-loop matrix elements, threshold corrections, and include resummation up to N3LL order. We include nonperturbative power corrections through a field theoretical shape function, and remove the O(Lambda_QCD) renormalon in the partonic soft function by appropriate mass-dependent subtractions. Our results hold for any value of the quark mass, from an infinitesimally small (merging to the known massless result) to an infinitely large one (achieving the decoupling limit). This is the first example of an application of a variable flavor number scheme to final state jets.

Andre H. Hoang; Vicent Mateu; Piotr Pietrulewicz

2014-12-22T23:59:59.000Z

78

Electronics Engineering Department Thrust Area report FY'84  

SciTech Connect (OSTI)

This report describes the work of the Electronics Engineering Department Thrust Areas for FY'84: diagnostics and microelectronic engineering; signal and control engineering; microwave and pulsed power engineering; computer-aided engineering; engineering modeling and simulation; and systems engineering. For each Thrust Area, an overview and a description of the goals and achievements of each project is provided.

Minichino, C.; Phelps, P.L. (eds.)

1984-01-01T23:59:59.000Z

79

Wyoming Natural Gas Residential Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet) Wyoming Natural

80

Wyoming Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet) Wyoming

Note: This page contains sample records for the topic "wyoming thrust belt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Wyoming Natural Gas Underground Storage Net Withdrawals (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet) WyomingFeet) Year

82

Wyoming Natural Gas Underground Storage Volume (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet) WyomingFeet)

83

NO-TILL GRAIN PRODUCTION IN WYOMING: STATUS AND POTENTIAL  

E-Print Network [OSTI]

Resources University of Wyoming ABSTRACT In dryland cropping systems, optimal yields require that nutrient in the soil compared to crop-fallow systems. This enables producers to plant two, three, or four consecutive crops, or continuously, without fallow, but water and nutrient needs are much more closely balanced

Norton, Jay B.

84

COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING  

E-Print Network [OSTI]

Chapter GQ COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

85

COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING  

E-Print Network [OSTI]

Chapter HQ COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

86

Electric filter with movable belt electrode  

DOE Patents [OSTI]

A method and apparatus for removing airborne contaminants entrained in a gas or airstream includes an electric filter characterized by a movable endless belt electrode, a grounded electrode, and a filter medium sandwiched there between. Inclusion of the movable, endless belt electrode provides the driving force for advancing the filter medium through the filter, and reduces frictional drag on the filter medium, thereby permitting a wide choice of filter medium materials. Additionally, the belt electrode includes a plurality of pleats in order to provide maximum surface area on which to collect airborne contaminants. 4 figs.

Bergman, W.

1983-09-20T23:59:59.000Z

87

Seat Belt Use Policy Outline the policy regarding use of seat belt in University of Michigan (U-M) vehicles.  

E-Print Network [OSTI]

Seat Belt Use Policy Objective Outline the policy regarding use of seat belt in University of Michigan (U-M) vehicles. Vehicle Use Policy 1. Staff members are responsible to operate U-M vehicles are adhering to the seat belt use laws when operating a U-M vehicle. 3. State of Michigan seat belt laws

Kirschner, Denise

88

A study of binary Kuiper Belt objects  

E-Print Network [OSTI]

About 105 bodies larger than 100km in diameter (Jewitt 1998) reside in the Kuiper Belt, beyond the orbit of Neptune. Since 1992 observational surveys have discovered over one thousand of these objects, believed to be fossil ...

Kern, Susan Diane

2006-01-01T23:59:59.000Z

89

Hybrid methods for interplanetary low-thrust trajectory optimization  

E-Print Network [OSTI]

Hybrid methods for interplanetary low-thrust trajectory optimization are proposed. These methods are combinations of selected, existing methods for trajectory optimization. The focus of this thesis is to obtain solutions to a class of trajectories...

Aroonwilairut, Krisada

2002-01-01T23:59:59.000Z

90

Thrust Network Analysis : exploring three-dimensional equilibrium  

E-Print Network [OSTI]

This dissertation presents Thrust Network Analysis, a new methodology for generating compression-only vaulted surfaces and networks. The method finds possible funicular solutions under gravitational loading within a defined ...

Block, Philippe (Philippe Camille Vincent)

2009-01-01T23:59:59.000Z

91

Construction and performance of an inverted pendulum thrust balance  

E-Print Network [OSTI]

The objective of the work in this thesis was to devise a means of profiling the thrust of the MIT Space Propulsion Lab's (SPL) Diverging Cusped Field (DCF) thruster and, more generally, other thrusters of similar size and ...

Tartler, Brett R. (Brett Robert)

2010-01-01T23:59:59.000Z

92

Design of high temperature high speed electromagnetic axial thrust bearing  

E-Print Network [OSTI]

DESIGN OF HIGH TEMPERATURE HIGH SPEED ELECTROMAGNETIC AXIAL THRUST BEARING A Thesis by MOHAMMAD WAQAR MOHIUDDIN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 2002 Major Subject: Mechanical Engineering DESIGN OF HIGH TEMPERATURE HIGH SPEED ELECTROMAGNETIC AXIAL THRUST BEARING A Thesis by MOHAMMAD WAQAR MOHIUDDIN Submitted to Texas A&M University in partial fulfillment...

Mohiuddin, Mohammad Waqar

2002-01-01T23:59:59.000Z

93

Kepler and the Kuiper Belt  

E-Print Network [OSTI]

The proposed field-of-view of the Kepler mission is at an ecliptic latitude of ~55 degrees, where the surface density of scattered Kuiper Belt Objects (KBOs) is a few percent that in the ecliptic plane. The rate of occultations of Kepler target stars by scattered KBOs with radii r>10km is ~10^-6 to 10^-4 per star per year, where the uncertainty reflects the current ignorance of the thickness of the scattered KBO disk and the faint-end slope of their magnitude distribution. These occultation events will last only ~0.1% of the planned t_exp=15 minute integration time, and thus will appear as single data points that deviate by tiny amounts. However, given the target photometric accuracy of Kepler, these deviations will nevertheless be highly significant, with typical signal-to-noise ratios of ~10. I estimate that 1-20 of the 10^5 main-sequence stars in Kepler's field-of-view will exhibit detectable occultations during its four-year mission. For unresolved events, the signal-to-noise of individual occultations scales as t_exp^{-1/2}, and the minimum detectable radius could be decreased by an order of magnitude to ~1 km by searching the individual 3-second readouts for occultations. I propose a number of methods by which occultation events may be differentiated from systematic effects. Kepler should measure or significantly constrain the frequency of highly-inclined, ~10 km-sized KBOs.

B. Scott Gaudi

2004-04-20T23:59:59.000Z

94

Economic Development from New Generation and Transmission in Wyoming and Colorado (Fact Sheet)  

SciTech Connect (OSTI)

This report analyzes the potential economic impacts in Colorado and Wyoming of a 225 MW natural gas fired electricity generation facility and a 900 MW wind farm constructed in Wyoming as well as a 180 mile, 345 kV transmission line that runs from Wyoming to Colorado. This report and analysis is not a forecast, but rather an estimate of economic activity associated with a hypothetical scenario.

Not Available

2013-03-01T23:59:59.000Z

95

Economic Development from New Generation and Transmission in Wyoming and Colorado  

SciTech Connect (OSTI)

This report analyzes the potential economic impacts in Colorado and Wyoming of a 225 MW natural gas fired electricity generation facility and a 900 MW wind farm constructed in Wyoming as well as a 180 mile, 345 kV transmission line that runs from Wyoming to Colorado. This report and analysis is not a forecast, but rather an estimate of economic activity associated with a hypothetical scenario.

Keyser, D.; Lantz, E.

2013-03-01T23:59:59.000Z

96

Jobs and Economic Development from New Transmission and Generation in Wyoming (Fact Sheet)  

SciTech Connect (OSTI)

Wyoming is a significant energy exporter, producing nearly 40% of the nation's coal and 10% of the nation's natural gas. However, opportunities to add new energy exports in the form of power generation are limited by insufficient transmission capacity. This fact sheet summarizes results from a recent analysis conducted by NREL for the Wyoming Infrastructure Authority (WIA) that estimates jobs and economic development activity that could occur in Wyoming should the market support new investments in power generation and transmission in the state.

Not Available

2011-05-01T23:59:59.000Z

97

Red Butte, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRausWyoming: Energy Resources Jump to: navigation,

98

RAPID/BulkTransmission/Wyoming | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacityPulaskiRAPID/BulkTransmission/TexasRAPID/BulkTransmission/Wyoming <

99

City of Deaver, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy InformationLakeWyoming (Utility

100

[DOE/EPSCoR traineeship program for Wyoming: Progress report  

SciTech Connect (OSTI)

In the first year of the traineeship program supported by the Department of Energy EPSCoR funding, the University of Wyoming has made outstanding progress toward the objective of increasing the supply of highly trained engineers and scientists with interests in energy related disciplines. The scope of the traineeship program has already broadened to encompass both more departments than originally expected and nearly twice as many graduate students as expected. Further, since the primary emphasis was on new students, most of those recruited have developed ties to the DOE labs that would not have otherwise existed. This portion of this Progress Report gives an overall summary of the University of Wyoming`s approach to the DOE Traineeship Program implementation. It also provides an overview of the results so far and vision of how this program fits with the broader objectives for development of the University and its academic programs. Subsequent sections describe very briefly the impact of the traineeship students in each department that was successful in obtaining funds through the competitive process that was adopted. Finally, the report ends with a summary of both the academic status of the participants and the budget expenditures to date.

Not Available

1992-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "wyoming thrust belt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Well drilling tool with diamond radial/thrust bearings  

SciTech Connect (OSTI)

A turbodrill is disclosed for connection to a drill string and has a rotating shaft for turning a drill bit. The turbodrill has rotor and stator blades operated by drilling mud flowing therethrough to rotate the shaft. The shaft is provided with radial/thrust bearing consisting of a pair of annular plates, each of which has conical surfaces supporting a plurality of friction bearing members of polycrystalline diamond. The radial and thrust loads are carried by the wear-resistant diamond bearing surfaces. The bearing members are preferably cylindrical studs having flat faces with flat disc-shaped diamond bearing members supported thereon around the adjacent surfaces of the supporting plates. The faces of the diamond bearings will wear into smoothly mating conical bearing surfaces with use. There are two or more pairs of diamond radial/thrust bearings to handle longitudinal as well as radial loads. The use of the diamond radial/thrust bearings makes it possible to eliminate the lubricant-flooded construction of prior art turbodrills and allow the bearings to be cooled and lubricated be drilling fluid flowing therethrough. The diamond radial/thrust bearings may be used with lubricant-flooded turbodrills and with other types of downhole motor driven drills such as drills driven by positive displacement motors.

Nagel, D.D.; Aparicio, T. Jr.

1983-10-18T23:59:59.000Z

102

Ammonia emission inventory for the state of Wyoming  

SciTech Connect (OSTI)

Ammonia (NH{sub 3}) is the only significant gaseous base in the atmosphere and it has a variety of impacts as an atmospheric pollutant, including the formation of secondary aerosol particles: ammonium sulfate and ammonium nitrate. NH{sub 3} preferentially forms ammonium sulfate; consequently ammonium nitrate aerosol formation may be limited by the availability of NH{sub 3}. Understanding the impact of emissions of oxides of sulfur and nitrogen on visibility, therefore, requires accurately determined ammonia emission inventories for use in air quality models, upon which regulatory and policy decisions increasingly depend. This report presents an emission inventory of NH{sub 3} for the state of Wyoming. The inventory is temporally and spatially resolved at the monthly and county level, and is comprised of emissions from individual sources in ten categories: livestock, fertilizer, domestic animals, wild animals, wildfires, soil, industry, mobile sources, humans, and publicly owned treatment works. The Wyoming NH{sub 3} inventory was developed using the Carnegie Mellon University (CMU) Ammonia Model as framework. Current Wyoming-specific activity data and emissions factors obtained from state agencies and published literature were assessed and used as inputs to the CMU Ammonia Model. Biogenic emissions from soils comprise about three-quarters of the Wyoming NH{sub 3} inventory, though emission factors from soils are highly uncertain. Published emission factors are scarce and based on limited measurements. In Wyoming, agricultural land, rangeland, and forests comprise 96% of the land area and essentially all of the estimated emissions from soils. Future research on emission rates of NH{sub 3} for these land categories may lead to a substantial change in the magnitude of soil emissions, a different inventory composition, and reduced uncertainty in the inventory. While many NH{sub 3} inventories include annual emissions, air quality modeling studies require finer temporal resolution. Published studies indicate higher emission rates from soils and animal wastes at higher temperatures, and temporal variation in fertilizer application. A recent inverse modeling study indicates temporal variation in regional NH{sub 3} emissions. Monthly allocation factors were derived to estimate monthly emissions from soils, livestock and wild animal waste based on annual emission estimates. Monthly resolution of NH{sub 3} emissions from fertilizers is based on fertilizer sales to farmers. Statewide NH{sub 3} emissions are highest in the late spring and early summer months.

Kirchstetter, Thomas W.; Maser, Colette R.; Brown, Nancy J.

2003-12-17T23:59:59.000Z

103

VP 100: Brevini Wind Factory Helps Rust Belt Town's Economy ...  

Energy Savers [EERE]

VP 100: Brevini Wind Factory Helps Rust Belt Town's Economy VP 100: Brevini Wind Factory Helps Rust Belt Town's Economy October 5, 2010 - 10:00am Addthis Brevini Wind is building a...

104

Problems of millipound thrust measurement. The "Hansen Suspension"  

SciTech Connect (OSTI)

Considered in detail are problems which led to the need and use of the 'Hansen Suspension'. Also discussed are problems which are likely to be encountered in any low level thrust measuring system. The methods of calibration and the accuracies involved are given careful attention. With all parameters optimized and calibration techniques perfected, the system was found capable of a resolution of 10 {mu} lbs. A comparison of thrust measurements made by the 'Hansen Suspension' with measurements of a less sophisticated device leads to some surprising results.

Carta, David G.

2014-03-31T23:59:59.000Z

105

Six Sigma Black Belts Fight For Quality  

E-Print Network [OSTI]

Six Sigma Black Belts Fight For Quality Ron Scott Ross Finnestad Rodney Kalsow IE 361 mini-paper 9/22/00 #12;Six Sigma is a breakthrough management strategy that is revolutionizing the world's top corporations. So what is Six Sigma? "It is a business process that allows companies to drastically improve

Vardeman, Stephen B.

106

Southeast Electric Coop, Inc (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa,HomeIndiana:Rhode IslandPlainfield, NewWyoming)

107

Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet)

108

Wyoming Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet)Cubic Feet) Gas,

109

Wyoming Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet)Cubic Feet)

110

Wyoming Price of Natural Gas Delivered to Residential Consumers (Dollars  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet)Cubic Feet)per

111

Wyoming Oil and Gas Conservation Commission | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec doWinvest Financing Service GmbH CoWorldWyoming

112

Bar Nunn, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin EnergyBacliff,BallengerEnergyNIES07. ItBanyanWyoming: Energy

113

Bessemer Bend, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey: EnergyBerthoud, Colorado: EnergyBessemer Bend, Wyoming:

114

Big Horn County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey: EnergyBerthoud,Biodiesel Place:Forge07.DaddyWyoming:

115

Montana-Dakota Utilities Co (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area EnergyMohawk Municipal CommMonongahela PowerWyoming

116

Teton County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark Jump to: navigation,TelluricTODO:TennesseeTesseraOpenWyoming:

117

Montana Natural Gas Processed in Wyoming (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team: Kay6 KentuckyYearDecadeBarrels)MontanaWyoming

118

Town of Guernsey, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, IncTipmont Rural ElecTown ofFrederick, ColoradoGuernsey, Wyoming

119

Wyoming Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticutPhotos of AECSign UpWashington DCWisconsinofWyoming

120

Wyoming Recovery Act State Memo | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.|SindhuDepartmentEnvironmental Management UnitedMarkWyoming

Note: This page contains sample records for the topic "wyoming thrust belt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

City of Cody, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy InformationLakeWyoming (Utility Company) Jump to: navigation, search

122

City of Gillette, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy InformationLakeWyomingDurant,FrankfortGilbert, Minnesota

123

Sublette County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen, Minnesota: EnergySublette County, Wyoming: Energy Resources Jump to:

124

Town of Lingle, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd JumpOperations JumpTooeleInformationTownLadoga,Lingle, Wyoming

125

Wyoming - Seds - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 International Petroleum FigureElectricity NoteWyoming -

126

Thrust allocation with power management functionality on dynamically positioned vessels  

E-Print Network [OSTI]

world-wide. The main benefits of diesel-electric propulsion and thrusters are reduced power consumptionThrust allocation with power management functionality on dynamically positioned vessels Aleksander to assist the power management system on dynamically positioned ships is proposed in this paper. Its main

Johansen, Tor Arne

127

ORIGINAL PAPER Granite magma migration and emplacement along thrusts  

E-Print Network [OSTI]

ORIGINAL PAPER Granite magma migration and emplacement along thrusts Eric C. Ferre´ · Olivier in the emplacement of granite plutons in contractional settings. We address both cases where contractional tectonics. This phenomenon occurs for both low-viscosity magma (basalts to andesite) and high-viscosity magma (dry granite

Galland, Olivier

128

Engineering Research, Development and Technology, FY95: Thrust area report  

SciTech Connect (OSTI)

The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

NONE

1996-02-01T23:59:59.000Z

129

Thrust Area Report, Engineering Research, Development and Technology  

SciTech Connect (OSTI)

The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

Langland, R. T.

1997-02-01T23:59:59.000Z

130

Design and characterization of a nano-Newton resolution thrust stand J. Soni and S. Roy  

E-Print Network [OSTI]

Design and characterization of a nano-Newton resolution thrust stand J. Soni and S. Roy Citation-Newton resolution thrust stand J. Soni and S. Roya) Applied Physics Research Group, University of Florida

Roy, Subrata

131

Conceptual design of a thrust-vectoring tailcone for underwater robotics  

E-Print Network [OSTI]

Thrust-vectoring on Autonomous Underwater Vehicles is an appealing directional-control solution because it improves turning radius capabilities. Unfortunately, thrust-vectoring requires the entire propulsion system be ...

Nawrot, Michael T

2012-01-01T23:59:59.000Z

132

Characterization of the Muddy Mountain-Keystone thrust contact and related deformation  

E-Print Network [OSTI]

and Red Rock Canyon the thrust has moved over an erosional surface on the Aztec Sandstone in which forethrust debris (composed of clasts from the upper and lower plates deposited in front of the advancing thrust as outwash and channel deposits) fills... topographic lowe. Thrust-related deformation in the lower plate (Aztec Sandstone or forethrust debris) is evaluated by macroscopic and microscopic analyses and the fol- lowing trends are noticed as the thrust contact is approached: (1) an increase...

Brock, William Gene

1973-01-01T23:59:59.000Z

133

UMTRA project water sampling and analysis plan, Riverton, Wyoming  

SciTech Connect (OSTI)

Surface remediation was completed at the former uranium mill site in Riverton, Wyoming, in 1990. Residual radioactive materials (contaminated soil and debris) were removed and disposed of at Union Carbide Corporation`s (Umetco) nearby Gas Hills Title 2 facility. Ground water in the surficial and semiconfined aquifers (known collectively as the `uppermost aquifer`) below the former mill and tailings site has been contaminated. No contamination has been detected in the deeper, confined sandstone aquifer. The contaminant plume extends off site to the south and east. The plume is constrained by surface wetlands and small streams to the east and west of the site and by the Little Wind River to the south. Fifteen monitor wells installed in 1993 were sampled to better define the contaminant plume and to provide additional water quality data for the baseline risk assessment. Samples also were collected from domestic wells in response to a request by the Wyoming Department of Environmental Quality in January 1994. No contamination attributable to the former uranium milling operations have ever been detected in any of the domestic wells used for potable supplies.

Not Available

1994-03-01T23:59:59.000Z

134

A Thrust Stand for High-power Steady-state Plasma Thrusters L.D. Cassady,  

E-Print Network [OSTI]

of an inverted-pendulum thrust stand to measure thrust for high-power steady- state plasma thrusters is presentedA Thrust Stand for High-power Steady-state Plasma Thrusters L.D. Cassady, A.D. Kodys, and E Department Princeton University, Princeton, New Jersey 08544 (Dated: July 18, 2002) The operation

Choueiri, Edgar

135

Engineering research, development and technology. Thrust area report, FY93  

SciTech Connect (OSTI)

The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

Not Available

1994-05-01T23:59:59.000Z

136

Direct thrust measurement of a permanent magnet helicon double layer thruster  

SciTech Connect (OSTI)

Direct thrust measurements of a permanent magnet helicon double layer thruster have been made using a pendulum thrust balance and a high sensitivity laser displacement sensor. At the low pressures used (0.08 Pa) an ion beam is detected downstream of the thruster exit, and a maximum thrust force of about 3 mN is measured for argon with an rf input power of about 700 W. The measured thrust is proportional to the upstream plasma density and is in good agreement with the theoretical thrust based on the maximum upstream electron pressure.

Takahashi, K.; Lafleur, T.; Charles, C.; Alexander, P.; Boswell, R. W. [Space Plasma, Power and Propulsion Group, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Perren, M.; Laine, R. [ASTRIUM-EADS, 6 rue Laurent Pichat, 75016 Paris (France); Pottinger, S.; Lappas, V.; Harle, T.; Lamprou, D. [Surrey Space Centre, University of Surrey, Guildford GU2 7XH (United Kingdom)

2011-04-04T23:59:59.000Z

137

Electric sail control mode for amplified transverse thrust  

E-Print Network [OSTI]

The electric solar wind sail produces thrust by centrifugally spanned high voltage tethers interacting with the solar wind protons. The sail attitude can be controlled and attitude maneuvers are possible by tether voltage modulation synchronous with the sail rotation. Especially, the sail can be inclined with respect to the solar wind direction to obtain transverse thrust to change the osculating orbit angular momentum. Such an inclination has to be maintained by a continual control voltage modulation. Consequently, the tether voltage available for the thrust is less than the maximum voltage provided by the power system. Using a spherical pendulum as a model for a single rotating tether, we derive analytical estimations for the control efficiency for two separate sail control modes. One is a continuous control modulation that corresponds to strictly planar tether tip motion. The other is an on-off modulation with the tether tip moving along a closed loop on a saddle surface. The novel on-off mode is introduce...

Toivanen, Petri; Envall, Jouni

2014-01-01T23:59:59.000Z

138

Hydrocarbon trapping mechanisms in the Miller Creek area of the Powder River Basin, Wyoming  

E-Print Network [OSTI]

'' 1975 43'W'79 ABSTRACT Hydrocarbon Trapoing Mechanisms in the Miller Creek Area of the Powder River Basin, Wyoming. (May 1975) Jennifer Ann Armstrong, B. S. , University of Texas at Austin Chairman of Advisory Committee: 17r. Robert. R. Berg...

Armstrong, Jennifer Ann

1975-01-01T23:59:59.000Z

139

EA-1155: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook, Wyoming  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to comply with the Environmental Protection Agency's ground-water standards set forth in 40 CFR 192 at the Spook, Wyoming Uranium Mill...

140

Wyoming State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming.

Not Available

1981-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "wyoming thrust belt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming.

142

Economic Development from Gigawatt-Scale Wind Deployment in Wyoming (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of economic development in Wyoming from gigawatt-scale wind development and includes a discussion of project context, definitions and caveats, a deployment scenario, modeling inputs, results, and conclusions.

Lantz, E.

2011-05-23T23:59:59.000Z

143

EA-1008: Continued Development of Naval Petroleum Reserve No. 3 (Sitewide), Natrona County, Wyoming  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to continue development of the U.S. Department of Energy's Naval Petroleum Reserve No. 3 located in Natrona County, Wyoming over the next...

144

Weatherization: Wyoming's Hidden Resource; Weatherization Assistance Close-Up Fact Sheet  

SciTech Connect (OSTI)

Wyoming demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

D& R International

2001-10-10T23:59:59.000Z

145

California-Wyoming Grid Integration Study: Phase 1 -- Economic Analysis  

SciTech Connect (OSTI)

This study presents a comparative analysis of two different renewable energy options for the California energy market between 2017 and 2020: 12,000 GWh per year from new California in-state renewable energy resources; and 12,000 GWh per year from Wyoming wind delivered to the California marketplace. Either option would add to the California resources already existing or under construction, theoretically providing the last measure of power needed to meet (or to slightly exceed) the state's 33% renewable portfolio standard. Both options have discretely measurable differences in transmission costs, capital costs (due to the enabling of different generation portfolios), capacity values, and production costs. The purpose of this study is to compare and contrast the two different options to provide additional insight for future planning.

Corbus, D.; Hurlbut, D.; Schwabe, P.; Ibanez, E.; Milligan, M.; Brinkman, G.; Paduru, A.; Diakov, V.; Hand, M.

2014-03-01T23:59:59.000Z

146

National uranium resource evaluation: Sheridan Quadrangle, Wyoming and Montana  

SciTech Connect (OSTI)

The Sheridan Quadrangle of north-central Wyoming was evaluated for uranium favorability according to specific criteria of the National Uranium Resource Evaluation program. Procedures consisted of geologic and radiometric surveys; rock, water, and sediment sampling; studying well logs; and reviewing the literature. Five favorable environments were identified. These include portions of Eocene Wasatch and Upper Cretaceous Lance sandstones of the Powder River Basin and Lower Cretaceous Pryor sandstones of the Bighorn Basin. Unfavorable environments include all Precambrian, Cambrian, Ordovician, Permian, Triassic, and Middle Jurassic rocks; the Cretaceous Thermopolis, Mowry, Cody, Meeteetse, and Bearpaw Formations; the Upper Jurassic Sundance and Morrison, the Cretaceous Frontier, Meseverde, Lance, and the Paleocene Fort Union and Eocene Willwood Formations of the Bighorn Basin; the Wasatch Formation of the Powder River Basin, excluding two favorable areas and all Oligocene and Miocene rocks. Remaining rocks are unevaluated.

Damp, J N; Jennings, M D

1982-04-01T23:59:59.000Z

147

Jobs and Economic Development from New Transmission and Generation in Wyoming  

SciTech Connect (OSTI)

This report is intended to inform policymakers, local government officials, and Wyoming residents about the jobs and economic development activity that could occur should new infrastructure investments in Wyoming move forward. The report and analysis presented is not a projection or a forecast of what will happen. Instead, the report uses a hypothetical deployment scenario and economic modeling tools to estimate the jobs and economic activity likely associated with these projects if or when they are built.

Lantz, E.; Tegen, S.

2011-03-01T23:59:59.000Z

148

Corn Belt Energy Corporation- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Corn Belt Energy Corporation (CBEC), in association with the Wabash Valley Power Association, provides its customers with the "Power Moves" energy efficiency rebate program. Through this program,...

149

Magnetic refrigeration apparatus with belt of ferro or paramagnetic material  

DOE Patents [OSTI]

A magnetic refrigerator operating in the 12 to 77 K range utilizes a belt which carries ferromagnetic or paramagnetic material and which is disposed in a loop which passes through the center of a solenoidal magnet to achieve cooling. The magnetic material carried by the belt, which can be blocks in frames of a linked belt, can be a mixture of substances with different Curie temperatures arranged such that the Curie temperatures progressively increase from one edge of the belt to the other. This magnetic refrigerator can be used to cool and liquefy hydrogen or other fluids.

Barclay, J.A.; Stewart, W.F.; Henke, M.D.; Kalash, K.E.

1986-04-03T23:59:59.000Z

150

Magnetic refrigeration apparatus with belt of ferro or paramagnetic material  

DOE Patents [OSTI]

A magnetic refrigerator operating in the 12 to 77K range utilizes a belt which carries ferromagnetic or paramagnetic material and which is disposed in a loop which passes through the center of a solenoidal magnet to achieve cooling. The magnetic material carried by the belt, which can be blocks in frames of a linked belt, can be a mixture of substances with different Curie temperatures arranged such that the Curie temperatures progressively increase from one edge of the belt to the other. This magnetic refrigerator can be used to cool and liquefy hydrogen or other fluids.

Barclay, John A. (Madison, WI); Stewart, Walter F. (Marshall, WI); Henke, Michael D. (Los Alamos, NM); Kalash, Kenneth E. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

151

Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming  

SciTech Connect (OSTI)

This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

Not Available

1989-02-01T23:59:59.000Z

152

1. THE RADIATION BELTS The outer zone radiation belts consist of energetic elec-  

E-Print Network [OSTI]

a variety of time scales. There is a noted association between solar wind speed and relativistic elec- tron and external processes. This paper reviews what is currently understood of the interactions between energetic, A Review of ULF Interactions with Radiation Belt Electrons Scot R. Elkington Laboratory for Atmospheric

Elkington, Scot R.

153

Thrust faulting in Temblor Range, Kern County, California  

SciTech Connect (OSTI)

Surface and subsurface studies confirm the presence of overthrusting in the Temblor Range between Gonyer Canyon and Recruit Pass. In the subsurface, three wells have penetrated the Cree fault, the Hudbay Cree' No. 1 (7,300 ft), the Frantzen Oil Company Cree' No. 1 (5,865 ft) and the Arco Cree Fee' 1A well (5,915 ft). Below the fault, 25 to 35{degree} of westerly dips on the west flank of the sub-thrust Phelps anticline are encountered. The McDonald section below the fault is comprised of siliceous fractured shale which contains live oil and gas showings. A drill-stem test of the interval from 8,247 to 8,510 ft in the Frantzen well resulted in a recovery of 1,200 ft clean 34{degree} oil and 40 MCF per day gas. The shut in pressure was 3,430 lb, which is a normal hydrostatic pressure common to the producing structures in the southern San Joaquin Valley. The equivalent of this interval has produced over 7,000 bbl of oil in the Arco Cree' 1A well. The Arco Cree Fee' No. 1A well crossed the axis of the Phelps Anticline as indicated by good dipmeter and bottomed in Lower Zemorrian at 14,512 ft total depth. This well was not drilled deep enough to reach the Point of Rocks Sand and did not test the gas showings in the lower Miocene section. In the Gonyer Canyon area, subsurface evidence indicated conditions are similar to those in the Cree area because a large structure is present below a thrust fault. It is believed that significant accumulations will be found beneath thrust faults in the eastern part of the Temblor Range where conditions are similar to those that were instrumental in forming fields such as the Elk Hills, B. V. Hills, Belgian Anticline and others.

Simonson, R.R.

1991-02-01T23:59:59.000Z

154

Center for Inverse Design: Research Thrusts and Subtasks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy,MUSEUMCongratulations to CENResearch Thrusts and

155

Direct thrust measurements and modelling of a radio-frequency expanding plasma thruster  

SciTech Connect (OSTI)

It is shown analytically that the thrust from a simple plasma thruster (in the absence of a magnetic field) is given by the maximum upstream electron pressure, even if the plasma diverges downstream. Direct thrust measurements of a thruster are then performed using a pendulum thrust balance and a laser displacement sensor. A maximum thrust of about 2 mN is obtained at 700 W for a thruster length of 17.5 cm and a flow rate of 0.9 mg s{sup -1}, while a larger thrust of 4 mN is obtained at a similar power for a length of 9.5 cm and a flow rate of 1.65 mg s{sup -1}. The measured thrusts are in good agreement with the maximum upstream electron pressure found from measurements of the plasma parameters and in fair agreement with a simple global approach used to model the thruster.

Lafleur, T.; Charles, C.; Boswell, R. W. [Space Plasma, Power and Propulsion Group, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia); Takahashi, K. [Space Plasma, Power and Propulsion Group, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia); Department of Electrical Engineering and Computer Science, Iwate University, Morioka 020-8551 (Japan)

2011-08-15T23:59:59.000Z

156

E-Print Network 3.0 - ailaoshan gold belt Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geosciences 36 UT College of Natural Sciences Mandatory Safety Belt Usage in College Vehicles Summary: UT College of Natural Sciences Mandatory Safety Belt Usage in College...

157

North Fork well, Shoshone National Forest, Park County, Wyoming  

SciTech Connect (OSTI)

Drilling of a 5000-foot exploratory gas and oil well by Marathon Oil Company is proposed for Section 34, T52N, R106W, near Pagoda Creek in the Shoshone National Forest, Park County, Wyoming. An area 75 feet by 80 feet would be cleared of all vegetation and graded nearly flat for the drill pad and reserve pit. The drilling rig, pipe rack, generator, tool house, living facilities, drilling mud pump, pit, and supply platform all would be built on the drill pad. A blooie hole would contain cuttings and dust from the air drilling. Support facilities would include a helicopter staging area along Clocktower Creek approximately one mile south of the Yellowstone Highway and a 2550-foot temporary water pipeline from Pagoda Creek to the well site. Personnel, equipment, and supplies would be trucked to the helicopter staging area and shuttled to the proposed location by helicopters. Lease stipulations prohibit drilling before September 8; therefore, the starting date would be the late fall of the respective year and would have to be completed by the following January 1. Approval of the exploratory well would not include approval of production facilities.

Not Available

1985-03-01T23:59:59.000Z

158

Data Archive and Portal Thrust Area Strategy Report  

SciTech Connect (OSTI)

This report describes the Data Archive and Portal (DAP), a key capability of the U.S. Department of Energy's Atmosphere to Electron (A2e) initiative. The DAP Thrust Area Planning Group was organized to develop a plan for deploying this capability. Primarily, the report focuses on a distributed system--a DOE Wind Cloud--that functions as a repository for all A2e data. The Wind Cloud will be accessible via an open, easy-to-navigate user interface that facilitates community data access, interaction, and collaboration. DAP management will work with the community, industry, and international standards bodies to develop standards for wind data and to capture important characteristics of all data in the Wind Cloud.

Sivaraman, Chitra; Stephan, Eric G.; Macduff, Matt C.; Hagler, Clay D.

2014-09-30T23:59:59.000Z

159

Thermal Effects on Inverted Pendulum Thrust Stands for Steady-state High-power Plasma Thrusters  

E-Print Network [OSTI]

Thermal Effects on Inverted Pendulum Thrust Stands for Steady-state High-power Plasma Thrusters A and Aerospace Engineering Department Princeton University, Princeton, New Jersey 08544 AIAA-2003-4842§ July 22, 2003 Abstract Thermal effects on direct measurements of the thrust produced by steady-state, high-power

Choueiri, Edgar

160

Data from selected Almond Formation outcrops -- Sweetwater County, Wyoming  

SciTech Connect (OSTI)

The objectives of this research program are to: (1) determine the reservoir characteristics and production problems of shoreline barrier reservoirs; and (2) develop methods and methodologies to effectively characterize shoreline barrier reservoirs to predict flow patterns of injected and produced fluids. Two reservoirs were selected for detailed reservoir characterization studies -- Bell Creek field, Carter County, Montana, that produces from the Lower Cretaceous (Albian-Cenomanian) Muddy Formation, and Patrick Draw field, Sweetwater County, Wyoming that produces from the Upper Cretaceous (Campanian) Almond Formation of the Mesaverde Group. An important component of the research project was to use information from outcrop exposures of the producing formations to study the spatial variations of reservoir properties and the degree to which outcrop information can be used in the construction of reservoir models. A report similar to this one presents the Muddy Formation outcrop data and analyses performed in the course of this study (Rawn-Schatzinger, 1993). Two outcrop localities, RG and RH, previously described by Roehler (1988) provided good exposures of the Upper Almond shoreline barrier facies and were studied during 1990--1991. Core from core well No. 2 drilled approximately 0.3 miles downdip of outcrop RG was obtained for study. The results of the core study will be reported in a separate volume. Outcrops RH and RG, located about 2 miles apart were selected for detailed description and drilling of core plugs. One 257-ft-thick section was measured at outcrop RG, and three sections {approximately}145 ft thick located 490 and 655 feet apart were measured at the outcrop RH. Cross-sections of these described profiles were constructed to determine lateral facies continuity and changes. This report contains the data and analyses from the studied outcrops.

Jackson, S.R.; Rawn-Schatzinger, V.

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "wyoming thrust belt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Corn Belt Energy Coop- Commercial Energy Efficiency Rebate Program (Illinois)  

Broader source: Energy.gov [DOE]

Corn Belt Energy, through the Wabash Valley Power Association, offersbusiness, school, and farm customers a variety of energy efficient rebates and incentives through its "Power Moves" program....

162

altai metallogenic belt: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

belt object satellites, again pointing to possible differences in their origin. M. E. Brown; M. A. van Dam; A. H. Bouchez; D. Le Mignant; R. D. Campbell; J. C. Y. Chin; A....

163

Replace V-Belts with Notched or Synchronous Belt Drives | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediatedLandsEnergy V-Belts with Notched or

164

DERAILMENT IN WYOMING (2005) http://www.bigcountry.coop/coal.html  

E-Print Network [OSTI]

Administration said. With tight supplies and high demand, spot market prices for Powder River Basin coal jumped 41 DERAILMENT IN WYOMING (2005) http://www.bigcountry.coop/coal.html [Johnson, 2005] Steven Johnson bottleneck in shipments from the nation's most important vein of low-sulfur coal has cut into coal supplies

Tesfatsion, Leigh

165

FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS  

E-Print Network [OSTI]

...................................................................................PS-18 Coal-Bed Methane ResourceChapter PS FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS By R of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U

166

EIS-0267: BPA/Lower Valley Transmission System Reinforcement Project, Wyoming  

Broader source: Energy.gov [DOE]

This EIS analyzes BPA and LVPL proposal to construct a new 115-kV line from BPAs Swan Valley Substation near Swan Valley in Bonneville County, Idaho about 58 km (36 miles) east to BPAs Teton Substation near Jackson in Teton County, Wyoming.

167

DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming  

Broader source: Energy.gov [DOE]

Research sponsored by the U.S. Department of Energy Oil and Natural Gas Program has found a way to distinguish between groundwater and the water co-produced with coalbed natural gas, thereby boosting opportunities to tap into the vast supply of natural gas in Wyoming as well as Montana.

168

Glacial geology of the West Tensleep Drainage Basin, Bighorn Mountains, Wyoming  

SciTech Connect (OSTI)

The glacial deposits of the West Tensleep Basin in the Bighorn Mountains of Wyoming are mapped and a relative chromology established. The deposits are correlated with the regional model as defined in the Wind River Mountains. A statistical analysis is performed on the density and weathering characteristics of the surficial boulders to determine their validity as indicators of relative age. (ACR)

Burggraf, G.B.

1980-08-01T23:59:59.000Z

169

Deformation associated with transverse-thrust ramps: a field and experimental study  

E-Print Network [OSTI]

direction. 2. Marias Pass Location Maps. (A) Generalized geologic map showing location of Marias Pass, and the Lewis Thrust, and (B) schematic diagram illustrates ramp geometries for the Lewis Thrust in the Marias Pass region. 3. Geometry of dip ramp... of Marias Pass showing the location of study sites A, 8, C, and the dip-ramp site at Two Medicine Lake . 85 24. Contour map of the Lewis Thrust surface in the Marias Pass area constructed from sur- vey sites (measured in feet above sea level in order...

McCaskey, Michael Donald

1982-01-01T23:59:59.000Z

170

Investigation of the axial and radial thrusts in a centrifugal pump  

E-Print Network [OSTI]

Major Subject: Mechanical Engineering INVESTIGATION QF THE AXIAL AND RADIAL THRUSTS IN A CENTRIFUGAL PUMP A Thesis by CHQNG HWAN PARK Approved as to style and content by: eter Jenkins (C 'rman of Committee) Dr Srrra un aram (Member) Dr. R. R... of absolute flow velocity at outlet of impeller (ft/sec) Fa Fb diameter (in) axial thrust (lb) force acting on the back-faces of impeller (lb) Fr Hd H Hs Ht kx kx Pd P(r) force acting on the frontal face of impeller (lb) radial thrust (lb...

Park, Chong Hwan

1984-01-01T23:59:59.000Z

171

Test-Theory Correlation Study for an Ultra High Temperature Thrust Magnetic Bearing  

E-Print Network [OSTI]

Magnetic bearings have been researched by the National Aeronautics and Space Administration (NASA) for a very long time to be used in wide applications. This research was to assemble and test an axial thrust electromagnetic bearing, which can handle...

Desireddy, Vijesh R.

2010-01-14T23:59:59.000Z

172

A comparison of eddy current effects in a single sided magnetic thrust bearing  

E-Print Network [OSTI]

finite element studies of magnetic thrust bearings using static bench testing procedures to investigate configurations that promote eddy current reduction. Several rotor/stator configurations, including solid metal, laminated washers, tapewound lam...

DeWeese, Randall Thomas

1996-01-01T23:59:59.000Z

173

E-Print Network 3.0 - active basement-involved thrust Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

today (Hodges et al., 2001). Nevertheless, when... for the Main Central thrust in Nepal D.M. Robinson* P.G. DeCelles ... Source: Garzione, Carmala N. - Department of Earth...

174

Angle stations in or for endless conveyor belts  

DOE Patents [OSTI]

In an angle station for an endless conveyor belt, there are presented to each incoming run of the belt stationary curved guide members (18, 19) of the shape of a major segment of a right-circular cylinder and having in the part-cylindrical portion (16 or 17) thereof rectangular openings (15) arranged in parallel and helical paths and through which project small freely-rotatable rollers (14), the continuously-changing segments of the curved surfaces of which projecting through said openings (15) are in attitude to change the direction of travel of the belt (13) through 90.degree. during passage of the belt about the part-cylindrical portion (16 or 17) of the guide member (18 or 19). The rectangular openings (15) are arranged with their longer edges lengthwise of the diagonals representing the mean of the helix but with those of a plurality of the rows nearest to each end of the part-cylindrical portion (16 or 17) slightly out of axial symmetry with said diagonals, being slightly inclined in a direction about the intersections (40) of the diagonals of the main portion of the openings, to provide a "toe-in" attitude in relation to the line of run of the endless conveyor belt.

Steel, Alan (Glasgow, GB6)

1987-04-07T23:59:59.000Z

175

JOVIAN EARLY BOMBARDMENT: PLANETESIMAL EROSION IN THE INNER ASTEROID BELT  

SciTech Connect (OSTI)

The asteroid belt is an open window on the history of the solar system, as it preserves records of both its formation process and its secular evolution. The progenitors of the present-day asteroids formed in the Solar Nebula almost contemporary to the giant planets. The actual process producing the first generation of asteroids is uncertain, strongly depending on the physical characteristics of the Solar Nebula, and the different scenarios produce very diverse initial size-frequency distributions (SFDs). In this work, we investigate the implications of the formation of Jupiter, plausibly the first giant planet to form, on the evolution of the primordial asteroid belt. The formation of Jupiter triggered a short but intense period of primordial bombardment, previously unaccounted for, which caused an early phase of enhanced collisional evolution in the asteroid belt. Our results indicate that this Jovian Early Bombardment caused the erosion or the disruption of bodies smaller than a threshold size, which strongly depends on the SFD of the primordial planetesimals. If the asteroid belt was dominated by planetesimals less than 100 km in diameter, the primordial bombardment would have caused the erosion of bodies smaller than 200 km in diameter. If the asteroid belt was instead dominated by larger planetesimals, the bombardment would have resulted in the destruction of bodies as big as 500 km.

Turrini, D.; Coradini, A.; Magni, G., E-mail: diego.turrini@ifsi-roma.inaf.it [Istituto di Astrofisica e Planetologia Spaziali, INAF-IAPS, Via Fosso del Cavaliere 100, 00133, Rome (Italy)

2012-05-01T23:59:59.000Z

176

Structural discordance between neogene detachments and frontal sevier thrusts, central Mormon Mountains, southern Nevada  

E-Print Network [OSTI]

Bonanza King Formation. Between the Keystone-Muddy Mountain and Gass Peak-Wheeler Pass thrusts is a broad, regional synclinorium consisting of miogeoclinal rocks which have been folded and faulted on small thrusts. N W E s Fig. 6. Axes...-groned, thin-to rneclum- bedded chert), toward top fossaliferous, locally cross-laminated SULTAN LIMESTONE (216 m) CRYSTAL PASS LIMESTONE (69m) Lrnestone, hght c, lroy, ophonit, laminated sandstone marker bedneer top VALENTINE LIMESTONE (79m) Lm...

Wernicke, Brian; Walker, J. Douglas; Beaufait, Mark S.

1985-02-01T23:59:59.000Z

177

Structural Geology of a Central Segment of the Qilian Shan-Nan Shan Thrust Belt: Implications for the Magnitude of Cenozoic Shortening in the Northeastern Tibetan Plateau  

E-Print Network [OSTI]

continental deformation: Geology, Burchfiel, B.C. , Zhang,by lower crustal flow: Geology, 28: 703-706. Cowgill, E. ,in north Qilian: Gansu Geology, 20: 40-44 (in Chinese with

Reith, Robin

2013-01-01T23:59:59.000Z

178

Detection of methane on Kuiper Belt Object (50000) Quaoar  

E-Print Network [OSTI]

The near-infrared spectrum of (50000) Quaoar obtained at the Keck Observatory shows distinct absorption features of crystalline water ice, solid methane and ethane, and possibly other higher order hydrocarbons. Quaoar is only the fifth Kuiper belt object on which volatile ices have been detected. The small amount of methane on an otherwise water ice dominated surface suggests that Quaoar is a transition object between the dominant volatile-poor small Kuiper belt objects (KBOs) and the few volatile-rich large KBOs such as Pluto and Eris.

E. L. Schaller; M. E. Brown

2007-10-18T23:59:59.000Z

179

E-Print Network 3.0 - allen radiation belt Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALBEDO OF SMALL SOLAR SYSTEM BODIES. I. V. Moskalenko1,2 , T. A. Porter3 Summary: and ice in Main Belt asteroids and Kuiper Belt objects (KBOs) using the Moon as a template. We...

180

Modeling the radiation belt electrons with radial diffusion driven by the solar wind  

E-Print Network [OSTI]

in the enhancement of radiation belt electrons yet leaves a significant portion of the variance unaccounted for. We

Li, Xinlin

Note: This page contains sample records for the topic "wyoming thrust belt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Environmental assessment of ground-water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming  

SciTech Connect (OSTI)

This report assesses the environmental impacts of the Uranium Mill Tailings Site at Spook, Wyoming on ground water. DOE previously characterized the site and monitoring data were collected during the surface remediation. The ground water compliance strategy is to perform no further remediation at the site since the ground water in the aquifer is neither a current nor potential source of drinking water. Under the no-action alternative, certain regulatory requirements would not be met.

NONE

1997-02-01T23:59:59.000Z

182

Effective Conveyor Belt Inspection for Improved Mining Productivity  

SciTech Connect (OSTI)

This document details progress on the project entitled ''Effective Conveyor Belt Inspection for Improved Mining Productivity'' during the period from November 15, 2004 to May 14, 2004. Highlights include fabrication of low-cost prototype hardware, acquisition of infrared thermal data, and initial design of a Smart-Camera based system.

Chris Fromme

2006-06-01T23:59:59.000Z

183

Effective Conveyor Belt Inspection for Improved Mining Productivity  

SciTech Connect (OSTI)

This document details progress on the project entitled ''Effective Conveyor Belt Inspection for Improved Mining Productivity'' during the period from November 15, 2004 to May 14, 2004. Highlights include fabrication of an improved LED lightbar, fabrication of a line-scan sensor head for the Smart-Camera based prototype, and development of prototype vulcanized splice detection algorithms.

Chris Fromme

2006-06-01T23:59:59.000Z

184

Engineering Research and Development and Technology thrust area report FY92  

SciTech Connect (OSTI)

The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.

Langland, R.T.; Minichino, C. [eds.

1993-03-01T23:59:59.000Z

185

Principal Investigator Department Title Thrust Area Dr. Gang Li Physics Current Sheet Structures in the Inner Heliosphere 1500  

E-Print Network [OSTI]

Principal Investigator Department Title Thrust Area Dr. Gang Li Physics Current Sheet. Zuejing Xing Accounting/Finance Why are IPOs Underpriced? The Role of Institutional Ownership 3000 Dr

Alabama in Huntsville, University of

186

On the 'Scattered' Inclinations in the Kuiper Belt  

E-Print Network [OSTI]

This paper shows that the inclinations of bodies captured into mean motion resonances in the Kuiper belt have remained very nearly unchanged, being only slightly increased from initial lower values by migration and/or by long-term planetary perturbations. Thus the observed maximum as high as ~ 30 deg of the i's of bodies in resonance must reflect either a broad initial range at least to that level for capturable bodies or an elevating process possibly exemplified by the sweeping of secular resonances. We have obtained capture probabilities for 2 well-populated resonances, showing reduced but finite values for i's up to 35 deg. Whatever led to the present distribution must have produced increases in i for some, but not for all, resonant bodies in the belt.

Franklin, Fred

2015-01-01T23:59:59.000Z

187

Remedial Action Plan and site conceptual design for stabilization of the inactive uranium mill tailings site at Spook, Wyoming  

SciTech Connect (OSTI)

This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities which are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at an inactive uranium processing site northeast of Casper, Wyoming, and referred to as the Spook site. It provides a characterization of the present conditions at the site and also serves to document the concurrence of the State of Wyoming and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the State of Wyoming, and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement.

Matthews, M.L. (USDOE Albuquerque Operations Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office); Sullivan, M. (Wyoming State Government, Cheyenne, WY (United States))

1990-04-01T23:59:59.000Z

188

Early Weichselian palaeoenvironments reconstructed from a mega-scale thrust-fault complex, Kanin Peninsula, northwestern Russia  

E-Print Network [OSTI]

-scale thrust-fault complex, Kanin Peninsula, northwestern Russia EILIV LARSEN, KURT H. KJ?R, MARIA JENSEN, IGOR a mega-scale thrust-fault complex, Kanin Peninsula, northwestern Russia. Boreas, Vol. 35, pp. 00Á00. Oslo and sorted sediments is superbly exposed on the north coast of the Kanin Peninsula, northwestern Russia

Ingólfsson, ?lafur

189

The Technical and Economic Feasibility of Siting Synfuels Plants in Wyoming  

SciTech Connect (OSTI)

A comprehensive study has been completed to determine the feasibility of constructing and operating gasification and reforming plants which convert Wyoming fossil resources (coal and natural gas) into the higher value products of power, transportation fuels, and chemical feedstocks, such as ammonia and methanol. Detailed plant designs, simulation models, economic models and well-to-wheel greenhouse gas models were developed, validated by national-level engineering firms, which were used to address the following issues that heretofore have prevented these types of projects from going forward in Wyoming, as much as elsewhere in the United States: 1. Quantification of plant capital and operating expenditures 2. Optimization of plant heat integration 3. Quantification of coal, natural gas, electricity, and water requirements 4. Access to raw materials and markets 5. Requirements for new infrastructure, such as electrical power lines and product pipelines 6. The possible cost-benefit tradeoffs of using natural gas reforming versus coal gasification 7. The extent of labor resources required for plant construction and for permanent operations 8. Options for managing associated CO2 emissions, including capture and uses in enhanced oil recovery and sequestration 9. Options for reducing water requirements such as recovery of the high moisture content in Wyoming coal and use of air coolers rather than cooling towers 10. Permitting requirements 11. Construction, and economic impacts on the local communities This paper will summarize the analysis completed for two major synfuels production pathways, methanol to gasoline and Fischer-Trosph diesel production, using either coal or natural gas as a feedstock.

Anastasia M Gandrik; Rick A Wood; David Bell; William Schaffers; Thomas Foulke; Richard D Boardman

2011-09-01T23:59:59.000Z

190

PATENTING AND LICENSING The major thrust of the Technology Transfer Office's activity is directed towards  

E-Print Network [OSTI]

PATENTING AND LICENSING The major thrust of the Technology Transfer Office's activity that he or she may have created an invention, to promptly report it to the Technology Transfer Office. 2. Patentability Determination After the invention is reported to the Technology Transfer Office

191

Modeling the Characteristics of Propulsion Systems Providing Less Than 10 N Thrust  

E-Print Network [OSTI]

. Chiasson, Paulo C. Lozano May 2012 SSL#8-12 1 #12;2 #12;Modeling the Characteristics of Propulsion Systems Providing Less Than 10 N Thrust Thomas M. Chiasson, Paulo C. Lozano May 2012 SSL#8-12 1 1 This work is based

192

Thrust Area 2 Free-Piston Compressor for Portable Fluid-Powered Systems  

E-Print Network [OSTI]

Thrust Area 2 Free-Piston Compressor for Portable Fluid-Powered Systems Dr. Eric J. Barth José AMH batteries). Utili hi h d it li ti Free Piston Compressor (FPC) vs. Electrical Batteries System Source Energy · Utilize a free piston engine configuration to compress air by extracting energy from combustion of propane

Barth, Eric J.

193

CFD Simulation of Dynamic Thrust and Radial Forces on a Vertical Axis Wind Turbine Blade  

E-Print Network [OSTI]

CFD Simulation of Dynamic Thrust and Radial Forces on a Vertical Axis Wind Turbine Blade K. Mc vibration source of a small scale vertical axis wind turbine. The dynamic loading on the blades of the turbine, as they rotate about the central shaft and travel through a range of relative angles of attack

Tullis, Stephen

194

Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications  

E-Print Network [OSTI]

Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust the Nepal Himalaya using GPS times series from 30 stations in Nepal and southern Tibet, in addition and eastern Nepal and 20.5 ? 1 mm/yr in western Nepal. The moment deficit due to locking of the MHT

Avouac, Jean-Philippe

195

EIS-0450: TransWest Express 600 kV Direct Current Transmission Project in Wyoming, Colorado, Utah, and Nevada  

Broader source: Energy.gov [DOE]

This EIS, being prepared jointly by DOEs Western Area Power Administration and the Department of the Interiors Bureau of Land Management (Wyoming State Office), evaluates the environmental impacts of granting a right-of-way for the TransWest Express 600-kilovolt Direct Current Transmission Project and amending a land use plan. The project consists of an overhead transmission line that would extend approximately 725 miles from south-central Wyoming, through Colorado and Utah. Western proposes to be a joint owner of the project.

196

Environmental Assessment of Remedial Action at the Riverton Uranium Mill Tailings Site, Riverton, Wyoming  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has prepared an environmental assessment (DOE/EA-0254) on the proposed remedial action at the inactive uranium milling site near Riverton, Wyoming. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 U.S.C. 4321, et seq.). Therefore, the preparation of an environmental impact statement (EIS) is not required.

none,

1987-06-01T23:59:59.000Z

197

Political mobilization, venue change, and the coal bed methane conflict in Montana and Wyoming  

SciTech Connect (OSTI)

The emerging conflict over coal bed methane (CBM) exploration and development in the mountain west offers a classic example of what Baumgartner and Jones call a 'wave of criticism.' The cozy subgovernments that have dominated energy exploration and development in the mountain states are now under attack and are struggling to maintain their autonomy. Energy exploration, which was once perceived to have only positive consequences, is now the focus of an intense debate that has managed to unite previously warring factions. This article utilizes a comparative assessment of CBM politics in Montana and Wyoming to explain the connection between changing popular and elite perceptions of the issue, institutional change, and policy change.

Duffy, R.J. [Colorado State University, Fort Collins, CO (United States)

2005-03-31T23:59:59.000Z

198

Environmental assessment of remedial action at the Spook uranium mill tailings site, Converse County, Wyoming  

SciTech Connect (OSTI)

This document assesses a joint remedial action proposed by the US Department of Energy Uranium Mill Tailings Remedial Action Project and the State of Wyoming Abandoned Mine Lands Program. The proposed action would consist of stabilizing uranium mill tailings and other associated contaminated materials within an inactive open pit mine on the site; backfilling the open pit with overburden materials that would act as a radon barrier and cover; and recontouring and seeding all disturbed areas to premining conditions. The impacts of no action at this site are addressed as the alternative to the proposed action. 74 refs., 12 figs., 19 tabs.

Not Available

1989-04-01T23:59:59.000Z

199

Wyoming Price of Natural Gas Sold to Commercial Consumers (Dollars per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet)Cubic

200

Data From HANE-Generated Radiation Belts and the Origin of Diffusion Theory  

SciTech Connect (OSTI)

In this presentation we briefly review some of the published data regarding the artificial radiation belts produced by the Starfish and R2 high altitude nuclear explosions in 1962. The data showed slow temporal variations of the belts in altitude (L) and pitch angle ({alpha}) that could be modeled as a diffusion process. That early work formed the basis for more complex radiation belt diffusion models that are in use at present.

Winske, Dan [Los Alamos National Laboratory

2012-07-16T23:59:59.000Z

Note: This page contains sample records for the topic "wyoming thrust belt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Environmental evaluation and restoration plan of the Hoe Creek Underground Coal Gasification Site, Wyoming: Topical report  

SciTech Connect (OSTI)

Three underground coal gasification (UCG) experiments were conducted by Lawrence Livermore National Laboratory (LLNL) at the Hoe Creek Site, Wyoming; the Hoe Creek I experiment was conducted in 1976, the Hoe Creek II experiment in 1977, and the Hoe Creek III experiment in 1979. These experiments have had an impact on the land and groundwater quality at the site, and the Department of Energy (DOE) has requested that Western Research Institute (WRI) develop and implement a site restoration plan. The purpose of the plan is to restore the site to conditions being negotiated with the Wyoming Department of Environmental Quality (WDEQ). To prepare for developing a plan, WRI compiled background information on the site. The geologic and hydrologic characteristics of the site were determined, and the water quality data were analyzed. Modelling the site was considered and possible restoration methods were examined. Samples were collected and laboratory tests were conducted. WRI then developed and began implementing a field-scale restoration test. 41 refs, 46 figs., 13 tabs.

Barteaux, W.L.; Berdan, G.L.; Lawrence, J.

1986-09-01T23:59:59.000Z

202

Hoe Creek experiments: LLNL's underground coal-gasification project in Wyoming  

SciTech Connect (OSTI)

Under the sponsorship of the US Department of Energy and predecessor organizations, the Lawrence Livermore National Laboratory carried out a laboratory program and three field, underground coal gasification tests near Gillette, Wyoming. This report summarizes that work. Three methods of linking or connecting injection and production wells were used for the UCG field tests: Hoe Creek No. 1 employed explosive fracturing, Hoe Creek No. 2 featured use of reverse combustion, and directional drilling was used for the Hoe Creek No. 3. The Gas Research Institute cosponsored the latter test. Laboratory experiments and modeling, together with a laboratory and field environment program, are necessary adjuncts to the field program. Explosive fracturing in coal was simulated using computer models and laboratory tests. We developed a relationship of total inelastic strains to permeability, which we used to design and interpret a coal outcrop, explosive fracturing experiment at Kemmerer, Wyoming. Coal gasification was also simulated in laboratory experiments and with computer models. The primary aim has been to predict and correlate reaction, thermal-front propagation rates, and product gas composition as a function of bed properties and process operating conditions. Energy recovery in the form of produced gas and liquids amounted to 73% of the energy in the consumed coal. There were essentially no losses to the subsurface formation. The greatest energy loss was in steam production.

Stephens, D.R.

1981-10-01T23:59:59.000Z

203

Geology of the Hanna Formation, Hanna Underground Coal Gasification Site, Hanna, Wyoming  

SciTech Connect (OSTI)

The Hanna Underground Coal Gasification (UCG) study area consists of the SW1/4 of Section 29 and the E1/2SE1/4 of Section 30 in Township 22 North, Range 81 West, Wyoming. Regionally, this is located in the coal-bearing Hanna Syncline of the Hanna Basin in southeast Wyoming. The structure of the site is characterized by beds dipping gently to the northeast. An east-west fault graben complex interrupts this basic trend in the center of the area. The target coal bed of the UCG experiments was the Hanna No. 1 coal in the Hanna Formation. Sedimentary rocks comprising the Hanna Formation consist of a sequence of nonmarine shales, sandstones, coals and conglomerates. The overburden of the Hanna No. 1 coal bed at the Hanna UCG site was divided into four broad local stratigraphic units. Analytical studies were made on overburden and coal samples taken from cores to determine their mineralogical composition. Textural and mineralogical characteristics of sandstones from local stratigraphic units A, B, and C were analyzed and compared. Petrographic analyses were done on the coal including oxides, forms of sulfur, pyrite types, maceral composition, and coal rank. Semi-quantitative spectrographic and analytic geochemical analyses were done on the overburden and coal and relative element concentrations were compared. Trends within each stratigraphic unit were also presented and related to depositional environments. The spectrographic analysis was also done by lithotype. 34 references, 60 figures, 18 tables.

Oliver, R.L.; Youngberg, A.D.

1984-01-01T23:59:59.000Z

204

Basic data for thermal springs and wells as recorded in GEOTHERM: Wyoming  

SciTech Connect (OSTI)

GEOTHERM sample file contains 356 records for Wyoming. Three computer-generated indexes are found in appendices A, B, and C of this report. The indexes give one line summaries of each GEOTHERM record describing the chemistry of geothermal springs and wells in the sample file for Wyoming. Each index is sorted by different variables to assist the user in locating geothermal records describing specific sites. Appendix A is sorted by the county name and the name of the source. Also given are latitude, longitude (both use decimal minutes), township, range, section, GEOTHERM record identifier, and temperature (/sup 0/C). Appendix B is sorted by county, township, range, and section. Also given are name of source, GEOTHERM record identifier, and temperature (/sup 0/C). Appendix C is first sorted into one-degree blocks by latitude, and longitude, and then by name of source. Adjacent one-degree blocks which are published as a 1:250,000 map are combined under the appropriate map name. Also given are GEOTHERM record identifier, and temperature (/sup 0/C). A bibliography is given in Appendix D.

Bliss, J.D.

1983-05-01T23:59:59.000Z

205

Tiger Team Assessment of the Navel Petroleum and Oil Shale Reserves Colorado, Utah, and Wyoming  

SciTech Connect (OSTI)

This report documents the Tiger Team Assessment of the Naval Petroleum Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW). NPOSR-CUW consists of Naval Petroleum Reserve Number 3 located near Casper, Wyoming; Naval Oil Shale Reserve Number I and Naval Oil Shale Reserve Number 3 located near Rifle, Colorado; and Naval Oil Shale Reserve Number 2 located near Vernal, Utah, which was not examined as part of this assessment. The assessment was comprehensive, encompassing environment, safety, and health (ES H) and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal NPOSR-CUW requirements was assessed. The NPOSR-CUW Tiger Team Assessment is part of a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary with information on the compliance status of DOE facilities with regard to ES H requirements, root causes for noncompliance, adequacy of DOE and contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes.

Not Available

1992-07-01T23:59:59.000Z

206

E-Print Network 3.0 - asian orogenic belt Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

All rights reserved. 0022-1376200711503-000415.00 Orogenic Belts and Orogenic Sediment Provenance Summary: rights reserved. 0022-1376200711503-000415.00 315 Orogenic...

207

E-Print Network 3.0 - automatic seat belts Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in the United States?: A Meta-analysis University... technology and by changing automobile driver behavior (Desai and You 1992). Seat belt laws are thought... to be the...

208

E-Print Network 3.0 - abakaliki fold belt Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

exploration province located in deep waters... as detachment folds cored by autochthonous Middle Jurassic Louann Salt. The fold belt overlies rifted... Blickwede and Tom Queffelec...

209

NAME M/YEAR MASTERS THESES TITLES COMMENTS SCOPEL, ROBERT B Jun-49 The Volcanic History of Jackson Hole, Wyoming  

E-Print Network [OSTI]

The Coldwater Formation in the Area of the Allegan Area of Southwestern Michigan ROWE, DEAN E Aug-51 Hole, Wyoming SIMONS, MERTON E Aug-49 Insoluble Residues of the Traverse Group in the Petoskey Area. Jun-50 Geology of an Area North of Gardener, Montana MORDEN, AUDLEY D., JR Jun-50 Stratigraphy

Berdichevsky, Victor

210

NAME M/YEAR MASTERS THESES TITLES SCOPEL, ROBERT B Jun49 The Volcanic History of Jackson Hole, Wyoming  

E-Print Network [OSTI]

, Park County, Wyoming GOSSER, CHARLES F. Jun60 Petrography and Metamorphism of the Star Lake Area of the Keewatin Province, Ontario RUBEL, DANIEL N Apr59 Tertiary volcanic rocks of the Cooke city - pilot peak, Montana BRUEHL, DONALD H. Jun61 The Petrography and Structure of an area North of Cooke City, Montana #12

Baskaran, Mark

211

HumanWildlife Interactions 8(2):284290, Fall 2014 Oil and gas impacts on Wyoming's sage-  

E-Print Network [OSTI]

Human­Wildlife Interactions 8(2):284­290, Fall 2014 Oil and gas impacts on Wyoming's sage- grouse: Historical impacts from oil and gas development to greater sage-grouse (Centrocercus urophasianus) habitat been extrapolated to estimate future oil and gas impacts in the U. S. Fish and Wildlife Service (2010

212

Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming  

SciTech Connect (OSTI)

In 2002, Gnomon, Inc., entered into a cooperative agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) for a project entitled, Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming (DE-FC26-02NT15445). This project, funded through DOEs Preferred Upstream Management Practices grant program, examined cultural resource management practices in two major oil- and gas-producing areas, southeastern New Mexico and the Powder River Basin of Wyoming (Figure 1). The purpose of this project was to examine how cultural resources have been investigated and managed and to identify more effective management practices. The project also was designed to build information technology and modeling tools to meet both current and future management needs. The goals of the project were described in the original proposal as follows: Goal 1. Create seamless information systems for the project areas. Goal 2. Examine what we have learned from archaeological work in the southeastern New Mexico oil fields and whether there are better ways to gain additional knowledge more rapidly or at a lower cost. Goal 3. Provide useful sensitivity models for planning, management, and as guidelines for field investigations. Goal 4. Integrate management, investigation, and decision- making in a real-time electronic system. Gnomon, Inc., in partnership with the Wyoming State Historic Preservation Office (WYSHPO) and Western GeoArch Research, carried out the Wyoming portion of the project. SRI Foundation, in partnership with the New Mexico Historic Preservation Division (NMHPD), Statistical Research, Inc., and Red Rock Geological Enterprises, completed the New Mexico component of the project. Both the New Mexico and Wyoming summaries concluded with recommendations how cultural resource management (CRM) processes might be modified based on the findings of this research.

Eckerle, William; Hall, Stephen

2005-12-30T23:59:59.000Z

213

Overburden characterization and post-burn study of the Hoe Creek, Wyoming underground coal gasification site and comparison with the Hanna, Wyoming site  

SciTech Connect (OSTI)

In 1978 the third test (Hoe Creek III) in a series of underground coal gasification (UCG) experiments was completed at a site south of Gillette, Wyoming. The post-burn study of the geology of the overburden and interlayered rock of the two coal seams affected by the experiment is based on the study of fifteen cores. The primary purpose of the study was to characterize the geology of the overburden and interlayered rock and to determine and evaluate the mineralogical and textural changes that were imposed by the experiment. Within the burn cavity the various sedimentary units have been brecciated and thermally altered to form several pyrometamorphic rock types of paralava rock, paralava breccia, buchite, buchite breccia and hornfels. High temperature minerals of mullite, cordierite, oligo-clase-andesine, tridymite, cristobalite, clinopyroxenes, and magnetite are common in the pyrometamorphic rocks. The habit of these minerals indicates that they crystallized from a melt. These minerals and textures suggest that the rocks were formed at temperatures between 1200/sup 0/ and 1400/sup 0/C. A comparison of geologic and geological-technological factors between the Hoe Creek III site, which experienced substantial roof collapse, and the Hanna II site, which had only moderate roof collapse, indicates that overburden thickness relative to coal seam thickness, degree of induration of overburden rock, injection-production well spacing, and ultimate cavity size are important controls of roof collapse in the structural setting of the two sites.

Ethridge, F.C.; Burns, L.K.; Alexander, W.G.; Craig, G.N. II; Youngberg, A.D.

1983-01-01T23:59:59.000Z

214

The nature of the Heart Mountain fault in the vicinity of Dead Indian Hill, Park County, Wyoming  

E-Print Network [OSTI]

Mountain thrust blocks consti- tuted a very limited strat1graphic interval, consisting of Ordovician B1ghorn Dolomite, undifferentiated dolomi tes, 1 1mestones and shales of Devonian age (Jefferson-Three Forks Formations) and the Mississippian Madison... of the thrust the transgress1ve fault zone and reports the slope of the transgressive fault to be approximately 10 degrees. A field study was conducted in the area of the transgressive fault in an attempt to better understand the mechanics of how...

Sungy, Eugene Donald

1977-01-01T23:59:59.000Z

215

Precambrian Research 136 (2005) 2750 The Wadi Mubarak belt, Eastern Desert of Egypt  

E-Print Network [OSTI]

Precambrian Research 136 (2005) 27­50 The Wadi Mubarak belt, Eastern Desert of Egypt, Graz, Austria b Mansoura University, Faculty of Science, Geology Department, El Mansoura, Egypt c February 2003; accepted 3 September 2004 Abstract The Wadi Mubarak belt in Egypt strikes west­east (and

Fritz, Harald

216

Tolerance of combined salinity and O2 deficiency in Hordeum marinum accessions from the grain-belt of Western Australia  

E-Print Network [OSTI]

grain-belt of Western Australia for tolerance to salinity,in the accessions from Western Australia, as well as K +from the grain-belt of Western Australia. Single heads were

Malik1,2,3, AI; English1,2, JP; Shepherd1,4, KA; Islam2,5, AKMR; Colmer1,2, TD

2009-01-01T23:59:59.000Z

217

Tolerance of combined salinity and O2 deficiency in Hordeum marinum accessions from the grain-belt of Western Australia  

E-Print Network [OSTI]

from the grain-belt of Western Australia for tolerance toin the accessions from Western Australia, as well as K +from the grain-belt of Western Australia. Single heads were

Malik1,2,3, AI; English1,2, JP; Shepherd1,4, KA; Islam2,5, AKMR; Colmer1,2, TD

2009-01-01T23:59:59.000Z

218

Measurement of normal thrust and evaluation of upper-convected Maxwell models for molten plastics in large amplitude oscillatory shear  

E-Print Network [OSTI]

with Relaxation Spectrum Re- ported by Khan and Larson (1987) . IV. 5 Normal Thrust Measurements IV. 6 Mewts-Denn Model Compared With Normal Thrust Measure- ments 37 42 44 46 49 V CONCLUSION REFERENCES APPENDIX FIGURES . . APPENDIX Pa, ge B FIRST... tensor, this is also referred to as the Maxwell model. I. 5 1 Maxwell Model Dealy and Wissbrun (1990) give the Boltzmann superposition principle in the material objective (ie. frame indifferent) integral form in terms of a memory function...

Oakley, Jason Glen

1992-01-01T23:59:59.000Z

219

One and two-dimensional finite difference models of pore pressure evolution within and below a moving thrust sheet  

E-Print Network [OSTI]

-dimensionalized numerical and analytical solutions of the one-dimensional model using identical parameters to solve Equation 3 when KH is homogeneous. . . . . . . . . . . , , , . . . . . . . . . . . , . . . . . . . . . . . , . , 36 12 Total pore pressure at the end... deposition) for the one-dimensional model. . 40 14 Total pore pressure at the end of Stage 3 (thrust loading) for the one- dimensional model. . 42 15 Decay of X with time beginning at the end of Stage 3 (thrust loading) for the one-dimensional model...

Smith, Richard Edwin

1992-01-01T23:59:59.000Z

220

Challenges in assessment, management and development of coalbed methane resources in the Powder River Basin, Wyoming  

SciTech Connect (OSTI)

Coalbed methane development in the Powder River Basin has accelerated rapidly since the mid-1990's. forecasts of coalbed methane (CBM) production and development made during the late 1980's and early 1990's have proven to be distinctly unreliable. Estimates of gas in place and recoverable reserves have also varied widely. This lack of reliable data creates challenges in resource assessment, management and development for public resource management agencies and the CBM operators. These challenges include a variety of complex technical, legal and resource management-related issues. The Bureau of Land Management's Wyoming Reservoir Management Group (WRMG) and US Geological Survey (USGS), with the cooperation and assistance of CBM operators and other interested parties have initiated cooperative studies to address some of these issues. This paper presents results of those studies to date and outlines the agencies' goals and accomplishments expected at the studies' conclusion.

McGarry, D.E.

2000-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "wyoming thrust belt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Seminoe-Kortes transmission line/substation consolidation project, Carbon County, Wyoming  

SciTech Connect (OSTI)

The existing switchyards at Western Area Power Administration's (WESTERN) Seminoe and Kortes facilities, located approximately 40 miles northeast of Rawlines, Carbon County, Wyoming, were constructed in 1939 and 1951, respectively. The circuit breakers at these facilities are beyond or approaching their service life and need to be replaced. In addition, the switchyards have poor access for maintenance and replacement of equipment, and their locations create potential for oil spills into the North Platte River. WESTERN is proposing to consolidate the switchyard facilities into one new substation to provide easier access, restore proper levels of system reliability, and decrease the potential for oil contamination of the river. This environmental assessment (EA) was prepared to evaluate the impacts of the proposed Seminoe-Kortes Consolidation Project. 57 refs., 12 figs., 8 tabs.

Not Available

1990-07-01T23:59:59.000Z

222

Ground-water effects of the UCG experiments at the Hoe Creek site in northeastern Wyoming  

SciTech Connect (OSTI)

Ground-water changes and subsidence effects associated with three underground coal gasification (UCG) experiments have been monitored at the Hoe Creek site in northeastern Wyoming. Ground-water quality measurements have extended over a period of four years and have been supplemented by laboratory studies of contaminant sorption by coal. It was found that a broad range of residual gasification products are introduced into the ground-water system. These contaminants may be of environmental significance if they find their way, in sufficient concentrations, into surface waters, or into aquifers from which water is extracted for drinking or agricultural purposes. Fortunately, the concentrations of these contaminants are substantially reduced by sorption on the surrounding coal. However, recent field measurements indicate that there may be significant limitations on this natural cleansing process. The contaminants of potential concern, and the mechanisms that affect their deposition and persistence have been identified.

Mead, S.W.; Wang, F.T.; Stuermer, D.H.

1981-06-01T23:59:59.000Z

223

Aqueous geochemistry of the Thermopolis hydrothermal system, southern Bighorn Basin, Wyoming, U.S.A.  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

The Thermopolis hydrothermal system is located in the southern portion of the Bighorn Basin, in and around the town of Thermopolis, Wyoming. It is the largest hydrothermal system in Wyoming outside of Yellowstone National Park. The system includes hot springs, travertine deposits, and thermal wells; published models for the hydrothermal system propose the Owl Creek Mountains as the recharge zone, simple conductive heating at depth, and resurfacing of thermal waters up the Thermopolis Anticline. The geochemistry of the thermal waters of three active hot springs, Big Spring, White Sulfur Spring, and Teepee Fountain, is similar in composition; the geochemistry is characteristic of carbonate or carbonate-bearing siliciclastic aquifers. Previous studies of the Thermopolis hydrothermal system postulate that the thermal waters are a mixture of waters from Paleozoic formations. Major element geochemical analyses available for waters from these formations is not of sufficient quality to determine whether the thermal waters are a mixture of the Paleozoic aquifers. In the time frame of this study (1 year), the geochemistry of all three springs was constant through all four seasons, spanning spring snowmelt and recharge as well as late summer and fall dryness. This relationship is consistent with a deep source not influenced by shallow, local hydrogeology. Anomalies are evident in the historic dataset for the geochemistry of Big Spring. We speculate that anomalies occurring between 1906 and 1926 suggest mixing of source waters of Big Spring with waters from a siliciclastic formation, and that anomalies occurring between 1926 and 1933 suggest mixing with waters from a formation containing gypsum or anhydrite. Decreased concentrations measured in our study, relative to concentrations measured between 1933 and 1976, may reflect mixing of thermal waters with more dilute waters. Current data is not sufficient to rigorously test these suggestions, and events of sufficient scale taking place in these timeframes have not been identified.

Kaszuba, John P. [University of Wyoming; Sims, Kenneth W.W. [University of Wyoming; Pluda, Allison R.

2014-03-01T23:59:59.000Z

224

Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

NONE

1997-10-01T23:59:59.000Z

225

Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.  

SciTech Connect (OSTI)

In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future projectspecific analyses. Additional information about the PEIS can be found at http://ostseis.anl.gov.

Murphey, P. C.; Daitch, D.; Environmental Science Division

2009-02-11T23:59:59.000Z

226

EA-1617: Lovell-Yellowtail and Basin-Lovell Transmission Line Rebuild Project, Big Horn County, Wyoming, and Big Horn and Carbon Counties, Montana  

Broader source: Energy.gov [DOE]

DOEs Western Area Power Administration prepared this EA and a finding of no significant impact for a proposal to rebuild the Lovell-Yellowtail (LV-YT) No. 1 and No. 2 115-kV transmission lines, located in Big Horn County, Wyoming, and Big Horn and Carbon Counties in Montana, and the Basin-Lovell 115-kV transmission line in Big Horn County, Wyoming.

227

Green belts in the hands and minds of farmers: A socio-agronomical approach to farmers' practices  

E-Print Network [OSTI]

1 Green belts in the hands and minds of farmers: A socio-agronomical approach to farmers' practices.alavoine-mornas@irstea.fr ; sabine.girard@irstea.fr Keywords: green belts - biodiversity ­ farmers practices ­ French Alps Abstract of intensive agriculture. In France, this topic is addressed by the "blue and green belts" measure, which

Paris-Sud XI, Université de

228

Eastern Overthrust Belt. Signs of a hoped-for awakening  

SciTech Connect (OSTI)

Exploration for oil and gas is on the upswing in the SW Virginia sector of the Eastern Overthrust Belt in the 200-mile long portion between Lee and Montgomery Counties. In the past several months one new oil field has been opened and the area's only gas field has been revived after lying idle for 23 yr. These signs of a hoped-for awakening have been accompanied by an intense leasing program by many oil companies. This review is confined to the geology of the strongly folded and faulted area of SW Virginia. In the Overthrust area, early studies indicated that oil would be found only in portions of Lee and Scott Counties, and that other areas would contain only natural gas because of the greater intensity of regional metamorphism. Drilling so far has confirmed these forecasts. This study will be divided in a similar manner.

Bartlett, C.S. Jr.; Biggs, T.H.

1982-06-01T23:59:59.000Z

229

Basement/cover rock relations of the Dry Fork Ridge Anticline termination, northeastern Bighorn Mountains, Wyoming and Montana  

E-Print Network [OSTI]

, Northeastern Bighorn Mountains, Wyoming and Montana. (August 1986) Peter Hill Hennings, B. S. , Texas A&M University Chairman of Advisory Committee: Dr. John H. Spang Field mapping on scales of 1:6, 000 and 1: 12, 000 indicate that the basement involved... in the Field Area Methodology DATA. PAGE I 3 7 10 12 17 25 25 28 Field Map. Interpretive Data: Cross Sections Dry Fork Ridge Anticline. Faole Point Anticline and the Mountain Flank. . Basement Geometry. Fracture Analysis...

Hennings, Peter Hill

1986-01-01T23:59:59.000Z

230

Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.  

SciTech Connect (OSTI)

In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future oil shale and tar sands resource development.

O'Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

2007-11-01T23:59:59.000Z

231

Fuel-optimal Earth-Mars trajectories using low-thrust exhaust-modulated plasma propulsion  

E-Print Network [OSTI]

relerence frames Lx', y', r'I are different for the Earth and Mars references. The substitutions for the second-order derivatives required in the 27 differential equations are given by 2 VIM ISI CCS M + RM RM RM (2. 64) V V sin AM + RM cosltlM ( RM.... Characteristics of the Plasma Propulsion. . Equations of Motion. III NECESSARY CONDITIONS OF OPTIMALITY?. . . 14 15 16 30 Optimal Control Theory. Necessary Conditions of a Fuel-Optimal Earth-Mars Trajectory with Low-Thrust Plasma Propulsion...

Nah, Ren Sang

2012-06-07T23:59:59.000Z

232

ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING  

SciTech Connect (OSTI)

This report summarizes activities that have taken place in the last six (6) months (January 2005-June 2005) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the United States: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico. Gnomon as project lead, worked in both areas.

Peggy Robinson

2005-07-01T23:59:59.000Z

233

US Synthetic Corp (TRL 4 Component)- The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings for use in Marine Hydrokinetic (MHK) Energy Machines  

Broader source: Energy.gov [DOE]

US Synthetic Corp (TRL 4 Component) - The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings for use in Marine Hydrokinetic (MHK) Energy Machines

234

The Electric Field and Waves Instruments on the Radiation Belt Storm Probes Mission  

E-Print Network [OSTI]

The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency ...

Wygant, J. R.

235

Subaqueous calderas in the Archean Abitibi greenstone belt: An overview and W.U. Mueller a,  

E-Print Network [OSTI]

, physical volcanology, dyke emplacement, and hydrothermal carbonate alteration. These subaqueous calderas-documented hydrothermal carbonate alteration isdiscussed and a newexploration model for calderas is presented Available online 6 January 2009 Keywords: Archean calderas VMS deposits Abitibi belt Volcanology Carbonate

Long, Bernard

236

Water Ice on the Satellite of Kuiper Belt Object 2003 EL61  

E-Print Network [OSTI]

We have obtained a near infrared spectrum of the brightest satellite of the large Kuiper Belt Object, 2003 EL61. The spectrum has absorption features at 1.5 and 2.0 microns, indicating that water ice is present on the surface. We find that the satellite's absorption lines are much deeper than water ice features typically found on Kuiper Belt Objects. We argue that the unusual spectrum indicates that the satellite was likely formed by impact and not by capture.

K. M Barkume; M. E. Brown; E. L. Schaller

2006-01-24T23:59:59.000Z

237

Final environmental statement related to the Western Nuclear, Inc. , Split Rock Uranium Mill (Fremont County, Wyoming)  

SciTech Connect (OSTI)

The proposed action is the renewal of Source Material License SUA-56 (with amendments) issued to Western Nuclear, Inc. (WNI), for the operation of the Split Rock Uranium Mill near Jeffrey City and the Green Mountain Ion-Exchange Facility, both in Fremont County, Wyoming. The license also permits possession of material from past operations at four ancillary facilities in the Gas Hills mining area - the Bullrush, Day-Loma, Frazier-Lamac, and Rox sites (Docket No. 40-1162). However, although heap leaching operations were previously authorized at Frazier-Lamac, there has never been any processing of material at this site. The Split Rock mill is an acid-leach, ion-exchange and solvent-extraction uranium-ore processing mill with a design capacity of 1540 MT (1700 tons) of ore per day. WNI has proposed by license amendment request to increase the storage capacity of the tailings ponds in order to permit the continuation of present production rates of U/sub 3/O/sub 8/ through 1996 using lower-grade ores.

Not Available

1980-02-01T23:59:59.000Z

238

Site observational work plan for the UMTRA Project site at Spook, Wyoming  

SciTech Connect (OSTI)

The Spook, Wyoming, site observational work plan proposes site-specific activities to achieve compliance with Subpart B of 40 CFR Part 192 (1994) of the final US Environmental Protection Agency (EPA) ground water protection standards 60 FR 2854 (1995) at this Uranium Mill Tailing Remedial Action (UMTRA) Project site. This draft SOWP presents a comprehensive summary of existing site characterization data, a conceptual site model of the nature and extent of ground water contamination, exposure pathways, and potential impact to human health and the environment. Section 2.0 describes the requirements for meeting ground water standards at UMTRA Project sites. Section 3.0 defines past and current conditions, describes potential environmental and human health risks, and provides site-specific data that supports the selection of a proposed ground water compliance strategy. Section 4.0 provides the justification for selecting the proposed ground water compliance strategy based on the framework defined in the ground water programmatic environmental impact statement (PEIS).

NONE

1995-05-01T23:59:59.000Z

239

Supplement to the UMTRA Project water sampling and analysis plan, Riverton, Wyoming  

SciTech Connect (OSTI)

This water sampling and analysis plan (WSAP) supplement supports the regulatory and technical basis for water sampling at the Riverton, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project site, as defined in the 1994 WSAP document for Riverton (DOE, 1994). Further, the supplement serves to confirm the Project`s present understanding of the site relative to the hydrogeology and contaminant distribution as well as the intent to continue to use the sampling strategy as presented in the 1994 WSAP document for Riverton. Ground water and surface water monitoring activities are derived from the US Environmental Protection Agency regulations in 40 CFR Part 192 and 60 FR 2854. Sampling procedures are guided by the UMTRA Project standard operating procedures (JEG, n.d.), the Technical Approach Document (DOE, 1989), and the most effective technical approach for the site. Additional site-specific documents relevant to the Riverton site are the Riverton Baseline Risk Assessment (BLRA) (DOE, 1995a) and the Riverton Site Observational Work Plan (SOWP) (DOE, 1995b).

NONE

1995-09-01T23:59:59.000Z

240

RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING  

SciTech Connect (OSTI)

The new exploration technology for basin center gas accumulations developed by R.C. Surdam and Associates at the Institute for Energy Research, University of Wyoming, was applied to the Riverton Dome 3-D seismic area. Application of the technology resulted in the development of important new exploration leads in the Frontier, Muddy, and Nugget formations. The new leads are adjacent to a major north-south trending fault, which is downdip from the crest of the major structure in the area. In a blind test, the drilling results from six new Muddy test wells were accurately predicted. The initial production values, IP, for the six test wells ranged from < one mmcf/day to four mmcf/day. The three wells with the highest IP values (i.e., three to four mmcf/day) were drilled into an intense velocity anomaly (i.e., anomalously slow velocities). The well drilled at the end of the velocity anomaly had an IP value of one mmcf/day, and the two wells drilled outside of the velocity anomaly had IP values of < one mmcf/day and are presently shut in. Based on these test results, it is concluded that the new IER exploration strategy for detecting and delineating commercial, anomalously pressured gas accumulation is valid in the southwestern portions of the Wind River Basin, and can be utilized to significantly reduce exploration risk and to increase profitability of so-called basin center gas accumulations.

Ronald C. Surdam; Zunsheng Jiao; Nicholas K. Boyd

1999-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "wyoming thrust belt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Postburn evaluation for Hanna II, Phases 2 and 3, underground coal gasification experiments, Hanna, Wyoming  

SciTech Connect (OSTI)

During 1980 and 1981 the Laramie Energy Technology Center (LETC) conducted a post-burn study at the Hanna II, Phases 2 and 3 underground coal gasification (UCG) site, Hanna, Wyoming. This report contains a summary of the field and laboratory results from the study. Lithologic and geophysical well log data from twenty-two (22) drill holes, combined with high resolution seismic data delineate a reactor cavity 42.7m (140 ft.) long, 35.1 m (115 ft.) and 21.3 m (70 ft.) high that is partially filled with rubble, char and pyrometamorphic rock. Sedimentographic studies were completed on the overburden. Reflectance data on coal samples within the reactor cavity and cavity wall reveal that the coal was altered by temperatures ranging from 245/sup 0/C to 670/sup 0/C (472/sup 0/-1238/sup 0/F). Overburden rocks found within the cavity contain various pyrometamorphic minerals, indicating that temperatures of at least 1200/sup 0/C (2192/sup 0/F) were reached during the tests. The calcite cemented fine-grained sandstone and siltstone directly above the Hanna No. 1 coal bed formed a strong roof above the cavity, unlike other UCG sites such as Hoe Creek which is not calcite cemented. 30 references, 27 figures, 8 tables.

Youngberg, A.D.; Sinks, D.J.; Craig, G.N. II; Ethridge, F.G.; Burns, L.K.

1983-12-01T23:59:59.000Z

242

Implications of ground-water measurements at the Hoe Creek UCG site in northeastern Wyoming  

SciTech Connect (OSTI)

Underground coal gasification (UCG) promises to become an important source of synthetic fuels. In an effort to provide timely information concerning the environmental implications of the UCG process, we are conducting investigations in conjunction with the UCG experiments carried out in northeastern Wyoming by the Lawrence Livermore National Laboratory. Our ground-water quality measurements have extended over a period of four years and have been supplemented by laboratory studies of contaminant sorption by coal. Cavity roof collapse and aquifer interconnection were also investigated, using surface and subsurface geotechnical instruments, post-burn coring, and hydraulic head measurements. We have found that a broad range of residual gasification products are introduced into the ground-water system. Fortunately, the concentrations of many of these contaminants are substantially reduced by sorption on the surrounding coal. However, some of these materials seem likely to remain in the local groundwater, at low concentrations, for several years. We have attempted to interpret our results in terms of concepts that will assist in the development of effective and practicable control technologies.

Mead, S.W.; Wang, F.T.; Stuermer, D.H.; Raber, E.; Ganow, H.C.; Stone, R.

1980-01-01T23:59:59.000Z

243

Kuiper belt structure around nearby super-Earth host stars  

E-Print Network [OSTI]

We present new observations of the Kuiper belt analogues around HD 38858 and HD 20794, hosts of super-Earth mass planets within 1 au. As two of the four nearby G-type stars (with HD 69830 and 61 Vir) that form the basis of a possible correlation between low-mass planets and debris disc brightness, these systems are of particular interest. The disc around HD 38858 is well resolved with Herschel and we constrain the disc geometry and radial structure. We also present a probable JCMT sub-mm continuum detection of the disc and a CO J=2-1 upper limit. The disc around HD 20794 is much fainter and appears marginally resolved with Herschel, and is constrained to be less extended than the discs around 61 Vir and HD 38858. We also set limits on the radial location of hot dust recently detected around HD 20794 with near-IR interferometry. We present HARPS upper limits on unseen planets in these four systems, ruling out additional super-Earths within a few au, and Saturn-mass planets within 10 au. We consider the disc st...

Kennedy, Grant M; Marmier, Maxime; Greaves, Jane S; Wyatt, Mark C; Bryden, Geoffrey; Holland, Wayne; Lovis, Christophe; Matthews, Brenda C; Pepe, Francesco; Sibthorpe, Bruce; Udry, Stphane

2015-01-01T23:59:59.000Z

244

Initial highlights from the Herschel Gould Belt survey  

E-Print Network [OSTI]

We summarize the first results from the Gould Belt survey, obtained toward the Aquila Rift and Polaris Flare regions during the 'science demonstration phase' of Herschel. Our 70-500 micron images taken in parallel mode with the SPIRE and PACS cameras reveal a wealth of filamentary structure, as well as numerous dense cores embedded in the filaments. Between ~ 350 and 500 prestellar cores and ~ 45-60 Class 0 protostars can be identified in the Aquila field, while ~ unbound starless cores and no protostars are observed in the Polaris field. The prestellar core mass function (CMF) derived for the Aquila region bears a strong resemblance to the stellar initial mass function (IMF), already confirming the close connection between the CMF and the IMF with much better statistics than earlier studies. Comparing and contrasting our Herschel results in Aquila and Polaris, we propose an observationally-driven scenario for core formation according to which complex networks of long, thin filaments form first within molecul...

Andr, Ph; Bontemps, S; Knyves, V; Motte, F; Schneider, N; Didelon, P; Minier, V; Saraceno, P; Ward-Thompson, D; Di Francesco, J; White, G; Molinari, S; Testi, L; Abergel, A; Griffin, M; Henning, Th; Royer, P; Mern, B; Vavrek, R; Attard, M; Arzoumanian, D; Wilson, C D; Ade, P; Aussel, H; Baluteau, J -P; Benedettini, M; Bernard, J -Ph; Blommaert, J A D L; Cambrsy, L; Cox, P; Di Giorgio, A; Hargrave, P; Hennemann, M; Huang, M; Kirk, J; Krause, O; Launhardt, R; Leeks, S; Pennec, J Le; Li, J Z; Martin, P; Maury, A; Olofsson, G; Omont, A; Peretto, N; Pezzuto, S; Prusti, T; Roussel, H; Russeil, D; Sauvage, M; Sibthorpe, B; Sicilia-Aguilar, A; Spinoglio, L; Waelkens, C; Woodcraft, A; Zavagno, A

2010-01-01T23:59:59.000Z

245

Volatile Loss and Classification of Kuiper Belt Objects  

E-Print Network [OSTI]

Observations indicate that some of the largest Kuiper Belt Objects (KBOs) have retained volatiles in the gas phase, which implies the presence of an atmosphere that can affect their reflectance spectra and thermal balance. Volatile escape rates driven by solar heating of the surface were estimated by Schaller and Brown (2007) (SB) and Levi and Podolak (2009)(LP) using Jeans escape from the surface and a hydrodynamic model respectively. Based on recent molecular kinetic simulations these rates can be hugely in error (e.g., a factor of $\\sim 10^{16}$ for the SB estimate for Pluto). In this paper we estimate the loss of primordial N$_2$ for several large KBOs guided by recent molecular kinetic simulations of escape due to solar heating of the surface and due to UV/EUV heating of the upper atmosphere. For the latter we extrapolate simulations of escape from Pluto (Erwin et al. 2013) using the energy limited escape model recently validated for the KBOs of interest by molecular kinetic simulations (Johnson et al. 2...

Johnson, R E; Young, L A; Volkov, A N; Schmidt, C

2015-01-01T23:59:59.000Z

246

Planar resonant periodic orbits in Kuiper belt dynamics  

E-Print Network [OSTI]

In the framework of the planar restricted three body problem we study a considerable number of resonances associated to the Kuiper Belt dynamics and located between 30 and 48 a.u. Our study is based on the computation of resonant periodic orbits and their stability. Stable periodic orbits are surrounded by regular librations in phase space and in such domains the capture of trans-Neptunian object is possible. All the periodic orbits found are symmetric and there is evidence for the existence of asymmetric ones only in few cases. In the present work first, second and third order resonances are under consideration. In the planar circular case we found that most of the periodic orbits are stable. The families of periodic orbits are temporarily interrupted by collisions but they continue up to relatively large values of the Jacobi constant and highly eccentric regular motion exists for all cases. In the elliptic problem and for a particular eccentricity value of the primary bodies the periodic orbits are isolated. The corresponding families, where they belong to, bifurcate from specific periodic orbits of the circular problem and seem to continue up to the rectilinear problem. Both stable and unstable orbits are obtained for each case. In the elliptic problem the unstable orbits found are associated with narrow chaotic domains in phase space. The evolution of the orbits, which are located in such chaotic domains, seems to be practically regular and bounded for long time intervals.

George Voyatzis; Thomas Kotoulas

2005-02-28T23:59:59.000Z

247

On the Plutinos and Twotinos of the Kuiper Belt  

E-Print Network [OSTI]

We illuminate dynamical properties of Kuiper Belt Objects (KBOs) in the 3:2 (``Plutino'') and 2:1 (``Twotino'') Neptunian resonances within the model of resonant capture and migration. We analyze a series of numerical integrations, each involving the 4 migratory giant planets and 400 test particles distributed throughout trans-Neptunian space, to measure efficiencies of capture as functions of migration speed. Snapshots of the spatial distribution of resonant KBOs reveal that Twotinos cluster +/- 75 degrees away from Neptune's longitude, while Plutinos cluster +/- 90 degrees away. Longitudinal clustering persists even for surveys that are not volume-limited in their ability to detect resonant KBOs. Remarkably, between -90 degrees and -60 degrees of Neptune's longitude, we find the sky density of Twotinos to nearly equal that of Plutinos, despite the greater average distance of Twotinos. We couple our findings to observations to crudely estimate that the intrinsic Twotino population is within a factor of 3 of the Plutino population. Most strikingly, the migration model predicts that more Twotinos may lie at longitudes behind that of Neptune than ahead of it. The magnitude of the asymmetry amplifies dramatically with faster rates of migration and can be as large as 300%. A differential measurement of the sky density of 2:1 resonant objects behind of and in front of Neptune's longitude would powerfully constrain the migration history of that planet.

E. I. Chiang; A. B. Jordan

2002-10-18T23:59:59.000Z

248

Wyoming coal-conversion project. Final technical report, November 1980-February 1982. [Proposed WyCoalGas project, Converse County, Wyoming; contains list of appendices with title and identification  

SciTech Connect (OSTI)

This final technical report describes what WyCoalGas, Inc. and its subcontractors accomplished in resolving issues related to the resource, technology, economic, environmental, socioeconomic, and governmental requirements affecting a project located near Douglas, Wyoming for producing 150 Billion Btu per day by gasifying sub-bituminous coal. The report summarizes the results of the work on each task and includes the deliverables that WyCoalGas, Inc. and the subcontractors prepared. The co-venturers withdrew from the project for two reasons: federal financial assistance to the project was seen to be highly uncertain; and funds were being expended at an unacceptably high rate.

None

1982-01-01T23:59:59.000Z

249

Active thrust faulting offshore Boumerdes, Algeria, and its relations to the 2003 Mw 6.9 earthquake  

E-Print Network [OSTI]

Active thrust faulting offshore Boumerdes, Algeria, and its relations to the 2003 Mw 6.9 earthquake offshore Boumerdes, Algeria, and its relations to the 2003 Mw 6.9 earthquake, Geophys. Res. Lett., 32, L that strain is distributed over a broad area, from the Atlas front to the offshore margin [Buforn et al., 1995

Déverchère, Jacques

250

Abstract --This panel session paper outlines one of the re-search thrust areas in the Power System Engineering Research  

E-Print Network [OSTI]

1 Abstract -- This panel session paper outlines one of the re- search thrust areas in the Power- tential of harnessing the inherent flexibility of certain load types such as heating and cooling and PHEV for massive penetration of renewable resources such as wind and solar power into the mix of elec- tricity

Oren, Shmuel S.

251

Annotated bibliography of selected references on shoreline barrier island deposits with emphasis on Patrick Draw Field, Sweetwater County, Wyoming  

SciTech Connect (OSTI)

This bibliography contains 290 annotated references on barrier island and associated depositional environments and reservoirs. It is not an exhaustive compilation of all references on the subject, but rather selected papers on barrier islands, and the depositional processes of formation. Papers that examine the morphology and internal architecture of barrier island deposits, exploration and development technologies are emphasized. Papers were selected that aid in understanding reservoir architecture and engineering technologies to help maximize recovery efficiency from barrier island oil reservoirs. Barrier islands from Wyoming, Montana and the Rocky Mountains basins are extensively covered.

Rawn-Schatzinger, V.; Schatzinger, R.A.

1993-07-01T23:59:59.000Z

252

Site observational work plan for the UMTRA Project site at Riverton, Wyoming  

SciTech Connect (OSTI)

The site observational work plan (SOWP) for the Riverton, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project Site is the first document for the UMTRA Ground Water Project to address site-specific activities to meet compliance with the U.S. Environmental Protection Agency (EPA) proposed ground water standards (52 FR 36000 (1987)). In support of the activities the regulatory framework and drivers are presented along with a discussion of the relationship of this SOWP to other UMTRA Ground Water Project programmatic documents. A combination of the two compliance strategies that will be recommended for this site are no remediation with the application of alternate concentration levels (ACL) and natural flushing in conjunction with institutional controls. ACLs are to be applied to constituents that occur at concentrations above background levels but which are essential nutrients and occur within nutritional ranges and/or have very low toxicity and high dietary intake rates compared to the levels detected in the ground water. The essential premise of natural flushing is that ground water movement and natural attenuation processes will reduce the detected contamination to background levels within 1 00 years. These two recommended compliance strategies were evaluated by applying Riverton site-specific data to the compliance framework developed in the UMTRA Ground Water programmatic environmental impact statement. There are three aquifers beneath the site: a surficial unconfined aquifer, a middle semiconfined aquifer, and a deeper confined aquifer. The milling-related contamination at the site has affected both the surficial and semiconfined aquifers, although the leaky shale aquifers separating these units limits the downward migration of contamination into the semiconfined aquifer. A shale aquitard separates the semiconfined aquifer from the underlying confined aquifer which has not been contaminated by milling-related constituents.

Not Available

1994-09-01T23:59:59.000Z

253

NEP for a Kuiper Belt Object Rendezvous Mission  

SciTech Connect (OSTI)

Kuiper Belt Objects (KBOs) are a recently-discovered set of solar system bodies which lie at about the orbit of Pluto (40 AU) out to about 100 astronomical units (AU). There are estimated to be about 100,000 KBOS with a diameter greater than 100 km. KBOS are postulated to be composed of the pristine material which formed our solar system and may even have organic materials in them. A detailed study of KBO size, orbit distribution, structure, and surface composition could shed light on the origins of the solar system and perhaps even on the origin of life in our solar system. A rendezvous mission including a lander would be needed to perform chemical analysis of the surface and sub-surface composition of KBOS. These requirements set the size of the science probe at around a ton. Mission analyses show that a fission-powered system with an electric thruster could rendezvous at 40 AU in about 13.0 years with a total {Delta}V of 46 krnk. It would deliver a 1000-kg science payload while providing ample onboard power for relaying data back to earth. The launch mass of the entire system (power, thrusters, propellant, navigation, communication, structure, science payload, etc.) would be 7984 kg if it were placed into an earth-escape trajectory (C=O). Alternatively, the system could be placed into a 700-km earth orbit with more propellant,yielding a total mass in LEO of 8618 kg, and then spiral out of earth orbit to arrive at the KBO in 14.3 years. To achieve this performance, a fission power system with 100 kW of electrical power and a total mass (reactor, shield, conversion, and radiator) of about 2350 kg. Three possible configurations are proposed: (1) a UZrH-fueled, NaK-cooled reactor with a steam Rankine conversion system, (2) a UN-fueled gas-cooled reactor with a recuperated Brayton conversion system, and (3) a UN-fueled heatpipe-cooled reactor with a recuperated Brayton conversion system. (Boiling and condensation in the Rankine system is a technical risk at present.) All three of these systems have the potential to meet the weight requirement for the trip and to be built in the near term.

HOUTS,MICHAEL G.; LENARD,ROGER X.; LIPINSKI,RONALD J.; PATTON,BRUCE; POSTON,DAVID I.; WRIGHT,STEVEN A.

1999-11-03T23:59:59.000Z

254

Growth of asteroids, planetary embryos and Kuiper belt objects by chondrule accretion  

E-Print Network [OSTI]

Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas-drag-assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo run-away accretion of chondrules within ~3 Myr, forming planetary embryos up to Mars sizes along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size-sorting of chondrules consistent with chondrites. Accretion of mm-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disk life time outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is...

Johansen, Anders; Lacerda, Pedro; Bizzarro, Martin

2015-01-01T23:59:59.000Z

255

ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL AND GAS IN NEW MEXICO AND WYOMING  

SciTech Connect (OSTI)

This report contains a summary of activities of Gnomon, Inc. and five sub-contractors that have taken place during the first six months (January 1, 2003--June 30, 2003) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Gnomon, Inc. and all five (5) subcontractors have agreed on a process for the framework of this two-year project. They have also started gathering geomorphological information and entering cultural resource data into databases that will be used to create models later in the project. This data is being gathered in both the Power River Basin of Wyoming, and the Southeastern region of New Mexico. Several meetings were held with key players in this project to explain the purpose of the research, to obtain feedback and to gain support. All activities have been accomplished on time and within budget with no major setbacks.

Peggy Robinson

2003-07-25T23:59:59.000Z

256

Planck intermediate results. XII: Diffuse Galactic components in the Gould Belt System  

E-Print Network [OSTI]

We perform an analysis of the diffuse low-frequency Galactic components in the Southern part of the Gould Belt system ($130^\\circ\\leq l\\leq 230^\\circ$ and $-50^\\circ\\leq b\\leq -10^\\circ$). Strong UV flux coming from the Gould Belt super-association is responsible for bright diffuse foregrounds that we observe from our position inside the system and that can help us improve our knowledge of the Galactic emission. Free-free emission and anomalous microwave emission (AME) are the dominant components at low frequencies ($\

Ade, P A R; Alves, M I R; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartlett, J G; Battaner, E; Bedini, L; Benabed, K; Benot, A; Bernard, J -P; Bersanelli, M; Bonaldi, A; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Burigana, C; Butler, R C; Chen, X; Chiang, L -Y; Christensen, P R; Clements, D L; Colombi, S; Colombo, L P L; Coulais, A; Cuttaia, F; Davies, R D; Davis, R J; de Bernardis, P; de Zotti, G; Delabrouille, J; Dickinson, C; Diego, J M; Dobler, G; Dole, H; Donzelli, S; Dor, O; Douspis, M; Dupac, X; Enlin, T A; Finelli, F; Forni, O; Frailis, M; Franceschi, E; Galeotta, S; Ganga, K; Gnova-Santos, R T; Ghosh, T; Giard, M; Giardino, G; Giraud-Hraud, Y; Gonzlez-Nuevo, J; Grski, K M; Gregorio, A; Gruppuso, A; Hansen, F K; Harrison, D; Hernndez-Monteagudo, C; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Jaffe, T R; Jaffe, A H; Juvela, M; Keihnen, E; Keskitalo, R; Kisner, T S; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lhteenmki, A; Lamarre, J -M; Lasenby, A; Lawrence, C R; Leach, S; Leonardi, R; Lilje, P B; Linden-Vrnle, M; Lubin, P M; Macas-Prez, J F; Maffei, B; Maino, D; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martnez-Gonzlez, E; Masi, S; Massardi, M; Matarrese, S; Mazzotta, P; Melchiorri, A; Mennella, A; Mitra, S; Miville-Deschnes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Nrgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Osborne, S; Oxborrow, C A; Pajot, F; Paladini, R; Paoletti, D; Peel, M; Perotto, L; Perrotta, F; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Popa, L; Poutanen, T; Pratt, G W; Prunet, S; Puget, J -L; Rachen, J P; Reach, W T; Rebolo, R; Reinecke, M; Renault, C; Ricciardi, S; Ristorcelli, I; Rocha, G; Rosset, C; Rubio-Martn, J A; Rusholme, B; Salerno, E; Sandri, M; Savini, G; Scott, D; Spencer, L; Stolyarov, V; Sudiwala, R; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Tibbs, C T; Toffolatti, L; Tomasi, M; Tristram, M; Valenziano, L; Van Tent, B; Varis, J; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Ysard, N; Yvon, D; Zacchei, A; Zonca, A

2013-01-01T23:59:59.000Z

257

Structural analysis of the perdido fold belt: timing, evolution, and structural style  

E-Print Network [OSTI]

area is outlin ed with a bo x. AC=Alaminos Canyon ; AW=Atwater Valley; CC= Corpus Christi; EB = E ast Breaks; GB= G arden Banks; GC= G re ens Can yon ; KC=Keathly Canyon; L=Lund; PI=Port Isabel ; WR=Walk er Ridge. Modified from Trudgill et al... in the Perdido fold belt. The excess extension could have been taken up in either the Port Isabel fold belt, located west of the PFB, along with influences of salt deformation. Winker (2004), along with Fiduk et al. (1997), Trudgill et al. (1999) and many...

Waller, Troy Dale, II

2007-09-17T23:59:59.000Z

258

Timing of granite emplacement and cooling in the SongpanGarze^ Fold Belt (eastern Tibetan Plateau) with tectonic implications  

E-Print Network [OSTI]

Timing of granite emplacement and cooling in the Songpan­Garze^ Fold Belt (eastern Tibetan Plateau Abstract New U­Pb and Rb­Sr geochronology on syn- and post-orogenic granites provide constraints on the timing of major tectonic events in the Songpan­Garze^ fold belt, west Sichuan, China. The Ma Nai granite

259

The Antarctic Circumpolar Productivity Belt Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, Washington, USA  

E-Print Network [OSTI]

The Antarctic Circumpolar Productivity Belt T. Ito Joint Institute for the Study of the Atmosphere] We illustrate the mechanisms controlling the spatial patterns of biological productivity of enhanced export production, figuratively termed as the Antarctic Circumpolar Productivity Belt. As observed

Follows, Mick

260

Effects of Natural Gas Well Development and Reclamation Activities on Topsoil Properties Proposal Submitted to the University of Wyoming School of Energy Resources  

E-Print Network [OSTI]

, as is typically done during energy development activities, drastically disrupts the soil system and stimulates Submitted to the University of Wyoming School of Energy Resources 2007-08 Matching Grant Fund April 15, 2008 Summary: Maintaining and restoring productivity of topsoil disturbed by energy development is crucial

Norton, Jay B.

Note: This page contains sample records for the topic "wyoming thrust belt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Phase II - final report study of alternatives for future operations of the naval petroleum and oil shale reserves NPR-3, Wyoming  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Appraiser under contract DE-AC01-96FE64202. This authorizes a study and recommendations regarding future development of Naval Petroleum Reserve No. 3 (NPR-3) in Natrona County, Wyoming. The report that follows is the Phase II Final Report for that study.

NONE

1996-12-01T23:59:59.000Z

262

3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming  

SciTech Connect (OSTI)

The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

La Pointe, Paul; Parney, Robert; Eiben, Thorsten; Dunleavy, Mike; Whitney, John; Eubanks, Darrel

2002-09-09T23:59:59.000Z

263

Tuesday, 31 July, 2012 Rapid radiation belt losses occurring during high speed solar wind stream1  

E-Print Network [OSTI]

Tuesday, 31 July, 2012 1 Rapid radiation belt losses occurring during high speed solar wind stream1 Raita11 Sodankylä Geophysical Observatory, University of Oulu, Sodankylä, Finland12 Abstract. Recent geomagnetic disturbances triggered by the arrival of a Solar14 Wind Stream Interface (SWSI). In the current

Otago, University of

264

Are energetic electrons in the solar wind the source of the outer radiation belt?  

E-Print Network [OSTI]

Are energetic electrons in the solar wind the source of the outer radiation belt? Xinlin Li,1 D. N. Mewaldt6 Abstract. Using data from WIND, SAMPEX (Solar, Anomalous, and Magnetospheric Particle Explorer), and the Los Alamos National Laboratory (LANL) sensors onboard geostationary satellites, we investigate

Li, Xinlin

265

GEOSPATIAL DECISION SUPPORT FOR SEED COMPANIES IN THE CORN BELT Marcus E. Tooze1  

E-Print Network [OSTI]

GEOSPATIAL DECISION SUPPORT FOR SEED COMPANIES IN THE CORN BELT Marcus E. Tooze1 , S. Hatten2 , W in the seed industry, new applications emerge for mapping, analysis, and interpretation of cultivar. In addition, a geospatial framework was developed to identify the soil landscapes that had the best soil

Reichenbach, Stephen E.

266

Incorporating spectral characteristics of Pc5 waves into three-dimensional radiation belt  

E-Print Network [OSTI]

. This is the first analysis in three dimensions utilizing model ULF wave electric and magnetic fields on the guiding losses at MeV energies. This inner electron belt resides mainly below 2 RE geocen- tric distance center trajectories of relativistic electrons. A model is developed, describing magnetic and electric

Elkington, Scot R.

267

Energetic outer radiation-belt electron precipitation during recurrent solar activity  

E-Print Network [OSTI]

on the atmosphere [Seppälä et al., 2004]. During some intense solar storms solar protons in the energy range 1Energetic outer radiation-belt electron precipitation during recurrent solar activity Mark A and Physical Sciences, University of Newcastle, Callaghan, Australia. Russell S. Grew School of Mathematical

Otago, University of

268

Analysis of Heavy Oil Recovery by Thermal EOR in a Meander Belt: From Geological  

E-Print Network [OSTI]

Analysis of Heavy Oil Recovery by Thermal EOR in a Meander Belt: From Geological to Reservoir aux priodes cruciales de production. Oil & Gas Science and Technology Rev. IFP Energies nouvelles Dfis et nouvelles approches en EOR D o s s i e r #12;Oil & Gas Science and Technology Rev. IFP

Paris-Sud XI, Universit de

269

Precipitation of relativistic electrons of the Van Allen belts into the proton aurora  

SciTech Connect (OSTI)

The Van Allen electron belts consist of two regions encircling the earth in which relativistic electrons are trapped in the earth's magnetic field. Populations of relativistic electrons in the Van Allen belts vary greatly with geomagnetic disturbance and they are a major source of damage to space vehicles. In order to know when and by how much these populations of relativistic electrons increase, it is important to elucidate not only the cause of acceleration of relativistic electrons but also the cause of their loss from the Van Allen belts. Here we show the first evidence that left-hand polarized electromagnetic ion cyclotron (EMIC) plasma waves can cause the loss of relativistic electrons into the atmosphere, on the basis of results of an excellent set of ground and satellite observations showing coincident precipitation of ions with energies of tens of keV and of relativistic electrons into an isolated proton aurora. The proton aurora was produced by precipitation of ions with energies of tens of keV due to EMIC waves near the plasma pause, which is a manifestation of wave-particle interactions. These observations clarify that ions with energies of tens of keV affect the evolution of relativistic electrons in the Van Allen belts via parasitic resonance with EMIC waves, an effect that was first theoretically predicted in the early 1970's.

Jordanova, Vania K [Los Alamos National Laboratory; Miyoshi, Y [NAGOYA UNIV; Sakaguchi, K [NAGOYA UNIV; Shiokawa, K [NAGOYA UNIV; Evans, D S [SEC/NOAA; Albert, Jay [AFRL; Connors, M [UNIV OF ATHABASCA

2008-01-01T23:59:59.000Z

270

Holocene vegetation and fire dynamics in the supra-mediterranean belt of the Nebrodi Mountains  

E-Print Network [OSTI]

and the Mediterranean region. Copyright # 2012 John Wiley & Sons, Ltd. KEYWORDS: climate change; human impact; Ilex TINNER1 1 Institute of Plant Sciences and Oeschger Centre for Climate Change Research, University of BernHolocene vegetation and fire dynamics in the supra-mediterranean belt of the Nebrodi Mountains

Bern, Universität

271

METHANE AND ETHANE ON THE BRIGHT KUIPER BELT OBJECT 2005 FY9 M. E. Brown,1  

E-Print Network [OSTI]

METHANE AND ETHANE ON THE BRIGHT KUIPER BELT OBJECT 2005 FY9 M. E. Brown,1 K. M. Barkume,1 G. A regime and by absorption due to methane in the near-infrared. The solid methane absorption lines through the methane. These long path lengths can be parameterized as a methane grain size of approximately

Brown, Michael E.

272

Seismic imaging of the lithospheric structure of the Zagros mountain belt (Iran)  

E-Print Network [OSTI]

Seismic imaging of the lithospheric structure of the Zagros mountain belt (Iran) ANNE PAUL1*, DENIS International Institute of Earthquake Engineering and Seismology, Tehran, Iran 3 Institute for Advanced Studies in Basic Sciences (IASBS), PO Box 45195-1159, Zanjan, Iran *Corresponding author (e-mail: Anne

Hatzfeld, Denis

273

File:EIA-WTB-LIQ.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to:December 20100UP-LIQ.pdfWyoming Thrust Belt By

274

File:EIA-Williston-NE-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to:December 20100UP-LIQ.pdfWyoming Thrust Belt ByBOE

275

File:EIA-Williston-NE-Gas.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to:December 20100UP-LIQ.pdfWyoming Thrust Belt

276

ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING  

SciTech Connect (OSTI)

This report contains a summary of activities of Gnomon, Inc. and five subcontractors that have taken place during the first six months of 2004 (January 1, 2004-June 30, 2004) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Although Gnomon and all five subcontractors completed tasks during these six months, most of the technical experimental work was conducted by the subcontractor, SRI Foundation (SRIF). SRIF created a sensitivity model for the Azotea Mesa area of southeastern New Mexico that rates areas as having a very good chance, a good chance, or a very poor chance of containing cultural resource sites. SRIF suggested that the results of the sensitivity model might influence possible changes in cultural resource management (CRM) practices in the Azote Mesa area of southeastern New Mexico.

Peggy Robinson

2004-07-01T23:59:59.000Z

277

ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING  

SciTech Connect (OSTI)

This report contains a summary of activities of Gnomon, Inc. and five subcontractors that have taken place during the second six months (July 1, 2003-December 31, 2003) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Although Gnomon and all five subcontractors completed tasks during these six months, most of the technical experimental work was conducted by the subcontractor, SRI Foundation (SRIF). SRIF created a sensitivity model for the Loco Hills area of southeastern New Mexico that rates areas as having a very good chance, a good chance, or a very poor chance of containing cultural resource sites. SRIF suggested that the results of the sensitivity model might influence possible changes in cultural resource management (CRM) practices in the Loco Hills area of southeastern New Mexico.

Peggy Robinson

2004-01-01T23:59:59.000Z

278

Environmental assessment of ground water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming. Revision 0  

SciTech Connect (OSTI)

This document is an environmental assessment of the Spook, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project site. It analyzes the impacts of the U.S. Department of Energy (DOE) proposed action for ground water compliance. The proposed action is to comply with the U.S. Environmental Protection Agency (EPA) standards for the UMTRA Project sites (40 CFR Part 192) by meeting supplemental standards based on the limited use ground water at the Spook site. This proposed action would not require site activities, including ground water monitoring, characterization, or institutional controls. Ground water in the uppermost aquifer was contaminated by uranium processing activities at the Spook site, which is in Converse County, approximately 48 miles (mi) (77 kilometers [km]) northeast of Casper, Wyoming. Constituents from the site infiltrated and migrated into the uppermost aquifer, forming a plume that extends approximately 2500 feet (ft) (800 meters [m]) downgradient from the site. The principal site-related hazardous constituents in this plume are uranium, selenium, and nitrate. Background ground water in the uppermost aquifer at the site is considered limited use. It is neither a current nor a potential source of drinking water because of widespread, ambient contamination that cannot be cleaned up using treatment methods reasonably employed in public water supply systems (40 CFR {section} 192.11 (e)). Background ground water quality also is poor due to first, naturally occurring conditions (natural uranium mineralization associated with an alteration front), and second, the effects of widespread human activity not related to uranium milling operations (uranium exploration and mining activities). There are no known exposure pathways to humans, animals, or plants from the contaminated ground water in the uppermost aquifer because it does not discharge to lower aquifers, to the surface, or to surface water.

NONE

1996-03-01T23:59:59.000Z

279

Geohydrology of bedrock aquifers in the Northern Great Plains in parts of Montana, North Dakota, South Dakota, and Wyoming  

SciTech Connect (OSTI)

Development of energy-related resources in the northern Great Plains of the US will require large quantities of ground water. Because Montana, North Dakota, and Wyoming are semiarid, the primary local sources of nonappropriated water are the deep bedrock aquifers of Paleozoic and Mesozoic age. The US Geological Survey undertook a 4-year interdisciplinary study that has culminated in a digital-simulation model of the regional flow system and incorporates the results of geochemical, hydrologic, and geologic studies. Rocks of Paleozoic and Mesozoic age form at least five artesian aquifers that are recharged in the mountainous areas of Montana, South Dakota, and Wyoming. The aquifers extend for more than 600 mi to discharge areas in the northeastern part of North Dakota and in Manitoba. In general, the direction of flow in each aquifer is east to northeast, but flow is deflected to the north and south around the Williston basin. Flow through the Williston basin is restricted because of brine (200,000-350,000 mg/l), halite beds, geologic structures, and decreased permeability of rocks in the deeper parts of the basin. Fracture systems and lineaments transverse the entire area and act either as conduits or as barriers to ground-water flow, depending on their hydrogeologic and geochemical history. Vertical leakage from the aquifers is restricted by shale with low permeability, by halite beds, and by stratigraphic traps or low-permeability zones associated with petroleum accumulations. However, interaquifer leakage appears to occur through and along some of the major lineaments and fractures. Interaquifer leakage may be a major consideration in determining the quality of water produced from wells.

Downey, J.S.

1986-01-01T23:59:59.000Z

280

An evaluation of a weight-lifting belt and back injury prevention training class for fleet service clerks  

E-Print Network [OSTI]

. 3142 NS 0. 0323 0. 8390 NS 0. 1181 NS 0. 1606 NS 0. 4043 NS 0. 0703 NS ' Significant at pc0. 05. NS Non-Significant at pe0. 05 8: Belt Group 8&T: Belt & Training Group L: Line(inside/Outside Aircraft) BR: Bagroom C: Cabin Service M...AN EVALUATION OF A WEIGHT-LIFTING BELT AND BACK INJURY PREVENTION TRAINING CLASS FOR FLEET SERVICE CLERKS A Thesis by CHERYL RENEE REDDELL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

Reddell, Cheryl Renee?

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "wyoming thrust belt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Factors determining the adoption or non-adoption of precision agriculture by producers across the cotton belt  

E-Print Network [OSTI]

The purpose of this study was to determine factors influencing cotton producer adoption of Precision Agriculture in the cotton belt according to members of the American Cotton Producers of the National Cotton Council. The National Research Council...

Lavergne, Christopher Bernard

2006-04-12T23:59:59.000Z

282

Detrital U-Pb geochronology provenance analyses: case studies in the Greater Green River Basin, Wyoming, and the Book Cliffs, Utah  

E-Print Network [OSTI]

! ! Detrital U-Pb geochronology provenance analyses: case studies in the Greater Green River Basin, Wyoming, and the Book Cliffs, Utah By Peter Gregory Lippert Submitted to the graduate degree program in Geology and the Graduate Faculty... i Acceptance Page ii Abstract iii-iv Table of contents v-viii List of figures and tables ix-x Chapter 1. Introduction 11-16 Chapter 2. Geologic History...

Lippert, Peter Gregory

2014-05-31T23:59:59.000Z

283

Gulf of Mexico",,"Louisiana",,"New Mexico",,"Oklahoma",,"Texas",,"Wyoming",,"Other States  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.WyomingExpansionReserves

284

A density-temperature description of the outer electron radiation belt during geomagnetic storms  

SciTech Connect (OSTI)

Electron flux measurements from 7 satellites in geosynchronous orbit from 1990-2007 are fit with relativistic bi-Maxwellians, yielding a number density n and temperature T description of the outer electron radiation belt. For 54.5 spacecraft years of measurements the median value ofn is 3.7x10-4 cm-3 and the median value ofT is 142 keY. General statistical properties of n, T, and the 1.1-1.5 MeV flux J are investigated, including local-time and solar-cycle dependencies. Using superposed-epoch analysis triggered on storm onset, the evolution of the outer electron radiation belt through high-speed-steam-driven storms is investigated. The number density decay during the calm before the storm is seen, relativistic-electron dropouts and recoveries from dropout are investigated, and the heating of the outer electron radiation belt during storms is examined. Using four different triggers (SSCs, southward-IMF CME sheaths, southward-IMF magnetic clouds, and minimum Dst), CME-driven storms are analyzed with superposed-epoch techniques. For CME-driven storms an absence of a density decay prior to storm onset is found, the compression of the outer electron radiation belt at time of SSC is analyzed, the number-density increase and temperature decrease during storm main phase is seen, and the increase in density and temperature during storm recovery phase is observed. Differences are found between the density-temperature and the flux descriptions, with more information for analysis being available in the density-temperature description.

Borovsky, Joseph E [Los Alamos National Laboratory; Cayton, Thomas E [Los Alamos National Laboratory; Denton, Michael H [LANCASTER UNIV

2009-01-01T23:59:59.000Z

285

Mechanical characteristics of folds in Upper Cretaceous strata in the Disturbed Belt of northwestern Montana  

E-Print Network [OSTI]

controlled cross section through a wave trai. n of these folds, The citations on these pages follow the style of the U. S. Geological Survey Bulletin. other field observations, laboratory analysis of collected samples, and theoretical considerations...MECHANICAL CHARACTERISTICS OF FOLDS IN UPPER CRETACEOUS STRATA IN THE DISTURBED BELT OF NORTHWESTERN MONTANA A Thesis by PAT KADER GILBERT Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements...

Gilbert, Pat Kader

1974-01-01T23:59:59.000Z

286

Examining the specific entropy (density of adiabatic invariants) of the outer electron radiation belt  

SciTech Connect (OSTI)

Using temperature and number-density measurements of the energetic-electron population from multiple spacecraft in geosynchronous orbit, the specific entropy S = T/n{sup 2/3} of the outer electron radiation belt is calculated. Then 955,527 half-hour-long data intervals are statistically analyzed. Local-time and solar-cycle variations in S are examined. The median value of the specific entropy (2.8 x 10{sup 7} eVcm{sup 2}) is much larger than the specific entropy of other particle populations in and around the magnetosphere. The evolution of the specific entropy through high-speed-stream-driven geomagnetic storms and through magnetic-cloud-driven geomagnetic storms is studied using superposed-epoch analysis. For high-speed-stream-driven storms, systematic variations in the entropy associated with electron loss and gain and with radiation-belt heating are observed in the various storm phases. For magnetic-cloud-driven storms, multiple trigger choices for the data superpositions reveal the effects of interplanetary shock arrival, sheath driving, cloud driving, and recovery phase. The specific entropy S = T/n{sup 2/3} is algebraically expressed in terms of the first and second adiabatic invariants of the electrons: this allows a relativistic expression for S in terms of T and n to be derived. For the outer electron radiation belt at geosynchronous orbit, the relativistic corrections to the specific entropy expression are -15%.

Borovsky, Joseph E [Los Alamos National Laboratory; Denton, Michael H [LANCASTER UNIV

2008-01-01T23:59:59.000Z

287

Baseline risk assessment of ground water contamination at the uranium mill tailings site near Riverton, Wyoming. Revision 1  

SciTech Connect (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the Surface Project and the Ground Water Project. At the UMTRA Project site near Riverton, Wyoming, Surface Project cleanup occurred from 1988 to 1990. Tailings and radioactively contaminated soils and materials were taken from the Riverton site to a disposal cell in the Gas Hills area, about 60 road miles (100 kilometers) to the east. The surface cleanup reduces radon and other radiation emissions and minimizes further ground water contamination. The UMTRA Project`s second phase, the Ground Water Project, will evaluate the nature and extent of ground water contamination at the Riverton site that has resulted from the uranium ore processing activities. Such evaluations are used at each site to determine a strategy for complying with UMTRA ground water standards established by the US Environmental Protection Agency (EPA) and if human health risks could result from exposure to ground water contaminated by uranium ore processing. Exposure could hypothetically occur if drinking water were pumped from a well drilled in an area where ground water contamination might have occurred. Human health and environmental risks may also result if people, plants, or animals are exposed to surface water that has mixed with contaminated ground water.

NONE

1995-09-01T23:59:59.000Z

288

The Wyodak-Anderson coal assessment, Powder River Basin, Wyoming and Montana -- An ArcView project  

SciTech Connect (OSTI)

In 1997, more than 305 million short tons of clean and compliant coal were produced from the Wyodak-Anderson and associated coal beds and zones of the Paleocene Fort Union Formation in the Powder River Basin, Wyoming and Montana. To date, all coal produced from the Wyodak-Anderson, which averages 0.47 percent sulfur and 6.44 percent ash, has met regulatory compliance standards. Twenty-eight percent of the total US coal production in 1997 was from the Wyodak-Anderson coal. Based on the current consumption rates and forecast by the Energy Information Administration (1996), the Wyodak-Anderson coal is projected to produce 413 million short tons by the year 2016. In addition, this coal deposit as well as other Fort Union coals have recently been targeted for exploration and development of methane gas. New US Geological Survey (USGS) digital products could provide valuable assistance in future mining and gas development in the Powder River Basin. An interactive format, with querying tools, using ArcView software will display the digital products of the resource assessment of Wyodak-Anderson coal, a part of the USGS National Coal Resource Assessment of the Powder River Basin. This ArcView project includes coverages of the data point distribution; land use; surface and subsurface ownerships; coal geology, stratigraphy, quality and geochemistry; and preliminary coal resource calculations. These coverages are displayed as map views, cross sections, tables, and charts.

Flores, R.M.; Gunther, G.; Ochs, A.; Ellis, M.E.; Stricker, G.D.; Bader, L.R. [Geological Survey, Denver, CO (United States)

1998-12-31T23:59:59.000Z

289

Big George to Carter Mountain 115-kV transmission line project, Park and Hot Springs Counties, Wyoming. Environmental Assessment  

SciTech Connect (OSTI)

The Western Area Power Administration (Western) is proposing to rebuild, operate, and maintain a 115-kilovolt (kV) transmission line between the Big George and Carter Mountain Substations in northwest Wyoming (Park and Hot Springs Counties). This environmental assessment (EA) was prepared in compliance with the National Environmental Policy Act (NEPA) and the regulations of the Council on Environmental Quality (CEQ) and the Department of Energy (DOE). The existing Big George to Carter Mountain 69-kV transmission line was constructed in 1941 by the US Department of Interior, Bureau of Reclamation, with 1/0 copper conductor on wood-pole H-frame structures without an overhead ground wire. The line should be replaced because of the deteriorated condition of the wood-pole H-frame structures. Because the line lacks an overhead ground wire, it is subject to numerous outages caused by lightning. The line will be 54 years old in 1995, which is the target date for line replacement. The normal service life of a wood-pole line is 45 years. Under the No Action Alternative, no new transmission lines would be built in the project area. The existing 69-kV transmission line would continue to operate with routine maintenance, with no provisions made for replacement.

Not Available

1994-02-01T23:59:59.000Z

290

Effects of in-situ oil-shale retorting on water quality near Rock Springs, Wyoming, Volume 1  

SciTech Connect (OSTI)

Experimental in-situ retorting techniques (methods of extracting shale oil without mining) were used from 1969 to 1979 by the Department of Energy's (DOE) Laramie Energy Technology Center (LETC) at a test area near Rock Springs in southwestern Wyoming. The retorting experiments at site 9 have produced elevated concentrations of some contaminants in the ground water. During 1988 and 1989, the US Geological Survey, in cooperation with the US Department of Energy, conducted a site characterization study to evaluate the chemical contamination of ground water at the site. Water samples from 34 wells were analyzed; more than 70 identifiable organic compounds were detected using a combination of gas chromatography and mass spectrometry analytical methods. This report provides information that can be used to evaluate possible remedial action for the site. Remediation techniques that may be applicable include those techniques based on removing the contaminants from the aquifer and those based on immobilizing the contaminants. Before a technique is selected, the risks associated with the remedial action (including the no-action alternative) need to be assessed, and the criteria to be used for decisions regarding aquifer restoration need to be defined. 31 refs., 23 figs., 9 tabs.

Lindner-Lunsford, J.B.; Eddy, C.A.; Plafcan, M.; Lowham, H.W.

1990-12-01T23:59:59.000Z

291

The impact of main belt asteroids on infrared--submillimetre photometry and source counts  

E-Print Network [OSTI]

> Among the components of the infrared and submillimetre sky background, the closest layer is the thermal emission of dust particles and minor bodies in the Solar System. This contribution is especially important for current and future infrared and submillimetre space instruments --like those of Spitzer, Akari and Herschel -- and must be characterised by a reliable statistical model. > We describe the impact of the thermal emission of main belt asteroids on the 5...1000um photometry and source counts, for the current and future spaceborne and ground-based instruments, in general, as well as for specific dates and sky positions. > We used the statistical asteroid model (SAM) to calculate the positions of main belt asteroids down to a size of 1km, and calculated their infrared and submillimetre brightness using the standard thermal model. Fluctuation powers, confusion noise values and number counts were derived from the fluxes of individual asteroids. > We have constructed a large database of infrared and submillimetre fluxes for SAM asteroids with a temporal resolution of 5 days, covering the time span January 1, 2000 -- December 31, 2012. Asteroid fluctuation powers and number counts derived from this database can be obtained for a specific observation setup via our public web-interface. > Current space instruments working in the mid-infrared regime (Akari and Spitzer Space Telescopes) are affected by asteroid confusion noise in some specific areas of the sky, while the photometry of space infrared and submillimetre instruments in the near future (e.g. Herschel and Planck Space Observatories) will not be affected by asteroids. Faint main belt asteroids might also be responsible for most of the zodiacal emission fluctuations near the ecliptic.

Cs. Kiss; A. Pal; Th. G. Mueller; P. Abraham

2007-11-28T23:59:59.000Z

292

New Horizons Science Photos from NASA's Pluto-Kuiper Belt Mission  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

DOE provided the power supply for NASA's New Horizons Mission, a mission to the Pluto and Charon, a double-planet system, and the Kuiper Belt. There are 61 science photos posted on the New Horizons website, along with mission photos, spacecraft images, launch photos, posters and renderings that are both scientific and artistic. Dates range from June of 2006 to February of 2008. The images can be searched by keywords, by date, or by subject topic. They can also be browsed as an entire list. Each image has a detailed description.

293

Remedial Action Plan and site conceptual design for stabilization of the inactive uranium mill tailings site at Spook, Wyoming. Volume 1, Text, Appendices A, B, C, D, and E: Final report  

SciTech Connect (OSTI)

This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities which are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at an inactive uranium processing site northeast of Casper, Wyoming, and referred to as the Spook site. It provides a characterization of the present conditions at the site and also serves to document the concurrence of the State of Wyoming and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the State of Wyoming, and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement.

Matthews, M.L. [USDOE Albuquerque Operations Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office; Sullivan, M. [Wyoming State Government, Cheyenne, WY (United States)

1990-04-01T23:59:59.000Z

294

Wyoming-Wyoming Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14ThousandFeet) Working

295

Rrecord of Decision (EPA Region 5): Chem-Central Site, Wyoming, MI. (First remedial action), September 1991. Final report  

SciTech Connect (OSTI)

The 2-acre Chem-Central site is a bulk chemical storage facility in Wyoming, Kent County, Michigan. Land use in the area is a mixture of residential and commercial. An estimated 10,000 people live within 1 mile of the site and receive their water supply via the municipal distribution system. Two creeks, Cole Drain and Plaster Creek, lie in proximity to the site. Between 1957 and 1962, hazardous substances entered the ground as a result of faulty construction of a .T-arm pipe used to transfer liquid products from bulk storage tanks to small delivery trucks. Additional hazardous substances may have entered the ground through accidental spills. In 1977, a routine State biological survey of Plaster Creek identified a contaminated ditch containing oils with organic compounds including PCBs and metals that was discharging into Cole Drain. Between 1978 and 1986, the State and EPA focused their efforts on finding and eliminating the source of the ditch contamination through extensive investigations of area soil, ground water, and surface water. Results indicated that ground water and soil surrounding and north of the Chem-Central plant were contaminated with volatile and semi-volatile organic compounds. The Record of Decision (ROD) addresses a remedy for contaminated onsite soil, contaminated offsite soil surrounding and north of the plant, and then addresses a remedy for contaminated onsite soil, contaminated offsite soil surrounding and north of the plant, and the ground water contamination plume emanating from the plant and spreading 1,800 feet northward. The primary contaminants of concern affecting the soil and ground water are VOCs including PCE, TCE, and toluene; and other organics including PAHs and PCBs. The selected remedial action for this site is included.

Not Available

1991-09-30T23:59:59.000Z

296

Simulation of CO2 Sequestration at Rock Spring Uplift, Wyoming: Heterogeneity and Uncertainties in Storage Capacity, Injectivity and Leakage  

SciTech Connect (OSTI)

Many geological, geochemical, geomechanical and hydrogeological factors control CO{sub 2} storage in subsurface. Among them heterogeneity in saline aquifer can seriously influence design of injection wells, CO{sub 2} injection rate, CO{sub 2} plume migration, storage capacity, and potential leakage and risk assessment. This study applies indicator geostatistics, transition probability and Markov chain model at the Rock Springs Uplift, Wyoming generating facies-based heterogeneous fields for porosity and permeability in target saline aquifer (Pennsylvanian Weber sandstone) and surrounding rocks (Phosphoria, Madison and cap-rock Chugwater). A multiphase flow simulator FEHM is then used to model injection of CO{sub 2} into the target saline aquifer involving field-scale heterogeneity. The results reveal that (1) CO{sub 2} injection rates in different injection wells significantly change with local permeability distributions; (2) brine production rates in different pumping wells are also significantly impacted by the spatial heterogeneity in permeability; (3) liquid pressure evolution during and after CO{sub 2} injection in saline aquifer varies greatly for different realizations of random permeability fields, and this has potential important effects on hydraulic fracturing of the reservoir rock, reactivation of pre-existing faults and the integrity of the cap-rock; (4) CO{sub 2} storage capacity estimate for Rock Springs Uplift is 6614 {+-} 256 Mt at 95% confidence interval, which is about 36% of previous estimate based on homogeneous and isotropic storage formation; (5) density profiles show that the density of injected CO{sub 2} below 3 km is close to that of the ambient brine with given geothermal gradient and brine concentration, which indicates CO{sub 2} plume can sink to the deep before reaching thermal equilibrium with brine. Finally, we present uncertainty analysis of CO{sub 2} leakage into overlying formations due to heterogeneity in both the target saline aquifer and surrounding formations. This uncertainty in leakage will be used to feed into risk assessment modeling.

Deng, Hailin [Los Alamos National Laboratory; Dai, Zhenxue [Los Alamos National Laboratory; Jiao, Zunsheng [Wyoming State Geological Survey; Stauffer, Philip H. [Los Alamos National Laboratory; Surdam, Ronald C. [Wyoming State Geological Survey

2011-01-01T23:59:59.000Z

297

Multiscale heterogeneity characterization of tidal channel, tidal delta and foreshore facies, Almond Formation outcrops, Rock Springs uplift, Wyoming  

SciTech Connect (OSTI)

In order to accurately predict fluid flow within a reservoir, variability in the rock properties at all scales relevant to the specific depositional environment needs to be taken into account. The present work describes rock variability at scales from hundreds of meters (facies level) to millimeters (laminae) based on outcrop studies of the Almond Formation. Tidal channel, tidal delta and foreshore facies were sampled on the eastern flank of the Rock Springs uplift, southeast of Rock Springs, Wyoming. The Almond Fm. was deposited as part of a mesotidal Upper Cretaceous transgressive systems tract within the greater Green River Basin. Bedding style, lithology, lateral extent of beds of bedsets, bed thickness, amount and distribution of depositional clay matrix, bioturbation and grain sorting provide controls on sandstone properties that may vary more than an order of magnitude within and between depositional facies in outcrops of the Almond Formation. These features can be mapped on the scale of an outcrop. The products of diagenesis such as the relative timing of carbonate cement, scale of cemented zones, continuity of cemented zones, selectively leached framework grains, lateral variability of compaction of sedimentary rock fragments, and the resultant pore structure play an equally important, although less predictable role in determining rock property heterogeneity. A knowledge of the spatial distribution of the products of diagenesis such as calcite cement or compaction is critical to modeling variation even within a single facies in the Almond Fin. because diagenesis can enhance or reduce primary (depositional) rock property heterogeneity. Application of outcrop heterogeneity models to the subsurface is greatly hindered by differences in diagenesis between the two settings. The measurements upon which this study is based were performed both on drilled outcrop plugs and on blocks.

Schatzinger, R.A.; Tomutsa, L. [BDM Petroleum Technologies, Bartlesville, OK (United States)

1997-08-01T23:59:59.000Z

298

The potential for coalbed gas exploration and production in the Greater Green River Basin, southwest Wyoming and northwest Colorado  

SciTech Connect (OSTI)

Coalbed gas is an important source of natural gas in the United States. In 1993, approximately 740 BCF of coalbed gas was produced in the United States, or about 4.2% of the nation`s total gas production. Nearly 96% of this coalbed gas is produced from just two basins, the San Juan (615.7 BCF; gas in place 84 TCF) and Black Warrior (105 BCF; gas in place 20 TCF), and current production represents only a fraction of the nation`s estimated 675 TCF of in-place coalbed gas. Coal beds in the Greater Green River Basin in southwest Wyoming and northwest Colorado hold almost half of the gas in place (314 TCF) and are an important source of gas for low-permeability Almond sandstones. Because total gas in place in the Greater Green River Basin is reported to exceed 3,000 TCF (Law et al., 1989), the basin may substantially increase the domestic gas resource base. Therefore, through integrated geologic and hydrologic studies, the coalbed gas potential of the basin was assessed where tectonic, structural, and depositional setting, coal distribution and rank, gas content, coal permeability, and ground-water flow are critical controls on coalbed gas producibility. Synergism between these geologic and hydrologic controls determines gas productivity. High productivity is governed by (1) thick, laterally continuous coals of high thermal maturity, (2) basinward flow of ground water through fractured and permeable coals, down the coal rank gradient toward no-flow boundaries oriented perpendicular to the regional flow direction, and (3) conventional trapping of gas along those boundaries to provide additional sources of gas beyond that sorbed on the coal surface.

Tyler, R.; Kaiser, W.R.; Scott, A.R.; Hamilton, D.S. [Univ. of Texas, Austin, TX (United States)

1997-01-01T23:59:59.000Z

299

National Uranium Resource Evaluation. Volume 1. Summary of the geology and uranium potential of Precambrian conglomerates in southeastern Wyoming  

SciTech Connect (OSTI)

A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium and 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates.

Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.; Coolidge, C.M.; Kratochvil, A.L.; Sever, C.K.

1981-02-01T23:59:59.000Z

300

Magnetic storm acceleration of radiation belt electrons observed by the Scintillating Fibre Detector (SFD) onboard EQUATOR-S  

E-Print Network [OSTI]

on the 50067300 km, 4 inclination EQUATOR-S orbit show that the increase of the energetic electron ux of electrons in the outer radiation belt has been attributed to Pc 5 band ULF waves excited by high speed solar wind ow associated with magnetic storms (Rostoker et al., 1998). The main features

Paris-Sud XI, Universit de

Note: This page contains sample records for the topic "wyoming thrust belt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

LANL LDRD-funded project: Test particle simulations of energetic ions in natural and artificial radiation belts  

SciTech Connect (OSTI)

We summarize the scientific problem and work plan for the LANL LDRD-funded project to use a test particle code to study the sudden de-trapping of inner belt protons and possible cross-L transport of debris ions after a high altitude nuclear explosion (HANE). We also discuss future application of the code for other HANE-related problems.

Cowee, Misa [Los Alamos National Laboratory; Liu, Kaijun [Los Alamos National Laboratory; Friedel, Reinhard H. [Los Alamos National Laboratory; Reeves, Geoffrey D. [Los Alamos National Laboratory

2012-07-17T23:59:59.000Z

302

A survey of ideal fluid propeller theories and a study of the effects of aerodynamic propeller loading on trailing vortex induced velocity and thrust  

E-Print Network [OSTI]

A SURVEY OF IDEAL FLUID PRO~ THEORIES AND A STUIE OP THE EFFECTS OF AERODYNAMIC PRO~ LOADING ON TRAILING VORTEX INDUCED VELOCITY AND THRUST A Thesis EDWARD MADISON ~ Suhmitted to the Graduate College of Texas A&M University in Partial... fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1969 h'h, jor Suhgect: Mechanical Engineering A SURVEY OF IDEAL FLUID PROPELLEB THEORIES AND A STUDY OF THE EFFKTS OF AERODYKVGC PROPELLER LOADING ON TRAILING VORTEX INDUCED...

Kelley, Edward Madison

2012-06-07T23:59:59.000Z

303

Anisotropy and Spatial Variation of Relative Permeability and Lithologic Character of Tensleep Sandstone Reservoirs in the Bighorn and Wind River Basins, Wyoming  

SciTech Connect (OSTI)

This multidisciplinary study is designed to provide improvements in advanced reservoir characterization techniques. This goal is to be accomplished through: (1) an examination of the spatial variation and anisotropy of relative permeability in the Tensleep Sandstone reservoirs of Wyoming; (2) the placement of that variation and anisotropy into paleogeographic, depositional, and diagenetic frameworks; (3) the development of pore-system imagery techniques for the calculation of relative permeability; (4) reservoir simulations testing the impact of relative permeability anisotropy and spatial variation on Tensleep Sandstone reservoir enhanced oil recovery; and (5) a geochemical investigation of the spatial and dynamic alteration in sandstone reservoirs that is caused by rock-fluid interaction during CO{sub 2}-enhanced oil recovery processes.

Dunn, Thomas L.

1996-10-01T23:59:59.000Z

304

The relationship between coal quality and coal resource parameters of Powder River and Williston Basin coal, Wyoming, Montana, and North Dakota  

SciTech Connect (OSTI)

Clean, compliant coal from mines in the Northern Rocky Mountain and Great Plains region is utilized as fuel for coal-fired power plants in 26 states. More than 30 percent of the nation`s 1997 production was from Montana, North Dakota, and Wyoming. Production of clean, compliant coal from the region is estimated to increase to 415 million short tons by the year 2015. Studies in this region indicate a relationship between percent sulfur and ash and pounds of SO{sub 2} per million Btu and the resource parameters of coal thickness and overburden. The trends that the authors have observed indicate that both coal quality and the thickness of the coal and associated rocks are controlled by paleoenvironment and depositional setting.

Ellis, M.S.; Stricker, G.D.; Gunther, G.; Ochs, A.M.; Flores, R.M.

1998-12-31T23:59:59.000Z

305

Wyoming Natural Gas Prices  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14Year (Million20082009 2010

306

Wyoming Natural Gas Prices  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14Year (Million20082009

307

Wyoming Proved Nonproducing Reserves  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14Thousand Cubic Feet)

308

An evaluation of known remaining oil resources in the state of New Mexico and Wyoming. Volume 4, Project on Advanced Oil Recovery and the States  

SciTech Connect (OSTI)

The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of the IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the states of New Mexico and Wyoming. Individual reports for six other oil producing states and a national report have been separately published by the IOGCC. The analysis presented in this report is based on the databases and models available in the Tertiary Oil Recovery Information System (TORIS). Overall, well abandonments and more stringent environmental regulations could limit economic access to New Mexico`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technology, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could have even greater benefits to the state and the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, oil production could be maximized. The resulting increase in production rates, employment, operator profits, state and Federal tax revenues, and energy security will benefit both the states of New Mexico and Wyoming and the nation as a whole.

Not Available

1994-11-01T23:59:59.000Z

309

Light Curves of Dwarf Plutonian Planets and other Large Kuiper Belt Objects: Their Rotations, Phase Functions and Absolute Magnitudes  

E-Print Network [OSTI]

(Abridged) I report new light curves and determine the rotations and phase functions of several large Kuiper Belt objects, including the dwarf planet Eris (2003 UB313). (120348) 2004 TY364 shows a light curve which if double-peaked has a period of 11.70+-0.01 hours and peak-to-peak amplitude of 0.22+-0.02 magnitudes. (84922) 2003 VS2 has a well defined double-peaked light curve of 7.41+-0.02 hours with a 0.21+-0.02 magnitude range. (126154) 2001 YH140 shows variability of 0.21+-0.04 magnitudes with a possible 13.25+-0.2 hour single-peaked period. The seven new KBOs in the sample which show no discernible variations within the uncertainties on short rotational time scales are 2001 UQ18, (55565) 2002 AW197, (119979) 2002 WC19, (120132) 2003 FY128, (136108) Eris 2003 UB313, (90482) Orcus 2004 DW, and (90568) 2004 GV9. The three medium to large sized Kuiper Belt objects 2004 TY364, Orcus and 2004 GV9 show fairly steep linear phase curves (~0.18 to 0.26 mags per degree) between phase angles of 0.1 and 1.5 degrees. The extremely large dwarf planet Eris (2003 UB313) shows a shallower phase curve (0.09+-0.03 mags per degree) which is more similar to the other known dwarf planet Pluto. It appears the surface properties of the largest dwarf planets in the Kuiper Belt maybe different than the smaller Kuiper Belt objects. This may have to do with the larger objects ability to hold more volatile ices as well as sustain atmospheres. The absolute magnitudes obtained using the measured phase slopes are a few tenths of magnitudes different from those given by the MPC.

Scott S. Sheppard

2007-04-13T23:59:59.000Z

310

Warm exo-Zodi from cool exo-Kuiper belts: the significance of P-R drag and the inference of intervening planets  

E-Print Network [OSTI]

Poynting-Robertson drag has been considered an ineffective mechanism for delivering dust to regions interior to the cool Kuiper belt analogues seen around other Sun-like stars. This conclusion is however based on the very large contrast in dust optical depth between the parent belt and the interior regions that results from the dominance of collisions over drag in systems with detectable cool belts. Here, we show that the levels of habitable zone dust arising from detectable Kuiper belt analogues can be tens to a few hundreds of times greater than the optical depth in the Solar Zodiacal cloud. Dust enhancements of more than a few tens of `zodi' are expected to hinder future Earth-imaging missions, but relatively few undetectable Kuiper belts result in such levels, particularly around stars older than a few Gyr. Thus, current mid to far-IR photometric surveys have already identified most of the 20-25% of nearby stars where P-R drag from outer belts could seriously impact Earth-imaging. The LBTI should easily d...

Kennedy, Grant M

2015-01-01T23:59:59.000Z

311

HIGH-ALBEDO C-COMPLEX ASTEROIDS IN THE OUTER MAIN BELT: THE NEAR-INFRARED SPECTRA  

SciTech Connect (OSTI)

Primitive, outer-belt asteroids are generally of low albedo, reflecting carbonaceous compositions like those of CI and CM meteorites. However, a few outer-belt asteroids having high albedos are known, suggesting the presence of unusually reflective surface minerals or, conceivably, even exposed water ice. Here, we present near-infrared (1.1-2.5 {mu}m) spectra of four outer-belt C-complex asteroids with albedos {>=}0.1. We find no absorption features characteristic of water ice (near 1.5 and 2.0 {mu}m) in the objects. Intimate mixture models set limits to the water ice by weight {<=}2%. Asteroids (723) Hammonia and (936) Kunigunde are featureless and have (60%-95%) amorphous Mg pyroxenes that might explain the high albedos. Asteroid (1276) Ucclia also shows a featureless reflection spectrum with (50%-60%) amorphous Mg pyroxenes. Asteroid (1576) Fabiola shows a possible weak, broad absorption band (1.5-2.1 {mu}m). The feature can be reproduced by (80%) amorphous Mg pyroxenes or orthopyroxene (crystalline silicate), either of which is likely to cause its high albedo. We discuss the origin of high-albedo components in primitive asteroids.

Kasuga, Toshihiro [Public Relations Center, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Usui, Fumihiko; Hasegawa, Sunao [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara 252-5210 (Japan); Ootsubo, Takafumi [Astronomical Institute, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Kuroda, Daisuke, E-mail: toshi.kasuga@nao.ac.jp [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, 3037-5 Honjo, Kamogata, Asakuchi, Okayama 719-0232 (Japan)

2013-07-01T23:59:59.000Z

312

Time-Resolved Near-Infrared Photometry of Extreme Kuiper Belt Object Haumea  

E-Print Network [OSTI]

We present time-resolved near-infrared (J and H) photometry of the extreme Kuiper belt object (136108) Haumea (formerly 2003 EL61) taken to further investigate rotational variability of this object. The new data show that the near-infrared peak-to-peak photometric range is similar to the value at visible wavelengths, \\Delta m_R = 0.30+/-0.02 mag. Detailed analysis of the new and previous data reveals subtle visible/near-infrared color variations across the surface of Haumea. The color variations are spatially correlated with a previously identified surface region, redder in B-R and darker than the mean surface. Our photometry indicates that the J-H colors of Haumea (J-H=-0.057+/-0.016 mag) and its brightest satellite Hi'iaka (J-H=-0.399+/-0.034 mag) are significantly (>9 sigma) different. The satellite Hi'iaka is unusually blue in J-H, consistent with strong 1.5 micron water-ice absorption. The phase coefficient of Haumea in the J-band is found to increase monotonically with wavelength in the range 0.4

Pedro Lacerda

2008-11-23T23:59:59.000Z

313

The JCMT Gould Belt Survey: SCUBA-2 observations of circumstellar disks in L 1495  

E-Print Network [OSTI]

We present 850$\\mu$m and 450$\\mu$m data from the JCMT Gould Belt Survey obtained with SCUBA-2 and characterise the dust attributes of Class I, Class II and Class III disk sources in L1495. We detect 23% of the sample at both wavelengths, with the detection rate decreasing through the Classes from I--III. The median disk mask is 1.6$\\times 10^{-3}$M$_{\\odot}$, and only 7% of Class II sources have disk masses larger than 20 Jupiter masses. We detect a higher proportion of disks towards sources with stellar hosts of spectral type K than spectral type M. Class II disks with single stellar hosts of spectral type K have higher masses than those of spectral type M, supporting the hypothesis that higher mass stars have more massive disks. Variations in disk masses calculated at the two wavelengths suggests there may be differences in dust opacity and/or dust temperature between disks with hosts of spectral types K to those with spectral type M.

Buckle, J V; Greaves, J; Richer, J S; Matthews, B C; Johnstone, D; Kirk, H; Beaulieu, S F; Berry, D S; Broekhoven-Fiene, H; Currie, M J; Fich, M; Hatchell, J; Jenness, T; Mottram, J C; Nutter, D; Pattle, K; Pineda, J E; Salji, C; Tisi, S; Di Francesco, J; Hogerheijde, M R; Ward-Thompson, D; Bastien, P; Butner, H; Chen, M; Chrysostomou, A; Coude, S; Davis, C J; Duarte-Cabral, A; Friberg, P; Friesen, R; Fuller, G A; Graves, S; Gregson, J; Holland, W; Joncas, G; Kirk, J M; Knee, L B G; Mairs, S; Marsh, K; Moriarty-Schieven, G; Rawlings, J; Rosolowsky, E; Rumble, D; Sadavoy, S; Thomas, H; Tothill, N; Viti, S; White, G J; Wilson, C D; Wouterloot, J; Yates, J; Zhu, M

2015-01-01T23:59:59.000Z

314

Simulating the Heterogeneity in Braided Channel Belt Deposits: 2. Examples of Results and Comparison to Natural Deposits  

SciTech Connect (OSTI)

In Part 1 of this series we presented a methodology and a code for modeling the hierarchical sedimentary architecture in braided channel belt deposits. Here, in Part 2, the code was used to create a digital model of this architecture, and the corresponding spatial distribution of permeability. The simulated architecture was compared to the real stratal architecture observed in an abandoned channel belt of the Sagavanirktok River, Alaska by Lunt et al. (2004). The comparisons included assessments of similarity which were both qualitative and quantitative. From the qualitative comparisons we conclude that a synthetic deposit created by the code has unit types, at each level, with a geometry which is generally consistent with the geometry of unit types observed in the field. The digital unit types would generally be recognized as representing their counterparts in nature, including cross stratasets, lobate and scroll bar deposits, channel fills, etc. Furthermore, the synthetic deposit has a hierarchical spatial relationship among these units which represents how the unit types are observed in field exposures and in geophysical images. In quantitative comparisons the proportions and the length, width, and height of unit types at different scales, across all levels of the stratal hierarchy compare well between the digital and the natural deposits. A number of important attributes of the channel belt model were shown to be influenced by more than one level within the hierarchy of stratal architecture. First, the high-permeability open-framework gravels percolated at all levels and thus formed preferential flow pathways. Open framework gravels are indeed known to form preferential flow pathways in natural channel belt deposits. The nature of a percolating cluster changed across different levels of the hierarchy of stratal architecture. As a result of this geologic structure, the percolation occurs at proportions of open-framework gravels below the theoretical percolation threshold for random infinite media. Second, when the channel belt model was populated with permeability distributions by lowest-level unit type, the composite permeability semivariogram contained structures that were identifiable at more than one scale, and each of these structures could be directly linked to unit types of different scales existing at different levels within the hierarchy of strata. These collective results are encouraging with respect to our goal that this model be relevant as a base case in future studies for testing ideas in research addressing the upscaling problem in aquifers and reservoirs with multi-scale heterogeneity.

Guin, Arijit; Ramanathan, Ramya; Ritzi, Robert W.; Dominic, David F.; Lunt, Ian A.; Scheibe, Timothy D.; Freedman, Vicky L.

2010-04-29T23:59:59.000Z

315

Investigation into the failure cause of a double-acting, leading-edge-groove, tilting-pad thrust bearing. Final report, Feb-Aug 90  

SciTech Connect (OSTI)

This report describes the results of bench tests simulating operation and failure of a thrust bearing used in a gas turbine engine compressor development test rig. The bearing was a double acting, tilting pad with offset pivot, leading edge groove configuration using an AMS 4928 titanium collar and C18200 copper-chrome alloy pads with a No. 2 babbitt face. The bench tests successfully simulated the bearing failure and demonstrated a materials incompatibility. This was supported by visual examination, scanning electron microscopy and X-ray energy spectroscopy. A comparison of the bench test results to the compressor rig bearing failure is provided to support the report conclusions.

Peterson, B.K.

1990-10-01T23:59:59.000Z

316

Greater Sage-Grouse Habitat Use and Population Demographics at the Simpson Ridge Wind Resource Area, Carbon County, Wyoming  

SciTech Connect (OSTI)

This study was conducted to obtain baseline data on use of the proposed Simpson Ridge Wind Resource Area (SRWRA) in Carbon County, Wyoming by greater sage-grouse. The first two study years were designed to determine pre-construction seasonally selected habitats and population-level vital rates (productivity and survival). The presence of an existing wind energy facility in the project area, the PacifiCorp Seven Mile Hill (SMH) project, allowed us to obtain some information on initial sage-grouse response to wind turbines the first two years following construction. To our knowledge these are the first quantitative data on sage-grouse response to an existing wind energy development. This report presents results of the first two study years (April 1, 2009 through March 30, 2011). This study was selected for continued funding by the National Wind Coordinating Collaborative Sage-Grouse Collaborative (NWCC-SGC) and has been ongoing since March 30, 2011. Future reports summarizing results of this research will be distributed through the NWCC-SGC. To investigate population trends through time, we determined the distribution and numbers of males using leks throughout the study area, which included a 4-mile radius buffer around the SRWRA. Over the 2-year study, 116 female greater sage-grouse were captured by spotlighting and use of hoop nets on roosts surrounding leks during the breeding period. Radio marked birds were located anywhere from twice a week to once a month, depending on season. All radio-locations were classified to season. We developed predictor variables used to predict success of fitness parameters and relative probability of habitat selection within the SRWRA and SMH study areas. Anthropogenic features included paved highways, overhead transmission lines, wind turbines and turbine access roads. Environmental variables included vegetation and topography features. Home ranges were estimated using a kernel density estimator. We developed resource selection functions (RSF) to estimate probability of selection within the SRWRA and SMH. Fourteen active greater sage-grouse leks were documented during lek surveys Mean lek size decreased from 37 in 2008 to 22 in 2010. Four leks located 0.61, 1.3, 1.4 and 2.5 km from the nearest wind turbine remained active throughout the study, but the total number of males counted on these four leks decreased from 162 the first year prior to construction (2008), to 97 in 2010. Similar lek declines were noted in regional leks not associated with wind energy development throughout Carbon County. We obtained 2,659 sage-grouse locations from radio-equipped females, which were used to map use of each project area by season. The sage-grouse populations within both study areas are relatively non-migratory, as radio-marked sage-grouse used similar areas during all annual life cycles. Potential impacts to sage-grouse from wind energy infrastructure are not well understood. The data rom this study provide insight into the early interactions of wind energy infrastructure and sage-grouse. Nest success and brood-rearing success were not statistically different between areas with and without wind energy development in the short-term. Nest success also was not influenced by anthropogenic features such as turbines in the short-term. Additionally, female survival was similar among both study areas, suggesting wind energy infrastructure was not impacting female survival in the short-term; however, further analysis is needed to identify habitats with different levels of risk to better understand the impact of wind enregy development on survival. Nest and brood-rearing habitat selection were not influenced by turbines in the short-term; however, summer habitat selection occurred within habitats closer to wind turbines. Major roads were avoided in both study areas and during most of the seasons. The impact of transmission lines varied among study areas, suggesting other landscape features may be influencing selection. The data provided in this report are preliminary and are not meant to provide a basis for fo

Gregory D. Johnson; Chad W. LeBeau; Ryan Nielsen; Troy Rintz; Jamey Eddy; Matt Holloran

2012-03-27T23:59:59.000Z

317

Major Oil Plays In Utah And Vicinity  

SciTech Connect (OSTI)

Utah oil fields have produced over 1.33 billion barrels (211 million m{sup 3}) of oil and hold 256 million barrels (40.7 million m{sup 3}) of proved reserves. The 13.7 million barrels (2.2 million m3) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. However, in late 2005 oil production increased, due, in part, to the discovery of Covenant field in the central Utah Navajo Sandstone thrust belt ('Hingeline') play, and to increased development drilling in the central Uinta Basin, reversing the decline that began in the mid-1980s. The Utah Geological Survey believes providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming can continue this new upward production trend. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios include descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary recovery techniques for each play. The most prolific oil reservoir in the Utah/Wyoming thrust belt province is the eolian, Jurassic Nugget Sandstone, having produced over 288 million barrels (46 million m{sup 3}) of oil and 5.1 trillion cubic feet (145 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the depositionally heterogeneous Nugget is also extensively fractured. Hydrocarbons in Nugget reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and gypsiferous beds in the Jurassic Twin Creek Limestone, or a low-permeability zone at the top of the Nugget. The Nugget Sandstone thrust belt play is divided into three subplays: (1) Absaroka thrust - Mesozoic-cored shallow structures, (2) Absaroka thrust - Mesozoic-cored deep structures, and (3) Absaroka thrust - Paleozoic-cored shallow structures. Both of the Mesozoic-cored structures subplays represent a linear, hanging wall, ramp anticline parallel to the leading edge of the Absaroka thrust. Fields in the shallow Mesozoic subplay produce crude oil and associated gas; fields in the deep subplay produce retrograde condensate. The Paleozoic-cored structures subplay is located immediately west of the Mesozoic-cored structures subplays. It represents a very continuous and linear, hanging wall, ramp anticline where the Nugget is truncated against a thrust splay. Fields in this subplay produce nonassociated gas and condensate. Traps in these subplays consist of long, narrow, doubly plunging anticlines. Prospective drilling targets are delineated using high-quality, two-dimensional and three-dimensional seismic data, forward modeling/visualization tools, and other state-of-the-art techniques. Future Nugget Sandstone exploration could focus on more structurally complex and subtle, thrust-related traps. Nugget structures may be present beneath the leading edge of the Hogsback thrust and North Flank fault of the Uinta uplift. The Jurassic Twin Creek Limestone play in the Utah/Wyoming thrust belt province has produced over 15 million barrels (2.4 million m{sup 3}) of oil and 93 billion cubic feet (2.6 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the low-porosity Twin Creek is extensively fractured. Hydrocarbons in Twin Creek reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and clastic beds, and non-fractured units within the Twin Creek. The Twin Creek Limestone thrust belt play is divided into two subplays: (1) Absaroka thrust-Mesozoic-cored structures and (2) A

Thomas Chidsey

2007-12-31T23:59:59.000Z

318

Preliminary results on the characterization of Cretaceous and lower Tertiary low-permeability (tight) gas-bearing rocks in the Wind River Basin, Wyoming  

SciTech Connect (OSTI)

The Wind River Basin is a structural and sedimentary basin in central Wyoming (Figure 1) that was created during the Laramide orogeny from Late Cretaceous through Eocene time. The objectives of the Wind River Basin tight gas sandstone project are to define the limits of the tight gas accumulation in the basin and to estimate in-place and recoverable gas resources. The approximate limits of the tight gas accumulation are defined from available drillhole information. Geologic parameters, which controlled the development of the accumulation, are studied in order to better understand the origins of tight gas accumulations, and to predict the limits of the accumulation in areas where little drillhole information is available. The architecture of sandstone reservoirs are studied in outcrop to predict production characteristics of similar reservoirs within the tight gas accumulation. Core and cuttings are used to determine thermal maturities, quality of source rocks, and diagenetic histories. Our work thus far has concentrated in the Wind River Indian Reservation in the western part of the basin.

Fouch, T.D.; Keefer, W.R.; Finn, T.M. [and others

1993-12-31T23:59:59.000Z

319

Determining erodibility, critical shear stress, and allowable discharge estimates for cohesive channels: case study in the Powder River Basin of Wyoming  

SciTech Connect (OSTI)

The continuous discharge of coalbed natural gas-produced (CBNG-produced) water within ephemeral, cohesive channels in the Powder River Basin (PRB) of Wyoming can result in significant erosion. A study was completed to investigate channel stability in an attempt to correlate cohesive soil properties to critical shear stress. An in situ jet device was used to determine critical shear stress (tau{sub c}) and erodibility (k{sub d}); cohesive soil properties were determined following ASTM procedures for 25 reaches. The study sites were comprised of erodible to moderately resistant clays with tau{sub c} ranging from 0.11 to 15.35 Pa and k{sub d} ranging from 0.27 to 2.38 cm{sup 3}/N s. A relationship between five cohesive soil characteristics and tau{sub c} was developed and presented for use in deriving tau{sub c} for similar sites. Allowable discharges for CBNG-produced water were also derived using tau{sub c} and the tractive force method. An increase in the allowable discharge was found for channels in which vegetation was maintained. The information from this case study is critical to the development of a conservative methodology to establish allowable discharges while minimizing flow-induced instability.

Thoman, R.W.; Niezgoda, S.L. [Lowham Engineering LLC, Lander, WY (United States)

2008-12-15T23:59:59.000Z

320

Geochemical provenance of anomalous metal concentrations in stream sediments in the Ashton 1:250,000 quadrangle, Idaho/Montana/Wyoming  

SciTech Connect (OSTI)

Stream-sediment samples from 1500 sites in the Ashton, Idaho/Montana/Wyoming 1:250,000 quadrangle were analyzed for 45 elements. Almost all samples containing anomalous concentrations (exceeding one standard deviation above the mean value of any element) were derived from drainage basins underlain by Quaternary rhyolite, Tertiary andesite or Precambrian gneiss and schist. Aluminum, barium, calcium, cobalt, iron, nickel, magnesium, scandium, sodium, strontium, and vanadium have no andesite provenance. Most anomalous manganese, europium, hafnium, and zirconium values were derived from Precambrian rocks. All other anomalous elemental concentrations are related to Quaternary rhyolite. This study demonstrates that multielemental stream-sediment analyses can be used to infer the provenance of stream sediments. Such data are available for many parts of the country as a result of the National Uranium Resource Evaluation. This study suggests that stream-sediment samples collected in the Rocky Mountains can be used either as pathfinders or as direct indicators to select targets for mineral exploration for a host of metals.

Shannon, S.S. Jr.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wyoming thrust belt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Ground-water hydrologic effects resulting from underground coal gasification experiments at the Hoe Creek Site near Gillette, Wyoming. Interim report, October 1979-March 1980  

SciTech Connect (OSTI)

This technical note summarizes our activities, to date, on the research project: Ground-Water Hydrologic Effects Resulting from Underground Coal Gasification Experiments (EPA-IAG-79-D-X0795). The gasified coal seam (Felix No. 2 coal) and two overlying aquifers (Felix No. 1 coal and overlying sand) appear to have become interconnected as a result of roof collapse and subsidence at both Hoe Creek Sites II and III near Gillette, Wyoming. To evaluate changes in the ground-water flow regime at the two sites, completion of supplementary wells was necessary to define the distance versus head drawdown relationships in each of the three aquifers. Hydraulic head potentials have been measured at Site III since gasification ended on October 10, 1979. These data are presented in graphic format. Although hydraulic head measurements at Site II seemed to be approaching a steady-state condition 1.5 years after gasification, the subsequent gasification at Site III temporarily altered the ground-water flow patterns. These changes will have a definite effect on contaminant dispersal and will need to be taken into consideration.

Raber, E.; Stone, R.

1980-05-01T23:59:59.000Z

322

Electron loss rates from the outer radiation belt caused by the filling of the outer plasmasphere: the calm before the storm  

SciTech Connect (OSTI)

Measurements from 7 spacecraft in geosynchronous orbit are analyzed to determine the decay rate of the number density of the outer electron radiation belt prior to the onset of high-speed-stream-driven geomagnetic storms. Superposed-data analysis is used wan(?) a collection of 124 storms. When there is a calm before the storm, the electron number density decays exponentially before the storm with a 3.4-day e-folding time: beginning about 4 days before storm onset, the density decreases from {approx}4x10{sup -4} cm{sup -3} to {approx}1X 10{sup -4} cm{sup -3}. When there is not a calm before the storm, the number-density decay is very smalL The decay in the number density of radiation-belt electrons is believed to be caused by pitch-angle scattering of electrons into the atmospheric loss cone as the outer plasmasphere fills during the calms. While the radiation-belt electron density decreases, the temperature of the electron radiation belt holds approximately constant, indicating that the electron precipitation occurs equally at all energies. Along with the number density decay, the pressure of the outer electron radiation belt decays and the specific entropy increases. From the measured decay rates, the electron flux to the atmosphere is calculated and that flux is 3 orders of magnitude less than thermal fluxes in the magnetosphere, indicating that the radiation-belt pitch-angle scattering is 3 orders weaker than strong diffusion. Energy fluxes into the atmosphere are calculated and found to be insufficient to produce visible airglow.

Borovsky, Joseph E [Los Alamos National Laboratory; Denton, Michael H [LANCASTER UNIV

2009-01-01T23:59:59.000Z

323

The dynamical evolution of dwarf planet (136108) Haumea's collisional family: General properties and implications for the trans-Neptunian belt  

E-Print Network [OSTI]

Recently, the first collisional family was identified in the trans-Neptunian belt. The family consists of Haumea and at least ten other ~100km-sized trans-Neptunian objects (TNOs) located in the region a = 42 - 44.5 AU. In this work, we model the long-term orbital evolution of an ensemble of fragments representing hypothetical post-collision distributions at the time of the family's birth. We consider three distinct scenarios, in which the kinetic energy of dispersed particles were varied such that their mean ejection velocities (veje) were of order 200 m/s, 300 m/s and 400 m/s, respectively. Each simulation considered resulted in collisional families that reproduced that currently observed. The results suggest that 60-75% of the fragments created in the collision will remain in the trans-Neptunian belt, even after 4 Gyr of dynamical evolution. The surviving particles were typically concentrated in wide regions of orbital element space centred on the initial impact location, with their orbits spread across a ...

Lykawka, Patryk Sofia; Mukai, Tadashi; Nakamura, Akiko M

2011-01-01T23:59:59.000Z

324

3-D RESERVOIR AND STOCHASTIC FRACTURE NETWORK MODELING FOR ENHANCED OIL RECOVERY, CIRCLE RIDGE PHOSPHORIA/TENSLEEP RESERVOIR, WIND RIVER RESERVATION, ARAPAHO AND SHOSHONE TRIBES, WYOMING  

SciTech Connect (OSTI)

This report describes the results made in fulfillment of contract DE-FG26-00BC15190, ''3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, Wind River Reservation, Arapaho and Shoshone Tribes, Wyoming''. The goal of this project is to improve the recovery of oil from the Tensleep and Phosphoria Formations in Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models. Fields in which natural fractures dominate reservoir permeability, such as the Circle Ridge Field, often experience sub-optimal recovery when recovery processes are designed and implemented that do not take advantage of the fracture systems. For example, a conventional waterflood in a main structural block of the Field was implemented and later suspended due to unattractive results. It is estimated that somewhere less than 20% of the OOIP in the Circle Ridge Field have been recovered after more than 50 years' production. Marathon Oil Company identified the Circle Ridge Field as an attractive candidate for several advanced IOR processes that explicitly take advantage of the natural fracture system. These processes require knowledge of the distribution of matrix porosity, permeability and oil saturations; and understanding of where fracturing is likely to be well-developed or poorly developed; how the fracturing may compartmentalize the reservoir; and how smaller, relatively untested subthrust fault blocks may be connected to the main overthrust block. For this reason, the project focused on improving knowledge of the matrix properties, the fault block architecture and to develop a model that could be used to predict fracture intensity, orientation and fluid flow/connectivity properties. Knowledge of matrix properties was greatly extended by calibrating wireline logs from 113 wells with incomplete or older-vintage logging suites to wells with a full suite of modern logs. The model for the fault block architecture was derived by 3D palinspastic reconstruction. This involved field work to construct three new cross-sections at key areas in the Field; creation of horizon and fault surface maps from well penetrations and tops; and numerical modeling to derive the geometry, chronology, fault movement and folding history of the Field through a 3D restoration of the reservoir units to their original undeformed state. The methodology for predicting fracture intensity and orientation variations throughout the Field was accomplished by gathering outcrop and subsurface image log fracture data, and comparing it to the strain field produced by the various folding and faulting events determined through the 3D palinspastic reconstruction. It was found that the strains produced during the initial folding of the Tensleep and Phosphoria Formations corresponded well without both the orientations and relative fracture intensity measured in outcrop and in the subsurface. The results have led to a 15% to 20% increase in estimated matrix pore volume, and to the plan to drill two horizontal drain holes located and oriented based on the modeling results. Marathon Oil is also evaluating alternative tertiary recovery processes based on the quantitative 3D integrated reservoir model.

Paul La Pointe; Jan Hermanson; Robert Parney; Thorsten Eiben; Mike Dunleavy; Ken Steele; John Whitney; Darrell Eubanks; Roger Straub

2002-11-18T23:59:59.000Z

325

Regional-Scale Assessment of Nitrous Oxide Emissions within the US Corn Belt: The Impact of Precipitation and Agricultural Drainage on Indirect Emissions  

E-Print Network [OSTI]

Regional-Scale Assessment of Nitrous Oxide Emissions within the US Corn Belt: The Impact of Precipitation and Agricultural Drainage on Indirect Emissions Tim Griffis1, Xuhui Lee2, John Baker3, Peter, but mitigation strategies have been limited by the large uncertainties in both direct and indirect emission

Minnesota, University of

326

Generated using version 3.2 of the official AMS LATEX template Distinguishing the cold conveyor belt and sting jet air streams in1  

E-Print Network [OSTI]

structure of a ShapiroKeyser cyclone during development stage III.38 There are two separate regions usually belt and sting jet air streams in1 an intense extratropical cyclone2 Oscar Martinez-Alvarado, Laura H.martinezalvarado@reading.ac.uk 1 #12;ABSTRACT4 Strong winds equatorwards and rearwards of a cyclone core have often been associated

Plant, Robert

327

As May approaches, cotton planting is generally 25% com-plete across the Belt. California and Arizona lead the way as  

E-Print Network [OSTI]

As May approaches, cotton planting is generally 25% com- plete across the Belt. California.do?documentID=1048. Cotton planting in Texas will range from as early to as late as any other state in the nation the planters in the field. Extension Cotton Specialists preach that planting early does not neces- sarily

Mukhtar, Saqib

328

Preliminary draft industrial siting administration permit application: Socioeconomic factors technical report. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project in Converse County, Wyoming  

SciTech Connect (OSTI)

Under the with-project scenario, WyCoalGas is projected to make a difference in the long-range future of Converse County. Because of the size of the proposed construction and operations work forces, the projected changes in employment, income, labor force, and population will alter Converse County's economic role in the region. Specifically, as growth occurs, Converse County will begin to satisfy a larger portion of its own higher-ordered demands, those that are currently being satisfied by the economy of Casper. Business-serving and household-serving activities, currently absent, will find the larger income and population base forecast to occur with the WyCoalGas project desirable. Converse County's economy will begin to mature, moving away from strict dependence on extractive industries to a more sophisticated structure that could eventually appeal to national, and certainly, regional markets. The technical demand of the WyCoalGas plant will mean a significant influx of varying occupations and skills. The creation of basic manufacturing, advanced trade and service sectors, and concomitant finance and transportation firms will make Converse County more economically autonomous. The county will also begin to serve market center functions for the smaller counties of eastern Wyoming that currently rely on Casper, Cheyenne or other distant market centers. The projected conditions expected to exist in the absence of the WyCoalGas project, the socioeconomic conditions that would accompany the project, and the differences between the two scenarios are considered. The analysis is keyed to the linkages between Converse County and Natrona County.

Not Available

1982-01-01T23:59:59.000Z

329

Hydraulic fracturing and wellbore completion of coalbed methane wells in the Powder River Basin, Wyoming: Implications for water and gas production  

SciTech Connect (OSTI)

Excessive water production (more than 7000 bbl/month per well) from many coalbed methane (CBM) wells in the Powder River Basin of Wyoming is also associated with significant delays in the time it takes for gas production to begin. Analysis of about 550 water-enhancement activities carried out during well completion demonstrates that such activities result in hydraulic fracturing of the coal. Water-enhancement activities, consists of pumping 60 bbl of water/min into the coal seam during approximately 15 min. This is done to clean the well-bore and to enhance CBM production. Hydraulic fracturing is of concern because vertical hydraulic fracture growth could extend into adjacent formations and potentially result in excess CBM water production and inefficient depressurization of coals. Analysis of the pressure-time records of the water-enhancement tests enabled us to determine the magnitude of the least principal stress (S{sub 3}) in the coal seams of 372 wells. These data reveal that because S{sub 3} switches between the minimum horizontal stress and the overburden at different locations, both vertical and horizontal hydraulic fracture growth is inferred to occur in the basin, depending on the exact location and coal layer. Relatively low water production is observed for wells with inferred horizontal fractures, whereas all of the wells associated with excessive water production are characterized by inferred vertical hydraulic fractures. The reason wells with exceptionally high water production show delays in gas production appears to be inefficient depressurization of the coal caused by water production from the formations outside the coal. To minimize CBM water production, we recommend that in areas of known vertical fracture propagation, the injection rate during the water-enhancement tests should be reduced to prevent the propagation of induced fractures into adjacent water-bearing formations.

Colmenares, L.B.; Zoback, M.D. [Stanford University, Stanford, CA (United States). Dept. of Geophysics

2007-01-15T23:59:59.000Z

330

Sulfur and ash in Paleocene Wyodak-Anderson coal in the Powder River Basin, Wyoming and Montana: A fuel source beyond 2000  

SciTech Connect (OSTI)

When coal-fired power plants are required by the Environmental Protection Agency (EPA) to meet more stringent sulfur emission standards (0.6 pound per million Btu) after the year 2000, most of the clean and compliant coals will come from the Powder River Basin in Wyoming and Montana. In 1996 more than 300 million short toms of these clean and compliant coals were produced from the Paleocene Fort Union Formation in the northern Rocky Mountains and Great Plans region. This is more than 30% of the total US coal production of 1.03 billion short tons in 1996. Future demand for clean and compliant coals can probably be met through production of more F or Union coals in the region. It is projected by the Energy Information Agency (1996) that most of the low-sulfur and low-ash coals in the northern Rocky Mountains and Great Plains region will be produced from the Wyodak-Anderson coal bed/zone of the Paleocene Fort Union Formation in the Powder River Basin. To date, coal produced from the Wyodak-Anderson coal bed/zone, containing 0.5% sulfur, 1.2 lb SO{sub 2} per million btu, and 6% ash (mean values on an as-received basis) meet current EPA regulatory compliance. This coal bed/zone alone produced 262 million short toms of >26% of the total US coal production in 1996. Based on the current consumption rates of coal and a forecast by the EIA (1996), the Wyodak-Anderson coals are projected to produce an additional 153 million short tons a year by the year 2016. At this rate of production, high quality Wyodak-Anderson coals may be adequate to fill future energy needs.

Ellis, M.S.; Stricker, G.D.; Flores, R.M.; Bader, L.R.

1998-07-01T23:59:59.000Z

331

Sulfur and ash in paleocene Wyodak-Anderson coal in the Powder River Basin, Wyoming and Montana: A fuel source beyond 2000  

SciTech Connect (OSTI)

When coal-fired power plants are required by the Environmental Protection Agency (EPA) to meet more stringent sulfur emission standards (0.6 pound per million Btu) after the year 2000, most of the clean and compliant coals will come from the Powder River Basin in Wyoming and Montana. In 1996 more than 300 million short tons of these clean and compliant coals were produced from the Paleocene Fort Union Formation in the northern Rocky Mountains and Great Plains region. This is more than 30 percent of the total US coal production of 1.03 billion short tons in 1996. Future demand for clean and compliant coals can probably be met through production of more Fort Union coals in the region. It is projected by the Energy Information Agency (1996) that most of the low-sulfur and low-ash coals in the northern Rocky Mountains and Great Plains region will be produced from the Wyodak-Anderson coal bed/zone of the Paleocene Fort Union Formation in the Powder River Basin. To date, coal produced from the Wyodak-Anderson coal bed/zone, containing 0.5 percent sulfur, 1.2 lb SO{sub 2} per million btu, and 6 percent ash (mean values on an as-received basis) meet current EPA regulatory compliance. This coal bed/zone alone produced 262 million short tons or >26 percent of the total U.S. coal production in 1996. Based on the current consumption rates of coal and a forecast by the EIA (1996), the Wyodak-Anderson coals are projected to produce an additional 153 million short tons a year by the year 2016. At this rate of production, high quality Wyodak-Anderson coals may be adequate to fill our future energy needs.

Ellis, M.S.; Stricker, G.D.; Flores, R.M.; Bader, L.R. [Geological Survey, Denver, CO (United States)

1998-04-01T23:59:59.000Z

332

E-Print Network 3.0 - annecy basin eastern Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geosciences 44 Mass movement-induced fold-and-thrust belt structures in unconsolidated sediments in Lake Lucerne (Switzerland) Summary: plains, the wedges of massflow...

333

This  

Gasoline and Diesel Fuel Update (EIA)

or Impediments to their Development: The ParadoxSan Juan, Uinta Piceance, Greater Green River, and Powder River Basins and the Montana Thrust Belt. Prepared by the...

334

Appendix A: Handling of Federal  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

or Impediments to their Development: The ParadoxSan Juan, Uinta Piceance, Greater Green River, and Powder River Basins and the Montana Thrust Belt. Prepared by the...

335

Tectonophysics, 119 (1985) 67-88 Elsevier Science Publishers B.V.. Amsterdam -Printed in The Netherlands  

E-Print Network [OSTI]

in The Netherlands 67 THE ROLE OF SALT IN FOLD-AND-THRUST BELTS DAN M. DAVIS and TERRY ENGELDER Lamont -Doherty

Engelder, Terry

336

First Results of a Full Scaled Passive Treatment System for High Metal Concentration AMD at the Iberian Pyrite Belt, SW Spain  

E-Print Network [OSTI]

at the Iberian Pyrite Belt, SW Spain M. A. Caraballo a), F. Macías a), T. S. Rötting b), J. M. Nieto a), C. Ayora c) a) Department of Geology, University of Huelva. Avda. Fuerzas Armadas s/n, 21071 Huelva, Spain "Jaume Almera" CSIC, Lluís Solé y Sabarís, s/n. Barcelona 08028, Spain. Abstract Acidity load

Politècnica de Catalunya, Universitat

337

Stellar Parameters for HD 69830, a Nearby Star with Three Neptune Mass Planets and an Asteroid Belt  

E-Print Network [OSTI]

We used the CHARA Array to directly measure the angular diameter of HD 69830, home to three Neptune mass planets and an asteroid belt. Our measurement of 0.674+/-0.014 milli-arcseconds for the limb-darkened angular diameter of this star leads to a physical radius of R$_*$ = 0.9058$\\pm$0.0190 R\\sun and luminosity of L* = 0.622+/-0.014 Lsun when combined with a fit to the spectral energy distribution of the star. Placing these observed values on an Hertzsprung-Russel (HR) diagram along with stellar evolution isochrones produces an age of 10.6+/-4 Gyr and mass of 0.863$\\pm$0.043 M\\sun. We use archival optical echelle spectra of HD 69830 along with an iterative spectral fitting technique to measure the iron abundance ([Fe/H]=-0.04+/-0.03), effective temperature (5385+/-44 K) and surface gravity (log g = 4.49+/-0.06). We use these new values for the temperature and luminosity to calculate a more precise age of 7.5+/-Gyr. Applying the values of stellar luminosity and radius to recent models on the optimistic locati...

Tanner, Angelle; von Braun, Kaspar; Kane, Stephen; Brewer, John M; Farrington, Chris; van Belle, Gerard T; Beichman, Charles A; Fischer, Debra; Brummelaar, Theo A ten; McAlister, Harold A; Schaefer, Gail

2014-01-01T23:59:59.000Z

338

A Summary of Coupled, Uncoupled, and Hybrid Tectonic Models for the Yakima Fold Belt--Topical Report  

SciTech Connect (OSTI)

This document is one in a series of topical reports compiled by the Pacific Northwest National Laboratory to summarize technical information on selected topics important to the performance of a probabilistic seismic hazard analysis of the Hanford Site. The purpose of this report is to summarize the range of opinions and supporting information expressed by the expert community regarding whether a coupled or uncoupled model, or a combination of both, best represents structures in the Yakima Fold Belt. This issue was assessed to have a high level of contention with up to moderate potential for impact on the hazard estimate. This report defines the alternative conceptual models relevant to this technical issue and the arguments and data that support those models. It provides a brief description of the technical issue and principal uncertainties; a general overview on the nature of the technical issue, along with alternative conceptual models, supporting arguments and information, and uncertainties; and finally, suggests some possible approaches for reducing uncertainties regarding this issue.

Chamness, Michele A.; Winsor, Kelsey; Unwin, Stephen D.

2012-08-01T23:59:59.000Z

339

A Summary of Information on the Behavior of the Yakima Fold Belt as a Structural Entity -- Topical Report  

SciTech Connect (OSTI)

This document is one in a series of topical reports compiled by the Pacific Northwest National Laboratory to summarize technical information on selected topics important to the performance of a probabilistic seismic hazard analysis (PSHA) of the Hanford Site. The purpose of this report is to summarize available data and analyses relevant to the Yakima Fold Belt (YFB) that may bear on the question of whether or not the YFB behaves as a single seismotectonic province in which activity along one fold structure is representative of behavior along all other fold structures. This topic has met with a fairly high level of contention in the expert community and has the potential to result in significant impacts on an evaluation of seismic hazard at the Hanford Site. This report defines the relevant alternative conceptual models relevant to this technical issue and the arguments and data that support those models. It provides a brief description of the technical issue and principal uncertainties; a general overview on the nature of the technical issue, along with alternative conceptual models, supporting arguments and information, and uncertainties; and finally, it suggests some possible approaches for reducing uncertainties regarding this issue.

Last, George V.; Winsor, Kelsey; Unwin, Stephen D.

2012-08-01T23:59:59.000Z

340

Property description and fact-finding report for NPR-3 Natrona County, Wyoming. Addendum to 22 August 1996 study of alternatives for future operations of the naval petroleum and oil shale reserves NPR-3  

SciTech Connect (OSTI)

The U.S. Department of Energy has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Consultant under contract DE-AC01-96FE64202. This authorizes a study and recommendations regarding future development of Naval Petroleum Reserve No. 3 (NPR-3) in Natrona County, Wyoming. The report that follows is the Phase I fact-finding and property description for that study. The United States of America owns 100 percent of the mineral rights and surface rights in 9,321-acre NPR-3. This property comprises the Teapot Dome oil field and related production, processing and other facilities. Discovered in 1914, this field has 632 wells producing 1,807 barrels of oil per day. Production revenues are about $9.5 million per year. Remaining recoverable reserves are approximately 1.3 million barrels of oil. Significant plugging and abandonment (P&A) and environmental liabilities are present.

NONE

1997-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "wyoming thrust belt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Measurements of 222Rn, 220Rn, and CO Emissions in Natural CO2 Fields in Wyoming: MVA Techniques for Determining Gas Transport and Caprock Integrity  

SciTech Connect (OSTI)

An integrated field-laboratory program evaluated the use of radon and CO2 flux measurements to constrain source and timescale of CO2 fluxes in environments proximate to CO2 storage reservoirs. By understanding the type and depth of the gas source, the integrity of a CO2 storage reservoir can be assessed and monitored. The concept is based on correlations of radon and CO2 fluxes observed in volcanic systems. This fundamental research is designed to advance the science of Monitoring, Verification, and Accounting (MVA) and to address the Carbon Storage Program goal of developing and validating technologies to ensure 99 percent storage performance. Graduate and undergraduate students conducted the research under the guidance of the Principal Investigators; in doing so they were provided with training opportunities in skills required for implementing and deploying CCS technologies. Although a final method or tool was not developed, significant progress was made. The field program identified issues with measuring radon in environments rich in CO2. Laboratory experiments determined a correction factor to apply to radon measurements made in CO2-bearing environments. The field program also identified issues with radon and CO2-flux measurements in soil gases at a natural CO2 analog. A systematic survey of radon and CO2 flux in soil gases at the LaBarge CO2 Field in Southwest Wyoming indicates that measurements of 222Rn (radon), 220Rn (thoron), and CO2 flux may not be a robust method for monitoring the integrity of a CO2 storage reservoir. The field program was also not able to correlate radon and CO2 flux in the CO2-charged springs of the Thermopolis hydrothermal system. However, this part of the program helped to motivate the aforementioned laboratory experiments that determined correction factors for measuring radon in CO2-rich environments. A graduate student earned a Master of Science degree for this part of the field program; she is currently employed with a geologic consulting company. Measurement of radon in springs has improved significantly since the field program first began; however, in situ measurement of 222Rn and particularly 220Rn in springs is problematic. Future refinements include simultaneous salinity measurements and systematic corrections, or adjustments to the partition coefficient as needed for more accurate radon concentration determination. A graduate student earned a Master of Science degree for this part of the field program; he is currently employed with a geologic consulting company. Both graduate students are poised to begin work in a CCS technology area. Laboratory experiments evaluated important process-level fundamentals that effect measurements of radon and CO2. Laboratory tests established that fine-grained source minerals yield higher radon emissivity compared to coarser-sized source minerals; subtleties in the dataset suggest that grain size alone is not fully representative of all the processes controlling the ability of radon to escape its mineral host. Emissivity for both 222Rn and 220Rn increases linearly with temperature due to reaction of rocks with water, consistent with faster diffusion and enhanced mineral dissolution at higher temperatures. The presence of CO2 changes the relative importance of the factors that control release of radon. Emissivity for both 222Rn and 220Rn in CO2-bearing experiments is greater at all temperatures compared to the experiments without CO2, but emissivity does not increase as a simple function of temperature. Governing processes may include a balance between enhanced dissolution versus carbonate mineral formation in CO2-rich waters.

Kaszuba, John; Sims, Kenneth

2014-09-30T23:59:59.000Z

342

Fluid dynamics kill Wyoming icicle  

SciTech Connect (OSTI)

Control of a blowout in which a portion of the drill collar string was extending through the rotary table and into the derrick was compounded by ice building up on the derrick and substructure. However, the momentum kill procedure proved successful. Topics considered in this paper include oil wells, natural gas wells, sleeves, rotary drills, drilling rigs, fluid mechanics, occupational safety, blowouts, drill pipes, rotary drilling, ice removal, and freezing.

Grace, R.D.

1987-04-01T23:59:59.000Z

343

Wyoming Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14Year (Million2008 2009

344

Recovery Act State Memos Wyoming  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment ofList?Department09Jersey ForDakotaWisconsin For

345

Report on surface geology and groundwater investigations of Mortons and Green Valley Well Fields. Final technical report, November 1980-May 1982. [Proposed WyCoalGas Project, Converse County, Wyoming; site evaluation  

SciTech Connect (OSTI)

The general region of investigation of this report is in the southern part of the Powder River Basin near the Town of Douglas, Wyoming. Two specific areas within this region were investigated to determine the groundwater potential with drilling and testing programs during the years 1973 to 1975. One area of investigation is located approximately 12 miles west of Douglas in T32 and 33N, R73 and 74W, and is known as the Green Valley Well Field. This area is situated in the foothills of the north end of the Laramie Range and encompasses approximately 25 square miles. In this area the Madison Formation limestone and the Flathead Formation sandstone are the aquifers of interest for groundwater production. The second area is located approximately 13 miles north of Douglas in T34 and 35N, R70 and 71W, and is known as the Mortons Well Field. This area encompasses about 30 square miles. In this area, the Lance Formation and Fox Hills Formation sandstones are the aquifers of interest. Contained within the body of this report are two geologic studies prepared by consulting geologists, Dr. Peter Huntoon and Henry Richter. These studies define the pertinent structural and groundwater geologic features in and in the vicinities of the Mortons and Green Valley Well Fields. A relatively complex structural geology was encountered in the Green Valley area. The study of the Mortons area suggests that the geology of this area is relatively uniform. Inventories of the water users in the vicinities of the two study areas are included at the back of this report in Appendix B. These inventories are comprised of water appropriations as recognized by the Wyoming State Engineer's Office. Both groundwater and surface water appropriations are inventoried within the Green Valley study area. Only groundwater appropriations are inventoried within the Mortons study area.

None

1982-01-01T23:59:59.000Z

346

MAJOR OIL PLAYS IN UTAH AND VICINITY  

SciTech Connect (OSTI)

Utah oil fields have produced a total of 1.2 billion barrels (191 million m{sup 3}). However, the 15 million barrels (2.4 million m{sup 3}) of production in 2000 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the first quarter of the first project year (July 1 through September 30, 2002). This work included producing general descriptions of Utah's major petroleum provinces, gathering field data, and analyzing best practices in the Utah Wyoming thrust belt. Major Utah oil reservoirs and/or source rocks are found in Devonian through Permian, Jurassic, Cretaceous, and Tertiary rocks. Stratigraphic traps include carbonate buildups and fluvial-deltaic pinchouts, and structural traps include basement-involved and detached faulted anticlines. Best practices used in Utah's oil fields consist of waterflood, carbon-dioxide flood, gas-injection, and horizontal drilling programs. Nitrogen injection and horizontal drilling programs have been successfully employed to enhance oil production from the Jurassic Nugget Sandstone (the major thrust belt oil-producing reservoir) in Wyoming's Painter Reservoir and Ryckman Creek fields. At Painter Reservoir field a tertiary, miscible nitrogen-injection program is being conducted to raise the reservoir pressure to miscible conditions. Supplemented with water injection, the ultimate recovery will be 113 million bbls (18 million m{sup 3}) of oil (a 68 percent recovery factor over a 60-year period). The Nugget reservoir has significant heterogeneity due to both depositional facies and structural effects. These characteristics create ideal targets for horizontal wells and horizontal laterals drilled from existing vertical wells. Horizontal drilling programs were conducted in both Painter Reservoir and Ryckman Creek fields to encounter potential undrained compartments and increase the overall field recovery by 0.5 to 1.5 percent per horizontal wellbore. Technology transfer activities consisted of exhibiting a booth display of project materials at the Rocky Mountain Section meeting of the American Association of Petroleum Geologists, a technical presentation to the Wyoming State Geological Survey, and two publications. A project home page was set up on the Utah Geological Survey Internet web site.

Thomas C. Chidsey, Jr.

2003-01-01T23:59:59.000Z

347

LANSCE-NS thrust areas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMission Statement TitanProposals | FY2016LANSCE UserNeutron and

348

Sandia National Laboratories: thrust data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNational SolartSSLPV materials (Si CIGSthrivingthrust

349

Thrusts in High Performance Computing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1A: HandlingJeffersonThree-yearyears Earlyin HPC

350

Offering Songs, Festive Songs, Processional Songs mGar-gLu, Khro-Glu, Phebsnga: Khang Lhamo, Yandol & Pema Dolma Music: Li phur ma laten pai, 'The belt on the boots'  

E-Print Network [OSTI]

phur ma laten pai Translation of title The belt on the boots Description (to be used in archive entry) Genre or type (i.e. epic, song, ritual) khro glu (festive song) Medium (i.e. reel to reel, web-based file, DVD) Digital Recording Related... access (fully closed, fully open) Fully open for web streaming Notes and context (include reference to any related documentation, such as photographs) "This belt is really long on the boots. If we use it on the waist it's short. You can use...

Blumenthal, Katey

351

Offering Songs, Festive Songs, Processional Songs mGar-gLu, Khro-Glu, Phebsnga: Khang Lhamo, Yandol & Pema Dolma Music: Ri di ngak me ri la, 'The belt on the boots'  

E-Print Network [OSTI]

di ngak me ri la Translation of title The belt on the boots Description (to be used in archive entry) A song about festive dress and customs. Genre or type (i.e. epic, song, ritual) khro glu (festive song) Medium (i.e. reel to reel, web... objects used in performance Level of public access (fully closed, fully open) Fully open for web streaming Notes and context (include reference to any related documentation, such as photographs) "This belt is really long on the boots. If we use...

Blumenthal, Katey

352

Heavy element radionuclides (Pu, Np, U) and {sup 137}Cs in soils collected from the Idaho National Engineering and Environmental Laboratory and other sites in Idaho, Montana, and Wyoming  

SciTech Connect (OSTI)

The isotopic composition of Pu in soils on and near the Idaho National Engineering and Environmental Laboratory (INEEL) has been determined in order to apportion the sources of the Pu into those derived from stratospheric fallout, regional fallout from the Nevada Test Site (NTS), and facilities on the INEEL site. Soils collected offsite in Idaho, Montana, and Wyoming were collected to further characterize NTS fallout in the region. In addition, measurements of {sup 237}Np and {sup 137}Cs were used to further identify the source of the Pu from airborne emissions at the Idaho Chemical Processing Plant (ICPP) or fugitive releases from the Subsurface Disposal Area (SDA) in the Radioactive Waste Management Complex (RWMC). There is convincing evidence from this study that {sup 241}Am, in excess of that expected from weapons-grade Pu, constituted a part of the buried waste at the SDA that has subsequently been released to the environment. Measurements of {sup 236}U in waters from the Snake River Plain aquifer and a soil core near the ICPP suggest that this radionuclide may be a unique interrogator of airborne releases from the ICPP. Neptunium-237 and {sup 238}Pu activities in INEEL soils suggest that airborne releases of Pu from the ICPP, over its operating history, may have recently been overestimated.

Beasley, T.M.; Rivera, W. Jr. [Dept. of Energy, New York, NY (United States). Environmental Measurements Lab.; Kelley, J.M.; Bond, L.A. [Pacific Northwest National Lab., Richland, WA (United States); Liszewski, M.J. [Bureau of Reclamation (United States); Orlandini, K.A. [Argonne National Lab., IL (United States)

1998-10-01T23:59:59.000Z

353

PSW1-C0.2-D0.1-E2.4-F0.1-PSRB2-0021-02 SOLAR WIND-DRIVEN ELECTRON RADIATION BELT  

E-Print Network [OSTI]

linear filters, to remove unwanted "col- ored noise" from solar wind and radiation belt electron data output might be achieved with: 1) additional simultaneous solar wind inputs; 2) more sophisticated quality of solar, solar-wind, and magnetospheric data that has become available in recent years has led

354

Superfund Record of Decision (EPA Region 7): Oronogo-Duenweg Mining Belt Site, Operable Unit 4, Jasper County, MO, July 29, 1998  

SciTech Connect (OSTI)

The US Environmental Protection Agency (EPA) has prepared this decision document to present the selected remedial action for ground water at the Oronogo/Duenweg Mining Belt Site located in Jasper County, Missouri. This selected remedy deals with providing safe drinking water supplies to residents currently consuming ground water contaminated with metals. The major components of selected remedy are: Support to Public Water Supply District No. 3 in the Oronogo/Duenweg Designated Area (DA); Extension of existing public water lines in the Oronogo/Duenweg DA; Extension of existing public water lines in the Irons Gates Extension DA; Installation of point-of-use treatment units to homes not accessible to public water; A maintenance program for the point-of-use treatment units; A monitoring program for threatened homes and the point-of-use treatment units; and Institutional controls to regulate future uses of the contaminated shallow aquifer.

NONE

1998-09-01T23:59:59.000Z

355

3D Sedimentological and geophysical studies of clastic reservoir analogs: Facies architecture, reservoir properties, and flow behavior within delta front facies elements of the Cretaceous Wall Creek Member, Frontier Formation, Wyoming  

SciTech Connect (OSTI)

Significant volumes of oil and gas occur in reservoirs formed by ancient river deltas. This has implications for the spatial distribution of rock types and the variation of transport properties. A between mudstones and sandstones may form baffles that influence productivity and recovery efficiency. Diagenetic processes such as compaction, dissolution, and cementation can also alter flow properties. A better understanding of these properties and improved methods will allow improved reservoir development planning and increased recovery of oil and gas from deltaic reservoirs. Surface exposures of ancient deltaic rocks provide a high-resolution view of variability. Insights gleaned from these exposures can be used to model analogous reservoirs, for which data is sparser. The Frontier Formation in central Wyoming provides an opportunity for high-resolution models. The same rocks exposed in the Tisdale anticline are productive in nearby oil fields. Kilometers of exposure are accessible, and bedding-plane exposures allow use of high-resolution ground-penetrating radar. This study combined geologic interpretations, maps, vertical sections, core data, and ground-penetrating radar to construct geostatistical and flow models. Strata-conforming grids were use to reproduce the observed geometries. A new Bayesian method integrates outcrop, core, and radar amplitude and phase data. The proposed method propagates measurement uncertainty and yields an ensemble of plausible models for calcite concretions. These concretions affect flow significantly. Models which integrate more have different flow responses from simpler models, as demonstrated an exhaustive two-dimensional reference image and in three dimensions. This method is simple to implement within widely available geostatistics packages. Significant volumes of oil and gas occur in reservoirs that are inferred to have been formed by ancient river deltas. This geologic setting has implications for the spatial distribution of rock types (\\Eg sandstones and mudstones) and the variation of transport properties (\\Eg permeability and porosity) within bodies of a particular rock type. Both basin-wide processes such as sea-level change and the autocyclicity of deltaic processes commonly cause deltaic reservoirs to have large variability in rock properties; in particular, alternations between mudstones and sandstones may form baffles and trends in rock body permeability can influence productivity and recovery efficiency. In addition, diagenetic processes such as compaction, dissolution, and cementation can alter the spatial pattern of flow properties. A better understanding of these properties, and improved methods to model the properties and their effects, will allow improved reservoir development planning and increased recovery of oil and gas from deltaic reservoirs. Surface exposures of ancient deltaic rocks provide a high resolution, low uncertainty view of subsurface variability. Patterns and insights gleaned from these exposures can be used to model analogous reservoirs, for which data is much sparser. This approach is particularly attractive when reservoir formations are exposed at the surface. The Frontier Formation in central Wyoming provides an opportunity for high resolution characterization. The same rocks exposed in the vicinity of the Tisdale anticline are productive in nearby oil fields, including Salt Creek. Many kilometers of good-quality exposure are accessible, and the common bedding-plane exposures allow use of shallow-penetration, high-resolution electromagnetic methods known as ground-penetrating radar. This study combined geologic interpretations, maps, vertical sections, core data, and ground-penetrating radar to construct high-resolution geostatistical and flow models for the Wall Creek Member of the Frontier Formation. Stratal-conforming grids were use to reproduce the progradational and aggradational geometries observed in outcrop and radar data. A new, Bayesian method integrates outcrop--derived statistics, core observations of concretions, and radar amplitude and

Christopher D. White

2009-12-21T23:59:59.000Z

356

Evaluation of organic matter, Subsurface temperature nd pressure with regard to gas generation in low-permeability upper cretaceous and lower tertiary sandstones in Pacific Creek area, sublette and Sweetwater Counties, Wyoming  

SciTech Connect (OSTI)

Investigations of a sequence of Upper Cretaceous and lower Tertiary rocks in the Pacific Creek area of Wyoming show that studies of organic matter content, type, and maturity in conjunction with subsurface temperature and reservoir pressure, will help define prospective gas-saturated intervals and delineate areas of maximum gas-resource potential. The onset of overpressuring occurs at about 11,600 ft (3,500 m), near the base of the Upper Cretaceous Lance Formation. Drill stem test data indicate that at about 12,800 ft (3,900 m) the pressure gradient is as high as 0.84 psi/ft (19.0 kPa/m). The development of overpressuring probably due to the active generation of large amounts of wet gas. Nearly coincident with the top of overpressuring is a reversal of the spontaneous potential (SP) curve that is thought to be caused by a reduction of formation water salinity. The very small amounts of water produced during thermochemical decomposition of organic matter and the dehydration of clays during clay transformation may provide enough low-salinity water to effictively dilute the original formation water to a degree that the formation water resistivity is greater than mud filtrate resistivity. Microscopic and geochemical evaluation of organic matter shows that they are dominantly humic-type kerogen. Total organic carbon contents of 26 samples range from 0.25 to 7.84 weight percent. Most samples exceed 0.5 percent organic carbon and the average is 1.38 percent. A vertial profile of organic maturation, shows that the top of overpressuring and beginning of important wet-gas generation occur at vitrinite reflectance values of 0.74 to 0.86. (JMT)

Law, B.E.; Spencer, C.W.; Bostick, N.H.

1980-04-01T23:59:59.000Z

357

Maximization of permanent trapping of CO{sub 2} and co-contaminants in the highest-porosity formations of the Rock Springs Uplift (Southwest Wyoming): experimentation and multi-scale modeling  

SciTech Connect (OSTI)

Under this project, a multidisciplinary team of researchers at the University of Wyoming combined state-of-the-art experimental studies, numerical pore- and reservoir-scale modeling, and high performance computing to investigate trapping mechanisms relevant to geologic storage of mixed scCO{sub 2} in deep saline aquifers. The research included investigations in three fundamental areas: (i) the experimental determination of two-?phase flow relative permeability functions, relative permeability hysteresis, and residual trapping under reservoir conditions for mixed scCO{sub 2}-?brine systems; (ii) improved understanding of permanent trapping mechanisms; (iii) scientifically correct, fine grid numerical simulations of CO{sub 2} storage in deep saline aquifers taking into account the underlying rock heterogeneity. The specific activities included: (1) Measurement of reservoir-?conditions drainage and imbibition relative permeabilities, irreducible brine and residual mixed scCO{sub 2} saturations, and relative permeability scanning curves (hysteresis) in rock samples from RSU; (2) Characterization of wettability through measurements of contact angles and interfacial tensions under reservoir conditions; (3) Development of physically-?based dynamic core-?scale pore network model; (4) Development of new, improved high-? performance modules for the UW-?team simulator to provide new capabilities to the existing model to include hysteresis in the relative permeability functions, geomechanical deformation and an equilibrium calculation (Both pore-? and core-?scale models were rigorously validated against well-?characterized core-? flooding experiments); and (5) An analysis of long term permanent trapping of mixed scCO{sub 2} through high-?resolution numerical experiments and analytical solutions. The analysis takes into account formation heterogeneity, capillary trapping, and relative permeability hysteresis.

Piri, Mohammad

2014-03-31T23:59:59.000Z

358

"TNOs are Cool": A survey of the trans-Neptunian region X. Analysis of classical Kuiper belt objects from Herschel and Spitzer observations  

E-Print Network [OSTI]

The classical Kuiper belt contains objects both from a low-inclination, presumably primordial, distribution and from a high-inclination dynamically excited population. Based on a sample of classical TNOs with observations at thermal wavelengths we determine radiometric sizes, geometric albedos and thermal beaming factors as well as study sample properties of dynamically hot and cold classicals. Observations near the thermal peak of TNOs using infra-red space telescopes are combined with optical magnitudes using the radiometric technique with near-Earth asteroid thermal model (NEATM). We have determined three-band flux densities from Herschel/PACS observations at 70.0, 100.0 and 160.0 $\\mu$m and Spitzer/MIPS at 23.68 and 71.42 $\\mu$m when available. We have analysed 18 classical TNOs with previously unpublished data and re-analysed previously published targets with updated data reduction to determine their sizes and geometric albedos as well as beaming factors when data quality allows. We have combined these s...

Vilenius, E; Mller, T; Mommert, M; Santos-Sanz, P; Pl, A; Stansberry, J; Mueller, M; Peixinho, N; Lellouch, E; Fornasier, S; Delsanti, A; Thirouin, A; Ortiz, J L; Duffard, R; Perna, D; Henry, F

2014-01-01T23:59:59.000Z

359

ELECTRON IRRADIATION OF KUIPER BELT SURFACE ICES: TERNARY N{sub 2}-CH{sub 4}-CO MIXTURES AS A CASE STUDY  

SciTech Connect (OSTI)

The space weathering of icy Kuiper Belt Objects was investigated in this case study by exposing methane (CH{sub 4}) and carbon monoxide (CO) doped nitrogen (N{sub 2}) ices at 10 K to ionizing radiation in the form of energetic electrons. Online and in situ Fourier transform infrared spectroscopy was utilized to monitor the radiation-induced chemical processing of these ices. Along with isocyanic acid (HNCO), the products could be mainly derived from those formed in irradiated binary ices of the N{sub 2}-CH{sub 4} and CO-CH{sub 4} systems: nitrogen-bearing products were found in the form of hydrogen cyanide (HCN), hydrogen isocyanide (HNC), diazomethane (CH{sub 2}N{sub 2}), and its radical fragment (HCN{sub 2}); oxygen-bearing products were of acetaldehyde (CH{sub 3}CHO), formyl radical (HCO), and formaldehyde (H{sub 2}CO). As in the pure ices, the methyl radical (CH{sub 3}) and ethane (C{sub 2}H{sub 6}) were also detected, as were carbon dioxide (CO{sub 2}) and the azide radical (N{sub 3}). Based on the temporal evolution of the newly formed products, kinetic reaction schemes were then developed to fit the temporal profiles of the newly formed species, resulting in numerical sets of rate constants. The current study highlights important constraints on the preferential formation of isocyanic acid (HNCO) over hydrogen cyanide (HCN) and hydrogen isocyanide (HNC), thus guiding the astrobiological and chemical evolution of those distant bodies.

Kim, Y. S.; Kaiser, R. I., E-mail: ralfk@hawaii.edu [Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

2012-10-10T23:59:59.000Z

360

Major Oil Plays in Utah and Vicinity  

SciTech Connect (OSTI)

Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play. This report covers research activities for the sixth quarter of the project (October 1 through December 31, 2003). This work included describing outcrop analogs for the Jurassic Twin Creek Limestone and Mississippian Leadville Limestone, major oil producers in the thrust belt and Paradox Basin, respectively, and analyzing best practices used in the southern Green River Formation play of the Uinta Basin. Production-scale outcrop analogs provide an excellent view of reservoir petrophysics, facies characteristics, and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. In the Utah/Wyoming thrust belt province, the Jurassic Twin Creek Limestone produces from subsidiary closures along major ramp anticlines where the low-porosity limestone beds are extensively fractured and sealed by overlying argillaceous and non-fractured units. The best outcrop analogs for Twin Creek reservoirs are found at Devils Slide and near the town of Peoa, Utah, where fractures in dense, homogeneous non-porous limestone beds are in contact with the basal siltstone units (containing sealed fractures) of the overlying units. The shallow marine, Mississippian Leadville Limestone is a major oil and gas reservoir in the Paradox Basin of Utah and Colorado. Hydrocarbons are produced from basement-involved, northwest-trending structural traps with closure on both anticlines and faults. Excellent outcrops of Leadville-equivalent rocks are found along the south flank of the Uinta Mountains, Utah. For example, like the Leadville, the Mississippian Madison Limestone contains zones of solution breccia, fractures, and facies variations. When combined with subsurface geological and production data, these outcrop analogs can improve (1) development drilling and production strategies such as horizontal drilling, (2) reservoir-simulation models, (3) reserve calculations, and (4) design and implementation of secondary/tertiary oil recovery programs and other best practices used in the oil fields of Utah and vicinity. In the southern Green River Formation play of the Uinta Basin, optimal drilling, development, and production practices consist of: (1) owning drilling rigs and frac holding tanks; (2) perforating sandstone beds with more than 8 percent neutron porosity and stimulate with separate fracture treatments; (3) placing completed wells on primary production using artificial lift; (4) converting wells relatively soon to secondary waterflooding maintaining reservoir pressure above the bubble point to maximize oil recovery; (5) developing waterflood units using an alternating injector--producer pattern on 40-acre (16-ha) spacing; and (6) recompleting producing wells by perforating all beds that are productive in the waterflood unit. As part of technology transfer activities during this quarter, an abstract describing outcrop reservoir analogs was accepted by the American Assoc

Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Douglas A. Sprinkel; Roger L. Bon; Hellmut H. Doelling

2003-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "wyoming thrust belt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming  

SciTech Connect (OSTI)

U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments when water supplies sourced from coalbed methane extraction are plentiful. Constructed wetlands, planted to native, salt tolerant species demonstrated potential to utilize substantial volumes of coalbed methane product water, although plant community transitions to mono-culture and limited diversity communities is a likely consequence over time. Additionally, selected, cultured forage quality barley varieties and native plant species such as Quail bush, 4-wing saltbush, and seaside barley are capable of sustainable, high quality livestock forage production, when irrigated with coalbed methane product water sourced from the Powder River Basin. A consequence of long-term plant water use which was enumerated is elevated salinity and sodicity concentrations within soil and shallow alluvial groundwater into which coalbed methane product water might drain. The most significant conclusion of these investigations was the understanding that phytoremediation is not a viable, effective technique for management of coalbed methane product water under the present circumstances of produced water within the Powder River Basin. Phytoremediation is likely an effective approach to sodium and salt removal from salt-impaired sites after product water discharges are discontinued and site reclamation is desired. Coalbed methane product water of the Powder River Basin is most frequently impaired with respect to beneficial use quality by elevated sodicity, a water quality constituent which can cause swelling, slaking, and dispersion of smectite-dominated clay soils, such as commonly occurring within the Powder River Basin. To address this issue, a commercial-scale fluid-bed, cationic resin exchange treatment process and prototype operating treatment plant was developed and beta-tested by Drake Water Technologies under subcontract to this award. Drake Water Technologies secured U.S. Patent No. 7,368,059-B2, 'Method for removal of benevolent cations from contaminated water', a beta Drake Process Unit (DPU) was developed and deployed for operation in the Powder River Basin. First year operatio

James Bauder

2008-09-30T23:59:59.000Z

362

POISON SPIDER FIELD CHEMICAL FLOOD PROJECT, WYOMING  

SciTech Connect (OSTI)

A reservoir engineering and geologic study concluded that approximate 7,852,000 bbls of target oil exits in Poison Spider. Field pore volume, OOIP, and initial oil saturation are defined. Potential injection water has a total dissolved solids content of 1,275 mg/L with no measurable divalent cations. If the Lakota water consistently has no measurable cations, the injection water does not require softening to dissolve alkali. Produced water total dissolved solids were 2,835 mg/L and less than 20 mg/L hardness as the sum of divalent cations. Produced water requires softening to dissolve chemicals. Softened produced water was used to dissolve chemicals in these evaluations. Crude oil API gravity varies across the field from 19.7 to 22.2 degrees with a dead oil viscosity of 95 to 280 cp at 75 F. Interfacial tension reductions of up to 21,025 fold (0.001 dyne/cm) were developed with fifteen alkaline-surfactant combinations at some alkali concentration. An additional three alkaline-surfactant combinations reduced the interfacial tension greater than 5,000 fold. NaOH generally produced the lowest interfacial tension values. Interfacial tension values of less than 0.021 dyne/cm were maintained when the solutions were diluted with produced water to about 60%. Na{sub 2}CO{sub 3} when mixed with surfactants did not reduce interfacial tension values to levels at which incremental oil can be expected. NaOH without surfactant interfacial tension reduction is at a level where some additional oil might be recovered. Most of the alkaline-surfactant-polymer solutions producing ultra low interfacial tension gave type II- phase behavior. Only two solutions produced type III phase behavior. Produced water dilution resulted in maintenance of phase type for a number of solutions at produced water dilutions exceeding 80% dilution. The average loss of phase type occurred at 80% dilution. Linear corefloods were performed to determine relative permeability end points, chemical-rock compatibility, polymer injectivity, dynamic chemical retention by rock, and recommended injected polymer concentration. Average initial oil saturation was 0.796 Vp. Produced water injection recovered 53% OOIP leaving an average residual oil saturation of 0.375 Vp. Poison Spider rock was strongly water-wet with a mobility ratio for produced water displacing the 280 cp crude oil of 8.6. Core was not sensitive to either alkali or surfactant injection. Injectivity increased 60 to 80% with alkali plus surfactant injection. Low and medium molecular weight polyacrylamide polymers (Flopaam 3330S and Flopaam 3430S) dissolved in either an alkaline-surfactant solution or softened produced water injected and flowed through Poison Spider rock. Recommended injected polyacrylamide concentration is 2,100 mg/L for both polymers for a unit mobility ratio. Radial corefloods were performed to evaluate oil recovery efficiency of different chemical solutions. Waterflood oil recovery averaged 46.4 OOIP and alkaline-surfactant-polymer flood oil recovery averaged an additional 18.1% OIP for a total of 64.6% OOIP. Oil cut change due to injection of a 1.5 wt% Na{sub 2}CO{sub 3} plus 0.05 wt% Petrostep B-100 plus 0.05 wt% Stepantan AS1216 plus 2100 mg/L Flopaam 3430S was from 2% to a peak of 23.5%. Additional study might determine the impact on oil recovery of a lower polymer concentration. An alkaline-surfactant-polymer flood field implementation outline report was written.

Douglas Arnell; Malcolm Pitts; Jie Qi

2004-11-01T23:59:59.000Z

363

PacifiCorp (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOski Energy LLC Place:Ferry County JumpPVDAQ

364

Wyoming Dry Natural Gas Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009230,456 271,785,781 2,328Year

365

Wyoming Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008

366

Wyoming Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14 Nov-14 Dec-14 Jan-15

367

Wyoming Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14 Nov-14 Dec-14Year Jan

368

Wyoming Natural Gas Gross Withdrawals and Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14 Nov-14U.S. Offshore U.S.

369

Wyoming Natural Gas Gross Withdrawals and Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14 Nov-14U.S. Offshore

370

Wyoming Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14Year

371

Wyoming Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14YearYear Jan Feb Mar Apr

372

Wyoming Number of Natural Gas Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14YearYearYearDecade152,439

373

Wyoming Supplemental Supplies of Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14Thousand CubicPropane-Air

374

Wyoming Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14Thousand CubicPropane-Air98,448

375

Wyoming Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14Thousand

376

Wyoming-Colorado Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14ThousandFeet) Working Natural

377

Categorical Exclusion Determinations: Wyoming | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:JuneNovemberWashingtonAdministration-Sierra

378

Utah Nevada California Arizona Idaho Oregon Wyoming  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field EmissionFunctional Materials for 2 Basics Logins38E.

379

Utah Nevada California Arizona Idaho Oregon Wyoming  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field EmissionFunctional Materials for 2 Basics

380

Utah Nevada California Arizona Idaho Oregon Wyoming  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field EmissionFunctional Materials for 2 BasicsLiquids

Note: This page contains sample records for the topic "wyoming thrust belt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Wyoming Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After

382

Wyoming Natural Gas Processed (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet) Associated-DissolvedDecadeBarrels)(Million

383

Montana-Wyoming Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384FuelYear125 137 1861,185785 656

384

Hartrandt, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is8584°,HardyIowa Dunlap,Hart Countyis a

385

Hoback, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi Gtel JumpHoard, Wisconsin: Energy Resources Jump to:Hoback,

386

Spook, Wyoming, Disposal Site Fact Sheet  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River, Utah,Tuba City,'1 ~(3JlpV40sFirstI

387

Wyoming Wind Power Project (generation/wind)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1of Energy Worldwide CarbonWrap

388

Brookhurst, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais a village in Cook County, Illinois.

389

Cheyenne, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanic National Park | OpenChevron Energy33.

390

Midwest, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbH JumpSprings, Vermont: EnergyMidwest Renewable EnergyMidwest,

391

Mills, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbH JumpSprings, Vermont:isMillersport,Mills County,

392

Utah-Wyoming Natural Gas Plant Processing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198Separation 321Working40 235 25711,554 9,075

393

Sundance, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpenSummerside Wind FarmSunTechnics GmbH

394

GEOTHERMAL RESOURCES AT NPR-3, WYOMING  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning Fun with Big SkyDIII-D PerformanceGEGE,1 GENERAL

395

Meeteetse, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellisMcDonald is aElectricMeeme, Wisconsin:Meeteetse,

396

Afton, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy Information Lightning Dock Area274907°, -94.1980083°Afton

397

BLM Wyoming State Office | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas JumpCenterUkiahOffice Jump to:

398

Wyoming Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEditWisconsin: EnergyEdison,Wind Energy Center Jump to:

399

Wyoming/Geothermal | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEditWisconsin: EnergyEdison,Wind Energy Center

400

Wyoming/Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEditWisconsin: EnergyEdison,Wind Energy

Note: This page contains sample records for the topic "wyoming thrust belt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Wyoming/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEditWisconsin: EnergyEdison,Wind EnergyWind Resources

402

Wyoming, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty is a county in New York. Its

403

Wyoming, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty is a county in New York. ItsOhio: Energy

404

Wyoming/Transmission | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty is a county in New York. ItsOhio:

405

Garland, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent6894093° Loading69. It isGardner isHeights

406

Ralston, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosource HistoryRaft River0422° LoadingRalos

407

Douglas, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has TypeGeothermal AreaDonalds, SouthDouglasAgis

408

PacifiCorp (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County,PPP Equipment CorporationPV WorldUtah))

409

Powell, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowder River Energy CorporationCounty,Powell,

410

Wilson, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats Geothermal Area JumpTurboPower Jump

411

Wyoming Municipal Power Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats Geothermal AreaarticleWoodWildlife Fund

412

Alcova, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01Alchem Ltd JumpAlcooleiraAlcotra

413

Alta, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil Jump to:Information332InformationCoreAlta, Iowa:

414

Frannie, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates9. ItFranklinis

415

Casper, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascade Sierra Solutions CSS JumpCasnovia, Michigan:Casper,

416

Cheyenne, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information onChemithon842667°,Cheviot,3. It is classified as

417

Evansville, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It isInformationexplains a4 ClimateEtrionPowerColorado:WI)

418

National Park Service - Yellowstone National Park, Wyoming |...  

Energy Savers [EERE]

isolated from the commercial power grid, and power has been traditionally supplied by propane generators. The generators are now only a backup system for a 7kW photovoltaic (PV)...

419

Wyoming's Appliance Rebate Program Surges Ahead | Department...  

Energy Savers [EERE]

Equality State can receive rebates on ENERGY STAR certified clothes washers, dishwashers, water heaters and gas furnaces ranging from 50 to 250. The program still has 40 percent...

420

Thrust Area 2 Monopropellant-Powered Actuation  

E-Print Network [OSTI]

·Products are H2O and O2 Centralized Direct Injection ·Equivalent to air compressor (boxed in red (908 o F) Energetic Properties of Hydrogen Peroxide System Actuation Potential (kJ-kW/kg2 ) Definition

Barth, Eric J.

Note: This page contains sample records for the topic "wyoming thrust belt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

LANSCE | Lujan Center | Science Thrust Areas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs &JeffIntensitySurface

422

Replace V-Belts with Notched or Synchronous Belt Drives  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashesEnergy by Brian Weeks,Preliminary

423

Geochemical, oxygen, and neodymium isotope compositions of metasediments from the Abitibi greenstone belt and Pontiac Subprovince, Canada: Evidence for ancient crust and Archean terrane juxtaposition  

SciTech Connect (OSTI)

The Abitibi greenstone belt (AGB) and Pontiac Subprovince (PS) in the southwestern Superior Province are adjacent greenstone-plutonic and metasedimentary-dominated terranes, respectively, separated by a major fault zone. Metasediments from these two contrasting terranes are compared in terms of major- and trace-element and O- and Nd-isotope compositions, and detrital zircon ages. The following two compositional populations of metasediments are present in the low-grade, Abitibi southern volcanic zone: (1) a mafic-element-enriched population (MEP) characterized by flat, depleted REE patterns; enhanced Mg, Cr, Co, Ni, and Sc; low-incompatible-element contents; and minor or absent normalized negative troughs at Nb, Ta, and Ti; and (2) a low-mafic-element population (LMEP) featuring LREE-enriched patterns; enhanced Rb, Cs, Ba, Th, and U contents; and pronounced normalized negative troughs at Nb, Ta, and Ti. These geochemical features are interpreted to indicate that the MEP sediments were derived from an ultramafic- and mafic-dominated oceanic provenance, whereas the LMEP sediments represent mixtures of mafic and felsic are source rocks. The PS metasediments are essentially indistinguishable from Abitibi LMEP on the basis of major-element and transition metal abundances, suggesting comparable types of source rocks and degrees of maturity, but are distinct in terms of some trace elements and O-isotope compositions. The Pontiac metasediments are depleted in [sup 18]O and enriched in Cs, Ba, Pb, Th, U, Nb, Ta, Hf, Zr, and total REE and also have higher ratios of Rb/K, Cs/Rb, Ba/Rb, Ta/Nb, Th/La, and Ba/La relative to the Abitibi LMEP. Two subtypes of REE patterns have been identified in PS metasediments. The first subtype is interpreted to be derived from provenances of mixed mafic and felsic volcanic rocks, whereas the Eu-depleted type has features that are typical of post-Archean sediments or Archean K-rich granites and volcanic equivalents. 100 refs., 9 figs., 4 tabs.

Feng, R.; Kerrich, R. (Univ. of Saskatchewan, Saskatoon (Canada)); Maas, R. (Curtin Univ. of Technology, Perth (Australia))

1993-02-01T23:59:59.000Z

424

Taconic allochthon and bordering deformed units of New York and Vermont: Structure and emplacement history  

SciTech Connect (OSTI)

A laterally continuous system of thrust imbrication of the upper part of the carbonate shelf sequence and/or the overlying flysch/shale is mapped beneath the western boundary fault [Frontal Thrust] of the Taconic Allochthon. The more western of these faults much merge with Champlain Thrust to the north; this thrust system climbs section to the south so that carbonates are not seen on the thrusts in the south near Albany. The more easterly faults of this system, including the Taconic Frontal Thrust, project into the west and center of the Middlebury synclinorium; these faults are interpreted to join the Champlain Thrust at depth. Thrusts of this system in the south are marked by thick zones of melange, which become much narrower in the north where carbonate rocks are included in the thrust slices. The Taconic Frontal Thrust is an out-of -sequence structure that cuts the tight regional folds within the Taconic Allochthon, and the Taconic Basal Thrust, on which the Allochthon was initially emplaced over shelf rocks. Just east of the Taconic Allochthon, in the Vermont Valley, numerous thrusts imbricate the shelf carbonates and black phyllites. A major early thrust [Dorset Mtn. Thrust] separates the classic marble belts from less deformed carbonates, and a major out-of-sequence thrust [Green Mtn. Thrust] separates the carbonates from the Green Mountain Grenville basement and overlying Cambrian siliciclastics. The structure of the Vermont Valley carbonates is inferred to be a large antiformally folded duplex truncated on its eastern side by the Green Mtn. Thrust; this fold and thrust are also inferred to be part of the Champlain Thrust system. The bordering zones of the Taconic Allochthon contain much more deformation, especially thrust faults, than previously mapped; simple undisrupted stratigraphic sequences shown on previous maps are incorrect.

Kidd, W.S.F.; Herrmann, R.; Plesch, A. (SUNY, Albany, NY (United States). Geological Sciences)

1993-03-01T23:59:59.000Z

425

09/02/2011 16:08Ground-based estimates of outer radiation belt energetic electron precipitation fluxes into the atmosphere Page 1 of 2http://www.agu.org/cgi-bin/SFgate/SFgate?language=English&verbo...2%2054369834%20%2fdata2%2fepubs%2fwais%2fdata%2ffm10%2f  

E-Print Network [OSTI]

%2054369834%20%2fdata2%2fepubs%2fwais%2fdata%2ffm10%2ffm10.txt 2010 Fall Meeting Search Results Cite abstracts as Author is termed AARDDVARK (Antarctic-Arctic Radiation-belt (Dynamic) Deposition - VLF Atmospheric Research fluxes from the observations of this network, which is termed AARDDVARK (Antarctic-Arctic Radiation

Ulich, Thomas

426

Mesozoic and Cenozoic structural geology of the CP Hills, Nevada Test Site, Nye County, Nevada; and regional implications  

SciTech Connect (OSTI)

Detailed mapping and structural analysis of upper Proterozoic and Paleozoic rocks in the CP Hills of the Nevada Test Site, together with analysis of published maps and cross sections and a reconnaissance of regional structural relations indicate that the CP thrust of Barnes and Poole (1968) actually comprises two separate, oppositely verging Mesozoic thrust systems: (1) the west-vergent CP thrust which is well exposed in the CP Hills and at Mine Mountain, and (2) the east-vergent Belted Range thrust located northwest of Yucca Flat. West-vergence of the CP thrust is indicated by large scale west-vergent recumbent folds in both its hangingwall and footwall and by the fact that the CP thrust ramps up section through hangingwall strata toward the northwest. Regional structural relations indicate that the CP thrust forms part of a narrow sigmoidal belt of west-vergent folding and thrusting traceable for over 180 km along strike. The Belted Range thrust represents earlier Mesozoic deformation that was probably related to the Last Chance thrust system in southeastern California, as suggested by earlier workers. A pre-Tertiary reconstruction of the Cordilleran fold and thrust belt in the region between the NTS and the Las Vegas Range bears a close resemblance to other regions of the Cordillera and has important implications for the development of hinterland-vergent deformation as well as for the probable magnitude of Tertiary extension north of Las Vegas Valley. Subsequent to Mesozoic deformation, the CP Hills were disrupted by at least two episodes of Tertiary extensional deformation: (1) an earlier episode represented by pre-middle Miocene low-angle normal faults, and (2) a later, post-11 Ma episode of high-angle normal faulting. Both episodes of extension were related to regional deformation, the latter of which has resulted in the present basin and range topography of the NTS region.

Caskey, S.J. [Nevada Univ., Reno, NV (United States)

1991-08-01T23:59:59.000Z

427

Wyoming fossils change theories about extinction Casper, Wyoming -Wednesday, March 12, 2003  

E-Print Network [OSTI]

extinction of about 79 percent of North American insect species at the K-T boundary. The scientists worked numbers, insect species have generally been believed to be less susceptible to extinction events than and John Lawton, only 0.006 percent of known insect species have actually gone extinct since 1600, and only

Wilf, Peter

428

Corn Belt Power Coop | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova Electric Coop, IncKilauea Volcano,2A,CorixPower

429

CD-2: Orogenic Belt | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais

430

Corn Belt Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text is derivedCoReturnCookson HillsCoral

431

SunBelt Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen, Minnesota:36052°, -97.6114217° LoadingEnergy Group

432

Creating Artificial Radiation Belts in the Lab  

E-Print Network [OSTI]

. (Garnier, DPP, 2005) #12;Acknowledgments Dmitry Harry Austin Eugenio Ishtak Alex Jen Scott Ben Brian Matt + . . . Axisymmetric Nakada and Mead, JGR (1965) T. Birmingham, JGR (1969) A Axisymmetric L 4 Re Rm 3 - 4 30 L2 Re Re

Mauel, Michael E.

433

A speedometer for the Heart Mountain allochthon, Wyoming  

SciTech Connect (OSTI)

Rocks overlying the HM detachment include (1) Paleozoic sedimentary rocks, detached along an Ordovician bedding-plane and displaced up to 50 or more km across rocks as young as Eocene, and (2) Eocene volcanic rocks that overlie both the detachment and the allochthonous Paleozoic rocks. Models of HM faulting interpret the volcanic rocks as: (1) mostly younger than HM faulting, having been deposited catastrophically immediately after catastrophic emplacement of numerous HMD slide-blocks ( tectonic denudation'' model); (2) mostly involved in HM faulting, having been translated and downfaulted at noncatastrophic rates during extension of a continuous HMD allochthon ( continuous-allochthon'' model); or (3) deposited catastrophically as debris avalanche(s) either coeval with or immediately following HM faulting. Calcite-fiber lineations, which are present at many localities on normal and normal-oblique faults within allochthonous Paleozoic rocks and locally within Tertiary rocks, may be a speedometer for the HM allochthon. The lineated faults truncate downward at the detachment, having accommodated extension of the upper plate as it was emplaced. The calcite fibers are commonly parallel to slickenside striae on the upper-plate faults. If the calcite fibers and slickenside striae formed during HM faulting, as seems likely, then extension of the allochthon occurred at a rate compatible with pressure-solution and redeposition of calcite.

Hauge, T.A. (Exxon Production Research Co., Houston, TX (United States))

1993-04-01T23:59:59.000Z

434

Wyoming Water Resources Research Centter Annual Technical Report  

E-Print Network [OSTI]

: Not Applicable Focus Category: Models, Surface Water, None Descriptors: Channel Erosion, Coal Bed Methane, Stable Operators Group Meeting, Casper, WY. #12;Problem and Research Objectives: Coal bed methane (CBM) development. Wilkerson, G.V., J.C. Baxter, J.H. Johnson, and J. Montgomery, Aug 2000. Presentation at the Methane

435

Thermopolis/East Thermopolis, Wyoming site-specific development analysis  

SciTech Connect (OSTI)

Some of the topics addressed are: what the area is like currently in terms of its land use, economics, and demographics; reservoir potentials; how the reservoir might be developed; marketing the final product; financial assistance for development; the legal aspects of development; and barriers to possible development. Some specific topics discussed are: leasing and permitting; heat exchangers for geothermal heating systems; and corrosion, scaling, and materials selection. (MHR)

Burgess-Lyon, P.

1981-06-01T23:59:59.000Z

436

Wyoming Coalbed Methane Proved Reserves New Field Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 - ...

437

area southwest wyoming: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to wholesale energy market prices (i.e. eitherWholesale Markets in the Southwest Power Pool SPP administers an Energy Imbalance Service (EIS) market; Bharvirkar, Ranjit...

438

Secretary Moniz Announces Travel to Alaska, Idaho, Wyoming, Missouri...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Secretary will make remarks at the Intermountain Energy Summit about the energy landscape in the Mountain West and emerging opportunities in the President's all-of-the-above...

439

Geothermal resources of the Wind River Basin, Wyoming  

SciTech Connect (OSTI)

The geothermal resources of the Wind River Basin were investigated. Oil-well bottom-hole temperatures, thermal logs of wells, and heat flow data have been interpreted within a framework of geologic and hydrologic constraints. Basic thermal data, which includes the background thermal gradient and the highest recorded temperature and corresponding depth for each basin, is tabulated. Background heat flow in the Wind River Basin is generally insufficient to produce high conductive gradients. Only where hydrologic systems re-distribute heat through mass movement of water will high temperatures occur at shallow depths. Aquifers which may have the confinement and structural characteristics necessary to create such geothermal systems are the Lance/Fort Union, Mesa Verde, Frontier, Muddy, Cloverly, Sundance, Nugget, Park City, Tensleep, Amsden, Madison, Bighorn, and Flathead Formations. Of these the Tensleep Sandstone and Madison Limestone are the most attractive in terms of both productivity and water quality. Most of the identified geothermal anomalies in the Wind River Basin occur along complex structures in the southwest and south. The most attractive geothermal prospects identified are anomalous Areas 2 and 3 north of Lander, Sweetwater Station Springs west of Jeffrey City, and the thermal springs southwest of Dubois. Even in these areas, it is unlikely temperatures in excess of 130 to 150/sup 0/F can be developed. 16 refs., 7 figs., 7 tabs. (ACR)

Hinckley, B.S.; Heasler, H.P.

1985-01-01T23:59:59.000Z

440

Wyoming Coalbed Methane Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009230,456 271,785,781 2,328 2,683

Note: This page contains sample records for the topic "wyoming thrust belt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Wyoming Crude Oil plus Lease Condensate Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009230,456 271,785,781 2,328 2,683855

442

Wyoming Dry Natural Gas Production (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009230,456 271,785,781 2,328Year Jan

443

Wyoming Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009230,456 271,785,781

444

Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009230,456 271,785,781Adjustments

445

Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009230,456

446

Wyoming Dry Natural Gas Reserves Extensions (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009230,456Extensions (Billion Cubic

447

Wyoming Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009230,456Extensions

448

Wyoming Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009230,456ExtensionsIncreases

449

Wyoming Dry Natural Gas Reserves Sales (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009230,456ExtensionsIncreasesSales

450

Wyoming Lease Condensate Proved Reserves, Reserve Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14 Nov-14 Dec-14 Jan-15234

451

Wyoming Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14 Nov-14 Dec-14

452

Wyoming Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14 Nov-14 Dec-14Year Jan Feb

453

Wyoming Natural Gas Delivered for the Account of Others  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14 Nov-14 Dec-14Year

454

Wyoming Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14 Nov-14

455

Wyoming Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14 Nov-14U.S.

456

Wyoming Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14 Nov-14U.S.Feet) Year

457

Wyoming Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14Year Jan Feb Mar

458

Wyoming Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14Year Jan Feb MarDecade

459

Wyoming Natural Gas Injections into Underground Storage (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14Year Jan Feb

460

Wyoming Natural Gas Injections into Underground Storage (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14Year Jan FebFeet) Year

Note: This page contains sample records for the topic "wyoming thrust belt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Wyoming Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14Year Jan FebFeet)

462

Wyoming Natural Gas Liquids Proved Reserves (Million Barrels)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14Year Jan

463

Wyoming Natural Gas Number of Commercial Consumers (Number of Elements)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14Year JanCommercial

464

Wyoming Natural Gas Number of Industrial Consumers (Number of Elements)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14Year

465

Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14Year (Million Cubic Feet)

466

Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14Year (Million Cubic

467

Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14Year (Million CubicFuel

468

Wyoming Natural Gas Plant Liquids Production (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14Year (Million

469

Wyoming Natural Gas Reserves Summary as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14YearYear Jan Feb Mar

470

Wyoming Natural Gas Residential Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14YearYear Jan Feb MarDecade

471

Wyoming Natural Gas Total Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14YearYear Jan Feb

472

Wyoming Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14YearYear Jan FebYear Jan

473

Wyoming Natural Gas Underground Storage Net Withdrawals (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14YearYear Jan FebYear

474

Wyoming Natural Gas Underground Storage Withdrawals (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14YearYear Jan FebYearDecade

475

Wyoming Natural Gas Underground Storage Withdrawals (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14YearYear Jan

476

Wyoming Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14YearYear JanDecade Year-0

477

Wyoming Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14YearYear JanDecade

478

Wyoming Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14YearYear

479

Wyoming Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14YearYearYear Jan Feb Mar

480

Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14YearYearYear Jan

Note: This page contains sample records for the topic "wyoming thrust belt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Wyoming Nonassociated Natural Gas Proved Reserves, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14YearYearYear

482

Wyoming Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14YearYearYearDecade Year-0

483

Wyoming Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14YearYearYearDecade

484

Wyoming Price of Natural Gas Delivered to Residential Consumers (Dollars  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14

485

Wyoming Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14Thousand Cubic Feet)(Million

486

Wyoming Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14Thousand Cubic Feet)(Million0

487

Wyoming Working Natural Gas Underground Storage Capacity (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14ThousandFeet) Working Natural

488

Niobrara County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) Jump to:City) JumpOpen EnergyNiederwald,Niles

489

Laramie County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN) Jump to:LamarJumpElectricLaporte,Laramie

490

Lincoln County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster And Coolbaugh, 2007)is 109. It is classified

491

Utah Natural Gas Processed in Wyoming (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear Jan MonthlyProduction%ReservesUtah

492

Utah and Wyoming Natural Gas Liquids Lease Condensate, Reserves Based  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear JanWellhead Price (DollarsProduction

493

Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear JanWellhead Price (DollarsProduction(Million

494

Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear JanWellhead Price

495

Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease

496

Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet AfterProved

497

Wyoming Crude Oil + Lease Condensate Proved Reserves (Million Barrels)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet

498

Wyoming Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, WetReserves in

499

Wyoming Dry Natural Gas Expected Future Production (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, WetReserves

500

Wyoming Dry Natural Gas Production (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas,