Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wyoming southern powder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Geothermal resources of the Southern Powder River Basin, Wyoming  

DOE Green Energy (OSTI)

This report describes the geothermal resources of the Southern Powder River Basin. The report contains a discussion of the hydrology as it relates to the movement of heated water, a description and interpretation of the thermal regime, and four maps: a generalized geological map, a structure contour map, a thermal gradient contour map, and a ground water temperature map. 10 figs. (ACR)

Heasler, H.P.; Buelow, K.L.; Hinckley, B.S.

1985-06-13T23:59:59.000Z

2

Sequence stratigraphy of the lower Pierre Shale in southern Powder River Basin, Wyoming, USA.  

E-Print Network (OSTI)

??Powder River Basin is one of the biggest interior sedimentary basins in the Rocky Mountain region. The Upper Cretaceous section of the southern Powder River… (more)

Kaykun, Armagan

2013-01-01T23:59:59.000Z

3

Wind Characteristics in Southern Wyoming  

Science Conference Proceedings (OSTI)

Measurements of wind from a network of surface anemometers and a 107 m tower have been analyzed for southern Wyoming where a project for large-scale generation of electricity from wind power is underway. Topographically forced channeling of ...

Brooks E. Martner; John D. Marwitz

1982-12-01T23:59:59.000Z

4

COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA  

E-Print Network (OSTI)

Chapter PQ COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA By G.D. Stricker Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

5

Low-Level Airflow in Southern Wyoming during Wintertime  

Science Conference Proceedings (OSTI)

A number of low-level flights were conducted with an instrumented aircraft to investigate wind characteristics in the planetary boundary layer over the low regions of the continental divide in southern Wyoming. The airflow upwind of the ...

John D. Marwitz; Paul J. Dawson

1984-06-01T23:59:59.000Z

6

Mosquito populations in the Powder River basin, Wyoming.  

E-Print Network (OSTI)

??Coal bed natural gas development in northeastern Wyoming has increased surface water in ranching and agricultural areas over undeveloped land. This increase of water increases… (more)

Doherty, Melissa Kuckler.

2007-01-01T23:59:59.000Z

7

FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS  

E-Print Network (OSTI)

Chapter PS FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS By R of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

8

Powder River, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0321863°, -106.9872785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0321863,"lon":-106.9872785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

9

Monitoring Coal Bed Methane Production: A Case Study from the Powder River Basin, Wyoming, United States of America.  

E-Print Network (OSTI)

1 Monitoring Coal Bed Methane Production: A Case Study from the Powder River Basin, Wyoming, United The growing significance of the Powder River Basin's Coal Bed Methane (CBM) to United States domestic energy approximates 6% above the coal as well as inside the coal layer. This difference can be attributed primarily

Harris, Jerry M.

10

Reservoir Characterization of Coals in the Powder River Basin, Wyoming, USA, to Test the Feasibility of CO2 Sequestration  

E-Print Network (OSTI)

80 65 51 36 21 mD a) b) c) 7 Reservoir Characterization of Coals in the Powder River Basin, Wyoming are particularly interested in whether hydraulically fracturing the coal will increase injectivity and improve of sequestration. We found that gravity and buoyancy were the major driving forces behind gas flow within the coal

Stanford University

11

Climate control on Quaternary coal fires and landscape evolution, Powder River basin, Wyoming and Montana  

SciTech Connect

Late Cenozoic stream incision and basin excavation have strongly influenced the modern Rocky Mountain landscape, but constraints on the timing and rates of erosion are limited. The geology of the Powder River basin provides an unusually good opportunity to address spatial and temporal patterns of stream incision. Numerous coal seams in the Paleocene Fort Union and Eocene Wasatch Formations within the basin have burned during late Cenozoic incision, as coal was exposed to dry and oxygen-rich near-surface conditions. The topography of this region is dominated by hills capped with clinker, sedimentary rocks metamorphosed by burning of underlying coal beds. We use (U-Th)/He ages of clinker to determine times of relatively rapid erosion, with the assumption that coal must be near Earth's surface to burn. Ages of 55 in situ samples range from 0.007 to 1.1 Ma. Clinker preferentially formed during times in which eccentricity of the Earth's orbit was high, times that typically but not always correlate with interglacial periods. Our data therefore suggest that rates of landscape evolution in this region are affected by climate fluctuations. Because the clinker ages correlate better with eccentricity time series than with an oxygen isotope record of global ice volume, we hypothesize that variations in solar insolation modulated by eccentricity have a larger impact on rates of landscape evolution in this region than do glacial-interglacial cycles.

Riihimaki, C.A.; Reiners, P.W.; Heffern, E.L. [Drew University, Madison, NJ (USA). Dept. of Biology

2009-03-15T23:59:59.000Z

12

Fault control of channel sandstones in Dakota Formation, southwest Powder River basin, Wyoming  

SciTech Connect

The Dakota Formation is an important oil reservoir in the southwestern Powder River basin and adjoining Casper arch. Two fields, Burke Ranch and South Cole Creek, are used as examples to show the depositional environments of the Dakota and to indicate the influence of tectonic control on the distribution of the environments. Burke Ranch field is a stratigraphic trap which produces oil from the upper bench of the Dakota. The environment of deposition of the reservoir, determined by subsurface analysis, is a channel sandstone. South Cole Creek field is a structural-stratigraphic trap which produces from the lower bench of the Dakota. Two distinct facies, a channel and channel margin sandstone, exist at South Cole Creek. At both Burke Ranch and South Cole Creek it can be shown that the Dakota channels were deposited on the downthrown side of faults, which were present during Dakota time and which now are reflected on the surface by drainage patterns. An understanding of the environments of deposition of the Dakota and control of the environments by paleotectonics is necessary for exploration for these prolific reservoirs.

Moore, W.R.

1983-08-01T23:59:59.000Z

13

Hydraulic fracturing and wellbore completion of coalbed methane wells in the Powder River Basin, Wyoming: Implications for water and gas production  

SciTech Connect

Excessive water production (more than 7000 bbl/month per well) from many coalbed methane (CBM) wells in the Powder River Basin of Wyoming is also associated with significant delays in the time it takes for gas production to begin. Analysis of about 550 water-enhancement activities carried out during well completion demonstrates that such activities result in hydraulic fracturing of the coal. Water-enhancement activities, consists of pumping 60 bbl of water/min into the coal seam during approximately 15 min. This is done to clean the well-bore and to enhance CBM production. Hydraulic fracturing is of concern because vertical hydraulic fracture growth could extend into adjacent formations and potentially result in excess CBM water production and inefficient depressurization of coals. Analysis of the pressure-time records of the water-enhancement tests enabled us to determine the magnitude of the least principal stress (S{sub 3}) in the coal seams of 372 wells. These data reveal that because S{sub 3} switches between the minimum horizontal stress and the overburden at different locations, both vertical and horizontal hydraulic fracture growth is inferred to occur in the basin, depending on the exact location and coal layer. Relatively low water production is observed for wells with inferred horizontal fractures, whereas all of the wells associated with excessive water production are characterized by inferred vertical hydraulic fractures. The reason wells with exceptionally high water production show delays in gas production appears to be inefficient depressurization of the coal caused by water production from the formations outside the coal. To minimize CBM water production, we recommend that in areas of known vertical fracture propagation, the injection rate during the water-enhancement tests should be reduced to prevent the propagation of induced fractures into adjacent water-bearing formations.

Colmenares, L.B.; Zoback, M.D. [Stanford University, Stanford, CA (United States). Dept. of Geophysics

2007-01-15T23:59:59.000Z

14

Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2011 Wyoming Recovery Act State Memo Wyoming has substantial natural resources including coal, natural gas, oil, and wind power. The American Recovery & Reinvestment Act (ARRA) is...

15

Evidence for fluival-controlled coal deposition in the upper Tongue River Member (Fort Union Formation, Paleocene), Powder River Basin, Wyoming.  

E-Print Network (OSTI)

??Recent exploration in the Powder River basin has targeted shallow, coal-bed methane, and basin reserves may be as high as 39 trillion cubic feet. Both… (more)

Bauders, Coen M. (Coen Michael)

2000-01-01T23:59:59.000Z

16

Wyoming's At-large congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Wyoming's At-large congressional district: Energy Resources Wyoming's At-large congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Wyoming. US Recovery Act Smart Grid Projects in Wyoming's At-large congressional district Cheyenne Light, Fuel and Power Company Smart Grid Project Powder River Energy Corporation Smart Grid Project Registered Energy Companies in Wyoming's At-large congressional district Blue Sky Batteries Inc Blue Sky Group Inc HTH Wind Energy Inc LappinTech LLC Nacel Energy Nanomaterials Discovery Corporation NDC Pathfinder Renewable Wind Energy PowerSHIFT Energy Company Inc TMA Global Wind Energy Systems TriLateral Energy LLC Utility Companies in Wyoming's At-large congressional district

17

Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon County, Wyoming November 24, 2009 CX-006669: Categorical Exclusion Determination ESP Shuttle B CX(s) Applied: B5.12 Date: 11242009 Location(s): Casper, Wyoming Office(s):...

18

Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming  

SciTech Connect

U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments when water supplies sourced from coalbed methane extraction are plentiful. Constructed wetlands, planted to native, salt tolerant species demonstrated potential to utilize substantial volumes of coalbed methane product water, although plant community transitions to mono-culture and limited diversity communities is a likely consequence over time. Additionally, selected, cultured forage quality barley varieties and native plant species such as Quail bush, 4-wing saltbush, and seaside barley are capable of sustainable, high quality livestock forage production, when irrigated with coalbed methane product water sourced from the Powder River Basin. A consequence of long-term plant water use which was enumerated is elevated salinity and sodicity concentrations within soil and shallow alluvial groundwater into which coalbed methane product water might drain. The most significant conclusion of these investigations was the understanding that phytoremediation is not a viable, effective technique for management of coalbed methane product water under the present circumstances of produced water within the Powder River Basin. Phytoremediation is likely an effective approach to sodium and salt removal from salt-impaired sites after product water discharges are discontinued and site reclamation is desired. Coalbed methane product water of the Powder River Basin is most frequently impaired with respect to beneficial use quality by elevated sodicity, a water quality constituent which can cause swelling, slaking, and dispersion of smectite-dominated clay soils, such as commonly occurring within the Powder River Basin. To address this issue, a commercial-scale fluid-bed, cationic resin exchange treatment process and prototype operating treatment plant was developed and beta-tested by Drake Water Technologies under subcontract to this award. Drake Water Technologies secured U.S. Patent No. 7,368,059-B2, 'Method for removal of benevolent cations from contaminated water', a beta Drake Process Unit (DPU) was developed and deployed for operation in the Powder River Basin. First year operatio

James Bauder

2008-09-30T23:59:59.000Z

19

Wyoming Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Wyoming’s oil shale deposits are less favorable for commercial extraction than those in Utah and Colorado because they are generally situated in thinner, ...

20

Wyoming State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Wyoming Wyoming State Regulations: Wyoming State of Wyoming The Wyoming Oil and Gas Conservation Commission (WOGCC) is the state agency authorized to regulate oil and gas exploration and production waste. The Wyoming Department of Environmental Quality (DEQ) administers general environmental protection regulations. Contact Wyoming Oil and Gas Conservation Commission 2211 King Blvd. Casper, WY 82602 (street address) P.O. Box 2640 Casper, WY 82602 (mailing address) (307) 234-7147 (phone) (307) 234-5306 (fax) Wyoming Department of Environmental Quality 122 West 25th Street, Herscheler Building Cheyenne, WY 82002 (307) 777-7937 (phone) (307) 777-7682 (fax) Disposal Practices and Applicable Regulations Document # 4855, Agency (Oil and Gas Conservation Commission), General Agency, Board or Commission Rules, Chapter 4 (Environmental Rules, Including Underground Injection Control Program Rules for Enhanced Recovery and Disposal Projects), Section 1. Pollution and Surface Damage (Forms 14A and 14B) of the Wyoming Rules and Regulations contains the environmental rules administered by the WOGCC with respect to management options for exploration and production waste.

Note: This page contains sample records for the topic "wyoming southern powder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 30, 2011 CX-006717: Categorical Exclusion Determination Enhanced Oil Recovery Steam Generator CX(s) Applied: Date: 03302011 Location(s): Casper, Wyoming Office(s): RMOTC...

22

,"Wyoming Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

23

Preliminary study of uranium in Pennsylvanian and lower Permian strata in the Powder River Basin, Wyoming and Montana, and the Northern Great Plains  

SciTech Connect

Persistent and widespread radiometric anomalies occur in Pennsylvanian and Lower Permian strata in the subsurface of the northern Great Plains and the Powder River Basin. The primary host lithology of these anomalies is shale interbedded with sandstone, dolomite, and dolomitic sandstone. Samples from the project area indicate that uranium is responsible for some anomalies. In some samples there seems to be a correlation between high uranium content and high organic-carbon content, which possibly indicates that carbonaceous material acted as a trapping mechanism in some strata. The Pennsylvanian and Permian rocks studied are predominantly marine carbonates and clastics, but there are rocks of fluvial origin in the basal Pennsylvanian of Montana, North Dakota, and South Dakota and in the Pennsylvanian and Permian deposits on the east flank of the Laramie Mountains. Fine-grained clastic rocks that flank the Chadron arch in western Nebraska are possibly of continental origin. The trend of the Chadron arch approximately parallels the trend of radiometric anomalies in the subsurface Permian-Pennsylvanian section. Possible source areas for uranium in the sediments studied were pre-Pennsylvanian strata of the Canadian Shield and Precambrian igneous rocks of the Ancestral Rocky Mountains.

Dunagan, J.F. Jr.; Kadish, K.A.

1977-11-01T23:59:59.000Z

24

Geothermal resources of the Washakie and Great Divide basins, Wyoming  

DOE Green Energy (OSTI)

The geothermal resources of the Great Divide and Washakie Basins of southern Wyoming are described. Oil well bottomhole temperatures, thermal logs of wells, and heat flow data were interpreted within a framework of geologic and hydrologic constraints. It was concluded large areas in Wyoming are underlain by water hotter than 120{sup 0}F. Isolated areas with high temperature gradients exist within each basin. 68 refs., 8 figs., 7 tabs. (ACR)

Heasler, H.P.; Buelow, K.L.

1985-01-01T23:59:59.000Z

25

Energy Development Opportunities for Wyoming  

Science Conference Proceedings (OSTI)

The Wyoming Business Council, representing the state’s interests, is participating in a collaborative evaluation of energy development opportunities with the NGNP Industry Alliance (an industry consortium), the University of Wyoming, and the US Department of Energy’s Idaho National Laboratory. Three important energy-related goals are being pursued by the State of Wyoming: Ensuring continued reliable and affordable sources of energy for Wyoming’s industries and people Restructuring the coal economy in Wyoming Restructuring the natural gas economy in Wyoming

Larry Demick

2012-11-01T23:59:59.000Z

26

BLM Wyoming State Office | Open Energy Information  

Open Energy Info (EERE)

State Office Jump to: navigation, search Logo: BLM Wyoming State Office Name BLM Wyoming State Office Short Name Wyoming Parent Organization Bureau of Land Management Address 5353...

27

Wyoming/Incentives | Open Energy Information  

Open Energy Info (EERE)

Wyoming/Incentives Wyoming/Incentives < Wyoming Jump to: navigation, search Contents 1 Financial Incentive Programs for Wyoming 2 Rules, Regulations and Policies for Wyoming Download All Financial Incentives and Policies for Wyoming CSV (rows 1 - 42) Financial Incentive Programs for Wyoming Download Financial Incentives for Wyoming CSV (rows 1 - 34) Incentive Incentive Type Active Black Hills Power - Commercial Energy Efficiency Programs (Wyoming) Utility Rebate Program Yes Black Hills Power - Residential Customer Rebate Program (Wyoming) Utility Rebate Program Yes Black Hills Power - Residential Energy Efficiency Rebate Program (Wyoming) Utility Rebate Program No Carbon Power & Light - Energy Conservation Home Improvement Loan (Wyoming) Utility Loan Program No

28

Thermal springs of Wyoming  

SciTech Connect

This bulletin attempts, first, to provide a comprehensive inventory of the thermal springs of Wyoming; second, to explore the geologic and hydrologic factors producing these springs; and, third, to analyze the springs collectively as an indicator of the geothermal resources of the state. A general discussion of the state's geology and the mechanisms of thermal spring production, along with a brief comparison of Wyoming's springs with worldwide thermal features are included. A discussion of geothermal energy resources, a guide for visitors, and an analysis of the flora of Wyoming's springs follow the spring inventory. The listing and analysis of Wyoming's thermal springs are arranged alphabetically by county. Tabulated data are given on elevation, ownership, access, water temperature, and flow rate. Each spring system is described and its history, general characteristics and uses, geology, hydrology, and chemistry are discussed. (MHR)

Breckenridge, R.M.; Hinckley, B.S.

1978-01-01T23:59:59.000Z

29

,"Wyoming Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,6305,-3,226,165,,,884,391,10,...

30

Wyoming Gasoline Price Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Wyoming Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov. We offer these external links for your convenience in accessing additional...

31

Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination Cleanup of "Non-Reportable" Spills of Crude Oil andor Produced Water CX(s) Applied: B5.4, B5.6 Date: 08092011 Location(s): Casper, Wyoming...

32

Thermal springs of Wyoming  

DOE Green Energy (OSTI)

This bulletin attempts, first, to provide a comprehensive inventory of the thermal springs of Wyoming; second, to explore the geologic and hydrologic factors producing these springs; and, third, to analyze the springs collectively as an indicator of the geothermal resources of the state. A general discussion of the state's geology and the mechanisms of thermal spring production, along with a brief comparison of Wyoming's springs with worldwide thermal features are included. A discussion of geothermal energy resources, a guide for visitors, and an analysis of the flora of Wyoming's springs follow the spring inventory. The listing and analysis of Wyoming's thermal springs are arranged alphabetically by county. Tabulated data are given on elevation, ownership, access, water temperature, and flow rate. Each spring system is described and its history, general characteristics and uses, geology, hydrology, and chemistry are discussed. (MHR)

Breckenridge, R.M.; Hinckley, B.S.

1978-01-01T23:59:59.000Z

33

Wind powering America: Wyoming  

DOE Green Energy (OSTI)

This fact sheet contains a description of the green power programs in Wyoming, the state's efforts to promote wind energy, and a list of contacts for those interested in obtaining more information.

NREL

2000-04-10T23:59:59.000Z

34

Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11, 2010 CX-006688: Categorical Exclusion Determination Glori Oil-Biotechnology Enhanced Oil Recovery CX(s) Applied: B3.6, B5.2 Date: 02112010 Location(s): Casper, Wyoming...

35

Wyoming.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Wyoming Wyoming www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

36

Wyoming.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Wyoming Wyoming www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

37

Powder River 0 20 40 KILOMETERS  

E-Print Network (OSTI)

1 Monitoring Coal Bed Methane Production: A Case Study from the Powder River Basin, Wyoming, United The growing significance of the Powder River Basin's Coal Bed Methane (CBM) to United States domestic energy% of gas mostly methane, hence the name Coal Bed Methane (CBM). The types of coal, in increasing order

38

Wyoming Datos del Precio de la Gasolina  

NLE Websites -- All DOE Office Websites (Extended Search)

WyomingGasPrices.com (Busqueda por Ciudad o Cdigo Postal) - GasBuddy.com Wyoming Gas Prices (Ciudades Selectas) - GasBuddy.com Wyoming Gas Prices (Organizado por Condado)...

39

Wyoming Shale Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Wyoming Shale Proved Reserves (Billion Cubic Feet) Wyoming Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

40

Minerals outlook for Wyoming  

Science Conference Proceedings (OSTI)

Wyoming drilling activity was down. The rig count was at a seven year low in February. Crude oil prices also affect Wyoming's gas production. Fuel oil prices are already low enough to compete with higher priced gas, and may edge out part of the market for natural gas. This year's coal production is still forecast at 112 million tons - a 3.7 percent increase over the 108 million tons produced in 1982. Average coal prices are currently forecast at $13.20 in 1982 and $13.86 in 1983. In 1983, demand for soda ash (trona), iron ore, limestone, and gypsum should reflect any improvements in the national economy. Bentonite is dependent enough on oil and gas drilling activity that significant improvements will probably mirror the status of the petroleum industry. Aggregate (sand, gravel, ballast, clinker, etc.) production will primarily depend on the levels of highway construction and railroad maintenance. Uranium production will remain at low levels, and may even decline with the closure of the Sweetwater mine. There will be some exploration for metals and diamonds in Wyoming this year, however, unless gold and silver prices improve, exploration will fall short of earlier expectations. (DP)

Glass, G.B.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wyoming southern powder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Microsoft Word - wyoming.doc  

Gasoline and Diesel Fuel Update (EIA)

Wyoming Wyoming NERC Region(s) ....................................................................................................... WECC Primary Energy Source........................................................................................... Coal Net Summer Capacity (megawatts) ....................................................................... 7,986 37 Electric Utilities ...................................................................................................... 6,931 31 Independent Power Producers & Combined Heat and Power ................................ 1,056 41 Net Generation (megawatthours) ........................................................................... 48,119,254 31

42

Microsoft Word - wyoming.doc  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming Wyoming NERC Region(s) ....................................................................................................... WECC Primary Energy Source........................................................................................... Coal Net Summer Capacity (megawatts) ....................................................................... 7,986 37 Electric Utilities ...................................................................................................... 6,931 31 Independent Power Producers & Combined Heat and Power ................................ 1,056 41 Net Generation (megawatthours) ........................................................................... 48,119,254 31

43

Alternative Fuels Data Center: Wyoming Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Wyoming Information to Wyoming Information to someone by E-mail Share Alternative Fuels Data Center: Wyoming Information on Facebook Tweet about Alternative Fuels Data Center: Wyoming Information on Twitter Bookmark Alternative Fuels Data Center: Wyoming Information on Google Bookmark Alternative Fuels Data Center: Wyoming Information on Delicious Rank Alternative Fuels Data Center: Wyoming Information on Digg Find More places to share Alternative Fuels Data Center: Wyoming Information on AddThis.com... Wyoming Information This state page compiles information related to alternative fuels and advanced vehicles in Wyoming and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact. Select a new state Select a State Alabama Alaska Arizona Arkansas

44

Wyoming | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Wyoming Wyoming Last updated on 2013-06-03 Commercial Residential Code Change Current Code None Statewide Amendments / Additional State Code Information The International Conference of Building Officials (ICBO) Uniform Building Code, which is based on the 1989 Model Energy Code (MEC), may be adopted and enforced by local jurisdictions. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE Standard 90.1-2007 for Commercial Buildings in the State of Wyoming (BECP Report, Sept. 2009) Approximate Energy Efficiency Less energy efficient than 2003 IECC Effective Date 08/13/2008 Code Enforcement Voluntary DOE Determination ASHRAE Standard 90.1-2007: No ASHRAE Standard 90.1-2010: No Wyoming DOE Determination Letter, May 31, 2013 Current Code None Statewide

45

Recovery Act State Memos Wyoming  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wyoming Wyoming For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 ELECTRIC GRID ........................................................................................................ 4

46

Categorical Exclusion Determinations: Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wyoming Wyoming Categorical Exclusion Determinations: Wyoming Location Categorical Exclusion Determinations issued for actions in Wyoming. DOCUMENTS AVAILABLE FOR DOWNLOAD July 26, 2013 CX-010688: Categorical Exclusion Determination Optimization Project #3 CX(s) Applied: B2.5, B5.2, B5.4, B5.5 Date: 07/26/2013 Location(s): Wyoming Offices(s): RMOTC July 26, 2013 CX-010687: Categorical Exclusion Determination Optimization Project Area #1 CX(s) Applied: B2.5, B5.2, B5.4, B5.5 Date: 07/26/2013 Location(s): Wyoming Offices(s): RMOTC July 2, 2013 CX-010686: Categorical Exclusion Determination Cheyenne Substation KV2A 115-kilovolt Tie Line Installation CX(s) Applied: B4.6 Date: 07/02/2013 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region June 28, 2013

47

Wyoming/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Wyoming Wyoming Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Wyoming Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Wyoming No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Wyoming No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Wyoming Mean Capacity (MW) Number of Plants Owners Geothermal Region Huckleberry Hot Springs Geothermal Area 38.744 MW38,744.243 kW 38,744,243.17 W 38,744,243,170 mW 0.0387 GW 3.874424e-5 TW Yellowstone Caldera Geothermal Region Seven Mile Hole Geothermal Area Yellowstone Caldera Geothermal Region GRR-logo.png Geothermal Regulatory Roadmap for Wyoming Overview Flowchart The flowcharts listed below were developed as part of the Geothermal

48

Wyoming/Transmission | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Wyoming/Transmission < Wyoming Jump to: navigation, search WyomingTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database The electrical grid in Wyoming is part of the WestConnect Transmission Planning area, and covers the southwest of the United States. Within the WestConnect system, Wyoming is part of the Colorado Coordinated Planning Group (CCPG) power grid that covers Colorado and portions of Wyoming.

49

PacifiCorp (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Wyoming) Wyoming) (Redirected from Rocky Mountain Power (Wyoming)) Jump to: navigation, search Name PacifiCorp Place Wyoming Service Territory Wyoming Website www.rockymountainpower.ne Green Button Reference Page www.rockymountainpower.ne Green Button Implemented Yes Utility Id 14354 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. PacifiCorp consists of three business units. Rocky Mountain Power is a subsidiary of PacifiCorp which delivers electricity to customers in Utah, Wyoming and Idaho, it is headquartered in Salt Lake City, UT. Utility Rate Schedules Grid-background.png 2 Residential 25 (Small General Service - Three Phase Secondary) Commercial

50

Wyoming's Economic Future: Planning for Sustained Prosperity  

NLE Websites -- All DOE Office Websites (Extended Search)

the Highest-Priority the Highest-Priority Geological CO 2 Storage Sites and Formations in Wyoming Ronald C. Surdam Director, Carbon Management Institute Modified from Surdam, R.C., Jiao, Z., Stauffer, P., & Miller, T., 2009, An integrated strategy for carbon management combining geological CO 2 sequestration, displaced fluid production, and water treatment: Wyoming State Geological Survey Challenges in Geologic Resource Development No. 8, 25 p. WSGS, UW, State, and DOE- funded research identified two high-capacity sites in southwest Wyoming: Rock Springs Uplift & Moxa Arch Carbon Capture Potential In Southwest Wyoming Surdam, R.C. & Jiao, Z., 2007, The Rock Springs Uplift: An outstanding geological CO 2 sequestration site in southwest Wyoming: Wyoming State Geological Survey Challenges in Geologic Resource

51

Wyoming DOE EPSCoR  

SciTech Connect

All of the research and human resource development projects were systemic in nature with real potential for becoming self sustaining. They concentrated on building permanent structure, such as faculty expertise, research equipment, the SEM Minority Center, and the School of Environment and Natural Resources. It was the intent of the DOE/EPSCoR project to permanently change the way Wyoming does business in energy-related research, human development for science and engineering careers, and in relationships between Wyoming industry, State Government and UW. While there is still much to be done, the DOE/EPSCoR implementation award has been successful in accomplishing that change and enhancing UW's competitiveness associated with coal utilization, electrical energy efficiency, and environmental remediation.

Gern, W.A.

2004-01-15T23:59:59.000Z

52

Wyoming - State Energy Profile Overview - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Quick Facts. Wyoming produced 40 percent of all coal mined in the United States in 2011. In 2011, 35 States received coal from Wyoming mines, with ...

53

Heat-flow studies in Wyoming, 1979 to 1981  

DOE Green Energy (OSTI)

Thirty heat flow values completed during May 1981 for Wyoming are tabulated and updated maps of heat flow in Wyoming and adjacent areas are presented.

Decker, E.R.; Heasler, H.P.; Buelow, K.L.

1981-12-01T23:59:59.000Z

54

Utah and Wyoming Natural Gas Plant Liquids, Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

and Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

55

Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Wyoming Natural Gas Pipeline and Distribution Use (Million...

56

Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...

57

Wyoming - State Energy Profile Analysis - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Wyoming’s oil shale deposits are less favorable for commercial extraction than those in Utah and Colorado because they are generally situated in thinner, ...

58

Wyoming Dry Natural Gas Reserves Sales (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Wyoming Dry Natural Gas Reserves Sales (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0...

59

Wyoming Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Wyoming Natural Gas % of Total Residential - Sales (Percent) Wyoming Natural Gas % of Total Residential - Sales (Percent)...

60

,"Wyoming Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",10,"Monthly","72013","1151989" ,"Release...

Note: This page contains sample records for the topic "wyoming southern powder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

,"Wyoming Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

62

Energy Savers Loan (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Wyoming Community Development Authority Website http:www.wyomingcda.comindex.phphomeownersC73 Date added to DSIRE 2008-07-01 Last DSIRE Review 06102013 References DSIRE1...

63

,"Wyoming Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Underground Natural Gas...

64

Energy Crossroads: Utility Energy Efficiency Programs Wyoming...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wyoming Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Bonneville Power Administration Information for Businesses Cheyenne Light, Fuel & Power...

65

Categorical Exclusion Determinations: Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 7, 2012 March 7, 2012 CX-008379: Categorical Exclusion Determination Archer Communications Building CX(s) Applied: B4.6 Date: 03/07/2012 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region January 24, 2012 CX-008675: Categorical Exclusion Determination Sustainable Energy Solutions LLC - Cryogenic Carbon Capture (Phase 2) CX(s) Applied: B3.6, B3.9 Date: 01/24/2012 Location(s): Utah, Wyoming Offices(s): Advanced Research Projects Agency-Energy January 12, 2012 CX-007755: Categorical Exclusion Determination Routine and Proposed Actions at the Riverton, Wyoming, Processing Site CX(s) Applied: B1.3, B3.1 Date: 01/12/2012 Location(s): Wyoming Offices(s): Legacy Management December 15, 2011 CX-007515: Categorical Exclusion Determination Bucknam Temporary Tap, Natrona County, Wyoming

66

Alternative Fuels Data Center: Wyoming Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Wyoming Points of Wyoming Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Wyoming Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Wyoming Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Wyoming Points of Contact on Google Bookmark Alternative Fuels Data Center: Wyoming Points of Contact on Delicious Rank Alternative Fuels Data Center: Wyoming Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Wyoming Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Points of Contact The following people or agencies can help you find more information about Wyoming's clean transportation laws, incentives, and funding opportunities.

67

Alternative Fuels Data Center: Wyoming Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Wyoming Laws and Wyoming Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Wyoming. Your Clean Cities coordinator at

68

Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0759678,"lon":-107.2902839,"alt":0,"address":"Wyoming","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

69

Wyoming Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wyoming Recovery Act State Memo Wyoming Recovery Act State Memo Wyoming Recovery Act State Memo Wyoming has substantial natural resources including coal, natural gas, oil, and wind power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Wyoming are supporting a broad range of clean energy projects from energy efficiency and the smart grid to carbon capture and storage. Through these investments, Wyoming's businesses, the University of Wyoming, non-profits, and local governments are creating quality jobs today and positioning Wyoming to play an important role in the new energy economy of the future. Recovery_Act_Memo_Wyoming.pdf More Documents & Publications Slide 1

70

Categorical Exclusion Determinations: Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 11, 2010 August 11, 2010 CX-006735: Categorical Exclusion Determination Hyperspectral Survey CX(s) Applied: B3.8, B3.11 Date: 08/11/2010 Location(s): Casper, Wyoming Office(s): RMOTC August 4, 2010 CX-003231: Categorical Exclusion Determination Wyoming American Recovery and Reinvestment Act State Energy Program CX(s) Applied: A1, A9, B5.1 Date: 08/04/2010 Location(s): Wyoming Office(s): Energy Efficiency and Renewable Energy, Golden Field Office July 13, 2010 CX-003032: Categorical Exclusion Determination Pacific Northwest Smart Grid Demonstration CX(s) Applied: A1, A9, A11, B1.7, B3.6, B4.4, B5.1 Date: 07/13/2010 Location(s): Jackson Hole, Wyoming Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory July 9, 2010 CX-006699: Categorical Exclusion Determination

71

Wyoming/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming/Wind Resources Wyoming/Wind Resources < Wyoming Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Wyoming Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

72

Wyoming Municipal Power Agency | Open Energy Information  

Open Energy Info (EERE)

Wyoming Municipal Power Agency Wyoming Municipal Power Agency Place Wyoming Utility Id 40603 Utility Location Yes Ownership A NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Wyoming_Municipal_Power_Agency&oldid=412214

73

PacifiCorp (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Wyoming Wyoming Service Territory Wyoming Website www.rockymountainpower.ne Green Button Reference Page www.rockymountainpower.ne Green Button Implemented Yes Utility Id 14354 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. PacifiCorp consists of three business units. Rocky Mountain Power is a subsidiary of PacifiCorp which delivers electricity to customers in Utah, Wyoming and Idaho, it is headquartered in Salt Lake City, UT. Utility Rate Schedules Grid-background.png 2 Residential 25 (Small General Service - Three Phase Secondary) Commercial 28 (General Service - Three Phase Secondary) Commercial 46 (Time Of Use Three Phase Secondary) Commercial

74

Categorical Exclusion Determinations: Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 30, 2012 July 30, 2012 CX-009090: Categorical Exclusion Determination Line Switch Replacements at Guernsey Rural, Worland, Refinery, Box Butte, and Morrill Taps CX(s) Applied: B4.6, B4.11 Date: 07/30/2012 Location(s): Wyoming, Nebraska Offices(s): Western Area Power Administration-Rocky Mountain Region July 23, 2012 CX-008784: Categorical Exclusion Determination License Outgrant to Owl Creek Water District Town of Thermopolis, Hot Springs County, Wyoming CX(s) Applied: B4.9 Date: 07/23/2012 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region July 23, 2012 CX-008496: Categorical Exclusion Determination Interstate Electrification Improvement CX(s) Applied: B5.1 Date: 07/23/2012 Location(s): Wyoming Offices(s): National Energy Technology Laboratory

75

Wyoming Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) No chart available. Wyoming Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

76

Wyoming Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Wyoming Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 133 278...

77

,"Wyoming Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas...

78

WYOMING  

Science Conference Proceedings (OSTI)

... well drilling company developing shallow oil wells, as well as domestic water wells. Over the years it has diversified into oilfield electrical fabrication ...

2013-02-27T23:59:59.000Z

79

Fall River Rural Elec Coop Inc (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Wyoming) Jump to: navigation, search Name Fall River Rural Elec Coop Inc Place Wyoming Utility Id 6169 References EIA Form EIA-861 Final Data File for 2010 - File220101 LinkedIn...

80

Alternative Fuels Data Center: Wyoming Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives for Other The list below contains summaries of all Wyoming laws and incentives

Note: This page contains sample records for the topic "wyoming southern powder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Alternative Fuels Data Center: Wyoming Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

to someone by E-mail to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives Listed below are the summaries of all current Wyoming laws, incentives, regulations, funding opportunities, and other initiatives related to

82

Big Horn County Elec Coop, Inc (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Twitter icon Big Horn County Elec Coop, Inc (Wyoming) Jump to: navigation, search Name Big Horn County Elec Coop, Inc Place Wyoming Utility Id 1683 References EIA Form EIA-861...

83

Park County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming. Its FIPS County Code is 029. It is classified as ASHRAE 169-2006 Climate Zone Number 6 Climate Zone Subtype B. Registered Energy Companies in Park County, Wyoming Nacel...

84

,"Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

3:31:47 PM" "Back to Contents","Data 1: Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSWYMMCF" "Date","Wyoming Natural...

85

Alternative Fuels Data Center: Wyoming Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives for Other The list below contains summaries of all Wyoming laws and incentives

86

Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives for Ethanol The list below contains summaries of all Wyoming laws and incentives

87

Wyoming Percent of Historical Oil Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Wyoming Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

88

Categorical Exclusion Determinations: Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 30, 2009 December 30, 2009 CX-006683: Categorical Exclusion Determination Geothermal Technologies Program CX(s) Applied: B3.1, B5.2 Date: 12/30/2009 Location(s): Casper, Wyoming Office(s): RMOTC December 29, 2009 CX-001292: Categorical Exclusion Determination Training Programs, Lighting Upgrades, Hire a Consultant, Energy Efficient Boiler Installation CX(s) Applied: A9, A11, B5.1 Date: 12/29/2009 Location(s): Cheyenne, Wyoming Office(s): Energy Efficiency and Renewable Energy December 23, 2009 CX-006679: Categorical Exclusion Determination Geothermal Technologies Program CX(s) Applied: B5.2 Date: 12/23/2009 Location(s): Casper, Wyoming Office(s): RMOTC December 23, 2009 CX-006681: Categorical Exclusion Determination New Drilling Location in Section 29 CX(s) Applied: B3.1 Date: 12/23/2009

89

Categorical Exclusion Determinations: Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 26, 2011 May 26, 2011 CX-006716: Categorical Exclusion Determination New B-1-3 Pit and Box Construction CX(s) Applied: B1.3, B6.1 Date: 05/26/2011 Location(s): Casper, Wyoming Office(s): RMOTC May 17, 2011 CX-006719: Categorical Exclusion Determination Casing Drilling Test CX(s) Applied: B1.3, B3.7, B5.12 Date: 05/17/2011 Location(s): Casper, Wyoming Office(s): RMOTC May 5, 2011 CX-005852: Categorical Exclusion Determination Stegall-Wayside 230 Kilovolt Access Road Extension CX(s) Applied: B1.13 Date: 05/05/2011 Location(s): Dawes County, Wyoming Office(s): Western Area Power Administration-Rocky Mountain Region April 29, 2011 CX-005664: Categorical Exclusion Determination Development and Testing of Compact Heat Exchange Reactors (CHER) for Synthesis of Liquid Fuels CX(s) Applied: B3.6

90

Categorical Exclusion Determinations: Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 8, 2010 December 8, 2010 CX-004682: Categorical Exclusion Determination Novel Sorbents for Emission Control from Coal Combustion CX(s) Applied: A9, B3.6 Date: 12/08/2010 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory December 8, 2010 CX-004680: Categorical Exclusion Determination Pilot Scale Demonstration of Cowboy Coal Upgrading Process CX(s) Applied: B3.6 Date: 12/08/2010 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory December 8, 2010 CX-004667: Categorical Exclusion Determination Alternate Environmental Processes/Sorbents to Reduce Emissions and Recover Water for Power Plant Use CX(s) Applied: B3.6 Date: 12/08/2010 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory

91

Field guide to Muddy Formation outcrops, Crook County, Wyoming  

Science Conference Proceedings (OSTI)

The objectives of this research program are to (1) determine the reservoir characteristics and production problems of shoreline barrier reservoirs; and (2) develop methods and methodologies to effectively characterize shoreline bamer reservoirs to predict flow patterns of injected and produced fluids. Two reservoirs were selected for detailed reservoir characterization studies -- Bell Creek field, Carter County, Montana that produces from the Lower Cretaceous (Albian-Cenomanian) Muddy Formation, and Patrick Draw field, Sweetwater County, Wyoming that produces from the Upper Cretaceous (Campanian) Almond Formation of the Mesaverde Group. An important component of the research project was to use information from outcrop exposures of the producing formations to study the spatial variations of reservoir properties and the degree to which outcrop information can be used in the construction of reservoir models. This report contains the data and analyses collected from outcrop exposures of the Muddy Formation, located in Crook County, Wyoming, 40 miles south of Bell Creek oil field. The outcrop data set contains permeability, porosity, petrographic, grain size and geologic data from 1-inch-diameter core plugs chilled from the outcrop face, as well as geological descriptions and sedimentological interpretations of the outcrop exposures. The outcrop data set provides information about facies characteristics and geometries and the spatial distribution of permeability and porosity on interwell scales. Appendices within this report include a micropaleontological analyses of selected outcrop samples, an annotated bibliography of papers on the Muddy Formation in the Powder River Basin, and over 950 permeability and porosity values measured from 1-inch-diameter core plugs drilled from the outcrop. All data contained in this resort are available in electronic format upon request. The core plugs drilled from the outcrop are available for measurement.

Rawn-Schatzinger, V.

1993-11-01T23:59:59.000Z

92

Wyoming geo-notes No. 3  

Science Conference Proceedings (OSTI)

After a general overview of the mineral industry in Wyoming, activities and data are given on petroleum, natural gas, coal, uranium, trona, and other industrial minerals, metals, and precious stones. Coal production figures by county and basin are given. Data are also given on coal consumption by electric utilities, residential and commercial users and on coal transport by rail, river barge, and truck. Production forecasts are given for uranium, trona, oil, gas, and coal. Reserve estimates are given for petroleum, natural gas, coal, trona, uranium, and oil shale. Publications available from the Geological Survey of Wyoming are listed. 15 references, 6 figures, 8 tables.

Glass, G.B.

1984-01-01T23:59:59.000Z

93

Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives for Driving / Idling

94

Wyoming's Appliance Rebate Program Surges Ahead | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wyoming's Appliance Rebate Program Surges Ahead Wyoming's Appliance Rebate Program Surges Ahead Wyoming's Appliance Rebate Program Surges Ahead October 19, 2010 - 12:43pm Addthis Wyoming residents can receive rebates on ENERGY STAR appliances such as clothes washers. | File photo Wyoming residents can receive rebates on ENERGY STAR appliances such as clothes washers. | File photo Lindsay Gsell What does this mean for me? Wyoming received $511,000 in Recovery Act funding for its appliance rebate program. The program has already distributed 60% of rebate funding. Wyoming's appliance rebate program, which opened in April, continues through this fall. Residents of the Equality State can receive rebates on ENERGY STAR certified clothes washers, dishwashers, water heaters and gas furnaces ranging from $50 to $250.

95

Alternative Fuels Data Center: Wyoming Laws and Incentives for Idle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction to someone by E-mail Idle Reduction to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Idle Reduction on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Idle Reduction on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Idle Reduction on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Idle Reduction on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Idle Reduction on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Idle Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives for Idle Reduction

96

Wyoming's Appliance Rebate Program Surges Ahead | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wyoming's Appliance Rebate Program Surges Ahead Wyoming's Appliance Rebate Program Surges Ahead Wyoming's Appliance Rebate Program Surges Ahead October 19, 2010 - 12:43pm Addthis Wyoming residents can receive rebates on ENERGY STAR appliances such as clothes washers. | File photo Wyoming residents can receive rebates on ENERGY STAR appliances such as clothes washers. | File photo Lindsay Gsell What does this mean for me? Wyoming received $511,000 in Recovery Act funding for its appliance rebate program. The program has already distributed 60% of rebate funding. Wyoming's appliance rebate program, which opened in April, continues through this fall. Residents of the Equality State can receive rebates on ENERGY STAR certified clothes washers, dishwashers, water heaters and gas furnaces ranging from $50 to $250.

97

Categorical Exclusion Determinations: Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 22, 2009 October 22, 2009 CX-006666: Categorical Exclusion Determination Geothermal Technologies Program CX(s) Applied: Date: 01/00/1900 Location(s): Casper, Wyoming Office(s): RMOTC October 20, 2009 CX-006645: Categorical Exclusion Determination T-6-10 Abandonment and Storage Relocation CX(s) Applied: B1.3, B1.22, B5.3 Date: 10/20/2009 Location(s): Casper, Wyoming Office(s): RMOTC October 20, 2009 CX-006653: Categorical Exclusion Determination B-1-3 Heat Trace CX(s) Applied: B1.3 Date: 10/20/2009 Location(s): Casper, Wyoming Office(s): RMOTC October 14, 2009 CX-006647: Categorical Exclusion Determination Move Contaminated Soil From North Water Flood to East Side Land Farm CX(s) Applied: B5.3, B5.6 Date: 10/14/2009 Location(s): Casper, Wyoming Office(s): RMOTC October 14, 2009 CX-006649: Categorical Exclusion Determination

98

Categorical Exclusion Determinations: Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 3, 2010 March 3, 2010 CX-006667: Categorical Exclusion Determination Restoration of 73-SX-10H CX(s) Applied: B6.1 Date: 03/07/2010 Location(s): Casper, Wyoming Office(s): RMOTC February 24, 2010 CX-006661: Categorical Exclusion Determination Repair Flowline at 83-AX-4 CX(s) Applied: B5.2, B5.4 Date: 02/24/2010 Location(s): Casper, Wyoming Office(s): RMOTC February 24, 2010 CX-006655: Categorical Exclusion Determination Coal Bed Methane Gas Separator CX(s) Applied: B3.7, B3.11 Date: 02/24/2010 Location(s): Casper, Wyoming Office(s): RMOTC February 24, 2010 CX-006651: Categorical Exclusion Determination Water Haul Permit Location CX(s) Applied: B1.3, B1.6 Date: 02/11/2010 Location(s): Casper, Wyoming Office(s): RMOTC February 13, 2010 CX-006734: Categorical Exclusion Determination

99

Report on surface geology and groundwater investigations of Mortons and Green Valley Well Fields. Final technical report, November 1980-May 1982. [Proposed WyCoalGas Project, Converse County, Wyoming; site evaluation  

Science Conference Proceedings (OSTI)

The general region of investigation of this report is in the southern part of the Powder River Basin near the Town of Douglas, Wyoming. Two specific areas within this region were investigated to determine the groundwater potential with drilling and testing programs during the years 1973 to 1975. One area of investigation is located approximately 12 miles west of Douglas in T32 and 33N, R73 and 74W, and is known as the Green Valley Well Field. This area is situated in the foothills of the north end of the Laramie Range and encompasses approximately 25 square miles. In this area the Madison Formation limestone and the Flathead Formation sandstone are the aquifers of interest for groundwater production. The second area is located approximately 13 miles north of Douglas in T34 and 35N, R70 and 71W, and is known as the Mortons Well Field. This area encompasses about 30 square miles. In this area, the Lance Formation and Fox Hills Formation sandstones are the aquifers of interest. Contained within the body of this report are two geologic studies prepared by consulting geologists, Dr. Peter Huntoon and Henry Richter. These studies define the pertinent structural and groundwater geologic features in and in the vicinities of the Mortons and Green Valley Well Fields. A relatively complex structural geology was encountered in the Green Valley area. The study of the Mortons area suggests that the geology of this area is relatively uniform. Inventories of the water users in the vicinities of the two study areas are included at the back of this report in Appendix B. These inventories are comprised of water appropriations as recognized by the Wyoming State Engineer's Office. Both groundwater and surface water appropriations are inventoried within the Green Valley study area. Only groundwater appropriations are inventoried within the Mortons study area.

None

1982-01-01T23:59:59.000Z

100

EA-1581: Sand Hills Wind Project, Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81: Sand Hills Wind Project, Wyoming 81: Sand Hills Wind Project, Wyoming EA-1581: Sand Hills Wind Project, Wyoming Location of the proposed Sand Hills Wind Project, near Laramie, Wyoming Location of the proposed Sand Hills Wind Project, near Laramie, Wyoming Summary The Bureau of Land Management, with DOE's Western Area Power Administration as a cooperating agency, is preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action is implemented, Western would interconnect the proposed facility to an existing transmission line. Public Comment Opportunities No public comment opportunities available at this time. List of Available Documents

Note: This page contains sample records for the topic "wyoming southern powder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conducts Groundwater and Soil Investigation at Riverton, Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood October 16, 2012 - 10:50am Addthis LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood What does this project do? Goal 1. Protect human health and the environment A team representing two Federal agencies-U.S. Department of Energy (DOE) Office of Legacy Management and U.S. Geological Survey-is evaluating

102

Alternative Fuels Data Center: Wyoming Laws and Incentives for Aftermarket  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Aftermarket Conversions to someone by E-mail Aftermarket Conversions to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Aftermarket Conversions on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Aftermarket Conversions on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Aftermarket Conversions on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Aftermarket Conversions on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Aftermarket Conversions on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Aftermarket Conversions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

103

Alternative Fuels Data Center: Wyoming Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Dealer to someone by E-mail Alternative Fuel Dealer to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Alternative Fuel Dealer on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Alternative Fuel Dealer on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Alternative Fuel Dealer on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Alternative Fuel Dealer on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Alternative Fuel Dealer on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Alternative Fuel Dealer on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

104

Alternative Fuels Data Center: Wyoming Laws and Incentives for Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acquisition / Fuel Use to someone by E-mail Acquisition / Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Acquisition / Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Acquisition / Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Acquisition / Fuel Use on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Acquisition / Fuel Use on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Acquisition / Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Acquisition / Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

105

Alternative Fuels Data Center: Wyoming Laws and Incentives for Fueling /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling / TSE Infrastructure Owner to someone by E-mail Fueling / TSE Infrastructure Owner to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Fueling / TSE Infrastructure Owner on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Fueling / TSE Infrastructure Owner on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Fueling / TSE Infrastructure Owner on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Fueling / TSE Infrastructure Owner on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Fueling / TSE Infrastructure Owner on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Fueling / TSE Infrastructure Owner on

106

Alternative Fuels Data Center: Wyoming Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

107

Alternative Fuels Data Center: Wyoming Laws and Incentives for Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Owner/Driver to someone by E-mail Vehicle Owner/Driver to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Vehicle Owner/Driver on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Vehicle Owner/Driver on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Vehicle Owner/Driver on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Vehicle Owner/Driver on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Vehicle Owner/Driver on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Vehicle Owner/Driver on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

108

Powder River Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Powder River Energy Corporation Place Sundance, Wyoming Website precorp.coop/ Utility Id 19156 Utility Location Yes Ownership C NERC Location WECC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] Energy Information Administration Form 826[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Powder River Energy Corporation Smart Grid Project was awarded $2,554,807 Recovery Act Funding with a total project value of $5,109,614. Utility Rate Schedules Grid-background.png General Service (GS)-Single Phase Commercial General Service (GS)-Three phase Commercial General Service-Coal Bed Methane (GS-CBM)-Single Phase Commercial

109

Casper, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Casper, Wyoming: Energy Resources Casper, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.866632°, -106.313081° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.866632,"lon":-106.313081,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

110

Wyoming Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

111

Cheyenne, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cheyenne, Wyoming: Energy Resources Cheyenne, Wyoming: Energy Resources (Redirected from Cheyenne, WY) Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.1399814°, -104.8202462° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1399814,"lon":-104.8202462,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

112

Wyoming Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Center Center Jump to: navigation, search Name Wyoming Wind Energy Center Facility Wyoming Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Orion Energy Energy Purchaser PPM Energy Inc Location Evanston WY Coordinates 41.304414°, -110.793904° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.304414,"lon":-110.793904,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

113

Wyoming Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 114,067 111,167 111,120 111,120 106,764 124,937 1988-2012

114

Wyoming Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

115

Cheyenne, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.1399814°, -104.8202462° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1399814,"lon":-104.8202462,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

116

Midwest, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Midwest, Wyoming: Energy Resources Midwest, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.4113604°, -106.2800242° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.4113604,"lon":-106.2800242,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

117

Hoback, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hoback, Wyoming: Energy Resources Hoback, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.2818713°, -110.7838117° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.2818713,"lon":-110.7838117,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

118

Sundance, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sundance, Wyoming: Energy Resources Sundance, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.4063746°, -104.3757816° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4063746,"lon":-104.3757816,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

119

Meeteetse, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Meeteetse, Wyoming: Energy Resources Meeteetse, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.1571766°, -108.8715193° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1571766,"lon":-108.8715193,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

120

Wyoming Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Volumes Delivered to Consumers

Note: This page contains sample records for the topic "wyoming southern powder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Wyoming Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 90,464 90,588 89,999 89,825 91,028 93,007 1990-2013

122

Frannie, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Frannie, Wyoming: Energy Resources Frannie, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9691175°, -108.6215163° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9691175,"lon":-108.6215163,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

123

Wyoming Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

124

Hartrandt, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hartrandt, Wyoming: Energy Resources Hartrandt, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8874654°, -106.3475273° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8874654,"lon":-106.3475273,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

125

Alcova, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Alcova, Wyoming: Energy Resources Alcova, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.5521842°, -106.7164296° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5521842,"lon":-106.7164296,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

126

Evansville, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8599653°, -106.2683566° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8599653,"lon":-106.2683566,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Brookhurst, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brookhurst, Wyoming: Energy Resources Brookhurst, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8574654°, -106.2364105° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8574654,"lon":-106.2364105,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

128

,"Utah and Wyoming Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah and Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",20...

129

Utah and Wyoming Natural Gas Liquids Lease Condensate, Reserves...  

Annual Energy Outlook 2012 (EIA)

Liquids Lease Condensate, Reserves Based Production (Million Barrels) Utah and Wyoming Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade...

130

,"Wyoming Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

131

,"Wyoming Crude Oil + Lease Condensate Proved Reserves (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2011 ,"Release...

132

Wyoming Natural Gas Liquids Lease Condensate, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Lease Condensate, Proved Reserves (Million Barrels) Wyoming Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

133

Wyoming Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Wyoming Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

134

Wyoming Natural Gas Liquids Lease Condensate, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Wyoming Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

135

,"Wyoming Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming...

136

Wyoming Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Wyoming Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

137

,"Wyoming Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

138

Big Piney, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Congressional Districts by Places. Retrieved from "http:en.openei.orgwindex.php?titleBigPiney,Wyoming&oldid227767" Categories: Places Stubs Cities What links here Related...

139

Big Horn, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Geographic Relationship Tables Retrieved from "http:en.openei.orgwindex.php?titleBigHorn,Wyoming&oldid227758" Categories: Places Stubs Cities What links here Related...

140

,"Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet...

Note: This page contains sample records for the topic "wyoming southern powder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Green River, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Green River, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia...

142

,"Wyoming Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

143

Wyoming Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Wyoming Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

144

Wyoming Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Wyoming Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

145

SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING  

E-Print Network (OSTI)

;PROJECT OVERVIEW ·Site Location·Site Location ·Fremont , Wyoming ·Existing Uranium Mine Permit 381C·Existing Uranium Mine Permit 381C ·Historical Operation ·Western Nuclear Crooks Gap Project ·Mined 1956 ­ 1988 and Open Pit Mining ·Current Mine Permit (381C) ·Updating POO, Reclamation Plan & Bond ·Uranium Recovery

146

EA-1581: Sand Hills Wind Project, Wyoming  

Energy.gov (U.S. Department of Energy (DOE))

The Bureau of Land Management, with DOE’s Western Area Power Administration as a cooperating agency, is preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action is implemented, Western would interconnect the proposed facility to an existing transmission line.

147

Powder Diffraction  

NLE Websites -- All DOE Office Websites (Extended Search)

Powder Diffraction Powder Diffraction Ashfia Huq Spallation Neutron Source Oak Ridge National Laboratory 2 Managed by UT-Battelle for the U.S. Department of Energy Bragg's law W.H. Bragg (1862-1942) W.L. Bragg (1890-1971) *Zinc Blend (fcc not sc) *NaCl (not molecular) *Diamond (two overlapping fcc lattice) Shared 1915 Nobel Prize 3 Managed by UT-Battelle for the U.S. Department of Energy Where are the atoms? X-ray: (l : 10 -9 m - 10 -11 m) l[Ă…] = 12.398/E ph [keV] Source: * Lab diffractometers * Synchrotron Sources Neutron: (thermal l : 1-4Ă…) E n [meV] =81.89/ l 2 [Ă…] Source: * Reactors (fission) * Spallation Source We need wavelength (l) ~ Object size (for condensed matter that is Ă…) 4 Managed by UT-Battelle for the U.S. Department of Energy

148

Energetic powder  

DOE Patents (OSTI)

Fluoroalkylsilane-coated metal particles. The particles have a central metal core, a buffer layer surrounding the core, and a fluoroalkylsilane layer attached to the buffer layer. The particles may be prepared by combining a chemically reactive fluoroalkylsilane compound with an oxide coated metal particle having a hydroxylated surface. The resulting fluoroalkylsilane layer that coats the particles provides them with excellent resistance to aging. The particles can be blended with oxidant particles to form energetic powder that releases chemical energy when the buffer layer is physically disrupted so that the reductant metal core can react with the oxidant.

Jorgensen, Betty S. (Jemez Springs, NM); Danen, Wayne C. (Los Alamos, NM)

2003-12-23T23:59:59.000Z

149

Wyoming Oil and Gas Conservation Commission | Open Energy Information  

Open Energy Info (EERE)

Wyoming Oil and Gas Conservation Commission Wyoming Oil and Gas Conservation Commission Jump to: navigation, search State Wyoming Name Wyoming Oil and Gas Conservation Commission Address 2211 King Blvd City, State Casper, Wyoming Zip 82602 Website http://wogcc.state.wy.us/ Coordinates 42.8433001°, -106.3511243° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8433001,"lon":-106.3511243,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

150

Local Option - Energy Improvement Loan Program (Wyoming) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Option - Energy Improvement Loan Program (Wyoming) Local Option - Energy Improvement Loan Program (Wyoming) Local Option - Energy Improvement Loan Program (Wyoming) < Back Savings Category Energy Sources Buying & Making Electricity Other Program Info Start Date 7/1/2011 State Wyoming Program Type PACE Financing '''''Note: The Federal Housing Financing Agency (FHFA) issued a [http://www.fhfa.gov/webfiles/15884/PACESTMT7610.pdf statement] in July 2010 concerning the senior lien status associated with most PACE programs.''''' Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money to pay for energy improvements. The amount borrowed is typically repaid via a special assessment on the property over a period of years. Wyoming has authorized local governments to establish such

151

Wyoming - U.S. Energy Information Administration (EIA) - U.S ...  

U.S. Energy Information Administration (EIA)

Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri: Montana ... University of Wyoming Extension, Renewable and ...

152

Wyoming geo-notes No. 2  

Science Conference Proceedings (OSTI)

After a general overview of the mineral industry in Wyoming, activities and data are given on petroleum, natural gas, coal, uranium, trona, thorium, and other industrial minerals, metals, and precious stones. Coal production figures by county and basin are given. Maps are included showing regions containing subbituminous, bituminous, lignite, and strippable deposits of coal; major active and inactive uranium deposits; oil, gas, and oil shale deposits and pipeline corridors; and selected mineral occurrences of bentonite, trona, and jade. Production forecasts are given for uranium, trona, oil, gas, and coal. Reserve estimates are given for petroleum, natural gas, coal, trona, uranium, and oil shale. 8 references, 4 figures, 7 tables.

Glass, G.B.

1984-01-01T23:59:59.000Z

153

ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING  

SciTech Connect

This report summarizes activities that have taken place in the last six (6) months (January 2005-June 2005) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the United States: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico. Gnomon as project lead, worked in both areas.

Peggy Robinson

2005-07-01T23:59:59.000Z

154

Powder treatment process  

SciTech Connect

(1) A process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder.

Weyand, John D. (Greensburg, PA)

1988-01-01T23:59:59.000Z

155

Powder treatment process  

DOE Patents (OSTI)

Disclosed are: (1) a process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder. 2 figs.

Weyand, J.D.

1988-02-09T23:59:59.000Z

156

Powder dispersion system  

SciTech Connect

A powder dispersion method and apparatus comprising an air eductor and a powder dispensing syringe inserted into a suction connection of the air eductor.

Gorenz, Heather M. (Albuquerque, NM); Brockmann, John E. (Albuquerque, NM); Lucero, Daniel A. (Albuquerque, NM)

2011-09-20T23:59:59.000Z

157

Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

158

Town of Lusk, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Lusk, Wyoming (Utility Company) Lusk, Wyoming (Utility Company) Jump to: navigation, search Name Town of Lusk Place Wyoming Utility Id 11330 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Distribution Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial- Single-Phase Commercial Commercial- Three-Phase Commercial Residential Residential Average Rates Residential: $0.0838/kWh Commercial: $0.0481/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Town_of_Lusk,_Wyoming_(Utility_Company)&oldid=411770

159

Wyoming/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Wyoming/Wind Resources/Full Version Wyoming/Wind Resources/Full Version < Wyoming‎ | Wind Resources Jump to: navigation, search Print PDF Wyoming Wind Resources WyomingMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

160

Wyoming Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Wyoming Regions Wyoming Regions National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Middle School Regionals Wyoming Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Wyoming Coaches can review the middle school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your

Note: This page contains sample records for the topic "wyoming southern powder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Wyoming Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Wyoming Regions Wyoming Regions National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Regionals Wyoming Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Wyoming Coaches can review the high school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your school's state, county, city, or district.

162

City of Pine Bluffs, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Bluffs, Wyoming (Utility Company) Bluffs, Wyoming (Utility Company) Jump to: navigation, search Name City of Pine Bluffs Place Wyoming Utility Id 15051 Utility Location Yes Ownership M NERC Location WECC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electrical Household Residential General Electrical Commercial Average Rates Residential: $0.1250/kWh Commercial: $0.1050/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Pine_Bluffs,_Wyoming_(Utility_Company)&oldid=410

163

National Park Service - Yellowstone National Park, Wyoming | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yellowstone National Park, Wyoming Yellowstone National Park, Wyoming National Park Service - Yellowstone National Park, Wyoming October 7, 2013 - 10:15am Addthis Photo of Photovoltaic System at Lamar Buffalo Ranch in Yellowstone National Park Yellowstone National Park, Wyoming, has many historical sites within its boundaries. One of these is the Lamar Buffalo Ranch, a ranch that was set up in the early 1900s to breed buffalo for replacement stock within the park during a time when their numbers were very low. The ranch buildings are currently being used by the Yellowstone Association Institute for ecology classes. Since the ranch is located in the northeast corner of the park it is quite isolated from the commercial power grid, and power has been traditionally supplied by propane generators. The generators are now only a backup system

164

NorthWestern Energy LLC (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Wyoming) Wyoming) Jump to: navigation, search Name NorthWestern Energy LLC Place Wyoming Utility Id 12825 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available The following table contains monthly sales and revenue data for NorthWestern Energy LLC (Wyoming). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-01 19.46 199.099 171 106.025 923.771 168 125.485 1,122.87 339

165

City of Cody, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Cody, Wyoming (Utility Company) Cody, Wyoming (Utility Company) Jump to: navigation, search Name City of Cody Place Wyoming Utility Id 3881 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes ISO Other Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Commercial Demand Commercial Optional Commercial Commercial Residential Residential Average Rates Residential: $0.1040/kWh Commercial: $0.0748/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Cody,_Wyoming_(Utility_Company)&oldid=409457

166

Wyoming Crude Oil + Lease Condensate Proved Reserves (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

+ Lease Condensate Proved Reserves (Million Barrels) Wyoming Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

167

Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids, Proved Reserves (Million Barrels) Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

168

Wyoming Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

169

Wyoming Natural Gas Total Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Total Consumption (Million Cubic Feet) Wyoming Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

170

Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Proved Reserves (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

171

Wyoming Natural Gas Underground Storage Volume (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Wyoming Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 84,808...

172

Wyoming Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

173

Wyoming Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Wyoming Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

174

Black Hills Power Inc (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Wyoming) Wyoming) Jump to: navigation, search Name Black Hills Power Inc Place Wyoming Utility Id 19545 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0867/kWh Commercial: $0.0948/kWh Industrial: $0.0627/kWh The following table contains monthly sales and revenue data for Black Hills Power Inc (Wyoming). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

175

GEOTHERMAL RESOURCES AT NPR-3, WYOMING  

NLE Websites -- All DOE Office Websites (Extended Search)

RESOURCES AT NPR-3 Mark Milliken March 2006 The Naval Petroleum Reserves NPR-3 Teapot Dome NPR-3 LOCATION Salt Creek Anticline Trend NPR-3 WHY CONSIDER GEOTHERMAL ASSETS IN A STRIPPER OIL FIELD? RMOTC will partner with industry and academia to provide a test site for technologies that to reduce energy-related operational costs. * Energy efficiency * Energy conservation * Alternative energy sources KEY CHALLENGES * Acceptance by Industry * Creation of a Joint Industry Partnership (JIP) * Consensus on best technologies * Funding for infrastructure support * Funding of Projects Teapot Dome Wyoming Depositional Basin Settings NPR-3 STRATIGRAPHY 1000 2000 3000 4000 5000 6000 7000 DEPTH PRECAMBRIAN BASEMENT CAMBRIAN SS MISSISSIPPIAN MADSION LS PENNSYLVANIAN TENSLEEP PERMIAN GOOSE EGG TRIASSIC CHUGWATER

176

US hydropower resource assessment for Wyoming  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Wyoming.

Francfort, J.E.

1993-12-01T23:59:59.000Z

177

Overview of Energy Development Opportunities for Wyoming  

SciTech Connect

An important opportunity exists for the energy future of Wyoming that will • Maintain its coal industry • Add substantive value to its indigenous coal and natural gas resources • Improve dramatically the environmental impact of its energy production capability • Increase its Gross Domestic Product These can be achieved through development of a carbon conversion industry that transforms coal and natural gas to synthetic transportation fuels, chemical feedstocks, and chemicals that are the building blocks for the chemical industry. Over the longer term, environmentally clean nuclear energy can provide the substantial energy needs of a carbon conversion industry and be part of the mix of replacement technologies for the current fleet of aging coal-fired electric power generating stations.

Larry Demick

2012-11-01T23:59:59.000Z

178

Wyoming's Economic Future: Planning for Sustained Prosperity  

NLE Websites -- All DOE Office Websites (Extended Search)

Zunsheng Jiao Zunsheng Jiao Senior Geologist WSGS Future Work * Refine the geological framework required for 3-D rock fluid modeling of the Rock Springs Uplift (RSU). * Construct a 3-D numerical model of CO 2 injection into the RSU. * Build a Performance Assessment (PA) model that includes uncertainty and that can be utilized to construct a Probabilistic Risk Analysis (PRA) for CO 2 sequestration at the RSU. A SYSTEM MODEL FOR GEOLOGIC SEQUESTRATION OF CARBON DIOXIDE CO2_PENS, Los Alamos/Goldsim Rock Springs Uplift: an outstanding geological CO 2 sequestration site in southwestern Wyoming * Thick saline aquifer sequence overlain by thick sealing lithologies. * Doubly-plunging anticline characterized by more than 10,000 ft of closed structural relief. * Huge area (50 x 35 mile).

179

Geothermal energy in Wyoming: site data base and development status  

DOE Green Energy (OSTI)

An overview of geothermal energy and its current and potential uses in Wyoming is presented. Chapters on each region are concluded with a summary of thermal springs in the region. The uniqueness of Yellowstone is discussed from both an institutional point of view and a natural one. The institutional situation at the federal and state level is discussed as it applies to geothermal development in Wyoming. (MHR)

James, R.W.

1979-04-01T23:59:59.000Z

180

Evaluating winter orographic cloud seeding: Design of the Wyoming Weather Modification Pilot Project (WWMPP)  

Science Conference Proceedings (OSTI)

An overview of the Wyoming Weather Modification Pilot Project (WWMPP) is presented. This project, funded by the State of Wyoming, is designed to evaluate the effectiveness of cloud seeding with silver iodide in the Medicine Bow and Sierra Madre ...

Daniel Breed; Roy Rasmussen; Courtney Weeks; Bruce Boe; Terry Deshler

Note: This page contains sample records for the topic "wyoming southern powder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Alternative Fuels Data Center: Wyoming Laws and Incentives for Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas to someone by E-mail Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Natural Gas on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Natural Gas on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Natural Gas on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives for Natural Gas The list below contains summaries of all Wyoming laws and incentives

182

Wyoming Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) Wyoming Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 261,478 259,227 269,921 1970's 276,926 292,434 298,439 303,519 263,684 215,104 251,846 262,801 255,760 1980's 366,530 393,027 432,313 579,479 624,619 506,241 512,579 560,603 591,472 1990's 635,922 681,266 728,113 750,853 821,689 895,129 845,253 863,052 870,518 902,889 2000's 993,702 988,595 1,083,860 1,101,425 1,249,309 1,278,087 1,288,124 1,399,570 1,278,439 1,507,142 2010's 1,642,190 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014

183

Precision powder feeder  

DOE Patents (OSTI)

A new class of precision powder feeders is disclosed. These feeders provide a precision flow of a wide range of powdered materials, while remaining robust against jamming or damage. These feeders can be precisely controlled by feedback mechanisms.

Schlienger, M. Eric (Albuquerque, NM); Schmale, David T. (Albuquerque, NM); Oliver, Michael S. (Sandia Park, NM)

2001-07-10T23:59:59.000Z

184

Powder Materials Committee  

Science Conference Proceedings (OSTI)

Powder Materials for Energy Efficiency in Transportation; January 2011: Organized By: Fernand Marquis Nanomaterials for Renewable Energy ...

185

Montana-Dakota Utilities Co (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Wyoming Wyoming Utility Id 12199 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0890/kWh Commercial: $0.0630/kWh Industrial: $0.0711/kWh The following table contains monthly sales and revenue data for Montana-Dakota Utilities Co (Wyoming). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 1,001 12,569 12,440 728 11,267 2,349 17 257 19 1,746 24,093 14,808

186

High West Energy, Inc (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Wyoming) Wyoming) Jump to: navigation, search Name High West Energy, Inc Place Wyoming Utility Id 27058 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1]Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png A F Industrial Commercial & Small Power Commercial Farm and Home Residential Irrigation Industrial Large Power Industrial Security Lighting-150 - 175 watt M V/ HPS Lighting Security Lighting-200 - 250 watt M V/ HPS Lighting Security Lighting-400 watt M V/ HPS Lighting Street Lighting-200 - 250 watt M V/ HPS Lighting

187

Town of Basin, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Wyoming (Utility Company) Wyoming (Utility Company) Jump to: navigation, search Name Town of Basin Place Wyoming Utility Id 1779 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial General Demand Service Industrial General Service Commercial Industrial Demand Service Industrial Noncommercial Service Commercial Nongeneral Demand Service Industrial Nongeneral Service Commercial Nonindustrial Demand Service Industrial Nonresidential Service Residential Residential Residential Security Lighting Service Lighting

188

City of Gillette, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Gillette, Wyoming (Utility Company) Gillette, Wyoming (Utility Company) Jump to: navigation, search Name Gillette City of Place Wyoming Utility Id 7222 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial & Misc Service Commercial Demand Meter Industrial Residential Residential Residential All Electric Residential Average Rates Residential: $0.0894/kWh Commercial: $0.0692/kWh

189

Wyoming - Seds - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming - Seds - U.S. Energy Information Administration (EIA) Wyoming - Seds - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming The page does not exist for . To view this page, please select a state: Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida

190

Town of Lingle, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Lingle, Wyoming (Utility Company) Lingle, Wyoming (Utility Company) Jump to: navigation, search Name Town of Lingle Place Wyoming Utility Id 11099 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Athletic Field Commercial Commercial Single Phase Commercial Commercial Single Phase B Commercial Commercial Three Phase Commercial Residential B Residential Residential Single Phase Residential Average Rates Residential: $0.1200/kWh Commercial: $0.1060/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

191

Solar and Wind Powering Wyoming Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar and Wind Powering Wyoming Home Solar and Wind Powering Wyoming Home Solar and Wind Powering Wyoming Home March 17, 2010 - 4:41pm Addthis Solar panels at Terry Sandstrom's home in Wheatland, Wyo. | Photo courtesy of Terry Sandstrom Solar panels at Terry Sandstrom's home in Wheatland, Wyo. | Photo courtesy of Terry Sandstrom Stephen Graff Former Writer & editor for Energy Empowers, EERE Terry Sandstrom never thought he would run his house entirely on renewable energy, but when faced with a $100,000 price tag to get connected to the grid, he had to look at alternative options. The man who spent his entire life in houses pulling energy from the grid now has 12 solar panels on his front lawn and a wind turbine in the backyard."I had no involvement in the renewable energy process until I got up here," says Terry, who moved from

192

Town of Guernsey, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Guernsey, Wyoming (Utility Company) Guernsey, Wyoming (Utility Company) Jump to: navigation, search Name Town of Guernsey Place Wyoming Utility Id 7759 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial - Billing Demand Equal to or Greater Than 25KW Commercial Commercial - Billing Demand Less Than 25KW Commercial Residential Residential Average Rates Residential: $0.0890/kWh Commercial: $0.1280/kWh Industrial: $0.0979/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

193

Solar and Wind Powering Wyoming Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar and Wind Powering Wyoming Home Solar and Wind Powering Wyoming Home Solar and Wind Powering Wyoming Home March 17, 2010 - 4:41pm Addthis Solar panels at Terry Sandstrom's home in Wheatland, Wyo. | Photo courtesy of Terry Sandstrom Solar panels at Terry Sandstrom's home in Wheatland, Wyo. | Photo courtesy of Terry Sandstrom Stephen Graff Former Writer & editor for Energy Empowers, EERE Terry Sandstrom never thought he would run his house entirely on renewable energy, but when faced with a $100,000 price tag to get connected to the grid, he had to look at alternative options. The man who spent his entire life in houses pulling energy from the grid now has 12 solar panels on his front lawn and a wind turbine in the backyard."I had no involvement in the renewable energy process until I got up here," says Terry, who moved from

194

City of Torrington, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Torrington, Wyoming (Utility Company) Torrington, Wyoming (Utility Company) Jump to: navigation, search Name City of Torrington Place Wyoming Utility Id 19032 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial General Service Demand Commercial General Service Heat Commercial Irrigation and Non-Potable Pumps Commercial Large Power Industrial Resident Electric Heat Rate (ALL Electric) Residential Residential Residential Street Lights Lighting Average Rates Residential: $0.0857/kWh Commercial: $0.1030/kWh

195

Town of Wheatland, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Wyoming (Utility Company) Wyoming (Utility Company) Jump to: navigation, search Name Town of Wheatland Place Wyoming Utility Id 20512 Utility Location Yes Ownership M NERC Location WECC Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 175W Mercury Vapor Lighting 400W Mercury Vapor Lighting 700W Mercury Vapor Lighting Electric Home Heating Residential Energy Development Commercial General Service Time-of-Day- Single-Phase Commercial General Service Time-of-Day- Three-Phase Commercial General Service- Single-Phase Commercial General Service- Three-Phase Commercial

196

SBOT WYOMING ROCKY MOUNTAIN OILFIELD CENTER POC Jenny Krom Telephone  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WYOMING WYOMING ROCKY MOUNTAIN OILFIELD CENTER POC Jenny Krom Telephone (307) 233-4818 Email jenny.krom@rmotc.doe.gov ADMINISTATIVE / WASTE / REMEDIATION Office Administrative Services 561110 Facilities Support Services 561210 Security Guards and Patrol Services 561612 Security Systems Services (except Locksmiths) 561621 Locksmiths 561622 Exterminating and Pest Control Services 561710 Janitorial Services 561720 Solid Waste Collection 562111 Hazardous Waste Collection 562112 Other Waste Collection 562119 Hazardous Waste Treatment and Disposal 562211 Solid Waste Landfill 562212 Solid Waste Combustors and Incinerators 562213 Other Nonhazardous Waste Treatment and Disposal 562219 Remediation Services 562910 Materials Recovery Facilities 562920 All Other Miscellaneous Waste Management Services 562998

197

Alternative Fuels Data Center: Wyoming Laws and Incentives for Loans and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Loans and Leases to someone by E-mail Loans and Leases to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Loans and Leases on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Loans and Leases on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Loans and Leases on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Loans and Leases on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Loans and Leases on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Loans and Leases on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives for Loans and Leases

198

COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING  

E-Print Network (OSTI)

Chapter GQ COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

199

COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING  

E-Print Network (OSTI)

Chapter HQ COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

200

Multiple feed powder splitter  

DOE Patents (OSTI)

A device for providing uniform powder flow to the nozzles when creating solid structures using a solid fabrication system such as the directed light fabrication (DLF) process. In the DLF process, gas entrained powders are passed through the focal point of a moving high-power laser light which fuses the particles in the powder to a surface being built up in layers. The invention is a device providing uniform flow of gas entrained powders to the nozzles of the DLF system. The device comprises a series of modular splitters which are slidably interconnected and contain an integral flow control mechanism. The device can take the gas entrained powder from between one to four hoppers and split the flow into eight tubular lines which feed the powder delivery nozzles of the DLF system.

Lewis, Gary K. (Los Alamos, NM); Less, Richard M. (Los Alamos, NM)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wyoming southern powder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Multiple feed powder splitter  

DOE Patents (OSTI)

A device for providing uniform powder flow to the nozzles when creating solid structures using a solid fabrication system such as the directed light fabrication (DLF) process. In the DLF process, gas entrained powders are passed through the focal point of a moving high-power laser light which fuses the particles in the powder to a surface being built up in layers. The invention is a device providing uniform flow of gas entrained powders to the nozzles of the DLF system. The device comprises a series of modular splitters which are slidably interconnected and contain an integral flow control mechanism. The device can take the gas entrained powder from between one to four hoppers and split the flow into eight tubular lines which feed the powder delivery nozzles of the DLF system.

Lewis, Gary K. (Los Alamos, NM); Less, Richard M. (Los Alamos, NM)

2001-01-01T23:59:59.000Z

202

Powder Metallurgy Bearing Failure  

Science Conference Proceedings (OSTI)

The bearings were oil impregnated, porous, powder metallurgy bushings. Even after the fire, lubricant ... Failure Analysis of Four Graphite Pump Seal Faces.

203

Wyoming Regional Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Wyoming Regions » Wyoming Regional Science Wyoming Regions » Wyoming Regional Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Wyoming Regions Wyoming Regional Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Anne Theriault Email: anne@wyrsb.org Regional Event Information Date: February 8, 2014 Maximum Number of Teams: 16 Maximum Number of Teams per School: 3

204

Wyoming Regional Middle School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Wyoming Regions » Wyoming Regional Middle Wyoming Regions » Wyoming Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Wyoming Regions Wyoming Regional Middle School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Anne Theriault Email: anneo.t@gmail.com Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 16

205

Economic Development from New Generation and Transmission in Wyoming and Colorado  

DOE Green Energy (OSTI)

This report analyzes the potential economic impacts in Colorado and Wyoming of a 225 MW natural gas fired electricity generation facility and a 900 MW wind farm constructed in Wyoming as well as a 180 mile, 345 kV transmission line that runs from Wyoming to Colorado. This report and analysis is not a forecast, but rather an estimate of economic activity associated with a hypothetical scenario.

Keyser, D.; Lantz, E.

2013-03-01T23:59:59.000Z

206

Economic Development from New Generation and Transmission in Wyoming and Colorado (Fact Sheet)  

Science Conference Proceedings (OSTI)

This report analyzes the potential economic impacts in Colorado and Wyoming of a 225 MW natural gas fired electricity generation facility and a 900 MW wind farm constructed in Wyoming as well as a 180 mile, 345 kV transmission line that runs from Wyoming to Colorado. This report and analysis is not a forecast, but rather an estimate of economic activity associated with a hypothetical scenario.

Not Available

2013-03-01T23:59:59.000Z

207

Jobs and Economic Development from New Transmission and Generation in Wyoming (Fact Sheet)  

DOE Green Energy (OSTI)

Wyoming is a significant energy exporter, producing nearly 40% of the nation's coal and 10% of the nation's natural gas. However, opportunities to add new energy exports in the form of power generation are limited by insufficient transmission capacity. This fact sheet summarizes results from a recent analysis conducted by NREL for the Wyoming Infrastructure Authority (WIA) that estimates jobs and economic development activity that could occur in Wyoming should the market support new investments in power generation and transmission in the state.

Not Available

2011-05-01T23:59:59.000Z

208

Distributed Generation Study/Wyoming County Community Hospital | Open  

Open Energy Info (EERE)

Wyoming County Community Hospital Wyoming County Community Hospital < Distributed Generation Study Jump to: navigation, search Study Location Warsaw, New York Site Description Institutional-Hospital/Health Care Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Waukesha VGF L36GSID Heat Recovery Systems Built-in Fuel Natural Gas System Installer Gerster Trane System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability Seamless Power Rating 560 kW0.56 MW 560,000 W 560,000,000 mW 5.6e-4 GW 5.6e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 1000000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2001/09/26

209

Airport Road, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Road, Wyoming: Energy Resources Road, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.9932901°, -107.9492606° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.9932901,"lon":-107.9492606,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

210

Bar Nunn, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.9135767°, -106.3433606° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.9135767,"lon":-106.3433606,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

211

Sweetwater County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

County, Wyoming: Energy Resources County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8519395°, -109.1880047° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8519395,"lon":-109.1880047,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

212

Weston County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Weston County, Wyoming: Energy Resources Weston County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.9270224°, -104.4723301° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.9270224,"lon":-104.4723301,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

213

NorthWestern Corporation (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name NorthWestern Corporation Place Wyoming Utility Id 12825 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0975/kWh Commercial: $0.1380/kWh The following table contains monthly sales and revenue data for NorthWestern Corporation (Wyoming). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 14.42 146.703 173 99.874 849.906 170 114.294 996.609 343

214

Antelope Hills, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0816341°, -106.3241933° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0816341,"lon":-106.3241933,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

Rafter J Ranch, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rafter J Ranch, Wyoming: Energy Resources Rafter J Ranch, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.426248°, -110.79844° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.426248,"lon":-110.79844,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

216

Hot Springs County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

County, Wyoming: Energy Resources County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.658734°, -108.326784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.658734,"lon":-108.326784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

217

Homa Hills, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Homa Hills, Wyoming: Energy Resources Homa Hills, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.9799661°, -106.3608619° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.9799661,"lon":-106.3608619,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

218

Uinta County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Uinta County, Wyoming: Energy Resources Uinta County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.2107397°, -110.6168921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2107397,"lon":-110.6168921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

219

City of Powell, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

City of Powell City of Powell Place Wyoming Utility Id 15294 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Commercial Large Power Demand Service Industrial Residential Rate Residential Security Lighting (150W HPS) Lighting Average Rates Residential: $0.0986/kWh Commercial: $0.0956/kWh Industrial: $0.0692/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Powell,_Wyoming_(Utility_Company)&oldid=410131

220

Vista West, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8599962°, -106.4346979° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8599962,"lon":-106.4346979,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "wyoming southern powder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Red Butte, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Butte, Wyoming: Energy Resources Butte, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8060757°, -106.4341976° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8060757,"lon":-106.4341976,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

222

Sublette County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sublette County, Wyoming: Energy Resources Sublette County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8138723°, -109.7591675° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8138723,"lon":-109.7591675,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

223

Laramie County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Laramie County, Wyoming: Energy Resources Laramie County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4269559°, -104.8454619° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4269559,"lon":-104.8454619,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

224

Converse County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Converse County, Wyoming: Energy Resources Converse County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0489425°, -105.4068079° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0489425,"lon":-105.4068079,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

225

Washakie County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Washakie County, Wyoming: Energy Resources Washakie County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.8347829°, -107.7037626° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8347829,"lon":-107.7037626,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

Natrona County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Natrona County, Wyoming: Energy Resources Natrona County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8313837°, -106.912251° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8313837,"lon":-106.912251,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

227

Teton Village, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.587984°, -110.827989° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.587984,"lon":-110.827989,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

228

South Park, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.4221501°, -110.793261° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.4221501,"lon":-110.793261,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

229

Goshen County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Goshen County, Wyoming: Energy Resources Goshen County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.0334428°, -104.3791912° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.0334428,"lon":-104.3791912,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

230

Moose Wilson Road, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Road, Wyoming: Energy Resources Road, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.5252053°, -110.844655° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.5252053,"lon":-110.844655,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

231

Lower Valley Energy Inc (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Place Wyoming Place Wyoming Utility Id 11273 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes ISO Other Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1]Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png C-1 Small Commercial Commercial C-2 Large Power Service Commercial I-1 Small Irrigation Service Commercial I-2 Large Irrigation Service Commercial

232

Casper Mountain, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mountain, Wyoming: Energy Resources Mountain, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.7330199°, -106.3266921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.7330199,"lon":-106.3266921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

233

Albany County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.638448°, -105.5943388° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.638448,"lon":-105.5943388,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

234

Bessemer Bend, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bessemer Bend, Wyoming: Energy Resources Bessemer Bend, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.7580196°, -106.5203123° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.7580196,"lon":-106.5203123,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Wyoming History of Stripper (< 15 BOE/Day) Oil Wells by Year  

U.S. Energy Information Administration (EIA)

Wyoming History of Stripper (< 15 BOE/Day) Oil Wells by Year. Energy Information Administration (U.S. Dept. of Energy)

236

Coating Surfaces with Superhydrophobic Powder  

powder spraying process, dry resin powder is sprayed on to a given substrate. The ... • Other fluid dynamic and heat transfer applications Patent

237

Powder River Energy Corporation Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Country United States Country United States Headquarters Location Sundance, Wyoming Recovery Act Funding $2,554,807.00 Total Project Value $5,109,614.00 Coverage Area Coverage Map: Powder River Energy Corporation Smart Grid Project Coordinates 44.4063746°, -104.3757816° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

238

Final environmental statement related to the United Nuclear Corporation, Morton Ranch, Wyoming Uranium Mill (Converse County, Wyoming)  

SciTech Connect

Impacts from Morton Ranch Uranium Mill will result in: alterations of up to 270 acres occupied by the mill facilities; increase in the existing background radiation levels; socioeconomic effects on Glenrock and Douglas, Wyoming. Solid waste material (tailings solids) from the mill will be deposited onsite in exhausted surface mine pits. Any license issued for the Morton Ranch mill will be subject to conditions for the protection of the environment.

1979-02-01T23:59:59.000Z

239

Electron Beam Powder Bed Processes  

Science Conference Proceedings (OSTI)

Advanced Materials, Processes and Applications for Additive Manufacturing : Electron Beam Powder Bed Processes Program Organizers: Andrzej ...

240

Ultrafine hydrogen storage powders  

DOE Patents (OSTI)

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

2000-06-13T23:59:59.000Z

Note: This page contains sample records for the topic "wyoming southern powder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Jobs and Economic Development from New Transmission and Generation in Wyoming (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Wind Powering America (EERE)

from New Transmission and Generation in Wyoming Introduction Wyoming is a significant energy exporter, producing nearly 40% of the nation's coal and 10% of the nation's natural gas. However, opportunities to add new energy exports in the form of power generation are limited by insufficient transmission capacity. This fact sheet summarizes results from a recent analysis conducted by NREL for the Wyoming Infrastructure Authority (WIA) that estimates jobs and economic development activity that could occur in Wyoming should the market support new investments in power generation and transmission in the state. Modeling Inputs New infrastructure projects considered in this analysis would be developed for the purpose of exporting Wyoming wind and natural gas

242

Powder Metallurgy and Additive Manufacturing of Titanium Powders  

Science Conference Proceedings (OSTI)

Composition Design of Multi-Component ?-Ti Alloys Based on a Cluster Model · Consolidation of Blended Titanium/Magnesium Powders by Microwave Processing ... Rheological Properties of Feedstock Composed of Titanium Alloy Powder ...

243

POWDER: The Neutron Powder Diffractometer at HFIR | ORNL Neutron...  

NLE Websites -- All DOE Office Websites (Extended Search)

powder diffraction include (but are not limited to) catalysts, ionic conductors, superconductors, alloys, intermetallic compounds, ceramics, cements, colossal magnetoresistance...

244

Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.14 0.16 0.16 1970's 0.17 0.17 0.18 0.24 0.24 0.51 0.65 0.69 1.36 1.59 1980's 2.05 2.51 2.91 3.05 2.99 2.76 2.56 2.36 2.06 1.88 1990's 1.95 1.85 2.48 1.92 1.52 1.31 1.54 1.84 1.86 1.87 2000's 3.21 3.04 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Wyoming Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

245

Wyoming Dry Natural Gas Proved Reserves (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Proved Reserves (Billion Cubic Feet) Proved Reserves (Billion Cubic Feet) Wyoming Dry Natural Gas Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6,305 7,211 7,526 1980's 9,100 9,307 9,758 10,227 10,482 10,617 9,756 10,023 10,308 10,744 1990's 9,944 9,941 10,826 10,933 10,879 12,166 12,320 13,562 13,650 14,226 2000's 16,158 18,398 20,527 21,744 22,632 23,774 23,549 29,710 31,143 35,283 2010's 35,074 35,290 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Proved Reserves as of Dec. 31 Wyoming Dry Natural Gas Proved Reserves

246

Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Wellhead Price (Dollars per Thousand Cubic Feet) Wellhead Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 0.15 1970's 0.15 0.15 0.16 0.18 0.25 0.34 0.41 0.64 0.79 1.13 1980's 1.92 2.77 3.22 3.18 3.32 3.01 2.52 1.76 1.53 1.24 1990's 1.16 1.06 1.13 1.99 2.05 1.78 2.57 2.42 1.78 1.97 2000's 3.34 3.49 2.70 4.13 4.96 6.86 5.85 4.65 6.86 3.40 2010's 4.30 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Wellhead Price Wyoming Natural Gas Prices

247

UMTRA project water sampling and analysis plan, Riverton, Wyoming  

Science Conference Proceedings (OSTI)

Surface remediation was completed at the former uranium mill site in Riverton, Wyoming, in 1990. Residual radioactive materials (contaminated soil and debris) were removed and disposed of at Union Carbide Corporation`s (Umetco) nearby Gas Hills Title 2 facility. Ground water in the surficial and semiconfined aquifers (known collectively as the `uppermost aquifer`) below the former mill and tailings site has been contaminated. No contamination has been detected in the deeper, confined sandstone aquifer. The contaminant plume extends off site to the south and east. The plume is constrained by surface wetlands and small streams to the east and west of the site and by the Little Wind River to the south. Fifteen monitor wells installed in 1993 were sampled to better define the contaminant plume and to provide additional water quality data for the baseline risk assessment. Samples also were collected from domestic wells in response to a request by the Wyoming Department of Environmental Quality in January 1994. No contamination attributable to the former uranium milling operations have ever been detected in any of the domestic wells used for potable supplies.

Not Available

1994-03-01T23:59:59.000Z

248

Wyoming chemical flood test for oil recovery shows promise  

Science Conference Proceedings (OSTI)

This project was begun in 1978 to provide data to promote surfactant chemical flooding on a commercial scale in the low-permeability reservoirs of eastern Wyoming and Colorado. The Big Muddy Field in Wyoming was selected because of the large resource, potential net pay, and high oil saturation. Injection began on February 20, 1980 with a surfactant flooding process. Water mixed with salt (brine) was injected as a preflush which was completed on January 20, 1981. This produced 12,122 bbl of oil. The next step involves injecting a surfactant, co-surfactant (alcohol), and polymer. When the injection of the surfactant is completed in the summer of 1982, polymer alone will be injected. Polymer injection will be completed sometime in 1984. The final phase will be a followup water drive scheduled for 1984-1987. As of February 1, 1982, 36,683 bbl of oil had been produced. About 88 bbl of oil per day is being produced, compared to only about 41 bbl per day in February 1981. (ATT)

Not Available

1981-01-01T23:59:59.000Z

249

Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,572 16,185 17,090 13,633 16,249 17,446 19,820 1990's 12,182 14,154 13,217 13,051 13,939 14,896 15,409 15,597 16,524 19,272 2000's 20,602 20,991 25,767 28,829 24,053 24,408 23,868 25,276 23,574 25,282 2010's 27,104 28,582 29,157 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Wyoming Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

250

Method to blend separator powders  

DOE Patents (OSTI)

A method for making a blended powder mixture, whereby two or more powders are mixed in a container with a liquid selected from nitrogen or short-chain alcohols, where at least one of the powders has an angle of repose greater than approximately 50 degrees. The method is useful in preparing blended powders of Li halides and MgO for use in the preparation of thermal battery separators.

Guidotti, Ronald A. (Albuquerque, NM); Andazola, Arthur H. (Albuquerque, NM); Reinhardt, Frederick W. (Albuquerque, NM)

2007-12-04T23:59:59.000Z

251

Powder Metallurgy Processing and Products  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2012. Symposium, Powder Metallurgy Processing and Products. Sponsorship. Organizer(s) ...

252

Jobs and Economic Development from New Transmission and Generation in Wyoming (Fact Sheet)  

SciTech Connect

Wyoming is a significant energy exporter, producing nearly 40% of the nation's coal and 10% of the nation's natural gas. However, opportunities to add new energy exports in the form of power generation are limited by insufficient transmission capacity. This fact sheet summarizes results from a recent analysis conducted by NREL for the Wyoming Infrastructure Authority (WIA) that estimates jobs and economic development activity that could occur in Wyoming should the market support new investments in power generation and transmission in the state.

2011-05-01T23:59:59.000Z

253

POWDER: The Neutron Powder Diffractometer at HFIR | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Powder Diffractometer Neutron Powder Diffractometer Neutron Powder Diffractometer. Neutron Powder Diffractometer. The HB-2A diffractometer is a workhorse instrument used to conduct crystal structural and magnetic structural studies of powdered and ceramic samples, particularly as a function of intensive conditions (T, P, H, etc.). Powder diffraction data collected on this instrument are ideally suited for the Rietveld method. A full range of ancillary sample environments can be used, including cryofurnaces (4-800 K), furnaces (to 1800 K), cryostats (to 0.3 K), and cryomagnets (to 7 T). The Powder Diffractometer has a Debye-Scherrer geometry. The detector bank has 44 3He tubes, each with 6' Soller collimators. A germanium wafer-stack monochromator is vertically focusing and provides one of three principal

254

Preparation of superconductor precursor powders  

DOE Patents (OSTI)

A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

Bhattacharya, Raghunath (Littleton, CO)

1998-01-01T23:59:59.000Z

255

Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

256

DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sponsored Technology Enhances Recovery of Natural Gas in Sponsored Technology Enhances Recovery of Natural Gas in Wyoming DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming March 26, 2009 - 1:00pm Addthis Washington, DC --Research sponsored by the U.S. Department of Energy (DOE) Oil and Natural Gas Program has found a way to distinguish between groundwater and the water co-produced with coalbed natural gas, thereby boosting opportunities to tap into the vast supply of natural gas in Wyoming as well as Montana. In a recently completed project, researchers at the University of Wyoming used the isotopic carbon-13 to carbon-12 ratio to address environmental issues associated with water co-produced with coalbed natural gas. The research resulted in a patent application for this unique use of the ratio.

257

DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Enhances Recovery of Natural Gas in Technology Enhances Recovery of Natural Gas in Wyoming DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming March 26, 2009 - 1:00pm Addthis Washington, DC --Research sponsored by the U.S. Department of Energy (DOE) Oil and Natural Gas Program has found a way to distinguish between groundwater and the water co-produced with coalbed natural gas, thereby boosting opportunities to tap into the vast supply of natural gas in Wyoming as well as Montana. In a recently completed project, researchers at the University of Wyoming used the isotopic carbon-13 to carbon-12 ratio to address environmental issues associated with water co-produced with coalbed natural gas. The research resulted in a patent application for this unique use of the ratio. An added benefit of the project, which was managed by the National Energy

258

Wyoming Energy and Cost Savings for New Single- and Multifamily Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Wyoming Wyoming Energy and Cost Savings for New Single- and Multifamily Homes: 2009 and 2012 IECC as Compared to the 2006 IECC BUILDING TECHNOLOGIES PROGRAM 2 2009 AND 2012 IECC AS COMPARED TO THE 2006 IECC The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for Wyoming homeowners. Moving to either the 2009 or 2012 IECC from the 2006 IECC is cost-effective over a 30-year life cycle. On average, Wyoming homeowners will save $1,809 over 30 years under the 2009 IECC, with savings still higher at $6,441 under the 2012 IECC. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 2 years for the 2009 and 2 years with the 2012 IECC. Average

259

Two Wyoming mines accounted for 20% of U.S. coal production by ...  

U.S. Energy Information Administration (EIA)

Preliminary coal production data for 2012 show that 9 out of the top 10 producing coal mines in the United States are located in Wyoming; the top two producing mines ...

260

Wyoming Regional Science Bowl | U.S. DOE Office of Science (SC...  

Office of Science (SC) Website

Information: Wyoming Regional Website: www.wyrsb.org External link Team Approval Process Teams are approved on a first-come, first-served basis determined by the datetime...

Note: This page contains sample records for the topic "wyoming southern powder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming.

262

EA-1008: Continued Development of Naval Petroleum Reserve No. 3 (Sitewide), Natrona County, Wyoming  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts of the proposal to continue development of the U.S. Department of Energy's Naval Petroleum Reserve No. 3 located in Natrona County, Wyoming over the next...

263

Economic Development from Gigawatt-Scale Wind Deployment in Wyoming (Presentation)  

DOE Green Energy (OSTI)

This presentation provides an overview of economic development in Wyoming from gigawatt-scale wind development and includes a discussion of project context, definitions and caveats, a deployment scenario, modeling inputs, results, and conclusions.

Lantz, E.

2011-05-23T23:59:59.000Z

264

Synthetic fuels projects status report. Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming. Final report  

SciTech Connect

Energy resources are abundant in the six Federal Region 8 States of Colorado, Montana, North Dakota, South Dakota, Utah, and Wyoming. This publication provides a compilation of available data on energy resources and projected levels of development.

Grace, S.R.; Thoem, T.L.

1980-11-01T23:59:59.000Z

265

Geothermal modeling of Jackson Hole, Teton County Wyoming: Final report  

DOE Green Energy (OSTI)

This study investigated the possibility of high-temperature-heat sources (greater than 300/sup 0/C) in the area of Jackson Hole, northwestern Wyoming. Analytical and finite-difference numerical models describing conductive and convective terrestrial heat transport were utilized in an attempt to define the thermal regime of this area. This report presents data which were used as constraints for the analytic and numerical thermal models. These data include a general discussion of geology of the area, thermal spring information, subsurface temperature information, and hydrology of the area. Model results are presented with a discussion of interpretations and implications for the existence of high-temperature heat sources in the Jackson Hole area.

Heasler, H.P.

1987-04-01T23:59:59.000Z

266

Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,038 1980's 1,374 1,228 1,060 959 867 710 691 691 616 581 1990's 573 572 624 502 611 879 824 850 794 713 2000's 652 488 561 450 362 384 347 365 223 362 2010's 334 318 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

267

Jobs and Economic Development from New Transmission and Generation in Wyoming  

DOE Green Energy (OSTI)

This report is intended to inform policymakers, local government officials, and Wyoming residents about the jobs and economic development activity that could occur should new infrastructure investments in Wyoming move forward. The report and analysis presented is not a projection or a forecast of what will happen. Instead, the report uses a hypothetical deployment scenario and economic modeling tools to estimate the jobs and economic activity likely associated with these projects if or when they are built.

Lantz, E.; Tegen, S.

2011-03-01T23:59:59.000Z

268

Wyoming and western South Dakota's 1983 fuelwood harvest. Forest Service resource bulletin  

SciTech Connect

The estimated fuelwood harvests in Wyoming and western South Dakota in 1983 were 143,000 cords (10 million cubic feet) and 46,000 cords (3.5 million cubic feet), respectively. In Wyoming, the fuelwood harvest volume was one-third the volume of sawlogs and other industrial roundwood products harvested. In western South Dakota, the fuelwood harvest volume was 15% of the industrial roundwood. Survey participants were commercial operators and households.

McLain, W.H.

1987-09-01T23:59:59.000Z

269

Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming  

Science Conference Proceedings (OSTI)

This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

Not Available

1989-02-01T23:59:59.000Z

270

Recent Developments in Powder Metallurgy  

SciTech Connect

Brief notes from a meeting between NAA and S. B. Roboff, Sylvania Electric Products, regarding the important developments in powder metallurgy fuels and reactor materials.

Hayward, B.R.

1953-06-30T23:59:59.000Z

271

Powder Consolidation and Properties II  

Science Conference Proceedings (OSTI)

Feb 16, 2010... energy efficient due to the possibility of direct microwave heating of the titanium powder augmented by hybrid heating in a ceramic casket.

272

Powder Consolidation and Properties I  

Science Conference Proceedings (OSTI)

Feb 16, 2010 ... Making Titanium Powder Metallurgy a Viable Alternative to Wrought for Manufacturing: James Sears1; 1South Dakota School of Mines & ...

273

Wyoming Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Wyoming Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 395,656 447,615 416,565 352,858 407,863 471,095 623,915 1990's 690,356 711,799 765,254 63,667 14,283 12,449 27,821 719,933 1,004,020 1,079,375 2000's 1,240,038 1,359,868 1,533,724 1,561,322 1,724,725 1,729,760 1,811,992 1,916,238 2,116,818 2,239,778 2010's 2,318,486 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages:

274

Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 53,604 51,563 52,120 53,225 54,581 56,980 58,990 61,428 62,487 60,867 1991 54,085 53,423 53,465 53,581 54,205 56,193 58,416 60,163 61,280 61,366 59,373 57,246 1992 30,371 28,356 27,542 27,461 27,843 28,422 29,588 29,692 30,555 29,505 27,746 23,929 1993 20,529 18,137 17,769 18,265 19,253 21,322 23,372 24,929 26,122 27,044 24,271 21,990 1994 21,363 18,661 19,224 20,115 21,689 22,447 23,568 25,072 26,511 27,440 26,978 25,065 1995 22,086 20,762 19,352 18,577 19,027 20,563 22,264 23,937 25,846 27,025 26,298 24,257

275

Wyoming Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Wyoming Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7,834 1980's 9,413 9,659 10,155 10,728 11,014 11,229 10,393 10,572 10,903 11,276 1990's 10,433 10,433 11,305 11,387 11,351 12,712 13,084 14,321 14,371 14,809 2000's 17,211 19,399 21,531 22,716 23,640 24,722 24,463 30,896 32,399 36,748 2010's 36,526 36,930 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

276

Wyoming Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Wyoming Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6,796 1980's 8,039 8,431 9,095 9,769 10,147 10,519 9,702 9,881 10,287 10,695 1990's 9,860 9,861 10,681 10,885 10,740 11,833 12,260 13,471 13,577 14,096 2000's 16,559 18,911 20,970 22,266 23,278 24,338 24,116 30,531 32,176 36,386 2010's 36,192 36,612 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

277

National Uranium Resource Evaluation: Newcastle Quadrangle, Wyoming and South Dakota  

SciTech Connect

Uranium resources of the Newcastle 1/sup 0/x2/sup 0/ Quadrangle, Wyoming and South Dakota were evaluated to a depth of 1500 m (5000 ft) using available surface and subsurface geologic information. Many of the uranium occurrences reported in the literature and in reports of the US Atomic Energy Commission were located, sampled and described. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, were outlined. Areas favorable for uranium deposits in the subsurface were evaluated using gamma-ray logs. Based on surface and subsurface data, two areas have been delineated which are underlain by rocks deemed favorable as hosts for uranium deposits. One of these is underlain by rocks that contain fluvial arkosic facies in the Wasatch and Fort Union Formations of Tertiary age; the other is underlain by rocks containing fluvial quartzose sandstone facies of the Inyan Kara Group of Early Cretaceous age. Unfavorable environments characterize all rock units of Tertiary age above the Wasatch Formation, all rock units of Cretaceous age above the Inyan Kara Group, and most rock units of Mesozoic and Paleozoic age below the Inyan Kara Group. Unfavorable environments characterize all rock units of Cretaceous age above the Inyan Kara Group, and all rock units of Mesozoic and Paleozoic age below the Inyan Kara Group.

Santos, E S; Robinson, K; Geer, K A; Blattspieler, J G

1982-09-01T23:59:59.000Z

278

Coalbed Methane Resources in the Powder River Basin: Lithologic...  

Open Energy Info (EERE)

in Wyoming and North Dakota. Specifically, the analysis looked at: total gas desorbed, coal quality, and high-pressure methane adsorption isotherm data from 963 cored coal samples...

279

Enhanced Coal Bed Methane Recovery and CO2 Sequestration in the Powder River Basin  

Science Conference Proceedings (OSTI)

Unminable coal beds are potentially large storage reservoirs for the sequestration of anthropogenic CO2 and offer the benefit of enhanced methane production, which can offset some of the costs associated with CO2 sequestration. The objective of this report is to provide a final topical report on enhanced coal bed methane recovery and CO2 sequestration to the U.S. Department of Energy in fulfillment of a Big Sky Carbon Sequestration Partnership milestone. This report summarizes work done at Idaho National Laboratory in support of Phase II of the Big Sky Carbon Sequestration Partnership. Research that elucidates the interaction of CO2 and coal is discussed with work centering on the Powder River Basin of Wyoming and Montana. Sorption-induced strain, also referred to as coal swelling/shrinkage, was investigated. A new method of obtaining sorption-induced strain was developed that greatly decreases the time necessary for data collection and increases the reliability of the strain data. As coal permeability is a strong function of sorption-induced strain, common permeability models were used to fit measured permeability data, but were found inadequate. A new permeability model was developed that can be directly applied to coal permeability data obtained under laboratory stress conditions, which are different than field stress conditions. The coal permeability model can be used to obtain critical coal parameters that can be applied in field models. An economic feasibility study of CO2 sequestration in unminable coal seams in the Powder River Basin of Wyoming was done. Economic analyses of CO2 injection options are compared. Results show that injecting flue gas to recover methane from CBM fields is marginally economical; however, this method will not significantly contribute to the need to sequester large quantities of CO2. Separating CO2 from flue gas and injecting it into the unminable coal zones of the Powder River Basin seam is currently uneconomical, but can effectively sequester over 86,000 tons (78,200 Mg) of CO2 per acre while recovering methane to offset costs. The cost to separate CO2 from flue gas was identified as the major cost driver associated with CO2 sequestration in unminable coal seams. Improvements in separations technology alone are unlikely to drive costs low enough for CO2 sequestration in unminable coal seams in the Powder River Basin to become economically viable. Breakthroughs in separations technology could aid the economics, but in the Powder River Basin, they cannot achieve the necessary cost reductions for breakeven economics without incentives.

Eric P. Robertson

2010-06-01T23:59:59.000Z

280

Preparation of superconductor precursor powders  

DOE Patents (OSTI)

A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals, such as nitrate salts of thallium, barium, calcium, and copper, which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of thallium in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

Bhattacharya, Raghunath (Littleton, CO); Blaugher, Richard D. (Evergreen, CO)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wyoming southern powder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Preparation of superconductor precursor powders  

DOE Patents (OSTI)

A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products. 7 figs.

Bhattacharya, R.

1998-08-04T23:59:59.000Z

282

DOE Preparing for Sale of Unique RMOTC Property and Equipment in Wyoming |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Preparing for Sale of Unique RMOTC Property and Equipment in Preparing for Sale of Unique RMOTC Property and Equipment in Wyoming DOE Preparing for Sale of Unique RMOTC Property and Equipment in Wyoming October 24, 2013 - 8:59am Addthis DOE Preparing for Sale of Unique RMOTC Property and Equipment in Wyoming Did you know? RMOTC's mission is to ensure America's energy security and prosperity by assisting its partners in developing and commercializing energy efficient and environmentally friendly technologies to address critical global energy challenges. NPR-3, the site of RMOTC, is the only remaining Naval Petroleum Reserve administered by DOE and the government's only operating oilfield. The government's sale of NPR-3 by the end of 2014 will include the sale of all RMOTC-owned equipment and materials. In the eastern Rocky Mountains about 40 miles north of Casper, Wyo., is a

283

Effect of Powder Cleanliness on the Fatigue Behavior of Powder ...  

Science Conference Proceedings (OSTI)

quantitative fractography, and heavy liquid separation, were evaluated and .... The size distribution of natural inclusions recovered from the same unseeded powder ..... the United Engineering Foundation Conference on Gas Turbine. Engines ...

284

Ultrafine Hydrogen Storage Powders - Energy Innovation Portal  

Patent 6,074,453: Ultrafine hydrogen storage powders A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the ...

285

Particle and feeding characteristics of biomass powders.  

E-Print Network (OSTI)

?? Milling of biomass is a necessary key step in suspension gasification or powder combustion. Milled biomass powders are often cohesive, have low bulk density… (more)

Falk, Joel

2013-01-01T23:59:59.000Z

286

Geochemical exploration for uranium in the Red Desert, Wyoming  

SciTech Connect

Geochemical exploration techniques for uranium were performed at a known deposit, the ENQ uranium deposit, which is in arkosic sandstones of the Battle Spring Formation in the Red Desert of Wyoming. Regional gross-gamma aerial data did not indicate the most favorable terrain for follow-up surveys, but instead the radionuclide distribution mapped radioactive mudstones. The /sup 234/U//sup 238/U activity ratio and total uranium concentration in ground water were successful downflow indicators of the ENQ deposit. Helium concentration increased downflow in the ground water flowing from the deposit, while Cu, Pb, and Ba decreased. Radon emanometric techniques generally produced data that coincided with the equivalent uranium concentrations at shallow depth. Helium content in soil was interpreted to reflect local lithology and gaseous migration. Multielement geochemical analyses on soils were effective in delineating the general vicinity of the orebody. Factor analysis was used to recognize three lithologic subgroups. Leachable uranium in soils was the best indicator of subsurface mineralization for the entire subregional area. Equivalent uranium, as determined from the gamma-spectral borehole logs, revealed a consistent dispersion pattern within the host sand of the Battle Spring Formation, whereas gross gamma logs could not detect the subtle gradients in radioelement content. Halo models developed to explain the distribution of helium, radon, radioelements, and trace elements demonstrate uranium itself as the most mobile indicator. Radon and helium appear to reflect local generation from radium accumulations. Vertical leakage due to hydraulic flow against an impermeable barrier is interpreted to be the major secondary redistribution process responsible for the measureable surface signals.

Pacer, J.C.; Bramlett, L.; Moll, S.

1981-05-01T23:59:59.000Z

287

Rotary powder feed through apparatus  

DOE Patents (OSTI)

A device for increasing the uniformity of solids within a solids fabrication system, such as a direct light fabrication (DLF) system in which gas entrained powders are passed through the focal point of a moving high-power light which fuses the particles in the powder to a surface being built up in layers. The invention provides a feed through interface wherein gas entrained powders input from stationary input lines are coupled to a rotating head of the fabrication system. The invention eliminates the need to provide additional slack in the feed lines to accommodate head rotation, and therefore reduces feed line bending movements which induce non-uniform feeding of gas entrained powder to a rotating head.

Lewis, Gary K. (Los Alamos, NM); Less, Richard M. (Los Alamos, NM)

2001-01-01T23:59:59.000Z

288

Comparison of Powder Processing Methods  

Science Conference Proceedings (OSTI)

Table 5   Application of powder processing methods...wrought Greater than wrought Equal to wrought Price per pound $0.50â??5.00 $1â??10 >$100 $1â??5...

289

Neutron detectors comprising boron powder  

DOE Patents (OSTI)

High-efficiency neutron detector substrate assemblies comprising a first conductive substrate, wherein a first side of the substrate is in direct contact with a first layer of a powder material comprising .sup.10boron, .sup.10boron carbide or combinations thereof, and wherein a conductive material is in proximity to the first layer of powder material; and processes of making said neutron detector substrate assemblies.

Wang, Zhehui; Morris, Christopher; Bacon, Jeffrey Darnell; Makela, Mark F; Spaulding, Randy Jay

2013-05-21T23:59:59.000Z

290

Ceramic oxide powders and the formation thereof  

DOE Patents (OSTI)

Ceramic oxide powders and a method for their preparation. Ceramic oxide powders are obtained using a flame process whereby two or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein said precursors are converted into ceramic oxide powders. The morphology, particle size, and crystalline form of the ceramic oxide powders are determined by process conditions. 14 figures.

Katz, J.L.; Chenghung Hung.

1993-12-07T23:59:59.000Z

291

Ceramic oxide powders and the formation thereof  

DOE Patents (OSTI)

Ceramic oxide powders and a method for their preparation. Ceramic oxide powders are obtained using a flame process whereby two or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein said precursors are converted into ceramic oxide powders. The morphology, particle size, and crystalline form of the ceramic oxide powders are determined by process conditions.

Katz, Joseph L. (Baltimore, MD); Hung, Cheng-Hung (Baltimore, MD)

1993-01-01T23:59:59.000Z

292

A SUMMARY OF TERTIARY COAL RESOURCES OF THE WIND RIVER BASIN, WYOMING  

E-Print Network (OSTI)

Chapter SW A SUMMARY OF TERTIARY COAL RESOURCES OF THE WIND RIVER BASIN, WYOMING By R.M. Flores of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

293

Genesis of the Goshen County, Wyoming, Tornado on 5 June 2009 during VORTEX2  

Science Conference Proceedings (OSTI)

The genesis of a strong and long-lived tornado observed during the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) in Goshen County, Wyoming, on 5 June 2009 is studied. Mobile radar, mobile mesonet, rawinsonde, and ...

Karen Kosiba; Joshua Wurman; Yvette Richardson; Paul Markowski; Paul Robinson; James Marquis

2013-04-01T23:59:59.000Z

294

FERRIS AND HANNA COAL IN THE HANNA AND CARBON BASINS, WYOMING: A SYNTHESIS  

E-Print Network (OSTI)

Chapter HS FERRIS AND HANNA COAL IN THE HANNA AND CARBON BASINS, WYOMING: A SYNTHESIS By R of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

295

Wake Characteristics of the MOD-2 Wind Turbine at Medicine Bow, Wyoming  

SciTech Connect

The present paper summarizes results obtained from profile measurements of the MOD-2 wind turbine wake at Medicine Bow, Wyoming. Vertical profiles of wind speed, potential temperature, and turbulence at 3 and 7 rotor diameters downstream of the turbine, taken under near neutral or slightly stable atmospheric conditions, are presented.

Jacobs, E. W.; Kelley, N. D.; McKenna, H. E.; Birkenheuer, N. B.

1984-11-01T23:59:59.000Z

296

Profile of environmental quality: Region 8, Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming  

SciTech Connect

This report presents a brief overview of some of the problems which affect environmental quality in the Region VIII states of Colorado, Montana, North Dakota, South Dakota, Utah, and Wyoming. It also discusses EPA's programs aimed at dealing with these problems. Some color maps and graphs may not reproduce satisfactorily.

1978-10-01T23:59:59.000Z

297

PROCESS OF FORMING POWDERED MATERIAL  

DOE Patents (OSTI)

A process of forming high-density compacts of a powdered ceramic material is described by agglomerating the powdered ceramic material with a heat- decompossble binder, adding a heat-decompossble lubricant to the agglomerated material, placing a quantity of the material into a die cavity, pressing the material to form a compact, pretreating the compacts in a nonoxidizing atmosphere to remove the binder and lubricant, and sintering the compacts. When this process is used for making nuclear reactor fuel elements, the ceramic material is an oxide powder of a fissionsble material and after forming, the compacts are placed in a cladding tube which is closed at its ends by vapor tight end caps, so that the sintered compacts are held in close contact with each other and with the interior wall of the cladding tube.

Glatter, J.; Schaner, B.E.

1961-07-14T23:59:59.000Z

298

Preparing PLA Powders for Powder-Based Processing Using a ...  

Science Conference Proceedings (OSTI)

Of late, an important fabrication technique for producing complex shapes has emerged: ... The mechanism of powder formation can be explained by the relative solubility of ... Application of Polymer-Based Microfluidic Devices for the Selection and ... Biologically Inspired Origami (BIO) Paper for Tissue Engineering Scaffolds.

299

Southern African Data Sets Available  

NLE Websites -- All DOE Office Websites (Extended Search)

eleven southern African data sets for the Southern African Regional Science Initiative (SAFARI 2000). These data sets, originally prepared in coordination with data investigators...

300

Polymer quenched prealloyed metal powder  

DOE Patents (OSTI)

A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3 % Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

Hajaligol, Mohammad R. (Midlothian, VA); Fleischhauer, Grier (Midlothian, VA); German, Randall M. (State College, PA)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wyoming southern powder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Iowa Powder Atomization Technologies, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa Powder Atomization Technologies, Inc. America's Next Top Energy Innovator Challenge 6067 likes Iowa Powder Atomization Technologies, Inc. Ames Laboratory Iowa Powder...

302

Intradermal needle-free powdered drug injection  

E-Print Network (OSTI)

This thesis presents a new method for needle-free powdered drug injection. The design, construction, and testing of a bench-top helium-powered device capable of delivering powder to controllable depths within the dermis ...

Liu, John (John Hsiao-Yung)

2012-01-01T23:59:59.000Z

303

SHAPING AND FORMING OF HIGH PERFORMANCE POWDER ...  

Science Conference Proceedings (OSTI)

A DENSIFICATION CONSTITUTIVE MODEL FOR POWDER BASED ALUMINUM MATRIX COMPOSITES MATERIALS: Erik J. Jilinsk, John J. Lewandowski, ...

304

Advanced Titanium Powder Processing - Additive Layer ...  

Science Conference Proceedings (OSTI)

Symposium, Cost Affordable Titanium IV. Presentation Title, Advanced Titanium Powder Processing - Additive Layer Manufacturing (ALM) and Metal Injection ...

305

Jobs and Economic Development from New Transmission and Generation in Wyoming  

Wind Powering America (EERE)

Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 Jobs and Economic Development from New Transmission and Generation in Wyoming Eric Lantz and Suzanne Tegen Technical Report NREL/TP-6A20-50577 March 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Jobs and Economic Development from New Transmission and Generation in Wyoming Eric Lantz and Suzanne Tegen Prepared under Task No. WTQ1.1000

306

,"Wyoming Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290wy2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290wy2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:28 PM" "Back to Contents","Data 1: Wyoming Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290WY2" "Date","Wyoming Natural Gas Underground Storage Capacity (MMcf)" 37271,105869 37302,105869 37330,105869 37361,105869

307

,"Wyoming Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290wy2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290wy2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:27 PM" "Back to Contents","Data 1: Wyoming Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290WY2" "Date","Wyoming Natural Gas Underground Storage Capacity (MMcf)" 32324,103831 32689,103830 33054,106130 33419,106130 33785,105668

308

Modeling highway impacts related to grizzly bear core, living, and connectivity habitat in Idaho, Montana, and Wyoming using a two-scale approach  

E-Print Network (OSTI)

Mountains in Montana and Idaho. Endangered Species Technicalbear habitat of Montana, Idaho, and Wyoming. Our approachanalysis encompassed all of Idaho, western Montana, and

Craighead, Lance; Olenicki, Tom

2005-01-01T23:59:59.000Z

309

Wyoming bentonite trona and uranium: a wage and employment survey 1985  

SciTech Connect

The Wyoming Department of Labor and Statistics simultaneously initiated wage and employment surveys of the state's bentonite, trona, and uranium mining industries during February 1985. This data has been compiled in a directory which determines: (1) the number of workers in selected occupational categories, (2) the average straight-time hourly wage in each occupational category, (3) the number of workers covered by a collective bargaining agreement in each occupational category; and (4) employer paid fringe benefits.

Not Available

1985-01-01T23:59:59.000Z

310

Existing and proposed fuel conversion facilities. Summary. [Colorado, Montana, S. Dakota, N. Dakota, Utah, Wyoming  

SciTech Connect

This report provides a summary of existing and proposed coal conversion facilities in addition to hydroelectric plants on a state-by-state basis for the six states (Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming) of EPA Region VIII. It identifies the location, facility name, number of units, operating company and other participants, plant capacity, and the fuel type for the various conversion facilities. (GRA)

1976-07-01T23:59:59.000Z

311

Principal electric facilities: Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming  

SciTech Connect

A detailed map is presented covering information to June 30, 1978 on the principal electric facilities in Colorado, Montana, North Dakota, South Dakota, Utah, and Wyoming. Utilities are listed by name and type of owner (private, cooperative, municipal, state or territory, Federal, industrial). Individual plants are identified on the map with information on MW capacity and type (steam, nuclear, internal combustion, hydro, combustion turbine, combined cycle) of plant and plant location given in tables. Sites of transmission lines are identified.

1979-01-01T23:59:59.000Z

312

Hailstorms in Southern Saskatchewan  

Science Conference Proceedings (OSTI)

This article represents a first attempt at a climatological investigation of the hail problem in the Canadian province of Saskatchewan. Initial results from a 5-year study in southern Saskatchewan, carried out through a volunteer observing ...

Alec H. Paul

1980-03-01T23:59:59.000Z

313

Southern California Gas Co  

Gasoline and Diesel Fuel Update (EIA)

Southern California Gas Co ... 236,147,041 98,326,527 274,565,356 690,930 139,093,560 748,823,414 Lone Star Gas Co......

314

Southern Great Plains  

NLE Websites -- All DOE Office Websites (Extended Search)

govSitesSouthern Great Plains govSitesSouthern Great Plains SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts Southern Great Plains SGP Central Facility, Lamont, OK 36° 36' 18.0" N, 97° 29' 6.0" W Altitude: 320 meters The Southern Great Plains (SGP) site was the first field measurement site established by DOE's Atmospheric Radiation Measurement (ARM) Program. Scientists are using the information obtained from the SGP to improve cloud and radiative models and parameterizations and, thereby, the performance of atmospheric general circulation models used for climate research.

315

Southern California Children's Health Study  

DOE Green Energy (OSTI)

To determine whether chronic respiratory effects are produced by air pollutants in Southern Californian children

Peters, John M.

2000-08-20T23:59:59.000Z

316

Canopy growth and density of Wyoming big sagebrush sown with cool-season perennial grasses  

SciTech Connect

Post-mining revegetation efforts often require grass seeding and mulch applications to stabilize the soils at the same time as shrub seeding, creating intraspecific competition between seeded shrubs and grasses that is not well understood. In 1999, we initiated a study at the Belle Ayr Coal Mine near Gillette, Wyoming, to evaluate the influence of grass competition on establishment and growth of Wyoming big sagebrush. Combinations of three sagebrush seeding rates (1, 2, and 4 kg pls ha{sup -1}) and seven cool-season perennial grass mixture seeding rates (0, 2, 4, 6, 8, 10, and 14 kg pls ha{sup -1}) were seeded during winter 1998-1999. Shrub density and grass cover were assessed from 1999 to 2004. We monitored sagebrush canopy size in 2001, 2002, and 2004. All sagebrush seeding rates provided shrub densities (>=) 1 shrub m {sup -1} after six growing seasons. Grass production (>=) 75 g m{sup -2} was achieved by seeding grasses at 6 to 8 kg pls ha{sup -1}). Canopy growth of individual sagebrush plants was least in the heaviest grass seeding rate. Reduced grass seeding rates can aid in achieving Wyoming big sagebrush density standards and enhance shrub canopy growth.

Hild, A.L.; Schuman, G.E.; Vicklund, L.E.; Williams, M.I. [University of Wyoming, Laramie, WY (United States). Dept. for Renewable Resources

2006-07-15T23:59:59.000Z

317

Laminated composite of magnetic alloy powder and ceramic ...  

Laminated composite of magnetic alloy powder and ceramic powder and process for making same United States Patent

318

Compaction and Sintering of Mo Powders  

SciTech Connect

To support the development of Mo-99 production by NorthStar Medical Technologies, LLC, Mo metal powders were evaluated for compaction and sintering characteristics as they relate to Mo-100 accelerator target disk fabrication. Powders having a natural isotope distribution and enriched Mo-100 powder were examined. Various powder characteristics are shown to have an effect on both the compaction and sintering behavior. Natural Mo powders could be cold pressed directly to >90% density. All of the powders, including the Mo-100 samples, could be sintered after cold pressing to >90% density. As an example, a compacted Mo-100 disk reached 89.7% density (9.52 g/cm3) after sintering at 1000 C for 1 hr. in flowing Ar/4%H2. Higher sintering temperatures were required for other powder samples. The relationships between processing conditions and the resulting densities of consolidated Mo disks will be presented.

Nunn, Stephen D [ORNL; Kiggans, Jim [ORNL; Bryan, Chris [ORNL

2013-01-01T23:59:59.000Z

319

More Southern African Data Sets Released  

NLE Websites -- All DOE Office Websites (Extended Search)

for the wet season 2000, diffuse spectral irradiance for eight core sites in Southern Africa, daily rainfall estimates for Southern Africa, a global burned area map for Southern...

320

Geothermal resources, present and future demand for power and legislation in the State of Wyoming. Public information series 1  

DOE Green Energy (OSTI)

Data on thermal springs and wells in Wyoming, exclusive of Yellowstone Park, are summarized. The presentation includes a map showing general spring and well locations outside the Park and lands in Wyoming that have been classified as being prospectively of geothermal value. Locations and geothermal data on the springs and wells are tabulated and a short table of chemical analyses of spring waters is also presented. Although thermal data constitute most of the material presented, the present and future demands for electrical energy in Wyoming are also summarized, and state legislation pertaining to exploration near thermal springs is reviewed. A list of state and federal agencies is included so that interested parties may obtain copies of pertinent legislation and information on the status of land.

Decker, E.R.

1976-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "wyoming southern powder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Thixoforming of Stellite Powder Compacts  

SciTech Connect

Thixoforming involves processing metallic alloys in the semi-solid state. The process requires the microstructure to be spheroidal when part-solid and part-liquid i.e. to consist of solid spheroids surrounded by liquid. The aim of this work was to investigate whether powder compacts can be used as feedstock for thixoforming and whether the consolidating pressure in the thixoformer can be used to remove porosity from the compact. The powder compacts were made from stellite 6 and stellite 21 alloys, cobalt-based alloys widely used for e.g. manufacturing prostheses. Isothermal heat treatments of small samples in the consolidated state showed the optimum thixoforming temperature to be in the range 1340 deg. C-1350 deg. C for both materials. The alloys were thixoformed into graphite dies and flowed easily to fill the die. Porosity in the thixoformed components was lower than in the starting material. Hardness values at various positions along the radius of the thixoformed demonstrator component were above the specification for both alloys.

Hogg, S. C. [Institute of PolymerTechnology and Materials Engineering, Loughborough University, Loughborough, LE11 3TU (United Kingdom); Atkinson, H. V. [Department of Engineering, University of Leicester, University Rd., Leicester LE1 7RH (United Kingdom); Kapranos, P. [Department of Engineering Materials, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)

2007-04-07T23:59:59.000Z

322

Process for the synthesis of iron powder  

DOE Patents (OSTI)

A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder. 2 figs.

Welbon, W.W.

1983-11-08T23:59:59.000Z

323

Process for the synthesis of iron powder  

DOE Patents (OSTI)

A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.

Not Available

1982-03-06T23:59:59.000Z

324

Process for the synthesis of iron powder  

DOE Patents (OSTI)

A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.

Welbon, William W. (Belleair, FL)

1983-01-01T23:59:59.000Z

325

POWDERED AEROSOLS PERFORHANCE IN VARIOUS FIRE ...  

Science Conference Proceedings (OSTI)

... introduced into the car-parking tower without the ... In order to design an effective powdered ... rate of combustion), atmospheric (wind airflow) conditions ...

2011-11-01T23:59:59.000Z

326

Ultrafine hydrogen storage powders - Energy Innovation Portal  

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage ...

327

The Production and Processing of Titanium Powder  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... Cost Affordable Titanium IV: The Production and Processing of Titanium Powder Sponsored by: TMS Structural Materials Division, TMS: ...

328

Laboratory Evaluation of Bicarbonate Powders as Fire ...  

Science Conference Proceedings (OSTI)

... For the high strain case, the amount of powder required to extinguish the !lame was so small that the particle delivery was difficult to accurately ...

2012-10-21T23:59:59.000Z

329

Process for synthesizing compounds from elemental powders  

DOE Patents (OSTI)

A process for synthesizing intermetallic compounds from elemental powders. The elemental powders are initially combined in ratio a which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe{sub 3}Al and FeAl.

Rabin, B.H.; Wright, R.N.

1990-01-01T23:59:59.000Z

330

PDF PRIMER: Powder Metallurgy and Superalloys - TMS  

Science Conference Proceedings (OSTI)

Feb 15, 2007 ... The very highly alloyed superalloys cannot be produced by conventional means. Powder metallurgy methods are needed to obtain ...

331

COURSE NOTES: Powder Metallurgy: Materials, Processes ... - TMS  

Science Conference Proceedings (OSTI)

Feb 10, 2007 ... A complete course on powder metallurgy is offered for sale on CD-ROM. This course is targeted at students and engineers and includes ...

332

Powder Injection Molding - Available Technologies - PNNL  

Summary. Presented here is a novel and innovative means of powder injection molding (PIM) of reactive refractory metals, such as titanium and its ...

333

Powder Panels for Dry Bay Fire Protection  

Science Conference Proceedings (OSTI)

... powder panel by a rotor blade resulted in ... by one of the vehicle manufacturers for the ... specific requirement is proprietary to the manufacturer, but will ...

2011-10-20T23:59:59.000Z

334

Neutron Powder Diffraction Workshop (NPD2011)  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop Contact Information Instructors Application Form Sample Description HB2A at HFIR POWGEN at SNS filler About the Workshop Neutron powder diffraction is a widely used...

335

The Technical and Economic Feasibility of Siting Synfuels Plants in Wyoming  

DOE Green Energy (OSTI)

A comprehensive study has been completed to determine the feasibility of constructing and operating gasification and reforming plants which convert Wyoming fossil resources (coal and natural gas) into the higher value products of power, transportation fuels, and chemical feedstocks, such as ammonia and methanol. Detailed plant designs, simulation models, economic models and well-to-wheel greenhouse gas models were developed, validated by national-level engineering firms, which were used to address the following issues that heretofore have prevented these types of projects from going forward in Wyoming, as much as elsewhere in the United States: 1. Quantification of plant capital and operating expenditures 2. Optimization of plant heat integration 3. Quantification of coal, natural gas, electricity, and water requirements 4. Access to raw materials and markets 5. Requirements for new infrastructure, such as electrical power lines and product pipelines 6. The possible cost-benefit tradeoffs of using natural gas reforming versus coal gasification 7. The extent of labor resources required for plant construction and for permanent operations 8. Options for managing associated CO2 emissions, including capture and uses in enhanced oil recovery and sequestration 9. Options for reducing water requirements such as recovery of the high moisture content in Wyoming coal and use of air coolers rather than cooling towers 10. Permitting requirements 11. Construction, and economic impacts on the local communities This paper will summarize the analysis completed for two major synfuels production pathways, methanol to gasoline and Fischer-Trosph diesel production, using either coal or natural gas as a feedstock.

Anastasia M Gandrik; Rick A Wood; David Bell; William Schaffers; Thomas Foulke; Richard D Boardman

2011-09-01T23:59:59.000Z

336

EIS-0450: TransWest Express 600 kV Direct Current Transmission Project in Wyoming, Colorado, Utah, and Nevada  

Energy.gov (U.S. Department of Energy (DOE))

Draft Environmental Impact Statement: Public Comment Period Ends 09/25/13This EIS, being prepared jointly by DOE’s Western Area Power Administration and the Department of the Interior’s Bureau of Land Management (Wyoming State Office), evaluates the environmental impacts of granting a right-of-way for the TransWest Express 600-kilovolt Direct Current Transmission Project and amending a land use plan. The project consists of an overhead transmission line that would extend approximately 725 miles from south-central Wyoming, through Colorado and Utah. Western proposes to be a joint owner of the project.

337

,"Wyoming Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_swy_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_swy_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

338

,"Wyoming Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet)" New Field Discoveries (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","rngr18swy_1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngr18swy_1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

339

,"Wyoming Dry Natural Gas Reserves Sales (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet)" Sales (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Dry Natural Gas Reserves Sales (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","rngr15swy_1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngr15swy_1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 6:10:25 PM"

340

,"Wyoming Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_swy_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_swy_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:57 AM"

Note: This page contains sample records for the topic "wyoming southern powder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

,"Wyoming Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet)" Acquisitions (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","rngr16swy_1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngr16swy_1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 6:10:41 PM"

342

,"Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet)" Adjustments (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","rngr12swy_1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngr12swy_1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 6:09:36 PM"

343

,"Wyoming Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_swy_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_swy_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:54 PM"

344

Political mobilization, venue change, and the coal bed methane conflict in Montana and Wyoming  

Science Conference Proceedings (OSTI)

The emerging conflict over coal bed methane (CBM) exploration and development in the mountain west offers a classic example of what Baumgartner and Jones call a 'wave of criticism.' The cozy subgovernments that have dominated energy exploration and development in the mountain states are now under attack and are struggling to maintain their autonomy. Energy exploration, which was once perceived to have only positive consequences, is now the focus of an intense debate that has managed to unite previously warring factions. This article utilizes a comparative assessment of CBM politics in Montana and Wyoming to explain the connection between changing popular and elite perceptions of the issue, institutional change, and policy change.

Duffy, R.J. [Colorado State University, Fort Collins, CO (United States)

2005-03-31T23:59:59.000Z

345

Environmental Assessment of Remedial Action at the Riverton Uranium Mill Tailings Site, Riverton, Wyoming  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) has prepared an environmental assessment (DOE/EA-0254) on the proposed remedial action at the inactive uranium milling site near Riverton, Wyoming. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 U.S.C. 4321, et seq.). Therefore, the preparation of an environmental impact statement (EIS) is not required.

none,

1987-06-01T23:59:59.000Z

346

Abandoned oil fields in Alaska, California, Colorado, Montana, North Dakota, Utah and Wyoming  

Science Conference Proceedings (OSTI)

This publication lists approximately 250 abandoned oil fields in Alaska, California, Colorado, Montana, North Dakota, Utah and Wyoming that have produced 10,000 or more barrels of oil before abandonment. The following information is provided for each field: county; DOE field code; field name; AAPG geologic province code; discovery data of field; year of last production; discovery well operator; proven acreage; formation thickness; depth of field; gravity of oil production; calendar year; yearly field oil production; yearly field gas production; cumulative oil production; cumulative gas production; number abandoned fields in county; cumulative production of oil from fields; cumulative production of gas from fields. (ATT)

Not Available

1983-04-01T23:59:59.000Z

347

,"Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_swy_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_swy_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

348

Southern Pine Electric Power Association - Residential Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southern Pine Electric Power Association - Residential Energy Efficiency Rebate Program Southern Pine Electric Power Association - Residential Energy Efficiency Rebate Program <...

349

Powdered coal air dispersion nozzle  

SciTech Connect

An improved coal/air dispersion nozzle introduces fuel into the combustion chamber of a gas turbine engine as a finely atomized, dispersed spray for a uniform combustion. The nozzle has an inlet that receives finely powdered coal from a coal transport or coal/air fluidizer system and a scroll swirl generator is included within the nozzle to swirl a fluidized coal/air mixture supplied to the inlet of the nozzle. The scroll is in the form of a thin, flat metal sheet insert, twisted along its length, and configured to prevent build-up of coal particles within the nozzle prior to ejection from its outlet. Airblast air jets are included along the length of the nozzle body to assist in the discharge of the fluidized coal from the nozzle outlet and an angular pintle tip overlies the outlet to redirect coal/air mixture through a desired fluidized coal spray angle.

Kosek, T.P.; Steinhilper, E.A.

1981-10-27T23:59:59.000Z

350

Wet powder seal for gas containment  

DOE Patents (OSTI)

A gas seal is formed by a compact layer of an insoluble powder and liquid filling the fine interstices of that layer. The smaller the particle size of the selected powder, such as sand or talc, the finer will be the interstices or capillary spaces in the layer and the greater will be the resulting sealing capacity, i.e., the gas pressure differential which the wet powder layer can withstand. Such wet powder seal is useful in constructing underground gas reservoirs or storage cavities for nuclear wastes as well as stopping leaks in gas mains buried under ground or situated under water. The sealing capacity of the wet powder seal can be augmented by the hydrostatic head of a liquid body established over the seal.

Stang, L.G.

1979-08-29T23:59:59.000Z

351

Wet powder seal for gas containment  

DOE Patents (OSTI)

A gas seal is formed by a compact layer of an insoluble powder and liquid filling the fine interstices of that layer. The smaller the particle size of the selected powder, such as sand or talc, the finer will be the interstices or capillary spaces in the layer and the greater will be the resulting sealing capacity, i.e., the gas pressure differential which the wet powder layer can withstand. Such wet powder seal is useful in constructing underground gas reservoirs or storage cavities for nuclear wastes as well as stopping leaks in gas mains buried under ground or situated under water. The sealing capacity of the wet powder seal can be augmented by the hydrostatic head of a liquid body established over the seal.

Stang, Louis G. (Sayville, NY)

1982-01-01T23:59:59.000Z

352

Wyoming Natural Gas Delivered to Commercial Consumers for the Account of  

Gasoline and Diesel Fuel Update (EIA)

Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Wyoming Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 7 1990's 21 89 160 207 358 632 1,370 1,705 987 1,070 2000's 974 1,291 5,338 4,824 4,816 4,657 4,963 4,788 3,501 3,581 2010's 3,857 4,210 3,920 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Delivered to Commercial Consumers for the Account of Others Wyoming Natural Gas Delivered for the Account of Others

353

Basic data for thermal springs and wells as recorded in GEOTHERM: Wyoming  

DOE Green Energy (OSTI)

GEOTHERM sample file contains 356 records for Wyoming. Three computer-generated indexes are found in appendices A, B, and C of this report. The indexes give one line summaries of each GEOTHERM record describing the chemistry of geothermal springs and wells in the sample file for Wyoming. Each index is sorted by different variables to assist the user in locating geothermal records describing specific sites. Appendix A is sorted by the county name and the name of the source. Also given are latitude, longitude (both use decimal minutes), township, range, section, GEOTHERM record identifier, and temperature (/sup 0/C). Appendix B is sorted by county, township, range, and section. Also given are name of source, GEOTHERM record identifier, and temperature (/sup 0/C). Appendix C is first sorted into one-degree blocks by latitude, and longitude, and then by name of source. Adjacent one-degree blocks which are published as a 1:250,000 map are combined under the appropriate map name. Also given are GEOTHERM record identifier, and temperature (/sup 0/C). A bibliography is given in Appendix D.

Bliss, J.D.

1983-05-01T23:59:59.000Z

354

Tree-Ring-Based Reconstruction of Precipitation in the Bighorn Basin, Wyoming, since 1260 a.d  

Science Conference Proceedings (OSTI)

Cores and cross sections from 79 Douglas fir (Pseudotsuga menziesii) and limber pine (Pinus flexilis) trees at four sites in the Bighorn Basin of north-central Wyoming and south-central Montana were used to develop a proxy for annual (June–June) ...

Stephen T. Gray; Christopher L. Fastie; Stephen T. Jackson; Julio L. Betancourt

2004-10-01T23:59:59.000Z

355

Structural Evolution in Mechanically Alloyed Al-Fe Powder Mixtures  

Science Conference Proceedings (OSTI)

[4,5] Mechanical alloying is a solid-state powder processing technique which involves repeated welding, fracturing and rewelding of powder particles in a dry,  ...

356

Simulation of Powder Compact Forging Process for Producing a ...  

Science Conference Proceedings (OSTI)

Presentation Title, Simulation of Powder Compact Forging Process for Producing a ... Powder compact forging is a recently developed manufacturing process to ...

357

Investigation of Powder Metallurgy Titanium Matrix Composites by ...  

Science Conference Proceedings (OSTI)

Presentation Title, Investigation of Powder Metallurgy Titanium Matrix Composites by Planetary Ball-milling of Ti Powder Dispersed with Vapour Grown Carbon ...

358

Fabrication of Nanostructural Aluminum Alloy Powder with Ball ...  

Science Conference Proceedings (OSTI)

The aim of this paper is to fabricate aluminum alloy powder with nanostructure using ball milling method. The commercial Al-Mg-Cu alloy powder was milled ...

359

New Atomization Technology for Fine Amorphous Alloy Powder ...  

Science Conference Proceedings (OSTI)

However, the present conventional powder-making processes (gas and water atomization) seem difficult to reduce the price of amorphous alloy powders.

360

POWGEN - The Powder Diffractometer at SNS - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Powder Diffractometer at SNS POWGEN news: Research makes the cover of Inorganic Chemistry POWGEN detector array POWGEN detector array. POWGEN is a general-purpose powder...

Note: This page contains sample records for the topic "wyoming southern powder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Continuous blending of dry pharmaceutical powders  

E-Print Network (OSTI)

Conventional batch blending of pharmaceutical powders coupled with long quality analysis times increases the production cycle time leading to strained cash flows. Also, scale-up issues faced in process development causes ...

Pernenkil, Lakshman

2008-01-01T23:59:59.000Z

362

Preliminary geologic characterization of Upper Cretaceous and Lower Tertiary low-permeability (tight) gas bearing rocks in the Wind River Basin, Wyoming  

SciTech Connect

The geology and stratigraphy of natural gas deposits in the Wind River Basin, Wyoming, was investigated. The study will be utilized to help determine the gas potential of the basin.

Johnson, R.C.; Finn, T.M.; Keefer, W.R.; Flores, R.M.; Keighin, C.W.; Szmajter, R.J.; Nuccio, V.F.

1995-05-01T23:59:59.000Z

363

Biaxially textured articles formed by powder metallurgy  

DOE Patents (OSTI)

A biaxially textured alloy article comprises Ni powder and at least one powder selected from the group consisting of Cr, W, V, Mo, Cu, Al, Ce, YSZ, Y, Rare Earths, (RE), MgO, CeO.sub.2, and Y.sub.2 O.sub.3 ; compacted and heat treated, then rapidly recrystallized to produce a biaxial texture on the article. In some embodiments the alloy article further comprises electromagnetic or electro-optical devices and possesses superconducting properties.

Goyal, Amit (Knoxville, TN); Williams, Robert K. (Knoxville, TN)

2001-01-01T23:59:59.000Z

364

,"Wyoming Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_swy_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_swy_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:09 PM"

365

Seminoe-Kortes transmission line/substation consolidation project, Carbon County, Wyoming  

DOE Green Energy (OSTI)

The existing switchyards at Western Area Power Administration's (WESTERN) Seminoe and Kortes facilities, located approximately 40 miles northeast of Rawlines, Carbon County, Wyoming, were constructed in 1939 and 1951, respectively. The circuit breakers at these facilities are beyond or approaching their service life and need to be replaced. In addition, the switchyards have poor access for maintenance and replacement of equipment, and their locations create potential for oil spills into the North Platte River. WESTERN is proposing to consolidate the switchyard facilities into one new substation to provide easier access, restore proper levels of system reliability, and decrease the potential for oil contamination of the river. This environmental assessment (EA) was prepared to evaluate the impacts of the proposed Seminoe-Kortes Consolidation Project. 57 refs., 12 figs., 8 tabs.

Not Available

1990-07-01T23:59:59.000Z

366

Status of Texas eastern's synfuels projects. [Kentucky, New Mexico, Wyoming, Utah  

SciTech Connect

The rationale for synfuel project and site selection is outlined and a brief description of four projects is presented. The Tri-State Project is a coal gasification/liquefaction project located on the Ohio River in Henderson County, Kentucky. It will convert about 10 million tons per year of high sulfur coal into SNG, transportation fuels and chemicals. The New Mexico Project is located in northwest N.M. east of the Navajo Indian Reservation. The plant will convert about 10 million tons of coal per year into SNG and methanol using the Lurgi process. The Lake DeSmet Project in north central Wyoming will also employ Lurgi Technology to produce SNG and methanol. The Paraho Oil Shale Module Project would produce 10,000 b/d of synthetic crude from oil shale in eastern Utah.

Homeyer, H.C.

1981-01-01T23:59:59.000Z

367

Mineral resources of the Devils Playground and Twin Buttes Wilderness study areas, Sweetwater County, Wyoming  

Science Conference Proceedings (OSTI)

The Devils Playground and Twin Buttes Wilderness Study Areas are contiguous, covering an area totalling 26,800 acres in Southwest Wyoming. The study areas have been withdrawn from mining claim location because of the rich oil shale deposits in the region. In addition, Minerals management Service considers the areas to have moderate development potential for sodium (trona), with as much as 1.2 billion tons of inferred resources. The study areas are classic sites for vertebrate fossils, yielding many thousands of specimens now in museums. Chert beds are common, and it is prized by collectors for its banded appearance. The study area shave a high resource potential for undiscovered natural gas. The study areas have a moderate potential for zeolites. A low potential exists for coal resources (coal is present at great depths) and for undiscovered metallic minerals.

Van Loenen, R.E.; Bryant, W.A. (US Geological Survey (US)); Lane, M.E. (US Bureau of Mines (US))

1991-01-01T23:59:59.000Z

368

Radiological survey of the inactive uranium-mill tailings at the Spook site, Converse County, Wyoming  

SciTech Connect

Results of a radiological survey performed at the Spook site in Converse County, Wyoming, in June 1976, are presented. The mill at this site was located a short distance from the open-pit mine where the ore was obtained and where part of the tailings was dumped into the mine. Several piles of overburden or low-grade ore in the vicinity were included in the measurements of above-ground gamma exposure rate. The average exposure rate over these piles varied from 14 ..mu..R/hr, the average background exposure rate for the area, to 140 ..mu..R/hr. The average exposure rate for the tailings and former mill area was 220 ..mu..R/hr. Movement of tailings particles down dry washes was evident. The calculated concentration of /sup 226/Ra in ten holes as a function of depth is presented graphically.

Haywood, F.F.; Christian, D.J.; Chou, K.D.; Ellis, B.S.; Lorenzo, D.; Shinpaugh, W.H.

1980-05-01T23:59:59.000Z

369

Radiological survey of the inactive uranium-mill tailings at Riverton, Wyoming  

SciTech Connect

Results of a radiological survey performed at the Riverton, Wyoming site in July 1976, are presented. The average external gamma exposure rate at 1 m over the tailings pile was 56 ..mu..R/hr. The corresponding rate for the former mill area was 97 ..mu..R/hr. Movement of tailings particles in a dry wash is evident; but it appears that, in general, the earth cover over the tailings pile has been effective in limiting both wind and water erosion of the tailings. The calculated concentration of /sup 226/Ra as a function of depth in 15 augered holes is presented graphically. A survey of the Teton Division Lumber Company property in Riverton showed a maximum external gamma exposure rate of 270 ..mu..R/hr.

Haywood, F.F.; Lorenzo, D.; Christian, D.J.; Chou, K.D.; Ellis, B.S.; Shinpaugh, W.H.

1980-03-01T23:59:59.000Z

370

Summary of the engineering assessment of inactive uranium mill tailings, Spook Site, Converse County, Wyoming  

SciTech Connect

Ford, Bacon, Davis Utah Inc. has reevaluated the Spook site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings 48 mi northeast of Casper, in Converse County, Wyoming. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 187,000 tons of tailings at the Spook site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors.

Not Available

1981-10-01T23:59:59.000Z

371

Seminoe-Kortes transmission line/substation consolidation project, Carbon County, Wyoming  

SciTech Connect

The existing switchyards at Western Area Power Administration's (WESTERN) Seminoe and Kortes facilities, located approximately 40 miles northeast of Rawlines, Carbon County, Wyoming, were constructed in 1939 and 1951, respectively. The circuit breakers at these facilities are beyond or approaching their service life and need to be replaced. In addition, the switchyards have poor access for maintenance and replacement of equipment, and their locations create potential for oil spills into the North Platte River. WESTERN is proposing to consolidate the switchyard facilities into one new substation to provide easier access, restore proper levels of system reliability, and decrease the potential for oil contamination of the river. This environmental assessment (EA) was prepared to evaluate the impacts of the proposed Seminoe-Kortes Consolidation Project. 57 refs., 12 figs., 8 tabs.

1990-07-01T23:59:59.000Z

372

Bairoil/Dakota Carbon Dioxide Projects, Montana, North Dakota, South Dakota, and Wyoming  

SciTech Connect

A draft environmental impact statement (EPA No. 850402D) assesses the impacts of proposed pipelines to carry carbon dioxide (CO/sub 2/) across public lands in Wyoming, Montana, and North and South Dakota. The preferred alternative would be 751.5 miles long and parallel other pipelines or roads for more than half the distance. The study describes ancillary facilities that each of the oil companies participating in the project would use. Increased oil and gas production, a rise in local property taxes, and employment opportunities would be the major benefits. The disturbance of sensitive soils would require extra rehabilitation efforts and degrade some visual resources. There would be a short-term loss of habitat, but no significant loss of animals. Several laws addressing antiquities, water pollution, land management, and mineral leasing require the impact statement.

1985-09-01T23:59:59.000Z

373

Wyoming - EIA  

U.S. Energy Information Administration (EIA)

Compressed Natural Gas 11 Stations 0.9% 2013 Ethanol 9 Stations 0.3% 2013 Other Alternative Fuels 12 Stations 0.1% ...

374

Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.  

Science Conference Proceedings (OSTI)

In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future projectspecific analyses. Additional information about the PEIS can be found at http://ostseis.anl.gov.

Murphey, P. C.; Daitch, D.; Environmental Science Division

2009-02-11T23:59:59.000Z

375

Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming  

SciTech Connect

The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

1997-10-01T23:59:59.000Z

376

Iron Availability in the Southern Ocean  

NLE Websites -- All DOE Office Websites (Extended Search)

Iron Availability in the Southern Ocean Iron Availability in the Southern Ocean Print Friday, 21 June 2013 10:08 The Southern Ocean, circling the Earth between Antarctica and the...

377

Aboriginal Residential Structures in Southern Idaho  

E-Print Network (OSTI)

Structures in Southern Idaho T H O M A S J. G R E E N ,has been conducted in southern Idaho in the last 15 years,houses built in southern Idaho, compares these with other

Green, Thomas J

1993-01-01T23:59:59.000Z

378

Southern African Data Sets Available  

NLE Websites -- All DOE Office Websites (Extended Search)

thirteen new Southern African data thirteen new Southern African data sets. Originally offered on the second CD-ROM volume prepared for the Southern African Regional Science Initiative (SAFARI 2000) by the Goddard Space Flight Center, these data sets contain meteorological, aerosol, atmospheric chemistry, and precipitation data. In addition, this data release includes a new data set that compares Advanced Spaceborne Thermal Emission and Reflection (ASTER) and Resolution Imaging Spectroradiometer (MODIS) fire data from the dry season 2001. The SAFARI 2000 project was conducted during 1999-2001 to develop a better understanding of the earth-atmosphere-human system in southern Africa. These data sets focus primarily on the 2000 dry season— and September— the southern African region, defined as latitude 5° N to 35° S and

379

Slip casting nano-particle powders for making transparent ceramics  

DOE Patents (OSTI)

A method of making a transparent ceramic including the steps of providing nano-ceramic powders in a processed or unprocessed form, mixing the powders with de-ionized water, the step of mixing the powders with de-ionized water producing a slurry, sonifing the slurry to completely wet the powder and suspend the powder in the de-ionized water, separating very fine particles from the slurry, molding the slurry, and curing the slurry to produce the transparent ceramic.

Kuntz, Joshua D. (Livermore, CA); Soules, Thomas F. (Livermore, CA); Landingham, Richard Lee (Livermore, CA); Hollingsworth, Joel P. (Oakland, CA)

2011-04-12T23:59:59.000Z

380

Southern California Edison Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southern California Edison Company Southern California Edison Company Section 216(h) of the Federal Power Act,("FPA") added by the Energy Policy Act of 2005 ("EPAct 2005"),...

Note: This page contains sample records for the topic "wyoming southern powder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Iron Availability in the Southern Ocean  

NLE Websites -- All DOE Office Websites (Extended Search)

Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is...

382

Southern Energy Management | Open Energy Information  

Open Energy Info (EERE)

Energy Management Jump to: navigation, search Name Southern Energy Management Place Morrisville, NC Website http:www.southernenergymanag References Southern Energy Management1...

383

Dynamic compaction of tungsten carbide powder.  

Science Conference Proceedings (OSTI)

The shock compaction behavior of a tungsten carbide powder was investigated using a new experimental design for gas-gun experiments. This design allows the Hugoniot properties to be measured with reasonably good accuracy despite the inherent difficulties involved with distended powders. The experiments also provide the first reshock state for the compacted powder. Experiments were conducted at impact velocities of 245, 500, and 711 m/s. A steady shock wave was observed for some of the sample thicknesses, but the remainder were attenuated due to release from the back of the impactor or the edge of the sample. The shock velocity for the powder was found to be quite low, and the propagating shock waves were seen to be very dispersive. The Hugoniot density for the 711 m/s experiment was close to ambient crystal density for tungsten carbide, indicating nearly complete compaction. When compared with quasi-static compaction results for the same material, the dynamic compaction data is seen to be significantly stiffer for the regime over which they overlap. Based on these initial results, recommendations are made for improving the experimental technique and for future work to improve our understanding of powder compaction.

Gluth, Jeffrey Weston; Hall, Clint Allen; Vogler, Tracy John; Grady, Dennis Edward

2005-04-01T23:59:59.000Z

384

Die-target for dynamic powder consolidation  

DOE Patents (OSTI)

A die/target is disclosed for consolidation of a powder, especially an atomized rapidly solidified metal powder, to produce monoliths by the dynamic action of a shock wave, especially a shock wave produced by the detonation of an explosive charge. The die/target comprises a rectangular metal block having a square primary surface with four rectangular mold cavities formed therein to receive the powder. The cavities are located away from the geometrical center of the primary surface and are distributed around such center while also being located away from the geometrical diagonals of the primary surface to reduce the action of reflected waves so as to avoid tensile cracking of the monoliths. The primary surface is covered by a powder retention plate which is engaged by a flyer plate to transmit the shock wave to the primary surface and the powder. Spawl plates are adhesively mounted on other surfaces of the block to act as momentum traps so as to reduce reflected waves in the block. 4 figs.

Flinn, J.E.; Korth, G.E.

1985-06-27T23:59:59.000Z

385

Prototype oil-shale leasing program. Volume I. Regional impacts of oil shale development. [Colorado, Wyoming, Utah  

SciTech Connect

This action would make available for private development up to 6 leases of public oil shale lands of not more than 5,120 acres each. Two tracts are located in each of the states of Colorado, Utah, and Wyoming. Oil shale development would produce both direct and indirect changes in the environment of the oil shale region in each of the 3 states where commercial quantities of oil shale resources exist.

1973-08-29T23:59:59.000Z

386

Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.  

Science Conference Proceedings (OSTI)

In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future oil shale and tar sands resource development.

O'Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

2007-11-01T23:59:59.000Z

387

Atomization methods for forming magnet powders  

SciTech Connect

The invention encompasses methods of utilizing atomization, methods for forming magnet powders, methods for forming magnets, and methods for forming bonded magnets. The invention further encompasses methods for simulating atomization conditions. In one aspect, the invention includes an atomization method for forming a magnet powder comprising: a) forming a melt comprising R.sub.2.1 Q.sub.13.9 B.sub.1, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; b) atomizing the melt to form generally spherical alloy powder granules having an internal structure comprising at least one of a substantially amorphous phase or a substantially nanocrystalline phase; and c) heat treating the alloy powder to increase an energy product of the alloy powder; after the heat treatment, the alloy powder comprising an energy product of at least 10 MGOe. In another aspect, the invention includes a magnet comprising R, Q, B, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; the magnet comprising an internal structure comprising R.sub.2.1 Q.sub.13.9 B.sub.1.

Sellers, Charles H. (Idaho Falls, ID); Branagan, Daniel J. (Idaho Falls, ID); Hyde, Timothy A. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

388

ATOMIZATION METHOD OF MAKING URANIUM POWDER  

SciTech Connect

Atomized U powder was produced by forming an electric arc between two U electrodes in an inert atmosphere and sending a high velocity stream of inert gas through the arc. Uranium particles obtained by this method were of spherical shape; smaller particles contained mostly small grains, and larger particles wore characterizcd by larger grains. The particles were ductile and could be hotpressed to a compact of high density. The temporary equipment used for those preliminary tests on atomization was not adequate to control particle size. Suggestions for the production of atomized U powder of controllable quality are included. (arth)

Hausner, H.H.; Mansfield, H.

1950-08-01T23:59:59.000Z

389

Dry powder mixes comprising phase change materials  

DOE Green Energy (OSTI)

A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft. 3 figs.

Salyer, I.O.

1995-12-26T23:59:59.000Z

390

Synthesis of ultrafine powders by microwave heating  

DOE Patents (OSTI)

A method of synthesizing ultrafine powders using microwaves is described. A water soluble material is dissolved in water and the resulting aqueous solution is exposed to microwaves until the water has dissolved. The resulting material is an ultrafine powder. This method can be used to make Al/sub 2/O/sub 3/, NiO /plus/ Al/sub 2/O/sub 3/ and NiO as well as a number of other materials including GaBa/sub 2/Cu/sub 3/O/sub x/. 1 tab.

Meek, T.T.; Sheinberg, H.; Blake, R.D.

1987-04-24T23:59:59.000Z

391

Dry powder mixes comprising phase change materials  

DOE Patents (OSTI)

A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft. 3 figures.

Salyer, I.O.

1994-12-06T23:59:59.000Z

392

Dry powder mixes comprising phase change materials  

DOE Patents (OSTI)

A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft.

Salyer, Ival O. (Dayton, OH)

1994-01-01T23:59:59.000Z

393

Dry powder mixes comprising phase change materials  

DOE Patents (OSTI)

A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft.

Salyer, Ival O. (Dayton, OH)

1995-01-01T23:59:59.000Z

394

Process for preparing active oxide powders  

DOE Patents (OSTI)

An improved process for preparing active oxide powders in which cation hydroxide gels, prepared in the conventional manner are chemically dried by alternately washing the gels with a liquid organic compound having polar characteristics and a liquid organic compound having nonpolar characteristics until the mechanical water is removed from the gel. The water-free cation hydroxide is then contacted with a final liquid organic wash to remove the previous organic wash and speed drying. The dried hydroxide treated in the conventional manner will form a highly sinterable active oxide powder.

Berard, Michael F. (Ames, IA); Hunter, Jr., Orville (Ames, IA); Shiers, Loren E. (Ames, IA); Dole, Stephen L. (Burnt Hills, NY); Scheidecker, Ralph W. (Ames, IA)

1979-02-20T23:59:59.000Z

395

Wavelike Southern Hemisphere Extratropical Teleconnections  

Science Conference Proceedings (OSTI)

The dynamical basis of intraseasonal oscillations of the Southern Hemisphere summer and winter seasons is studied with a combination of observed diagnostics and simplified prognostic models. High-frequency oscillations, zonal mean variations, and ...

Ernesto H. Berbery; Julia Nogués-Paegle; John D. Horel

1992-01-01T23:59:59.000Z

396

Teleconnections in the Southern Hemisphere  

Science Conference Proceedings (OSTI)

Teleconnections are calculated from monthly mean anomalies of sea level pressure and 500 mb geopotential height for the Southern Hemisphere (10–90°S) for five-month winter and summer seasons. The monthly means were calculated from Australian ...

Kingtse C. Mo; Glenn H. White

1985-01-01T23:59:59.000Z

397

Two Southern California Trade Trails  

E-Print Network (OSTI)

be about TWO SOUTHERN CALIFORNIA TRADE TRAILS cranes. WhenHowe 1885 History of California, Vol. 11, 1801-1824 (TheCompany. J O U R N A L OF CALIFORNIA A N D GREAT BASIN

Johnston, Francis J

1980-01-01T23:59:59.000Z

398

Southern CA Area | Open Energy Information  

Open Energy Info (EERE)

Southern CA Area Southern CA Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Southern CA Area 1.1 Products and Services in the Southern CA Area 1.2 Research and Development Institutions in the Southern CA Area 1.3 Networking Organizations in the Southern CA Area 1.4 Investors and Financial Organizations in the Southern CA Area 1.5 Policy Organizations in the Southern CA Area Clean Energy Clusters in the Southern CA Area Products and Services in the Southern CA Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

399

Wyoming Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) Wyoming Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 31,205 31,205 31,205 31,205 31,353 31,205 31,501 31,638 31,735 31,754 30,652 30,652 1991 34,651 34,651 34,651 34,651 34,651 34,651 34,651 34,651 34,651 34,651 34,651 34,651 1992 59,130 59,130 59,130 59,130 59,130 59,130 59,130 59,130 59,130 59,130 59,127 59,382 1993 59,382 59,382 59,382 59,382 59,382 59,382 59,382 59,427 59,427 59,427 60,746 60,746 1994 60,746 60,746 60,746 60,746 60,746 60,746 60,746 60,746 60,746 60,746 60,782 60,782 1995 60,782 60,782 60,782 60,782 60,782 60,782 60,782 60,782 60,782 60,782 60,782 60,782

400

Wyoming Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Wyoming Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -525 -558 -653 -568 -437 -289 -114 76 566 493 1,000 1,188 1991 482 1,359 1,901 1,461 980 1,611 1,437 1,173 -147 -1,122 -1,494 -1,591 1992 -23,715 -25,067 -25,923 -26,121 -26,362 -27,771 -28,829 -30,471 -30,725 -31,860 -31,627 -33,317 1993 -9,841 -10,219 -9,773 -9,196 -8,590 -7,100 -6,215 -4,763 -4,433 -2,461 -3,475 -1,939 1994 834 524 1,455 1,850 2,436 1,126 195 143 389 396 2,707 3,074 1995 723 2,101 128 -1,538 -2,661 -1,884 -1,303 -1,135 -665 -416 -680 -807 1996 -1,225 -2,881 -2,568 -1,148 1,099 1,302 1,744 832 -482 -1,417 -3,593 -5,063

Note: This page contains sample records for the topic "wyoming southern powder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Engineering assessment of inactive uranium mill tailings, Spook site, Converse County, Wyoming  

SciTech Connect

Ford, Bacon and Davis Utah Inc. has reevaluated the Spook site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings 48 mi northeast of Casper, in Converse County, Wyoming. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 187,000 tons of tailings at the Spook site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover makes and gamma densitometers for measuring cross-sectionally averaged mass velocity in steady steam-water flow are presented. The results are interpreted ntation.

Not Available

1981-10-01T23:59:59.000Z

402

Thermal and Structural Constraints on the Tectonic Evolution of the Idaho-Wyoming-Utah Thrust Belt  

E-Print Network (OSTI)

The timing of motion on thrust faults in the Idaho-Wyoming-Utah (IWU) thrust belt comes from synorogenic sediments, apatite thermochronology and direct dating of fault rocks coupled with good geometrical constraints of the subsurface structure. The thermal history comes from the analyses of apatite thermochronology, thermal maturation of hydrocarbon source rocks and isotope analysis of fluid inclusions from syntectonic veins. New information from zircon fission track and zircon (U-Th)/He analysis provide constraints on the thermal evolution of the IWU thrust belt over geological time. These analyses demonstrate that the time-temperature pathway of the rocks sampled never reached the required conditions to reset the thermochronometers necessary to provide new timing constraints. Previous thermal constraints for maximum temperatures of IWU thrust belt rocks, place the lower limit at ~110°C and the upper limit at ~328°C. New zircon fission track results suggest an upper limit at ~180°C for million year time scales. ID-TIMS and LA-ICPMS of syntectonic calcite veins suggest that new techniques for dating times of active deformation are viable given that radiogenic isotope concentrations occur at sufficient levels within the vein material.

Chapman, Shay Michael

2013-08-01T23:59:59.000Z

403

The Atlantic Richfield Company Black Thunder mine haul road dust study. [Wyoming  

Science Conference Proceedings (OSTI)

An examination of the effectiveness of various haul road dust control measures was performed at ARCO's Black Thunder Mine near Wright, Wyoming by evaluating both visible observations and quantitative measurements of particle concentrations. In order to evaluate dust control effectiveness both a 300 foot (91.5 meter) and 175 foot (53.4 meter) section of the main coal haul road was selected for testing. The test sections were separated by a 200 foot (61 meter) buffer zone. Each test section was relatively straight and away from interferences from other mine sources. The five haul road treatment test sequences evaluated for control measure effectiveness were: an untreated road segment; water treatment two times per hour; water treatment four times per hour; previously chemically treated segment of haul road (ARCO 2400 dust suppressant); and testing after application of Coherex (10% dilution). By comparing uncontrolled situations with various controlled situations, an estimate of the control efficiency of the dust control measures was determined. Based upon the results of the study a fugitive dust control scheme was selected considering control effectiveness, economics and operational efficiency.

Maxwell, D.R.; Hormel, T.R.; Ives, J.A.

1982-06-01T23:59:59.000Z

404

Improved computational schemes for the numerical modeling of hydrothermal resources in Wyoming  

DOE Green Energy (OSTI)

A new method, the Conjugate Gradient Squared (CGS) solution technique, is shown to be extremely effective when applied to the finite-difference solution of conductive and convective heat transfer in geologic systems. The CGS method is compared to the Successive Over/Under Relaxation schemes, a version of the Gaussian elimination method, and the Generalized Minimum Residual (GMRES) approach. The CGS procedure converges at least ten times faster than the nearest competitor. The model is applied to the Thermopolis hydrothermal system, located in northwestern Wyoming. Modeled results are compared with measured temperature-depth profiles and results from other studies. The temperature decrease from 72{degree}C to 54{degrees}C along the crest of the Thermopolis anticline is shown to result from cooling of the geothermal fluid as it moves to the southeast. Modeled results show correct general trends, however, a time-varying three-dimensional model will be needed to fully explain the effects of mixing within the aquifers along the crest of the anticline and thermal affects of surface surface topography. 29 refs., 18 figs., 2 tabs.

Heasler, H.P.; George, J.H.; Allen, M.B.

1990-05-01T23:59:59.000Z

405

Hanna, Wyoming underground coal gasification data base. Volume 2. The Hanna I field test  

SciTech Connect

This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project, and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Based on the recommendations of A.D. Little, Inc. in a 1971 report prepared for the US Bureau of Mines, the Hanna I test represented the first field test in reestablishing a field program by the US Bureau of Mines. The test was directed toward comparing results from a thick subbitiminous coal seam with those obtained during the field test series conducted at Gorgas, AL, in the 1940's and 1950's. Hanna I was conducted from March 1973 through February 1974. This report covers: (1) site selection and characteristics; (2) test objectives; (3) facility description; (4) pre-operation tests; (5) test operations summary; and (6) post-test activity. 9 refs., 10 figs., 4 tabs.

Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

1985-08-01T23:59:59.000Z

406

The Influence of Alloy Chemistry and Powder Production Methods ...  

Science Conference Proceedings (OSTI)

Advanced nickel-base superalloys for use in gas turbine engines are produced .... Powder was separated from the exiting gas flow via a cyclone. Once cooled, the powder was removed from the system. (exposing .... The full data are given in  ...

407

Low Cost Titanium Powder Development for Additive Manufacturing ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Cost Affordable Titanium IV. Presentation Title, Low Cost Titanium Powder ...

408

Development of a Simplified Powder Processing Method for ...  

Science Conference Proceedings (OSTI)

... dispersion strengthened ferritic stainless steel microstructure. Precursor ferritic stainless steel powders were oxidized in situ using a newly developed gas ...

409

Powder Removal from Complex Structures Produced Using Electron ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2011. Symposium, Additive Manufacturing of Metals. Presentation Title, Powder Removal from ...

410

and Submicron Oxide Powders for Optoelectronic and Renewable ...  

Science Conference Proceedings (OSTI)

Among various materials processes, Umicore develops technologies and manufactures various oxide powders for optoelectronic and renewable energy ...

411

Powder-based Processes and Products for Advanced Applications  

Science Conference Proceedings (OSTI)

James W Sears, South Dakota School of Mines & Technology. Scope, Numerous powder materials technologies have been developed for metals, ceramics, ...

412

Wyoming coal-conversion project. Final technical report, November 1980-February 1982. [Proposed WyCoalGas project, Converse County, Wyoming; contains list of appendices with title and identification  

Science Conference Proceedings (OSTI)

This final technical report describes what WyCoalGas, Inc. and its subcontractors accomplished in resolving issues related to the resource, technology, economic, environmental, socioeconomic, and governmental requirements affecting a project located near Douglas, Wyoming for producing 150 Billion Btu per day by gasifying sub-bituminous coal. The report summarizes the results of the work on each task and includes the deliverables that WyCoalGas, Inc. and the subcontractors prepared. The co-venturers withdrew from the project for two reasons: federal financial assistance to the project was seen to be highly uncertain; and funds were being expended at an unacceptably high rate.

None

1982-01-01T23:59:59.000Z

413

Mechanisms of the meridional heat transport in the Southern Ocean  

E-Print Network (OSTI)

atlas of the Southern Ocean, Natural Environment ResearchMHT. Keywords Southern Ocean . Meridional heat transport .1 Introduction The Southern Ocean (SO) circulation plays an

Volkov, Denis L.; Fu, Lee-Lueng; Lee, Tong

2010-01-01T23:59:59.000Z

414

Electric Vehicle Manufacturing in Southern California: Current Developments, Future Prospects  

E-Print Network (OSTI)

Factors Affecting the Electric Vehicle Industry in SouthernProduction 3.4. An Electric Vehicle Industry for SouthernChapter Eight: The Electric Vehicle Industry In Southern

Scott, Allen J.

1993-01-01T23:59:59.000Z

415

Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company:...

416

Fabricating solid carbon porous electrodes from powders  

DOE Patents (OSTI)

Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (<50 m.sup.2 /gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

Kaschmitter, James L. (Pleasanton, CA); Tran, Tri D. (Livermore, CA); Feikert, John H. (Livermore, CA); Mayer, Steven T. (San Leandro, CA)

1997-01-01T23:59:59.000Z

417

Dry powder mixes comprising phase change materials  

DOE Patents (OSTI)

A free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7 [times] 10[sup [minus]3] to about 7 [times] 10[sup [minus]2] microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 9 figs.

Salyer, I.O.

1992-04-21T23:59:59.000Z

418

Dry powder mixes comprising phase change materials  

DOE Patents (OSTI)

Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7[times]10[sup [minus]3] to about 7[times]10[sup [minus]2] microns and the p.c.m. must be added to the silica in an amount of 80 wt. % or less p.c.m. per combined weight of silica and p.c.m. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a p.c.m. material. The silica-p.c.m. mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

Salyer, I.O.

1993-05-18T23:59:59.000Z

419

Dry powder mixes comprising phase change materials  

DOE Patents (OSTI)

Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

Salyer, Ival O. (Dayton, OH)

1993-01-01T23:59:59.000Z

420

Dry powder mixes comprising phase change materials  

DOE Patents (OSTI)

Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

Salyer, Ival O. (Dayton, OH)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wyoming southern powder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Dry powder mixes comprising phase change materials  

DOE Patents (OSTI)

Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garmets, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

Salyer, Ival O. (Dayton, OH)

1993-01-01T23:59:59.000Z

422

Dry powder mixes comprising phase change materials  

DOE Patents (OSTI)

Free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a PCM material. The silica-PCM mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

Salyer, Ival O. (Dayton, OH)

1994-01-01T23:59:59.000Z

423

Dry powder mixes comprising phase change materials  

DOE Patents (OSTI)

Free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a PCM material. The silica-PCM mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 2 figures.

Salyer, I.O.

1994-02-01T23:59:59.000Z

424

Fabricating solid carbon porous electrodes from powders  

DOE Patents (OSTI)

Fabrication is described for conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive deionization, and waste treatment. Electrodes fabricated from low surface area (<50 m{sup 2}/gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon composites with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to high surface area carbons, fuel cell electrodes can be produced. 1 fig.

Kaschmitter, J.L.; Tran, T.D.; Feikert, J.H.; Mayer, S.T.

1997-06-10T23:59:59.000Z

425

Annotated bibliography of selected references on shoreline barrier island deposits with emphasis on Patrick Draw Field, Sweetwater County, Wyoming  

SciTech Connect

This bibliography contains 290 annotated references on barrier island and associated depositional environments and reservoirs. It is not an exhaustive compilation of all references on the subject, but rather selected papers on barrier islands, and the depositional processes of formation. Papers that examine the morphology and internal architecture of barrier island deposits, exploration and development technologies are emphasized. Papers were selected that aid in understanding reservoir architecture and engineering technologies to help maximize recovery efficiency from barrier island oil reservoirs. Barrier islands from Wyoming, Montana and the Rocky Mountains basins are extensively covered.

Rawn-Schatzinger, V.; Schatzinger, R.A.

1993-07-01T23:59:59.000Z

426

Wyoming Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Wyoming Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0.9 2.6 3.7 2.8 1.8 3.0 2.5 2.0 -0.2 -1.8 -2.5 -2.7 1992 -43.8 -46.9 -48.5 -48.7 -48.6 -49.4 -49.4 -50.6 -50.1 -51.9 -53.3 -58.2 1993 -32.4 -36.0 -35.5 -33.5 -30.9 -25.0 -21.0 -16.0 -14.5 -8.3 -12.5 -8.1 1994 4.1 2.9 8.2 10.1 12.7 5.3 0.8 0.6 1.5 1.5 11.2 14.0 1995 3.4 11.3 0.7 -7.6 -12.3 -8.4 -5.5 -4.5 -2.5 -1.5 -2.5 -3.2 1996 -5.5 -13.9 -13.3 -6.2 5.8 6.3 7.8 3.5 -1.9 -5.2 -13.7 -20.9 1997 -28.6 -33.1 -34.9 -38.1 -41.3 -35.8 -27.4 -18.7 -11.1 -9.6 -6.5 -5.2 1998 -4.6 1.6 0.9 -10.6 -7.1 2.5 -1.3 -4.6 -3.6 0.4 12.4 16.6

427

RECONNAISSANCE FOR URANIFEROUS LIGNITES IN NORTH DAKOTA, SOUTH DAKOTA, MONTANA, AND WYOMING  

SciTech Connect

Detailed studies were made at Bullion and Sentinel Buttes, in Slope, Billings, and Golden Valley Counties, N. Dak. Investigations of these areas were followed by a general reconnaissance for uraniferous lignites in North Dakota, eastern Montana, north-central Wyoming, and northwestern South Dakota. Deposits of uraniferous lignites were discovered at Blue Buttes, eastern Montana; and at North Cave Hills, South Cave Hills, and at Slim Buttes in northwestern South Dakota. The only lignites that contain appreciable amounts of uranium are in the upper part of the Sentinel Butte shale member of the Fort Union formation in southwestern North Dakota and eastern Montana, and in the Ludlow formation in northwestern South Dakota. The uranium content of the individual lignite beds ranges from 0.002 to 0.033% uranium and after ignition the uranium content of the ash ranges from 0.010 to 0.091% uranium. Natural ash contains as much as 0.025% uranium; natural clinker or scoria and carbonuceous clay are lower grade than the lignites; and some spring waters contain as much as 0.09 ppm of uranium. The inferred reserves of uranlferous lignites in North Dakota, South Dakota, and Montana are estimated to be 163,320,000 short tons that contain a weighted average of 0.009% uranium. The potential energy and amount of material available for liquid fuel conversion in this quantity of lignite is very large. The inferred reserve of ash which would result from the burning of these uraniferous lignites is detail amount of uranium (metal) in the known uraniferous lignite in North Dakota, South Dakota, and Montana is estimated to be about 12,600 short tons. The prospect or finding additional radioactive lignite beds is believed to be good. (auth)

Beroni, E.P.; Bauer, H.L. Jr.

1952-07-01T23:59:59.000Z

428

Sintering of sponge and hydride-dehydride titanium powders  

Science Conference Proceedings (OSTI)

The sintering behavior of compacts produced from sponge and hydride-dehydride (HDH) Ti powders was examined. Compacts were vacuum sintered at 1200 or 1300 deg C for 30, 60, 120, 240, 480 or 960 minutes. The porosity decreased with sintering time and/or temperature in compacts produced from the HDH powders. Compacts produced from these powders could be sintered to essentially full density. However, the sintering condition did not influence the amount of porosity present in compacts produced from the sponge powders. These samples could only be sintered to a density of 97% theoretical. The sintering behavior was attributed to the chemical impurities in the powders.

Alman, David E.; Gerdemann, Stephen J.

2004-04-01T23:59:59.000Z

429

Counterflow diffusion flame synthesis of ceramic oxide powders  

DOE Patents (OSTI)

Ceramic oxide powders and methods for their preparation are revealed. Ceramic oxide powders are obtained using a flame process whereby one or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein the precursors are converted into ceramic oxide powders. The nature of the ceramic oxide powder produced is determined by process conditions. The morphology, particle size, and crystalline form of the ceramic oxide powders may be varied by the temperature of the flame, the precursor concentration ratio, the gas stream and the gas velocity.

Katz, Joseph L. (Baltimore, MD); Miquel, Philippe F. (Towson, MD)

1997-01-01T23:59:59.000Z

430

Counterflow diffusion flame synthesis of ceramic oxide powders  

DOE Patents (OSTI)

Ceramic oxide powders and methods for their preparation are revealed. Ceramic oxide powders are obtained using a flame process whereby one or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein the precursors are converted into ceramic oxide powders. The nature of the ceramic oxide powder produced is determined by process conditions. The morphology, particle size, and crystalline form of the ceramic oxide powders may be varied by the temperature of the flame, the precursor concentration ratio, the gas stream and the gas velocity. 24 figs.

Katz, J.L.; Miquel, P.F.

1997-07-22T23:59:59.000Z

431

U.S. Energy Information Administration | Annual Energy Outlook 2011  

Gasoline and Diesel Fuel Update (EIA)

1 1 Regional maps Figure F6. Coal supply regions Figure F6. Coal Supply Regions WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI MT NE IA KS MI AZ NM 500 0 SCALE IN MILES APPALACHIA Northern Appalachia Central Appalachia Southern Appalachia INTERIOR NORTHERN GREAT PLAINS Eastern Interior Western Interior Gulf Lignite Dakota Lignite Western Montana Wyoming, Northern Powder River Basin Wyoming, Southern Powder River Basin Western Wyoming OTHER WEST Rocky Mountain Southwest Northwest KY AK 1000 0 SCALE IN MILES Source: U.S. Energy Information Administration, Office

432

The New Zealand Southern Alps Experiment  

Science Conference Proceedings (OSTI)

The Southern Alps Experiment is being mounted to study the influence of New Zealand's Southern Alps on local weather and climate. This paper describes these alpine influences and outlines proposed field and modeling experiments. Experiment goals ...

D. S. Wratt; R. N. Ridley; M. R. Sinclair; H. Larsen; S. M. Thompson; R. Henderson; G. L. Austin; S. G. Bradley; A. Auer; A. P. Sturman; I. Owens; B. Fitzharris; B. F. Ryan; J-F. Gayet

1996-04-01T23:59:59.000Z

433

Southern Iowa Bio Energy | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name Southern Iowa Bio-Energy Place Leon, Iowa Zip 50144 Product Biodiesel producer based in Iowa References Southern Iowa Bio-Energy1 LinkedIn Connections...

434

Dynamics of the Southern Hemisphere Spiral Jet  

Science Conference Proceedings (OSTI)

The formation of the Southern Hemisphere spiral jet is investigated using observations over a 40-yr period. It is found that between late March and early April, the upper-tropospheric westerly jet in the Southern Hemisphere undergoes a transition ...

Lindsey N. Williams; Sukyoung Lee; Seok-Woo Son

2007-02-01T23:59:59.000Z

435

Contaminant Transport in the Southern California Bight  

E-Print Network (OSTI)

J.W. (Eds. ), Ecology of the Southern California Bight.University of California Press, Berkeley, pp. 682-766.ocean eddies in the Southern California Bight. Journal of

Idica, Eileen Y.

2010-01-01T23:59:59.000Z

436

Large Bore Powder Gun Qualification (U)  

Science Conference Proceedings (OSTI)

A Large Bore Powder Gun (LBPG) is being designed to enable experimentalists to characterize material behavior outside the capabilities of the NNSS JASPER and LANL TA-55 PF-4 guns. The combination of these three guns will create a capability to conduct impact experiments over a wide range of pressures and shock profiles. The Large Bore Powder Gun will be fielded at the Nevada National Security Site (NNSS) U1a Complex. The Complex is nearly 1000 ft below ground with dedicated drifts for testing, instrumentation, and post-shot entombment. To ensure the reliability, safety, and performance of the LBPG, a qualification plan has been established and documented here. Requirements for the LBPG have been established and documented in WE-14-TR-0065 U A, Large Bore Powder Gun Customer Requirements. The document includes the requirements for the physics experiments, the gun and confinement systems, and operations at NNSS. A detailed description of the requirements is established in that document and is referred to and quoted throughout this document. Two Gun and Confinement Systems will be fielded. The Prototype Gun will be used primarily to characterize the gun and confinement performance and be the primary platform for qualification actions. This gun will also be used to investigate and qualify target and diagnostic modifications through the life of the program (U1a.104 Drift). An identical gun, the Physics Gun, will be fielded for confirmatory and Pu experiments (U1a.102D Drift). Both guns will be qualified for operation. The Gun and Confinement System design will be qualified through analysis, inspection, and testing using the Prototype Gun for the majority of process. The Physics Gun will be qualified through inspection and a limited number of qualification tests to ensure performance and behavior equivalent to the Prototype gun. Figure 1.1 shows the partial configuration of U1a and the locations of the Prototype and Physics Gun/Confinement Systems.

Rabern, Donald A. [Los Alamos National Laboratory; Valdiviez, Robert [Los Alamos National Laboratory

2012-04-02T23:59:59.000Z

437

Impact dynamics of porous powder. Final report  

SciTech Connect

The shock adiabats have been built experimentally in the range of moderate pressures for three porous materials: Al{sub 2}O{sub 3} wheat flour, and their mixture. The model, which describes the behavior of porous powder materials under large-amplitude dynamic loading, has been constructed. The model applicability to describing the shock wave processes is confirmed by good agreement of the calculated shock adiabats and the data obtained in the experiments. The compressive strength of compacted samples has been determined. The possible trend of further researches is presented in conclusion. 15 refs., 19 figs., 6 tabs.

Titov, V.M.

1995-12-31T23:59:59.000Z

438

Laser production of articles from powders  

DOE Patents (OSTI)

Method and apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. Preferably the tool path and other parameters of the deposition process are established using computer-aided design and manufacturing techniques. A controller comprised of a digital computer directs movement of a deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which a deposition head which delivers the laser beam and powder to the deposition zone moves along the tool path. 20 figs.

Lewis, G.K.; Milewski, J.O.; Cremers, D.A.; Nemec, R.B.; Barbe, M.R.

1998-11-17T23:59:59.000Z

439

Laser production of articles from powders  

DOE Patents (OSTI)

Method and apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. Preferably the tool path and other parameters of the deposition process are established using computer-aided design and manufacturing techniques. A controller comprised of a digital computer directs movement of a deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which a deposition head which delivers the laser beam and powder to the deposition zone moves along the tool path.

Lewis, Gary K. (Los Alamos, NM); Milewski, John O. (Santa Fe, NM); Cremers, David A. (Los Alamos, NM); Nemec, Ronald B. (White Rock, NM); Barbe, Michael R. (White Rock, NM)

1998-01-01T23:59:59.000Z

440

Iowa Powder Atomization Technologies, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa Powder Iowa Powder Atomization Technologies, Inc. America's Next Top Energy Innovator Challenge 6067 likes Iowa Powder Atomization Technologies, Inc. Ames Laboratory Iowa Powder Atomization Technologies, Inc. (IPAT) aims to become a leading domestic titanium powder producer allowing for a paradigm shift in the cost of titanium powders for metal injection molding (MIM) feedstock. Decreasing this cost will create vast opportunities for aerospace, military, biomedical, and consumer applications. Titanium and its fabrication by MIM can become one of the United States' most advanced processing technologies and help jump-start many corresponding manufacturing sectors, spurring job creation and economic growth throughout the United States. Titanium is viewed as one of the most strategic metals of our future. Its

Note: This page contains sample records for the topic "wyoming southern powder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Printed Circuit Board Metal Powder Filters for Low Electron Temperatures  

E-Print Network (OSTI)

We report the characterisation of printed circuit boards (PCB) metal powder filters and their influence on the effective electron temperature which is as low as 22 mK for a quantum dot in a silicon MOSFET structure in a dilution refrigerator. We investigate the attenuation behaviour (10 MHz- 20 GHz) of filter made of four metal powders with a grain size below 50 um. The room-temperature attenuation of a stainless steel powder filter is more than 80 dB at frequencies above 1.5 GHz. In all metal powder filters the attenuation increases with temperature. Compared to classical powder filters, the design presented here is much less laborious to fabricate and specifically the copper powder PCB-filters deliver an equal or even better performance than their classical counterparts.

Filipp Mueller; Raymond N. Schouten; Matthias Brauns; Tian Gang; Wee Han Lim; Nai Shyan Lai; Andrew S. Dzurak; Wilfred G. van der Wiel; Floris A. Zwanenburg

2013-04-11T23:59:59.000Z

442

NanoComposite Stainless Steel Powder Technologies  

SciTech Connect

Oak Ridge National Laboratory has been investigating a new class of Fe-based amorphous material stemming from a DARPA, Defense Advanced Research Projects Agency initiative in structural amorphous metals. Further engineering of the original SAM materials such as chemistry modifications and manufacturing processes, has led to the development of a class of Fe based amorphous materials that upon processing, devitrify into a nearly homogeneous distribution of nano sized complex metal carbides and borides. The powder material is produced through the gas atomization process and subsequently utilized by several methods; laser fusing as a coating to existing components or bulk consolidated into new components through various powder metallurgy techniques (vacuum hot pressing, Dynaforge, and hot isostatic pressing). The unique fine scale distribution of microstructural features yields a material with high hardness and wear resistance compared to material produced through conventional processing techniques such as casting while maintaining adequate fracture toughness. Several compositions have been examined including those specifically designed for high hardness and wear resistance and a composition specifically tailored to devitrify into an austenitic matrix (similar to a stainless steel) which poses improved corrosion behavior.

DeHoff, R.; Glasgow, C. (MesoCoat, Inc.)

2012-07-25T23:59:59.000Z

443

PREPARATION OF METAL POWDER COMPACTS PRIOR TO PRESSING  

DOE Patents (OSTI)

A method of fabricating uranium by a powder metallurgical technique is described. It consists in introducing powdered uranium hydride into a receptacle shaped to coincide with the coatour of the die cavity and heating the hydride so that it decomposes to uranium metal. The metal particles cohere in the shapw of the receptacle and thereafter the prefurmed metal powder is pressed and sintered to obtain a dense compact.

Mansfield, H.

1958-08-26T23:59:59.000Z

444

Geothermal resources of southern Idaho  

DOE Green Energy (OSTI)

The geothermal resource of southern Idaho as assessed by the U.S. Geological Survey in 1978 is large. Most of the known hydrothermal systems in southern Idaho have calculated reservoir temperatures of less than 150 C. Water from many of these systems is valuable for direct heat applications. A majority of the known and inferred geothermal resources of southern Idaho underlie the Snake River Plain. However, major uncertainties exist concerning the geology and temperatures beneath the plain. The largest hydrothermal system in Idaho is in the Bruneau-Grang View area of the western Snake River Plain with a calculated reservoir temperature of 107 C and an energy of 4.5 x 10 to the 20th power joules. No evidence of higher temperature water associated with this system was found. Although the geology of the eastern Snake River Plain suggests that a large thermal anomaly may underlie this area of the plain, direct evidence of high temperatures was not found. Large volumes of water at temperatures between 90 and 150 C probably exist along the margins of the Snake River Plain and in local areas north and south of the plain.

Mabey, D.R.

1983-01-01T23:59:59.000Z

445

Hazards of black blasting powder in underground coal mining  

SciTech Connect

To help reduce explosion hazards in coal mines using dangerous black blasting powder, this circular outlines precautions designed to increase the safety factor in using this explosive.

Harrington, D.; Warncke, R.G.

1949-01-01T23:59:59.000Z

446

Modeling Metal Powder Compaction Using Combined Finite and ...  

Science Conference Proceedings (OSTI)

Presentation Title, Modeling Metal Powder Compaction Using Combined Finite ... Optimization of Thermal Cycle for Rails with Respect to the Wear Resistance.

447

Injection Molding of Tungsten Powder Treated by Jet Mill  

Science Conference Proceedings (OSTI)

Tungsten powder was firstly treated by jet mill, resulting in the improvement of ... and Welding Conditions of Monopile and Transition for Offshore Wind Plant.

448

REPORT: Direct Laser Powder Deposition – “State of the Art”  

Science Conference Proceedings (OSTI)

Dec 11, 2007 ... This report describes the Direct Laser Powder Deposition (DLPD) process known by various names, including Directed Light Fabrication ...

449

Vacuum Attachment for Collection of Lithium Powder ---- Inventor...  

NLE Websites -- All DOE Office Websites (Extended Search)

Vacuum Attachment for Collection of Lithium Powder ---- Inventor(s) Hans Schneider and Stephan Jurczynski The Vacuum Attachment is part of an integrated system designed to collect...

450

Spark Plasma Sintering of Iron and Titanium Powders by ...  

Science Conference Proceedings (OSTI)

Mixtures of titanium and iron powders were activated in kerosene by high-voltage electrical discharges with different electrical discharge numbers.

451

Properties of Conventionally Alloyed and Powder Alloyed Nano ...  

Science Conference Proceedings (OSTI)

Presentation Title, Properties of Conventionally Alloyed and Powder Alloyed Nano-Crystalline Titanium Consolidated Via Spark Plasma Sintering. Author(s) ...

452

Enhanced Control of Powder Yields from Close-Coupled Gas ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Advanced designs for discrete-jet close-coupled (DJ-CC) gas atomization nozzles and melt feed tubes have been developed to enable powder

453

Gas Atomization of Amorphous Aluminum Powder: Part II. Experimental Investigation  

E-Print Network (OSTI)

indicate that cooling rate increases with the increasingthat the cooling rate increases with decreasing powder size.part I, [1] the cooling rate increases with increasing melt

Zheng, Baolong; Lin, Yaojun; Zhou, Yizhang; Lavernia, Enrique J.

2009-01-01T23:59:59.000Z

454

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating...  

Open Energy Info (EERE)

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating and Revising 100 Years of Studies The USGS published a USGS Professional Paper in 2010 entitled 

455

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating...  

Open Energy Info (EERE)

Search Share this page on Facebook icon Twitter icon Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating and Revising 100 Years of Studies Dataset Summary...

456

Powder Metallurgy: A Route to Nanocomposites - Programmaster.org  

Science Conference Proceedings (OSTI)

The formation of coating during mechanical alloying was the results of repetitive cold welding and fracturing of powder particles with each other and with hard ...

457

Powder Metallurgy Products for Advanced Gas Turbine Applications  

Science Conference Proceedings (OSTI)

ties for gas turbine a.pplications. At Avco Lycoming, powder metallurgy activity has focused upon a series of high strength nickel base superalloys. These alloys  ...

458

Nano-structured Powders Prepared by Spray Drying and Heat ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Eeconomical method for making nano-sized powders such as silicon or colbalt oxides and electrochemical properties of nano-sized oxide ...

459

Effect of Powder Compact Holding Time on the Microstructure and ...  

Science Conference Proceedings (OSTI)

The microstructure and mechanical properties of Ti-6Al-4V alloy and the effects of powder compact holding time on them were investigated. The results showed ...

460

Spark Plasma Sintering of Annular Zirconium Carbide Powder ...  

Science Conference Proceedings (OSTI)

Presentation Title, Spark Plasma Sintering of Annular Zirconium Carbide Powder Pellets:Processing and Simulation. Author(s), Xialu Wei, Wei Li, Eugene A.

Note: This page contains sample records for the topic "wyoming southern powder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Properties of IN-100 Processed by Powder Metallurgy  

Science Conference Proceedings (OSTI)

PROPERTIES OF IN-100 PROCESSED. BY POWDER METALLURGY. L.N. Moskowitz,. R.M. Pelloux and N.J. Grant. Department of Metallurgy and Materials.

462

The Microstructure and Mechanical Properties of EP741NP Powder ...  

Science Conference Proceedings (OSTI)

properties of powder metallurgy superalloys have been studied as part of an on- going effort ... metallurgy and mechanical property capabilities of EP741NP and.

463

Powder Processing and Mechanical Properties - Programmaster.org  

Science Conference Proceedings (OSTI)

Oct 18, 2010 ... The ball milling of powders has become a powerful method to synthesize metastable structures. Mechanical milling - the ball milling of single ...

464

In Situ Neutron Powder Diffraction on Hydrogen Storage Materials  

Science Conference Proceedings (OSTI)

Abstract Scope, In order to pursue hydrogen storage research on powder samples ... A Case Study in Future Energy Challenges: Towards In Situ Hard X-

465

Development and Characterization of Milled Silver Powder Addition ...  

Science Conference Proceedings (OSTI)

In order to add the milled Ag powders to granular PP feedstock two different .... Membranes Obtained from PA6/HDPE Blends Via Precipitation by Immersion.

466

POWDER DIFFRACTION BEAMLINE FOR IN SITU STUDIES OF STRUCTURAL...  

NLE Websites -- All DOE Office Websites (Extended Search)

tunable x-ray energy from 5 to 25 keV. * Powder crystallography, including solving and refining crystal structures, quantitative analysis of phase fraction and sizestrain...

467

Additive Manufacturing and Novel Consolidation of Powder Materials  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... Novel Synthesis and Consolidation of Powder Materials : Additive ... HIP and CIP -Sinter techniques do not need lubricants that can react with ...

468

Measuring Thermal Conductivity of Powder Insulation at Cryogenic Temperatures.  

E-Print Network (OSTI)

?? A device to measure bulk effective thermal conductivity of powder insulation at cryogenic temperatures has been designed and tested. The design consists of two… (more)

Barrios, Matthew Nicklas

2006-01-01T23:59:59.000Z

469

Influence of Powder Particle Size Distribution and Pressure on the ...  

Science Conference Proceedings (OSTI)

during HIP were determined as a function of applied pressure, temperature and initial powder particle size distribution for the nickel base superalloy. RENE 95.

470

Process for synthesizing compounds from elemental powders and product  

DOE Patents (OSTI)

A process for synthesizing intermetallic compounds from elemental powders. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe.sub.3 Al and FeAl.

Rabin, Barry H. (Idaho Falls, ID); Wright, Richard N. (Idaho Falls, ID)

1993-01-01T23:59:59.000Z

471

Apparatus for producing nanoscale ceramic powders  

DOE Patents (OSTI)

An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.

Helble, Joseph J. (Andover, MA); Moniz, Gary A. (Windham, NH); Morse, Theodore F. (Little Compton, RI)

1995-09-05T23:59:59.000Z

472

Apparatus for producing nanoscale ceramic powders  

SciTech Connect

An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles. 5 figs.

Helble, J.J.; Moniz, G.A.; Morse, T.F.

1995-09-05T23:59:59.000Z

473

Apparatus for producing nanoscale ceramic powders  

DOE Patents (OSTI)

An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.

Helble, Joseph J. (Andover, MA); Moniz, Gary A. (Windham, NH); Morse, Theodore F. (Little Compton, RI)

1997-02-04T23:59:59.000Z

474

Apparatus for producing nanoscale ceramic powders  

SciTech Connect

An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles. 5 figs.

Helble, J.J.; Moniz, G.A.; Morse, T.F.

1997-02-04T23:59:59.000Z

475

Synchrotron Mossbauer Spectroscopy of powder samples  

SciTech Connect

Synchrotron Mossbauer Spectroscopy, SMS, is an emerging technique that allows fast and accurate determination of hyperfine field parameters similar to conventional Mossbauer spectroscopy with radioactive sources. This new technique, however, is qualitatively different from Mossbauer spectroscopy in terms of equipment, methodology, and analysis to warrant a new name. In this paper, the authors report on isomer shift and quadrupole splitting measurements of Mohr`s salt, Fe(NH{sub 4}){sub 2}(SO{sub 4}){sub 2}{center_dot}6H{sub 2}O for demonstration purposes. Theoretical calculations were performed and compared to experiments both in energy and time domain to demonstrate the influence of thickness distribution and preferential alignment of powder samples. Such measurements may prove to be useful when the data collection times are reduced to few seconds in the third generation, undulator based synchrotron radiation sources.

Alp, E.E.; Sturhahn, W.; Toellner, T.

1994-08-01T23:59:59.000Z

476

Sinterable powders from laser driven reactions : final report  

E-Print Network (OSTI)

Extremely fine, uniform ceramic powders have been synthesized from Sil4 NH3 and C2H4 gas phase reactants that are heated by absorbing optical energy emitted from a C02 laser. Resulting Si, Si3N4 and SiC powders have been ...

Haggerty, John Scarseth

1981-01-01T23:59:59.000Z

477

Rural migration in southern Nevada  

Science Conference Proceedings (OSTI)

This study reviews the history of migration in two rural counties in Southern Nevada. It is part of a larger study about the impact of a proposed high-level nuclear waste repository on in- and out-migration patterns in the state. The historical record suggests a boom and bust economic cycle has predominated in the region for the past century creating conditions that should be taken into account by decision makers when ascertaining the long-term impacts of the proposed repository.

Mosser, D.; Soden, D.L.

1993-08-01T23:59:59.000Z

478

Extended nuclear plant outages raise Southern California ...  

U.S. Energy Information Administration (EIA)

Although SoCal Citygate spot natural gas prices have increased slightly ... higher wholesale power prices in Southern California more likely are attributable to ...

479

New infrastructure boosts West Virginia, southern Pennsylvania ...  

U.S. Energy Information Administration (EIA)

A notable increase since early 2012 in natural gas production in West Virginia and nearby counties in southern Pennsylvania continued through July 2013.

480

Southern California Channel Islands Bibliography, through 1992  

E-Print Network (OSTI)

coastal environment/basins/fallout/data/abundance/GEOREF. #233. YOUNG DR. Aerial fallout of DDT in Southern California.CALIFORNIA BIGHT/AERIAL FALLOUT/PollutionAbstracts. # 234.

Channel Islands National Marine Sanctuary

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wyoming southern powder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Southern Solar Ltd | Open Energy Information  

Open Energy Info (EERE)

search Name Southern Solar Ltd Place Offham, East Sussex, United Kingdom Sector Solar Product Installer of PV and solar passive hot water systems in the UK. References...

482

More Southern African Data Sets Released  

NLE Websites -- All DOE Office Websites (Extended Search)

six data sets for the Southern African Regional Science Initiative (SAFARI 2000). These data sets, originally prepared in coordination with data investigators by the SAFARI 2000...

483

Southern Ocean Climate and Sea Ice Anomalies Associated with the Southern Oscillation  

Science Conference Proceedings (OSTI)

The anomalies in the climate and sea ice cover of the Southern Ocean and their relationships with the Southern Oscillation (SO) are investigated using a 17-yr dataset from 1982 to 1998. The polar climate anomalies are correlated with the Southern ...

R. Kwok; J. C. Comiso

2002-03-01T23:59:59.000Z

484

PLUTONIUM-HYDROGEN REACTION PRODUCT, METHOD OF PREPARING SAME AND PLUTONIUM POWDER THEREFROM  

DOE Patents (OSTI)

A process is described for forming plutonlum hydride powder by reacting hydrogen with massive plutonium metal at room temperature and the product obtained. The plutonium hydride powder can be converted to plutonium powder by heating to above 200 deg C.

Fried, S.; Baumbach, H.L.

1959-12-01T23:59:59.000Z

485

CoNiFe Alloy Powder Synthesis by High Energy Milling  

Science Conference Proceedings (OSTI)

CoNiFe alloy powder was synthesized by high energy milling of mixtures of Co, Ni and Fe powder as a bulk processing method for producing powder. A milling ...

486

Homogeneous Precipitation of Nickel Hydroxide Powders  

SciTech Connect

Precipitation and characterization of nickel hydroxide powders were investigated. A comprehensive precipitation model incorporating the metal ion hydrolysis, complexation and precipitation reactions was developed for the production of the powders with urea precipitation method. Model predictions on Ni{sup 2+} precipitation rate were confirmed with precipitation experiments carried out at 90 C. Experimental data and model predictions were in remarkable agreement. Uncertainty in the solubility product data of nickel hydroxides was found to be the large contributor to the error. There were demonstrable compositional variations across the particle cross-sections and the growth mechanism was determined to be the aggregation of primary crystallites. This implied that there is a change in the intercalate chemistry of the primary crystallites with digestion time. Predicted changes in the concentrations of simple and complex ions in the solution support the proposed mechanism. The comprehensive set of hydrolysis reactions used in the model described above allows the investigation of other systems provided that accurate reaction constants are available. the fact that transition metal ions like Ni{sup 2+} form strong complexes with ammonia presents a challenge in the full recovery of the Ni{sup 2+}. On the other hand, presence of Al{sup 3+} facilitates the complete precipitation of Ni{sup 2+} in about 3 hours of digestion. A challenge in their predictive modeling studies had been the fact that simultaneous incorporation of more than one metal ion necessitates a different approach than just using the equilibrium constants of hydrolysis, complexation and precipitation reactions. Another limitation of using equilibrium constants is that the nucleation stage of digestion, which is controlled mainly by kinetics, is not fully justified. A new program released by IBM Almaden Research Center (Chemical Kinetics Simulator{trademark}, Version 1.01) lets the user change the order of kinetic components of a reaction which was set to stoichiometric constant with which the species appear in the reaction in KINSIM by default. For instance, in the case of LDH precipitation, the new program allows to change the order of species in the reactions associated with Al{sup 3+} and let the Ni{sup 2+} reactions take over. This could be carried on iteratively until a good fit between the experimental data and the predictions were observed. However for such studies availability of accurate equilibrium constants (especially for the solubility products for the solid phase) is a prerequisite.

Bora Mavis

2003-12-12T23:59:59.000Z

487

Preliminary technical data report: WyCoalGas project water system. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project, Converse County, Wyoming  

SciTech Connect

The WyCoalGas, Inc. Proposed coal gasification plant site is approximately 16 miles north of Douglas, Wyoming, located generally in Sections 27 and 34, T35N, R70W of the sixth prinicpal meridian. The plant site is located in typical high plateau plains of central Wyoming. Climate in the area is typical of semi-arid central Wyoming and is subject to wide variations in temperature. Precipitation in the area averages about 14 inches per year, of which about 10 inches fall during the April-September irrigation season. Projected water requirements at the plant site are 6020 acre-feet per year. Since the proposed plant site is not near any major streams or rivers, water must be transported to it. Water will be supplied from four sources - two surface water and two groundwater. The two surface water sources are LaPrele Reservoir and flood flows from the North Platte River with a 1974 appropriations date. LaPrele Reservoir is located approximately 14 miles west of Douglas, Wyoming, and is shown on Figure A-1. Water will be released from LaPrele Reservoir and flow down LaPrele Creek to the North Platte River. Water from the North Platte River will be diverted at a point in Section 7 of T33N, R71W. The LaPrele water and excess water from the North Platte will be pumped from the river and stored in Panhandle Reservoir No. 1, which is also referred to as Combs Reservoir. A pipeline will convey water from Panhandle Reservoir No. 1 to the coal gasification plant site. The two groundwater sources are located north of Douglas and west of Douglas.

1982-01-01T23:59:59.000Z

488

THE MICROPOROSITY OF BERYLLIUM OXIDE POWDER  

SciTech Connect

Beryllium oxide produced in the thermal decomposition of complex compounds is characterized by the low bulk weight and the inferior pressing properties. An investigation was made of the causes of the deterioration of the pressing properties of beryllium oxide. Beryllium oxide with a bulk weight of 0.107 g/cm/sup 3/ is pressed into briquets ai a pressure of 1 io 1.5 t/cm/sup 2/. It was found thai the amount of pressure applied does not change the properties of the pressed articles. The microporosity of the beryllium oxide sample was investigated as dependent on the sintering temperature. The main cause for the inferior pressing and the low bulk weight of beryllium oxide powder is the high microporosily of ihe sample. An increase of ihe densiiy of beryllium oxide does not only bring about a decrease of the microporosity bui also a change of the grain size. The properties of thue initial beryllium were investigated by means of a small-angle x-ray analysis. (TCO)

Astrakhantsev, S.M.; Umanskii, Ya.S.

1958-01-01T23:59:59.000Z

489

Chinese American Faculty Association of Southern California  

E-Print Network (OSTI)

Chinese American Faculty Association of Southern California CAFA Fall Picnic Date: October 27 Association of Southern California CAFA Fall Picnic at The Getty Center October 27, 2001 4:00- 7:00 p of Finance and Law California State University, Los Angeles Los Angeles, CA 90032 #12;

Chang, Tu-nan

490

Signal Versus Noise in the Southern Oscillation  

Science Conference Proceedings (OSTI)

The utility of a simple index for monitoring the Southern Oscillation signal is explored in detail. Based upon sea level pressure data at the two stations Tahiti (T) and Darwin (D), an optimal index, in the sense that it combines the Southern ...

Kevin E. Trenberth

1984-02-01T23:59:59.000Z

491

DOE Solar Decathlon: University of Southern California  

NLE Websites -- All DOE Office Websites (Extended Search)

Southern California Southern California fluxHome solardecathlon.usc.edu For the U.S. Department of Energy Solar Decathlon 2013, the University of Southern California created fluxHome to celebrate the cultural and technological changes of the 21st century. The house combines a transformable envelope system with customizable components and smart-home technology to allow it to be configured in a multitude of lifestyle scenarios. By re-imagining the suburban tract home as a dynamic spatial environment, the house reflects the diverse lifestyles and ecologies known to Southern California. Design Philosophy In designing fluxHome, the University of Southern California team focused on developing a truly accessible model for energy-independent, low-cost housing that reflects the best qualities of indoor-outdoor living in

492

RECENT ADVANCES IN THE POWDER METALLURGY OF URANIUM CARBIDE  

SciTech Connect

uranium carbide, uranium metal is converted to uranium hydride powder and then carburized using propane gas. The carbide particles are irregular, of a relatively uniform size, and highly pyrophoric. Paraffin, camphor, cetyl alcohol, beeswax, and carbowax are used as lubricants and binders for compacting uranium carbide powder. Sintering studies were conducted for various times and temperatures, primarily in vacuum. An investigation is in progress to evaluate the effect of carbon content on the properties and irradiation stability of uranium carbide. It is shown that the powder metallurgy technique achieves a product wfth reasonably good density and apparentiy adequate properties for reactor utilization. (M.C.G.)

Kalish, H.S.

1962-10-31T23:59:59.000Z

493

Atomizing apparatus for making polymer and metal powders and whiskers  

DOE Patents (OSTI)

Method for making polymer particulates, such as spherical powder and whiskers, by melting a polymer material under conditions to avoid thermal degradation of the polymer material, atomizing the melt using gas jet means in a manner to form atomized droplets, and cooling the droplets to form polymer particulates, which are collected for further processing. Atomization parameters can be controlled to produce polymer particulates with controlled particle shape, particle size, and particle size distribution. For example, atomization parameters can be controlled to produce spherical polymer powders, polymer whiskers, and combinations of spherical powders and whiskers. Atomizing apparatus also is provided for atoomizing polymer and metallic materials.

Otaigbe, Joshua U. (Ames, IA); McAvoy, Jon M. (Moline, IL); Anderson, Iver E. (Ames, IA); Ting, Jason (Ames, IA); Mi, Jia (Pittsburgh, PA); Terpstra, Robert (Ames, IA)

2003-03-18T23:59:59.000Z

494

Southern Hemisphere Synoptic Behavior in Extreme Phases of SAM, ENSO, Sea Ice Extent, and Southern Australia Rainfall  

Science Conference Proceedings (OSTI)

The association between Southern Hemisphere cyclones and anticyclones and the El Nińo–Southern Oscillation (ENSO), southern annular mode (SAM), Antarctic sea ice extent (SIE), and rainfall in Perth and Melbourne is explored. Those cities are, ...

Alexandre Bernardes Pezza; Tom Durrant; Ian Simmonds; Ian Smith

2008-11-01T23:59:59.000Z

495

Remarks of President Barack Obama at Southern California Edison...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remarks of President Barack Obama at Southern California Edison Electric Vehicle Technical Center Remarks of President Barack Obama at Southern California Edison Electric Vehicle...

496

Remarks of President Barack Obama at Southern California Edison...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of President Barack Obama at Southern California Edison Electric Vehicle Technical Center Remarks of President Barack Obama at Southern California Edison Electric Vehicle Technical...

497

Southern Oregon University Highlighted by U.S. Energy Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southern Oregon University Highlighted by U.S. Energy Department for its Investment in Clean Energy Southern Oregon University Highlighted by U.S. Energy Department for its...

498

A new species of Thelypteris (Thelypteridaceae) from southern Bahia, Brazil  

E-Print Network (OSTI)

Forests of Northeastern Brazil. Memoirs of the New Yorkin southern Bahia, Brazil. Biodiversity and Conservation 7:Atlantic Coastal Forest of southern Bahia, Brazil. In: W. W.

Matos, Fernando B.; Smith, Alan R.; Labiak, Paulo H.

2010-01-01T23:59:59.000Z

499

Zro 2 Composite Powder from Zro 2 - Programmaster.org  

Science Conference Proceedings (OSTI)

Presentation Title, Carbothermal Production of Zrb2-Zro2 Composite Powder from ... Nut Shell Fiber and Electron-Beam Irradiation in Thermo-Mechanical Properties of HDPE ... Evaluation of Polypropylene/Saw Dust Composites Prepared with ...

500

Process for synthesizing compounds from elemental powders and product  

DOE Patents (OSTI)

A process for synthesizing intermetallic compounds from elemental powders is described. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe[sub 3] Al and FeAl. 25 figures.

Rabin, B.H.; Wright, R.N.

1993-12-14T23:59:59.000Z