National Library of Energy BETA

Sample records for wyoming index map

  1. wyoming

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming

  2. Wyoming - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming Wyoming

  3. Wyoming - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming Wyoming

  4. Wyoming - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming Wyoming

  5. DOE - Office of Legacy Management -- Wyoming

    Office of Legacy Management (LM)

    Wyoming Wyoming wy_map Riverton Site Shirley Basin South Site Spook Site Last Updated: 12/10

  6. Jackson, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Jackson, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.4799291, -110.7624282 Show Map Loading map... "minzoom":false,"mappingserv...

  7. Casper Mountain, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Casper Mountain, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.7330199, -106.3266921 Show Map Loading map... "minzoom":false,"map...

  8. Rafter J Ranch, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Rafter J Ranch, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.426248, -110.79844 Show Map Loading map... "minzoom":false,"mapping...

  9. Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wyoming: Energy Resources Jump to: navigation, search Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":"ROADMAP","SATELLITE","HYBRI...

  10. Fremont County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arapahoe, Wyoming Atlantic City, Wyoming Boulder Flats, Wyoming Crowheart, Wyoming Dubois, Wyoming Ethete, Wyoming Fort Washakie, Wyoming Hudson, Wyoming Jeffrey City, Wyoming...

  11. Sweetwater County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Acres, Wyoming Eden, Wyoming Farson, Wyoming Granger, Wyoming Green River, Wyoming James Town, Wyoming Little America, Wyoming McKinnon, Wyoming North Rock Springs, Wyoming...

  12. Bar Nunn, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Nunn, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.9135767, -106.3433606 Show Map Loading map... "minzoom":false,"mappingservice...

  13. Weston County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Weston County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.9270224, -104.4723301 Show Map Loading map... "minzoom":false,"mappi...

  14. South Park, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.4221501, -110.793261 Show Map Loading map... "minzoom":false,"mappingservice"...

  15. Vista West, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Vista West is a census-designated place in Natrona County, Wyoming. It falls under Wyoming's...

  16. Wyoming Game and Fish Department Geospatial Data | Open Energy...

    Open Energy Info (EERE)

    Wyoming Game and Fish Department Geospatial Data Jump to: navigation, search OpenEI Reference LibraryAdd to library Map: Wyoming Game and Fish Department Geospatial DataInfo...

  17. Red Butte, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Red Butte is a census-designated place in Natrona County, Wyoming. It falls under Wyoming's...

  18. Uinta County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Wyoming Mountain Wind Places in Uinta County, Wyoming Bear River, Wyoming Carter, Wyoming Evanston, Wyoming Fort Bridger, Wyoming Lonetree, Wyoming Lyman, Wyoming...

  19. Sublette County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Big Piney, Wyoming Bondurant, Wyoming Boulder, Wyoming Calpet, Wyoming Cora, Wyoming Daniel, Wyoming Marbleton, Wyoming Pinedale, Wyoming Retrieved from "http:en.openei.orgw...

  20. Lincoln County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Barge, Wyoming Oakley, Wyoming Opal, Wyoming Smoot, Wyoming Star Valley Ranch, Wyoming Taylor, Wyoming Thayne, Wyoming Turnerville, Wyoming Retrieved from "http:en.openei.orgw...

  1. Teton County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    TriLateral Energy LLC Places in Teton County, Wyoming Alta, Wyoming Hoback, Wyoming Jackson, Wyoming Moose Wilson Road, Wyoming Rafter J Ranch, Wyoming South Park, Wyoming Teton...

  2. Natrona County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wyoming Meadow Acres, Wyoming Midwest, Wyoming Mills, Wyoming Powder River, Wyoming Red Butte, Wyoming Vista West, Wyoming Retrieved from "http:en.openei.orgw...

  3. Laramie County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wyoming Cheyenne Light Fuel & Power Co Places in Laramie County, Wyoming Albin, Wyoming Burns, Wyoming Cheyenne, Wyoming Fox Farm-College, Wyoming Pine Bluffs, Wyoming Ranchettes,...

  4. http://www.esri.com/data/data-maps/index.html

    National Nuclear Security Administration (NNSA)

    Overview Data & Maps content is preconfigured to work with ArcGIS products and provided at no additional cost for ArcGIS users. Data & Maps-DVD containing ready-to-use basemaps and...

  5. Wyoming Biodiesel Co | Open Energy Information

    Open Energy Info (EERE)

    Co Jump to: navigation, search Name: Wyoming Biodiesel Co Place: Wyoming Product: Wyoming-based biodiesel project developer. References: Wyoming Biodiesel Co1 This article is a...

  6. Niobrara County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype B. Places in Niobrara County, Wyoming Lance Creek, Wyoming Lusk, Wyoming Manville, Wyoming Van Tassell, Wyoming Retrieved from...

  7. Washakie County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype B. Places in Washakie County, Wyoming Airport Road, Wyoming Mc Nutt, Wyoming South Flat, Wyoming Ten Sleep, Wyoming Washakie Ten,...

  8. Campbell County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Campbell County is a county in Wyoming. Its FIPS County Code is 005. It is classified as...

  9. Carbon County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Carbon County is a county in Wyoming. Its FIPS County Code is 007. It is classified as ASHRAE...

  10. Big Horn County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Big Horn County is a county in Wyoming. Its FIPS County Code is 003. It is classified as...

  11. Johnson County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Johnson County is a county in Wyoming. Its FIPS County Code is 019. It is classified as...

  12. Airport Road, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Airport Road is a census-designated place in Washakie County, Wyoming. It falls under...

  13. Hot Springs County, Wyoming: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Hot Springs County is a county in Wyoming. Its FIPS County Code is 017. It is classified as...

  14. Park County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Park County is a county in Wyoming. Its FIPS County Code is 029. It is classified as ASHRAE...

  15. The University of Wyoming | Open Energy Information

    Open Energy Info (EERE)

    Wyoming Jump to: navigation, search Name: The University of Wyoming Abbreviation: UW Address: 1000 East University Avenue Place: Laramie, Wyoming Zip: 82071 Phone Number:...

  16. BLM Wyoming State Office | Open Energy Information

    Open Energy Info (EERE)

    Office Jump to: navigation, search Logo: BLM Wyoming State Office Name: BLM Wyoming State Office Abbreviation: Wyoming Address: 5353 Yellowstone Place: Cheyenne, WY Zip: 82009...

  17. Cheyenne, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Registered Energy Companies in Cheyenne, Wyoming 3 Utility Companies in Cheyenne, Wyoming 4 References US Recovery Act Smart Grid Projects in Cheyenne, Wyoming Cheyenne Light, Fuel...

  18. Laramie, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wyoming The University of Wyoming Registered Energy Companies in Laramie, Wyoming Blue Sky Batteries Inc Blue Sky Group Inc Nanomaterials Discovery Corporation NDC References ...

  19. Expansion and Enhacement of the Wyoming Coalbed Methane Clearinghouse Website to the Wyoming Energy Resources Information Clearinghouse.

    SciTech Connect (OSTI)

    Hulme, Diana; Hamerlinck, Jeffrey; Bergman, Harold; Oakleaf, Jim

    2010-03-26

    Energy development is expanding across the United States, particularly in western states like Wyoming. Federal and state land management agencies, local governments, industry and non-governmental organizations have realized the need to access spatially-referenced data and other non-spatial information to determine the geographical extent and cumulative impacts of expanding energy development. The Wyoming Energy Resources Information Clearinghouse (WERIC) is a web-based portal which centralizes access to news, data, maps, reports and other information related to the development, management and conservation of Wyoming??s diverse energy resources. WERIC was established in 2006 by the University of Wyoming??s Ruckelshaus Institute of Environment and Natural Resources (ENR) and the Wyoming Geographic Information Science Center (WyGISC) with funding from the US Department of Energy (DOE) and the US Bureau of Land Management (BLM). The WERIC web portal originated in concept from a more specifically focused website, the Coalbed Methane (CBM) Clearinghouse. The CBM Clearinghouse effort focused only on coalbed methane production within the Powder River Basin of northeast Wyoming. The CBM Clearinghouse demonstrated a need to expand the effort statewide with a comprehensive energy focus, including fossil fuels and renewable and alternative energy resources produced and/or developed in Wyoming. WERIC serves spatial data to the greater Wyoming geospatial community through the Wyoming GeoLibrary, the WyGISC Data Server and the Wyoming Energy Map. These applications are critical components that support the Wyoming Energy Resources Information Clearinghouse (WERIC). The Wyoming GeoLibrary is a tool for searching and browsing a central repository for metadata. It provides the ability to publish and maintain metadata and geospatial data in a distributed environment. The WyGISC Data Server is an internet mapping application that provides traditional GIS mapping and analysis

  20. Wyoming Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Wyoming (Million Cubic Feet) Wyoming Natural Gas Plant Liquids Production Extracted in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 60,873 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Wyoming-Wyoming

  1. Wyoming Natural Gas Processed in Wyoming (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wyoming (Million Cubic Feet) Wyoming Natural Gas Processed in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1,622,025 1,544,493 1,442,021 1,389,782 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed Wyoming-Wyoming

  2. Energy Development Opportunities for Wyoming

    SciTech Connect (OSTI)

    Larry Demick

    2012-11-01

    The Wyoming Business Council, representing the state’s interests, is participating in a collaborative evaluation of energy development opportunities with the NGNP Industry Alliance (an industry consortium), the University of Wyoming, and the US Department of Energy’s Idaho National Laboratory. Three important energy-related goals are being pursued by the State of Wyoming: Ensuring continued reliable and affordable sources of energy for Wyoming’s industries and people Restructuring the coal economy in Wyoming Restructuring the natural gas economy in Wyoming

  3. Wyoming Department of Agriculture | Open Energy Information

    Open Energy Info (EERE)

    Agriculture Jump to: navigation, search Name: Wyoming Department of Agriculture Address: 2219 Carey Avenue Place: Cheyenne, Wyoming Zip: 82002 Phone Number: 307-777-7321 Website:...

  4. Wyoming Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Center Jump to: navigation, search Name Wyoming Wind Energy Center Facility Wyoming Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  5. Wyoming State Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Wyoming State Geological Survey Abbreviation: WSGS Address: P.O. Box 1347 Place: Laramie, Wyoming Zip: 82073 Year Founded: 1933 Phone Number:...

  6. Montana-Dakota Utilities Co (Wyoming) | Open Energy Information

    Open Energy Info (EERE)

    Montana-Dakota Utilities Co (Wyoming) (Redirected from MDU Resources Group Inc (Wyoming)) Jump to: navigation, search Name: Montana-Dakota Utilities Co Place: Wyoming Phone Number:...

  7. Wyoming Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    state, county, city, or district. For more information, please visit the Middle School Coach page. Wyoming Region Middle School Regional Wyoming Wyoming Regional Middle School...

  8. Wyoming Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    designated for your school's state, county, city, or district. For more information, please visit the High School Coach page. Wyoming Regions High School Regional Wyoming Wyoming...

  9. Energy Incentive Programs, Wyoming | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wyoming Energy Incentive Programs, Wyoming Updated February 2015 Wyoming utilities budgeted over $6 million in 2013 to promote energy efficiency and load management in the state. What public-purpose-funded energy efficiency programs are available in my state? Wyoming has no statewide public-purpose-funded energy efficiency programs. What utility energy efficiency programs are available to me? PacifiCorp/Rocky Mountain Power has consolidated its incentives for commercial, industrial, and

  10. Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade...

  11. Wyoming Game and Fish Department | Open Energy Information

    Open Energy Info (EERE)

    Game and Fish Department Jump to: navigation, search Name: Wyoming Game and Fish Department Abbreviation: WGFD Address: 5400 Bishop Boulevard Place: Cheyenne, Wyoming Zip: 82006...

  12. Wyoming Office of State Lands and Investments | Open Energy Informatio...

    Open Energy Info (EERE)

    Investments Jump to: navigation, search Name: Wyoming Office of State Lands and Investments Abbreviation: OSLI Address: 122 West 25th Street 3W Place: Cheyenne, Wyoming Zip: 82001...

  13. Wyoming State Historic Preservation Office | Open Energy Information

    Open Energy Info (EERE)

    Historic Preservation Office Jump to: navigation, search Name: Wyoming State Historic Preservation Office Abbreviation: SHPO Address: 2301 Central Avenue Place: Cheyenne, Wyoming...

  14. Albany County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    The University of Wyoming Registered Energy Companies in Albany County, Wyoming Blue Sky Batteries Inc Blue Sky Group Inc Nanomaterials Discovery Corporation NDC Places in...

  15. Wyoming Oil and Gas Conservation Commission | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Conservation Commission Jump to: navigation, search Name: Wyoming Oil and Gas Conservation Commission Address: 2211 King Blvd Place: Wyoming Zip: 82602 Website:...

  16. ,"Utah and Wyoming Natural Gas Plant Liquids, Expected Future...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels)" ... ,"Data 1","Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production ...

  17. Categorical Exclusion Determinations: Wyoming | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wyoming Categorical Exclusion Determinations: Wyoming Location Categorical Exclusion Determinations issued for actions in Wyoming. DOCUMENTS AVAILABLE FOR DOWNLOAD June 12, 2016 CX-100640 Categorical Exclusion Determination U.S. Forest Service Pacific Northwest Region Photovoltaic Systems Award Number: DE-EE0007459 CX(s) Applied: A9, B5.16 Federal Energy Management Program Date: 6/2/2016 Location(s): WY Office(s): Golden Field Office August 6, 2015 CX-014042: Categorical Exclusion Determination

  18. Wyoming Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy ... " Hydro Conventional",307,3.8 " Solar","-","-" " Wind",1415,17.7 " WoodWood ...

  19. Wyoming Infrastructure Authority | Open Energy Information

    Open Energy Info (EERE)

    Name: Wyoming Infrastructure Authority Abbreviation: WIA Address: 200 E. 17th Street, Unit B Place: Cheyenne, WY Zip: 82001 Year Founded: 2004 Phone Number: (307) 635-3573...

  20. Wyoming/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Wyoming Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  1. ,"Wyoming Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  2. ,"Wyoming Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:30:00 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Wyoming Natural Gas in ...

  3. Wyoming/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Incentive Type Active Black Hills Power - Commercial Energy Efficiency Programs (Wyoming) Utility Rebate Program Yes Black Hills Power - Residential Customer Rebate Program...

  4. ,"Wyoming Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",10,"Monthly","32016","01151989" ,"Release ...

  5. MAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MAP MAP MAP from Allinea Software is a parallel profiler with a simple graphical user interface. It is installed on Edison and Cori. Note that the performance of the X Windows-based MAP Graphical User Interface can be greatly improved if used in conjunction with the free NX software. Introduction Allinea MAP is a parallel profiler with simple Graphical User Interface. MAP can be run with up to 512 processors, to profile serial, OpenMP and MPI codes. The Allinea MAP web page and 'Allinea Forge

  6. Wyoming DOE EPSCoR

    SciTech Connect (OSTI)

    Gern, W.A.

    2004-01-15

    All of the research and human resource development projects were systemic in nature with real potential for becoming self sustaining. They concentrated on building permanent structure, such as faculty expertise, research equipment, the SEM Minority Center, and the School of Environment and Natural Resources. It was the intent of the DOE/EPSCoR project to permanently change the way Wyoming does business in energy-related research, human development for science and engineering careers, and in relationships between Wyoming industry, State Government and UW. While there is still much to be done, the DOE/EPSCoR implementation award has been successful in accomplishing that change and enhancing UW's competitiveness associated with coal utilization, electrical energy efficiency, and environmental remediation.

  7. Recovery Act State Memos Wyoming

    Broader source: Energy.gov (indexed) [DOE]

    Wyoming For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  8. Alternative Fuels Data Center: Wyoming Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Wyoming Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Wyoming Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Wyoming Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Wyoming Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Wyoming

  9. Wyoming Wind Power Project (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

  10. Wyoming Shale Proved Reserves (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Wyoming Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0...

  11. Wyoming Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    Cheyenne, Wyoming Zip: 82009 Phone Number: 777-4486 Website: www.dot.state.wy.ushome.html This article is a stub. You can help OpenEI by expanding it. References Retrieved from...

  12. Market-Based Wildlife Mitigation in Wyoming | Open Energy Information

    Open Energy Info (EERE)

    in Wyoming Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Market-Based Wildlife Mitigation in Wyoming Abstract Covers the basics of mitigation...

  13. LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Response to 2010 Flood | Department of Energy Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood October 16, 2012 - 10:50am Addthis LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil

  14. Wyoming Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Wyoming Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 0 7 102 29 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production Wyoming Shale Gas Proved Reserves, Reserves Changes, and Production Shale Gas

  15. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct...

    Office of Scientific and Technical Information (OSTI)

    from Wyoming State's Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct conversion of Wyoming coals and coal-lignin mixed feeds into liquid ...

  16. Wyoming Regional Science Bowl | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    Wyoming Regions Wyoming Regional Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School ...

  17. Lamar Buffalo Ranch, Yellowstone National Park, Wyoming | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Lamar Buffalo Ranch, Yellowstone National Park, Wyoming Lamar Buffalo Ranch, Yellowstone National Park, Wyoming Photo of Photovoltaic System at Lamar Buffalo Ranch in Yellowstone National Park Yellowstone National Park, Wyoming, has many historical sites within its boundaries. One of these is the Lamar Buffalo Ranch, a ranch that was set up in the early 1900s to breed buffalo for replacement stock within the park during a time when their numbers were very low. The ranch buildings are

  18. Utah Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Wyoming (Million Cubic Feet) Utah Natural Gas Plant Liquids Production Extracted in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 469 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Utah-Wyoming

  19. Montana Natural Gas Processed in Wyoming (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wyoming (Million Cubic Feet) Montana Natural Gas Processed in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 785 656 622 631 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed Montana-Wyoming

  20. Montana Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Wyoming (Million Cubic Feet) Montana Natural Gas Plant Liquids Production Extracted in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 27 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Montana-Wyoming

  1. Wyoming Renewable Electric Power Industry Net Generation, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",843,729,835,967,1024 "Solar","-","-","-","-","-" "Wind",759,755,963,2226,324...

  2. Chapter 1 of the Wyoming Public Service Commission Regulations...

    Open Energy Info (EERE)

    of the Wyoming Public Service Commission Regulations: Rules of Practice and Procedure Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  3. Chapter 9 of the Wyoming Public Service Commission Regulations...

    Open Energy Info (EERE)

    9 of the Wyoming Public Service Commission Regulations: General Forms Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation:...

  4. Wyoming Department of State Parks and Cultural Resources and...

    Open Energy Info (EERE)

    and Historic Sites - Rules and Regulations, Chapter 1Legal Abstract This chapter sets forth the rules and regulations of the Wyoming Department of State Parks and Cultural...

  5. Rules and Regulations of the Wyoming Industrial Siting Council...

    Open Energy Info (EERE)

    Document- RegulationRegulation: Rules and Regulations of the Wyoming Industrial Siting Council - Chapter 1Legal Abstract Industrial development information and siting rules and...

  6. Rules and Regulations of the Wyoming Industrial Siting Council...

    Open Energy Info (EERE)

    Document- RegulationRegulation: Rules and Regulations of the Wyoming Industrial Siting Council - Chapter 2Legal Abstract Rules of practice and proceedures of the Industrial Siting...

  7. Chapter 2 of the Wyoming Public Service Commission Regulations...

    Open Energy Info (EERE)

    2 of the Wyoming Public Service Commission Regulations: General Regulations Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation:...

  8. Wyoming Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Energy Source",2006,2007,2008,2009,2010 "Fossil",6105,6065,6150,6147,6253 " ... " Other Gases",92,92,92,92,92 "Nuclear","-","-","-","-","-" ...

  9. ,"Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming...

  10. Wyoming's At-large congressional district: Energy Resources ...

    Open Energy Info (EERE)

    River Energy Corporation Retrieved from "http:en.openei.orgwindex.php?titleWyoming%27sAt-largecongressionaldistrict&oldid184571" Feedback Contact needs updating Image...

  11. Guide to Permitting Electric Transmission Lines in Wyoming |...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Guide to Permitting Electric Transmission Lines in WyomingPermitting...

  12. RAPID/BulkTransmission/Wyoming | Open Energy Information

    Open Energy Info (EERE)

    infrastructure to facilitate the consumption of Wyoming energy in the form of wind, natural gas, coal and nuclear, where applicable." WIA can participate in planning, financing,...

  13. Wyoming Department of Environmental Quality Website | Open Energy...

    Open Energy Info (EERE)

    Quality Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Wyoming Department of Environmental Quality Website Abstract This page links to...

  14. Wyoming Department of State Parks and Cultural Resources | Open...

    Open Energy Info (EERE)

    Cultural Resources Jump to: navigation, search Name: Wyoming Department of State Parks and Cultural Resources Abbreviation: SPCR Address: 2301 Central Avenue Place: Cheyenne,...

  15. Wyoming Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Crude Oil plus ...

  16. Wyoming Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Wyoming has substantial natural resources including coal, natural gas, oil, and wind power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on ...

  17. Wyoming Department of Environmental Quality | Open Energy Information

    Open Energy Info (EERE)

    in 1973 after passage of the Environmental Quality Act. DEQ contributes to Wyoming's quality of life through a combination of monitoring, permitting, inspection, enforcement...

  18. Greater Sage-Grouse Populations and Energy Development in Wyoming...

    Open Energy Info (EERE)

    development affects greater sage-grouse populations in Wyoming. Authors Renee C. Taylor, Matthew R. Dzialak and Larry D. Hayden-Wing Published Taylor, Dzialak and...

  19. Wyoming Natural Gas Underground Storage Net Withdrawals (Million...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Underground Storage Net Withdrawals (Million Cubic Feet) Wyoming Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

  20. ,"Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at ... Data for" ,"Data 1","Wyoming Coalbed Methane Proved Reserves (Billion Cubic ...

  1. EIS-0450: TransWest Express Transmission Project; Wyoming, Colorado...

    Broader source: Energy.gov (indexed) [DOE]

    DOE's Western Area Power Administration and the Department of the Interior's Bureau of Land Management (Wyoming State Office), evaluates the potential environmental impacts of...

  2. ,"Wyoming Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Wyoming Natural Gas Plant Liquids, Expected Future Production ...

  3. Wyoming Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Wyoming Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  4. EA-1581: Sand Hills Wind Project, Wyoming

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management, with DOE’s Western Area Power Administration as a cooperating agency, was preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action had been implemented, Western would have interconnected the proposed facility to an existing transmission line. This project has been canceled.

  5. Wyoming Carbon Capture and Storage Institute

    SciTech Connect (OSTI)

    Nealon, Teresa

    2014-06-30

    This report outlines the accomplishments of the Wyoming Carbon Capture and Storage (CCS) Technology Institute (WCTI), including creating a website and online course catalog, sponsoring technology transfer workshops, reaching out to interested parties via news briefs and engaging in marketing activities, i.e., advertising and participating in tradeshows. We conclude that the success of WCTI was hampered by the lack of a market. Because there were no supporting financial incentives to store carbon, the private sector had no reason to incur the extra expense of training their staff to implement carbon storage. ii

  6. Wyoming Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,038 1980's 1,374 1,228 1,060 959 867 710 691 691 616 581 1990's 573 572 624 502 611 879 824 850 794 713 2000's 652 488 561 450 362 384 347 365 223 362 2010's 334 318

  7. Wyoming coal mining. A wage and employment survey, 1982

    SciTech Connect (OSTI)

    Not Available

    1982-04-01

    The Wyoming Department of Labor and Statistics initiated a wage and employment survey of the State's coal mining industry during the first quarter of 1982. The survey was designed to update the statistics obtained in the 1979 survey of Wyoming's coal mines. Specifically, data were collected to: (1) estimate the number of workers in selected occupational categories; (2) determine the average straight-time hourly wage in each occupational category; (3) determine the number of workers covered by a collective bargaining agreement in each occupational category; (4) review the employer contributions to employee fringe benefit programs; (5) establish bench mark data for Wyoming's underground coal mines.

  8. Utah Natural Gas Processed in Wyoming (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wyoming (Million Cubic Feet) Utah Natural Gas Processed in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 11,554 9,075 7,975 8,374 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed Utah-Wyoming

  9. Lower Valley Energy Inc (Wyoming) | Open Energy Information

    Open Energy Info (EERE)

    Energy Inc Place: Wyoming Phone Number: 800 882 5875 Website: www.lvenergy.com Facebook: https:www.facebook.comLowerValleyEnergy Outage Hotline: 800 882 5875 References:...

  10. Wyoming Dry Natural Gas Expected Future Production (Billion Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Wyoming Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  11. Wyoming Rules of Civil Procedure | Open Energy Information

    Open Energy Info (EERE)

    Rules of Civil Procedure Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Wyoming Rules of Civil ProcedureLegal Abstract...

  12. Wyoming Natural Gas Input Supplemental Fuels (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Wyoming Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  13. Wyoming Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Wyoming Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  14. Market-based Wildlife Mitigation in Wyoming: A Primer | Open...

    Open Energy Info (EERE)

    A Primer Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Market-based Wildlife Mitigation in Wyoming: A Primer Abstract Covers the basics of...

  15. EA-1610: Windy Hollow Wind Project, Laramie County, Wyoming

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proponent request to interconnect their proposed Windy Hollow Wind Project in Laramie County, Wyoming, to DOE’s Western Area Power Administration’s transmission system.

  16. Wyoming Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Wyoming Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 58,111 51,244 ...

  17. Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet) Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 331 299 331 320 ...

  18. City of Powell, Wyoming (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Powell Place: Wyoming Phone Number: (307) 754-9537 Website: www.cityofpowell.comassetspa Outage Hotline: (307) 754-9537 References: EIA Form EIA-861 Final Data File for 2010 -...

  19. Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  20. Wyoming Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Energy Source",2006,2007,2008,2009,2010 "Fossil",43749,44080,44635,42777,43781 " Coal",42892,43127,43808,41954,42987 " Petroleum",46,47,44,50,56 " Natural ...

  1. Geothermal resources of the Washakie and Great Divide basins, Wyoming

    SciTech Connect (OSTI)

    Heasler, H.P.; Buelow, K.L.

    1985-01-01

    The geothermal resources of the Great Divide and Washakie Basins of southern Wyoming are described. Oil well bottomhole temperatures, thermal logs of wells, and heat flow data were interpreted within a framework of geologic and hydrologic constraints. It was concluded large areas in Wyoming are underlain by water hotter than 120{sup 0}F. Isolated areas with high temperature gradients exist within each basin. 68 refs., 8 figs., 7 tabs. (ACR)

  2. Wyoming Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Wyoming Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 261,478 259,227 269,921 1970's 276,926 292,434 298,439 303,519 263,684 215,104 251,846 262,801 255,760 1980's 366,530 393,027 432,313 579,479 624,619 506,241 512,579 560,603 591,472 1990's 635,922 681,266 728,113 750,853 821,689 895,129 845,253 863,052 870,518 902,889 2000's 993,702 988,595 1,083,860 1,101,425 1,249,309 1,278,087

  3. Overview of Energy Development Opportunities for Wyoming

    SciTech Connect (OSTI)

    Larry Demick

    2012-11-01

    An important opportunity exists for the energy future of Wyoming that will • Maintain its coal industry • Add substantive value to its indigenous coal and natural gas resources • Improve dramatically the environmental impact of its energy production capability • Increase its Gross Domestic Product These can be achieved through development of a carbon conversion industry that transforms coal and natural gas to synthetic transportation fuels, chemical feedstocks, and chemicals that are the building blocks for the chemical industry. Over the longer term, environmentally clean nuclear energy can provide the substantial energy needs of a carbon conversion industry and be part of the mix of replacement technologies for the current fleet of aging coal-fired electric power generating stations.

  4. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction Citation Details In-Document Search Title: Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction Under the cooperative agreement program of DOE and funding from Wyoming State's Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct conversion of Wyoming coals and coal-lignin mixed feeds into liquid fuels in conditions highly

  5. DFCI Gene Index Project: Interactive Data Maps for Plant, Animal, Protist, and Fungi Organisims from the Dana-Farber Cancer Institute

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Funding for the Dana-Farber Cancer Institute (DFCI) Gene Index Project ended and the database was taken down in July of 2014. However, this record links you to the "tombstone" page where you will find FTP addresses for the software tools and the data created.

  6. Case studies on direct liquefaction of low rank Wyoming coal

    SciTech Connect (OSTI)

    Adler, P.; Kramer, S.J.; Poddar, S.K.

    1995-12-31

    Previous Studies have developed process designs, costs, and economics for the direct liquefaction of Illinois No. 6 and Wyoming Black Thunder coals at mine-mouth plants. This investigation concerns two case studies related to the liquefaction of Wyoming Black Thunder coal. The first study showed that reducing the coal liquefaction reactor design pressure from 3300 to 1000 psig could reduce the crude oil equivalent price by 2.1 $/bbl provided equivalent performing catalysts can be developed. The second one showed that incentives may exist for locating a facility that liquifies Wyoming coal on the Gulf Coast because of lower construction costs and higher labor productivity. These incentives are dependent upon the relative values of the cost of shipping the coal to the Gulf Coast and the increased product revenues that may be obtained by distributing the liquid products among several nearby refineries.

  7. Drill-hole data, drill-site geology, and geochemical data from the study of Precambrian uraniferous conglomerates of the Medicine Bow Mountains and Sierra Madre of southeastern Wyoming

    SciTech Connect (OSTI)

    Karlstrom, K.E.; Houston, R.S.; Schmidt, T.G.; Inlow, D.; Flurkey, A.J.; Kratochvil, A.L.; Coolidge, C.M.; Sever, C.K.; Quimby, W.F.

    1981-02-01

    This volume is presented as a companion to Volume 1: The Geology and Uranium Potential of Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 3: Uranium Assessment for Precambrian Pebble Conglomerates in Southeastern Wyoming. Volume 1 summarized the geologic setting and geologic and geochemical characteristics of uranium-bearing conglomerates in Precambrian metasedimentary rocks of southeastern Wyoming. Volume 3 is a geostatistical resource estimate of U and Th in quartz-pebble conglomerates. This volume contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks of the Medicine Bow Mountains and Sierra Madre, and drill site geologic maps and cross-sections from most of the holes.

  8. Wyoming Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,780 1,845 772 333 865 139 3,239 337 286 174 2010's 1,278 1,145 536 695 3,098 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Wyoming Dry Natural Gas

  9. Wyoming coal mining: a wage and employment survey, 1984

    SciTech Connect (OSTI)

    Wessel, L.E.

    1984-05-01

    The Wyoming Department of Labor and Statistics initiated a wage and employment survey of the State's coal mining industry during the first quarter of 1984. The survey was designed to update the statistics obtained in the 1982 survey of Wyoming's coal mines. Specifically, data were collected to: (1) estimate the number of workers in selected occupational categories; (2) determine the average straight-time hourly wage in each occupational category; (3) determine the number of workers covered by a collective bargaining agreement in each occupational category; and (4) review the employer contributions to employee fringe benefit programs. 11 references, 5 figures, 6 tables.

  10. Wyoming Natural Gas Liquids Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Wyoming Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 285 1980's 341 384 2000's 1,032 1,121 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Wyoming Natural Gas Liquids Proved

  11. Utah Nevada California Arizona Idaho Oregon Wyoming

    U.S. Energy Information Administration (EIA) Indexed Site

    Map created May 2008; projection is UTM-12, NAD-27. Authors: Sam Limerick (1), Lucy Luo (1), Gary Long (2), David F. Morehouse (2), Jack Perrin (1), and Robert F. King (2) (1) Z, ...

  12. Jobs and Economic Development from New Transmission and Generation in Wyoming Fact Sheet

    SciTech Connect (OSTI)

    2011-05-10

    Wyoming is a significant energy exporter, producing nearly 40% of the nation's coal and 10% of the nation's natural gas. However, opportunities to add new energy exports in the form of power generation are limited by insufficient transmission capacity. This fact sheet summarizes results from a recent analysis conducted by NREL for the Wyoming Infrastructure Authority that estimates jobs and economic development activity that could occur in Wyoming should the market support new investments in power generation and transmission in the state.

  13. Jobs and Economic Development from New Transmission and Generation in Wyoming (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    Wyoming is a significant energy exporter, producing nearly 40% of the nation's coal and 10% of the nation's natural gas. However, opportunities to add new energy exports in the form of power generation are limited by insufficient transmission capacity. This fact sheet summarizes results from a recent analysis conducted by NREL for the Wyoming Infrastructure Authority (WIA) that estimates jobs and economic development activity that could occur in Wyoming should the market support new investments in power generation and transmission in the state.

  14. Economic Development from New Generation and Transmission in Wyoming and Colorado

    SciTech Connect (OSTI)

    Keyser, D.; Lantz, E.

    2013-03-01

    This report analyzes the potential economic impacts in Colorado and Wyoming of a 225 MW natural gas fired electricity generation facility and a 900 MW wind farm constructed in Wyoming as well as a 180 mile, 345 kV transmission line that runs from Wyoming to Colorado. This report and analysis is not a forecast, but rather an estimate of economic activity associated with a hypothetical scenario.

  15. Economic Development from New Generation and Transmission in Wyoming and Colorado (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This report analyzes the potential economic impacts in Colorado and Wyoming of a 225 MW natural gas fired electricity generation facility and a 900 MW wind farm constructed in Wyoming as well as a 180 mile, 345 kV transmission line that runs from Wyoming to Colorado. This report and analysis is not a forecast, but rather an estimate of economic activity associated with a hypothetical scenario.

  16. DOE Preparing for Sale of Unique RMOTC Property and Equipment in Wyoming |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Preparing for Sale of Unique RMOTC Property and Equipment in Wyoming DOE Preparing for Sale of Unique RMOTC Property and Equipment in Wyoming October 24, 2013 - 8:59am Addthis DOE Preparing for Sale of Unique RMOTC Property and Equipment in Wyoming Did you know? RMOTC's mission is to ensure America's energy security and prosperity by assisting its partners in developing and commercializing energy efficient and environmentally friendly technologies to address critical

  17. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct...

    Office of Scientific and Technical Information (OSTI)

    of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction Polyakov, Oleg 01 COAL, LIGNITE, AND PEAT Under the cooperative agreement program of DOE and funding from...

  18. WH ITNEY CAN YON-CART ER CR K YELLOW CR EEK_WY_D PIN EVIEW AN

    U.S. Energy Information Administration (EIA) Indexed Site

    - 10,000 MMCF 10,000.1 - 100,000 MMCF > 100,000 MMCF Basin Outline WY UT ID INDEX MAP 2001 Reserve Summary for Wyoming Thrust Belt Fields Wyoming Thrust Belt Oil & Gas Fields ...

  19. [DOE/EPSCoR traineeship program for Wyoming: Progress report

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    In the first year of the traineeship program supported by the Department of Energy EPSCoR funding, the University of Wyoming has made outstanding progress toward the objective of increasing the supply of highly trained engineers and scientists with interests in energy related disciplines. The scope of the traineeship program has already broadened to encompass both more departments than originally expected and nearly twice as many graduate students as expected. Further, since the primary emphasis was on new students, most of those recruited have developed ties to the DOE labs that would not have otherwise existed. This portion of this Progress Report gives an overall summary of the University of Wyoming`s approach to the DOE Traineeship Program implementation. It also provides an overview of the results so far and vision of how this program fits with the broader objectives for development of the University and its academic programs. Subsequent sections describe very briefly the impact of the traineeship students in each department that was successful in obtaining funds through the competitive process that was adopted. Finally, the report ends with a summary of both the academic status of the participants and the budget expenditures to date.

  20. Survey of glaciers in the northern Rocky Mountains of Montana and Wyoming; Size response to climatic fluctuations 1950-1996

    SciTech Connect (OSTI)

    Chatelain, E.E.

    1997-09-01

    An aerial survey of Northern Rocky Mountain glaciers in Montana and Wyoming was conducted in late summer of 1996. The Flathead, Swan, Mission, and Beartooth Mountains of Montana were covered, as well as the Teton and Wind River Ranges of Wyoming. Present extent of glaciers in this study were compared to limits on recent USGS 15 and 7.5 topographic maps, and also from selected personal photos. Large cirque and hanging glaciers of the Flathead and Wind River Ranges did not display significant decrease in size or change in terminus position. Cirque glaciers in the Swan, Mission, Beartooth and Teton Ranges were markedly smaller in size; with separation of the ice body, growth of the terminus lake, or cover of the ice terminus with rockfalls. A study of annual snowfall, snowdepths, precipitation, and mean temperatures for selected stations in the Northern Rocky Mountains indicates no extreme variations in temperature or precipitation between 1950-1996, but several years of low snowfall and warmer temperatures in the 1980`s appear to have been sufficient to diminish many of the smaller cirque glaciers, many to the point of extinction. The disappearance of small cirque glaciers may indicate a greater sensitivity to overall climatic warming than the more dramatic fluctuations of larger glaciers in the same region.

  1. Utah Nevada California Arizona Idaho Oregon Wyoming

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Great Basin Oil and Gas Fields 2004 BOE Reserve Class No 2004 Reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1 - 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE 0 2 4 1 3 Miles The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by Section 604 of the Energy Policy and Conservation Act Amendments of 2000 (P.L. 106-469). The boundaries are

  2. Utah Nevada California Arizona Idaho Oregon Wyoming

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Gas Reserves Class No 2004 Gas Reserves 0.1 - 10 MMCF 10.1 - 100 MMCF 100.1 - 1,000 MMCF 1,000 - 10,000 MMCF 10,000 - 100,000 MMCF > 100,000 MMCF 0 2 4 1 3 Miles The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by Section 604 of the Energy Policy and Conservation Act Amendments of 2000 (P.L. 106-469). The boundaries are not informed by subsurface

  3. Utah Nevada California Arizona Idaho Oregon Wyoming

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Reserve Class No 2004 Liquids Reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1 - 10,000 Mbbl > 10,000 Mbbl 0 2 4 1 3 Miles The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by Section 604 of the Energy Policy and Conservation Act Amendments of 2000 (P.L. 106-469). The boundaries are not informed by subsurface structural information.

  4. Geothermal resources of the Laramie, Hanna, and Shirley Basins, Wyoming

    SciTech Connect (OSTI)

    Hinckley, B.S.; Heasler, H.P.

    1984-01-01

    A general discussion of how geothermal resources occur; a discussion of the temperatures, distribution, and possible applications of geothermal resources in Wyoming and a general description of the State's thermal setting; and a discussion of the methods used in assessing the geothermal resources are presented. The discussion of the geothermal resources of the Laramie, Hanna, and Shirley Basins includes material on heat flow and conductive gradients, stratigraphy and hydrology, structure and water movement, measured temperatures and gradients, areas of anomalous gradient (including discussion of the warm spring systems at Alcova and Saratoga), temperatures of the Cloverly Formation, and summary and conclusions. 23 references, 9 figures, 5 tables. (MHR)

  5. Wyoming Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,720 2,026 850 406 811 470 3,372 647 170 54 2010's 1,308 1,205 619 679 4,157 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions

  6. Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -3 53 -284 1980's 918 -1,083 10 -206 -37 -331 -93 38 -285 160 1990's -629 445 568 -113 -31 -38 -122 207 -76 171 2000's -20 306 164 132 50 115 36 -6 27 1,158 2010's 521 -209 692 2,058 -1,877 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  7. Wyoming Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Wyoming Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 190 200 230 1990's 284 228 244 194 135 126 170 194 317 314 2000's 308 295 877 179 121 127 133 133 155 130 2010's 120 123 127 132 131 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  8. Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,038 1980's 1,374 1,228 1,060 959 867 710 691 691 616 581 1990's 573 572 624 502 611 879 824 850 794 713 2000's 652 488 561 450 362 384 347 365 223 362 2010's 334 318

  9. Wyoming Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels) Wyoming Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 31 52 2000's 63 74 69 61 45 249 258 208 162 144 2010's 152 188 233 219 362 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved

  10. Wyoming Natural Gas Liquids Lease Condensate, Proved Reserves (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Wyoming Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 211 234 272 2010's 256 259 226 232 184 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease Condensate Proved

  11. Wyoming Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 822 887 1,010 2010's 1,001 1,122 1,064 894 881 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Plant Liquids

  12. Utah and Wyoming Natural Gas Liquids Lease Condensate, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Liquids Lease Condensate, Reserves Based Production (Million Barrels) Utah and Wyoming Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4 1980's 5 11 8 20 26 31 31 28 25 23 1990's 16 17 15 14 14 9 8 8 8 14 2000's 7 11 11 10 10 12 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  13. Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Expected Future Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 280 1980's 294 363 381 483 577 681 700 701 932 704 1990's 641 580 497 458 440 503 639 680 600 531 2000's 858 782 806 756 765 710 686 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  14. Seismic facies analysis of lacustrine system: Paleocene upper Fort Union Formation, Wind River basin, Wyoming

    SciTech Connect (OSTI)

    Liro, L.M.; Pardus, Y.C.

    1989-03-01

    The authors interpreted seismic reflection data, supported by well control, to reconstruct the stratigraphic development of Paleocene Lake Waltman in the Wind River basin of Wyoming. After dividing the upper Fort Union into eight seismic sequences, the authors mapped seismic attributes (amplitude, continuity, and frequency) within each sequence. Interpretation of the variation in seismic attributes allowed them to detail delta development and encroachment into Lake Waltman during deposition of the upper Fort Union Formation. These deltas are interpreted as high-energy, well-differentiated lobate forms with distinct clinoform morphology on seismic data. Prograding delta-front facies are easily identified on seismic data as higher amplitude, continuous events within the clinoforms. Seismic data clearly demonstrate the time-Transgressive nature of this facies. Downdip of these clinoforms, homogeneous shales, as evidenced by low-amplitude, generally continuous seismic events, accumulated in an interpreted quiet, areally extensive lacustrine setting. Seismic definition of the lateral extent of this lacustrine facies is excellent, allowing them to effectively delineate changes in the lake morphology during deposition of the upper Fort Union Formation. Encasing the upper Fort Union lacustrine deposits are fluvial-alluvial deposits, interpreted from discontinuous, variable-amplitude seismic facies. The authors highlight the correlation of seismic facies data and interpretation to well log data in the Frenchie Draw field to emphasize the accuracy of depositional environment prediction from seismic data.

  15. DOE - Office of Legacy Management -- LM Sites Map

    Office of Legacy Management (LM)

    LM Sites Map LM Sites 2016_USsitemap Puerto Rico Connecticut New Jersey Massachusetts Alaska Texas Florida Arizona Missouri Colorado Utah Idaho Washington South Dakota New Mexico California Oregon Tennessee Illinois Ohio Michigan New York Pennsylvania Wyoming Nebraska West Virginia Kentucky Mississippi Nevada Select a Site Acid/Pueblo Canyon Site Adrian Site Albany Site Aliquippa Site Ambrosia Lake Disposal Site Amchitka Site Ashtabula Site Bayo Canyon Site Berkeley Site Beverly Site Bluewater

  16. UMTRA project water sampling and analysis plan, Riverton, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    Surface remediation was completed at the former uranium mill site in Riverton, Wyoming, in 1990. Residual radioactive materials (contaminated soil and debris) were removed and disposed of at Union Carbide Corporation`s (Umetco) nearby Gas Hills Title 2 facility. Ground water in the surficial and semiconfined aquifers (known collectively as the `uppermost aquifer`) below the former mill and tailings site has been contaminated. No contamination has been detected in the deeper, confined sandstone aquifer. The contaminant plume extends off site to the south and east. The plume is constrained by surface wetlands and small streams to the east and west of the site and by the Little Wind River to the south. Fifteen monitor wells installed in 1993 were sampled to better define the contaminant plume and to provide additional water quality data for the baseline risk assessment. Samples also were collected from domestic wells in response to a request by the Wyoming Department of Environmental Quality in January 1994. No contamination attributable to the former uranium milling operations have ever been detected in any of the domestic wells used for potable supplies.

  17. (DOE/EPSCoR traineeship program for Wyoming: Progress report)

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    In the first year of the traineeship program supported by the Department of Energy EPSCoR funding, the University of Wyoming has made outstanding progress toward the objective of increasing the supply of highly trained engineers and scientists with interests in energy related disciplines. The scope of the traineeship program has already broadened to encompass both more departments than originally expected and nearly twice as many graduate students as expected. Further, since the primary emphasis was on new students, most of those recruited have developed ties to the DOE labs that would not have otherwise existed. This portion of this Progress Report gives an overall summary of the University of Wyoming's approach to the DOE Traineeship Program implementation. It also provides an overview of the results so far and vision of how this program fits with the broader objectives for development of the University and its academic programs. Subsequent sections describe very briefly the impact of the traineeship students in each department that was successful in obtaining funds through the competitive process that was adopted. Finally, the report ends with a summary of both the academic status of the participants and the budget expenditures to date.

  18. Geothermal resources of the Southern Powder River Basin, Wyoming

    SciTech Connect (OSTI)

    Heasler, H.P.; Buelow, K.L.; Hinckley, B.S.

    1985-06-13

    This report describes the geothermal resources of the Southern Powder River Basin. The report contains a discussion of the hydrology as it relates to the movement of heated water, a description and interpretation of the thermal regime, and four maps: a generalized geological map, a structure contour map, a thermal gradient contour map, and a ground water temperature map. 10 figs. (ACR)

  19. Economic Development from Gigawatt-Scale Wind Deployment in Wyoming (Presentation)

    SciTech Connect (OSTI)

    Lantz, E.

    2011-05-23

    This presentation provides an overview of economic development in Wyoming from gigawatt-scale wind development and includes a discussion of project context, definitions and caveats, a deployment scenario, modeling inputs, results, and conclusions.

  20. EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming.

  1. EA-1008: Continued Development of Naval Petroleum Reserve No. 3 (Sitewide), Natrona County, Wyoming

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to continue development of the U.S. Department of Energy's Naval Petroleum Reserve No. 3 located in Natrona County, Wyoming over the next...

  2. Little Wind River Floods at Riverton, Wyoming: Study to Determine Impacts on Soil Contaminants

    Office of Energy Efficiency and Renewable Energy (EERE)

    Milling operations between 1958 and 1963, in Riverton, Wyoming, left a plume of contaminated groundwater in the surficial aquifer. The deep regional aquifer was not affected by the plume. In 1989,...

  3. EA-1155: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook, Wyoming

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to comply with the Environmental Protection Agency's ground-water standards set forth in 40 CFR 192 at the Spook, Wyoming Uranium Mill...

  4. Wyo. Stat. 35-12-101 et seq.: The Wyoming Industrial Development...

    Open Energy Info (EERE)

    35-12-101 et seq.: The Wyoming Industrial Development Information and Siting Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute:...

  5. Wyoming Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Wyoming Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Wyoming Regional Middle School

  6. Wyoming Regional Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Wyoming Regional Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Wyoming Regional Science Bowl Print Text Size: A A A

  7. EIS-0450: TransWest Express Transmission Project; Wyoming, Colorado, Utah, and Nevada

    Broader source: Energy.gov [DOE]

    This EIS, prepared jointly by DOE's Western Area Power Administration and the Department of the Interior's Bureau of Land Management (Wyoming State Office), evaluates the potential environmental impacts of granting a right-of-way for the TransWest Express Transmission Project and amending a land use plan. The project consists of an overhead transmission line that would extend approximately 725 miles from south-central Wyoming, through Colorado and Utah. Western proposes to be a joint owner of the project.

  8. Aqueous geochemistry of the Thermopolis hydrothermal system, southern Bighorn Basin, Wyoming, U.S.A.

    SciTech Connect (OSTI)

    Kaszuba, John P. [Univ. of Wyoming, Laramie, WY (United States). Dept. of Geology and Geophysics; Sims, Kenneth W.W. [Univ. of Wyoming, Laramie, WY (United States). School of Energy Resources; Pluda, Allison R. [Univ. of Wyoming, Laramie, WY (United States). Wyoming High-Precision Isotope Lab.

    2014-03-01

    The Thermopolis hydrothermal system is located in the southern portion of the Bighorn Basin, in and around the town of Thermopolis, Wyoming. It is the largest hydrothermal system in Wyoming outside of Yellowstone National Park. The system includes hot springs, travertine deposits, and thermal wells; published models for the hydrothermal system propose the Owl Creek Mountains as the recharge zone, simple conductive heating at depth, and resurfacing of thermal waters up the Thermopolis Anticline.

  9. Jobs and Economic Development from New Transmission and Generation in Wyoming

    SciTech Connect (OSTI)

    Lantz, Eric; Tegen, Suzanne

    2011-03-31

    This report is intended to inform policymakers, local government officials, and Wyoming residents about the jobs and economic development activity that could occur should new infrastructure investments in Wyoming move forward. The report and analysis presented is not a projection or a forecast of what will happen. Instead, the report uses a hypothetical deployment scenario and economic modeling tools to estimate the jobs and economic activity likely associated with these projects if or when they are built.

  10. Jobs and Economic Development from New Transmission and Generation in Wyoming

    SciTech Connect (OSTI)

    Lantz, E.; Tegen, S.

    2011-03-01

    This report is intended to inform policymakers, local government officials, and Wyoming residents about the jobs and economic development activity that could occur should new infrastructure investments in Wyoming move forward. The report and analysis presented is not a projection or a forecast of what will happen. Instead, the report uses a hypothetical deployment scenario and economic modeling tools to estimate the jobs and economic activity likely associated with these projects if or when they are built.

  11. Aqueous geochemistry of the Thermopolis hydrothermal system, southern Bighorn Basin, Wyoming, U.S.A.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kaszuba, John P.; Sims, Kenneth W.W.; Pluda, Allison R.

    2014-06-01

    The Thermopolis hydrothermal system is located in the southern portion of the Bighorn Basin, in and around the town of Thermopolis, Wyoming. It is the largest hydrothermal system in Wyoming outside of Yellowstone National Park. The system includes hot springs, travertine deposits, and thermal wells; published models for the hydrothermal system propose the Owl Creek Mountains as the recharge zone, simple conductive heating at depth, and resurfacing of thermal waters up the Thermopolis Anticline.

  12. Wyoming Natural Gas Plant Liquids Production Extracted in Colorado (Million

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Wyoming Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,342 15,093 14,012 1990's 13,767 14,931 15,064 15,315 15,348 15,580 17,036 15,907 16,171 16,317 2000's 16,366 16,027 16,170 17,164 17,490 17,904 18,016 18,062 19,286 19,843 2010's 19,977 20,146 20,387 20,617 20,894 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  13. Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 315 329 355 1980's 416 423 391 414 484 433 402 456 510 591 1990's 583 639 714 713 780 806 782 891 838 1,213 2000's 1,070 1,286 1,388 1,456 1,524 1,642 1,695 1,825 2,026 2,233 2010's 2,218 2,088 2,001 1,992 1,718 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  14. Wyoming Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 165 492 648 1980's 683 541 546 503 634 391 2,354 425 617 619 1990's 543 893 437 523 1,026 505 569 1,368 1,774 2,910 2000's 753 1,488 1,161 2,704 3,586 1,822 2,281 1,818 4,383 3,535 2010's 5,540 3,033 6,715 1,737 6,530 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  15. Wyoming Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 226 220 637 1980's 760 749 632 1,205 553 598 1,631 771 1,410 1,237 1990's 743 934 996 907 1,146 2,369 1,193 1,191 1,918 3,857 2000's 1,339 1,860 1,295 2,072 2,853 2,160 1,339 4,832 5,316 5,281 2010's 4,880 3,271 1,781 3,800 2,235 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  16. Wyoming Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Wyoming Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,438 18,274 17,619 16,966 25,122 23,252 20,541 1990's 29,233 20,988 27,382 7,592 4,676 4,570 4,252 4,099 3,477 3,125 2000's 3,236 4,032 4,369 4,590 4,823 5,010 5,279 33,309 35,569 36,290 2010's 34,459 39,114 33,826 32,004 21,811 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  17. Wyoming Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Wyoming Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,342 15,093 14,012 1990's 13,767 14,931 15,064 15,315 15,348 15,580 17,036 15,907 16,171 16,317 2000's 16,366 16,027 16,170 17,164 17,490 17,904 18,016 18,062 19,286 19,843 2010's 19,977 20,146 20,387 20,617 20,894 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  18. Wyoming Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Wyoming Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 113,175 112,126 113,129 1990's 113,598 113,463 114,793 116,027 117,385 119,544 131,910 125,740 127,324 127,750 2000's 129,274 129,897 133,445 135,441 137,434 140,013 142,385 143,644 152,439 153,062 2010's 153,852 155,181 157,226 158,889 160,896 - = No Data Reported; -- = Not Applicable; NA = Not

  19. Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 10,461 11,535 13,736 2000's 14,092 13,161 13,103 14,312 12,545 14,143 13,847 14,633 17,090 19,446 2010's 20,807 17,898 16,660 15,283 14,990 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  20. Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,572 16,185 17,090 13,633 16,249 17,446 19,820 1990's 12,182 14,154 13,217 13,051 13,939 14,896 15,409 15,597 16,524 19,272 2000's 20,602 20,991 25,767 28,829 24,053 24,408 23,868 25,276 23,574 25,282 2010's 27,104 28,582 29,157 27,935 25,782 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  1. Wyoming Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Wyoming Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100,950 109,188 96,726 2000's 101,314 98,569 112,872 115,358 107,060 108,314 108,481 140,912 142,705 142,793 2010's 150,106 156,455 153,333 149,820 135,678 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release

  2. Wyoming Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Wyoming Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 395,656 447,615 416,565 352,858 407,863 471,095 623,915 1990's 690,356 711,799 765,254 63,667 14,283 12,449 27,821 719,933 1,004,020 1,079,375 2000's 1,240,038 1,359,868 1,533,724 1,561,322 1,724,725 1,729,760

  3. Wyoming Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Wyoming Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7,834 1980's 9,413 9,659 10,155 10,728 11,014 11,229 10,393 10,572 10,903 11,276 1990's 10,433 10,433 11,305 11,387 11,351 12,712 13,084 14,321 14,371 14,809 2000's 17,211 19,399 21,531 22,716 23,640 24,722 24,463 30,896 32,399 36,748 2010's

  4. Wyoming Nonassociated Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Wyoming Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6,796 1980's 8,039 8,431 9,095 9,769 10,147 10,519 9,702 9,881 10,287 10,695 1990's 9,860 9,861 10,681 10,885 10,740 11,833 12,260 13,471 13,577 14,096 2000's 16,559 18,911 20,970 22,266

  5. Wyoming Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,540 2,297 2,371 2,759 2,085 2,446 2,448 2,738 2,781 2,328 2010's 2,683 2,539 1,736 1,810 1,572 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved

  6. California-Wyoming Grid Integration Study: Phase 1 -- Economic Analysis

    SciTech Connect (OSTI)

    Corbus, D.; Hurlbut, D.; Schwabe, P.; Ibanez, E.; Milligan, M.; Brinkman, G.; Paduru, A.; Diakov, V.; Hand, M.

    2014-03-01

    This study presents a comparative analysis of two different renewable energy options for the California energy market between 2017 and 2020: 12,000 GWh per year from new California in-state renewable energy resources; and 12,000 GWh per year from Wyoming wind delivered to the California marketplace. Either option would add to the California resources already existing or under construction, theoretically providing the last measure of power needed to meet (or to slightly exceed) the state's 33% renewable portfolio standard. Both options have discretely measurable differences in transmission costs, capital costs (due to the enabling of different generation portfolios), capacity values, and production costs. The purpose of this study is to compare and contrast the two different options to provide additional insight for future planning.

  7. Process-scale modeling of elevated wintertime ozone in Wyoming.

    SciTech Connect (OSTI)

    Kotamarthi, V. R.; Holdridge, D. J.; Environmental Science Division

    2007-12-31

    Measurements of meteorological variables and trace gas concentrations, provided by the Wyoming Department of Environmental Quality for Daniel, Jonah, and Boulder Counties in the state of Wyoming, were analyzed for this project. The data indicate that highest ozone concentrations were observed at temperatures of -10 C to 0 C, at low wind speeds of about 5 mph. The median values for nitrogen oxides (NOx) during these episodes ranged between 10 ppbv and 20 ppbv (parts per billion by volume). Measurements of volatile organic compounds (VOCs) during these periods were insufficient for quantitative analysis. The few available VOCs measurements indicated unusually high levels of alkanes and aromatics and low levels of alkenes. In addition, the column ozone concentration during one of the high-ozone episodes was low, on the order of 250 DU (Dobson unit) as compared to a normal column ozone concentration of approximately 300-325 DU during spring for this region. Analysis of this observation was outside the scope of this project. The data analysis reported here was used to establish criteria for making a large number of sensitivity calculations through use of a box photochemical model. Two different VOCs lumping schemes, RACM and SAPRC-98, were used for the calculations. Calculations based on this data analysis indicated that the ozone mixing ratios are sensitive to (a) surface albedo, (b) column ozone, (c) NOx mixing ratios, and (d) available terminal olefins. The RACM model showed a large response to an increase in lumped species containing propane that was not reproduced by the SAPRC scheme, which models propane as a nearly independent species. The rest of the VOCs produced similar changes in ozone in both schemes. In general, if one assumes that measured VOCs are fairly representative of the conditions at these locations, sufficient precursors might be available to produce ozone in the range of 60-80 ppbv under the conditions modeled.

  8. Network Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Network Maps Engineering Services The Network Network Maps Network Traffic Volume Historical Network Maps Network Facts & Stats Connected Sites Peering Connections ESnet...

  9. Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

  10. ARM - Heat Index Calculations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Heat Index Calculations Heat Index is an index that ...

  11. Wyoming Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 1 1 1 1 1 1 1 1 1 1 1 1 2011 2 1 2 2 2 2 2 2 2 2 2 2 2012 2 2 2 2 2 2 2 2 2 2 2 2 2013 2 2 2 2 2 2 2 2 2 2 2 2 2014 2 2 2 2 2 2 2 2 2 2 2 2 2015 2 2 2 2 2 2 2 2 2 2 2 2 2016 2 2 2 2 2 2

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5.66 5.74 5.66 4.62 5.34 5.24 5.56 6.30

  12. Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.14 0.16 0.16 1970's 0.17 0.17 0.18 0.24 0.24 0.51 0.65 0.69 1.36 1.59 1980's 2.05 2.51 2.91 3.05 2.99 2.76 2.56 2.36 2.06 1.88 1990's 1.95 1.85 2.48 1.92 1.52 1.31 1.54 1.84 1.86 1.87 2000's 3.21 3.04 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  13. Wyoming Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Wyoming Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 11,993 11,390 12,540 1970's 12,863 12,802 16,228 16,093 14,072 13,224 14,669 15,625 14,363 14,056 1980's 13,582 15,160 15,482 19,668 29,169 31,871 25,819 24,827 29,434 29,247 1990's 28,591 31,470 31,378 29,118 33,486 36,058 48,254 49,333 44,358 50,639 2000's 65,085 65,740 74,387 69,817 70,831 67,563 67,435

  14. Wyoming Natural Gas Underground Storage Volume (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (Million Cubic Feet) Wyoming Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 84,808 83,269 82,768 83,325 84,578 85,786 88,481 93,162 94,241 91,519 89,490 1991 88,736 88,074 88,116 88,232 88,856 90,844 93,067 94,814 95,931 96,017 94,024 91,897 1992 89,501 87,487 86,672 86,591 86,973 87,552 88,718 88,823 89,685 88,636 86,873 83,311 1993 79,912 77,520 77,152 77,647 78,635 80,704 82,755 84,356 85,549

  15. Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 0.15 1970's 0.15 0.15 0.16 0.18 0.25 0.34 0.41 0.64 0.79 1.13 1980's 1.92 2.77 3.22 3.18 3.32 3.01 2.52 1.76 1.53 1.24 1990's 1.16 1.06 1.13 1.99 2.05 1.78 2.57 2.42 1.78 1.97 2000's 3.34 3.49 2.70 4.13 4.96 6.86 5.85 4.65 6.86 3.40 2010's 4.30 - = No Data Reported; -- = Not Applicable;

  16. Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 53,604 51,563 52,120 53,225 54,581 56,980 58,990 61,428 62,487 60,867 1991 54,085 53,423 53,465 53,581 54,205 56,193 58,416 60,163 61,280 61,366 59,373 57,246 1992 30,371 28,356 27,542 27,461 27,843 28,422 29,588 29,692 30,555 29,505 27,746 23,929 1993 20,529 18,137 17,769 18,265 19,253 21,322 23,372 24,929 26,122

  17. Wyoming Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,043 1,040 1,041 1,042 1,043 1,045 1,040 1,040 1,041 1,038 1,035 1,030 2014 1,034 1,032 1,030 1,031 1,029 1,026 1,025 1,031 1,031 1,030 1,033 1,036 2015 1,043 1,041 1,042 1,043 1,045 1,045 1,042 1,044 1,041 1,040 1,046 1,054 2016 1,056 1,052 1,071 1,055 1,053 1,048

    % of Total Residential Deliveries (Percent) Wyoming Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  18. Perry Wyoming manure to electricity generation plant | Open Energy...

    Open Energy Info (EERE)

    will build and operate anaerobic digestion systems to convert animal manure into methane for electricity generation. Coordinates: 42.895849, -89.760231 Show Map Loading...

  19. Nucleic acid indexing

    DOE Patents [OSTI]

    Guilfoyle, Richard A.; Guo, Zhen

    1999-01-01

    A restriction site indexing method for selectively amplifying any fragment generated by a Class II restriction enzyme includes adaptors specific to fragment ends containing adaptor indexing sequences complementary to fragment indexing sequences near the termini of fragments generated by Class II enzyme cleavage. A method for combinatorial indexing facilitates amplification of restriction fragments whose sequence is not known.

  20. Nucleic acid indexing

    DOE Patents [OSTI]

    Guilfoyle, Richard A.; Guo, Zhen

    2001-01-01

    A restriction site indexing method for selectively amplifying any fragment generated by a Class II restriction enzyme includes adaptors specific to fragment ends containing adaptor indexing sequences complementary to fragment indexing sequences near the termini of fragments generated by Class II enzyme cleavage. A method for combinatorial indexing facilitates amplification of restriction fragments whose sequence is not known.

  1. Location Map

    SciTech Connect (OSTI)

    Lane, Michael

    2013-06-27

    Map file package containing shaded relief base with Hot Pot project area, major roads, railroads, and rivers. The inset map shows regional Paleozoic structural elements.

  2. Location Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Map file package containing shaded relief base with Hot Pot project area, major roads, railroads, and rivers. The inset map shows regional Paleozoic structural elements.

  3. National Uranium Resource Evaluation. Volume 1. Summary of the geology and uranium potential of Precambrian conglomerates in southeastern Wyoming

    SciTech Connect (OSTI)

    Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.; Coolidge, C.M.; Kratochvil, A.L.; Sever, C.K.

    1981-02-01

    A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium and 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates.

  4. The Wyodak-Anderson coal assessment, Powder River Basin, Wyoming and Montana -- An ArcView project

    SciTech Connect (OSTI)

    Flores, R.M.; Gunther, G.; Ochs, A.; Ellis, M.E.; Stricker, G.D.; Bader, L.R.

    1998-12-31

    In 1997, more than 305 million short tons of clean and compliant coal were produced from the Wyodak-Anderson and associated coal beds and zones of the Paleocene Fort Union Formation in the Powder River Basin, Wyoming and Montana. To date, all coal produced from the Wyodak-Anderson, which averages 0.47 percent sulfur and 6.44 percent ash, has met regulatory compliance standards. Twenty-eight percent of the total US coal production in 1997 was from the Wyodak-Anderson coal. Based on the current consumption rates and forecast by the Energy Information Administration (1996), the Wyodak-Anderson coal is projected to produce 413 million short tons by the year 2016. In addition, this coal deposit as well as other Fort Union coals have recently been targeted for exploration and development of methane gas. New US Geological Survey (USGS) digital products could provide valuable assistance in future mining and gas development in the Powder River Basin. An interactive format, with querying tools, using ArcView software will display the digital products of the resource assessment of Wyodak-Anderson coal, a part of the USGS National Coal Resource Assessment of the Powder River Basin. This ArcView project includes coverages of the data point distribution; land use; surface and subsurface ownerships; coal geology, stratigraphy, quality and geochemistry; and preliminary coal resource calculations. These coverages are displayed as map views, cross sections, tables, and charts.

  5. DOE-Sponsored Project Shows Huge Potential for Carbon Storage in Wyoming

    Broader source: Energy.gov [DOE]

    The Wyoming Rock Springs Uplift could potentially store 14 to 17 billion metric tons of carbon dioxide, according to results from a Department of Energy-sponsored study. This is equal to 250 to 300 years’ worth of CO2 emissions produced by the Wyoming’s coal-fired power plants and other large regional anthropogenic CO2 sources at current emission levels.

  6. EIS-0267: BPA/Lower Valley Transmission System Reinforcement Project, Wyoming

    Broader source: Energy.gov [DOE]

    This EIS analyzes BPA and LVPL proposal to construct a new 115-kV line from BPA’s Swan Valley Substation near Swan Valley in Bonneville County, Idaho about 58 km (36 miles) east to BPA’s Teton Substation near Jackson in Teton County, Wyoming.

  7. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction

    SciTech Connect (OSTI)

    Polyakov, Oleg

    2013-12-31

    Under the cooperative agreement program of DOE and funding from Wyoming State’s Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct conversion of Wyoming coals and coal-lignin mixed feeds into liquid fuels in conditions highly relevant to practice. During the Phase I, catalytic direct liquefaction of sub-bituminous Wyoming coals was investigated. The process conditions and catalysts were identified that lead to a significant increase of desirable oil fraction in the products. The Phase II work focused on systematic study of solvothermal depolymerization (STD) and direct liquefaction (DCL) of carbonaceous feedstocks. The effect of the reaction conditions (the nature of solvent, solvent/lignin ratio, temperature, pressure, heating rate, and residence time) on STD was investigated. The effect of a number of various additives (including lignin, model lignin compounds, lignin-derivable chemicals, and inorganic radical initiators), solvents, and catalysts on DCL has been studied. Although a significant progress has been achieved in developing solvothermal depolymerization, the side reactions – formation of considerable amounts of char and gaseous products – as well as other drawbacks do not render aqueous media as the most appropriate choice for commercial implementation of STD for processing coals and lignins. The trends and effects discovered in DCL point at the specific features of liquefaction mechanism that are currently underutilized yet could be exploited to intensify the process. A judicious choice of catalysts, solvents, and additives might enable practical and economically efficient direct conversion of Wyoming coals into liquid fuels.

  8. DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming

    Broader source: Energy.gov [DOE]

    Research sponsored by the U.S. Department of Energy Oil and Natural Gas Program has found a way to distinguish between groundwater and the water co-produced with coalbed natural gas, thereby boosting opportunities to tap into the vast supply of natural gas in Wyoming as well as Montana.

  9. High West Energy, Inc (Wyoming) | Open Energy Information

    Open Energy Info (EERE)

    Phone Number: (307) 245-3261 Website: highwestenergy.com Twitter: @HighWestEnergy Facebook: https:www.facebook.comHighWestEnergy Outage Hotline: (888).834.1657 Outage Map:...

  10. Fall River Rural Elec Coop Inc (Wyoming) | Open Energy Information

    Open Energy Info (EERE)

    Website: www.fallriverelectric.com Facebook: https:www.facebook.comFallRiverREC Outage Hotline: 1.866.887.8442 (After Hours) Outage Map: outage.fallriverelectric.como...

  11. Site Index - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Index Site Index Calendar Hanford Blog Archive Search Site Feeds Site Index Weather What's New Site Index Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size About Us About Hanford Cleanup Regulators, Boards, Councils Hanford Advisory Board Hanford Natural Resource Trustee Council Environmental Protection Agency Washington State Department of Ecology Defense Nuclear Facilities Safety Board Hanford History Hanford Site Wide Programs DOE Human Resources Management

  12. Secretary Moniz Announces Travel to Alaska, Idaho, Wyoming, Missouri to Discuss Energy Opportunities and Attend Dedication of Kansas City Plant

    Broader source: Energy.gov [DOE]

    Energy Secretary Ernest Moniz will speak at two events in Alaska, host a meeting on the Quadrennial Energy Review in Wyoming, and attend the dedication ceremony at the opening of the Kansas City Plant in Missouri.

  13. Electronic Document Master Index

    Energy Science and Technology Software Center (OSTI)

    2003-05-15

    This is a web-based records index search engine. Through a simple or advanced search, users can find data sources and records of interest.

  14. Site Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Access to the ALS Gate Access Guest House Lab Shuttles Maps and Directions Parking Safety Experiment Safety Safety for Staff In Case of Emergency Resources Acronyms Multimedia ...

  15. Multiscale heterogeneity characterization of tidal channel, tidal delta and foreshore facies, Almond Formation outcrops, Rock Springs uplift, Wyoming

    SciTech Connect (OSTI)

    Schatzinger, R.A.; Tomutsa, L.

    1997-08-01

    In order to accurately predict fluid flow within a reservoir, variability in the rock properties at all scales relevant to the specific depositional environment needs to be taken into account. The present work describes rock variability at scales from hundreds of meters (facies level) to millimeters (laminae) based on outcrop studies of the Almond Formation. Tidal channel, tidal delta and foreshore facies were sampled on the eastern flank of the Rock Springs uplift, southeast of Rock Springs, Wyoming. The Almond Fm. was deposited as part of a mesotidal Upper Cretaceous transgressive systems tract within the greater Green River Basin. Bedding style, lithology, lateral extent of beds of bedsets, bed thickness, amount and distribution of depositional clay matrix, bioturbation and grain sorting provide controls on sandstone properties that may vary more than an order of magnitude within and between depositional facies in outcrops of the Almond Formation. These features can be mapped on the scale of an outcrop. The products of diagenesis such as the relative timing of carbonate cement, scale of cemented zones, continuity of cemented zones, selectively leached framework grains, lateral variability of compaction of sedimentary rock fragments, and the resultant pore structure play an equally important, although less predictable role in determining rock property heterogeneity. A knowledge of the spatial distribution of the products of diagenesis such as calcite cement or compaction is critical to modeling variation even within a single facies in the Almond Fin. because diagenesis can enhance or reduce primary (depositional) rock property heterogeneity. Application of outcrop heterogeneity models to the subsurface is greatly hindered by differences in diagenesis between the two settings. The measurements upon which this study is based were performed both on drilled outcrop plugs and on blocks.

  16. Site Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home » Site Map Site Map Home About Overview NERSC Mission Contact us Staff Center Leadership Sudip Dosanjh Sudip Dosanjh: Select Publications Jeff Broughton Katie Antypas Richard Gerber Publications Center Administration James Craw Norma Early Jeff Grounds Betsy MacGowan Zaida McCunney Kerri Peyovich Lynn Rippe David Tooker Center Communications Jon Bashor Kathy Kincade Linda Vu Margie Wylie Advanced Technologies Nicholas Wright Brian Austin Research Projects Christopher Daley Glenn K.

  17. Indexes of Consumption and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    and backward-index estimates; that is, the two-way indexed estimate is the weighted average of the estimates obtained by forward and backward indexing, with higher weight...

  18. The Technical and Economic Feasibility of Siting Synfuels Plants in Wyoming

    SciTech Connect (OSTI)

    Anastasia M Gandrik; Rick A Wood; David Bell; William Schaffers; Thomas Foulke; Richard D Boardman

    2011-09-01

    A comprehensive study has been completed to determine the feasibility of constructing and operating gasification and reforming plants which convert Wyoming fossil resources (coal and natural gas) into the higher value products of power, transportation fuels, and chemical feedstocks, such as ammonia and methanol. Detailed plant designs, simulation models, economic models and well-to-wheel greenhouse gas models were developed, validated by national-level engineering firms, which were used to address the following issues that heretofore have prevented these types of projects from going forward in Wyoming, as much as elsewhere in the United States: 1. Quantification of plant capital and operating expenditures 2. Optimization of plant heat integration 3. Quantification of coal, natural gas, electricity, and water requirements 4. Access to raw materials and markets 5. Requirements for new infrastructure, such as electrical power lines and product pipelines 6. The possible cost-benefit tradeoffs of using natural gas reforming versus coal gasification 7. The extent of labor resources required for plant construction and for permanent operations 8. Options for managing associated CO2 emissions, including capture and uses in enhanced oil recovery and sequestration 9. Options for reducing water requirements such as recovery of the high moisture content in Wyoming coal and use of air coolers rather than cooling towers 10. Permitting requirements 11. Construction, and economic impacts on the local communities This paper will summarize the analysis completed for two major synfuels production pathways, methanol to gasoline and Fischer-Trosph diesel production, using either coal or natural gas as a feedstock.

  19. Environmental Assessment of Remedial Action at the Riverton Uranium Mill Tailings Site, Riverton, Wyoming

    SciTech Connect (OSTI)

    1987-06-01

    The US Department of Energy (DOE) has prepared an environmental assessment (DOE/EA-0254) on the proposed remedial action at the inactive uranium milling site near Riverton, Wyoming. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 U.S.C. 4321, et seq.). Therefore, the preparation of an environmental impact statement (EIS) is not required.

  20. New interpretations of Paleozoic stratigraphy and history in the northern Laramie Range and vicinity, Southeast Wyoming

    SciTech Connect (OSTI)

    Sando, W.J.; Sandberg, C.A.

    1987-01-01

    Biostratigraphic and lithostratigraphic studies of the Paleozoic sequence in Southeast Wyoming indicate the need for revision of the ages and nomenclature of Devonian, Mississippian, and Pennsylvanian formations. The Paleozoic sequence begins with a quartzarenite of Devonian age referred to the newly named Fremont Canyon Sandstone, which is overlain by the Englewood Formation of Late Devonian and Early Mississippian age. The Englewood is succeeded by the Madison Limestone of Early and Late Mississippian age, which is overlain disconformably by the Darwin Sandstone Member (Pennsylvanian) of the Casper and Hartville formations. This sequence represents predominantly marine deposition in near-shore environments marginal to the ancient Transcontinental Arch.

  1. ,"Wyoming Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  2. ,"Wyoming Natural Gas Underground Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  3. ,"Wyoming Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1989" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  4. ,"Wyoming Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  5. ,"Wyoming Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  6. ,"Wyoming Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290wy2m.xls"

  7. ,"Wyoming Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  8. ,"Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  9. ,"Wyoming Shale Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  10. Wyoming Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 391 332 123 1980's 130 287 85 42 27 87 17 5 9 2 1990's 4 16 6 0 17 21 0 39 7 18 2000's 8 44 15 32 8 11 2 2 1 0 2010's 1 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  11. Wyoming Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",303,303,303,304,307 "Solar","-","-","-","-","-" "Wind",287,287,680,1104,1415 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill

  12. Mineral resources of the Buffalo Hump and Sand Dunes Addition Wilderness Study Areas, Sweetwater County, Wyoming

    SciTech Connect (OSTI)

    Gibbons, A.B.; Barbon, H.N.; Kulik, D.M. (Geological Survey, Reston, VA (USA)); McDonnell, J.R. Jr. (US Bureau of Mines (US))

    1990-01-01

    The authors present a study to assess the potential for undiscovered mineral resources and appraise the identified resources of the Buffalo Hump and Sand Dunes Addition Wilderness Study Areas, southwestern Wyoming, There are no mines, prospects, or mineralized areas nor any producing oil or gas wells; however, there are occurrences of coal, claystone and shale, and sand. There is a moderate resource potential for oil shale and natural gas and a low resource potential for oil, for metals, including uranium, and for geothermal sources.

  13. Method and system for efficiently searching an encoded vector index

    DOE Patents [OSTI]

    Bui, Thuan Quang; Egan, Randy Lynn; Kathmann, Kevin James

    2001-09-04

    Method and system aspects for efficiently searching an encoded vector index are provided. The aspects include the translation of a search query into a candidate bitmap, and the mapping of data from the candidate bitmap into a search result bitmap according to entry values in the encoded vector index. Further, the translation includes the setting of a bit in the candidate bitmap for each entry in a symbol table that corresponds to candidate of the search query. Also included in the mapping is the identification of a bit value in the candidate bitmap pointed to by an entry in an encoded vector.

  14. Fiber optic refractive index monitor

    DOE Patents [OSTI]

    Weiss, Jonathan David

    2002-01-01

    A sensor for measuring the change in refractive index of a liquid uses the lowest critical angle of a normal fiber optic to achieve sensitivity when the index of the liquid is significantly less than the index of the fiber core. Another embodiment uses a liquid filled core to ensure that its index is approximately the same as the liquid being measured.

  15. Tiger Team Assessment of the Navel Petroleum and Oil Shale Reserves Colorado, Utah, and Wyoming

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This report documents the Tiger Team Assessment of the Naval Petroleum Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW). NPOSR-CUW consists of Naval Petroleum Reserve Number 3 located near Casper, Wyoming; Naval Oil Shale Reserve Number I and Naval Oil Shale Reserve Number 3 located near Rifle, Colorado; and Naval Oil Shale Reserve Number 2 located near Vernal, Utah, which was not examined as part of this assessment. The assessment was comprehensive, encompassing environment, safety, and health (ES H) and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal NPOSR-CUW requirements was assessed. The NPOSR-CUW Tiger Team Assessment is part of a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary with information on the compliance status of DOE facilities with regard to ES H requirements, root causes for noncompliance, adequacy of DOE and contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes.

  16. Valley Co. McCone Co. Roosevelt Co. Richland Co. Sheridan Co...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Reserve Class Montana North Dakota South Dakota Wyoming INDEX MAP 0 10 20 5 15 Miles Williston Basin Oil and Gas Fields 2004 Liquids Reserve Class No 2004 Liquids ...

  17. Valley Co. McCone Co. Roosevelt Co. Richland Co. Sheridan Co...

    U.S. Energy Information Administration (EIA) Indexed Site

    BOE Reserve Class Montana North Dakota South Dakota Wyoming INDEX MAP 0 10 20 5 15 Miles Williston Basin Oil & Gas Field Boundaries 2004 BOE Reserve Class No 2004 reserves 0.1 - ...

  18. Valley Co. McCone Co. Roosevelt Co. Richland Co. Sheridan Co...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Reserve Class Montana North Dakota South Dakota Wyoming INDEX MAP 0 10 20 5 15 Miles Williston Basin Oil and Gas Fields 2004 Gas Reserve Class No 2004 Gas Reserves 0.1 - 10 ...

  19. Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming

    SciTech Connect (OSTI)

    Eckerle, William; Hall, Stephen

    2005-12-30

    In 2002, Gnomon, Inc., entered into a cooperative agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) for a project entitled, Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming (DE-FC26-02NT15445). This project, funded through DOE’s Preferred Upstream Management Practices grant program, examined cultural resource management practices in two major oil- and gas-producing areas, southeastern New Mexico and the Powder River Basin of Wyoming (Figure 1). The purpose of this project was to examine how cultural resources have been investigated and managed and to identify more effective management practices. The project also was designed to build information technology and modeling tools to meet both current and future management needs. The goals of the project were described in the original proposal as follows: Goal 1. Create seamless information systems for the project areas. Goal 2. Examine what we have learned from archaeological work in the southeastern New Mexico oil fields and whether there are better ways to gain additional knowledge more rapidly or at a lower cost. Goal 3. Provide useful sensitivity models for planning, management, and as guidelines for field investigations. Goal 4. Integrate management, investigation, and decision- making in a real-time electronic system. Gnomon, Inc., in partnership with the Wyoming State Historic Preservation Office (WYSHPO) and Western GeoArch Research, carried out the Wyoming portion of the project. SRI Foundation, in partnership with the New Mexico Historic Preservation Division (NMHPD), Statistical Research, Inc., and Red Rock Geological Enterprises, completed the New Mexico component of the project. Both the New Mexico and Wyoming summaries concluded with recommendations how cultural resource management (CRM) processes might be modified based on the findings of this research.

  20. Site Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Map Expand All | Collapse All Item Sir John Pople, Gaussian Code, and Complex Chemical Reactions Item DOE Research and Development Accomplishments Click to expand or collapse folder Folder DOE Research and Development Accomplishments About Item The Manhattan Project Click to expand or collapse folder Folder DOE Research and Development Accomplishments Alfred Nobel Laureates Associated with the DOE and Predecessors Item Abdus Salam and his International Influences Item Ahmed Zewail and

  1. Site Map | Geothermal

    Office of Scientific and Technical Information (OSTI)

    Site Map Site Map Home Basic Search Advanced Search Geothermal FAQ About Geothermal Site Map Geothermal Feedback Website PoliciesImportant Links

  2. Site Map | DOE Patents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Map Site Map Home Basic Search Advanced Search DOEpatents FAQ About DOEpatents Site Map Contact Us Website Policies/Important Links

  3. Manhattan Project: Maps

    Office of Scientific and Technical Information (OSTI)

    Scroll down to view thumbnails of each map. Leslie Groves looks at a map of Japan. Manhattan Project: General Manhattan Project Facilities Places map "Signature Facilities of the ...

  4. Berkeley Lab Site Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Berkeley Lab | Laboratory Site Map Laboratory Organization Chart DivisionalDepartmental Organization Charts Laboratory Map Interactive Laboratory Map History of the...

  5. Site Map | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Site Map Site Map Home Basic Search Advanced Search Data Explorer FAQ About Data Explorer Site Map Data Explorer Feedback Website PoliciesImportant Links

  6. Research Portfolio Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Portfolio Map Welcome to the Strategic Center for Coal Project Portfolio Web Map assembled by NETL. The web map includes projects across all Coal & Power Systems ...

  7. Project Definition Rating Index Workbook

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Project Definition Rating Index (PDRI) Workbook is a tool that was developed to support DOE G-413.3-12A, U. S. Department of Energy Project Definition Rating Index Guide for Traditional Nuclear...

  8. EA-1617: Lovell-Yellowtail and Basin-Lovell Transmission Line Rebuild Project, Big Horn County, Wyoming, and Big Horn and Carbon Counties, Montana

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration prepared this EA and a finding of no significant impact for a proposal to rebuild the Lovell-Yellowtail (LV-YT) No. 1 and No. 2 115-kV transmission lines, located in Big Horn County, Wyoming, and Big Horn and Carbon Counties in Montana, and the Basin-Lovell 115-kV transmission line in Big Horn County, Wyoming.

  9. Seminoe-Kortes transmission line/substation consolidation project, Carbon County, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1990-07-01

    The existing switchyards at Western Area Power Administration's (WESTERN) Seminoe and Kortes facilities, located approximately 40 miles northeast of Rawlines, Carbon County, Wyoming, were constructed in 1939 and 1951, respectively. The circuit breakers at these facilities are beyond or approaching their service life and need to be replaced. In addition, the switchyards have poor access for maintenance and replacement of equipment, and their locations create potential for oil spills into the North Platte River. WESTERN is proposing to consolidate the switchyard facilities into one new substation to provide easier access, restore proper levels of system reliability, and decrease the potential for oil contamination of the river. This environmental assessment (EA) was prepared to evaluate the impacts of the proposed Seminoe-Kortes Consolidation Project. 57 refs., 12 figs., 8 tabs.

  10. Wyoming Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Wyoming Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 15,722 17,271 19,964 1970's 19,625 20,348 22,402 21,151 14,302 15,102 16,726 16,601 20,363 31,081 1980's 17,763 17,527 26,559 28,010 34,459 34,709 30,599 41,371 40,698 40,361 1990's 41,415 35,142 40,599 20,643 18,615 19,466 19,661 19,696 20,001 - = No Data Reported; -- = Not Applicable; NA =

  11. Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,431 1990's 2,600 2,821 3,111 3,615 3,942 4,196 4,510 5,160 5,166 4,950 2000's 9,907 13,978 15,608 18,154 20,244 23,734 25,052 27,350 28,969 25,710 2010's 26,124 26,180 22,171 22,358 22,091 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  12. Wyoming Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5.66 5.74 5.66 4.62 5.34 5.24 5.56 6.30 6.17 2000's 5.17 8.55 6.84 7.83 8.75 9.48 10.81 5.79 6.51 5.79 2010's 10.08 11.96 14.15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release

  13. Wyoming Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Wyoming Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -525 -558 -653 -568 -437 -289 -114 76 566 493 1,000 1,188 1991 482 1,359 1,901 1,461 980 1,611 1,437 1,173 -147 -1,122 -1,494 -1,591 1992 -23,715 -25,067 -25,923 -26,121 -26,362 -27,771 -28,829 -30,471 -30,725 -31,860 -31,627 -33,317 1993 -9,841 -10,219

  14. Wyoming Natural Gas Delivered to Commercial Consumers for the Account of

    Gasoline and Diesel Fuel Update (EIA)

    Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Wyoming Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 7 1990's 21 89 160 207 358 632 1,370 1,705 987 1,070 2000's 974 1,291 5,338 4,824 4,816 4,657 4,963 4,788 3,501 3,581 2010's 3,857 4,210 3,920 4,456 4,772 - = No Data Reported; -- = Not Applicable;

  15. PPPL Area Map | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL Area Map View Larger Map

  16. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    SciTech Connect (OSTI)

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future projectspecific analyses

  17. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    SciTech Connect (OSTI)

    O'Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

    2007-11-01

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future oil shale and tar

  18. Applied Parallel Metadata Indexing

    SciTech Connect (OSTI)

    Jacobi, Michael R

    2012-08-01

    The GPFS Archive is parallel archive is a parallel archive used by hundreds of users in the Turquoise collaboration network. It houses 4+ petabytes of data in more than 170 million files. Currently, users must navigate the file system to retrieve their data, requiring them to remember file paths and names. A better solution might allow users to tag data with meaningful labels and searach the archive using standard and user-defined metadata, while maintaining security. last summer, I developed the backend to a tool that adheres to these design goals. The backend works by importing GPFS metadata into a MongoDB cluster, which is then indexed on each attribute. This summer, the author implemented security and developed the user interfae for the search tool. To meet security requirements, each database table is associated with a single user, which only stores records that the user may read, and requires a set of credentials to access. The interface to the search tool is implemented using FUSE (Filesystem in USErspace). FUSE is an intermediate layer that intercepts file system calls and allows the developer to redefine how those calls behave. In the case of this tool, FUSE interfaces with MongoDB to issue queries and populate output. A FUSE implementation is desirable because it allows users to interact with the search tool using commands they are already familiar with. These security and interface additions are essential for a usable product.

  19. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    SciTech Connect (OSTI)

    Peggy Robinson

    2005-07-01

    This report summarizes activities that have taken place in the last six (6) months (January 2005-June 2005) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the United States: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico. Gnomon as project lead, worked in both areas.

  20. Auto Indexer for Percussive Hammers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Auto Indexer for Percussive Hammers April 22-25, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. Jiann Su, PI Sandia ...

  1. Microclimatic performance of a free-air warming and CO₂ enrichment experiment in windy Wyoming, USA

    SciTech Connect (OSTI)

    LeCain, Daniel; Smith, David; Morgan, Jack; Kimball, Bruce A.; Pendall, Elise; Miglietta, Franco; Liang, Wenju

    2015-02-06

    In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO₂) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO₂ enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night) but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms⁻¹ average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO₂ had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO₂. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much

  2. Microclimatic performance of a free-air warming and CO₂ enrichment experiment in windy Wyoming, USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    LeCain, Daniel; Smith, David; Morgan, Jack; Kimball, Bruce A.; Pendall, Elise; Miglietta, Franco; Liang, Wenju

    2015-02-06

    In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO₂) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO₂ enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night)more » but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms⁻¹ average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO₂ had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO₂. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming

  3. Maps of Selected State Subdivisions

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves Summary Maps of Selected State Subdivisions Map 1: Alaska Map 2: California Map 3: Louisiana Map 4: New Mexico Map ...

  4. Site Map | ScienceCinema

    Office of Scientific and Technical Information (OSTI)

    Site Map Site Map Home Audio Search Fielded Search About FAQ Site Map Contact Us Website PoliciesImportant Links

  5. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maps Individual Permit: Site Monitoring Area Maps Each Site Monitoring Area Map is updated whenever the map information is updated. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email What do these maps show? The Individual Permit for Storm Water site monitoring area maps display the following information: Surface hydrological features Locations of the Site(s) assigned to the Site Monitoring Area (SMA) The Site Monitoring

  6. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING

    SciTech Connect (OSTI)

    Ronald C. Surdam; Zunsheng Jiao; Nicholas K. Boyd

    1999-11-01

    The new exploration technology for basin center gas accumulations developed by R.C. Surdam and Associates at the Institute for Energy Research, University of Wyoming, was applied to the Riverton Dome 3-D seismic area. Application of the technology resulted in the development of important new exploration leads in the Frontier, Muddy, and Nugget formations. The new leads are adjacent to a major north-south trending fault, which is downdip from the crest of the major structure in the area. In a blind test, the drilling results from six new Muddy test wells were accurately predicted. The initial production values, IP, for the six test wells ranged from < one mmcf/day to four mmcf/day. The three wells with the highest IP values (i.e., three to four mmcf/day) were drilled into an intense velocity anomaly (i.e., anomalously slow velocities). The well drilled at the end of the velocity anomaly had an IP value of one mmcf/day, and the two wells drilled outside of the velocity anomaly had IP values of < one mmcf/day and are presently shut in. Based on these test results, it is concluded that the new IER exploration strategy for detecting and delineating commercial, anomalously pressured gas accumulation is valid in the southwestern portions of the Wind River Basin, and can be utilized to significantly reduce exploration risk and to increase profitability of so-called basin center gas accumulations.

  7. Dairy Biomass-Wyoming Coal Blends Fixed Gasification Using Air-Steam for Partial Oxidation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gordillo, Gerardo; Annamalai, Kalyan

    2012-01-01

    Concenmore » trated animal feeding operations such as dairies produce a large amount of manure, termed as dairy biomass (DB), which could serve as renewable feedstock for thermal gasification. DB is a low-quality fuel compared to fossil fuels, and hence the product gases have lower heat content; however, the quality of gases can be improved by blending with coals. This paper deals with air-steam fixed-bed counterflow gasification of dairy biomass-Wyoming coal blend (DBWC). The effects of equivalence ratio ( 1.6 < Φ < 6.4 ) and steam-to-fuel ratio ( 0.4 < S : F < 0.8 ) on peak temperatures, gas composition, gross heating value of the products, and energy recovery are presented. According to experimental results, increasing Φ and ( S : F ) ratios decreases the peak temperature and increases the H 2 and CO 2 production, while CO production decreases. On the other hand, the concentrations of CH 4 and C 2 H 6 were lower compared to those of other gases and almost not affected by Φ.« less

  8. Wyoming Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Wyoming Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0.9 2.6 3.7 2.8 1.8 3.0 2.5 2.0 -0.2 -1.8 -2.5 -2.7 1992 -43.8 -46.9 -48.5 -48.7 -48.6 -49.4 -49.4 -50.6 -50.1 -51.9 -53.3 -58.2 1993 -32.4 -36.0 -35.5 -33.5 -30.9 -25.0 -21.0 -16.0 -14.5 -8.3 -12.5 -8.1 1994 4.1 2.9 8.2 10.1 12.7 5.3 0.8 0.6 1.5 1.5 11.2 14.0 1995 3.4 11.3 0.7 -7.6

  9. Wyoming Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Wyoming Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 31,205 31,205 31,205 31,205 31,353 31,205 31,501 31,638 31,735 31,754 30,652 30,652 1991 34,651 34,651 34,651 34,651 34,651 34,651 34,651 34,651 34,651 34,651 34,651 34,651 1992 59,130 59,130 59,130 59,130 59,130 59,130 59,130 59,130 59,130 59,130 59,127 59,382 1993 59,382 59,382 59,382 59,382 59,382 59,382 59,382 59,427 59,427 59,427

  10. Status Report: USGS coal assessment of the Powder River Basin, Wyoming

    SciTech Connect (OSTI)

    James A. Luppens; Timothy J. Rohrbacher; Jon E. Haacke; David C. Scott; Lee M. Osmonson

    2006-07-01

    This publication reports on the status of the current coal assessment of the Powder River Basin (PRB) in Wyoming and Montana. This slide program was presented at the Energy Information Agency's 2006 EIA Energy Outlook and Modeling Conference in Washington, DC, on March 27, 2006. The PRB coal assessment will be the first USGS coal assessment to include estimates of both regional coal resources and reserves for an entire coal basin. Extensive CBM and additional oil and gas development, especially in the Gillette coal field, have provided an unprecedented amount of down-hole geological data. Approximately 10,000 new data points have been added to the PRB database since the last assessment (2002) which will provide a more robust evaluation of the single most productive U.S. coal basin. The Gillette coal field assessment, including the mining economic evaluation, is planned for completion by the end of 2006. The geologic portion of the coal assessment work will shift to the northern and northwestern portions of the PRB before the end of 2006 while the Gillette engineering studies are finalized. 7 refs.

  11. Eolian evidence for climatic fluctuations during the Late Pleistocene and Holocene in Wyoming

    SciTech Connect (OSTI)

    Gaylord, D.R.

    1985-01-01

    Evaluation of eolian features, particularly sand dunes, in the Ferris-Lost Solider area of south-central Wyoming demonstrates the dynamic character of late Pleistocene and Holocene climatic fluctuations in a high altitude, intermontane basin. Directly- and indirectly-dated stratigraphic, sedimentary, and geomorphic evidence documents recurrent late Quaternary eolian activity as well as the timing and severity of episodic aridity during the Altithermal. Eolian activity in the Ferris-Lost Solider area began under cool and arid conditions by the late Pleistocene. Radiocarbon-dated dune and interdune strata reveal that Holocene sand dune building at Ferris-Lost Solider peaked between ca. 7660 and 4540 years b.p. The first phase of dune building was the most extensive and lasted until ca. 6460 years b.p. Warm, persistently arid conditions during this time favored active dunes with slipfaces, even in historically well-vegetated locales subject to high water tables. Increased effective moisture from ca. 6460 to 5940 years b.p. promoted dune stabilizing vegetation; but renewed dune building, lasting until ca. 4540 years b.p., followed this climatic moderation. Subsequent dune and interdune deposits reveal a return to climatic conditions where only sporadic and localized dune reactivations have interrupted overall dune stability. The most significant recent reactivation, probably associated with a regional decrease in effective moisture, occurred ca. 290 years b.p.

  12. 3-D RESERVOIR AND STOCHASTIC FRACTURE NETWORK MODELING FOR ENHANCED OIL RECOVERY, CIRCLE RIDGE PHOSPHORIA/TENSLEEP RESERVOIR, WIND RIVER RESERVATION, ARAPAHO AND SHOSHONE TRIBES, WYOMING

    SciTech Connect (OSTI)

    Paul La Pointe; Jan Hermanson; Robert Parney; Thorsten Eiben; Mike Dunleavy; Ken Steele; John Whitney; Darrell Eubanks; Roger Straub

    2002-11-18

    This report describes the results made in fulfillment of contract DE-FG26-00BC15190, ''3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, Wind River Reservation, Arapaho and Shoshone Tribes, Wyoming''. The goal of this project is to improve the recovery of oil from the Tensleep and Phosphoria Formations in Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models. Fields in which natural fractures dominate reservoir permeability, such as the Circle Ridge Field, often experience sub-optimal recovery when recovery processes are designed and implemented that do not take advantage of the fracture systems. For example, a conventional waterflood in a main structural block of the Field was implemented and later suspended due to unattractive results. It is estimated that somewhere less than 20% of the OOIP in the Circle Ridge Field have been recovered after more than 50 years' production. Marathon Oil Company identified the Circle Ridge Field as an attractive candidate for several advanced IOR processes that explicitly take advantage of the natural fracture system. These processes require knowledge of the distribution of matrix porosity, permeability and oil saturations; and understanding of where fracturing is likely to be well-developed or poorly developed; how the fracturing may compartmentalize the reservoir; and how smaller, relatively untested subthrust fault blocks may be connected to the main overthrust block. For this reason, the project focused on improving knowledge of the matrix properties, the fault block architecture and to develop a model that could be used to predict fracture intensity, orientation and fluid flow/connectivity properties. Knowledge of matrix properties was

  13. Wyoming coal-conversion project. Final technical report, November 1980-February 1982. [Proposed WyCoalGas project, Converse County, Wyoming; contains list of appendices with title and identification

    SciTech Connect (OSTI)

    1982-01-01

    This final technical report describes what WyCoalGas, Inc. and its subcontractors accomplished in resolving issues related to the resource, technology, economic, environmental, socioeconomic, and governmental requirements affecting a project located near Douglas, Wyoming for producing 150 Billion Btu per day by gasifying sub-bituminous coal. The report summarizes the results of the work on each task and includes the deliverables that WyCoalGas, Inc. and the subcontractors prepared. The co-venturers withdrew from the project for two reasons: federal financial assistance to the project was seen to be highly uncertain; and funds were being expended at an unacceptably high rate.

  14. Index Ventures | Open Energy Information

    Open Energy Info (EERE)

    capital firm that invests in companies in the fields of information technology and the life sciences. References: Index Ventures1 This article is a stub. You can help OpenEI...

  15. Career Map: Instrumentation Coordinator

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Wind Program's Career Map provides job description information for Instrumentation Coordinator positions.

  16. ,"Wyoming Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release

  17. Annotated bibliography of selected references on shoreline barrier island deposits with emphasis on Patrick Draw Field, Sweetwater County, Wyoming

    SciTech Connect (OSTI)

    Rawn-Schatzinger, V.; Schatzinger, R.A.

    1993-07-01

    This bibliography contains 290 annotated references on barrier island and associated depositional environments and reservoirs. It is not an exhaustive compilation of all references on the subject, but rather selected papers on barrier islands, and the depositional processes of formation. Papers that examine the morphology and internal architecture of barrier island deposits, exploration and development technologies are emphasized. Papers were selected that aid in understanding reservoir architecture and engineering technologies to help maximize recovery efficiency from barrier island oil reservoirs. Barrier islands from Wyoming, Montana and the Rocky Mountains basins are extensively covered.

  18. Savery Project, preference right coal lease applications, Carbon County, State of Wyoming, Moffat and Routt counties, State of Colorado

    SciTech Connect (OSTI)

    Not Available

    1982-11-01

    An abstract of the draft environmental impact statement (EIS) describes a rejected mining plan of the Gulf Oil Corp. to remove subsurface coal in Wyoming, with tunneling under the Little Snake River into Colorado. Rejection by the Federal Energy Regulatory Commission will permit competitive leasing on neighboring tracts, which would have become undervalued if the proposed plan were to proceed. This would have had negative economic and social impacts on the surrounding area. A negative impact from the rejection is the loss of employment and the unmined coal associated with the project. The Federal Coal Leasing Amendments Act of 1975 and the Mineral Leasing Act of 1920 provide legal mandates for the EIS.

  19. Newberry FORGE Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Newberry FORGE Map Newberry FORGE Map Newberry FORGE Map More Documents & Publications Newberry FORGE Map Newberry FORGE Logo Newberry FORGE Map Milford, Utah FORGE Map Newberry

  20. Refining the site conceptual model at a former uranium mill site in Riverton, Wyoming, USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dam, William; Campbell, Sam; Johnson, Ray; Looney, Brian; Denham, Miles E.; Eddy-Dilek, Carol A.; Babits, Steven J.

    2015-07-07

    Milling activities at a former uranium mill site near Riverton, Wyoming, USA, contaminated the shallow groundwater beneath and downgradient of the site. Although the mill operated for <6 years (1958-1963), its impact remains an environmental liability. Groundwater modeling predicted that contaminant concentrations were declining steadily, which confirmed the conceptual site model (CSM). However, local flooding in 2010 mobilized contaminants that migrated downgradient from the Riverton site and resulted in a dramatic increase in groundwater contaminant concentrations. This observation indicated that the original CSM was inadequate to explain site conditions and needed to be refined. In response to the new observationsmore » after the flood, a collaborative investigation to better understand site conditions and processes commenced. This investigation included installing 103 boreholes to collect soil and groundwater samples, sampling and analysis of evaporite minerals along the bank of the Little Wind River, an analysis of evaportranspiration in the shallow aquifer, and sampling naturally organic-rich sediments near groundwater discharge areas. The enhanced characterization revealed that the existing CSM did not account for high uranium concentrations in groundwater remaining on the former mill site and groundwater plume stagnation near the Little Wind River. Observations from the flood and subsequent investigations indicate that additional characterization is still needed to continue refining the CSM and determine the viability of the natural flushing compliance strategy. Additional sampling, analysis, and testing of soil and groundwater are necessary to investigate secondary contaminant sources, mobilization of contaminants during floods, geochemical processes, contaminant plume stagnation, distribution of evaporite minerals and organic-rich sediments, and mechanisms and rates of contaminant transfer from soil to groundwater. Future data collection will be used to

  1. Cambrian pisolites as paleoenvironment and paleotectonic stress indicators, Rattlesnake Mountain, Wyoming

    SciTech Connect (OSTI)

    Neese, D.G.; Vernon, J.H.

    1987-05-01

    Pisolitic-rich carbonates occur within the uppermost 0.5 m of the Meagher Limestone member of the lower Gros Ventre formation in exposures near Cody, Wyoming. The Meagher Limestone is overlain by 51 m, and underlain by 63 m of dark gray Gros Ventre shale. Pisolites range in size from 2.0 to 18 mm in diameter and occur in lime grainstones associated with trilobite fragments, peloids, glauconite, fine-grained subangular quartz, and minor oolites. Girvanella grainstones 15-20 cm thick directly underlie the pisolite strata and have contributed to some of the carbonate material within pisolite nuclei. Dolomite and ankerite may occur within pisolitic rocks as finely crystalline irregular patches. Pisoliths commonly show an oblate ellipsoid shape, with maximum flattening perpendicular to bedding. Long-axis to short-axis ratios of these grains in fracture planes perpendicular to bedding average between 2.5 to 3.5, with the long axis parallel or subparallel to bedding. Grains observed in bedding planes have ratios averaging between 1.5 to 2.0. A paleostress state has produced a strain ellipsoid with long-axis ratios ranging from 1.7 to over 3.0. There appears to be little or no tectonic strain on the bedding plane, so the strain can be described as uniaxial, with maximum compression perpendicular to bedding. The majority of carbonate rocks in the Meagher Limestone were deposited in a normal marine subtidal setting, while ooid and pisolitic grain types are suggestive of subtidal-peritidal conditions. Because of the strain deformed pisoliths, a subaqueous versus subaerial environment of pisolite genesis is difficult to assess. A siliciclastic sandstone, 0.6 m thick with low-angle tabular crossbedding, is present immediately beneath the Meagher Limestone. The sandstone is composed of 94% fine to medium sand-size subangular quartz grains and is associated with glauconite, minor biotite, zircon, and ilmenite.

  2. Refining the site conceptual model at a former uranium mill site in Riverton, Wyoming, USA

    SciTech Connect (OSTI)

    Dam, William; Campbell, Sam; Johnson, Ray; Looney, Brian; Denham, Miles E.; Eddy-Dilek, Carol A.; Babits, Steven J.

    2015-07-07

    Milling activities at a former uranium mill site near Riverton, Wyoming, USA, contaminated the shallow groundwater beneath and downgradient of the site. Although the mill operated for <6 years (1958-1963), its impact remains an environmental liability. Groundwater modeling predicted that contaminant concentrations were declining steadily, which confirmed the conceptual site model (CSM). However, local flooding in 2010 mobilized contaminants that migrated downgradient from the Riverton site and resulted in a dramatic increase in groundwater contaminant concentrations. This observation indicated that the original CSM was inadequate to explain site conditions and needed to be refined. In response to the new observations after the flood, a collaborative investigation to better understand site conditions and processes commenced. This investigation included installing 103 boreholes to collect soil and groundwater samples, sampling and analysis of evaporite minerals along the bank of the Little Wind River, an analysis of evaportranspiration in the shallow aquifer, and sampling naturally organic-rich sediments near groundwater discharge areas. The enhanced characterization revealed that the existing CSM did not account for high uranium concentrations in groundwater remaining on the former mill site and groundwater plume stagnation near the Little Wind River. Observations from the flood and subsequent investigations indicate that additional characterization is still needed to continue refining the CSM and determine the viability of the natural flushing compliance strategy. Additional sampling, analysis, and testing of soil and groundwater are necessary to investigate secondary contaminant sources, mobilization of contaminants during floods, geochemical processes, contaminant plume stagnation, distribution of evaporite minerals and organic-rich sediments, and mechanisms and rates of contaminant transfer from soil to groundwater. Future data collection will be used to

  3. Site observational work plan for the UMTRA Project site at Riverton, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The site observational work plan (SOWP) for the Riverton, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project Site is the first document for the UMTRA Ground Water Project to address site-specific activities to meet compliance with the U.S. Environmental Protection Agency (EPA) proposed ground water standards (52 FR 36000 (1987)). In support of the activities the regulatory framework and drivers are presented along with a discussion of the relationship of this SOWP to other UMTRA Ground Water Project programmatic documents. A combination of the two compliance strategies that will be recommended for this site are no remediation with the application of alternate concentration levels (ACL) and natural flushing in conjunction with institutional controls. ACLs are to be applied to constituents that occur at concentrations above background levels but which are essential nutrients and occur within nutritional ranges and/or have very low toxicity and high dietary intake rates compared to the levels detected in the ground water. The essential premise of natural flushing is that ground water movement and natural attenuation processes will reduce the detected contamination to background levels within 1 00 years. These two recommended compliance strategies were evaluated by applying Riverton site-specific data to the compliance framework developed in the UMTRA Ground Water programmatic environmental impact statement. There are three aquifers beneath the site: a surficial unconfined aquifer, a middle semiconfined aquifer, and a deeper confined aquifer. The milling-related contamination at the site has affected both the surficial and semiconfined aquifers, although the leaky shale aquifers separating these units limits the downward migration of contamination into the semiconfined aquifer. A shale aquitard separates the semiconfined aquifer from the underlying confined aquifer which has not been contaminated by milling-related constituents.

  4. Environmental assessment: Warren Air Force Base 115-kV transmission line, Cheyenne, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1986-03-01

    The Western Area Power Administration (Western), is propsoing to construct a new electrical tranmission line and substation in southeastern Wyoming. This proposed line, called the Warren Air Force Base Tranmission Line, will supply power for Western's system to Francis E.Warren Air Force Base (F.E. Warren AFB) near Cheyenne. It would allow for increased tranmission capacity to the air base. F.E. Warren AFB currently is served electrically be Western via a 13.8-kv line. It is a wood-pole, double-circuit line without an overhead ground wire, which extends from Western's Cheyenne Substation, through an urban area, and onto the air base. The Cheyenne Substation is located on the south side of the city of Cheyenne. The electrical load on the base is increasing from 4 megawatts (MW) to 11 or 12 MW, an approximate three-fold increase. Voltage problems occasionally occur at the base due to the present electrial loads and to the age and inadequacy of the 13.8-kv line, which was placed in service in 1941. The existing line has served beyond its designed service life and requires replacement. Replacement would be necessary even without an increasing load. F.E. Warren AFB has several new and expanding programs, including additional housing, shopping centers, and the Peacekeeper Missile Program. Part of this expansion already has occured; the remainder is expected by early 1988. This expansion has created the need for additional electrical service. The present 13.8-kV line is not capable of supporting the additional load. 28 refs., 4 figs., 2 tabs.

  5. Erosion Resistance Index (ERI) to Assess Surface Stability in Desert Environments

    SciTech Connect (OSTI)

    Hamada, Yuki; Grippo, Mark A.

    2015-11-01

    A new spectral index—erosion resistance index (ERI)—was developed to assess erosion risks in desert landscapes. The index was developed by applying trigonometry to the combination of the green/red band-ratio and the red/near infrared band-ratio from very high spatial resolution imagery. The resultant ERI maps showed spatially cohesive distributions of high and low index values across the study areas. High index values were observed over areas that were resistant to erosion (such as desert pavement and dense vegetation), while low index values overlapped with areas likely dominated by loose sandy soils, such as stream beds and access roads. Although further investigation is warranted, this new index, ERI, shows promise for the assessment of erosion risks in desert regions.

  6. Density Equalizing Map Projections

    Energy Science and Technology Software Center (OSTI)

    1995-07-01

    A geographic map is mathematically transformed so that the subareas of the map are proportional to a given quantity such as population. In other words, population density is equalized over the entire map. The transformed map can be used as a display tool, or it can be statistically analyzed. For example, cases of disease plotted on the transformed map should be uniformly distributed at random, if disease rates are everywhere equal. Geographic clusters of diseasemore » can be readily identified, and their statistical significance determined, on a density equalized map.« less

  7. Forest Carbon Index | Open Energy Information

    Open Energy Info (EERE)

    Forest Carbon Index Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Forest Carbon Index AgencyCompany Organization: Resources for the Future Partner: United Nations...

  8. Energy Development Index (EDI) | Open Energy Information

    Open Energy Info (EERE)

    Index (EDI) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Development Index (EDI) AgencyCompany Organization: International Energy Agency (IEA) Sector:...

  9. Sampling and analyses report for December 1991 semiannual postburn sampling at the RM1 UCG site, Hanna, Wyoming

    SciTech Connect (OSTI)

    Lindblom, S.R.

    1992-01-01

    The Rocky Mountain 1 (RM1) underground coal gasification (UCG) test was conducted from November 16, 1987, through February 26, 1988 at a site approximately one mile south of Hanna, Wyoming. The test consisted of a dual-module operation to evaluate the controlled retracting injection point (CRIP) technology, the elongated linked well (ELW) technology, and the interaction of closely spaced modules operating simultaneously. The test caused two cavities to form in the Hanna No. 1 coal seam and associated overburden. The Hanna No. 1 coal seam was approximately 30 ft thick and lay at depths between 350 and 365 ft below the surface in the test area. The coal seam was overlain by sandstones, siltstones, and claystones deposited by various fluvial environments. The groundwater monitoring was designed to satisfy the requirements of the Wyoming Department of Environmental Quality (WDEQ) in addition to providing research data toward the development of UCG technology that minimizes environmental impacts. Further background material and the sampling and analytical procedures associated with the sampling task are described in the Rocky Mountain 1 Postburn Groundwater Monitoring Quality Assurance Plan (Mason and Johnson 1988).

  10. Site characterization of the highest-priority geologic formations for CO2 storage in Wyoming

    SciTech Connect (OSTI)

    Surdam, Ronald C.; Bentley, Ramsey; Campbell-Stone, Erin; Dahl, Shanna; Deiss, Allory; Ganshin, Yuri; Jiao, Zunsheng; Kaszuba, John; Mallick, Subhashis; McLaughlin, Fred; Myers, James; Quillinan, Scott

    2013-12-07

    This study, funded by U.S. Department of Energy National Energy Technology Laboratory award DE-FE0002142 along with the state of Wyoming, uses outcrop and core observations, a diverse electric log suite, a VSP survey, in-bore testing (DST, injection tests, and fluid sampling), a variety of rock/fluid analyses, and a wide range of seismic attributes derived from a 3-D seismic survey to thoroughly characterize the highest-potential storage reservoirs and confining layers at the premier CO2 geological storage site in Wyoming. An accurate site characterization was essential to assessing the following critical aspects of the storage site: (1) more accurately estimate the CO2 reservoir storage capacity (Madison Limestone and Weber Sandstone at the Rock Springs Uplift (RSU)), (2) evaluate the distribution, long-term integrity, and permanence of the confining layers, (3) manage CO2 injection pressures by removing formation fluids (brine production/treatment), and (4) evaluate potential utilization of the stored CO2

  11. Cumulative hydrologic impact assessments on surface-water in northeastern Wyoming using HEC-1; a pilot study

    SciTech Connect (OSTI)

    Anderson, A.J.; Eastwood, D.C.; Anderson, M.E.

    1997-12-31

    The Surface Mining Control and Reclamation Act of 1977 requires that areas in which multiple mines will affect one watershed be analyzed and the cumulative impacts of all mining on the watershed be assessed. The purpose of the subject study was to conduct a cumulative hydrologic impact assessment (CHIA) for surface-water on a watershed in northeastern Wyoming that is currently being impacted by three mines. An assessment of the mining impact`s affect on the total discharge of the watershed is required to determine whether or not material damage to downstream water rights is likely to occur as a result of surface mining and reclamation. The surface-water model HEC-1 was used to model four separate rainfall-runoff events that occurred in the study basin over three years (1978-1980). Although these storms were used to represent pre-mining conditions, they occurred during the early stages of mining and the models were adjusted accordingly. The events were selected for completeness of record and antecedent moisture conditions (AMC). Models were calibrated to the study events and model inputs were altered to reflect post-mining conditions. The same events were then analyzed with the new model inputs. The results were compared with the pre-mining calibration. Peak flow, total discharge and timing of flows were compared for pre-mining and post-mining models. Data were turned over to the State of Wyoming for assessment of whether material damage to downstream water rights is likely to occur.

  12. Sampling and analyses report for June 1992 semiannual postburn sampling at the RM1 UCG site, Hanna, Wyoming

    SciTech Connect (OSTI)

    Lindblom, S.R.

    1992-08-01

    The Rocky Mountain 1 (RMl) underground coal gasification (UCG) test was conducted from November 16, 1987 through February 26, 1988 (United Engineers and Constructors 1989) at a site approximately one mile south of Hanna, Wyoming. The test consisted of dual module operation to evaluate the controlled retracting injection point (CRIP) technology, the elongated linked well (ELW) technology, and the interaction of closely spaced modules operating simultaneously. The test caused two cavities to be formed in the Hanna No. 1 coal seam and associated overburden. The Hanna No. 1 coal seam is approximately 30 ft thick and lays at depths between 350 ft and 365 ft below the surface in the test area. The coal seam is overlain by sandstones, siltstones and claystones deposited by various fluvial environments. The groundwater monitoring was designed to satisfy the requirements of the Wyoming Department of Environmental Quality (WDEQ) in addition to providing research data toward the development of UCG technology that minimizes environmental impacts. The June 1992 semiannual groundwater.sampling took place from June 10 through June 13, 1992. This event occurred nearly 34 months after the second groundwater restoration at the RM1 site and was the fifteenth sampling event since UCG operations ceased. Samples were collected for analyses of a limited suite set of parameters as listed in Table 1. With a few exceptions, the groundwater is near baseline conditions. Data from the field measurements and analysis of samples are presented. Benzene concentrations in the groundwater were below analytical detection limits.

  13. INDEX

    Office of Environmental Management (EM)

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 CLAUSE 6 - COST ACCOUNTING STANDARDS (CAS) LIABILITY . . . . . . . . . . . 9 CLAUSE 7 - DISCLOSURE AND USE...

  14. Index

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP Baseline Tool - 2004 Home CRA - 2004 Final Recertification Decision CRA Comments & Responses CCA - 1996 CRA CARDs & TSDs CCA CARDs & TSDs Regulatory Tools The Environmental Protection Agency (EPA) on May 18, 1998, certified the Waste Isolation Pilot Plant (WIPP), located near Carlsbad, New Mexico, as the nations first geologic repository for the disposal of transuranic (TRU) wastes generated by atomic energy defense activities. The EPA next Recertified the WIPP's continuing

  15. 3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

    SciTech Connect (OSTI)

    La Pointe, Paul; Parney, Robert; Eiben, Thorsten; Dunleavy, Mike; Whitney, John; Eubanks, Darrel

    2002-09-09

    The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

  16. ARM - Instrument - maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Mesoscale Analysis and Prediction System (MAPS) Note: maps is currently inactive andor...

  17. campus-visitor-map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MC-212 Pollard Aud. MC- 210 MC- 120 MC-130 MC-100 Main Campus Map Building RoomOffice Contact Name + Number Visitor Map You are here. Emergency Assembly Point Entrance Buildings...

  18. WIPP Projects Interative Map

    Broader source: Energy.gov [DOE]

    View WIPP Projects in a larger map. To report corrections, please email WeatherizationInnovation@ee.doe.gov.

  19. SERC Grants Interactive Map

    Office of Energy Efficiency and Renewable Energy (EERE)

    View SERC Grants in a larger map. To report corrections, please email SustainableEnergyWAP@ee.doe.gov.

  20. National Hydropower Map

    Broader source: Energy.gov [DOE]

    High-resolution map produced by Oak Ridge National Laboratory showing hydropower resources throughout the United States.

  1. Lawrence Berkeley Lab Indexing Toolbox

    Energy Science and Technology Software Center (OSTI)

    2003-09-08

    The Lawrence Berkeley Lab Indexing Toolbox is intended to be used in the context of X-ray crystallography experiments involving biological macromolecules. Macromolecules such as proteins form 3-dimensional periodic arrays (crystal) which in turn lead to lattice-like diffraction patterns when the crystal sample is irradiated with collimated X-rays from a synchrotron or other X-ray source. Once the diffraction pattern is captured on an imaging device the next step is to deduce the periodic nature of themore » crystal sample, along with its internal symmetry. this analysis, known as "indexing" is a well-studied problem. However, there are no other implementations designed to operate in an automated setting, in which the human experimentalist is not prosent to manually verify the results of indexing. In particular LABELIT uses three novel algorithms to facilitate automation: a more robust way to verify the position of the incident X-ray beam on the image, a better way to verify that the deduced lattice is consistent with the observed crystal lattice, and new method to deduce the internal symmetry from measurements of the lattice. Moreover, the algorithms are implemented in a Python framework that permits indexing to fail (in rare cases) without crashing the program, thus allowing the software to be incorporated in robotic systems where unattended operation is expected. It will be especially useful for high throughput operations at snychrotron beamlines.« less

  2. Quantitative DNA fiber mapping

    DOE Patents [OSTI]

    Gray, Joe W.; Weier, Heinz-Ulrich G.

    1998-01-01

    The present invention relates generally to the DNA mapping and sequencing technologies. In particular, the present invention provides enhanced methods and compositions for the physical mapping and positional cloning of genomic DNA. The present invention also provides a useful analytical technique to directly map cloned DNA sequences onto individual stretched DNA molecules.

  3. Maps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About Energy.gov » News & Blog » Maps Maps Map Title Topics - Any - Tax Credits, Rebates, Savings Energy Efficiency -Homes --Heating & Cooling ---Heating ---Cooling ---Heat Pumps --Water Heating ---Swimming Pool Heaters --Home Weatherization ---Home Energy Audits ---Insulation ---Sealing Your Home ---Ventilation --Saving Electricity ---Lighting ---Appliances & Electronics ---Buying & Making Electricity --Design & Remodeling ---Windows, Doors, & Skylights --Landscaping

  4. Laboratory Equipment Donation Program - Site Index

    Office of Scientific and Technical Information (OSTI)

    Site Index Home About Us FAQ Application Contact Us Administrative Login RSS Widget

  5. Greater Sage-Grouse Habitat Use and Population Demographics at the Simpson Ridge Wind Resource Area, Carbon County, Wyoming

    SciTech Connect (OSTI)

    Gregory D. Johnson; Chad W. LeBeau; Ryan Nielsen; Troy Rintz; Jamey Eddy; Matt Holloran

    2012-03-27

    This study was conducted to obtain baseline data on use of the proposed Simpson Ridge Wind Resource Area (SRWRA) in Carbon County, Wyoming by greater sage-grouse. The first two study years were designed to determine pre-construction seasonally selected habitats and population-level vital rates (productivity and survival). The presence of an existing wind energy facility in the project area, the PacifiCorp Seven Mile Hill (SMH) project, allowed us to obtain some information on initial sage-grouse response to wind turbines the first two years following construction. To our knowledge these are the first quantitative data on sage-grouse response to an existing wind energy development. This report presents results of the first two study years (April 1, 2009 through March 30, 2011). This study was selected for continued funding by the National Wind Coordinating Collaborative Sage-Grouse Collaborative (NWCC-SGC) and has been ongoing since March 30, 2011. Future reports summarizing results of this research will be distributed through the NWCC-SGC. To investigate population trends through time, we determined the distribution and numbers of males using leks throughout the study area, which included a 4-mile radius buffer around the SRWRA. Over the 2-year study, 116 female greater sage-grouse were captured by spotlighting and use of hoop nets on roosts surrounding leks during the breeding period. Radio marked birds were located anywhere from twice a week to once a month, depending on season. All radio-locations were classified to season. We developed predictor variables used to predict success of fitness parameters and relative probability of habitat selection within the SRWRA and SMH study areas. Anthropogenic features included paved highways, overhead transmission lines, wind turbines and turbine access roads. Environmental variables included vegetation and topography features. Home ranges were estimated using a kernel density estimator. We developed resource selection

  6. Aeromagnetic map | Open Energy Information

    Open Energy Info (EERE)

    map Jump to: navigation, search OpenEI Reference LibraryAdd to library Map: Aeromagnetic mapInfo GraphicMapChart Cartographer Zietz and Kirby Published U.S. Geological Survey,...

  7. index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    index Below are links to Carbon Storage Program documents and reference materials. Each of the 10 categories has a variety of documents posted for easy access to current information - just click on the category link to view all related materials. cs-ref-shelf-3.jpg The Carbon Storage Newsletter Subscribe to Newsletter Newsletter Archive Carbon Storage Educational Resources Atlas V - Whole Document (Sept 2015) [PDF] The North American Carbon Storage Atlas 2012 [PDF] Atlas IV - Whole Document (Dec

  8. Maps of Selected State Subdivisions

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves Summary Maps of Selected State Subdivisions Map 1: Alaska Map 2: California Map 3: Louisiana Map 4: New Mexico Map 5: Texas Map 6: Western Planning Area, Gulf of Mexico Map 7: Central Planning Area, Gulf of Mexico Map 8: Eastern Planning Area, Gulf of Mexico Map 1: Alaska AK 50 - North Onshore and Offshore AK 10 - South Onshore AK 05 - South State Offshore AK 00 - South Federal Offshore Map 2: California CA 50 - Coastal Region

  9. Milford, Utah FORGE Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Milford, Utah FORGE Map More Documents & Publications Milford, Utah FORGE Map Milford, Utah FORGE Logo Milford, Utah FORGE Map Newberry FORGE Map Milford, Utah FORGE Map Fallon ...

  10. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    SciTech Connect (OSTI)

    Peggy Robinson

    2004-07-01

    This report contains a summary of activities of Gnomon, Inc. and five subcontractors that have taken place during the first six months of 2004 (January 1, 2004-June 30, 2004) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Although Gnomon and all five subcontractors completed tasks during these six months, most of the technical experimental work was conducted by the subcontractor, SRI Foundation (SRIF). SRIF created a sensitivity model for the Azotea Mesa area of southeastern New Mexico that rates areas as having a very good chance, a good chance, or a very poor chance of containing cultural resource sites. SRIF suggested that the results of the sensitivity model might influence possible changes in cultural resource management (CRM) practices in the Azote Mesa area of southeastern New Mexico.

  11. Fallon FORGE Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fallon FORGE Map Fallon FORGE Map Fallon FORGE Map More Documents & Publications Fallon FORGE Map Fallon FORGE Logo Fallon FORGE Map Milford, Utah FORGE Map Fallon FORGE Map Newberry

  12. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Mapping the Nanoscale Landscape Print Wednesday, 27 September 2006 00:00 For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave

  13. Allinea MAP at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graphical User Interface can be greatly improved if used in conjunction with the free NX software. Introduction Allinea MAP is a parallel profiler with simple Graphical User...

  14. ARM - Datastreams - maps60

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1994.10.15 Measurement Categories Atmospheric State Originating Instrument Mesoscale Analysis and Prediction System (MAPS) Measurements The measurements below provided by this...

  15. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mapped the chemical structure of conjugated polymer ... heat, light, and motion, it is an essential infrastructure. Much of society's electricity is generated at fossil fuel ...

  16. SGP Overview Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview Map SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility...

  17. Ardour Global Indexes LLC | Open Energy Information

    Open Energy Info (EERE)

    Name: Ardour Global Indexes LLC Place: New York City, New York Zip: 10016 Product: New-York based company that manages the Ardour Global Indexes, a set of alternative energy...

  18. Site Map - Pantex Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Map Site Map Page Content Pantex.com Mission & Strategies Mission National Security Nuclear Explosive Operations Nuclear Material Operations HE Operations Strategies Advance HE Center of Excellence Exemplify a High Reliability Organization Health & Safety Safety Training Occupational Medicine Contractor Safety Environment Environmental Projects & Operations Regulatory Compliance Waste Operations Environmental Management System Environmental Document Library Public Meetings Doing

  19. Chizu Task Mapping Tool

    Energy Science and Technology Software Center (OSTI)

    2014-07-01

    Chizu is a tool for Mapping MPI processes or tasks to physical processors or nodes for optimizing communication performance. It takes the communication graph of a High Performance Computing (HPC) application and the interconnection topology of a supercomputer as input. It outputs a new MPI rand to processor mapping, which can be used when launching the HPC application.

  20. Integrated Management Requirements mapping

    SciTech Connect (OSTI)

    Holmes, J.T.; Andrews, N.S.

    1992-06-01

    This document contains five appendices documenting how Sandia implemented the DOE Conduct of Operations (5480.19) and DOE Quality Assurance (5700.6C) orders. It provides a mapping of the Sandia integrated requirements to the specific requirements of each Order and a mapping to Sandia's approved program for implementing the Conduct of Operations Order.

  1. Integrated Management Requirements mapping

    SciTech Connect (OSTI)

    Holmes, J.T.; Andrews, N.S.

    1992-06-01

    This document contains five appendices documenting how Sandia implemented the DOE Conduct of Operations (5480.19) and DOE Quality Assurance (5700.6C) orders. It provides a mapping of the Sandia integrated requirements to the specific requirements of each Order and a mapping to Sandia`s approved program for implementing the Conduct of Operations Order.

  2. Index2.doc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Index2.doc Index2.doc Index2.doc (11.46 KB) More Documents & Publications Sylvania Corporation, Hicksville, NY and Bayside, NY - Addendum to July 8, 2004 O:\HOMEPAGE\FOIA\report99.PDF&#0; U.S. Department of Energy 2004 Annual Report

  3. Locking mechanism for indexing device

    DOE Patents [OSTI]

    Lindemeyer, Carl W. (Aurora, IL)

    1984-01-01

    Disclosed is a locking mechanism for an indexing spindle. A conventional r gear having outwardly extending teeth is affixed to the spindle. Also included is a rotatably mounted camshaft whose axis is arranged in skewed relationship with the axis of the spindle. A disk-like wedge having opposing camming surfaces is eccentrically mounted on the camshaft. As the camshaft is rotated, the camming surfaces of the disc-like member are interposed between adjacent gear teeth with a wiping action that wedges the disc-like member between the gear teeth. A zero backlash engagement between disc-like member and gear results, with the engagement having a high mechanical advantage so as to effectively lock the spindle against bidirectional rotation.

  4. West Flank FORGE Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    West Flank FORGE Map West Flank FORGE Map West Flank FORGE Map More Documents & Publications West Flank FORGE Map West Flank FORGE Logo West Flank FORGE Map Milford, Utah FORGE Map West Flank

  5. NREL: MapSearch

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to easily search our collection of maps created by the Geographic Information System (GIS) team. Please use the search box and the filters on the left of the screen to limit...

  6. Dating the Vinland Map

    ScienceCinema (OSTI)

    None

    2013-07-17

    Scientists from Brookhaven National Laboratory, the University of Arizona, and the Smithsonian Institution used carbon-dating technology to determine the age of a controversial parchment that might be the first-ever map of North America.

  7. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    composition maps (5 m x 5 m) of F8BT:TFB blend films (left and center). Comparative atomic-force microscopy (AFM) surface images (right) reveal micrometer-sized domains in...

  8. Fermilab Site Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    use this map The Village Fermilab Meson, Nuetrino and Proton Experiment Areas Wilson Hall, Ramsey Auditorium Site 38 (Support Area) and vicinity CDF, D0, TD, Tevatron Main Injector...

  9. Wind Career Map

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    This wind career map explores an expanding universe of wind energy occupations, describing diverse jobs across the industry, charting possible progression between them, and identifying the high-quality training necessary to do them well.

  10. Arizona Map for Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Home > Households, Buildings & Industry > Background Information on CBECS > 1979-1999 CBECS climate zone map Corrections Corrections to 1979-1999 CBECS Climate Zone Map, February...

  11. X-ray fluorescence mapping

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Microscopy and Imaging: X-ray Fluorescence Mapping Of increasing scientific interest is the detection, quantification and mapping of elemental content of samples, often down...

  12. Field Mapping | Open Energy Information

    Open Energy Info (EERE)

    Mapping Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Field Mapping Details Activities (74) Areas (44) Regions (6) NEPA(0) Exploration...

  13. ORISE: Site Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Map Contents About ORISE Careers Climate and Atmospheric Research Environmental Assessments and Health Physics Health Communication Media Center National Security and Emergency Management REAC/TS Safety Science Education Scientific Peer Review UNIRIB Worker Health Studies Working With Us Oak Ridge Institute for Science Education Site Map About ORISE Message from the Director Mission and Vision History Our Culture Publications Visiting Us ORISE Facilities ORISE Contract Back to top Careers

  14. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with

  15. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with

  16. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with

  17. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with

  18. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with

  19. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with

  20. Historical Network Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Network Maps Network Traffic Volume Historical Network Maps Network Facts & Stats Connected Sites Peering Connections ESnet Site Availabiliy OSCARS Fasterdata IPv6 Network Network Performance Tools The ESnet Engineering Team Network R&D Software-Defined Networking (SDN) Experimental Network Testbeds Performance (perfSONAR) Software & Tools Development Data for Researchers Partnerships Publications Workshops Science Engagement Move your data Programs & Workshops Science

  1. Seismic signatures of the Lodgepole fractured reservoir in Utah-Wyoming overthrust belt

    SciTech Connect (OSTI)

    Parra, J.; Collier, H.; Angstman, B.

    1997-08-01

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft. For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.

  2. Image indexing using color correlograms

    DOE Patents [OSTI]

    Huang, Jing; Kumar, Shanmugasundaram Ravi; Mitra, Mandar; Zhu, Wei-Jing

    2001-01-01

    A color correlogram is a three-dimensional table indexed by color and distance between pixels which expresses how the spatial correlation of color changes with distance in a stored image. The color correlogram may be used to distinguish an image from other images in a database. To create a color correlogram, the colors in the image are quantized into m color values, c.sub.i . . . c.sub.m. Also, the distance values k.epsilon.[d] to be used in the correlogram are determined where [d] is the set of distances between pixels in the image, and where dmax is the maximum distance measurement between pixels in the image. Each entry (i, j, k) in the table is the probability of finding a pixel of color c.sub.i at a selected distance k from a pixel of color c.sub.i. A color autocorrelogram, which is a restricted version of the color correlogram that considers color pairs of the form (i,i) only, may also be used to identify an image.

  3. Topic Index to the DOE Administrative Records Disposition Schedules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Topic Index to the DOE Administrative Records Disposition Schedules Topic Index to the DOE Administrative Records Disposition Schedules Topic Index to the DOE Administrative...

  4. Berkeley Lab Research Review Magazine Index

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Review Magazine A-Z Index Search Phone Book Comments Ernest Orlando Lawrence Berkeley National Laboratory Public Information Department News Archive Listing by Subject...

  5. Big George to Carter Mountain 115-kV transmission line project, Park and Hot Springs Counties, Wyoming. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Western Area Power Administration (Western) is proposing to rebuild, operate, and maintain a 115-kilovolt (kV) transmission line between the Big George and Carter Mountain Substations in northwest Wyoming (Park and Hot Springs Counties). This environmental assessment (EA) was prepared in compliance with the National Environmental Policy Act (NEPA) and the regulations of the Council on Environmental Quality (CEQ) and the Department of Energy (DOE). The existing Big George to Carter Mountain 69-kV transmission line was constructed in 1941 by the US Department of Interior, Bureau of Reclamation, with 1/0 copper conductor on wood-pole H-frame structures without an overhead ground wire. The line should be replaced because of the deteriorated condition of the wood-pole H-frame structures. Because the line lacks an overhead ground wire, it is subject to numerous outages caused by lightning. The line will be 54 years old in 1995, which is the target date for line replacement. The normal service life of a wood-pole line is 45 years. Under the No Action Alternative, no new transmission lines would be built in the project area. The existing 69-kV transmission line would continue to operate with routine maintenance, with no provisions made for replacement.

  6. Oceanographic restriction and deposition of the Permian Park City and Phosphoria formations, northeastern Utah and western Wyoming

    SciTech Connect (OSTI)

    Whalen, M.T. )

    1991-03-01

    Detailed lithofacies analyses of the Permian Park City Formation, in northeastern Utah and western Wyoming, reveal that it was deposited in both open and restricted continental shelf and slope environments bordering the Oquirrh and Sublett basins. The Park City and the intercalated Phosphoria Formation document the interplay between carbonate, clastic, evaporite, and organic-rich sedimentation, fluctuating sea-level and bottom water oxygenated, and oceanic upwelling. New data from the Park City and Phosphoria formations imply that paleoceanographic models for the deposition of these units must be revised. Both physical and chemical restriction, resulting from paleogeographic constraints, regressive conditions, and the decay of organic matter produced in nutrient-rich upwelled waters, were important to the development of lithofacies patterns. Evidence of restriction includes massive and bedded anhydrite deposits and calcite replaced anhydrite nodules, carbonate facies with low levels of bioturbation and significant quantities of authigenic pyrite, and laminated black, organic-rich shales indicating low oxygen conditions. Park City and Phosphoria lithofacies imply that upwelling began during regression that resulted from a glacio-eustatic drop in sea level. This was accompanied by a greater pole-to-equator temperature gradient and intensified atmospheric circulation that induced eastern ocean basin upwelling. Physical and chemical restriction of marginal Permian basins was important in the development of dysaerobic to anaerobic conditions that facilitated the preservation of organic matter.

  7. Enigmatic uppermost Permian-lowermost Triassic stratigraphic relations in the northern Bighorn basin of Wyoming and Montana

    SciTech Connect (OSTI)

    Paull, R.A.; Paull, R.K. )

    1991-06-01

    Eighteen measured sections in the northern Bighorn basin of Wyoming and Montana provide the basis for an analysis of Permian-Triassic stratigraphic relations. This boundary is well defined to the south where gray calcareous siltstones of the Lower Triassic Dinwoody disconformably overlie the Upper Permian Ervay Member of the Park City Formation with little physical evidence of a significant hiatus. The Dinwoody is gradationally overlain by red beds of the Red Peak Formation. The Dinwoody this to zero near the state line. Northward, the erathem boundary is enigmatic because fossils are absent and there is no evidence of an unconformity. Poor and discontinuous exposures contribute to the problem. Up to 20 m of Permian or Triassic rocks or both overlie the Pennsylvanian Tensleep Sandstone in the westernmost surface exposures on the eastern flank of the Bighorn basin with physical evidence of an unconformity. East of the exposed Tensleep, Ervay-like carbonates are overlain by about 15 m of Dinwoody-like siltstones interbedded with red beds and thin dolomitic limestone. In both areas, they are overlain by the Red Peak Formation. Thin carbonates within the Dinwoody are silty, coarse algal laminates with associated peloidal micrite. Carbonates north of the Dinwoody termination and above probably Ervay are peloidal algal laminates with fenestral fabric and sparse coated shell fragments with pisoids. These rocks may be Dinwoody equivalents or they may be of younger Permian age than the Ervay. Regardless, revision of stratigraphic nomenclature in this area may bed required.

  8. Preliminary results of wildcat drilling in Absaroka volcanic rocks, Hot Springs County, Wyoming

    SciTech Connect (OSTI)

    Bailey, M.H.; Sundell, K.A.

    1986-08-01

    Recent drilling of three remote, high-elevation wildcat wells has proven that excellent Paleozoic reservoirs are present at shallow depths beneath Eocene volcaniclastic rocks. The Tensleep and Madison Formations are fluid filled above an elevation of 8000 ft, and all Paleozoic formations exhibit shows of oil and gas. These prolific reservoir rocks have produced billions of barrels of oil from the adjacent Bighorn and Wind river basins, and they pinch out with angular unconformity against the base of the volcanics, providing enormous potential for stratigraphic oil accumulations. Vibroseis and portable seismic data have confirmed and further delineate large anticlines of Paleozoic rocks, which were originally discovered by detailed surface geologic mapping. These structures can be projected along anticlinal trends from the western Owl Creek Mountains to beneath the volcanics as well. The overlying volcanics are generally soft, reworked sediments. However, large, hard boulders and blocks of andesite-dacite, which were previously mapped as intrusives, are present and are the result of catastrophic landslide/debris flow. The volcanics locally contain highly porous and permeable sandstones and abundant bentonite stringers. Oil and gas shows were observed throughout a 2400-ft thick interval of the Eocene Tepee Trail and Aycross Formations. Shows were recorded 9100 ft above sea level in the volcanic rocks. A minimum of 10 million bbl of oil (asphaltum) and an undetermined amount of gases and lighter oils have accumulated within the basal volcanic sequence, based on the evaluation of data from two drill sites. Significant amounts of hydrocarbons have migrated since the volcanics were deposited 50 Ma. Large Laramide anticlines were partially eroded and breached into the Paleozoic formations and resealed by overlying volcanics with subsequent development of a massive tar seal.

  9. A-Z Index | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Planning Briefs Building Information Business ... Data Acquisition System (CODA) Data Analysis Center (DAC) at GW (SAID) ... Group Directions, Location, & Maps Director's ...

  10. Directions & Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information » Directions & Maps Directions & Maps The Bradbury Science Museum is located in downtown Los Alamos at the corner of Central Avenue and 15th Street. Contact Us thumbnail of 1350 Central Avenue Bradbury Science Museum 1350 Central Avenue 505 667-4444 Email Where we're located Los Alamos (elevation 7,355 feet) is perched high atop the Pajarito Plateau in the Jemez Mountains, 35 miles northwest of Santa Fe. The Bradbury Science Museum is located in downtown Los Alamos at the

  11. Method of identifying features in indexed data

    DOE Patents [OSTI]

    Jarman, Kristin H. [Richland, WA; Daly, Don Simone [Richland, WA; Anderson, Kevin K. [Richland, WA; Wahl, Karen L. [Richland, WA

    2001-06-26

    The present invention is a method of identifying features in indexed data, especially useful for distinguishing signal from noise in data provided as a plurality of ordered pairs. Each of the plurality of ordered pairs has an index and a response. The method has the steps of: (a) providing an index window having a first window end located on a first index and extending across a plurality of indices to a second window end; (b) selecting responses corresponding to the plurality of indices within the index window and computing a measure of dispersion of the responses; and (c) comparing the measure of dispersion to a dispersion critical value. Advantages of the present invention include minimizing signal to noise ratio, signal drift, varying baseline signal and combinations thereof.

  12. Microelectromechanical reciprocating-tooth indexing apparatus

    DOE Patents [OSTI]

    Allen, James J. (Albuquerque, NM)

    1999-01-01

    An indexing apparatus is disclosed that can be used to rotate a gear or move a rack in a precise, controllable manner. The indexing apparatus, based on a reciprocating shuttle driven by one or more actuators, can be formed either as a micromachine, or as a millimachine. The reciprocating shuttle of the indexing apparatus can be driven by a thermal, electrostatic or electromagnetic actuator, with one or more wedge-shaped drive teeth of the shuttle being moveable to engage and slide against indexing teeth on the gear or rack, thereby moving the gear or rack. The indexing apparatus can be formed by either surface micromachining processes or LIGA processes, depending on the size of the apparatus that is to be formed.

  13. Category:Maps | Open Energy Information

    Open Energy Info (EERE)

    category, out of 6 total. B Map of Biomass Facilities C Map of Clean Energy Companies G Map of Geothermal Facilities S Map of Solar Energy Companies Map of Solar Power Plants W...

  14. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The spatial location and boundaries for each Site shown on the Site Monitoring Area maps ... P-SMA-2 DP-SMA-0.4 LA-SMA-2.3 LA-SMA-5.51 LA-SMA-6.38 P-SMA-2.15 DP-SMA-0.6 ...

  15. Learning maps -- Application

    SciTech Connect (OSTI)

    Paullin, W.L.

    1999-07-01

    The paper consists of a series of slides used in the presentation. They summarize the Root Learning Map process which is a tool that allows a company to modify its culture to improve productivity by allowing employees to have a vested interest in the outcome of the company. Educating the employees about different aspects of the organization is a major part of the process.

  16. Wyoming-Wyoming Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 1,622,025 1,544,493 1,442,021 1,389,782 2011-2014 Total Liquids Extracted (Thousand Barrels) 65,256 47,096 42,803 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 60,873

  17. Wyoming-Wyoming Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 1,622,025 1,544,493 1,442,021 1,389,782 2011-2014 Total Liquids Extracted (Thousand Barrels) 65,256 47,096 42,803 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 60,873

  18. Simulation of CO2 Sequestration at Rock Spring Uplift, Wyoming: Heterogeneity and Uncertainties in Storage Capacity, Injectivity and Leakage

    SciTech Connect (OSTI)

    Deng, Hailin; Dai, Zhenxue; Jiao, Zunsheng; Stauffer, Philip H.; Surdam, Ronald C.

    2011-01-01

    Many geological, geochemical, geomechanical and hydrogeological factors control CO{sub 2} storage in subsurface. Among them heterogeneity in saline aquifer can seriously influence design of injection wells, CO{sub 2} injection rate, CO{sub 2} plume migration, storage capacity, and potential leakage and risk assessment. This study applies indicator geostatistics, transition probability and Markov chain model at the Rock Springs Uplift, Wyoming generating facies-based heterogeneous fields for porosity and permeability in target saline aquifer (Pennsylvanian Weber sandstone) and surrounding rocks (Phosphoria, Madison and cap-rock Chugwater). A multiphase flow simulator FEHM is then used to model injection of CO{sub 2} into the target saline aquifer involving field-scale heterogeneity. The results reveal that (1) CO{sub 2} injection rates in different injection wells significantly change with local permeability distributions; (2) brine production rates in different pumping wells are also significantly impacted by the spatial heterogeneity in permeability; (3) liquid pressure evolution during and after CO{sub 2} injection in saline aquifer varies greatly for different realizations of random permeability fields, and this has potential important effects on hydraulic fracturing of the reservoir rock, reactivation of pre-existing faults and the integrity of the cap-rock; (4) CO{sub 2} storage capacity estimate for Rock Springs Uplift is 6614 {+-} 256 Mt at 95% confidence interval, which is about 36% of previous estimate based on homogeneous and isotropic storage formation; (5) density profiles show that the density of injected CO{sub 2} below 3 km is close to that of the ambient brine with given geothermal gradient and brine concentration, which indicates CO{sub 2} plume can sink to the deep before reaching thermal equilibrium with brine. Finally, we present uncertainty analysis of CO{sub 2} leakage into overlying formations due to heterogeneity in both the target saline

  19. An evaluation of health risk to the public as a consequence of in situ uranium mining in Wyoming, USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ruedig, Elizabeth; Johnson, Thomas E.

    2015-08-30

    In the United States there is considerable public concern regarding the health effects of in situ recovery uranium mining. These concerns focus principally on exposure to contaminants mobilized in groundwater by the mining process. However, the risk arising as a result of mining must be viewed in light of the presence of naturally occurring uranium ore and other constituents which comprise a latent hazard. The United States Environmental Protection Agency recently proposed new guidelines for successful restoration of an in situ uranium mine by limiting concentrations of thirteen groundwater constituents: arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, nitrate (asmore » nitrogen), molybdenum, radium, total uranium, and gross α activity. We investigated the changes occurring to these constituents at an ISR uranium mine in Wyoming, USA by comparing groundwater quality at baseline measurement to that at stability (post-restoration) testing. Of the groundwater constituents considered, only uranium and radium-226 showed significant (p < 0.05) deviation from site-wide baseline conditions in matched-wells. Uranium concentrations increased by a factor of 5.6 (95% CI 3.6–8.9 times greater) while radium-226 decreased by a factor of about one half (95% CI 0.42–0.75 times less). Change in risk was calculated using the RESRAD (onsite) code for an individual exposed as a resident-farmer; total radiation dose to a resident farmer decreased from pre-to post-mining by about 5.2 mSv y–1. As a result, higher concentrations of uranium correspond to increased biomarkers of nephrotoxicity, however the clinical significance of this increase is unclear.« less

  20. Sedimentology of Permian upper part of the Minnelusa Formation, eastern Powder River basin, Wyoming, and a comparison to the subsurface

    SciTech Connect (OSTI)

    Schenk, C.J.; Schmoker, J.W.; Fox, J.E.

    1993-04-01

    Outcrops of the Permian upper part of the Minnelusa Formation near Beulah, Wyoming consist of dolomite, gypsum, and sandstone units deposited in transgressive-regressive cycles. Three depositional cycles are partly exposed in the Simons Ranch anticline near Beulah, and provide an opportunity to view fades of the upper Minnelusa Formation in three dimensions. The cycles observed in outcrop were informally labelled cycle 1, cycle 2, and cycle 3 in ascending stratigraphic order. Cycle 2 contains a basal, laterally extensive sabkha sandstone and an overlying, laterally restricted sandstone that represents a preserved eolian-dune complex. The eolian-dune sandstone of cycle 2 was partially reworked during the marine transgression that initiated cycle 3. The eolian-dune deposit grades laterally into an apron of contorted and massive-bedded sandstones that formed as water-saturated sands liquified and slumped from the margins of the eolian dune. The partially reworked eolian-dune topography was covered by gypsum beds of cycle 3. The sandstone of cycle 3 is interpreted as a laterally continuous sabkha sandstone. West Mellott field (secs. 8, 9, T52N, R68W) represents a subsurface example of the facies and facies relationships observed in outcrop. The eolian-dune sandstone of the C cycle, which was partially reworked by the transgression of the B cycle, produces oil at West Mellott. The draping of dolomite and anhydrite of the B cycle on the eolian-dune sandstone of the C cycle is analogous to the draping of gypsum on dune sand in cycle 2 in outcrop.

  1. Evaporite replacement within the Permian strata of the Bighorn Basin, Wyoming and the Delaware Basin, west Texas and New Mexico

    SciTech Connect (OSTI)

    Ulmer, D.S.; Scholle, P.A. )

    1992-01-01

    The Park City and Goose Egg Formations of the Big Horn Basin, Wyoming and the Seven Rivers, Yates and Tansill Formations of west Texas and New Mexico contain numerous examples of silicified and calcitized evaporites. Both areas show significant preserved interstitial evaporite, but on outcrop the discrete crystals and nodular evaporites have been extensively replaced. These replacements appear to be a multistage phenomenon. Field and petrographic evidence (matted fabrics in nodules; evaporite inclusions) indicate that silicification involved direct replacement of evaporites and probably occurred during earlier stages of burial. Calcitization, however, appears to be a much later phenomenon and involved precipitation of coarse crystals within evaporite molds. The calcites are typically free of evaporite inclusions. Isotopic analyses of these calcites give a wide range of values from [minus]6.04 to [minus]25.02 [per thousand] [delta][sup 18]O and +6.40 to [minus]25.26 [per thousand] [delta][sup 13]C, reflecting their complex diagenetic histories. In both localities, silicification of evaporites was completed by the end of hydrocarbon migration and emplacement. The extremely broad isotopic range of the calcites indicates that the calcitization occurred during a long period of progressive uplift and increased groundwater circulation associated with mid-Tertiary block faulting. The very light oxygen values within the Bighorn Basin were produced by thermochemical sulfate reduction during deepest burial of the region. Evaporite diagenesis in both the Bighorn and Delaware Basins is an ongoing process that started prior to hydrocarbon migration, continued over millions of years, and has the potential to do significant porosity change.

  2. Formation of bulk refractive index structures

    DOE Patents [OSTI]

    Potter, Jr., Barrett George; Potter, Kelly Simmons; Wheeler, David R.; Jamison, Gregory M.

    2003-07-15

    A method of making a stacked three-dimensional refractive index structure in photosensitive materials using photo-patterning where first determined is the wavelength at which a photosensitive material film exhibits a change in refractive index upon exposure to optical radiation, a portion of the surfaces of the photosensitive material film is optically irradiated, the film is marked to produce a registry mark. Multiple films are produced and aligned using the registry marks to form a stacked three-dimensional refractive index structure.

  3. Rapid mapping tool : an ArcMap extension /

    SciTech Connect (OSTI)

    Linger, S. P.; Rich, P. M.; Walther, D.; Witkowski, M. S.; Jones, M. A.; Khalsa, H. S.

    2002-01-01

    Cartographic production laboratories produce large volumes of maps for diverse customers. Turnaround time and consistency are key concerns. The Rapid Mapping Tool is an ArcMap based tool that enables rapid creation of maps to meet customer needs. This tool was constructed using VB/VBA, ArcObjects, and ArcGIS templates. The core capability of ArcMap is extended for custom map production by storing specifications associated with a map or template in a companion XML document. These specifications include settings and preferences used to create custom maps. The tool was developed as a component of an enterprise GIS, which enables spatial data management and delivery using ArcSDE, ArcIMS, Oracle, and a web-based request tracking system.

  4. Laboratory Equipment Donation Program - Site Index

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Index Home About Us FAQ Application Contact Us Administrative Login RSS Widget U.S. Department of Energy U.S. Deparment of Energy Office of Science Office of Scientific and...

  5. NEPA Guidance and Requirements- Search Index

    Office of Energy Efficiency and Renewable Energy (EERE)

    The NEPA Guidance and Requirements - Search Index is a one-stop solution providing you with DOE's Guidance and Requirements documents combined into one file for easy download and use.

  6. Clinton Engineer Works map | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clinton Engineer Works map Clinton Engineer Works map

  7. maps | OpenEI Community

    Open Energy Info (EERE)

    queries developer Google maps maps multicolor result formats results Semantic Mediawiki Hi all, Recently, a couple of people on OpenEI have asked me how to do compound (or...

  8. FEM: Feature-enhanced map

    SciTech Connect (OSTI)

    Afonine, Pavel V.; Moriarty, Nigel W.; Mustyakimov, Marat; Sobolev, Oleg V.; Terwilliger, Thomas C.; Turk, Dusan; Urzhumtsev, Alexandre; Adams, Paul D.

    2015-02-26

    A method is presented that modifies a 2mFobs-DFmodelσA-weighted map such that the resulting map can strengthen a weak signal, if present, and can reduce model bias and noise. The method consists of first randomizing the starting map and filling in missing reflections using multiple methods. This is followed by restricting the map to regions with convincing density and the application of sharpening. The final map is then created by combining a series of histogram-equalized intermediate maps. In the test cases shown, the maps produced in this way are found to have increased interpretability and decreased model bias compared with the starting 2mFobs-DFmodelσA-weighted map.

  9. FEM: Feature-enhanced map

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Afonine, Pavel V.; Moriarty, Nigel W.; Mustyakimov, Marat; Sobolev, Oleg V.; Terwilliger, Thomas C.; Turk, Dusan; Urzhumtsev, Alexandre; Adams, Paul D.

    2015-02-26

    A method is presented that modifies a 2mFobs-DFmodelσA-weighted map such that the resulting map can strengthen a weak signal, if present, and can reduce model bias and noise. The method consists of first randomizing the starting map and filling in missing reflections using multiple methods. This is followed by restricting the map to regions with convincing density and the application of sharpening. The final map is then created by combining a series of histogram-equalized intermediate maps. In the test cases shown, the maps produced in this way are found to have increased interpretability and decreased model bias compared with themore » starting 2mFobs-DFmodelσA-weighted map.« less

  10. SRNL Site Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spacer 11/22/2013 SEARCH SRNL GO SRNL Home SRNL Site Map About SRNL From the Director Operational Excellence Leadership Our History Visiting SRNL Science & Innovation National Security Enviromental Stewardship Clean Energy Innovations Fact Sheets PDRD / LDRD Working with SRNL Technology Transfer Technology Partnerships Our Facilities Main Campus ACTL - Aiken County Technology Laboratory HTRL - Hydrogen Technology Research Laboratory EMRL - Energy Materials Research Laboratory F / H Lab

  11. Site Map - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Map Cyclotron Institute About K500 Beam Schedule Recent News Seminars and Colloquia Cyclotron Institute Safety (limited access) Radiation Effects Facility REU Program Research Heavy Ion Reactions Fundamental Interactions Nuclear Astrophysics Interactions of Highly Charged Ions With Matter Theoretical Nuclear Physics Nuclear Structure External Collaborations Publications Research Groups Facilities K500 Cyclotron ECR Ion Sources MARS Big Sol MDM Spectrometer NIMROD Precision On-Line Decay

  12. WINDExchange: Wind Maps and Data

    Wind Powering America (EERE)

    Wind Maps and Data WINDExchange provides wind maps and anemometer data to help homeowners, communities, states, and regions learn more about their available wind resources and plan wind energy projects. WINDExchange also maintains more than a decade of installed capacity maps showing how wind energy has progressed across the United States over time as advances in wind technology and materials make wind resources more available. A map illustration of the United States showing the various wind

  13. Building Your Message Map Worksheet

    Broader source: Energy.gov [DOE]

    Building Your Message Map Worksheet, as posted on the U.S. Department of Energy's Better Buildings Neighborhood Program website.

  14. Geothermal Maps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Geothermal Maps Geothermal Maps Map of the United States, with color bands indicating favorability of deep EGS and dots indicating identified hydrothermal sites. The Geothermal Technologies Office (GTO) carries out R&D and demonstration efforts to deploy 12 GWe of clean geothermal energy by 2020 and expand geothermal into new U.S. regions. Locating and developing resources is an important part of that mission. GTO works with national laboratories to develop maps and

  15. Sampling and analyses report for December 1991 semiannual postburn sampling at the RM1 UCG site, Hanna, Wyoming. [Quarterly report, January--March 1992

    SciTech Connect (OSTI)

    Lindblom, S.R.

    1992-01-01

    The Rocky Mountain 1 (RM1) underground coal gasification (UCG) test was conducted from November 16, 1987, through February 26, 1988 at a site approximately one mile south of Hanna, Wyoming. The test consisted of a dual-module operation to evaluate the controlled retracting injection point (CRIP) technology, the elongated linked well (ELW) technology, and the interaction of closely spaced modules operating simultaneously. The test caused two cavities to form in the Hanna No. 1 coal seam and associated overburden. The Hanna No. 1 coal seam was approximately 30 ft thick and lay at depths between 350 and 365 ft below the surface in the test area. The coal seam was overlain by sandstones, siltstones, and claystones deposited by various fluvial environments. The groundwater monitoring was designed to satisfy the requirements of the Wyoming Department of Environmental Quality (WDEQ) in addition to providing research data toward the development of UCG technology that minimizes environmental impacts. Further background material and the sampling and analytical procedures associated with the sampling task are described in the Rocky Mountain 1 Postburn Groundwater Monitoring Quality Assurance Plan (Mason and Johnson 1988).

  16. Solar Mapping Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Mapping Resources Solar Mapping Resources Solar Mapping Resources Choosing solar energy is a big investment. In order to help consumers quantify the potential benefits,...

  17. Alternative Water Sources Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Water Efficiency Alternative Water Sources Map Alternative Water Sources Map The Federal Energy Management Program (FEMP) created the Alternative Water Map to ...

  18. Alternative Water Sources Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Water Efficiency Alternative Water Sources Map Alternative Water Sources Map The Federal Energy Management Program (FEMP) created the Alternative Water Map to...

  19. Valley Co. McCone Co. Roosevelt Co. Richland Co. Sheridan Co.

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Reserve Class Montana North Dakota South Dakota Wyoming INDEX MAP ± 0 10 20 5 15 Miles Williston Basin Oil and Gas Fields 2004 Liquids Reserve Class No 2004 Liquids Reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1 - 10,000 Mbbl > 10,000 Mbbl

  20. MAp GENeralization COntroller

    Energy Science and Technology Software Center (OSTI)

    1995-02-24

    MAGENCO is a geographic information systems (GIS) tool for managing geospatial data. It assists in choosing an appropriate level of cartographic simplification (removal of vertices while preserving line character). While an effective algorithm for this task exists (Douglas-Peucker, published in 1973), the tolerance parameter depends on the fractal dimension or the natural or manmade feature, the scale of mapping, and the uses to which the data will be put. It is thus necessary to iterativelymore » test different parameters until an acceptable one is found.« less

  1. Widget:GasMap | Open Energy Information

    Open Energy Info (EERE)

    GasMap Jump to: navigation, search Gas map widget: The Gas Map displays real-time gas prices for the United States Example Output Gas map widget: Denver Gas Prices provided by...

  2. Category:Map Files | Open Energy Information

    Open Energy Info (EERE)

    has the following 4 subcategories, out of 4 total. M Map Image Files Map PDF Files N NREL Map Files 1 pages S SWERA Map Files Media in category...

  3. Alternative Water Sources Maps | Department of Energy

    Office of Environmental Management (EM)

    Facilities Water Efficiency Alternative Water Sources Maps Alternative Water Sources Maps Rainwater Harvesting Regulations Rainwater Harvesting Regulations Read more ...

  4. Low Carbon Economy Index 2010 | Open Energy Information

    Open Energy Info (EERE)

    Economy Index 2010 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low Carbon Economy Index 2010 AgencyCompany Organization: PricewaterhouseCoopers Sector: Energy,...

  5. Quantitive DNA Fiber Mapping

    SciTech Connect (OSTI)

    Lu, Chun-Mei; Wang, Mei; Greulich-Bode, Karin M.; Weier, Jingly F.; Weier, Heinz-Ulli G.

    2008-01-28

    Several hybridization-based methods used to delineate single copy or repeated DNA sequences in larger genomic intervals take advantage of the increased resolution and sensitivity of free chromatin, i.e., chromatin released from interphase cell nuclei. Quantitative DNA fiber mapping (QDFM) differs from the majority of these methods in that it applies FISH to purified, clonal DNA molecules which have been bound with at least one end to a solid substrate. The DNA molecules are then stretched by the action of a receding meniscus at the water-air interface resulting in DNA molecules stretched homogeneously to about 2.3 kb/{micro}m. When non-isotopically, multicolor-labeled probes are hybridized to these stretched DNA fibers, their respective binding sites are visualized in the fluorescence microscope, their relative distance can be measured and converted into kilobase pairs (kb). The QDFM technique has found useful applications ranging from the detection and delineation of deletions or overlap between linked clones to the construction of high-resolution physical maps to studies of stalled DNA replication and transcription.

  6. Defect mapping system

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    1995-01-01

    Apparatus for detecting and mapping defects in the surfaces of polycrystalline materials in a manner that distinguishes dislocation pits from grain boundaries includes a laser for illuminating a wide spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate rastor mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities.

  7. Defect mapping system

    DOE Patents [OSTI]

    Sopori, B.L.

    1995-04-11

    Apparatus for detecting and mapping defects in the surfaces of polycrystalline materials in a manner that distinguishes dislocation pits from grain boundaries includes a laser for illuminating a wide spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate rastor mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities. 20 figures.

  8. Plasmonic crystal enhanced refractive index sensing

    SciTech Connect (OSTI)

    Stein, Benedikt; Devaux, Eloïse; Genet, Cyriaque Ebbesen, Thomas W.

    2014-06-23

    We demonstrate experimentally how the local anisotropy of the dispersion relation of surface plasmon modes propagating over periodic metal gratings can lead to an enhancement of the figure of merit of refractive index sensors. Exploiting the possibility to acquire defocused images of the Fourier space of a highly stable leakage radiation microscope, we report a twofold increase in sensing sensitivity close to the band gap of a one-dimensional plasmonic crystal where the anisotropy of the band structure is the most important. A practical sensing resolution of O(10{sup −6}) refractive index units is demonstrated.

  9. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Maps GIS modeling is used to analyze and visualize the spatial relationship between resources (renewable and non renewable), hydrogen production facilities, transportation ...

  10. Carbon Sequestration Atlas and Interactive Maps from the Southwest Regional Partnership on Carbon Sequestration

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McPherson, Brian

    In November of 2002, DOE announced a global climate change initiative involving joint government-industry partnerships working together to find sensible, low cost solutions for reducing GHG emissions. As a result, seven regional partnerships were formed; the Southwest Regional Partnership on Carbon Sequestration (SWP) is one of those. These groups are utilizing their expertise to assess sequestration technologies to capture carbon emissions, identify and evaluate appropriate storage locations, and engage a variety of stakeholders in order to increase awareness of carbon sequestration. Stakeholders in this project are made up of private industry, NGOs, the general public, and government entities. There are a total of 44 current organizations represented in the partnership including electric utilities, oil and gas companies, state governments, universities, NGOs, and tribal nations. The SWP is coordinated by New Mexico Tech and encompasses New Mexico, Arizona, Colorado, Oklahoma, Utah, and portions of Kansas, Nevada, Texas, and Wyoming. Field test sites for the region are located in New Mexico (San Juan Basin), Utah (Paradox Basin), and Texas (Permian Basin).[Taken from the SWP C02 Sequestration Atlas] The SWP makes available at this website their CO2 Sequestration Atlas and an interactive data map.

  11. Regulatory and technical reports (Abstract Index Journal)

    SciTech Connect (OSTI)

    Not Available

    1993-02-01

    This journal includes all formal reports in the NUREG series prepared by the NRC staff and contractors, proceedings of conferences and workshops, grants, and international agreement reports. The entries in this compilation are indexed for access by title and abstract, secondary report number, personal author, subject, NRC organization for staff and international agreements, contractor, international organization, and licensed facility.

  12. Geothermal Maps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maps Geothermal Maps The Geothermal Technologies Office (GTO) carries out R&D and demonstration efforts to deploy 12 GWe of clean geothermal energy by 2020 and expand geothermal into new U.S. regions. Locating and developing resources is an important part of that mission. GTO works with national laboratories to develop maps and data that identify renewable, geothermal resources, possible locations for implementation of various geothermal technologies, and actual and potential geothermal

  13. Characterization of cores from an in-situ recovery mined uranium deposit in Wyoming: Implications for post-mining restoration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    WoldeGabriel, G.; Boukhalfa, H.; Ware, S. D.; Cheshire, M.; Reimus, P.; Heikoop, J.; Conradson, S. D.; Batuk, O.; Havrilla, G.; House, B.; et al

    2014-10-08

    In-situ recovery (ISR) of uranium (U) from sandstone-type roll-front deposits is a technology that involves the injection of solutions that consist of ground water fortified with oxygen and carbonate to promote the oxidative dissolution of U, which is pumped to recovery facilities located at the surface that capture the dissolved U and recycle the treated water. The ISR process alters the geochemical conditions in the subsurface creating conditions that are more favorable to the migration of uranium and other metals associated with the uranium deposit. There is a lack of clear understanding of the impact of ISR mining on themore » aquifer and host rocks of the post-mined site and the fate of residual U and other metals within the mined ore zone. We performed detailed petrographic, mineralogical, and geochemical analyses of several samples taken from about 7 m of core of the formerly the ISR-mined Smith Ranch–Highland uranium deposit in Wyoming. We show that previously mined cores contain significant residual uranium (U) present as coatings on pyrite and carbonaceous fragments. Coffinite was identified in three samples. Core samples with higher organic (> 1 wt.%) and clay (> 6–17 wt.%) contents yielded higher 234U/238U activity ratios (1.0–1.48) than those with lower organic and clay fractions. The ISR mining was inefficient in mobilizing U from the carbonaceous materials, which retained considerable U concentrations (374–11,534 ppm). This is in contrast with the deeper part of the ore zone, which was highly depleted in U and had very low 234U/238U activity ratios. This probably is due to greater contact with the lixiviant (leaching solution) during ISR mining. EXAFS analyses performed on grains with the highest U and Fe concentrations reveal that Fe is present in a reduced form as pyrite and U occurs mostly as U(IV) complexed by organic matter or as U(IV) phases of carbonate complexes. Moreover, U–O distances of ~ 2.05 Å were noted, indicating the

  14. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Maps & Data Printable Version Share this resource Send a link to Alternative Fuels Data Center: Maps and Data to someone by E-mail Share Alternative Fuels Data Center: Maps and Data on Facebook Tweet about Alternative Fuels Data Center: Maps and Data on Twitter Bookmark Alternative Fuels Data Center: Maps and Data on Google Bookmark Alternative Fuels Data Center: Maps and Data on Delicious Rank Alternative Fuels Data Center: Maps and Data on Digg Find More places to share Alternative Fuels

  15. Maps and Directions | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maps Overview & General Energy Disruptions Interactive maps with energy infrastructure and real-time storm tracking Historical Disruption reports Gulf of Mexico Fact Sheet Flood Vulnerability Assessment Map - Interactive map that includes flood hazard information from FEMA as well as energy infrastructure layers. Country Analysis Briefs U.S. Census Region Map U.S. Climate Zones for 2003 Commercial Buildings Energy Consumption Survey (CBECS) U.S. Federal Region Map State Energy Profile Maps |

  16. ANL's Map and Data Browser

    Energy Science and Technology Software Center (OSTI)

    1998-07-13

    The MaD browser is a web browser Java applet developed to display and interact with vector graphic (map) objects, relational database tables, and other data sources. It was designed for use in remedial action projects to quickly and widely disseminate sampling results but is generally applicable to many other mapping situations. Its primary value is its simplicity and general availability.

  17. Evolution of the spectral index after inflation

    SciTech Connect (OSTI)

    Asgari, A.A.; Abbassi, A.H. E-mail: ahabbasi@modares.ac.ir

    2014-09-01

    In this article we investigate the time evolution of the adiabatic (curvature) and isocurvature (entropy) spectral indices after inflation era for all cosmological scales with two different initial conditions. For this purpose, we first extract an explicit equation for the time evolution of the comoving curvature perturbation (which may be known as the generalized Mukhanov-Sasaki equation). It would be cleared that the evolution of adiabatic spectral index severely depends on the initial conditions moreover, as expected it is constant only for the super-Hubble scales and adiabatic initial conditions. Additionally, the adiabatic spectral index after recombination approaches a constant value for the isocurvature perturbations. Finally, we re-investigate the Sachs-Wolfe effect and show that the fudge factor  1/3 in the adiabatic ordinary Sachs-Wolfe formula must be replaced by 0.4.

  18. Hazard index for underground toxic material

    SciTech Connect (OSTI)

    Smith, C.F.; Cohen, J.J.; McKone, T.E.

    1980-06-01

    To adequately define the problem of waste management, quantitative measures of hazard must be used. This study reviews past work in the area of hazard indices and proposes a geotoxicity hazard index for use in characterizing the hazard of toxic material buried underground. Factors included in this index are: an intrinsic toxicity factor, formulated as the volume of water required for dilution to public drinking-water levels; a persistence factor to characterize the longevity of the material, ranging from unity for stable materials to smaller values for shorter-lived materials; an availability factor that relates the transport potential for the particular material to a reference value for its naturally occurring analog; and a correction factor to accommodate the buildup of decay progeny, resulting in increased toxicity.

  19. Wyoming Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals 168,548 167,539 162,880 167,555 163,345 165,658 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  20. Wyoming Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Wellhead Price 4.30 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 5.04 4.65 4.03 4.51 5.27 4.36 1984-2015 Residential Price 8.58 8.72 8.42 8.27 9.34 9.19 1967-2015 Percentage of Total Residential Deliveries included in Prices 75.4 75.6 75.3 73.8 72.9 73.3 1989-2015 Commercial Price 7.13 7.29 6.72 6.81 7.69 NA 1967-2015 Percentage of Total Commercial Deliveries included in Prices 65.3 64.0 62.6 62.9 60.8 NA 1990-2015 Industrial

  1. Wyoming Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Citygate Price 3.62 3.75 3.44 3.14 3.04 2.82 1989-2016 Residential Price 6.90 7.16 7.71 7.92 9.17 12.40 1989-2016 Percentage of Total Residential Deliveries included in Prices 73.1 74.2 NA 73.0 72.2 69.0 2002-2016 Commercial Price 6.16 6.23 6.35 6.41 6.85 7.03 1989-2016 Percentage of Total Commercial Deliveries included in Prices 54.2 56.3 NA 55.7 57.1 51.9 1989-2016 Industrial Price 3.97 3.83 3.78 4.04 NA NA 2001-2016 Percentage of Total

  2. Wyoming Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    144 152 188 233 219 362 1996-2014 Lease Condensate (million bbls) 125 86 94 68 73 61 1998-2014 Total Gas (billion cu ft) 12,839 11,628 11,304 7,961 8,938 8,710 1996-2014 Nonassociated Gas (billion cu ft) 12,812 11,593 11,256 7,745 8,658 8,298 1996-2014 Associated Gas (billion cu ft) 27 35 48 216 280 41

  3. Wyoming Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    4.30 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 5.04 4.65 4.03 4.51 5.27 4.36 1984-2015 Residential 8.58 8.72 8.42 8.27 9.34 9.19 1967-2015 Commercial 7.13 7.29 6.72 6.81 7.69 NA 1967-2015 Industrial 4.91 5.57 4.87 4.62 5.89 NA 1997-2015 Vehicle Fuel 10.08 11.96 14.15 1991-2012 Electric Power W W W W W 5.18 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 35,074 35,290 30,094 33,618 27,553 1977-2014 Adjustments 521 -209 692 2,058 -1,877 1977-2014

  4. ,"Wyoming Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","04292016" ,"Excel File Name:","ngprisumdcuswym.xls" ,"Available from Web Page:","http:www.eia.govdnavngngprisumdcuswym.htm" ,"Source:","Energy ...

  5. Matched Index of Refraction Flow Facility

    ScienceCinema (OSTI)

    Mcllroy, Hugh

    2013-05-28

    What's 27 feet long, 10 feet tall and full of mineral oil (3000 gallons' worth)? If you said INL's Matched Index of Refraction facility, give yourself a gold star. Scientists use computers to model the inner workings of nuclear reactors, and MIR helps validate those models. INL's Hugh McIlroy explains in this video. You can learn more about INL energy research at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  6. SIAM conference on applications of dynamical systems. Abstracts and author index

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    A conference (Oct.15--19, 1992, Snowbird, Utah; sponsored by SIAM (Society for Industrial and Applied Mathematics) Activity Group on Dynamical Systems) was held that highlighted recent developments in applied dynamical systems. The main lectures and minisymposia covered theory about chaotic motion, applications in high energy physics and heart fibrillations, turbulent motion, Henon map and attractor, integrable problems in classical physics, pattern formation in chemical reactions, etc. The conference fostered an exchange between mathematicians working on theoretical issues of modern dynamical systems and applied scientists. This two-part document contains abstracts, conference program, and an author index.

  7. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Wind Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additional Resources Wind Prospector A web-based GIS applications designed to support ... For information on how the 50m maps were developed, access the GIS Data Background page. ...

  8. Indexes to Nuclear Regulatory Commission issuances, July--September 1997

    SciTech Connect (OSTI)

    1998-03-01

    This digest and index lists the Nuclear Regulatory Commission (NRC) issuances for July to September 1997. Issuances are from the Commission, the Atomic Safety and Licensing Boards, the Administrative Law Judges, the Directors` Decisions, and the Decisions on Petitions for Rulemaking. There are five sections to this index: (1) case name index, (2) headers and digests, (3) legal citations index, (4) subject index, and (5) facility index. The digest provides a brief narrative of the issue, including the resolution of the issue and any legal references used for resolution.

  9. HabiMap | Open Energy Information

    Open Energy Info (EERE)

    LibraryAdd to library : HabiMapInfo GraphicMapChart Abstract The Arizona Game and Fish Department developed HabiMap(tm) Arizona - a user-friendly, web-based data viewer - to...

  10. Denver Basin Map | Open Energy Information

    Open Energy Info (EERE)

    Basin Map Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Denver Basin Map Abstract This webpage contains a map of the Denver Basin. Published Colorado...

  11. Bouguer gravity map | Open Energy Information

    Open Energy Info (EERE)

    LibraryAdd to library Map: Bouguer gravity mapInfo GraphicMapChart Cartographers J. Behrendt and L. Bajwa Organization U.S. Geological Survey Published U.S. Geological...

  12. Department of Energy Idaho -Site Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Web Policies No Fear Act Site Map Privacy Phone Book You are here: DOE-ID Home > Site Map Site Map Manager's Welcome Inside ID DOE-ID Mission and Vision Brief History of the Idaho ...

  13. Interactive Map Shows Geothermal Resources

    Broader source: Energy.gov [DOE]

    The free interactive online map posted recently by the Oregon Department of Geology and Mineral Industries is part of a U.S. Department of Energy project to expand the knowledge of geothermal energy potential nationwide.

  14. A map of the universe

    SciTech Connect (OSTI)

    Gott III, J. Richard; Juric, Mario; Schlegel, David; Hoyle, Fiona; Vogeley, Michael; Tegmark, Max; Bahcall, Neta; Brinkmann, Jon

    2003-10-20

    We have produced a new conformal map of the universe illustrating recent discoveries, ranging from Kuiper belt objects in the Solar system, to the galaxies and quasars from the Sloan Digital Sky Survey. This map projection, based on the logarithm map of the complex plane, preserves shapes locally, and yet is able to display the entire range of astronomical scales from the Earth s neighborhood to the cosmic microwave background. The conformal nature of the projection, preserving shapes locally, may be of particular use for analyzing large scale structure. Prominent in the map is a Sloan Great Wall of galaxies 1.37 billion light years long, 80 percent longer than the Great Wall discovered by Geller and Huchra and therefore the largest observed structure in the universe.

  15. Map | OpenEI Community

    Open Energy Info (EERE)

    Enabling Unique Visualization and Manipulation of Energy Data at Multiple Scales FRED Free Energy Data Map OpenEI Tool Visualization The U.S. Department of Energy, the Pacific...

  16. NY Solar Map and Portal

    Broader source: Energy.gov [DOE]

    The NY Solar Map and Portal helps New Yorkers determine the advantages of going solar by providing detailed and localized information about a customer's solar potential. Supported by the SunShot...

  17. Property:CoverageMap | Open Energy Information

    Open Energy Info (EERE)

    Inc., dba Minnesota Power Smart Grid Project + SmartGridMap-ALLETEMNPower.JPG + American Transmission Company LLC II Smart Grid Project + SmartGridMap-AmericanTransmissionII....

  18. Compressing bitmap indexes for faster search operations

    SciTech Connect (OSTI)

    Wu, Kesheng; Otoo, Ekow J.; Shoshani, Arie

    2002-04-25

    In this paper, we study the effects of compression on bitmap indexes. The main operations on the bitmaps during query processing are bitwise logical operations such as AND, OR, NOT, etc. Using the general purpose compression schemes, such as gzip, the logical operations on the compressed bitmaps are much slower than on the uncompressed bitmaps. Specialized compression schemes, like the byte-aligned bitmap code(BBC), are usually faster in performing logical operations than the general purpose schemes, but in many cases they are still orders of magnitude slower than the uncompressed scheme. To make the compressed bitmap indexes operate more efficiently, we designed a CPU-friendly scheme which we refer to as the word-aligned hybrid code (WAH). Tests on both synthetic and real application data show that the new scheme significantly outperforms well-known compression schemes at a modest increase in storage space. Compared to BBC, a scheme well-known for its operational efficiency, WAH performs logical operations about 12 times faster and uses only 60 percent more space. Compared to the uncompressed scheme, in most test cases WAH is faster while still using less space. We further verified with additional tests that the improvement in logical operation speed translates to similar improvement in query processing speed.

  19. Lessons Learned Quarterly Report Cumulative Index | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guidance & Requirements » Lessons Learned » Lessons Learned Quarterly Report Cumulative Index Lessons Learned Quarterly Report Cumulative Index The LLQR is produced as a means of disseminating NEPA program metrics, along with related guidance, case studies, analysis, references, litigation updates, and resource information. The LLQR Cumulative Index contains topical listings with citations to relevant articles included in past LLQR issues. LLQR_Index_Dec_2012.pdf (347.36 KB) More Documents

  20. Marine carbonate embayment system in an Eolian dune terrain, Permian Upper Minnelusa Formation, Rozet Area, Powder River Basin, Wyoming

    SciTech Connect (OSTI)

    Achauer, C.W.

    1987-05-01

    The eolian origin for Minnelusa sandstones has been stressed in numerous published articles. However, the dolomites that are interbedded with the eolian sandstones have received little attention. Isopach mapping of one of the dolomite units (Dolomite I) reflects a marine embayment system whose individual embayments range from 1/2 to 1 mi in width and trend primarily in a northwest direction. Consistently the embayment dolomites pinch out against the flanks of reworked, low relief, broad, eolian dune ridges. So far, 108 mi/sup 2/ of the Dolomite I marine embayment system have been mapped, but the overall extent of the system is undoubtedly much greater. Dolomite I is rarely cored, but cores from stratigraphically higher embayment dolomites in the upper Minnelusa show that these dolomites display the following, shoaling-upward sequence: (1) subtidal, sparingly fossiliferous dolomite; (2) intertidal, algal-laminated or brecciated or mud-cracked dolomite; and (3) very thin, supratidal, nodular anhydrite. The embayments, therefore, became the sites of marine sabkhas located between eolian dunes. Two main conclusions emerge from this study: (1) the juxtaposition of eolian sandstones and marine dolomites in a tectonically stable area suggests that eustatic sea level changes and a very arid climate were responsible for the marked environmental and lithologic changes observed in the upper Minnelusa, and (2) arid, coastal, evaporitic sabkhas bordered by eolian dunes are known from a number of modern and ancient cases, but marine carbonate embayments and associated evaporitic sabkhas that penetrate deeply into eolian sandstone terrains are rare.

  1. Structures with negative index of refraction

    DOE Patents [OSTI]

    Soukoulis, Costas M.; Zhou, Jiangfeng; Koschny, Thomas; Zhang, Lei; Tuttle, Gary

    2011-11-08

    The invention provides simplified negative index materials (NIMs) using wire-pair structures, 4-gap single ring split-ring resonator (SRR), fishnet structures and overleaf capacitor SRR. In the wire-pair arrangement, a pair of short parallel wires and continuous wires are used. In the 4-gap single-ring SRR, the SRRs are centered on the faces of a cubic unit cell combined with a continuous wire type resonator. Combining both elements creates a frequency band where the metamaterial is transparent with simultaneously negative .di-elect cons. and .mu.. In the fishnet structure, a metallic mesh on both sides of the dielectric spacer is used. The overleaf capacitor SRR changes the gap capacities to small plate capacitors by making the sections of the SRR ring overlap at the gaps separated by a thin dielectric film. This technique is applicable to conventional SRR gaps but it best deploys for the 4-gap single-ring structures.

  2. Evaluation of Potential LSST Spatial Indexing Strategies

    SciTech Connect (OSTI)

    Nikolaev, S; Abdulla, G; Matzke, R

    2006-10-13

    The LSST requirement for producing alerts in near real-time, and the fact that generating an alert depends on knowing the history of light variations for a given sky position, both imply that the clustering information for all detections is available at any time during the survey. Therefore, any data structure describing clustering of detections in LSST needs to be continuously updated, even as new detections are arriving from the pipeline. We call this use case ''incremental clustering'', to reflect this continuous updating of clustering information. This document describes the evaluation results for several potential LSST incremental clustering strategies, using: (1) Neighbors table and zone optimization to store spatial clusters (a.k.a. Jim Grey's, or SDSS algorithm); (2) MySQL built-in R-tree implementation; (3) an external spatial index library which supports a query interface.

  3. Map labeling and its generalizations

    SciTech Connect (OSTI)

    Doddi, S. |; Marathe, M.V.; Mirzaian, A.; Moret, B.M.E.; Zhu, B. |

    1997-01-01

    Map labeling is of fundamental importance in cartography and geographical information systems and is one of the areas targeted for research by the ACM Computational Geometry Impact Task Force. Previous work on map labeling has focused on the problem of placing maximal uniform, axis-aligned, disjoint rectangles on the plane so that each point feature to be labeled lies at the corner of one rectangle. Here, we consider a number of variants of the map labeling problem. We obtain three general types of results. First, we devise constant-factor polynomial-time-approximation algorithms for labeling point features by rectangular labels, where the feature may lie anywhere on the boundary of its label region and where labeling rectangles may be placed in any orientation. These results generalize to the case of elliptical labels. Secondly, we consider the problem of labeling a map consisting of disjoint rectilinear fine segments. We obtain constant-factor polynomial-time approximation algorithms for the general problem and an optimal algorithm for the special case where all segments are horizontal. Finally, we formulate a bicriteria version of the map-labeling problem and provide bicriteria polynomial- time approximation schemes for a number of such problems.

  4. Metrics for comparison of crystallographic maps

    SciTech Connect (OSTI)

    Urzhumtsev, Alexandre; Afonine, Pavel V.; Lunin, Vladimir Y.; Terwilliger, Thomas C.; Adams, Paul D.

    2014-10-01

    Numerical comparison of crystallographic contour maps is used extensively in structure solution and model refinement, analysis and validation. However, traditional metrics such as the map correlation coefficient (map CC, real-space CC or RSCC) sometimes contradict the results of visual assessment of the corresponding maps. This article explains such apparent contradictions and suggests new metrics and tools to compare crystallographic contour maps. The key to the new methods is rank scaling of the Fourier syntheses. The new metrics are complementary to the usual map CC and can be more helpful in map comparison, in particular when only some of their aspects, such as regions of high density, are of interest.

  5. Geochemical provenance of anomalous metal concentrations in stream sediments in the Ashton 1:250,000 quadrangle, Idaho/Montana/Wyoming

    SciTech Connect (OSTI)

    Shannon, S.S. Jr.

    1982-01-01

    Stream-sediment samples from 1500 sites in the Ashton, Idaho/Montana/Wyoming 1:250,000 quadrangle were analyzed for 45 elements. Almost all samples containing anomalous concentrations (exceeding one standard deviation above the mean value of any element) were derived from drainage basins underlain by Quaternary rhyolite, Tertiary andesite or Precambrian gneiss and schist. Aluminum, barium, calcium, cobalt, iron, nickel, magnesium, scandium, sodium, strontium, and vanadium have no andesite provenance. Most anomalous manganese, europium, hafnium, and zirconium values were derived from Precambrian rocks. All other anomalous elemental concentrations are related to Quaternary rhyolite. This study demonstrates that multielemental stream-sediment analyses can be used to infer the provenance of stream sediments. Such data are available for many parts of the country as a result of the National Uranium Resource Evaluation. This study suggests that stream-sediment samples collected in the Rocky Mountains can be used either as pathfinders or as direct indicators to select targets for mineral exploration for a host of metals.

  6. BrainMap `95 workshop

    SciTech Connect (OSTI)

    1995-12-31

    The fourth annual BrainMap workshop was held at La Mansion del Rio Hotel in San Antonio December 3--4, 1995. The conference title was ``Human Brain Mapping and Modeling.`` The meeting was attended by 137 registered participants and 30 observers from 82 institutions representing 12 countries. The meeting focused on the technical issues associated with brain mapping and modeling. A total of 23 papers were presented covering the following topics: spatial normalization and registration; functional image analysis; metanalysis and modeling; and new horizons in biological databases. The full program with abstracts was available on the Research Imaging Center`s web site. A book will be published by John Wiley and Sons prior to the end of 1998.

  7. Rainwater Harvesting Potential Maps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rainwater Harvesting Potential Maps Rainwater Harvesting Potential Maps Pacific Northwest National Laboratory created two maps for the Federal Energy Management Program (FEMP) to help federal agencies strategically identify U.S. locations that are conducive to rainwater harvesting projects. The first map shows the relative potential for capturing rainwater for any use. The second map specifically identifies areas that have potential for supplying rainwater for irrigation. This document describes

  8. Rainwater Harvesting Regulations Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regulations Map Rainwater Harvesting Regulations Map Rainwater collection is currently regulated by individual states. There was no centralized information source on state-level regulations on rainwater harvesting maintained by a federal agency. To fill this information gap, the Federal Energy Management Program compiled state-level information and provided it in this map tool. How to Use the Map This map gives federal agencies key information on how rainwater is regulated across the U.S. to

  9. PMCDP Curriculum Learning Map | Department of Energy

    Energy Savers [EERE]

    Curriculum Learning Map PMCDP Curriculum Learning Map This interactive map provides an overview of the Department of Energy's Project Management Career Development Program (PMCDP) as well as all pertinent details for each course within the program. Download and use this map to guide you through the FPD certification process. After opening the map, click on any course to view the course details, including available equivalent courses. Many of the previously instructor-led courses are now

  10. Snake River Geothermal Consortium FORGE Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Map Snake River Geothermal Consortium FORGE Map Snake River Geothermal Consortium FORGE Map More Documents & Publications Snake River Geothermal Consortium FORGE Map Snake River Geothermal Consortium FORGE Logo Snake River Geothermal Consortium FORGE Map Milford, Utah FORGE Map Snake River Geothermal Consortium FORGE Map Newberry FORGE Map

  11. ARM - TWP-ICE Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TWP-ICE Maps Related Links TWP-ICE Home Tropical Western Pacific Home ARM Data Discovery Browse Data Post-Experiment Data Sets Weather Summary (pdf, 6M) New York Workshop Presentations Experiment Planning TWP-ICE Proposal Abstract Detailed Experiment Description Science Plan (pdf, 1M) Operations Plan (pdf, 321K) Maps Contact Info Related Links Daily Report Report Archives Press Media Coverage TWP-ICE Fact Sheet (pdf, 211K) Press Releases TWP-ICE Images ARM flickr site <=""

  12. The mapping and differentiation of biological and environmental elemental signatures in the fossil remains of a 50 million year old bird

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Egerton, Victoria M.; Wogelius, Roy A.; Norell, Mark A.; Edwards, Nicholas P.; Sellers, William I.; Bergmann, Uwe; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Ignatyev, Konstantin; van Veelen, Arjen; et al

    2015-01-22

    The preservation of fossils reflects the interplay of inorganic and organic chemical processes, which should be clearly differentiated to make interpretations about the biology of extinct organisms. A new coliiformes bird (mouse bird) from the ~50 million year old Green River Formation (Wyoming, USA) has here been analysed using synchrotron X-ray fluorescence and environmental scanning electron microscopy with an attached X-ray energy dispersive system (ESEM-EDS). The concentration and distribution of 16 elements (Si, P, S, Cl, K, Ca, Ti, Mg, Fe, Ni, Cu, Zn, As, Br, Ba, Hg) has been mapped for individual points on the sample. S, Cu andmore » Zn map distinctly within visibly preserved feathers and X-ray Absorption Spectroscopy (XAS) shows that S and Cu within the feathers are organically bound in a similar manner to modern feathers. The morphological preservation of the feathers, on both macro- and microscopic scales, is variable throughout the fossil and the differences in the lateral microfacies have resulted in a morphological preservation gradient. This study clearly differentiates endogenous organic remains from those representing exogenous overprinted geochemical precipitates and illustrates the chemical complexity of the overall taphonomic process.« less

  13. The mapping and differentiation of biological and environmental elemental signatures in the fossil remains of a 50 million year old bird

    SciTech Connect (OSTI)

    Egerton, Victoria M.; Wogelius, Roy A.; Norell, Mark A.; Edwards, Nicholas P.; Sellers, William I.; Bergmann, Uwe; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Ignatyev, Konstantin; van Veelen, Arjen; Anné, Jennifer; van Dongen, Bart; Knoll, Fabien; Manning, Phillip L.

    2015-01-22

    The preservation of fossils reflects the interplay of inorganic and organic chemical processes, which should be clearly differentiated to make interpretations about the biology of extinct organisms. A new coliiformes bird (mouse bird) from the ~50 million year old Green River Formation (Wyoming, USA) has here been analysed using synchrotron X-ray fluorescence and environmental scanning electron microscopy with an attached X-ray energy dispersive system (ESEM-EDS). The concentration and distribution of 16 elements (Si, P, S, Cl, K, Ca, Ti, Mg, Fe, Ni, Cu, Zn, As, Br, Ba, Hg) has been mapped for individual points on the sample. S, Cu and Zn map distinctly within visibly preserved feathers and X-ray Absorption Spectroscopy (XAS) shows that S and Cu within the feathers are organically bound in a similar manner to modern feathers. The morphological preservation of the feathers, on both macro- and microscopic scales, is variable throughout the fossil and the differences in the lateral microfacies have resulted in a morphological preservation gradient. This study clearly differentiates endogenous organic remains from those representing exogenous overprinted geochemical precipitates and illustrates the chemical complexity of the overall taphonomic process.

  14. Auto Indexer Auto-Indexer for Percussive Hammers: Vane Motor Dynamometer Testing

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Su, Jiann

    The development of the motor will help to achieve program technical objectives by improving well construction capabilities. This includes enabling high-temperature drilling as well as enhancing directional drilling. A key component in the auto indexer is the drive motor. It is an air-driven vane motor that converts the energy stored in the compressed air to mechanical energy. The motor is attached to hammer-like components which impart an impulsive load onto the drive shaft. The impulsive force on the drive shaft in turn creates an indexing action. A controlled test was performed to characterize the performance of the the vane motor for a given pressure. The Sandia dynamometer test station was used to determine the performance of the motor for a given input pressure.

  15. Auto Indexer Auto-Indexer for Percussive Hammers: Vane Motor Dynamometer Testing

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Su, Jiann

    2012-01-01

    The development of the motor will help to achieve program technical objectives by improving well construction capabilities. This includes enabling high-temperature drilling as well as enhancing directional drilling. A key component in the auto indexer is the drive motor. It is an air-driven vane motor that converts the energy stored in the compressed air to mechanical energy. The motor is attached to hammer-like components which impart an impulsive load onto the drive shaft. The impulsive force on the drive shaft in turn creates an indexing action. A controlled test was performed to characterize the performance of the the vane motor for a given pressure. The Sandia dynamometer test station was used to determine the performance of the motor for a given input pressure.

  16. NREL: Dynamic Maps, GIS Data, and Analysis Tools - MapSearch

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bookmark and Share MapSearch MapSearch Logo is a computer monitor with a magnifying glass suspended in the air before it. Use our MapSearch tool to easily search our collection of ...

  17. Auto Indexer for Percussive Hammers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Auto Indexer for Percussive Hammers Auto Indexer for Percussive Hammers Auto Indexer for Percussive Hammers presentation at the April 2013 peer review meeting held in Denver, Colorado. sandia_percussive_hammers_peer2013.pdf (2.49 MB) More Documents & Publications Technology Development and Field Trials of EGS Drilling Systems track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications

  18. DOERS Records Schedule Cross Index to DOE Administrative Records

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposition Schedules | Department of Energy DOERS Records Schedule Cross Index to DOE Administrative Records Disposition Schedules DOERS Records Schedule Cross Index to DOE Administrative Records Disposition Schedules Crosswalk between DOERS and Admin Schedules DOERS Records Schedule Cross Index to DOE Administrative Records Disposition Schedules (19.97 KB) More Documents & Publications DOE Records Disposition Schedule Changes ADMINISTRATIVE RECORDS SCHEDULE 17: CARTOGRAPHIC, AERIAL

  19. Project Definition Rating Index (PDRI) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Definition Rating Index (PDRI) Project Definition Rating Index (PDRI) The Office of Environmental Management (EM) Project Definition Rating Index (EM-PDRI) is a modification of a commercially developed planning tool that has been tested by an EM team specifically for EM's projects. EM-PDRI Team members represent a number of EM sites, and have already used this project planning tool successfully. The EM-PDRI examines a wide range of project factors related to cost, scope, and schedule, and

  20. Title 40 CFR 1508 Terminology and Index | Open Energy Information

    Open Energy Info (EERE)

    Regulation: Title 40 CFR 1508 Terminology and IndexLegal Abstract Regulations setting forth terminology under NEPA. Published NA Year Signed or Took Effect 2014 Legal Citation...

  1. Sandia Energy - Results from the Human Resilience Index and Modeling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Results from the Human Resilience Index and Modeling project were reported recently in the National Intelligence Council's Global Trends 2030 Report Home Infrastructure Security...

  2. Structures with Negative Refractive Index for Applications in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This Return to Search Structures with Negative Refractive Index for Applications in Optics and Nanophotonics Ames Laboratory Contact AMES About This Technology Technology...

  3. Optimizing accuracy of determinations of CO₂ storage capacity and permanence, and designing more efficient storage operations: An example from the Rock Springs Uplift, Wyoming

    SciTech Connect (OSTI)

    Bentley, Ramsey; Dahl, Shanna; Deiss, Allory; Duguid, Andrew; Ganshin, Yuri; Jiao, Zunsheng; Quillinan, Scott

    2015-12-01

    At a potential injection site on the Rock Springs Uplift in southwest Wyoming, an investigation of confining layers was undertaken to develop and test methodology, identify key data requirements, assess previous injection scenarios relative to detailed confining layer properties, and integrate all findings in order to reduce the uncertainty of CO₂ storage permanence. The assurance of safe and permanent storage of CO₂ at a storage site involves a detailed evaluation of the confining layers. Four suites of field data were recognized as crucial for determining storage permanence relative to the confining layers; seismic, core and petrophysical data from a wellbore, formation fluid samples, and in-situ formation tests. Core and petrophysical data were used to create a vertical heterogenic property model that defined porosity, permeability, displacement pressure, geomechanical strengths, and diagenetic history. These analyses identified four primary confining layers and multiple redundant confining layers. In-situ formation tests were used to evaluate fracture gradients, regional stress fields, baseline microseismic data, step-rate injection tests, and formation perforation responses. Seismic attributes, correlated with the vertical heterogenic property models, were calculated and used to create a 3-D volume model over the entire site. The seismic data provided the vehicle to transform the vertical heterogenic property model into a horizontal heterogenic property model, which allowed for the evaluation of confining layers across the entire study site without risking additional wellbore perforations. Lastly, formation fluids were collected and analyzed for geochemical and isotopic compositions from stacked reservoir systems. These data further tested primary confining layers, by evaluating the evidence of mixing between target reservoirs (mixing would imply an existing breach of primary confining layers). All data were propagated into a dynamic, heterogenic geologic

  4. An evaluation of health risk to the public as a consequence of in situ uranium mining in Wyoming, USA

    SciTech Connect (OSTI)

    Ruedig, Elizabeth; Johnson, Thomas E.

    2015-08-30

    In the United States there is considerable public concern regarding the health effects of in situ recovery uranium mining. These concerns focus principally on exposure to contaminants mobilized in groundwater by the mining process. However, the risk arising as a result of mining must be viewed in light of the presence of naturally occurring uranium ore and other constituents which comprise a latent hazard. The United States Environmental Protection Agency recently proposed new guidelines for successful restoration of an in situ uranium mine by limiting concentrations of thirteen groundwater constituents: arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, nitrate (as nitrogen), molybdenum, radium, total uranium, and gross α activity. We investigated the changes occurring to these constituents at an ISR uranium mine in Wyoming, USA by comparing groundwater quality at baseline measurement to that at stability (post-restoration) testing. Of the groundwater constituents considered, only uranium and radium-226 showed significant (p < 0.05) deviation from site-wide baseline conditions in matched-wells. Uranium concentrations increased by a factor of 5.6 (95% CI 3.6–8.9 times greater) while radium-226 decreased by a factor of about one half (95% CI 0.42–0.75 times less). Change in risk was calculated using the RESRAD (onsite) code for an individual exposed as a resident-farmer; total radiation dose to a resident farmer decreased from pre-to post-mining by about 5.2 mSv y–1. As a result, higher concentrations of uranium correspond to increased biomarkers of nephrotoxicity, however the clinical significance of this increase is unclear.

  5. Preliminary draft industrial siting administration permit application: Socioeconomic factors technical report. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project in Converse County, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    Under the with-project scenario, WyCoalGas is projected to make a difference in the long-range future of Converse County. Because of the size of the proposed construction and operations work forces, the projected changes in employment, income, labor force, and population will alter Converse County's economic role in the region. Specifically, as growth occurs, Converse County will begin to satisfy a larger portion of its own higher-ordered demands, those that are currently being satisfied by the economy of Casper. Business-serving and household-serving activities, currently absent, will find the larger income and population base forecast to occur with the WyCoalGas project desirable. Converse County's economy will begin to mature, moving away from strict dependence on extractive industries to a more sophisticated structure that could eventually appeal to national, and certainly, regional markets. The technical demand of the WyCoalGas plant will mean a significant influx of varying occupations and skills. The creation of basic manufacturing, advanced trade and service sectors, and concomitant finance and transportation firms will make Converse County more economically autonomous. The county will also begin to serve market center functions for the smaller counties of eastern Wyoming that currently rely on Casper, Cheyenne or other distant market centers. The projected conditions expected to exist in the absence of the WyCoalGas project, the socioeconomic conditions that would accompany the project, and the differences between the two scenarios are considered. The analysis is keyed to the linkages between Converse County and Natrona County.

  6. Expression of syndepositional tectonic uplift in Permian Goose Egg formation (Phosphoria equivalent) carbonates and red beds of Sheep Mountain anticline, Bighorn basin, Wyoming

    SciTech Connect (OSTI)

    Simmons, S.P.; Ulmer, D.S.; Scholle, P.A.

    1989-03-01

    Based on detailed field observations at Sheep Mountain, a doubly plunging anticline in the northeastern Bighorn basin in Wyoming, there appears to have been active tectonic uplift at this site contemporaneous with Pennsylvanian and Permian sedimentation. The Permian (Leonardian to Guadalupian) Goose Egg Formation at Sheep Mountain consists of 25-60 m of silty red beds (including minor carbonate and evaporite units) capped by 15-30 m of dominantly intertidal carbonates (the Ervay Member). A strong lateral variation of facies normal to the trend of the anticline is found within the red-bed sequence: carbonate beds on the anticline flanks are transitional with a gypsum/anhydrite facies along the crest. Similarly, shales on the anticline limbs grade into sandstones near the fold axis, indicating a paleohigh roughly coincidental with the present-day anticline crest. Ervay deposition (late Guadalupian) was marked by a more extensive uplifted structure in a marginal marine setting. On Sheep Mountain the unit is typified by intertidal fenestral carbonates, whereas outcrops to the east suggest a restricted marine facies and outcrops to the west reflect a more open marine environment. Thin sand lenses present in the Ervay are thought to represent terrigenous sediments blown onto the sometimes emergent bank which were then captured through adhesion and cementation. Anticlinal features similar to Sheep Mountain are common along the eastern margin of the Bighorn basin. When found in the subsurface, these structures are often associated with hydrocarbon production from the Ervay Member. Tectonic uplift contemporaneous with deposition of this unit may explain the localization of the productive fenestral facies on the present-day anticlines.

  7. A Designed Protein Maps Brain Activity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Designed Protein Maps Brain Activity A Designed Protein Maps Brain Activity Print Wednesday, 28 October 2015 00:00 A team of scientists from the Howard Hughes Medical Institute's ...

  8. Form:MapFile | Open Energy Information

    Open Energy Info (EERE)

    below to add to OpenEI. If the map is already in the database, you will be able to edit its existing information. AddEdit Map Retrieved from "http:en.openei.orgw...

  9. Hawaii geologic map data | Open Energy Information

    Open Energy Info (EERE)

    geologic map data Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii geologic map data Published USGS, Date Not Provided DOI Not Provided Check for...

  10. Google maps | OpenEI Community

    Open Energy Info (EERE)

    queries developer Google maps maps multicolor result formats results Semantic Mediawiki Hi all, Recently, a couple of people on OpenEI have asked me how to do compound (or...

  11. Google Crisis Map for Hurricane Sandy

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    The Google Crisis Map has power outage information, shelter and recovery centers, local emergency Twitter feeds, FEMA disaster declared areas and more. | This map is created and maintained by...

  12. SNL-CRCV Map-580 to CRCV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to be badged Sandia National Laboratories 7011 East Avenue Livermore, CA 94551 Parking Tesla Road CRF Parking 904 906 From OaklandSan Francisco Map Not to Scale Map Not to Scale ...

  13. RAPID MAPPING TOOL: AN ARCMAP EXTENSION

    SciTech Connect (OSTI)

    STEVE P. LINGER; PAUL M. RICH; DOUG WALTHER; MARC S. WITKOWSKI; MARCIA A. JONES; HARI S. KHALSA

    2002-06-18

    Cartographic production laboratories produce large volumes of maps for diverse customers. Turnaround time and consistency are key concerns. The Rapid Mapping Tool is an ArcMap based tool that enables rapid creation of maps to meet customer needs. This tool was constructed using VB/VBA, ArcObjects, and ArcGIS templates. The core capability of ArcMap is extended for custom map production by storing specifications associated with a map or template in a companion XML document. These specifications include settings and preferences used to create custom maps. The tool was developed as a component of an enterprise GIS, which enables spatial data management and delivery using ArcSDE, ArcIMS, Oracle, and a web-based request tracking system.

  14. Mapping the Topology of the Human Genome

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Topology of the Human Genome Mapping the Topology of the Human Genome Print Monday, 11 July 2016 00:00 Department of Energy facilities such as the Joint Genome ...

  15. Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outreach Doing Business Expand Doing Business Skip navigation links Newsroom About Us Civil Rights - EEO Freedom of Information Act Investor Relations Library Privacy...

  16. Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science & Innovation » Energy Efficiency » Manufacturing Manufacturing Manufacturing is how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Manufacturing is the lifeblood of the American economy -- providing jobs

  17. Eastern Energy Zones Mapping Tool

    Broader source: Energy.gov [DOE]

    The Eastern Interconnection States’ Planning Council (EISPC) has released the Energy Zones (EZ) Mapping Tool, a free, web-based interactive tool that will help states and other stakeholders in the Eastern Interconnection identify geographic areas suitable for the development of clean energy resources (natural gas, sequestration or utilitization locations for C02 from coal, nuclear, and renewable) which can potentially provide significant amounts of new electric power generation.

  18. Regulatory and technical reports (abstract index journal): Annual compilation for 1994. Volume 19, Number 4

    SciTech Connect (OSTI)

    1995-03-01

    This compilation consists of bibliographic data and abstracts for the formal regulatory and technical reports issued by the US Nuclear Regulatory Commission (NRC) Staff and its contractors. It is NRC`s intention to publish this compilation quarterly and to cumulate it annually. The main citations and abstracts in this compilation are listed in NUREG number order. These precede the following indexes: secondary report number index, personal author index, subject index, NRC originating organization index (staff reports), NRC originating organization index (international agreements), NRC contract sponsor index (contractor reports), contractor index, international organization index, and licensed facility index. A detailed explanation of the entries precedes each index.

  19. EJSCREEN: Environmental Justice Screening and Mapping Tool

    Broader source: Energy.gov [DOE]

    EJSCREEN is an environmental justice mapping and screening tool provided by the U.S. Environmental Protection Agency (EPA).

  20. Field Mapping (Healy, 1970) | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping (Healy, 1970) Exploration Activity Details Location Unspecified Exploration Technique...

  1. Geographic Resource Map of Frozen Pipe Probabilities

    Broader source: Energy.gov [DOE]

    Presentation slide details a resource map showing the probability of frozen pipes in the geographic United States.

  2. Nanoscale Strain Maps Inside a Metal

    SciTech Connect (OSTI)

    Fensin, Saryu Jindal; Sandberg, Richard L.

    2015-11-03

    This report offers a description about the 3D strain mapping of small crystals using nanometer scale images.

  3. MapReduce SVM Game

    SciTech Connect (OSTI)

    Vineyard, Craig M.; Verzi, Stephen J.; James, Conrad D.; Aimone, James B.; Heileman, Gregory L.

    2015-08-10

    Despite technological advances making computing devices faster, smaller, and more prevalent in today's age, data generation and collection has outpaced data processing capabilities. Simply having more compute platforms does not provide a means of addressing challenging problems in the big data era. Rather, alternative processing approaches are needed and the application of machine learning to big data is hugely important. The MapReduce programming paradigm is an alternative to conventional supercomputing approaches, and requires less stringent data passing constrained problem decompositions. Rather, MapReduce relies upon defining a means of partitioning the desired problem so that subsets may be computed independently and recom- bined to yield the net desired result. However, not all machine learning algorithms are amenable to such an approach. Game-theoretic algorithms are often innately distributed, consisting of local interactions between players without requiring a central authority and are iterative by nature rather than requiring extensive retraining. Effectively, a game-theoretic approach to machine learning is well suited for the MapReduce paradigm and provides a novel, alternative new perspective to addressing the big data problem. In this paper we present a variant of our Support Vector Machine (SVM) Game classifier which may be used in a distributed manner, and show an illustrative example of applying this algorithm.

  4. MapReduce SVM Game

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vineyard, Craig M.; Verzi, Stephen J.; James, Conrad D.; Aimone, James B.; Heileman, Gregory L.

    2015-08-10

    Despite technological advances making computing devices faster, smaller, and more prevalent in today's age, data generation and collection has outpaced data processing capabilities. Simply having more compute platforms does not provide a means of addressing challenging problems in the big data era. Rather, alternative processing approaches are needed and the application of machine learning to big data is hugely important. The MapReduce programming paradigm is an alternative to conventional supercomputing approaches, and requires less stringent data passing constrained problem decompositions. Rather, MapReduce relies upon defining a means of partitioning the desired problem so that subsets may be computed independently andmore » recom- bined to yield the net desired result. However, not all machine learning algorithms are amenable to such an approach. Game-theoretic algorithms are often innately distributed, consisting of local interactions between players without requiring a central authority and are iterative by nature rather than requiring extensive retraining. Effectively, a game-theoretic approach to machine learning is well suited for the MapReduce paradigm and provides a novel, alternative new perspective to addressing the big data problem. In this paper we present a variant of our Support Vector Machine (SVM) Game classifier which may be used in a distributed manner, and show an illustrative example of applying this algorithm.« less

  5. Asset Utilization Index (AUI) Guidance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Asset Utilization Index (AUI) Guidance Asset Utilization Index (AUI) Guidance AUI Guidance_090227.pdf (40.37 KB) More Documents & Publications Three Year Rolling Timeline The Department&#8217;s real property assets are vital to the accomplishment of its mission Three-year Rolling Timeline

  6. CanGEA Fifth Annual Geothermal Conference Presentation - Mapping...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CanGEA Fifth Annual Geothermal Conference Presentation - Mapping & Database Workshop CanGEA Fifth Annual Geothermal Conference Presentation - Mapping & Database Workshop Mapping ...

  7. Building Technologies Office Projects Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Technologies Office Projects Map Building Technologies Office Projects Map Welcome to the Building Technologies Office Projects Map. Here you will find listings for our ...

  8. Metrics for comparison of crystallographic maps

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Urzhumtsev, Alexandre; Afonine, Pavel V.; Lunin, Vladimir Y.; Terwilliger, Thomas C.; Adams, Paul D.

    2014-10-01

    Numerical comparison of crystallographic contour maps is used extensively in structure solution and model refinement, analysis and validation. However, traditional metrics such as the map correlation coefficient (map CC, real-space CC or RSCC) sometimes contradict the results of visual assessment of the corresponding maps. This article explains such apparent contradictions and suggests new metrics and tools to compare crystallographic contour maps. The key to the new methods is rank scaling of the Fourier syntheses. The new metrics are complementary to the usual map CC and can be more helpful in map comparison, in particular when only some of their aspects,more » such as regions of high density, are of interest.« less

  9. Multi-Level Bitmap Indexes for Flash Memory Storage

    SciTech Connect (OSTI)

    Wu, Kesheng; Madduri, Kamesh; Canon, Shane

    2010-07-23

    Due to their low access latency, high read speed, and power-efficient operation, flash memory storage devices are rapidly emerging as an attractive alternative to traditional magnetic storage devices. However, tests show that the most efficient indexing methods are not able to take advantage of the flash memory storage devices. In this paper, we present a set of multi-level bitmap indexes that can effectively take advantage of flash storage devices. These indexing methods use coarsely binned indexes to answer queries approximately, and then use finely binned indexes to refine the answers. Our new methods read significantly lower volumes of data at the expense of an increased disk access count, thus taking full advantage of the improved read speed and low access latency of flash devices. To demonstrate the advantage of these new indexes, we measure their performance on a number of storage systems using a standard data warehousing benchmark called the Set Query Benchmark. We observe that multi-level strategies on flash drives are up to 3 times faster than traditional indexing strategies on magnetic disk drives.

  10. Valley Entrepreneurial Network monthly meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BOE Reserve Class Montana North Dakota South Dakota Wyoming INDEX MAP ± 0 10 20 5 15 Miles Williston Basin Oil & Gas Field Boundaries 2004 BOE Reserve Class No 2004 reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1 - 10,000 MBOE 10,000.1 - 100,000 MBOE >100,000 MBOE

    Gas Reserve Class Montana North Dakota South Dakota Wyoming INDEX MAP ± 0 10 20 5 15 Miles Williston Basin Oil and Gas Fields 2004 Gas Reserve Class No 2004 Gas Reserves 0.1 - 10 MMCF 10.1 - 100 MMCF 100.1

  11. Physical mapping of complex genomes

    DOE Patents [OSTI]

    Evans, Glen A.

    1993-01-01

    Method for simultaneous identification of overlapping cosmid clones among multiple cosmid clones and the use of the method for mapping complex genomes are provided. A library of cosmid clones that contains the DNA to be mapped is constructed and arranged in a manner such that individual clones can be identified and replicas of the arranged clones prepared. In preferred embodiments, the clones are arranged in a two dimensional matrix. In such embodiments, the cosmid clones in a row are pooled, mixed probes complementary to the ends of the DNA inserts int he pooled clones are synthesized, hybridized to a first replica of the library. Hybridizing clones, which include the pooled row, are identified. A second portion of clones is prepared by pooling cosmid clones that correspond to a column in the matrix. The second pool thereby includes one clone from the first portion pooled clones. This common clone is located on the replica at the intersection of the column and row. Mixed probes complementary to the ends of the DNA inserts in the second pooled portion of clones are prepared and hybridized to a second replica of the library. The hybridization pattern on the first and second replicas of the library are compared and cross-hybridizing clones, other than the clones in the pooled column and row, that hybridize to identical clones in the first and second replicas are identified. These clones necessarily include DNA inserts that overlap with the DNA insert int he common clone located at the intersection of the pooled row and pooled column. The DNA in the entire library may be mapped by pooling the clones in each of the rows and columns of the matrix, preparing mixed end-specific probes and hybridizing the probes from each row or column to a replica of the library. Since all clones in the library are located at the intersection of a column and a row, the overlapping clones for all clones in the library may be identified and a physical map constructed. In other preferred

  12. AreaMapWeb copy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL ETTP CITY OF OAK RIDGE MAP AREA (below) 170 170 62 162 162 62 62 61 61 62 61 95 95 61 61 58 95 62 129 321 411 411 321 321 129 11W 11E 11 70 11 11 70 11 11 70 70 40 40 140 140 40 75 40 40 40 640 640 75 75 75 75 61 62 ALCOA MARYVILLE LENOIR CITY FARRAGUT LOUDON OLIVER SPRINGS OAK RIDGE KNOXVILLE AIRPORT McGhee Tyson Municipal Airport (Knoxville Airport) Route between Knoxville Airport, Downtown Knoxville, and Oak Ridge area Take left lane for I-40 West to Nashville, Chattanooga No. 376A Oak

  13. Physical mapping of complex genomes

    DOE Patents [OSTI]

    Evans, G.A.

    1993-06-15

    A method for the simultaneous identification of overlapping cosmid clones among multiple cosmid clones and the use of the method for mapping complex genomes are provided. A library of cosmid clones that contains the DNA to be mapped is constructed and arranged in a manner such that individual clones can be identified and replicas of the arranged clones prepared. In preferred embodiments, the clones are arranged in a two dimensional matrix. In such embodiments, the cosmid clones in a row are pooled, mixed probes complementary to the ends of the DNA inserts in the pooled clones are synthesized, hybridized to a first replica of the library. Hybridizing clones, which include the pooled row, are identified. A second portion of clones is prepared by pooling cosmid clones that correspond to a column in the matrix. The second pool thereby includes one clone from the first portion pooled clones. This common clone is located on the replica at the intersection of the column and row. Mixed probes complementary to the ends of the DNA inserts in the second pooled portion of clones are prepared and hybridized to a second replica of the library. The hybridization pattern on the first and second replicas of the library are compared and cross-hybridizing clones, other than the clones in the pooled column and row, that hybridize to identical clones in the first and second replicas are identified. These clones necessarily include DNA inserts that overlap with the DNA insert in the common clone located at the intersection of the pooled row and pooled column. The DNA in the entire library may be mapped by pooling the clones in each of the rows and columns of the matrix, preparing mixed end-specific probes and hybridizing the probes from each row or column to a replica of the library. Since all clones in the library are located at the intersection of a column and a row, the overlapping clones for all clones in the library may be identified and a physical map constructed.

  14. Auto Indexer Auto-Indexer for Percussive Hammers: Vane Motor Dynamometer Testing

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Su, Jiann

    2012-01-01

    Objectives Options associated with geothermal drilling operations are generally limited by factors such as formation temperature and rock strength. The objective of the research is to expand the "tool box" available to the geothermal driller by furthering the development of a high-temperature drilling motor that can be used in directional drilling applications for drilling high temperature geothermal formations. The motor is specifically designed to operate in conjunction with a pneumatic down-the-hole-hammer. It provides a more compact design compared to traditional drilling motors such as PDMs (positive displacement motors). The packaging can help to enhance directional drilling capabilities. It uses no elastomeric components, which enables it to operate in higher temperatures ( >250 °F). Current work on the motor has shown that is a capable of operating under pneumatic power with a down-the-hole-hammer. Further development work will include continued testing and refining motor components and evaluating motor capabilities. Targets/Milestones Complete testing current motor - 12/31/2010 Make final material and design decisions - 01/31/2011 Build and test final prototype - 04/31/2011 Final demonstration - 07/31/2011 Impacts The development of the motor will help to achieve program technical objectives by improving well construction capabilities. This includes enabling high-temperature drilling as well as enhancing directional drilling. A key component in the auto indexer is the drive motor. It is an air-driven vane motor that converts the energy stored in the compressed air to mechanical energy. The motor is attached to hammer-like components which impart an impulsive load onto the drive shaft. The impulsive force on the drive shaft in turn creates an indexing action. A controlled test was performed to characterize the performance of the the vane motor for a given pressure. The Sandia dynamometer test station was used to determine the performance of the motor for a

  15. Maps/Directions | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves Summary Maps of Selected State Subdivisions Map 1: Alaska Map 2: California Map 3: Louisiana Map 4: New Mexico Map 5: Texas Map 6: Western Planning Area, Gulf of Mexico Map 7: Central Planning Area, Gulf of Mexico Map 8: Eastern Planning Area, Gulf of Mexico Map 1: Alaska AK 50 - North Onshore and Offshore AK 10 - South Onshore AK 05 - South State Offshore AK 00 - South Federal Offshore Map 2: California CA 50 - Coastal Region

  16. Astoria Mineral Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Astoria Mineral Hot Springs Sector Geothermal energy Type Pool and Spa Location Jackson, Wyoming Coordinates 43.4799291, -110.7624282 Show Map Loading map......

  17. Blue Sky Batteries Inc | Open Energy Information

    Open Energy Info (EERE)

    Place: Laramie, Wyoming Zip: 82072-3 Product: Nanoengineers materials for rechargeable lithium batteries. Coordinates: 41.310808, -105.590324 Show Map Loading map......

  18. Valley Co. McCone Co. Roosevelt Co. Richland Co. Sheridan Co.

    U.S. Energy Information Administration (EIA) Indexed Site

    BOE Reserve Class Montana North Dakota South Dakota Wyoming INDEX MAP ± 0 10 20 5 15 Miles Williston Basin Oil & Gas Field Boundaries 2004 BOE Reserve Class No 2004 reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1 - 10,000 MBOE 10,000.1 - 100,000 MBOE >100,000 MBOE

  19. Valley Co. McCone Co. Roosevelt Co. Richland Co. Sheridan Co.

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Reserve Class Montana North Dakota South Dakota Wyoming INDEX MAP ± 0 10 20 5 15 Miles Williston Basin Oil and Gas Fields 2004 Gas Reserve Class No 2004 Gas Reserves 0.1 - 10 MMCF 10.1 - 100 MMCF 100.1 - 1,000 MMCF 1,000 - 10,000 MMCF 10,000 - 100,000 MMCF > 100,000 MMCF

  20. Title 40 CFR 1508: Terminology and Index | Open Energy Information

    Open Energy Info (EERE)

    1508: Terminology and IndexLegal Published NA Year Signed or Took Effect 2014 Legal Citation Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online...

  1. Rock index properties for geoengineering in underground development

    SciTech Connect (OSTI)

    O'Rourke, J.E.

    1989-02-01

    This paper describes the use of index testing to obtain rock properties that are useful in the design and construction planning of an underground development for civil engineering or mining projects. The index properties discussed include: point load; Schmidt hammer hardness; abrasion hardness; and total hardness. The first two index properties correlate to uniaxial compressive strength (UCS) and Young's modulus. Discussions are given on empirical, normalized relationships of UCS to rock mass properties and the integrated use with semi-empirical, geotechnical design methods. The hardness property indices correlate to construction performance parameters and some relevant experience is cited. Examples of data are presented from an index testing program carried out primarily on siltstone, sandstone and limestone rock core samples retrieved from depths up to 1005 m (3300 ft) in a borehole drilled in the Paradox Basin in eastern Utah. The borehole coring was done for a nuclear waste repository site investigation.

  2. EIA Energy Efficiency-Table 4f. Industrial Production Indexes...

    Gasoline and Diesel Fuel Update (EIA)

    f Page Last Modified: May 2010 Table 4f. Industrial Production Indexes by Selected Industries, 1998, 2002, and 2006 (2000 100) MECS Survey Years NAICS Subsector and Industry 1998...

  3. Using the NEPA Requirements and Guidance - Search Index

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Search Index Step 2: Entering a Search Term or Phrase 1. Locate the downloaded file, ... Use the default option Enter search term or phrase here Step 2.2: Refining Search ...

  4. Parallel In Situ Indexing for Data-intensive Computing

    SciTech Connect (OSTI)

    Kim, Jinoh; Abbasi, Hasan; Chacon, Luis; Docan, Ciprian; Klasky, Scott; Liu, Qing; Podhorszki, Norbert; Shoshani, Arie; Wu, Kesheng

    2011-09-09

    As computing power increases exponentially, vast amount of data is created by many scientific re- search activities. However, the bandwidth for storing the data to disks and reading the data from disks has been improving at a much slower pace. These two trends produce an ever-widening data access gap. Our work brings together two distinct technologies to address this data access issue: indexing and in situ processing. From decades of database research literature, we know that indexing is an effective way to address the data access issue, particularly for accessing relatively small fraction of data records. As data sets increase in sizes, more and more analysts need to use selective data access, which makes indexing an even more important for improving data access. The challenge is that most implementations of in- dexing technology are embedded in large database management systems (DBMS), but most scientific datasets are not managed by any DBMS. In this work, we choose to include indexes with the scientific data instead of requiring the data to be loaded into a DBMS. We use compressed bitmap indexes from the FastBit software which are known to be highly effective for query-intensive workloads common to scientific data analysis. To use the indexes, we need to build them first. The index building procedure needs to access the whole data set and may also require a significant amount of compute time. In this work, we adapt the in situ processing technology to generate the indexes, thus removing the need of read- ing data from disks and to build indexes in parallel. The in situ data processing system used is ADIOS, a middleware for high-performance I/O. Our experimental results show that the indexes can improve the data access time up to 200 times depending on the fraction of data selected, and using in situ data processing system can effectively reduce the time needed to create the indexes, up to 10 times with our in situ technique when using identical parallel settings.

  5. Method to create gradient index in a polymer

    DOE Patents [OSTI]

    Dirk, Shawn M; Johnson, Ross Stefan; Boye, Robert; Descour, Michael R; Sweatt, William C; Wheeler, David R; Kaehr, Bryan James

    2014-10-14

    Novel photo-writable and thermally switchable polymeric materials exhibit a refractive index change of .DELTA.n.gtoreq.1.0 when exposed to UV light or heat. For example, lithography can be used to convert a non-conjugated precursor polymer to a conjugated polymer having a higher index-of-refraction. Further, two-photon lithography can be used to pattern high-spatial frequency structures.

  6. DOE NEPA Guidance and Requirements - Search Index - List of Contents |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy List of Contents DOE NEPA Guidance and Requirements - Search Index - List of Contents Return to Download Page The NEPA Guidance and Requirements - Search Index includes: A Brief Guide - DOE-wide Contracts For NEPA Documentation [DOE][2003] A Citizen's Guide to the NEPA - Having Your Voice Heard [CEQ][2007] A Resource Handbook on DOE Transportation Risk Assessment [DOE][2002] Actions During the NEPA Process - Interim Actions [DOE][2003] Administrative Record Guidance

  7. DOE NEPA Guidance and Requirements - Search Index - Table of Contents |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Table of Contents DOE NEPA Guidance and Requirements - Search Index - Table of Contents Return to Download Page The DOE NEPA Guidance and Requirements - Search Index includes: NEPA Guidance and Requirements Documents Issued by Published A Brief Guide - DOE-wide Contracts For NEPA Documentation DOE 2003 A Citizen's Guide to the NEPA - Having Your Voice Heard CEQ 2007 A Resource Handbook on DOE Transportation Risk Assessment DOE 2002 Actions During the NEPA Process -

  8. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Infrared Mapping Helps Optimize Catalytic Reactions Print Wednesday, 20 August 2014 07:59 A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ

  9. Solar Mapping Resources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Mapping Resources Choosing solar energy is a big investment. In order to help consumers quantify the potential benefits, national laboratories and private companies have ...

  10. Digital Mapping Of Structurally Controlled Geothermal Features...

    Open Energy Info (EERE)

    : GRC; p. () Related Geothermal Exploration Activities Activities (1) Field Mapping At Brady Hot Springs Area (Coolbaugh, Et Al., 2004) Areas (1) Brady Hot Springs Area Regions...

  11. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone...

  12. Condensate Capture Potential Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Georgia, and later published by ASHRAE.1 The researchers developed a method to ... ASHRAE Journal, May 2012, 18. More Alternative Water Sources Maps Thumbnail of the ...

  13. Maps: Exploration, Resources, Reserves, and Production - Energy...

    Gasoline and Diesel Fuel Update (EIA)

    ... Pursuant to Section 604 of the Energy Policy and Conservation Act, these maps are one ... button graphic button graphic Greater Green River Basin button graphic button graphic ...

  14. Mapping Water Availability in the Western US

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Water Availability in the Western US - Sandia Energy Energy Search Icon Sandia ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  15. OutageMapURL Phases Energy Services

    Open Energy Info (EERE)

    OutageMapURL Phases Energy Services County Electric Power Assn http outages county org A N Electric Coop Virginia AEP Generating Company https www aepaccount com zipr...

  16. Tribal Energy Projects Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and demonstrated the viability of installing renewable energy systems on tribal lands. Filter the map and table below by state, technology, or project category, or search for a ...

  17. POST 10/Truck Inspection Station (Map 3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Station (Map 3) Changes Effective January 11, 2010 Pajarito Corridor Deliveries: Drivers of commercial delivery trucks headed to the Pajarito Corridor (Pajarito Road bounded...

  18. Speech processing using maximum likelihood continuity mapping

    DOE Patents [OSTI]

    Hogden, John E.

    2000-01-01

    Speech processing is obtained that, given a probabilistic mapping between static speech sounds and pseudo-articulator positions, allows sequences of speech sounds to be mapped to smooth sequences of pseudo-articulator positions. In addition, a method for learning a probabilistic mapping between static speech sounds and pseudo-articulator position is described. The method for learning the mapping between static speech sounds and pseudo-articulator position uses a set of training data composed only of speech sounds. The said speech processing can be applied to various speech analysis tasks, including speech recognition, speaker recognition, speech coding, speech synthesis, and voice mimicry.

  19. NREL: International Activities - Philippines Wind Resource Maps...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A map depicting wind resources at 100 meters of the republic of the Philippines. Additional Resources Wind Prospector A web-based GIS applications designed to support resource ...

  20. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone ...