Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wyoming cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Wyoming’s “Rosy” Financial Picture  

E-Print Network [OSTI]

the Wyoming economy as coal, natural gas, oil, and trona (aeconomy in the months ahead (Mast 2009). Natural gas makes

Schuhmann, Robert A.; Skopek, Tracy A.

2012-01-01T23:59:59.000Z

2

Wyoming’s “Rosy” Financial Picture  

E-Print Network [OSTI]

J. (2011b) “Wyoming Clean Coal Efforts Advance,” Casperadministra- tion pushes for clean-coal and carbon capture

Schuhmann, Robert A.; Skopek, Tracy A.

2012-01-01T23:59:59.000Z

3

CX-000211: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-000211: Categorical Exclusion Determination Wyoming Residential Renewable Energy Grants CX(s) Applied: B5.1 Date: 11232009 Location(s): Wyoming...

4

Energy Development Opportunities for Wyoming  

SciTech Connect (OSTI)

The Wyoming Business Council, representing the state’s interests, is participating in a collaborative evaluation of energy development opportunities with the NGNP Industry Alliance (an industry consortium), the University of Wyoming, and the US Department of Energy’s Idaho National Laboratory. Three important energy-related goals are being pursued by the State of Wyoming: Ensuring continued reliable and affordable sources of energy for Wyoming’s industries and people Restructuring the coal economy in Wyoming Restructuring the natural gas economy in Wyoming

Larry Demick

2012-11-01T23:59:59.000Z

5

Wyoming Natural Gas Summary  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet) Wyoming Natural3.40

6

Laramie, Wyoming December, 1999  

E-Print Network [OSTI]

://www.wsgsweb.uwyo.edu Front cover: Coalbed methane drilling rig on location, southeastern edge of the Washakie Basin, southern Wyoming. This rig is exploring for coalbed methane in coals of the Almond Formation, Mesaverde Group ........................................................... 28 Coalbed methane developments...................................................... 28 Regulatory

Laughlin, Robert B.

7

Wyoming's Budget: From Champagne to Soda Pop  

E-Print Network [OSTI]

and Skopek: Wyoming’s Budget: From Champagne to Soda Popconstruction money from budget cuts,” Casper Star-Tribune.proposes leaner state budget. ” Associated Press. Neary,

Schuhmann, Robert A; Skopek, Tracy A

2011-01-01T23:59:59.000Z

8

Wyoming Water Resources Center Annual Technical Report  

E-Print Network [OSTI]

by the United States Geological Survey, State Water Resources Research Institute Program allowed the Wyoming and Natural Resources, and at Wyoming State Water Plan meetings. We attended conferences hosted by the WyomingWyoming Water Resources Center Annual Technical Report FY 1999 Introduction Research Program

9

CX-006678: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Restoration of 54-TPX-10CX(s) Applied: B6.1Date: 01/19/2010Location(s): Casper, WyomingOffice(s): RMOTC

10

CX-006646: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Restoration South of 54-TPX-10CX(s) Applied: B6.1Date: 02/09/2010Location(s): Casper, WyomingOffice(s): RMOTC

11

CX-005151: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005151: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - University of Wyoming CX(s) Applied: A9, A11...

12

CX-006239: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-006239: Categorical Exclusion Determination Structure Replacement, Guernsey Rural Substation to Limestone Substation, Platte County, Wyoming CX(s) Applied: B4.6 Date:...

13

CX-010105: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Line Danger Tree Management CX(s) Applied: B1.3 Date: 03262013 Location(s): Colorado, Colorado, Colorado, Colorado, Wyoming Offices(s): Western Area Power...

14

CX-009800: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Line Danger Tree Management CX(s) Applied: B1.3 Date: 01152013 Location(s): Colorado, Colorado, Colorado, Colorado, Wyoming Offices(s): Western Area Power...

15

CX-005116: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-005116: Categorical Exclusion Determination Lusk Substation Transformer Replacement, Lusk, Niobrara County, Wyoming CX(s) Applied: B4.6 Date: 01242011...

16

Wyoming Natural Gas Processed in Wyoming (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet) Wyoming Natural Gas

17

CX-011723: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Happy Jack 230 Kilovolt Substation Fiber Optic Installation in Laramie County, Wyoming CX(s) Applied: B4.7 Date: 12/31/2013 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

18

Wyoming DOE EPSCoR  

SciTech Connect (OSTI)

All of the research and human resource development projects were systemic in nature with real potential for becoming self sustaining. They concentrated on building permanent structure, such as faculty expertise, research equipment, the SEM Minority Center, and the School of Environment and Natural Resources. It was the intent of the DOE/EPSCoR project to permanently change the way Wyoming does business in energy-related research, human development for science and engineering careers, and in relationships between Wyoming industry, State Government and UW. While there is still much to be done, the DOE/EPSCoR implementation award has been successful in accomplishing that change and enhancing UW's competitiveness associated with coal utilization, electrical energy efficiency, and environmental remediation.

Gern, W.A.

2004-01-15T23:59:59.000Z

19

LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming...  

Energy Savers [EERE]

Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood What does this project...

20

Wyoming's Budget: From Champagne to Soda Pop  

E-Print Network [OSTI]

the Wyoming economy as coal, natural gas, oil, and trona (aeconomy in the months ahead (Mast, 7/4/09). Natural gas

Schuhmann, Robert A; Skopek, Tracy A

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wyoming cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

,"Wyoming Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",10,"Monthly","112014","1151989" ,"Release...

22

,"Wyoming Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

23

Wyoming Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

24

Wyoming Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

25

wyoming  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve Class3a.86,77,1996 N| Updated0

26

Energy Incentive Programs, Wyoming | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessin Jamaica,IdahoWyoming Energy Incentive Programs, Wyoming

27

CX-012213: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Boysen-Thermopolis 115 Kilovolt Transmission Line Structure Replacement Project, Hot Springs and Fremont Counties, Wyoming CX(s) Applied: B1.3 Date: 05/16/2014 Location(s): Wyoming, Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

28

Wyoming Water Resources Center Annual Technical Report  

E-Print Network [OSTI]

of America, Boulder, CO. #12;Problem and Research Objectives: Coal bed methane (CBM) development, 2001). CBM extraction involves pumping methane and ground water out of coal seams. The gas and water://wwweng.uwyo.edu/civil/research/water/epmodeler.html. University of Wyoming, Laramie. 4. Wilkerson, G. V., 2002. A GIS model for evaluating the impacts of coal bed

29

National Park Service- Yellowstone National Park, Wyoming  

Broader source: Energy.gov [DOE]

Yellowstone National Park, Wyoming, has many historical sites within its boundaries. One of these is the Lamar Buffalo Ranch, a ranch that was set up in the early 1900s to breed buffalo for replacement stock within the park during a time when their numbers were very low. The ranch buildings are currently being used by the Yellowstone Association Institute for ecology classes.

30

CX-008772: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Buried Flow Line from 32-A-34 to 34-AX-34 CX(s) Applied: B2.5, B5.2, B5.4 Date: 07/17/2012 Location(s): Wyoming Offices(s): RMOTC

31

CX-006697: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination Cleanup of "Non-Reportable" Spills of Crude Oil andor Produced Water CX(s) Applied: B5.4, B5.6 Date: 08092011 Location(s): Casper, Wyoming...

32

CX-006660: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Down Hole Seismic Source 68-SX-11CX(s) Applied: B3.7, B5.12Date: 11/16/2009Location(s): Casper, WyomingOffice(s): RMOTC

33

CX-006729: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-006729: Categorical Exclusion Determination Liner Drilling CX(s) Applied: B1.3, B3.7, B5.12 Date: 04272010 Location(s): Casper, Wyoming...

34

CX-006719: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-006719: Categorical Exclusion Determination Casing Drilling Test CX(s) Applied: B1.3, B3.7, B5.12 Date: 05172011 Location(s): Casper, Wyoming...

35

CX-006664: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination Rocky Mountain Oilfield Testing Center Process Improvement Old Pipe Yard Clean Up CX(s) Applied: B1.3, B1.23 Date: 11162009 Location(s): Casper, Wyoming...

36

CX-010204: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Nalco / Total Flow Loop Polymer Test CX(s) Applied: B1.6, B1.13, B1.18 Date: 02/07/2013 Location(s): Wyoming Offices(s): RMOTC

37

CX-010686: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Cheyenne Substation KV2A 115-kilovolt Tie Line Installation CX(s) Applied: B4.6 Date: 07/02/2013 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

38

CX-008147: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-008147: Categorical Exclusion Determination Down Hole Hammer CX(s) Applied: B3.7 Date: 09082011 Location(s): Wyoming Offices(s): RMOTC The...

39

CX-012071: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Archer Substation Microwave Building Fiber Optic Installation CX(s) Applied: B4.7 Date: 04/29/2014 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

40

CX-010419: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Chevron Methane Leak Test CX(s) Applied: B3.1, B3.2, B3.11 Date: 06/13/2013 Location(s): Wyoming Offices(s): RMOTC

Note: This page contains sample records for the topic "wyoming cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

CX-002464: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction CX(s) Applied: B3.6 Date: 06032010 Location(s): Laramie,...

42

CX-006042: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction CX(s) Applied: B3.6 Date: 06082011 Location(s): Laramie,...

43

CX-003734: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-003734: Categorical Exclusion Determination Hydrogen Separation for Clean Coal CX(s) Applied: A9, A11, B3.6 Date: 09172010 Location(s): Laramie, Wyoming...

44

CX-012072: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Archer-Cheyenne North/South 115-kilovolt Transmission Line Structure Replacement CX(s) Applied: B4.13 Date: 03/18/2014 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

45

CX-012084: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Snowy Range-Happy Jack 115-Kilovolt Transmission Line Structure Replacements CX(s) Applied: B1.3 Date: 03/10/2014 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

46

CX-008149: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

ThruBit OH Logging CX(s) Applied: B2.6, B3.1, B3.7 Date: 11/28/2011 Location(s): Wyoming Offices(s): RMOTC

47

CX-008148: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

AAG Water Purification Project CX(s) Applied: B1.26, B5.2 Date: 10/06/2011 Location(s): Wyoming Offices(s): RMOTC

48

CX-009801: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Copper Mountain to Boysen 34.5 Kilovolt Transmission Line Structure Replacement CX(s) Applied: B1.3 Date: 01/11/2013 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

49

Wyoming Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0...

50

COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA  

E-Print Network [OSTI]

in the Powder River Basin in Wyoming and Montana (fig. PQ-1) is considered to be "clean coal." For the location

51

SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING  

E-Print Network [OSTI]

;PROJECT OVERVIEW ·Site Location·Site Location ·Fremont , Wyoming ·Existing Uranium Mine Permit 381C·Existing Uranium Mine Permit 381C ·Historical Operation ·Western Nuclear Crooks Gap Project ·Mined 1956 ­ 1988 and Open Pit Mining ·Current Mine Permit (381C) ·Updating POO, Reclamation Plan & Bond ·Uranium Recovery

52

EA-1581: Sand Hills Wind Project, Wyoming  

Broader source: Energy.gov [DOE]

The Bureau of Land Management, with DOE’s Western Area Power Administration as a cooperating agency, was preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action had been implemented, Western would have interconnected the proposed facility to an existing transmission line. This project has been canceled.

53

Jackson, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy2005) |JMalucelliIowaWyoming: Energy Resources Jump

54

Cody, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby,Sullivan,Information Feed Jump to:Electric Coop, IncWyoming:

55

Chemical analyses of selected thermal springs and wells in Wyoming  

SciTech Connect (OSTI)

Basic chemical data for 27 selected thermal well and springs in Wyoming are presented. The samples were gathered from 1979 through 1982 in an effort to define geothermal resources in Wyoming. The basic data for the 27 analyzed samples generally include location, temperature, flow, date analyzed, and a description of what the sample is from. The chemical analyses for the sample are listed.

Heasler, H.P.

1984-06-01T23:59:59.000Z

56

Wyoming Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet)CubicProduction

57

Wyoming Shale Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet)CubicProductionProved

58

Wyoming Carbon Capture and Storage Institute  

SciTech Connect (OSTI)

This report outlines the accomplishments of the Wyoming Carbon Capture and Storage (CCS) Technology Institute (WCTI), including creating a website and online course catalog, sponsoring technology transfer workshops, reaching out to interested parties via news briefs and engaging in marketing activities, i.e., advertising and participating in tradeshows. We conclude that the success of WCTI was hampered by the lack of a market. Because there were no supporting financial incentives to store carbon, the private sector had no reason to incur the extra expense of training their staff to implement carbon storage. ii

Nealon, Teresa

2014-06-30T23:59:59.000Z

59

DOE - Office of Legacy Management -- Wyoming  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof Energy AMDCoal_Budget_Fact_Sheet.pdfConnecticutUtahWyoming

60

Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEditWisconsin: EnergyEdison,Wind EnergyWindWyoming:

Note: This page contains sample records for the topic "wyoming cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alternative Fuels Data Center: Wyoming Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropane TankWashington Information toWyoming

62

Gravity interpretation of the northern Overthrust Belt, Idaho and Wyoming  

E-Print Network [OSTI]

sequence thickness westward from about 15 miles (2a. l km) east of the Idaho-Wyoming State line, to a site of maximum deposition somewhere in the west (Armstrong and Oriel, 1965). In western Wyoming, Drdovic-ian rocks are represented by the Upper... 1n southeastern Idaho by the Laketown Dolomite. The lim1ted geoqraph1c extent of the Silurian is considered to be the result of subsequent erosion rather than non-deposition (Armstrong and Oriel, 1965). In western Wyoming, the Devonian age rocks...

Silver, Wendy Ilene

1979-01-01T23:59:59.000Z

63

EA-1610: Windy Hollow Wind Project, Laramie County, Wyoming  

Broader source: Energy.gov [DOE]

This EA will evaluate the environmental impacts of a proponent request to interconnect their proposed Windy Hollow Wind Project in Laramie County, Wyoming, to DOE’s Western Area Power Administration’s transmission system.

64

Wyoming Coalbed Methane Proved Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

65

Wyoming Coalbed Methane Proved Reserves Extensions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

66

Wyoming Coalbed Methane Proved Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

67

Wyoming Coalbed Methane Proved Reserves Sales (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

68

Microsoft Word - Nuclear_hybrid_systems_for_Wyoming_-__final...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of primary energy resources in the forms of coal, natural gas, wind, uranium, and oil shale. Most of Wyoming's coal and gas resources are exported from the state in unprocessed...

69

Overview of Energy Development Opportunities for Wyoming  

SciTech Connect (OSTI)

An important opportunity exists for the energy future of Wyoming that will • Maintain its coal industry • Add substantive value to its indigenous coal and natural gas resources • Improve dramatically the environmental impact of its energy production capability • Increase its Gross Domestic Product These can be achieved through development of a carbon conversion industry that transforms coal and natural gas to synthetic transportation fuels, chemical feedstocks, and chemicals that are the building blocks for the chemical industry. Over the longer term, environmentally clean nuclear energy can provide the substantial energy needs of a carbon conversion industry and be part of the mix of replacement technologies for the current fleet of aging coal-fired electric power generating stations.

Larry Demick

2012-11-01T23:59:59.000Z

70

Structural analysis of the Sheep Mountain anticline, Bighorn Basin, Wyoming  

E-Print Network [OSTI]

STRUCTURAL ANALYSIS OF THE SHEEP MOUNTAIN ANTICLINE, BIGHORN BASIN, WYOMING A Thesis by JEFFREY HUGH HENNIER Submitted to the Graduate College of Texas AIIM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 1984 Major Subject: Geology STRUCTURAL ANALYSIS OF THE SHEEP MOUNTAIN ANTICLINE, BIGHORN BASIN, WYOMING A Thesis by JEFFREY HUGH HENNIER Approved as to style and content by: o n . pan (Chairman of Committee) Ear R. os sn (Member...

Hennier, Jeffrey Hugh

1984-01-01T23:59:59.000Z

71

CX-011857: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Archer-Cheyenne North/South 115 Kilovolt Transmission Line Structure Replacement, Laramie County, Wyoming CX(s) Applied: B4.13 Date: 01/28/2014 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

72

CX-011859: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Big George-Heart Mountain 69 Kilovolt Transmission Line Glendale Tap Replacement, Park County, Wyoming CX(s) Applied: B4.6 Date: 01/21/2014 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

73

CX-012075: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Cheyenne-Snowy Range 230-Kilovolt Central Rig Upgrade Eaglenet Communications Cable Interconnection CX(s) Applied: B4.7 Date: 02/10/2014 Location(s): Wyoming, Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

74

CX-008793: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Gore Pass to Muddy Pass: Single Pole and Multiple Cross Arm Replacements Grand County, Wyoming CX(s) Applied: B1.3, B4.6 Date: 09/16/2011 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

75

CX-012356: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Lovell-Yellowtail No. 1 115-kilovolt Transmission Line Culvert Replacement Project, Big Horn County, Wyoming CX(s) Applied: B1.3 Date: 07/01/2014 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

76

CX-012214: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Copper Mountain-Pilot Butte 34.5 Kilovolt Transmission Line Structure Pole Replacement Project, Fremont County, Wyoming CX(s) Applied: B1.3 Date: 05/05/2014 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

77

Sodium-Copper Exchange on Wyoming Montmorillonite in Chloride, Perchlorate, Nitrate, and Sulfate Solutions  

E-Print Network [OSTI]

Sodium-Copper Exchange on Wyoming Montmorillonite in Chloride, Perchlorate, Nitrate, and Sulfate. The copper exchange capacity (CuEC) and Na-Cu exchange reactions on Wyoming montmo- rillonite were studied

Sparks, Donald L.

78

Expansion and Enhacement of the Wyoming Coalbed Methane Clearinghouse Website to the Wyoming Energy Resources Information Clearinghouse.  

SciTech Connect (OSTI)

Energy development is expanding across the United States, particularly in western states like Wyoming. Federal and state land management agencies, local governments, industry and non-governmental organizations have realized the need to access spatially-referenced data and other non-spatial information to determine the geographical extent and cumulative impacts of expanding energy development. The Wyoming Energy Resources Information Clearinghouse (WERIC) is a web-based portal which centralizes access to news, data, maps, reports and other information related to the development, management and conservation of Wyomingâ??s diverse energy resources. WERIC was established in 2006 by the University of Wyomingâ??s Ruckelshaus Institute of Environment and Natural Resources (ENR) and the Wyoming Geographic Information Science Center (WyGISC) with funding from the US Department of Energy (DOE) and the US Bureau of Land Management (BLM). The WERIC web portal originated in concept from a more specifically focused website, the Coalbed Methane (CBM) Clearinghouse. The CBM Clearinghouse effort focused only on coalbed methane production within the Powder River Basin of northeast Wyoming. The CBM Clearinghouse demonstrated a need to expand the effort statewide with a comprehensive energy focus, including fossil fuels and renewable and alternative energy resources produced and/or developed in Wyoming. WERIC serves spatial data to the greater Wyoming geospatial community through the Wyoming GeoLibrary, the WyGISC Data Server and the Wyoming Energy Map. These applications are critical components that support the Wyoming Energy Resources Information Clearinghouse (WERIC). The Wyoming GeoLibrary is a tool for searching and browsing a central repository for metadata. It provides the ability to publish and maintain metadata and geospatial data in a distributed environment. The WyGISC Data Server is an internet mapping application that provides traditional GIS mapping and analysis functionality via the web. It is linked into various state and federal agency spatial data servers allowing users to visualize multiple themes, such as well locations and core sage grouse areas, in one domain. Additionally, this application gives users the ability to download any of the data being displayed within the web map. The Wyoming Energy Map is the newest mapping application developed directly from this effort. With over a 100 different layers accessible via this mapping application, it is the most comprehensive Wyoming energy mapping application available. This application also provides the public with the ability to create cultural and wildlife reports based on any location throughout Wyoming and at multiple scales. The WERIC website also allows users to access links to federal, state, and local natural resource agency websites and map servers; research documents about energy; and educational information, including information on upcoming energy-relate conferences. The WERIC website has seen significant use by energy industry consultants, land management agencies, state and local decision-makers, non-governmental organizations and the public. Continued service to these sectors is desirable but some challenges remain in keeping the WERIC site viable. The most pressing issue is finding the human and financial resources to keep the site continually updated. Initially, the concept included offering users the ability to maintain the site themselves; however, this has proven not to be a viable option since very few people contributed. Without user contributions, the web page relied on already committed university staff to publish and link to the appropriate documents and web-pages. An option that is currently being explored to address this issue is development of a partnership with the University of Wyoming, School of Energy Resources (SER). As part of their outreach program, SER may be able to contribute funding for a full-time position dedicated to maintenance of WERIC.

Hulme, Diana; Hamerlinck, Jeffrey; Bergman, Harold; Oakleaf, Jim

2010-03-26T23:59:59.000Z

79

Wyoming Natural Gas Residential Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet) Wyoming Natural

80

Wyoming Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet) Wyoming

Note: This page contains sample records for the topic "wyoming cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Wyoming Natural Gas Underground Storage Net Withdrawals (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet) WyomingFeet) Year

82

Wyoming Natural Gas Underground Storage Volume (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet) WyomingFeet)

83

NO-TILL GRAIN PRODUCTION IN WYOMING: STATUS AND POTENTIAL  

E-Print Network [OSTI]

Resources University of Wyoming ABSTRACT In dryland cropping systems, optimal yields require that nutrient in the soil compared to crop-fallow systems. This enables producers to plant two, three, or four consecutive crops, or continuously, without fallow, but water and nutrient needs are much more closely balanced

Norton, Jay B.

84

COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING  

E-Print Network [OSTI]

Chapter GQ COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

85

COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING  

E-Print Network [OSTI]

Chapter HQ COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

86

Economic Development from New Generation and Transmission in Wyoming and Colorado (Fact Sheet)  

SciTech Connect (OSTI)

This report analyzes the potential economic impacts in Colorado and Wyoming of a 225 MW natural gas fired electricity generation facility and a 900 MW wind farm constructed in Wyoming as well as a 180 mile, 345 kV transmission line that runs from Wyoming to Colorado. This report and analysis is not a forecast, but rather an estimate of economic activity associated with a hypothetical scenario.

Not Available

2013-03-01T23:59:59.000Z

87

Economic Development from New Generation and Transmission in Wyoming and Colorado  

SciTech Connect (OSTI)

This report analyzes the potential economic impacts in Colorado and Wyoming of a 225 MW natural gas fired electricity generation facility and a 900 MW wind farm constructed in Wyoming as well as a 180 mile, 345 kV transmission line that runs from Wyoming to Colorado. This report and analysis is not a forecast, but rather an estimate of economic activity associated with a hypothetical scenario.

Keyser, D.; Lantz, E.

2013-03-01T23:59:59.000Z

88

Jobs and Economic Development from New Transmission and Generation in Wyoming (Fact Sheet)  

SciTech Connect (OSTI)

Wyoming is a significant energy exporter, producing nearly 40% of the nation's coal and 10% of the nation's natural gas. However, opportunities to add new energy exports in the form of power generation are limited by insufficient transmission capacity. This fact sheet summarizes results from a recent analysis conducted by NREL for the Wyoming Infrastructure Authority (WIA) that estimates jobs and economic development activity that could occur in Wyoming should the market support new investments in power generation and transmission in the state.

Not Available

2011-05-01T23:59:59.000Z

89

Red Butte, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRausWyoming: Energy Resources Jump to: navigation,

90

RAPID/BulkTransmission/Wyoming | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacityPulaskiRAPID/BulkTransmission/TexasRAPID/BulkTransmission/Wyoming <

91

City of Deaver, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy InformationLakeWyoming (Utility

92

[DOE/EPSCoR traineeship program for Wyoming: Progress report  

SciTech Connect (OSTI)

In the first year of the traineeship program supported by the Department of Energy EPSCoR funding, the University of Wyoming has made outstanding progress toward the objective of increasing the supply of highly trained engineers and scientists with interests in energy related disciplines. The scope of the traineeship program has already broadened to encompass both more departments than originally expected and nearly twice as many graduate students as expected. Further, since the primary emphasis was on new students, most of those recruited have developed ties to the DOE labs that would not have otherwise existed. This portion of this Progress Report gives an overall summary of the University of Wyoming`s approach to the DOE Traineeship Program implementation. It also provides an overview of the results so far and vision of how this program fits with the broader objectives for development of the University and its academic programs. Subsequent sections describe very briefly the impact of the traineeship students in each department that was successful in obtaining funds through the competitive process that was adopted. Finally, the report ends with a summary of both the academic status of the participants and the budget expenditures to date.

Not Available

1992-08-01T23:59:59.000Z

93

Ammonia emission inventory for the state of Wyoming  

SciTech Connect (OSTI)

Ammonia (NH{sub 3}) is the only significant gaseous base in the atmosphere and it has a variety of impacts as an atmospheric pollutant, including the formation of secondary aerosol particles: ammonium sulfate and ammonium nitrate. NH{sub 3} preferentially forms ammonium sulfate; consequently ammonium nitrate aerosol formation may be limited by the availability of NH{sub 3}. Understanding the impact of emissions of oxides of sulfur and nitrogen on visibility, therefore, requires accurately determined ammonia emission inventories for use in air quality models, upon which regulatory and policy decisions increasingly depend. This report presents an emission inventory of NH{sub 3} for the state of Wyoming. The inventory is temporally and spatially resolved at the monthly and county level, and is comprised of emissions from individual sources in ten categories: livestock, fertilizer, domestic animals, wild animals, wildfires, soil, industry, mobile sources, humans, and publicly owned treatment works. The Wyoming NH{sub 3} inventory was developed using the Carnegie Mellon University (CMU) Ammonia Model as framework. Current Wyoming-specific activity data and emissions factors obtained from state agencies and published literature were assessed and used as inputs to the CMU Ammonia Model. Biogenic emissions from soils comprise about three-quarters of the Wyoming NH{sub 3} inventory, though emission factors from soils are highly uncertain. Published emission factors are scarce and based on limited measurements. In Wyoming, agricultural land, rangeland, and forests comprise 96% of the land area and essentially all of the estimated emissions from soils. Future research on emission rates of NH{sub 3} for these land categories may lead to a substantial change in the magnitude of soil emissions, a different inventory composition, and reduced uncertainty in the inventory. While many NH{sub 3} inventories include annual emissions, air quality modeling studies require finer temporal resolution. Published studies indicate higher emission rates from soils and animal wastes at higher temperatures, and temporal variation in fertilizer application. A recent inverse modeling study indicates temporal variation in regional NH{sub 3} emissions. Monthly allocation factors were derived to estimate monthly emissions from soils, livestock and wild animal waste based on annual emission estimates. Monthly resolution of NH{sub 3} emissions from fertilizers is based on fertilizer sales to farmers. Statewide NH{sub 3} emissions are highest in the late spring and early summer months.

Kirchstetter, Thomas W.; Maser, Colette R.; Brown, Nancy J.

2003-12-17T23:59:59.000Z

94

Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

NONE

1997-10-01T23:59:59.000Z

95

Southeast Electric Coop, Inc (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa,HomeIndiana:Rhode IslandPlainfield, NewWyoming)

96

Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet)

97

Wyoming Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet)Cubic Feet) Gas,

98

Wyoming Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet)Cubic Feet)

99

Wyoming Price of Natural Gas Delivered to Residential Consumers (Dollars  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet)Cubic Feet)per

100

Wyoming Oil and Gas Conservation Commission | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec doWinvest Financing Service GmbH CoWorldWyoming

Note: This page contains sample records for the topic "wyoming cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Bar Nunn, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin EnergyBacliff,BallengerEnergyNIES07. ItBanyanWyoming: Energy

102

Bessemer Bend, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey: EnergyBerthoud, Colorado: EnergyBessemer Bend, Wyoming:

103

Big Horn County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey: EnergyBerthoud,Biodiesel Place:Forge07.DaddyWyoming:

104

Montana-Dakota Utilities Co (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area EnergyMohawk Municipal CommMonongahela PowerWyoming

105

Teton County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark Jump to: navigation,TelluricTODO:TennesseeTesseraOpenWyoming:

106

Montana Natural Gas Processed in Wyoming (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team: Kay6 KentuckyYearDecadeBarrels)MontanaWyoming

107

Town of Guernsey, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, IncTipmont Rural ElecTown ofFrederick, ColoradoGuernsey, Wyoming

108

Wyoming Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticutPhotos of AECSign UpWashington DCWisconsinofWyoming

109

Wyoming Recovery Act State Memo | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.|SindhuDepartmentEnvironmental Management UnitedMarkWyoming

110

City of Cody, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy InformationLakeWyoming (Utility Company) Jump to: navigation, search

111

City of Gillette, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy InformationLakeWyomingDurant,FrankfortGilbert, Minnesota

112

Sublette County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen, Minnesota: EnergySublette County, Wyoming: Energy Resources Jump to:

113

Town of Lingle, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd JumpOperations JumpTooeleInformationTownLadoga,Lingle, Wyoming

114

Wyoming - Seds - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 International Petroleum FigureElectricity NoteWyoming -

115

APPLIED PHYSICS APPLIED PHYSICS  

E-Print Network [OSTI]

MSc APPLIED PHYSICS #12;MSc APPLIED PHYSICS This taught Masters course is based on the strong research in Applied Physics in the University's Department of Physics. The department has an impressive photonics and quantum optics, Physics and the Life Sciences, and solid state physics. The knowledge gained

Mottram, Nigel

116

UMTRA project water sampling and analysis plan, Riverton, Wyoming  

SciTech Connect (OSTI)

Surface remediation was completed at the former uranium mill site in Riverton, Wyoming, in 1990. Residual radioactive materials (contaminated soil and debris) were removed and disposed of at Union Carbide Corporation`s (Umetco) nearby Gas Hills Title 2 facility. Ground water in the surficial and semiconfined aquifers (known collectively as the `uppermost aquifer`) below the former mill and tailings site has been contaminated. No contamination has been detected in the deeper, confined sandstone aquifer. The contaminant plume extends off site to the south and east. The plume is constrained by surface wetlands and small streams to the east and west of the site and by the Little Wind River to the south. Fifteen monitor wells installed in 1993 were sampled to better define the contaminant plume and to provide additional water quality data for the baseline risk assessment. Samples also were collected from domestic wells in response to a request by the Wyoming Department of Environmental Quality in January 1994. No contamination attributable to the former uranium milling operations have ever been detected in any of the domestic wells used for potable supplies.

Not Available

1994-03-01T23:59:59.000Z

117

Structural geology of the northern termination of the Crawford Thrust, western Wyoming  

E-Print Network [OSTI]

Comparison with Previous Work CONCLUSIONS. REFERENCES CITED. VITA, 106 107 116 177 136 139 144 1X LIST OF FIGUPES F IGUPE PAGE Generalized map of the Utah-Wyoming-Idaho Th!ust Belt, showing study area location.... . . . . . . . . , . . . . . . . Strati graphi c column for the Utah-Wyom; ng- Idaho !hrust Belt Examples of Listric Normal faults From Wyoming. . 14 Cross sections A-A' through C-C' tron Brown and Spang ('l9/8) 21 Cross sections D-D' through ! -F' from Brown and Spang (1978) 22...

Evans, James Paul

1983-01-01T23:59:59.000Z

118

Hydrocarbon trapping mechanisms in the Miller Creek area of the Powder River Basin, Wyoming  

E-Print Network [OSTI]

'' 1975 43'W'79 ABSTRACT Hydrocarbon Trapoing Mechanisms in the Miller Creek Area of the Powder River Basin, Wyoming. (May 1975) Jennifer Ann Armstrong, B. S. , University of Texas at Austin Chairman of Advisory Committee: 17r. Robert. R. Berg...

Armstrong, Jennifer Ann

1975-01-01T23:59:59.000Z

119

EA-1155: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook, Wyoming  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to comply with the Environmental Protection Agency's ground-water standards set forth in 40 CFR 192 at the Spook, Wyoming Uranium Mill...

120

Wyoming State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming.

Not Available

1981-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "wyoming cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming.

122

Economic Development from Gigawatt-Scale Wind Deployment in Wyoming (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of economic development in Wyoming from gigawatt-scale wind development and includes a discussion of project context, definitions and caveats, a deployment scenario, modeling inputs, results, and conclusions.

Lantz, E.

2011-05-23T23:59:59.000Z

123

EA-1008: Continued Development of Naval Petroleum Reserve No. 3 (Sitewide), Natrona County, Wyoming  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to continue development of the U.S. Department of Energy's Naval Petroleum Reserve No. 3 located in Natrona County, Wyoming over the next...

124

Weatherization: Wyoming's Hidden Resource; Weatherization Assistance Close-Up Fact Sheet  

SciTech Connect (OSTI)

Wyoming demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

D& R International

2001-10-10T23:59:59.000Z

125

California-Wyoming Grid Integration Study: Phase 1 -- Economic Analysis  

SciTech Connect (OSTI)

This study presents a comparative analysis of two different renewable energy options for the California energy market between 2017 and 2020: 12,000 GWh per year from new California in-state renewable energy resources; and 12,000 GWh per year from Wyoming wind delivered to the California marketplace. Either option would add to the California resources already existing or under construction, theoretically providing the last measure of power needed to meet (or to slightly exceed) the state's 33% renewable portfolio standard. Both options have discretely measurable differences in transmission costs, capital costs (due to the enabling of different generation portfolios), capacity values, and production costs. The purpose of this study is to compare and contrast the two different options to provide additional insight for future planning.

Corbus, D.; Hurlbut, D.; Schwabe, P.; Ibanez, E.; Milligan, M.; Brinkman, G.; Paduru, A.; Diakov, V.; Hand, M.

2014-03-01T23:59:59.000Z

126

National uranium resource evaluation: Sheridan Quadrangle, Wyoming and Montana  

SciTech Connect (OSTI)

The Sheridan Quadrangle of north-central Wyoming was evaluated for uranium favorability according to specific criteria of the National Uranium Resource Evaluation program. Procedures consisted of geologic and radiometric surveys; rock, water, and sediment sampling; studying well logs; and reviewing the literature. Five favorable environments were identified. These include portions of Eocene Wasatch and Upper Cretaceous Lance sandstones of the Powder River Basin and Lower Cretaceous Pryor sandstones of the Bighorn Basin. Unfavorable environments include all Precambrian, Cambrian, Ordovician, Permian, Triassic, and Middle Jurassic rocks; the Cretaceous Thermopolis, Mowry, Cody, Meeteetse, and Bearpaw Formations; the Upper Jurassic Sundance and Morrison, the Cretaceous Frontier, Meseverde, Lance, and the Paleocene Fort Union and Eocene Willwood Formations of the Bighorn Basin; the Wasatch Formation of the Powder River Basin, excluding two favorable areas and all Oligocene and Miocene rocks. Remaining rocks are unevaluated.

Damp, J N; Jennings, M D

1982-04-01T23:59:59.000Z

127

Jobs and Economic Development from New Transmission and Generation in Wyoming  

SciTech Connect (OSTI)

This report is intended to inform policymakers, local government officials, and Wyoming residents about the jobs and economic development activity that could occur should new infrastructure investments in Wyoming move forward. The report and analysis presented is not a projection or a forecast of what will happen. Instead, the report uses a hypothetical deployment scenario and economic modeling tools to estimate the jobs and economic activity likely associated with these projects if or when they are built.

Lantz, E.; Tegen, S.

2011-03-01T23:59:59.000Z

128

RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING  

SciTech Connect (OSTI)

The new exploration technology for basin center gas accumulations developed by R.C. Surdam and Associates at the Institute for Energy Research, University of Wyoming, was applied to the Riverton Dome 3-D seismic area. Application of the technology resulted in the development of important new exploration leads in the Frontier, Muddy, and Nugget formations. The new leads are adjacent to a major north-south trending fault, which is downdip from the crest of the major structure in the area. In a blind test, the drilling results from six new Muddy test wells were accurately predicted. The initial production values, IP, for the six test wells ranged from < one mmcf/day to four mmcf/day. The three wells with the highest IP values (i.e., three to four mmcf/day) were drilled into an intense velocity anomaly (i.e., anomalously slow velocities). The well drilled at the end of the velocity anomaly had an IP value of one mmcf/day, and the two wells drilled outside of the velocity anomaly had IP values of < one mmcf/day and are presently shut in. Based on these test results, it is concluded that the new IER exploration strategy for detecting and delineating commercial, anomalously pressured gas accumulation is valid in the southwestern portions of the Wind River Basin, and can be utilized to significantly reduce exploration risk and to increase profitability of so-called basin center gas accumulations.

Ronald C. Surdam; Zunsheng Jiao; Nicholas K. Boyd

1999-11-01T23:59:59.000Z

129

CX-008399: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Erosion Control Measures Structure No. 110-3 Dave Johnston to Stegall 230 Kilovolt Transmission Line CX(s) Applied: B1.3 Date: 03/29/2012 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

130

CX-012073: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Big George-Heart Mountain 69-Kilovolt Transmission Line Glendale Tap Replacement (Amended) CX(s) Applied: B4.13 Date: 05/01/2014 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

131

CX-008771: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Buried Flow Line from T-2-34 to T-1-33 CX(s) Applied: B2.5, B5.2, B5.4 Date: 06/27/2012 Location(s): Wyoming Offices(s): RMOTC

132

CX-011861: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Easts Ide Renovation Project Zone 1-Revision (T-1-11) CX(s) Applied: B2.5, B5.2, B5.4, B5.5 Date: 03/13/2014 Location(s): Wyoming Offices(s): RMOTC

133

CX-011863: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Easts Ide Renovation Project Zone 1-Revision (T-1-11) CX(s) Applied: B2.5, B5.2, B5.4, B5.5 Date: 03/13/2014 Location(s): Wyoming Offices(s): RMOTC

134

CX-011620: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Terry Ranch Road Substation (Amended) CX(s) Applied: B1.24, B4.1, B4.11 Date: 12/04/2013 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

135

The evolution of an applied hydraulic fracture project, Frontier Formation Moxa Arch, Wyoming  

SciTech Connect (OSTI)

This paper demonstrates a methodical approach in the implementation of current hydraulic fracturing technologies. Specific examples illustrating the evolution of a consistent reservoir/hydraulic fracturing interpretation are presented in a case history of three GRI-Industry Technology Transfer wells. Detailed modeling of these project wells provided an overall reservoir and hydraulic fracture description that was consistent with respect to all observations. Based on identification of the fracturing mechanisms occurring, the second and third project wells show the capabilities of real-time diagnostics in the implementation of hydraulic fracture treatments. By optimizing the pad volume and fluid integrity to avoid premature screenouts, significant cost savings and improved proppant placement were achieved. The production and pressure build-up response in the first project well verifies the overall interpretation of the reservoir/hydraulic fracture model and provides the basis for eliminating the use of moderate strength/higher cost proppant over sand in low permeability/higher closure stress environments.

Harkrider, J.D.; Aud, W.W.; Cipolla, C.L.; Hansen, J.T.

1994-12-31T23:59:59.000Z

136

Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming  

SciTech Connect (OSTI)

This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

Not Available

1989-02-01T23:59:59.000Z

137

Site observational work plan for the UMTRA Project site at Riverton, Wyoming  

SciTech Connect (OSTI)

The site observational work plan (SOWP) for the Riverton, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project Site is the first document for the UMTRA Ground Water Project to address site-specific activities to meet compliance with the U.S. Environmental Protection Agency (EPA) proposed ground water standards (52 FR 36000 (1987)). In support of the activities the regulatory framework and drivers are presented along with a discussion of the relationship of this SOWP to other UMTRA Ground Water Project programmatic documents. A combination of the two compliance strategies that will be recommended for this site are no remediation with the application of alternate concentration levels (ACL) and natural flushing in conjunction with institutional controls. ACLs are to be applied to constituents that occur at concentrations above background levels but which are essential nutrients and occur within nutritional ranges and/or have very low toxicity and high dietary intake rates compared to the levels detected in the ground water. The essential premise of natural flushing is that ground water movement and natural attenuation processes will reduce the detected contamination to background levels within 1 00 years. These two recommended compliance strategies were evaluated by applying Riverton site-specific data to the compliance framework developed in the UMTRA Ground Water programmatic environmental impact statement. There are three aquifers beneath the site: a surficial unconfined aquifer, a middle semiconfined aquifer, and a deeper confined aquifer. The milling-related contamination at the site has affected both the surficial and semiconfined aquifers, although the leaky shale aquifers separating these units limits the downward migration of contamination into the semiconfined aquifer. A shale aquitard separates the semiconfined aquifer from the underlying confined aquifer which has not been contaminated by milling-related constituents.

Not Available

1994-09-01T23:59:59.000Z

138

North Fork well, Shoshone National Forest, Park County, Wyoming  

SciTech Connect (OSTI)

Drilling of a 5000-foot exploratory gas and oil well by Marathon Oil Company is proposed for Section 34, T52N, R106W, near Pagoda Creek in the Shoshone National Forest, Park County, Wyoming. An area 75 feet by 80 feet would be cleared of all vegetation and graded nearly flat for the drill pad and reserve pit. The drilling rig, pipe rack, generator, tool house, living facilities, drilling mud pump, pit, and supply platform all would be built on the drill pad. A blooie hole would contain cuttings and dust from the air drilling. Support facilities would include a helicopter staging area along Clocktower Creek approximately one mile south of the Yellowstone Highway and a 2550-foot temporary water pipeline from Pagoda Creek to the well site. Personnel, equipment, and supplies would be trucked to the helicopter staging area and shuttled to the proposed location by helicopters. Lease stipulations prohibit drilling before September 8; therefore, the starting date would be the late fall of the respective year and would have to be completed by the following January 1. Approval of the exploratory well would not include approval of production facilities.

Not Available

1985-03-01T23:59:59.000Z

139

Data from selected Almond Formation outcrops -- Sweetwater County, Wyoming  

SciTech Connect (OSTI)

The objectives of this research program are to: (1) determine the reservoir characteristics and production problems of shoreline barrier reservoirs; and (2) develop methods and methodologies to effectively characterize shoreline barrier reservoirs to predict flow patterns of injected and produced fluids. Two reservoirs were selected for detailed reservoir characterization studies -- Bell Creek field, Carter County, Montana, that produces from the Lower Cretaceous (Albian-Cenomanian) Muddy Formation, and Patrick Draw field, Sweetwater County, Wyoming that produces from the Upper Cretaceous (Campanian) Almond Formation of the Mesaverde Group. An important component of the research project was to use information from outcrop exposures of the producing formations to study the spatial variations of reservoir properties and the degree to which outcrop information can be used in the construction of reservoir models. A report similar to this one presents the Muddy Formation outcrop data and analyses performed in the course of this study (Rawn-Schatzinger, 1993). Two outcrop localities, RG and RH, previously described by Roehler (1988) provided good exposures of the Upper Almond shoreline barrier facies and were studied during 1990--1991. Core from core well No. 2 drilled approximately 0.3 miles downdip of outcrop RG was obtained for study. The results of the core study will be reported in a separate volume. Outcrops RH and RG, located about 2 miles apart were selected for detailed description and drilling of core plugs. One 257-ft-thick section was measured at outcrop RG, and three sections {approximately}145 ft thick located 490 and 655 feet apart were measured at the outcrop RH. Cross-sections of these described profiles were constructed to determine lateral facies continuity and changes. This report contains the data and analyses from the studied outcrops.

Jackson, S.R.; Rawn-Schatzinger, V.

1993-12-01T23:59:59.000Z

140

DERAILMENT IN WYOMING (2005) http://www.bigcountry.coop/coal.html  

E-Print Network [OSTI]

Administration said. With tight supplies and high demand, spot market prices for Powder River Basin coal jumped 41 DERAILMENT IN WYOMING (2005) http://www.bigcountry.coop/coal.html [Johnson, 2005] Steven Johnson bottleneck in shipments from the nation's most important vein of low-sulfur coal has cut into coal supplies

Tesfatsion, Leigh

Note: This page contains sample records for the topic "wyoming cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS  

E-Print Network [OSTI]

...................................................................................PS-18 Coal-Bed Methane ResourceChapter PS FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS By R of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U

142

EIS-0267: BPA/Lower Valley Transmission System Reinforcement Project, Wyoming  

Broader source: Energy.gov [DOE]

This EIS analyzes BPA and LVPL proposal to construct a new 115-kV line from BPA’s Swan Valley Substation near Swan Valley in Bonneville County, Idaho about 58 km (36 miles) east to BPA’s Teton Substation near Jackson in Teton County, Wyoming.

143

DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming  

Broader source: Energy.gov [DOE]

Research sponsored by the U.S. Department of Energy Oil and Natural Gas Program has found a way to distinguish between groundwater and the water co-produced with coalbed natural gas, thereby boosting opportunities to tap into the vast supply of natural gas in Wyoming as well as Montana.

144

Glacial geology of the West Tensleep Drainage Basin, Bighorn Mountains, Wyoming  

SciTech Connect (OSTI)

The glacial deposits of the West Tensleep Basin in the Bighorn Mountains of Wyoming are mapped and a relative chromology established. The deposits are correlated with the regional model as defined in the Wind River Mountains. A statistical analysis is performed on the density and weathering characteristics of the surficial boulders to determine their validity as indicators of relative age. (ACR)

Burggraf, G.B.

1980-08-01T23:59:59.000Z

145

Structure of the eastern Red Rocks and Wind Ridge thrust faults, Wyoming: how a thrust fault gains displacement along strike  

E-Print Network [OSTI]

STRUCTURE OF THE EASTERN RED ROCKS AND WIND RIDGE THRUST FAULTS, WYOMING: HOW A THRUST FAULT GAINS DISPLACEMENT ALONG STRIKE A Thesis by BRENT STANLEY HUNTSMAN Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1983 Major Subject: Geology STRUCTURE OF THE EASTERN RED ROCKS AND WIND RIDGE THRUST FAULTS, WYOMING: HOW A THRUST FAULT GAINS DISPLACEMENT ALONG STRIKE A Thesis by BRENT STANLEY HUNTSMAN...

Huntsman, Brent Stanley

1983-01-01T23:59:59.000Z

146

Environmental assessment of ground-water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming  

SciTech Connect (OSTI)

This report assesses the environmental impacts of the Uranium Mill Tailings Site at Spook, Wyoming on ground water. DOE previously characterized the site and monitoring data were collected during the surface remediation. The ground water compliance strategy is to perform no further remediation at the site since the ground water in the aquifer is neither a current nor potential source of drinking water. Under the no-action alternative, certain regulatory requirements would not be met.

NONE

1997-02-01T23:59:59.000Z

147

Laramide deformation of the Rocky Mountain Foreland, southeastern corner of the Bighorn Basin, Wyoming  

E-Print Network [OSTI]

opening of a spreading center near the North Pole, oriented nearly parallel to the northern border of the United States, forced the North American plate to be pushed southwestward, resulting in the apparent rotation of the stress field and formation... Mountain Foreland includes a large area extending from northern New Mexico to southwestern Montana, and fmm the eastern limits of the Black Hills of South Dakota to the thrust belt of western Wyoming (Gries, 1983). In contrast to the consistent northerly...

Derr, Douglas Neanion

2012-06-07T23:59:59.000Z

148

Remedial Action Plan and site conceptual design for stabilization of the inactive uranium mill tailings site at Spook, Wyoming  

SciTech Connect (OSTI)

This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities which are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at an inactive uranium processing site northeast of Casper, Wyoming, and referred to as the Spook site. It provides a characterization of the present conditions at the site and also serves to document the concurrence of the State of Wyoming and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the State of Wyoming, and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement.

Matthews, M.L. (USDOE Albuquerque Operations Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office); Sullivan, M. (Wyoming State Government, Cheyenne, WY (United States))

1990-04-01T23:59:59.000Z

149

The Technical and Economic Feasibility of Siting Synfuels Plants in Wyoming  

SciTech Connect (OSTI)

A comprehensive study has been completed to determine the feasibility of constructing and operating gasification and reforming plants which convert Wyoming fossil resources (coal and natural gas) into the higher value products of power, transportation fuels, and chemical feedstocks, such as ammonia and methanol. Detailed plant designs, simulation models, economic models and well-to-wheel greenhouse gas models were developed, validated by national-level engineering firms, which were used to address the following issues that heretofore have prevented these types of projects from going forward in Wyoming, as much as elsewhere in the United States: 1. Quantification of plant capital and operating expenditures 2. Optimization of plant heat integration 3. Quantification of coal, natural gas, electricity, and water requirements 4. Access to raw materials and markets 5. Requirements for new infrastructure, such as electrical power lines and product pipelines 6. The possible cost-benefit tradeoffs of using natural gas reforming versus coal gasification 7. The extent of labor resources required for plant construction and for permanent operations 8. Options for managing associated CO2 emissions, including capture and uses in enhanced oil recovery and sequestration 9. Options for reducing water requirements such as recovery of the high moisture content in Wyoming coal and use of air coolers rather than cooling towers 10. Permitting requirements 11. Construction, and economic impacts on the local communities This paper will summarize the analysis completed for two major synfuels production pathways, methanol to gasoline and Fischer-Trosph diesel production, using either coal or natural gas as a feedstock.

Anastasia M Gandrik; Rick A Wood; David Bell; William Schaffers; Thomas Foulke; Richard D Boardman

2011-09-01T23:59:59.000Z

150

Simulation of CO2 Sequestration at Rock Spring Uplift, Wyoming: Heterogeneity and Uncertainties in Storage Capacity, Injectivity and Leakage  

SciTech Connect (OSTI)

Many geological, geochemical, geomechanical and hydrogeological factors control CO{sub 2} storage in subsurface. Among them heterogeneity in saline aquifer can seriously influence design of injection wells, CO{sub 2} injection rate, CO{sub 2} plume migration, storage capacity, and potential leakage and risk assessment. This study applies indicator geostatistics, transition probability and Markov chain model at the Rock Springs Uplift, Wyoming generating facies-based heterogeneous fields for porosity and permeability in target saline aquifer (Pennsylvanian Weber sandstone) and surrounding rocks (Phosphoria, Madison and cap-rock Chugwater). A multiphase flow simulator FEHM is then used to model injection of CO{sub 2} into the target saline aquifer involving field-scale heterogeneity. The results reveal that (1) CO{sub 2} injection rates in different injection wells significantly change with local permeability distributions; (2) brine production rates in different pumping wells are also significantly impacted by the spatial heterogeneity in permeability; (3) liquid pressure evolution during and after CO{sub 2} injection in saline aquifer varies greatly for different realizations of random permeability fields, and this has potential important effects on hydraulic fracturing of the reservoir rock, reactivation of pre-existing faults and the integrity of the cap-rock; (4) CO{sub 2} storage capacity estimate for Rock Springs Uplift is 6614 {+-} 256 Mt at 95% confidence interval, which is about 36% of previous estimate based on homogeneous and isotropic storage formation; (5) density profiles show that the density of injected CO{sub 2} below 3 km is close to that of the ambient brine with given geothermal gradient and brine concentration, which indicates CO{sub 2} plume can sink to the deep before reaching thermal equilibrium with brine. Finally, we present uncertainty analysis of CO{sub 2} leakage into overlying formations due to heterogeneity in both the target saline aquifer and surrounding formations. This uncertainty in leakage will be used to feed into risk assessment modeling.

Deng, Hailin [Los Alamos National Laboratory; Dai, Zhenxue [Los Alamos National Laboratory; Jiao, Zunsheng [Wyoming State Geological Survey; Stauffer, Philip H. [Los Alamos National Laboratory; Surdam, Ronald C. [Wyoming State Geological Survey

2011-01-01T23:59:59.000Z

151

National Uranium Resource Evaluation. Volume 1. Summary of the geology and uranium potential of Precambrian conglomerates in southeastern Wyoming  

SciTech Connect (OSTI)

A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium and 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates.

Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.; Coolidge, C.M.; Kratochvil, A.L.; Sever, C.K.

1981-02-01T23:59:59.000Z

152

Applied Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication Acceleration onto MeasurementsApplied

153

EIS-0450: TransWest Express 600 kV Direct Current Transmission Project in Wyoming, Colorado, Utah, and Nevada  

Broader source: Energy.gov [DOE]

This EIS, being prepared jointly by DOE’s Western Area Power Administration and the Department of the Interior’s Bureau of Land Management (Wyoming State Office), evaluates the environmental impacts of granting a right-of-way for the TransWest Express 600-kilovolt Direct Current Transmission Project and amending a land use plan. The project consists of an overhead transmission line that would extend approximately 725 miles from south-central Wyoming, through Colorado and Utah. Western proposes to be a joint owner of the project.

154

Environmental Assessment of Remedial Action at the Riverton Uranium Mill Tailings Site, Riverton, Wyoming  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has prepared an environmental assessment (DOE/EA-0254) on the proposed remedial action at the inactive uranium milling site near Riverton, Wyoming. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 U.S.C. 4321, et seq.). Therefore, the preparation of an environmental impact statement (EIS) is not required.

none,

1987-06-01T23:59:59.000Z

155

Political mobilization, venue change, and the coal bed methane conflict in Montana and Wyoming  

SciTech Connect (OSTI)

The emerging conflict over coal bed methane (CBM) exploration and development in the mountain west offers a classic example of what Baumgartner and Jones call a 'wave of criticism.' The cozy subgovernments that have dominated energy exploration and development in the mountain states are now under attack and are struggling to maintain their autonomy. Energy exploration, which was once perceived to have only positive consequences, is now the focus of an intense debate that has managed to unite previously warring factions. This article utilizes a comparative assessment of CBM politics in Montana and Wyoming to explain the connection between changing popular and elite perceptions of the issue, institutional change, and policy change.

Duffy, R.J. [Colorado State University, Fort Collins, CO (United States)

2005-03-31T23:59:59.000Z

156

Environmental assessment of remedial action at the Spook uranium mill tailings site, Converse County, Wyoming  

SciTech Connect (OSTI)

This document assesses a joint remedial action proposed by the US Department of Energy Uranium Mill Tailings Remedial Action Project and the State of Wyoming Abandoned Mine Lands Program. The proposed action would consist of stabilizing uranium mill tailings and other associated contaminated materials within an inactive open pit mine on the site; backfilling the open pit with overburden materials that would act as a radon barrier and cover; and recontouring and seeding all disturbed areas to premining conditions. The impacts of no action at this site are addressed as the alternative to the proposed action. 74 refs., 12 figs., 19 tabs.

Not Available

1989-04-01T23:59:59.000Z

157

Wyoming Price of Natural Gas Sold to Commercial Consumers (Dollars per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet)Cubic

158

Emplacement of the Moxa Arch and interaction with the Western Overthrust Belt, Wyoming  

E-Print Network [OSTI]

of MASTER OF SCIENCE May 1986 Major Subject: Geology EMPLACEMENT OF THE MOXA ARCH AND INTERACTION WITH THE WESTERN OVERTHRUST BELT, WYOMING A Thesis by DAVID HARRY KRAIG Approved as to style and content by: David V. Wiltschko (Chairman of Committee... College B. S. The University of New Mexico Chairman of Advisory Committee: Dr. David V. Wiltschko The northern segment of the Moxa Arch is modeled as uplifted along a low-angle thrust (Moxa thrust, MT). The west-verging MT cuts up section from...

Kraig, David Harry

1986-01-01T23:59:59.000Z

159

Environmental evaluation and restoration plan of the Hoe Creek Underground Coal Gasification Site, Wyoming: Topical report  

SciTech Connect (OSTI)

Three underground coal gasification (UCG) experiments were conducted by Lawrence Livermore National Laboratory (LLNL) at the Hoe Creek Site, Wyoming; the Hoe Creek I experiment was conducted in 1976, the Hoe Creek II experiment in 1977, and the Hoe Creek III experiment in 1979. These experiments have had an impact on the land and groundwater quality at the site, and the Department of Energy (DOE) has requested that Western Research Institute (WRI) develop and implement a site restoration plan. The purpose of the plan is to restore the site to conditions being negotiated with the Wyoming Department of Environmental Quality (WDEQ). To prepare for developing a plan, WRI compiled background information on the site. The geologic and hydrologic characteristics of the site were determined, and the water quality data were analyzed. Modelling the site was considered and possible restoration methods were examined. Samples were collected and laboratory tests were conducted. WRI then developed and began implementing a field-scale restoration test. 41 refs, 46 figs., 13 tabs.

Barteaux, W.L.; Berdan, G.L.; Lawrence, J.

1986-09-01T23:59:59.000Z

160

Hoe Creek experiments: LLNL's underground coal-gasification project in Wyoming  

SciTech Connect (OSTI)

Under the sponsorship of the US Department of Energy and predecessor organizations, the Lawrence Livermore National Laboratory carried out a laboratory program and three field, underground coal gasification tests near Gillette, Wyoming. This report summarizes that work. Three methods of linking or connecting injection and production wells were used for the UCG field tests: Hoe Creek No. 1 employed explosive fracturing, Hoe Creek No. 2 featured use of reverse combustion, and directional drilling was used for the Hoe Creek No. 3. The Gas Research Institute cosponsored the latter test. Laboratory experiments and modeling, together with a laboratory and field environment program, are necessary adjuncts to the field program. Explosive fracturing in coal was simulated using computer models and laboratory tests. We developed a relationship of total inelastic strains to permeability, which we used to design and interpret a coal outcrop, explosive fracturing experiment at Kemmerer, Wyoming. Coal gasification was also simulated in laboratory experiments and with computer models. The primary aim has been to predict and correlate reaction, thermal-front propagation rates, and product gas composition as a function of bed properties and process operating conditions. Energy recovery in the form of produced gas and liquids amounted to 73% of the energy in the consumed coal. There were essentially no losses to the subsurface formation. The greatest energy loss was in steam production.

Stephens, D.R.

1981-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "wyoming cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Geology of the Hanna Formation, Hanna Underground Coal Gasification Site, Hanna, Wyoming  

SciTech Connect (OSTI)

The Hanna Underground Coal Gasification (UCG) study area consists of the SW1/4 of Section 29 and the E1/2SE1/4 of Section 30 in Township 22 North, Range 81 West, Wyoming. Regionally, this is located in the coal-bearing Hanna Syncline of the Hanna Basin in southeast Wyoming. The structure of the site is characterized by beds dipping gently to the northeast. An east-west fault graben complex interrupts this basic trend in the center of the area. The target coal bed of the UCG experiments was the Hanna No. 1 coal in the Hanna Formation. Sedimentary rocks comprising the Hanna Formation consist of a sequence of nonmarine shales, sandstones, coals and conglomerates. The overburden of the Hanna No. 1 coal bed at the Hanna UCG site was divided into four broad local stratigraphic units. Analytical studies were made on overburden and coal samples taken from cores to determine their mineralogical composition. Textural and mineralogical characteristics of sandstones from local stratigraphic units A, B, and C were analyzed and compared. Petrographic analyses were done on the coal including oxides, forms of sulfur, pyrite types, maceral composition, and coal rank. Semi-quantitative spectrographic and analytic geochemical analyses were done on the overburden and coal and relative element concentrations were compared. Trends within each stratigraphic unit were also presented and related to depositional environments. The spectrographic analysis was also done by lithotype. 34 references, 60 figures, 18 tables.

Oliver, R.L.; Youngberg, A.D.

1984-01-01T23:59:59.000Z

162

Basic data for thermal springs and wells as recorded in GEOTHERM: Wyoming  

SciTech Connect (OSTI)

GEOTHERM sample file contains 356 records for Wyoming. Three computer-generated indexes are found in appendices A, B, and C of this report. The indexes give one line summaries of each GEOTHERM record describing the chemistry of geothermal springs and wells in the sample file for Wyoming. Each index is sorted by different variables to assist the user in locating geothermal records describing specific sites. Appendix A is sorted by the county name and the name of the source. Also given are latitude, longitude (both use decimal minutes), township, range, section, GEOTHERM record identifier, and temperature (/sup 0/C). Appendix B is sorted by county, township, range, and section. Also given are name of source, GEOTHERM record identifier, and temperature (/sup 0/C). Appendix C is first sorted into one-degree blocks by latitude, and longitude, and then by name of source. Adjacent one-degree blocks which are published as a 1:250,000 map are combined under the appropriate map name. Also given are GEOTHERM record identifier, and temperature (/sup 0/C). A bibliography is given in Appendix D.

Bliss, J.D.

1983-05-01T23:59:59.000Z

163

Tiger Team Assessment of the Navel Petroleum and Oil Shale Reserves Colorado, Utah, and Wyoming  

SciTech Connect (OSTI)

This report documents the Tiger Team Assessment of the Naval Petroleum Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW). NPOSR-CUW consists of Naval Petroleum Reserve Number 3 located near Casper, Wyoming; Naval Oil Shale Reserve Number I and Naval Oil Shale Reserve Number 3 located near Rifle, Colorado; and Naval Oil Shale Reserve Number 2 located near Vernal, Utah, which was not examined as part of this assessment. The assessment was comprehensive, encompassing environment, safety, and health (ES H) and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal NPOSR-CUW requirements was assessed. The NPOSR-CUW Tiger Team Assessment is part of a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary with information on the compliance status of DOE facilities with regard to ES H requirements, root causes for noncompliance, adequacy of DOE and contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes.

Not Available

1992-07-01T23:59:59.000Z

164

NAME M/YEAR MASTERS THESES TITLES COMMENTS SCOPEL, ROBERT B Jun-49 The Volcanic History of Jackson Hole, Wyoming  

E-Print Network [OSTI]

The Coldwater Formation in the Area of the Allegan Area of Southwestern Michigan ROWE, DEAN E Aug-51 Hole, Wyoming SIMONS, MERTON E Aug-49 Insoluble Residues of the Traverse Group in the Petoskey Area. Jun-50 Geology of an Area North of Gardener, Montana MORDEN, AUDLEY D., JR Jun-50 Stratigraphy

Berdichevsky, Victor

165

NAME M/YEAR MASTERS THESES TITLES SCOPEL, ROBERT B Jun49 The Volcanic History of Jackson Hole, Wyoming  

E-Print Network [OSTI]

, Park County, Wyoming GOSSER, CHARLES F. Jun60 Petrography and Metamorphism of the Star Lake Area of the Keewatin Province, Ontario RUBEL, DANIEL N Apr59 Tertiary volcanic rocks of the Cooke city - pilot peak, Montana BRUEHL, DONALD H. Jun61 The Petrography and Structure of an area North of Cooke City, Montana #12

Baskaran, Mark

166

HumanWildlife Interactions 8(2):284290, Fall 2014 Oil and gas impacts on Wyoming's sage-  

E-Print Network [OSTI]

Human­Wildlife Interactions 8(2):284­290, Fall 2014 Oil and gas impacts on Wyoming's sage- grouse: Historical impacts from oil and gas development to greater sage-grouse (Centrocercus urophasianus) habitat been extrapolated to estimate future oil and gas impacts in the U. S. Fish and Wildlife Service (2010

167

Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming  

SciTech Connect (OSTI)

In 2002, Gnomon, Inc., entered into a cooperative agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) for a project entitled, Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming (DE-FC26-02NT15445). This project, funded through DOE’s Preferred Upstream Management Practices grant program, examined cultural resource management practices in two major oil- and gas-producing areas, southeastern New Mexico and the Powder River Basin of Wyoming (Figure 1). The purpose of this project was to examine how cultural resources have been investigated and managed and to identify more effective management practices. The project also was designed to build information technology and modeling tools to meet both current and future management needs. The goals of the project were described in the original proposal as follows: Goal 1. Create seamless information systems for the project areas. Goal 2. Examine what we have learned from archaeological work in the southeastern New Mexico oil fields and whether there are better ways to gain additional knowledge more rapidly or at a lower cost. Goal 3. Provide useful sensitivity models for planning, management, and as guidelines for field investigations. Goal 4. Integrate management, investigation, and decision- making in a real-time electronic system. Gnomon, Inc., in partnership with the Wyoming State Historic Preservation Office (WYSHPO) and Western GeoArch Research, carried out the Wyoming portion of the project. SRI Foundation, in partnership with the New Mexico Historic Preservation Division (NMHPD), Statistical Research, Inc., and Red Rock Geological Enterprises, completed the New Mexico component of the project. Both the New Mexico and Wyoming summaries concluded with recommendations how cultural resource management (CRM) processes might be modified based on the findings of this research.

Eckerle, William; Hall, Stephen

2005-12-30T23:59:59.000Z

168

Overburden characterization and post-burn study of the Hoe Creek, Wyoming underground coal gasification site and comparison with the Hanna, Wyoming site  

SciTech Connect (OSTI)

In 1978 the third test (Hoe Creek III) in a series of underground coal gasification (UCG) experiments was completed at a site south of Gillette, Wyoming. The post-burn study of the geology of the overburden and interlayered rock of the two coal seams affected by the experiment is based on the study of fifteen cores. The primary purpose of the study was to characterize the geology of the overburden and interlayered rock and to determine and evaluate the mineralogical and textural changes that were imposed by the experiment. Within the burn cavity the various sedimentary units have been brecciated and thermally altered to form several pyrometamorphic rock types of paralava rock, paralava breccia, buchite, buchite breccia and hornfels. High temperature minerals of mullite, cordierite, oligo-clase-andesine, tridymite, cristobalite, clinopyroxenes, and magnetite are common in the pyrometamorphic rocks. The habit of these minerals indicates that they crystallized from a melt. These minerals and textures suggest that the rocks were formed at temperatures between 1200/sup 0/ and 1400/sup 0/C. A comparison of geologic and geological-technological factors between the Hoe Creek III site, which experienced substantial roof collapse, and the Hanna II site, which had only moderate roof collapse, indicates that overburden thickness relative to coal seam thickness, degree of induration of overburden rock, injection-production well spacing, and ultimate cavity size are important controls of roof collapse in the structural setting of the two sites.

Ethridge, F.C.; Burns, L.K.; Alexander, W.G.; Craig, G.N. II; Youngberg, A.D.

1983-01-01T23:59:59.000Z

169

Challenges in assessment, management and development of coalbed methane resources in the Powder River Basin, Wyoming  

SciTech Connect (OSTI)

Coalbed methane development in the Powder River Basin has accelerated rapidly since the mid-1990's. forecasts of coalbed methane (CBM) production and development made during the late 1980's and early 1990's have proven to be distinctly unreliable. Estimates of gas in place and recoverable reserves have also varied widely. This lack of reliable data creates challenges in resource assessment, management and development for public resource management agencies and the CBM operators. These challenges include a variety of complex technical, legal and resource management-related issues. The Bureau of Land Management's Wyoming Reservoir Management Group (WRMG) and US Geological Survey (USGS), with the cooperation and assistance of CBM operators and other interested parties have initiated cooperative studies to address some of these issues. This paper presents results of those studies to date and outlines the agencies' goals and accomplishments expected at the studies' conclusion.

McGarry, D.E.

2000-07-01T23:59:59.000Z

170

Seminoe-Kortes transmission line/substation consolidation project, Carbon County, Wyoming  

SciTech Connect (OSTI)

The existing switchyards at Western Area Power Administration's (WESTERN) Seminoe and Kortes facilities, located approximately 40 miles northeast of Rawlines, Carbon County, Wyoming, were constructed in 1939 and 1951, respectively. The circuit breakers at these facilities are beyond or approaching their service life and need to be replaced. In addition, the switchyards have poor access for maintenance and replacement of equipment, and their locations create potential for oil spills into the North Platte River. WESTERN is proposing to consolidate the switchyard facilities into one new substation to provide easier access, restore proper levels of system reliability, and decrease the potential for oil contamination of the river. This environmental assessment (EA) was prepared to evaluate the impacts of the proposed Seminoe-Kortes Consolidation Project. 57 refs., 12 figs., 8 tabs.

Not Available

1990-07-01T23:59:59.000Z

171

Ground-water effects of the UCG experiments at the Hoe Creek site in northeastern Wyoming  

SciTech Connect (OSTI)

Ground-water changes and subsidence effects associated with three underground coal gasification (UCG) experiments have been monitored at the Hoe Creek site in northeastern Wyoming. Ground-water quality measurements have extended over a period of four years and have been supplemented by laboratory studies of contaminant sorption by coal. It was found that a broad range of residual gasification products are introduced into the ground-water system. These contaminants may be of environmental significance if they find their way, in sufficient concentrations, into surface waters, or into aquifers from which water is extracted for drinking or agricultural purposes. Fortunately, the concentrations of these contaminants are substantially reduced by sorption on the surrounding coal. However, recent field measurements indicate that there may be significant limitations on this natural cleansing process. The contaminants of potential concern, and the mechanisms that affect their deposition and persistence have been identified.

Mead, S.W.; Wang, F.T.; Stuermer, D.H.

1981-06-01T23:59:59.000Z

172

Aqueous geochemistry of the Thermopolis hydrothermal system, southern Bighorn Basin, Wyoming, U.S.A.  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

The Thermopolis hydrothermal system is located in the southern portion of the Bighorn Basin, in and around the town of Thermopolis, Wyoming. It is the largest hydrothermal system in Wyoming outside of Yellowstone National Park. The system includes hot springs, travertine deposits, and thermal wells; published models for the hydrothermal system propose the Owl Creek Mountains as the recharge zone, simple conductive heating at depth, and resurfacing of thermal waters up the Thermopolis Anticline. The geochemistry of the thermal waters of three active hot springs, Big Spring, White Sulfur Spring, and Teepee Fountain, is similar in composition; the geochemistry is characteristic of carbonate or carbonate-bearing siliciclastic aquifers. Previous studies of the Thermopolis hydrothermal system postulate that the thermal waters are a mixture of waters from Paleozoic formations. Major element geochemical analyses available for waters from these formations is not of sufficient quality to determine whether the thermal waters are a mixture of the Paleozoic aquifers. In the time frame of this study (1 year), the geochemistry of all three springs was constant through all four seasons, spanning spring snowmelt and recharge as well as late summer and fall dryness. This relationship is consistent with a deep source not influenced by shallow, local hydrogeology. Anomalies are evident in the historic dataset for the geochemistry of Big Spring. We speculate that anomalies occurring between 1906 and 1926 suggest mixing of source waters of Big Spring with waters from a siliciclastic formation, and that anomalies occurring between 1926 and 1933 suggest mixing with waters from a formation containing gypsum or anhydrite. Decreased concentrations measured in our study, relative to concentrations measured between 1933 and 1976, may reflect mixing of thermal waters with more dilute waters. Current data is not sufficient to rigorously test these suggestions, and events of sufficient scale taking place in these timeframes have not been identified.

Kaszuba, John P. [University of Wyoming; Sims, Kenneth W.W. [University of Wyoming; Pluda, Allison R.

2014-03-01T23:59:59.000Z

173

Oil springs and flat top anticlines, Carbon County Wyoming: An unusual fold pair  

SciTech Connect (OSTI)

Oil Springs Anticline, northwest of Medicine Bow, Wyoming, and located at the northeast corner of the Hanna Basin, lies near the junction of the Freezeout Hills Anticline, the Shirley thrust fault and the Flat Top Anticline. The surface fold as defined by the outcrop of the Wall Creek Sandstone Member of the Frontier Formation is disharmonic to deeper structure at the level of the Jurassic Sundance Formation. The fold is wedged between two major folds and is the result of a space problem between larger structural elements. The controlling Flat Top Anticline is an excellent example of a fold controlled by a well constrained fault in the Precambrian crystalline basement. The basement is bowed upward and outward to the northwest in the hanging wall of the Flat Top Anticline. The purpose of this paper is to describe the geologic structure of the Oil Springs and Flat Top anticlines and their relationship to the Freezeout Hills and the Hanna Basin. Commercial production of petroleum and natural gas occurs on the west flank of the Laramie-Cooper Lake Basin as far north as the northeast corner of the Hanna Basin. Stone reviewed the producing formations in the Laramie and eastern Hanna basins and noted that 11 commercial accumulations of petroleum and natural gas are directly related to anticlinal structures. Production derived from the Permian-Pennsylvanian Tensleep Sandstone in this region has a special geologic framework. Fields that produce from the Tensleep Sandstone are well defined anticlines bounded by faults or fault systems, a situation also reported by Biggs and Espach, Blackstone and in the Wyoming Geological Association Symposium. The Tensleep Sandstone reservoirs in these faulted anticlines are in juxtaposition to potential source rocks of either Jurassic or Cretaceous age in the footwalls of the faults. 17 refs., 9 figs., 1 tab.

Blackstone, D.L. Jr. (Univ. of Wyoming, Laramie, WY (United States))

1994-04-01T23:59:59.000Z

174

Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.  

SciTech Connect (OSTI)

In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future projectspecific analyses. Additional information about the PEIS can be found at http://ostseis.anl.gov.

Murphey, P. C.; Daitch, D.; Environmental Science Division

2009-02-11T23:59:59.000Z

175

EA-1617: Lovell-Yellowtail and Basin-Lovell Transmission Line Rebuild Project, Big Horn County, Wyoming, and Big Horn and Carbon Counties, Montana  

Broader source: Energy.gov [DOE]

DOE’s Western Area Power Administration prepared this EA and a finding of no significant impact for a proposal to rebuild the Lovell-Yellowtail (LV-YT) No. 1 and No. 2 115-kV transmission lines, located in Big Horn County, Wyoming, and Big Horn and Carbon Counties in Montana, and the Basin-Lovell 115-kV transmission line in Big Horn County, Wyoming.

176

Basement/cover rock relations of the Dry Fork Ridge Anticline termination, northeastern Bighorn Mountains, Wyoming and Montana  

E-Print Network [OSTI]

, Northeastern Bighorn Mountains, Wyoming and Montana. (August 1986) Peter Hill Hennings, B. S. , Texas A&M University Chairman of Advisory Committee: Dr. John H. Spang Field mapping on scales of 1:6, 000 and 1: 12, 000 indicate that the basement involved... in the Field Area Methodology DATA. PAGE I 3 7 10 12 17 25 25 28 Field Map. Interpretive Data: Cross Sections Dry Fork Ridge Anticline. Faole Point Anticline and the Mountain Flank. . Basement Geometry. Fracture Analysis...

Hennings, Peter Hill

1986-01-01T23:59:59.000Z

177

Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.  

SciTech Connect (OSTI)

In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future oil shale and tar sands resource development.

O'Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

2007-11-01T23:59:59.000Z

178

ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING  

SciTech Connect (OSTI)

This report summarizes activities that have taken place in the last six (6) months (January 2005-June 2005) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the United States: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico. Gnomon as project lead, worked in both areas.

Peggy Robinson

2005-07-01T23:59:59.000Z

179

Final environmental statement related to the Western Nuclear, Inc. , Split Rock Uranium Mill (Fremont County, Wyoming)  

SciTech Connect (OSTI)

The proposed action is the renewal of Source Material License SUA-56 (with amendments) issued to Western Nuclear, Inc. (WNI), for the operation of the Split Rock Uranium Mill near Jeffrey City and the Green Mountain Ion-Exchange Facility, both in Fremont County, Wyoming. The license also permits possession of material from past operations at four ancillary facilities in the Gas Hills mining area - the Bullrush, Day-Loma, Frazier-Lamac, and Rox sites (Docket No. 40-1162). However, although heap leaching operations were previously authorized at Frazier-Lamac, there has never been any processing of material at this site. The Split Rock mill is an acid-leach, ion-exchange and solvent-extraction uranium-ore processing mill with a design capacity of 1540 MT (1700 tons) of ore per day. WNI has proposed by license amendment request to increase the storage capacity of the tailings ponds in order to permit the continuation of present production rates of U/sub 3/O/sub 8/ through 1996 using lower-grade ores.

Not Available

1980-02-01T23:59:59.000Z

180

Site observational work plan for the UMTRA Project site at Spook, Wyoming  

SciTech Connect (OSTI)

The Spook, Wyoming, site observational work plan proposes site-specific activities to achieve compliance with Subpart B of 40 CFR Part 192 (1994) of the final US Environmental Protection Agency (EPA) ground water protection standards 60 FR 2854 (1995) at this Uranium Mill Tailing Remedial Action (UMTRA) Project site. This draft SOWP presents a comprehensive summary of existing site characterization data, a conceptual site model of the nature and extent of ground water contamination, exposure pathways, and potential impact to human health and the environment. Section 2.0 describes the requirements for meeting ground water standards at UMTRA Project sites. Section 3.0 defines past and current conditions, describes potential environmental and human health risks, and provides site-specific data that supports the selection of a proposed ground water compliance strategy. Section 4.0 provides the justification for selecting the proposed ground water compliance strategy based on the framework defined in the ground water programmatic environmental impact statement (PEIS).

NONE

1995-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "wyoming cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Supplement to the UMTRA Project water sampling and analysis plan, Riverton, Wyoming  

SciTech Connect (OSTI)

This water sampling and analysis plan (WSAP) supplement supports the regulatory and technical basis for water sampling at the Riverton, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project site, as defined in the 1994 WSAP document for Riverton (DOE, 1994). Further, the supplement serves to confirm the Project`s present understanding of the site relative to the hydrogeology and contaminant distribution as well as the intent to continue to use the sampling strategy as presented in the 1994 WSAP document for Riverton. Ground water and surface water monitoring activities are derived from the US Environmental Protection Agency regulations in 40 CFR Part 192 and 60 FR 2854. Sampling procedures are guided by the UMTRA Project standard operating procedures (JEG, n.d.), the Technical Approach Document (DOE, 1989), and the most effective technical approach for the site. Additional site-specific documents relevant to the Riverton site are the Riverton Baseline Risk Assessment (BLRA) (DOE, 1995a) and the Riverton Site Observational Work Plan (SOWP) (DOE, 1995b).

NONE

1995-09-01T23:59:59.000Z

182

Postburn evaluation for Hanna II, Phases 2 and 3, underground coal gasification experiments, Hanna, Wyoming  

SciTech Connect (OSTI)

During 1980 and 1981 the Laramie Energy Technology Center (LETC) conducted a post-burn study at the Hanna II, Phases 2 and 3 underground coal gasification (UCG) site, Hanna, Wyoming. This report contains a summary of the field and laboratory results from the study. Lithologic and geophysical well log data from twenty-two (22) drill holes, combined with high resolution seismic data delineate a reactor cavity 42.7m (140 ft.) long, 35.1 m (115 ft.) and 21.3 m (70 ft.) high that is partially filled with rubble, char and pyrometamorphic rock. Sedimentographic studies were completed on the overburden. Reflectance data on coal samples within the reactor cavity and cavity wall reveal that the coal was altered by temperatures ranging from 245/sup 0/C to 670/sup 0/C (472/sup 0/-1238/sup 0/F). Overburden rocks found within the cavity contain various pyrometamorphic minerals, indicating that temperatures of at least 1200/sup 0/C (2192/sup 0/F) were reached during the tests. The calcite cemented fine-grained sandstone and siltstone directly above the Hanna No. 1 coal bed formed a strong roof above the cavity, unlike other UCG sites such as Hoe Creek which is not calcite cemented. 30 references, 27 figures, 8 tables.

Youngberg, A.D.; Sinks, D.J.; Craig, G.N. II; Ethridge, F.G.; Burns, L.K.

1983-12-01T23:59:59.000Z

183

Implications of ground-water measurements at the Hoe Creek UCG site in northeastern Wyoming  

SciTech Connect (OSTI)

Underground coal gasification (UCG) promises to become an important source of synthetic fuels. In an effort to provide timely information concerning the environmental implications of the UCG process, we are conducting investigations in conjunction with the UCG experiments carried out in northeastern Wyoming by the Lawrence Livermore National Laboratory. Our ground-water quality measurements have extended over a period of four years and have been supplemented by laboratory studies of contaminant sorption by coal. Cavity roof collapse and aquifer interconnection were also investigated, using surface and subsurface geotechnical instruments, post-burn coring, and hydraulic head measurements. We have found that a broad range of residual gasification products are introduced into the ground-water system. Fortunately, the concentrations of many of these contaminants are substantially reduced by sorption on the surrounding coal. However, some of these materials seem likely to remain in the local groundwater, at low concentrations, for several years. We have attempted to interpret our results in terms of concepts that will assist in the development of effective and practicable control technologies.

Mead, S.W.; Wang, F.T.; Stuermer, D.H.; Raber, E.; Ganow, H.C.; Stone, R.

1980-01-01T23:59:59.000Z

184

Wyoming coal-conversion project. Final technical report, November 1980-February 1982. [Proposed WyCoalGas project, Converse County, Wyoming; contains list of appendices with title and identification  

SciTech Connect (OSTI)

This final technical report describes what WyCoalGas, Inc. and its subcontractors accomplished in resolving issues related to the resource, technology, economic, environmental, socioeconomic, and governmental requirements affecting a project located near Douglas, Wyoming for producing 150 Billion Btu per day by gasifying sub-bituminous coal. The report summarizes the results of the work on each task and includes the deliverables that WyCoalGas, Inc. and the subcontractors prepared. The co-venturers withdrew from the project for two reasons: federal financial assistance to the project was seen to be highly uncertain; and funds were being expended at an unacceptably high rate.

None

1982-01-01T23:59:59.000Z

185

Annotated bibliography of selected references on shoreline barrier island deposits with emphasis on Patrick Draw Field, Sweetwater County, Wyoming  

SciTech Connect (OSTI)

This bibliography contains 290 annotated references on barrier island and associated depositional environments and reservoirs. It is not an exhaustive compilation of all references on the subject, but rather selected papers on barrier islands, and the depositional processes of formation. Papers that examine the morphology and internal architecture of barrier island deposits, exploration and development technologies are emphasized. Papers were selected that aid in understanding reservoir architecture and engineering technologies to help maximize recovery efficiency from barrier island oil reservoirs. Barrier islands from Wyoming, Montana and the Rocky Mountains basins are extensively covered.

Rawn-Schatzinger, V.; Schatzinger, R.A.

1993-07-01T23:59:59.000Z

186

theoretical and applied fracture  

E-Print Network [OSTI]

theoretical and applied fracture mechanics ELSEVIER Theoretical and Applied Fracture Mechanics 00 and Applied Fracture Mechanics 00 (1995) 000-000 Recently, some European countries developed defect specific. A suitable probabilistic fracture mechanic

Cizelj, Leon

187

Applied Computer Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computing CCS Division Applied Computer Science Applied Computer Science Innovative co-design of applications, algorithms, and architectures in order to enable scientific...

188

ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL AND GAS IN NEW MEXICO AND WYOMING  

SciTech Connect (OSTI)

This report contains a summary of activities of Gnomon, Inc. and five sub-contractors that have taken place during the first six months (January 1, 2003--June 30, 2003) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Gnomon, Inc. and all five (5) subcontractors have agreed on a process for the framework of this two-year project. They have also started gathering geomorphological information and entering cultural resource data into databases that will be used to create models later in the project. This data is being gathered in both the Power River Basin of Wyoming, and the Southeastern region of New Mexico. Several meetings were held with key players in this project to explain the purpose of the research, to obtain feedback and to gain support. All activities have been accomplished on time and within budget with no major setbacks.

Peggy Robinson

2003-07-25T23:59:59.000Z

189

Effects of Natural Gas Well Development and Reclamation Activities on Topsoil Properties Proposal Submitted to the University of Wyoming School of Energy Resources  

E-Print Network [OSTI]

, as is typically done during energy development activities, drastically disrupts the soil system and stimulates Submitted to the University of Wyoming School of Energy Resources 2007-08 Matching Grant Fund April 15, 2008 Summary: Maintaining and restoring productivity of topsoil disturbed by energy development is crucial

Norton, Jay B.

190

Phase II - final report study of alternatives for future operations of the naval petroleum and oil shale reserves NPR-3, Wyoming  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Appraiser under contract DE-AC01-96FE64202. This authorizes a study and recommendations regarding future development of Naval Petroleum Reserve No. 3 (NPR-3) in Natrona County, Wyoming. The report that follows is the Phase II Final Report for that study.

NONE

1996-12-01T23:59:59.000Z

191

3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming  

SciTech Connect (OSTI)

The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

La Pointe, Paul; Parney, Robert; Eiben, Thorsten; Dunleavy, Mike; Whitney, John; Eubanks, Darrel

2002-09-09T23:59:59.000Z

192

POSITION OPENING APPLIED STATISTICS  

E-Print Network [OSTI]

: Assistant or Associate Professor of Applied Statistics. Employment Beginning: September 16, 2012 DescriptionPOSITION OPENING APPLIED STATISTICS Department of Decision Sciences Charles H. Lundquist College at the University of Oregon is seeking to fill one tenure-track faculty position in Applied Statistics. Rank

Shepp, Larry

193

Applied quantum mechanics 1 Applied Quantum Mechanics  

E-Print Network [OSTI]

that describe the time-dependent state . If can be expressed as a power series in the perturbing potential of a one dimensional har- monic oscillator. At time t = 0 a perturbation is applied where V0-dimensional rectangular potential well for which in the range and elsewhere. It is decided to control the state

Levi, Anthony F. J.

194

ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING  

SciTech Connect (OSTI)

This report contains a summary of activities of Gnomon, Inc. and five subcontractors that have taken place during the first six months of 2004 (January 1, 2004-June 30, 2004) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Although Gnomon and all five subcontractors completed tasks during these six months, most of the technical experimental work was conducted by the subcontractor, SRI Foundation (SRIF). SRIF created a sensitivity model for the Azotea Mesa area of southeastern New Mexico that rates areas as having a very good chance, a good chance, or a very poor chance of containing cultural resource sites. SRIF suggested that the results of the sensitivity model might influence possible changes in cultural resource management (CRM) practices in the Azote Mesa area of southeastern New Mexico.

Peggy Robinson

2004-07-01T23:59:59.000Z

195

ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING  

SciTech Connect (OSTI)

This report contains a summary of activities of Gnomon, Inc. and five subcontractors that have taken place during the second six months (July 1, 2003-December 31, 2003) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Although Gnomon and all five subcontractors completed tasks during these six months, most of the technical experimental work was conducted by the subcontractor, SRI Foundation (SRIF). SRIF created a sensitivity model for the Loco Hills area of southeastern New Mexico that rates areas as having a very good chance, a good chance, or a very poor chance of containing cultural resource sites. SRIF suggested that the results of the sensitivity model might influence possible changes in cultural resource management (CRM) practices in the Loco Hills area of southeastern New Mexico.

Peggy Robinson

2004-01-01T23:59:59.000Z

196

Environmental assessment of ground water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming. Revision 0  

SciTech Connect (OSTI)

This document is an environmental assessment of the Spook, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project site. It analyzes the impacts of the U.S. Department of Energy (DOE) proposed action for ground water compliance. The proposed action is to comply with the U.S. Environmental Protection Agency (EPA) standards for the UMTRA Project sites (40 CFR Part 192) by meeting supplemental standards based on the limited use ground water at the Spook site. This proposed action would not require site activities, including ground water monitoring, characterization, or institutional controls. Ground water in the uppermost aquifer was contaminated by uranium processing activities at the Spook site, which is in Converse County, approximately 48 miles (mi) (77 kilometers [km]) northeast of Casper, Wyoming. Constituents from the site infiltrated and migrated into the uppermost aquifer, forming a plume that extends approximately 2500 feet (ft) (800 meters [m]) downgradient from the site. The principal site-related hazardous constituents in this plume are uranium, selenium, and nitrate. Background ground water in the uppermost aquifer at the site is considered limited use. It is neither a current nor a potential source of drinking water because of widespread, ambient contamination that cannot be cleaned up using treatment methods reasonably employed in public water supply systems (40 CFR {section} 192.11 (e)). Background ground water quality also is poor due to first, naturally occurring conditions (natural uranium mineralization associated with an alteration front), and second, the effects of widespread human activity not related to uranium milling operations (uranium exploration and mining activities). There are no known exposure pathways to humans, animals, or plants from the contaminated ground water in the uppermost aquifer because it does not discharge to lower aquifers, to the surface, or to surface water.

NONE

1996-03-01T23:59:59.000Z

197

Geohydrology of bedrock aquifers in the Northern Great Plains in parts of Montana, North Dakota, South Dakota, and Wyoming  

SciTech Connect (OSTI)

Development of energy-related resources in the northern Great Plains of the US will require large quantities of ground water. Because Montana, North Dakota, and Wyoming are semiarid, the primary local sources of nonappropriated water are the deep bedrock aquifers of Paleozoic and Mesozoic age. The US Geological Survey undertook a 4-year interdisciplinary study that has culminated in a digital-simulation model of the regional flow system and incorporates the results of geochemical, hydrologic, and geologic studies. Rocks of Paleozoic and Mesozoic age form at least five artesian aquifers that are recharged in the mountainous areas of Montana, South Dakota, and Wyoming. The aquifers extend for more than 600 mi to discharge areas in the northeastern part of North Dakota and in Manitoba. In general, the direction of flow in each aquifer is east to northeast, but flow is deflected to the north and south around the Williston basin. Flow through the Williston basin is restricted because of brine (200,000-350,000 mg/l), halite beds, geologic structures, and decreased permeability of rocks in the deeper parts of the basin. Fracture systems and lineaments transverse the entire area and act either as conduits or as barriers to ground-water flow, depending on their hydrogeologic and geochemical history. Vertical leakage from the aquifers is restricted by shale with low permeability, by halite beds, and by stratigraphic traps or low-permeability zones associated with petroleum accumulations. However, interaquifer leakage appears to occur through and along some of the major lineaments and fractures. Interaquifer leakage may be a major consideration in determining the quality of water produced from wells.

Downey, J.S.

1986-01-01T23:59:59.000Z

198

Apply early! Limited enrollment.  

E-Print Network [OSTI]

volcano. Experience the culture and history of Hawaii, and the impact of human activitiesApply early! Limited enrollment. Environmental Science in the Hawaiian Islands Observe, research

199

Applied Computer Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science and Innovation Computing CCS Division CCS-7 Applied Computer Science Innovative co-design of applications, algorithms, and architectures in order to enable...

200

Analytical Chemistry Applied Mathematics  

E-Print Network [OSTI]

Analytical Chemistry Applied Mathematics Architectural Engineering Architecture Architecture Electricity Markets Environmental Engineering Food Process Engineering Food Safety & Technology Architecture Information Technology & Management Integrated Building Delivery Landscape Architecture Management

Heller, Barbara

Note: This page contains sample records for the topic "wyoming cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

How To Apply  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CSCEEE undergraduate students are encouraged to apply. Required Materials Current Resume Official University Transcript (with spring courses posted andor a copy of Spring...

202

Applied Geosciences Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applied Geosciencs Links USGS Mercury Research Uniteds States Geological Survey (USGS) investigations provide information to guide environmental planning and management. This...

203

Detrital U-Pb geochronology provenance analyses: case studies in the Greater Green River Basin, Wyoming, and the Book Cliffs, Utah  

E-Print Network [OSTI]

! ! Detrital U-Pb geochronology provenance analyses: case studies in the Greater Green River Basin, Wyoming, and the Book Cliffs, Utah By Peter Gregory Lippert Submitted to the graduate degree program in Geology and the Graduate Faculty... i Acceptance Page ii Abstract iii-iv Table of contents v-viii List of figures and tables ix-x Chapter 1. Introduction 11-16 Chapter 2. Geologic History...

Lippert, Peter Gregory

2014-05-31T23:59:59.000Z

204

Gulf of Mexico",,"Louisiana",,"New Mexico",,"Oklahoma",,"Texas",,"Wyoming",,"Other States  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.WyomingExpansionReserves

205

AEROSPACE SCIENCES Applied aerodynamics  

E-Print Network [OSTI]

AEROSPACE SCIENCES Applied aerodynamics This year saw significant progress in industry, research labs, and academia in the development of flow-control concepts, novel configuration aerodynamic concepts, and aerodynamic im- provement technologies for enhancing the fuel efficiency and performance

Xu, Kun

206

Engineering and Applied  

E-Print Network [OSTI]

> Computer Science > Electrical, Computer, and Energy Engineering > Mechanical Engineering 11, Computational Science and Engineering, Energy Systems and Environmental Sustainability, Materials ScienceCollege of Engineering and Applied Science Contact Robert H. Davis, Engineering Dean 303

Stowell, Michael

207

Baseline risk assessment of ground water contamination at the uranium mill tailings site near Riverton, Wyoming. Revision 1  

SciTech Connect (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the Surface Project and the Ground Water Project. At the UMTRA Project site near Riverton, Wyoming, Surface Project cleanup occurred from 1988 to 1990. Tailings and radioactively contaminated soils and materials were taken from the Riverton site to a disposal cell in the Gas Hills area, about 60 road miles (100 kilometers) to the east. The surface cleanup reduces radon and other radiation emissions and minimizes further ground water contamination. The UMTRA Project`s second phase, the Ground Water Project, will evaluate the nature and extent of ground water contamination at the Riverton site that has resulted from the uranium ore processing activities. Such evaluations are used at each site to determine a strategy for complying with UMTRA ground water standards established by the US Environmental Protection Agency (EPA) and if human health risks could result from exposure to ground water contaminated by uranium ore processing. Exposure could hypothetically occur if drinking water were pumped from a well drilled in an area where ground water contamination might have occurred. Human health and environmental risks may also result if people, plants, or animals are exposed to surface water that has mixed with contaminated ground water.

NONE

1995-09-01T23:59:59.000Z

208

The Wyodak-Anderson coal assessment, Powder River Basin, Wyoming and Montana -- An ArcView project  

SciTech Connect (OSTI)

In 1997, more than 305 million short tons of clean and compliant coal were produced from the Wyodak-Anderson and associated coal beds and zones of the Paleocene Fort Union Formation in the Powder River Basin, Wyoming and Montana. To date, all coal produced from the Wyodak-Anderson, which averages 0.47 percent sulfur and 6.44 percent ash, has met regulatory compliance standards. Twenty-eight percent of the total US coal production in 1997 was from the Wyodak-Anderson coal. Based on the current consumption rates and forecast by the Energy Information Administration (1996), the Wyodak-Anderson coal is projected to produce 413 million short tons by the year 2016. In addition, this coal deposit as well as other Fort Union coals have recently been targeted for exploration and development of methane gas. New US Geological Survey (USGS) digital products could provide valuable assistance in future mining and gas development in the Powder River Basin. An interactive format, with querying tools, using ArcView software will display the digital products of the resource assessment of Wyodak-Anderson coal, a part of the USGS National Coal Resource Assessment of the Powder River Basin. This ArcView project includes coverages of the data point distribution; land use; surface and subsurface ownerships; coal geology, stratigraphy, quality and geochemistry; and preliminary coal resource calculations. These coverages are displayed as map views, cross sections, tables, and charts.

Flores, R.M.; Gunther, G.; Ochs, A.; Ellis, M.E.; Stricker, G.D.; Bader, L.R. [Geological Survey, Denver, CO (United States)

1998-12-31T23:59:59.000Z

209

Big George to Carter Mountain 115-kV transmission line project, Park and Hot Springs Counties, Wyoming. Environmental Assessment  

SciTech Connect (OSTI)

The Western Area Power Administration (Western) is proposing to rebuild, operate, and maintain a 115-kilovolt (kV) transmission line between the Big George and Carter Mountain Substations in northwest Wyoming (Park and Hot Springs Counties). This environmental assessment (EA) was prepared in compliance with the National Environmental Policy Act (NEPA) and the regulations of the Council on Environmental Quality (CEQ) and the Department of Energy (DOE). The existing Big George to Carter Mountain 69-kV transmission line was constructed in 1941 by the US Department of Interior, Bureau of Reclamation, with 1/0 copper conductor on wood-pole H-frame structures without an overhead ground wire. The line should be replaced because of the deteriorated condition of the wood-pole H-frame structures. Because the line lacks an overhead ground wire, it is subject to numerous outages caused by lightning. The line will be 54 years old in 1995, which is the target date for line replacement. The normal service life of a wood-pole line is 45 years. Under the No Action Alternative, no new transmission lines would be built in the project area. The existing 69-kV transmission line would continue to operate with routine maintenance, with no provisions made for replacement.

Not Available

1994-02-01T23:59:59.000Z

210

Effects of in-situ oil-shale retorting on water quality near Rock Springs, Wyoming, Volume 1  

SciTech Connect (OSTI)

Experimental in-situ retorting techniques (methods of extracting shale oil without mining) were used from 1969 to 1979 by the Department of Energy's (DOE) Laramie Energy Technology Center (LETC) at a test area near Rock Springs in southwestern Wyoming. The retorting experiments at site 9 have produced elevated concentrations of some contaminants in the ground water. During 1988 and 1989, the US Geological Survey, in cooperation with the US Department of Energy, conducted a site characterization study to evaluate the chemical contamination of ground water at the site. Water samples from 34 wells were analyzed; more than 70 identifiable organic compounds were detected using a combination of gas chromatography and mass spectrometry analytical methods. This report provides information that can be used to evaluate possible remedial action for the site. Remediation techniques that may be applicable include those techniques based on removing the contaminants from the aquifer and those based on immobilizing the contaminants. Before a technique is selected, the risks associated with the remedial action (including the no-action alternative) need to be assessed, and the criteria to be used for decisions regarding aquifer restoration need to be defined. 31 refs., 23 figs., 9 tabs.

Lindner-Lunsford, J.B.; Eddy, C.A.; Plafcan, M.; Lowham, H.W.

1990-12-01T23:59:59.000Z

211

Apply for Beamtime  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mailRadioimmunotherapy ofevolvedAppliedApply for Beam

212

SUSTAINABILITY WHO CAN APPLY  

E-Print Network [OSTI]

FUNDED BY CALL FOR SUSTAINABILITY RESEARCH STUDENT WHO CAN APPLY Undergraduate and graduate Participate in the Global Change & Sustainability Center's Research Symposium; attend workshops with faculty or publish in the U's student-run sustainability publication to be released in May 2014. Are you conducting

213

Remedial Action Plan and site conceptual design for stabilization of the inactive uranium mill tailings site at Spook, Wyoming. Volume 1, Text, Appendices A, B, C, D, and E: Final report  

SciTech Connect (OSTI)

This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities which are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at an inactive uranium processing site northeast of Casper, Wyoming, and referred to as the Spook site. It provides a characterization of the present conditions at the site and also serves to document the concurrence of the State of Wyoming and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the State of Wyoming, and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement.

Matthews, M.L. [USDOE Albuquerque Operations Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office; Sullivan, M. [Wyoming State Government, Cheyenne, WY (United States)

1990-04-01T23:59:59.000Z

214

Wyoming-Wyoming Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14ThousandFeet) Working

215

Measurements of 222Rn, 220Rn, and CO Emissions in Natural CO2 Fields in Wyoming: MVA Techniques for Determining Gas Transport and Caprock Integrity  

SciTech Connect (OSTI)

An integrated field-laboratory program evaluated the use of radon and CO2 flux measurements to constrain source and timescale of CO2 fluxes in environments proximate to CO2 storage reservoirs. By understanding the type and depth of the gas source, the integrity of a CO2 storage reservoir can be assessed and monitored. The concept is based on correlations of radon and CO2 fluxes observed in volcanic systems. This fundamental research is designed to advance the science of Monitoring, Verification, and Accounting (MVA) and to address the Carbon Storage Program goal of developing and validating technologies to ensure 99 percent storage performance. Graduate and undergraduate students conducted the research under the guidance of the Principal Investigators; in doing so they were provided with training opportunities in skills required for implementing and deploying CCS technologies. Although a final method or “tool” was not developed, significant progress was made. The field program identified issues with measuring radon in environments rich in CO2. Laboratory experiments determined a correction factor to apply to radon measurements made in CO2-bearing environments. The field program also identified issues with radon and CO2-flux measurements in soil gases at a natural CO2 analog. A systematic survey of radon and CO2 flux in soil gases at the LaBarge CO2 Field in Southwest Wyoming indicates that measurements of 222Rn (radon), 220Rn (thoron), and CO2 flux may not be a robust method for monitoring the integrity of a CO2 storage reservoir. The field program was also not able to correlate radon and CO2 flux in the CO2-charged springs of the Thermopolis hydrothermal system. However, this part of the program helped to motivate the aforementioned laboratory experiments that determined correction factors for measuring radon in CO2-rich environments. A graduate student earned a Master of Science degree for this part of the field program; she is currently employed with a geologic consulting company. Measurement of radon in springs has improved significantly since the field program first began; however, in situ measurement of 222Rn and particularly 220Rn in springs is problematic. Future refinements include simultaneous salinity measurements and systematic corrections, or adjustments to the partition coefficient as needed for more accurate radon concentration determination. A graduate student earned a Master of Science degree for this part of the field program; he is currently employed with a geologic consulting company. Both graduate students are poised to begin work in a CCS technology area. Laboratory experiments evaluated important process-level fundamentals that effect measurements of radon and CO2. Laboratory tests established that fine-grained source minerals yield higher radon emissivity compared to coarser-sized source minerals; subtleties in the dataset suggest that grain size alone is not fully representative of all the processes controlling the ability of radon to escape its mineral host. Emissivity for both 222Rn and 220Rn increases linearly with temperature due to reaction of rocks with water, consistent with faster diffusion and enhanced mineral dissolution at higher temperatures. The presence of CO2 changes the relative importance of the factors that control release of radon. Emissivity for both 222Rn and 220Rn in CO2-bearing experiments is greater at all temperatures compared to the experiments without CO2, but emissivity does not increase as a simple function of temperature. Governing processes may include a balance between enhanced dissolution versus carbonate mineral formation in CO2-rich waters.

Kaszuba, John; Sims, Kenneth

2014-09-30T23:59:59.000Z

216

Rrecord of Decision (EPA Region 5): Chem-Central Site, Wyoming, MI. (First remedial action), September 1991. Final report  

SciTech Connect (OSTI)

The 2-acre Chem-Central site is a bulk chemical storage facility in Wyoming, Kent County, Michigan. Land use in the area is a mixture of residential and commercial. An estimated 10,000 people live within 1 mile of the site and receive their water supply via the municipal distribution system. Two creeks, Cole Drain and Plaster Creek, lie in proximity to the site. Between 1957 and 1962, hazardous substances entered the ground as a result of faulty construction of a .T-arm pipe used to transfer liquid products from bulk storage tanks to small delivery trucks. Additional hazardous substances may have entered the ground through accidental spills. In 1977, a routine State biological survey of Plaster Creek identified a contaminated ditch containing oils with organic compounds including PCBs and metals that was discharging into Cole Drain. Between 1978 and 1986, the State and EPA focused their efforts on finding and eliminating the source of the ditch contamination through extensive investigations of area soil, ground water, and surface water. Results indicated that ground water and soil surrounding and north of the Chem-Central plant were contaminated with volatile and semi-volatile organic compounds. The Record of Decision (ROD) addresses a remedy for contaminated onsite soil, contaminated offsite soil surrounding and north of the plant, and then addresses a remedy for contaminated onsite soil, contaminated offsite soil surrounding and north of the plant, and the ground water contamination plume emanating from the plant and spreading 1,800 feet northward. The primary contaminants of concern affecting the soil and ground water are VOCs including PCE, TCE, and toluene; and other organics including PAHs and PCBs. The selected remedial action for this site is included.

Not Available

1991-09-30T23:59:59.000Z

217

Multiscale heterogeneity characterization of tidal channel, tidal delta and foreshore facies, Almond Formation outcrops, Rock Springs uplift, Wyoming  

SciTech Connect (OSTI)

In order to accurately predict fluid flow within a reservoir, variability in the rock properties at all scales relevant to the specific depositional environment needs to be taken into account. The present work describes rock variability at scales from hundreds of meters (facies level) to millimeters (laminae) based on outcrop studies of the Almond Formation. Tidal channel, tidal delta and foreshore facies were sampled on the eastern flank of the Rock Springs uplift, southeast of Rock Springs, Wyoming. The Almond Fm. was deposited as part of a mesotidal Upper Cretaceous transgressive systems tract within the greater Green River Basin. Bedding style, lithology, lateral extent of beds of bedsets, bed thickness, amount and distribution of depositional clay matrix, bioturbation and grain sorting provide controls on sandstone properties that may vary more than an order of magnitude within and between depositional facies in outcrops of the Almond Formation. These features can be mapped on the scale of an outcrop. The products of diagenesis such as the relative timing of carbonate cement, scale of cemented zones, continuity of cemented zones, selectively leached framework grains, lateral variability of compaction of sedimentary rock fragments, and the resultant pore structure play an equally important, although less predictable role in determining rock property heterogeneity. A knowledge of the spatial distribution of the products of diagenesis such as calcite cement or compaction is critical to modeling variation even within a single facies in the Almond Fin. because diagenesis can enhance or reduce primary (depositional) rock property heterogeneity. Application of outcrop heterogeneity models to the subsurface is greatly hindered by differences in diagenesis between the two settings. The measurements upon which this study is based were performed both on drilled outcrop plugs and on blocks.

Schatzinger, R.A.; Tomutsa, L. [BDM Petroleum Technologies, Bartlesville, OK (United States)

1997-08-01T23:59:59.000Z

218

The potential for coalbed gas exploration and production in the Greater Green River Basin, southwest Wyoming and northwest Colorado  

SciTech Connect (OSTI)

Coalbed gas is an important source of natural gas in the United States. In 1993, approximately 740 BCF of coalbed gas was produced in the United States, or about 4.2% of the nation`s total gas production. Nearly 96% of this coalbed gas is produced from just two basins, the San Juan (615.7 BCF; gas in place 84 TCF) and Black Warrior (105 BCF; gas in place 20 TCF), and current production represents only a fraction of the nation`s estimated 675 TCF of in-place coalbed gas. Coal beds in the Greater Green River Basin in southwest Wyoming and northwest Colorado hold almost half of the gas in place (314 TCF) and are an important source of gas for low-permeability Almond sandstones. Because total gas in place in the Greater Green River Basin is reported to exceed 3,000 TCF (Law et al., 1989), the basin may substantially increase the domestic gas resource base. Therefore, through integrated geologic and hydrologic studies, the coalbed gas potential of the basin was assessed where tectonic, structural, and depositional setting, coal distribution and rank, gas content, coal permeability, and ground-water flow are critical controls on coalbed gas producibility. Synergism between these geologic and hydrologic controls determines gas productivity. High productivity is governed by (1) thick, laterally continuous coals of high thermal maturity, (2) basinward flow of ground water through fractured and permeable coals, down the coal rank gradient toward no-flow boundaries oriented perpendicular to the regional flow direction, and (3) conventional trapping of gas along those boundaries to provide additional sources of gas beyond that sorbed on the coal surface.

Tyler, R.; Kaiser, W.R.; Scott, A.R.; Hamilton, D.S. [Univ. of Texas, Austin, TX (United States)

1997-01-01T23:59:59.000Z

219

Apply for Beamtime  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication Acceleration ontoInstrumentationApply for

220

Applied Science/Techniques  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mailRadioimmunotherapy ofevolvedApplied Science/Techniques

Note: This page contains sample records for the topic "wyoming cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

CX-011250: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Exclusion Determination CX-011250: Categorical Exclusion Determination Transforming Photovoltaic Installations Toward Dispatchable, Schedulable Energy Solutions CX(s) Applied:...

222

School of Applied Technology School of Applied Technology  

E-Print Network [OSTI]

School of Applied Technology School of Applied Technology Daniel F. and Ada L. Rice Campus Illinois Institute of Technology 201 E. Loop Road Wheaton, IL 60187 630.682.6000 www.iit.edu/applied tech/ Dean Technology and Management Programs: Mazin Safar Director, Marketing & Development: Scott Pfeiffer Director

Heller, Barbara

223

School of Applied Technology School of Applied Technology  

E-Print Network [OSTI]

School of Applied Technology School of Applied Technology Daniel F. and Ada L. Rice Campus Illinois Institute of Technology 201 E. Loop Road Wheaton, IL 60187 630.682.6000 www.iit.edu/applied tech/ Dean and Academic Director, Information Technology and Management Programs: C. Robert Carlson Director of Operations

Heller, Barbara

224

Anisotropy and Spatial Variation of Relative Permeability and Lithologic Character of Tensleep Sandstone Reservoirs in the Bighorn and Wind River Basins, Wyoming  

SciTech Connect (OSTI)

This multidisciplinary study is designed to provide improvements in advanced reservoir characterization techniques. This goal is to be accomplished through: (1) an examination of the spatial variation and anisotropy of relative permeability in the Tensleep Sandstone reservoirs of Wyoming; (2) the placement of that variation and anisotropy into paleogeographic, depositional, and diagenetic frameworks; (3) the development of pore-system imagery techniques for the calculation of relative permeability; (4) reservoir simulations testing the impact of relative permeability anisotropy and spatial variation on Tensleep Sandstone reservoir enhanced oil recovery; and (5) a geochemical investigation of the spatial and dynamic alteration in sandstone reservoirs that is caused by rock-fluid interaction during CO{sub 2}-enhanced oil recovery processes.

Dunn, Thomas L.

1996-10-01T23:59:59.000Z

225

The relationship between coal quality and coal resource parameters of Powder River and Williston Basin coal, Wyoming, Montana, and North Dakota  

SciTech Connect (OSTI)

Clean, compliant coal from mines in the Northern Rocky Mountain and Great Plains region is utilized as fuel for coal-fired power plants in 26 states. More than 30 percent of the nation`s 1997 production was from Montana, North Dakota, and Wyoming. Production of clean, compliant coal from the region is estimated to increase to 415 million short tons by the year 2015. Studies in this region indicate a relationship between percent sulfur and ash and pounds of SO{sub 2} per million Btu and the resource parameters of coal thickness and overburden. The trends that the authors have observed indicate that both coal quality and the thickness of the coal and associated rocks are controlled by paleoenvironment and depositional setting.

Ellis, M.S.; Stricker, G.D.; Gunther, G.; Ochs, A.M.; Flores, R.M.

1998-12-31T23:59:59.000Z

226

Wyoming Natural Gas Prices  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14Year (Million20082009 2010

227

Wyoming Natural Gas Prices  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14Year (Million20082009

228

Wyoming Proved Nonproducing Reserves  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14Thousand Cubic Feet)

229

An evaluation of known remaining oil resources in the state of New Mexico and Wyoming. Volume 4, Project on Advanced Oil Recovery and the States  

SciTech Connect (OSTI)

The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of the IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the states of New Mexico and Wyoming. Individual reports for six other oil producing states and a national report have been separately published by the IOGCC. The analysis presented in this report is based on the databases and models available in the Tertiary Oil Recovery Information System (TORIS). Overall, well abandonments and more stringent environmental regulations could limit economic access to New Mexico`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technology, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could have even greater benefits to the state and the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, oil production could be maximized. The resulting increase in production rates, employment, operator profits, state and Federal tax revenues, and energy security will benefit both the states of New Mexico and Wyoming and the nation as a whole.

Not Available

1994-11-01T23:59:59.000Z

230

Romanian sources on applied mechanics  

SciTech Connect (OSTI)

This note provides a list of journals and recent books published in Romania covering topics in applied mechanics, with information on bow to obtain them.

Popescu, M.E. [Civil Engineering Inst., Bucharest (Romania)

1992-06-01T23:59:59.000Z

231

The Foundations of Applied Mathematics  

E-Print Network [OSTI]

The Foundations of Applied Mathematics John Baez Category-Theoretic Foundations of Mathematics Workshop May 5, 2013 #12;We often picture the flow of information about mathematics a bit like this: SCIENCE AND ENGINEERING APPLIED MATHEMATICS PURE MATHEMATICS FOUNDATIONS OF MATHEMATICS #12;Of course

Baez, John

232

Journal of Applied Ecology 2004  

E-Print Network [OSTI]

Journal of Applied Ecology 2004 41, 922­933 © 2004 British Ecological Society Blackwell Publishing that might guide management decisions. We tested whether ideas from landscape ecology (local vs. landscape-scale, Sacramento River, succession, vegetation Journal of Applied Ecology (2004) 41, 922­933 Introduction More than

Holl, Karen

233

Greater Sage-Grouse Habitat Use and Population Demographics at the Simpson Ridge Wind Resource Area, Carbon County, Wyoming  

SciTech Connect (OSTI)

This study was conducted to obtain baseline data on use of the proposed Simpson Ridge Wind Resource Area (SRWRA) in Carbon County, Wyoming by greater sage-grouse. The first two study years were designed to determine pre-construction seasonally selected habitats and population-level vital rates (productivity and survival). The presence of an existing wind energy facility in the project area, the PacifiCorp Seven Mile Hill (SMH) project, allowed us to obtain some information on initial sage-grouse response to wind turbines the first two years following construction. To our knowledge these are the first quantitative data on sage-grouse response to an existing wind energy development. This report presents results of the first two study years (April 1, 2009 through March 30, 2011). This study was selected for continued funding by the National Wind Coordinating Collaborative Sage-Grouse Collaborative (NWCC-SGC) and has been ongoing since March 30, 2011. Future reports summarizing results of this research will be distributed through the NWCC-SGC. To investigate population trends through time, we determined the distribution and numbers of males using leks throughout the study area, which included a 4-mile radius buffer around the SRWRA. Over the 2-year study, 116 female greater sage-grouse were captured by spotlighting and use of hoop nets on roosts surrounding leks during the breeding period. Radio marked birds were located anywhere from twice a week to once a month, depending on season. All radio-locations were classified to season. We developed predictor variables used to predict success of fitness parameters and relative probability of habitat selection within the SRWRA and SMH study areas. Anthropogenic features included paved highways, overhead transmission lines, wind turbines and turbine access roads. Environmental variables included vegetation and topography features. Home ranges were estimated using a kernel density estimator. We developed resource selection functions (RSF) to estimate probability of selection within the SRWRA and SMH. Fourteen active greater sage-grouse leks were documented during lek surveys Mean lek size decreased from 37 in 2008 to 22 in 2010. Four leks located 0.61, 1.3, 1.4 and 2.5 km from the nearest wind turbine remained active throughout the study, but the total number of males counted on these four leks decreased from 162 the first year prior to construction (2008), to 97 in 2010. Similar lek declines were noted in regional leks not associated with wind energy development throughout Carbon County. We obtained 2,659 sage-grouse locations from radio-equipped females, which were used to map use of each project area by season. The sage-grouse populations within both study areas are relatively non-migratory, as radio-marked sage-grouse used similar areas during all annual life cycles. Potential impacts to sage-grouse from wind energy infrastructure are not well understood. The data rom this study provide insight into the early interactions of wind energy infrastructure and sage-grouse. Nest success and brood-rearing success were not statistically different between areas with and without wind energy development in the short-term. Nest success also was not influenced by anthropogenic features such as turbines in the short-term. Additionally, female survival was similar among both study areas, suggesting wind energy infrastructure was not impacting female survival in the short-term; however, further analysis is needed to identify habitats with different levels of risk to better understand the impact of wind enregy development on survival. Nest and brood-rearing habitat selection were not influenced by turbines in the short-term; however, summer habitat selection occurred within habitats closer to wind turbines. Major roads were avoided in both study areas and during most of the seasons. The impact of transmission lines varied among study areas, suggesting other landscape features may be influencing selection. The data provided in this report are preliminary and are not meant to provide a basis for fo

Gregory D. Johnson; Chad W. LeBeau; Ryan Nielsen; Troy Rintz; Jamey Eddy; Matt Holloran

2012-03-27T23:59:59.000Z

234

Sustainable FACULTY OF APPLIED SCIENCE  

E-Print Network [OSTI]

Working Together Towards a Sustainable Energy Future FACULTY OF APPLIED SCIENCE Clean Energy aspects of sustainable energy solutions, and is committed to using its extensive expertise to serve, Electrical & Computer, Materials, Mechanical, Mining), the School of Architecture & Landscape Architecture

Michelson, David G.

235

temperature heat pumps applied to  

E-Print Network [OSTI]

Very high- temperature heat pumps applied to energy efficiency in industry Application June 21th 2012 Energy efficiency : A contribution to environmental protection Kyoto Copenhage Emission, plastics Partnership : EDF R&D Bil

Oak Ridge National Laboratory

236

IIT SCHOOL OF APPLIED TECHNOLOGY  

E-Print Network [OSTI]

INDUSTRIAL TECHNOLOGY AND MANAGEMENT IIT SCHOOL OF APPLIED TECHNOLOGY PREPARING SKILLED INDIVIDUALS, INDUSTRIAL FACILITIES, SUPPLY CHAIN MANAGEMENT, SUSTAINABILITY AND MANUFACTURING TECHNOLOGY. #12;BE ONE to assess, implement, and utilize current technologies, and to learn how to manage industrial operations

Heller, Barbara

237

Modeling applied to problem solving  

E-Print Network [OSTI]

We describe a modeling approach to help students learn expert problem solving. Models are used to present and hierarchically organize the syllabus content and apply it to problem solving, but students do not develop and ...

Pawl, Andrew

238

INSECT TRACE FOSSILS ON DINOSAUR BONES FROM THE UPPER JURASSIC MORRISON FORMATION, NORTHEASTERN WYOMING, AND THEIR USE IN VERTEBRATE TAPHONOMY  

E-Print Network [OSTI]

carcasses by their inability to excavate tunnels in sediment. In this thesis I apply the principles of forensic entomology to study the taphonomic history of sauropod skeletons at the KU-WY-121 quarry in the Upper Jurassic Morrison Formation... and Martin, 2002; West and Hasiotis, 2007). Fossil bone modification by arthropods has been reported from the Late Jurassic, Cretaceous, Paleogene, and Neogene (Table 2). Traces include circular to oval pits, scratches, tunnels, notches, and channels...

Bader, Kenneth Stephen

2008-08-21T23:59:59.000Z

239

Preliminary results on the characterization of Cretaceous and lower Tertiary low-permeability (tight) gas-bearing rocks in the Wind River Basin, Wyoming  

SciTech Connect (OSTI)

The Wind River Basin is a structural and sedimentary basin in central Wyoming (Figure 1) that was created during the Laramide orogeny from Late Cretaceous through Eocene time. The objectives of the Wind River Basin tight gas sandstone project are to define the limits of the tight gas accumulation in the basin and to estimate in-place and recoverable gas resources. The approximate limits of the tight gas accumulation are defined from available drillhole information. Geologic parameters, which controlled the development of the accumulation, are studied in order to better understand the origins of tight gas accumulations, and to predict the limits of the accumulation in areas where little drillhole information is available. The architecture of sandstone reservoirs are studied in outcrop to predict production characteristics of similar reservoirs within the tight gas accumulation. Core and cuttings are used to determine thermal maturities, quality of source rocks, and diagenetic histories. Our work thus far has concentrated in the Wind River Indian Reservation in the western part of the basin.

Fouch, T.D.; Keefer, W.R.; Finn, T.M. [and others

1993-12-31T23:59:59.000Z

240

Determining erodibility, critical shear stress, and allowable discharge estimates for cohesive channels: case study in the Powder River Basin of Wyoming  

SciTech Connect (OSTI)

The continuous discharge of coalbed natural gas-produced (CBNG-produced) water within ephemeral, cohesive channels in the Powder River Basin (PRB) of Wyoming can result in significant erosion. A study was completed to investigate channel stability in an attempt to correlate cohesive soil properties to critical shear stress. An in situ jet device was used to determine critical shear stress (tau{sub c}) and erodibility (k{sub d}); cohesive soil properties were determined following ASTM procedures for 25 reaches. The study sites were comprised of erodible to moderately resistant clays with tau{sub c} ranging from 0.11 to 15.35 Pa and k{sub d} ranging from 0.27 to 2.38 cm{sup 3}/N s. A relationship between five cohesive soil characteristics and tau{sub c} was developed and presented for use in deriving tau{sub c} for similar sites. Allowable discharges for CBNG-produced water were also derived using tau{sub c} and the tractive force method. An increase in the allowable discharge was found for channels in which vegetation was maintained. The information from this case study is critical to the development of a conservative methodology to establish allowable discharges while minimizing flow-induced instability.

Thoman, R.W.; Niezgoda, S.L. [Lowham Engineering LLC, Lander, WY (United States)

2008-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "wyoming cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Geochemical provenance of anomalous metal concentrations in stream sediments in the Ashton 1:250,000 quadrangle, Idaho/Montana/Wyoming  

SciTech Connect (OSTI)

Stream-sediment samples from 1500 sites in the Ashton, Idaho/Montana/Wyoming 1:250,000 quadrangle were analyzed for 45 elements. Almost all samples containing anomalous concentrations (exceeding one standard deviation above the mean value of any element) were derived from drainage basins underlain by Quaternary rhyolite, Tertiary andesite or Precambrian gneiss and schist. Aluminum, barium, calcium, cobalt, iron, nickel, magnesium, scandium, sodium, strontium, and vanadium have no andesite provenance. Most anomalous manganese, europium, hafnium, and zirconium values were derived from Precambrian rocks. All other anomalous elemental concentrations are related to Quaternary rhyolite. This study demonstrates that multielemental stream-sediment analyses can be used to infer the provenance of stream sediments. Such data are available for many parts of the country as a result of the National Uranium Resource Evaluation. This study suggests that stream-sediment samples collected in the Rocky Mountains can be used either as pathfinders or as direct indicators to select targets for mineral exploration for a host of metals.

Shannon, S.S. Jr.

1982-01-01T23:59:59.000Z

242

Ground-water hydrologic effects resulting from underground coal gasification experiments at the Hoe Creek Site near Gillette, Wyoming. Interim report, October 1979-March 1980  

SciTech Connect (OSTI)

This technical note summarizes our activities, to date, on the research project: Ground-Water Hydrologic Effects Resulting from Underground Coal Gasification Experiments (EPA-IAG-79-D-X0795). The gasified coal seam (Felix No. 2 coal) and two overlying aquifers (Felix No. 1 coal and overlying sand) appear to have become interconnected as a result of roof collapse and subsidence at both Hoe Creek Sites II and III near Gillette, Wyoming. To evaluate changes in the ground-water flow regime at the two sites, completion of supplementary wells was necessary to define the distance versus head drawdown relationships in each of the three aquifers. Hydraulic head potentials have been measured at Site III since gasification ended on October 10, 1979. These data are presented in graphic format. Although hydraulic head measurements at Site II seemed to be approaching a steady-state condition 1.5 years after gasification, the subsequent gasification at Site III temporarily altered the ground-water flow patterns. These changes will have a definite effect on contaminant dispersal and will need to be taken into consideration.

Raber, E.; Stone, R.

1980-05-01T23:59:59.000Z

243

apply skills & experience build skills  

E-Print Network [OSTI]

senior apply skills & experience junior build skills sophomore research & execute freshman explore options1 2 3 4 s u p p o r t4-year career action plan parent about the center for career development Remind your student that it is never too soon or too late to seek an internship or summer job. build

Alvarez, Pedro J.

244

APPLIED MATHEMATICS AND SCIENTIFIC COMPUTING  

E-Print Network [OSTI]

APPLIED MATHEMATICS AND SCIENTIFIC COMPUTING Brijuni, Croatia June 23{27, 2003. y x Runge's example; Organized by: Department of Mathematics, Unversity of Zagreb, Croatia. Miljenko Maru#20;si#19;c, chairman;simir Veseli#19;c Andro Mikeli#19;c Sponsors: Ministry of Science and Technology, Croatia, CV Sistemi d

Rogina, Mladen

245

California Energy Commission Apply Today!  

E-Print Network [OSTI]

of Flyer Public Programs Office (916) 654-4147 pubprog@energy.state.ca.us June 2006 #12;DON'T MISS electricity usage by about 30 percent. Electricity Savings: 2,262,207 kWh Demand Savings: 575 kW EnergyCalifornia Energy Commission Apply Today! "The college is using cutting edge on- site generation

246

APPLIED THERMAL ENGINEERING Manuscript Draft  

E-Print Network [OSTI]

the heat pump from the grid during the two hours of electrical peak power · Design of a new heat exchangerAPPLIED THERMAL ENGINEERING Manuscript Draft TITLE: Experimental assessment of a PCM to air heat This paper presents a heat exchanger prototype containing PCM material designed to provide a 1kW heating

Paris-Sud XI, Université de

247

Journal of Applied Ecology 2004  

E-Print Network [OSTI]

herbivores provide goods and income to rural communities, have major impacts on land use and habitats-Bianchet REVIEW The management of wild large herbivores to meet economic, conservation and environmental is applied to their management across the globe. To be effective, however, management has to be science

Festa-Bianchet, Marco

248

Journal of Applied Ecology 2006  

E-Print Network [OSTI]

Journal of Applied Ecology 2006 43, 377­384 © 2006 The Authors. Journal compilation © 2006 British Ecological Society Blackwell Publishing Ltd METHODOLOGICAL INSIGHTS Point transect sampling with traps, Etive House, Beechwood Park, Inverness IV2 3BW, UK Summary 1. The ability to monitor abundance of animal

Thomas, Len

249

Applied Sustainability Political Science 319  

E-Print Network [OSTI]

1 Applied Sustainability Political Science 319 College of Charleston Spring 2013 Day/Time: TH 1 Address: fisherb@cofc.edu Office: 284 King Street, #206 (Office of Sustainability) Office Hours: by appt sustainability. It will focus on the development of semester-long sustainability projects, from conception

Young, Paul Thomas

250

CX-010574: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination Applied Materials - Kerf-less Crystaline-Silicon Photovoltaic: Gas to Modules CX(s) Applied: B3.6 Date: 05162013 Location(s): California,...

251

CX-009419: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Magnetic Pulser CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

252

CX-009418: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Electron Beam Melting CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

253

CX-009420: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Additive Manufacturing Using EOSINT M280 CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

254

3-D RESERVOIR AND STOCHASTIC FRACTURE NETWORK MODELING FOR ENHANCED OIL RECOVERY, CIRCLE RIDGE PHOSPHORIA/TENSLEEP RESERVOIR, WIND RIVER RESERVATION, ARAPAHO AND SHOSHONE TRIBES, WYOMING  

SciTech Connect (OSTI)

This report describes the results made in fulfillment of contract DE-FG26-00BC15190, ''3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, Wind River Reservation, Arapaho and Shoshone Tribes, Wyoming''. The goal of this project is to improve the recovery of oil from the Tensleep and Phosphoria Formations in Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models. Fields in which natural fractures dominate reservoir permeability, such as the Circle Ridge Field, often experience sub-optimal recovery when recovery processes are designed and implemented that do not take advantage of the fracture systems. For example, a conventional waterflood in a main structural block of the Field was implemented and later suspended due to unattractive results. It is estimated that somewhere less than 20% of the OOIP in the Circle Ridge Field have been recovered after more than 50 years' production. Marathon Oil Company identified the Circle Ridge Field as an attractive candidate for several advanced IOR processes that explicitly take advantage of the natural fracture system. These processes require knowledge of the distribution of matrix porosity, permeability and oil saturations; and understanding of where fracturing is likely to be well-developed or poorly developed; how the fracturing may compartmentalize the reservoir; and how smaller, relatively untested subthrust fault blocks may be connected to the main overthrust block. For this reason, the project focused on improving knowledge of the matrix properties, the fault block architecture and to develop a model that could be used to predict fracture intensity, orientation and fluid flow/connectivity properties. Knowledge of matrix properties was greatly extended by calibrating wireline logs from 113 wells with incomplete or older-vintage logging suites to wells with a full suite of modern logs. The model for the fault block architecture was derived by 3D palinspastic reconstruction. This involved field work to construct three new cross-sections at key areas in the Field; creation of horizon and fault surface maps from well penetrations and tops; and numerical modeling to derive the geometry, chronology, fault movement and folding history of the Field through a 3D restoration of the reservoir units to their original undeformed state. The methodology for predicting fracture intensity and orientation variations throughout the Field was accomplished by gathering outcrop and subsurface image log fracture data, and comparing it to the strain field produced by the various folding and faulting events determined through the 3D palinspastic reconstruction. It was found that the strains produced during the initial folding of the Tensleep and Phosphoria Formations corresponded well without both the orientations and relative fracture intensity measured in outcrop and in the subsurface. The results have led to a 15% to 20% increase in estimated matrix pore volume, and to the plan to drill two horizontal drain holes located and oriented based on the modeling results. Marathon Oil is also evaluating alternative tertiary recovery processes based on the quantitative 3D integrated reservoir model.

Paul La Pointe; Jan Hermanson; Robert Parney; Thorsten Eiben; Mike Dunleavy; Ken Steele; John Whitney; Darrell Eubanks; Roger Straub

2002-11-18T23:59:59.000Z

255

Preliminary draft industrial siting administration permit application: Socioeconomic factors technical report. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project in Converse County, Wyoming  

SciTech Connect (OSTI)

Under the with-project scenario, WyCoalGas is projected to make a difference in the long-range future of Converse County. Because of the size of the proposed construction and operations work forces, the projected changes in employment, income, labor force, and population will alter Converse County's economic role in the region. Specifically, as growth occurs, Converse County will begin to satisfy a larger portion of its own higher-ordered demands, those that are currently being satisfied by the economy of Casper. Business-serving and household-serving activities, currently absent, will find the larger income and population base forecast to occur with the WyCoalGas project desirable. Converse County's economy will begin to mature, moving away from strict dependence on extractive industries to a more sophisticated structure that could eventually appeal to national, and certainly, regional markets. The technical demand of the WyCoalGas plant will mean a significant influx of varying occupations and skills. The creation of basic manufacturing, advanced trade and service sectors, and concomitant finance and transportation firms will make Converse County more economically autonomous. The county will also begin to serve market center functions for the smaller counties of eastern Wyoming that currently rely on Casper, Cheyenne or other distant market centers. The projected conditions expected to exist in the absence of the WyCoalGas project, the socioeconomic conditions that would accompany the project, and the differences between the two scenarios are considered. The analysis is keyed to the linkages between Converse County and Natrona County.

Not Available

1982-01-01T23:59:59.000Z

256

Hydraulic fracturing and wellbore completion of coalbed methane wells in the Powder River Basin, Wyoming: Implications for water and gas production  

SciTech Connect (OSTI)

Excessive water production (more than 7000 bbl/month per well) from many coalbed methane (CBM) wells in the Powder River Basin of Wyoming is also associated with significant delays in the time it takes for gas production to begin. Analysis of about 550 water-enhancement activities carried out during well completion demonstrates that such activities result in hydraulic fracturing of the coal. Water-enhancement activities, consists of pumping 60 bbl of water/min into the coal seam during approximately 15 min. This is done to clean the well-bore and to enhance CBM production. Hydraulic fracturing is of concern because vertical hydraulic fracture growth could extend into adjacent formations and potentially result in excess CBM water production and inefficient depressurization of coals. Analysis of the pressure-time records of the water-enhancement tests enabled us to determine the magnitude of the least principal stress (S{sub 3}) in the coal seams of 372 wells. These data reveal that because S{sub 3} switches between the minimum horizontal stress and the overburden at different locations, both vertical and horizontal hydraulic fracture growth is inferred to occur in the basin, depending on the exact location and coal layer. Relatively low water production is observed for wells with inferred horizontal fractures, whereas all of the wells associated with excessive water production are characterized by inferred vertical hydraulic fractures. The reason wells with exceptionally high water production show delays in gas production appears to be inefficient depressurization of the coal caused by water production from the formations outside the coal. To minimize CBM water production, we recommend that in areas of known vertical fracture propagation, the injection rate during the water-enhancement tests should be reduced to prevent the propagation of induced fractures into adjacent water-bearing formations.

Colmenares, L.B.; Zoback, M.D. [Stanford University, Stanford, CA (United States). Dept. of Geophysics

2007-01-15T23:59:59.000Z

257

Sulfur and ash in Paleocene Wyodak-Anderson coal in the Powder River Basin, Wyoming and Montana: A fuel source beyond 2000  

SciTech Connect (OSTI)

When coal-fired power plants are required by the Environmental Protection Agency (EPA) to meet more stringent sulfur emission standards (0.6 pound per million Btu) after the year 2000, most of the clean and compliant coals will come from the Powder River Basin in Wyoming and Montana. In 1996 more than 300 million short toms of these clean and compliant coals were produced from the Paleocene Fort Union Formation in the northern Rocky Mountains and Great Plans region. This is more than 30% of the total US coal production of 1.03 billion short tons in 1996. Future demand for clean and compliant coals can probably be met through production of more F or Union coals in the region. It is projected by the Energy Information Agency (1996) that most of the low-sulfur and low-ash coals in the northern Rocky Mountains and Great Plains region will be produced from the Wyodak-Anderson coal bed/zone of the Paleocene Fort Union Formation in the Powder River Basin. To date, coal produced from the Wyodak-Anderson coal bed/zone, containing 0.5% sulfur, 1.2 lb SO{sub 2} per million btu, and 6% ash (mean values on an as-received basis) meet current EPA regulatory compliance. This coal bed/zone alone produced 262 million short toms of >26% of the total US coal production in 1996. Based on the current consumption rates of coal and a forecast by the EIA (1996), the Wyodak-Anderson coals are projected to produce an additional 153 million short tons a year by the year 2016. At this rate of production, high quality Wyodak-Anderson coals may be adequate to fill future energy needs.

Ellis, M.S.; Stricker, G.D.; Flores, R.M.; Bader, L.R.

1998-07-01T23:59:59.000Z

258

Sulfur and ash in paleocene Wyodak-Anderson coal in the Powder River Basin, Wyoming and Montana: A fuel source beyond 2000  

SciTech Connect (OSTI)

When coal-fired power plants are required by the Environmental Protection Agency (EPA) to meet more stringent sulfur emission standards (0.6 pound per million Btu) after the year 2000, most of the clean and compliant coals will come from the Powder River Basin in Wyoming and Montana. In 1996 more than 300 million short tons of these clean and compliant coals were produced from the Paleocene Fort Union Formation in the northern Rocky Mountains and Great Plains region. This is more than 30 percent of the total US coal production of 1.03 billion short tons in 1996. Future demand for clean and compliant coals can probably be met through production of more Fort Union coals in the region. It is projected by the Energy Information Agency (1996) that most of the low-sulfur and low-ash coals in the northern Rocky Mountains and Great Plains region will be produced from the Wyodak-Anderson coal bed/zone of the Paleocene Fort Union Formation in the Powder River Basin. To date, coal produced from the Wyodak-Anderson coal bed/zone, containing 0.5 percent sulfur, 1.2 lb SO{sub 2} per million btu, and 6 percent ash (mean values on an as-received basis) meet current EPA regulatory compliance. This coal bed/zone alone produced 262 million short tons or >26 percent of the total U.S. coal production in 1996. Based on the current consumption rates of coal and a forecast by the EIA (1996), the Wyodak-Anderson coals are projected to produce an additional 153 million short tons a year by the year 2016. At this rate of production, high quality Wyodak-Anderson coals may be adequate to fill our future energy needs.

Ellis, M.S.; Stricker, G.D.; Flores, R.M.; Bader, L.R. [Geological Survey, Denver, CO (United States)

1998-04-01T23:59:59.000Z

259

Applying to Teacher Education Program at Purdue  

E-Print Network [OSTI]

Apply to the Teacher Education Program (TEP). Please remember to apply to the TEP(Gate A) if you wish to officially enroll in the. Professional Education ...

David Drasin

2012-12-02T23:59:59.000Z

260

Applying the Alaska model in a Resource-Poor State: The Example of Vermont  

E-Print Network [OSTI]

(Chile), diamonds (Botswana), or even phosphates (Kiribati). In the United States, the state of New Mexico has three SWFs, the Land Grant Permanent Fund (mineral resources and surface land), Severance Tax Permanent Fund (minerals), and Tobacco Settlement Permanent Fund. Wyoming has a fund from coal, oil, natural

Vermont, University of

Note: This page contains sample records for the topic "wyoming cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

SYLLABUS--GEOGRAPHY (GEOG)-455 APPLIED CLIMATOLOGY  

E-Print Network [OSTI]

SYLLABUS--GEOGRAPHY (GEOG)-455 APPLIED CLIMATOLOGY Spring 2006 Time: T-R 12:30-1:45 p.m. (BOL B95-455-001-lec@uwm.edu Textbooks: Thompson-Perry, Applied Climatology: principles and practice, (1997, graduate students will prepare a 10 page (2500 word minimum) paper on a project using applied climatology

Saldin, Dilano

262

SCHOOL OF APPLIED SCIENCES THE POSITION  

E-Print Network [OSTI]

DEAN SCHOOL OF APPLIED SCIENCES THE POSITION The University of Mississippi (www.olemiss.edu) seeks applications and nominations for the position of Dean of the School of Applied Sciences. The School of Applied Sciences is a free-standing academic unit whose Dean reports directly to the Vice

Tchumper, Gregory S.

263

CX-003701: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

701: Categorical Exclusion Determination CX-003701: Categorical Exclusion Determination Bio-Diesel Cellulosic Ethanol Research Project CX(s) Applied: A9 Date: 09162010...

264

CX-007108: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-007108: Categorical Exclusion Determination Energy-Saving Opportunities in Water Treatment and Distribution CX(s) Applied: B3.6 Date: 10122011 Location(s): Grand...

265

CX-008797: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

797: Categorical Exclusion Determination CX-008797: Categorical Exclusion Determination Coal Pile Basin Project CX(s) Applied: B1.29 Date: 06042012 Location(s): Tennessee...

266

CX-009105: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-009105: Categorical Exclusion Determination 284-H Track Coal Hopper Pit Modifications CX(s) Applied: B1.28 Date: 08292012 Location(s): South...

267

CX-001500: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-001500: Categorical Exclusion Determination Forrest County Geothermal Energy Project CX(s) Applied: B3.1, A9 Date: 04012010 Location(s): Forrest County,...

268

CX-004073: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination Energy Efficiency and Conservation Block Grant - Geothermal Energy Demonstration for Organic Produce Packing Facility CX(s) Applied: B5.1 Date: 10...

269

CX-004380: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Geothermal Program - Forrest County Geothermal Energy Project (Phase 2) CX(s) Applied: B5.1 Date: 10292010 Location(s): Forrest...

270

CX-000209: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Snohomish County Public Utility District Geothermal Energy Study CX(s) Applied: A9 Date: 11232009 Location(s): Washington Office(s):...

271

CX-002842: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Overcoming Critical Barriers to United States Wind Power; A University-Industry Consortium CX(s) Applied: A9 Date: 07022010 Location(s):...

272

CX-007613: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Next Generation Ultra Lean Burn Powertrain CX(s) Applied: A9 Date: 01/10/2012 Location(s): California Offices(s): National Energy Technology Laboratory

273

CX-010951: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Automotive Technology Analysis CX(s) Applied: A8 Date: 09/17/2013 Location(s): Virginia Offices(s): National Energy Technology Laboratory

274

CX-012001: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

01: Categorical Exclusion Determination CX-012001: Categorical Exclusion Determination Meter Installation at Fossil Lake Solar Project CX(s) Applied: B1.7 Date: 04242014...

275

CX-012193: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-012193: Categorical Exclusion Determination "Slatt Substation Meter and Communication Equipment Installation CX(s) Applied: B1.7 Date: 05052014...

276

CX-000016: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-000016: Categorical Exclusion Determination Ross-Lexington 1 Meter Project CX(s) Applied: B3.1 Date: 12172009 Location(s): Vancouver, Washington...

277

CX-010133: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-010133: Categorical Exclusion Determination Establish Digital Density Meter Analytical Capability in 735-A, D-wing CX(s) Applied: B3.6 Date: 03112013...

278

CX-010740: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-010740: Categorical Exclusion Determination Integration of Behind-the-Meter Photovoltaic Fleet Forecasts into Utility Grid System Operations CX(s) Applied: A9,...

279

CX-010651: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Operation, Maintenance, and End-of-Life of Leeman Prodigy Inductively Coupled Plasma Emission Spectrometers (ICPES) Unit and Perkin Elmer Optima 3000 ICPES Unit CX(s) Applied:...

280

CX-000374: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-000374: Categorical Exclusion Determination Novel Sorbents for Emission Control from Coal Combustion CX(s) Applied: B3.6 Date: 12112009 Location(s):...

Note: This page contains sample records for the topic "wyoming cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

CX-011505: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Operation, Maintenance, and End of Life of Leeman Prodigy Inductively Coupled Plasma Emission Spectrometers (ICPES) Unit and Perkin Elmer Optima 3000 ICPES Unit CX(s) Applied:...

282

CX-004029: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination State Energy Program American Recovery and Reinvestment Act MKM Machine Tool Company, Incorporated CX(s) Applied: B5.1 Date: 10082010 Location(s):...

283

CX-004126: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-004126: Categorical Exclusion Determination Machine Shop Equipment Burn CX(s) Applied: B1.12 Date: 08022010 Location(s): New Mexico...

284

CX-008803: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-008803: Categorical Exclusion Determination Milling Machine Replacement Projects CX(s) Applied: B1.31 Date: 05142012 Location(s): Tennessee...

285

CX-007358: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Integration of the University of Oregon's Cogeneration Project CX(s) Applied: B1.7 Date: 12012011 Location(s): Oregon Offices(s):...

286

CX-006593: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-006593: Categorical Exclusion Determination Vermont Biofuels Initiative: Renewable Energy Resources CDP-09 CX(s) Applied: B5.1 Date: 08292011 Location(s):...

287

CX-010034: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-010034: Categorical Exclusion Determination Deactivation and Decommissioning of Soil Vapor Extraction Units CX(s) Applied: B1.23 Date: 01152013 Location(s): South...

288

CX-011482: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-011482: Categorical Exclusion Determination Obtain soil samples for potential D-Area borrow sources CX(s) Applied: B6.1 Date: 11072013...

289

CX-004198: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-004198: Categorical Exclusion Determination Lurance Canyon Burn Site Soil and Groundwater Site Characterization CX(s) Applied: B3.1 Date: 06142010 Location(s):...

290

CX-010031: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-010031: Categorical Exclusion Determination Deactivation and Decommissioning of Soil Vapor Extraction Units CX(s) Applied: B1.23 Date: 01172013 Location(s): South...

291

CX-010315: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-010315: Categorical Exclusion Determination Western Sector Treatment System Soil Vapor Extraction Wells CX(s) Applied: B3.1 Date: 04242013 Location(s): South Carolina...

292

CX-010657: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-010657: Categorical Exclusion Determination Western Sector Treatment System Soil Vapor Extraction Wells CX(s) Applied: B3.1 Date: 06182013 Location(s): South Carolina...

293

CX-005672: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

672: Categorical Exclusion Determination CX-005672: Categorical Exclusion Determination Energy Systems Integration Facility Excavation Soil Stockpile CX(s) Applied: B1.15 Date: 04...

294

CX-003709: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Economic and Environmental Assessment of Switchgrass Production on High-Fertility Soil and an Assessment of Anaerobic Digesters as an Intermediate Market CX(s) Applied: A9,...

295

CX-011443: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Sorbent Based Post-Combustion Carbon Dioxide (CO2) Slipstream Testing CX(s) Applied: B3.6 Date: 11132013 Location(s): Alabama...

296

CX-011441: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Sorbent Based Post-Combustion Carbon Dioxide (CO2) Slipstream Testing CX(s) Applied: B3.6 Date: 11132013 Location(s): Colorado...

297

CX-011442: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Sorbent Based Post-Combustion Carbon Dioxide (CO2) Slipstream Testing CX(s) Applied: B3.6 Date: 11132013 Location(s): Colorado...

298

CX-003706: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination Development and Demonstration of an Innovative Thermal Energy Storage System for Baseload Solar Power Generation CX(s) Applied: A9, B3.6 Date: 09092010...

299

CX-006710: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-006710: Categorical Exclusion Determination Binary Power Unit Test (Recurrent Engineering LLC, Geothermal Test) CX(s) Applied: B5.1 Date: 08...

300

CX-010863: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Thermal Diffusivity Evaluation CX(s) Applied: B3.6 Date: 07/02/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

Note: This page contains sample records for the topic "wyoming cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

CX-009133: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-009133: Categorical Exclusion Determination New York Program Year 2012 Formula Grants - State Energy Program CX(s) Applied: A9, A11 Date:...

302

CX-002167: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-002167: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

303

CX-002168: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-002168: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

304

CX-006748: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-006748: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

305

CX-007020: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-007020: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

306

CX-001403: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-001403: Categorical Exclusion Determination West New York Energy Efficiency Projects CX(s) Applied: B5.1 Date: 04092010 Location(s): West New...

307

CX-011384: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Categorical Exclusion Determination Advanced Controls for the Multi-pod Centipod Wave Energy Converter Device CX(s) Applied: A9 Date: 12022013 Location(s): California...

308

CX-003761: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-003761: Categorical Exclusion Determination Ramgen Supersonic Shock Wave Compression and Engine Technology CX(s) Applied: B3.6 Date: 09032010 Location(s):...

309

CX-005120: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005120: Categorical Exclusion Determination Wavebob Advanced Wave Energy Conversion Project CX(s) Applied: A9, B3.6 Date: 01272011 Location(s):...

310

CX-012002: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Raver-Covington Conductor Replacement CX(s) Applied: B1.3 Date: 04/24/2014 Location(s): Washington Offices(s): Bonneville Power Administration

311

CX-010532: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Various Demolition Jobs CX(s) Applied: B1.23 Date: 06/07/2013 Location(s): Illinois Offices(s): Fermi Site Office

312

CX-011194: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Particle Physics Division Outback Garage CX(s) Applied: B1.15 Date: 09/19/2013 Location(s): Illinois Offices(s): Fermi Site Office

313

CX-003518: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-003518: Categorical Exclusion Determination Energy from Biomass Research and Technology Transfer Program CX(s) Applied: B3.6 Date: 08232010...

314

CX-008264: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Compressed Natural Gas Fueling Facility CX(s) Applied: A1 Date: 05/24/2012 Location(s): Missouri Offices(s): National Energy Technology Laboratory

315

CX-005249: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wisconsin Clean Transportation Program - City of Milwaukee Ruby Avenue Compressed Natural Gas Infrastructure CX(s) Applied: B5.1 Date: 02152011 Location(s): Milwaukee,...

316

CX-008468: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Compressed Natural Gas Fueling Facility CX(s) Applied: A1 Date: 06/12/2012 Location(s): Missouri Offices(s): National Energy Technology Laboratory

317

CX-007382: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Compressed Natural Gas Manufacturing CX(s) Applied: B5.1 Date: 10/26/2011 Location(s): Wisconsin Offices(s): Golden Field Office

318

CX-008556: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Haiti Renewable Resource Study CX(s) Applied: A9, A11 Date: 07/23/2012 Location(s): Haiti Offices(s): Golden Field Office

319

CX-004926: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

926: Categorical Exclusion Determination CX-004926: Categorical Exclusion Determination Radioactive Waste Management Complex ? Analytical Laboratory Operations CX(s) Applied: B3.1...

320

CX-000903: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

903: Categorical Exclusion Determination CX-000903: Categorical Exclusion Determination Smart Grid Photovoltaic Pilot CX(s) Applied: B5.1 Date: 02242010 Location(s): Illinois...

Note: This page contains sample records for the topic "wyoming cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

CX-006171: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination Goochland Womens Correctional Facility - Replacing Coal Boiler with Liquefied Petroleum Gas Boiler CX(s) Applied: A1, B5.1 Date: 07132011...

322

CX-006084: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Missouri Independent Energy Efficiency Program: Missouri Plating Company - Boiler Replacement CX(s) Applied: B5.1 Date: 06172011 Location(s): Missouri Office(s):...

323

CX-009151: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-009151: Categorical Exclusion Determination Simpson College Boiler Plant De-Centralization CX(s) Applied: B5.1 Date: 09242012 Location(s): Iowa...

324

CX-012097: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Microgrid Demonstration Project CX(s) Applied: B5.15 Date: 03/24/2014 Location(s): Idaho Offices(s): Idaho Operations Office

325

CX-008234: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Whole Energy Glycerin Refinery CX(s) Applied: B5.15 Date: 04/20/2012 Location(s): Washington Offices(s): Golden Field Office

326

CX-009702: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Columbia Rural Electric Association Walla Walla Hydroelectric Project CX(s) Applied: B4.1 Date: 12212012 Location(s): Washington Offices(s):...

327

CX-003827: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles for Large Scale Geologic Storage of Carbon Dioxide CX(s) Applied: A9,...

328

CX-005200: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Exclusion Determination CX-005200: Categorical Exclusion Determination Hull Offshore Wind Research and Development CX(s) Applied: A9 Date: 02162011 Location(s): Hull,...

329

CX-003818: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles for Large Scale Geologic Storage of Carbon Dioxide CX(s) Applied: A9,...

330

CX-002377: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-002377: Categorical Exclusion Determination Offshore Wind Technology Data Collection Project CX(s) Applied: A9 Date: 05132010...

331

CX-003825: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles for Large Scale Geologic Storage of Carbon Dioxide CX(s) Applied: A9,...

332

CX-012265: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles... CX(s) Applied: B3.1 Date: 06262014 Location(s): California,...

333

CX-012266: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles... CX(s) Applied: A9 Date: 06262014 Location(s): California Offices(s):...

334

CX-007380: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-007380: Categorical Exclusion Determination National Offshore Wind Energy Grid Interconnection Study CX(s) Applied: A9 Date: 10262011...

335

CX-009014: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CX-009014: Categorical Exclusion Determination "Hull Municipal Light Plant Offshore Wind Project CX(s) Applied: A9, B3.1 Date: 08022012 Location(s): Massachusetts...

336

CX-009130: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CX-009130: Categorical Exclusion Determination Hull Municipal Light Plant Offshore Wind Project CX(s) Applied: A9, B3.1 Date: 08022012 Location(s): Massachusetts...

337

CX-003829: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles for Large Scale Geologic Storage of Carbon Dioxide CX(s) Applied: A9,...

338

CX-003814: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles for Large Scale Geologic Storage of Carbon Dioxide CX(s) Applied: A9...

339

CX-011230: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination Artesia Tap- Southwest Rangely 138 Kilovolt Transmission Line Danger Tree and Herbicide Treatment for Vegetation Management CX(s) Applied: B1.3 Date: 09262013...

340

CX-011651: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-011651: Categorical Exclusion Determination Hazard Tree Removal Along the Prescott Peacock 230 Kilovolt Transmission Line CX(s) Applied: B1.3...

Note: This page contains sample records for the topic "wyoming cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

CX-012077: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-012077: Categorical Exclusion Determination Danger Tree Management on Craig to Hayden 230-Kilovolt Transmission Line CX(s) Applied: B1.3 Date:...

342

CX-005687: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

7: Categorical Exclusion Determination CX-005687: Categorical Exclusion Determination Tree Cutting Cheyenne Field Office Maintenance Area, Spring 2011 CX(s) Applied: B1.3 Date: 04...

343

CX-003465: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-003465: Categorical Exclusion Determination Vehicle Technologies Program Advanced Automotive Fuels Research, Development and Commercialization Cluster CX(s) Applied: A9, B2.2,...

344

CX-005747: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-005747: Categorical Exclusion Determination Biobased Materials Automotive Value Chain Market Development Analysis CX(s) Applied: A9 Date: 05042011...

345

CX-006211: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination Missouri Independent Energy Efficiency Program: Henniges Automotive - Process Air Compressor Upgrades CX(s) Applied: B5.1 Date: 07182011 Location(s):...

346

CX-009210: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Silver Butte Fiber Burial Project CX(s) Applied: B.47 Date: 08/28/2012 Location(s): Montana, Montana Offices(s): Bonneville Power Administration

347

CX-012189: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Microbial Laboratory Analysis CX(s) Applied: B3.12 Date: 05/06/2014 Location(s): Illinois Offices(s): Argonne Site Office

348

CX-002864: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

4: Categorical Exclusion Determination CX-002864: Categorical Exclusion Determination Harris County North Bayou Central Plant CX(s) Applied: B5.1 Date: 07012010 Location(s):...

349

CX-004115: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

15: Categorical Exclusion Determination CX-004115: Categorical Exclusion Determination Harris County North Bayou Central Plant CX(s) Applied: B5.1 Date: 09242010 Location(s):...

350

CX-000733: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-000733: Categorical Exclusion Determination Detection and Production of Methane Hydrates CX(s) Applied: A9 Date: 01222010 Location(s): Austin,...

351

CX-003805: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-003805: Categorical Exclusion Determination Co-Production of Electricity and Hydrogen Using a Novel Iron-Based Catalyst CX(s) Applied: A9...

352

CX-006865: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-006865: Categorical Exclusion Determination Use of Inedible Energy Crops for Production of Advanced Biofuels with the Mcgyan Process CX(s) Applied:...

353

CX-005901: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005901: Categorical Exclusion Determination Ammonia Production from Electricity, Water, and Nitrogen CX(s) Applied: B3.6 Date: 05162011...

354

CX-005054: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005054: Categorical Exclusion Determination Gas Hydrate Production Test (Phase III - AdministrativePlanningModeling Tasks) CX(s) Applied: A2,...

355

CX-009710: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-009710: Categorical Exclusion Determination Spring Creek - Wine County No. 1 Transmission Tower Relocation CX(s) Applied: B4.6 Date: 11292012...

356

CX-003506: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

State Energy Program American Recovery and Reinvestment Act: Quantum Solar Photovoltaic Module Manufacturing Plant CX(s) Applied: B5.1 Date: 08302010 Location(s):...

357

CX-000571: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-000571: Categorical Exclusion Determination Photovoltaic Panel Installation (Building 833, TA-I) CX(s) Applied: B5.1 Date: 12102009...

358

CX-004002: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination Knoxville Solar America Cites - Knox Heritage, Incorporated Solar Photovoltaic and Solar Thermal Demonstration Installation CX(s) Applied: B5.1 Date: 09202010...

359

CX-008563: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-008563: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B3.14 Date: 06132012...

360

CX-000924: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

National Accreditation Certification Program for Installation and Acceptance of Photovoltaic Systems CX(s) Applied: A9 Date: 02232010 Location(s): New York Office(s): Energy...

Note: This page contains sample records for the topic "wyoming cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

CX-007873: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-007873: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B3.14 Date: 01272012...

362

CX-000653: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-000653: Categorical Exclusion Determination Helios - Project: Photovoltaic Crystalline Module Assembly Plant CX(s) Applied: B5.1 Date: 01272010 Location(s):...

363

CX-005993: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005993: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B5.1 Date: 05262011...

364

CX-001654: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-001654: Categorical Exclusion Determination Burlington County Photovoltaic (PV) System CX(s) Applied: B5.1 Date: 04092010 Location(s): County of Burlington,...

365

CX-006491: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-006491: Categorical Exclusion Determination Photovoltaic Manufacturing Consortium CX(s) Applied: B3.6 Date: 09012011 Location(s): Florida...

366

CX-011214: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Sensitive Instrument Facility CX(s) Applied: B3.6 Date: 07/10/2013 Location(s): Iowa Offices(s): Ames Site Office

367

CX-009272: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Building 94 Facade Restoration CX(s) Applied: B1.3 Date: 09/10/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

368

CX-007794: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Grandview, Arkansas Interconnection CX(s) Applied: B4.12 Date: 04/08/2011 Location(s): Arkansas Offices(s): Southwestern Power Administration

369

CX-011489: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-011489: Categorical Exclusion Determination Borohydride Research and Development for Hydrogen Storage - Lab 151 CX(s) Applied: B3.6 Date: 11052013 Location(s): South...

370

CX-010855: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-010855: Categorical Exclusion Determination Development for Hydrogen Storage and Neutron Conversion Materials, Lab 152 CX(s) Applied: B3.6 Date: 07...

371

CX-002391: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-002391: Categorical Exclusion Determination Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures CX(s) Applied: B3.11 Date: 05242010...

372

CX-011751: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination GreenLight Biosciences - Highly Productive Cell-free Bioconversion of Methane CX(s) Applied: B3.6 Date: 12122013 Location(s):...

373

CX-006558: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination Geothennal Resource Development with Zero Mass Withdrawal, Engineered Free Convection, and Wellbore Energy Conversion CX(s) Applied: A9, B3.6 Date: 08242011...

374

CX-010237: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Pittsburgh Green Innovators Synergy Center CX(s) Applied: A9 Date: 02/28/2013 Location(s): Pennsylvania Offices(s): Golden Field Office

375

CX-005204: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005204: Categorical Exclusion Determination Renewable Energy Research and Development CX(s) Applied: A9 Date: 02162011 Location(s): Nevada...

376

CX-000199: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-000199: Categorical Exclusion Determination Agricultural Renewable Energy Conversion Incentive Program CX(s) Applied: B5.1 Date: 11232009 Location(s): Arizona...

377

CX-003132: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Georgia Institute of Technology Research Corporation - Metal Organic Frameworks in Hollow Fiber Membranes for Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 06022010...

378

CX-003378: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

378: Categorical Exclusion Determination CX-003378: Categorical Exclusion Determination Photovoltaic Solar Cell Fabrication Alkaline Texturing Process Improvement CX(s) Applied:...

379

CX-007385: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-007385: Categorical Exclusion Determination Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants CX(s) Applied: A9...

380

CX-011252: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Determination CX-011252: Categorical Exclusion Determination Concentrating Solar Power Heat Integration for Baseload Renewable Energy Deployment CX(s) Applied: A9 Date:...

Note: This page contains sample records for the topic "wyoming cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

CX-011703: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Exclusion Determination Menominee Tribal Enterprises District Biomass Combined Heat and Power Project CX(s) Applied: A9, B5.14 Date: 01022014 Location(s): Wisconsin...

382

CX-012038: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Deepwater Reverse-Circulation Primary Cementing CX(s) Applied: A9 Date: 04/17/2014 Location(s): Texas Offices(s): National Energy Technology Laboratory

383

CX-009114: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-009114: Categorical Exclusion Determination Dismantle and Remove Area Radiation Monitors (General) CX(s) Applied: B3.1 Date: 08232012 Location(s): South Carolina...

384

CX-008747: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination Developing the Currently Existing Nuclear Instrumentation and Radiation Research Laboratories at Alcorn State University CX(s) Applied: B1.2 Date: 0521...

385

CX-003921: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-003921: Categorical Exclusion Determination Mobile Sediment Analysis Laboratory CX(s) Applied: B3.6 Date: 09232010 Location(s): Morgantown,...

386

CX-004912: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Architectural Applications -Innovative Building-Integrated Ventilation Enthalpy Recovery CX(s) Applied: B3.6 Date: 08032010 Location(s):...

387

CX-008700: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Natapoc Property Funding CX(s) Applied: B1.25 Date: 06/12/2012 Location(s): Washington Offices(s): Bonneville Power Administration

388

CX-003966: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Irradiation of Materials in Containers in Savannah River National Laboratory Cobalt-60 Facility CX(s) Applied: B3.6 Date: 09032010...

389

CX-010316: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-010316: Categorical Exclusion Determination "Various Getter Testing for Savannah River National LaboratoryDefense Programs Technology CX(s) Applied: B3.6 Date: 04222013...

390

CX-009042: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Relocate and Install Restroom Trailer to Savannah River National Laboratory Technical Area CX(s) Applied: B1.22 Date: 08082012...

391

CX-004180: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Three Wackenhut Services, Incorporated-Savannah River Site Infrastructure Improvement Projects in B-Area CX(s) Applied: B1.15 Date: 0923...

392

CX-004163: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-004163: Categorical Exclusion Determination Mobile Meteorological Equipment CX(s) Applied: B3.1 Date: 08022010 Location(s): New Mexico...

393

CX-003969: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-003969: Categorical Exclusion Determination Mobile Plutonium Facility (MPF); Set Up and Test Thermogravimetric Analyzer CX(s) Applied:...

394

CX-009613: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-009613: Categorical Exclusion Determination Testing, Calibration, and Training of Mobile Plutonium Facility (MPF) Equipment CX(s) Applied: B3.6 Date: 11162012 Location(s):...

395

CX-010092: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-010092: Categorical Exclusion Determination Land Mobile Radio - Bi Directional Amplifier (BDA) Installation CX(s) Applied: B1.7 Date: 0321...

396

CX-005109: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005109: Categorical Exclusion Determination Y589, Mobile Digital Radiography Identification System - Station CX(s) Applied: B1.15 Date: 0121...

397

CX-000489: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-000489: Categorical Exclusion Determination Locating Mobile Mini Office Buildings CX(s) Applied: B1.15 Date: 05052009 Location(s): Aiken, South...

398

CX-011347: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-011347: Categorical Exclusion Determination Infrastructure Modification for the Mobile Plutonium Facility (MPF) at the 645-N Complex CX(s) Applied: B1.15 Date: 09132013...

399

CX-009104: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-009104: Categorical Exclusion Determination Infrastructure Modification for the Mobile Plutonium Facility (MPF) at the 645-N Complex CX(s) Applied: B1.15 Date: 08292012...

400

CX-011534: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Grays River Confluence Property Funding CX(s) Applied: B1.25 Date: 11/08/2013 Location(s): Washington Offices(s): Bonneville Power Administration

Note: This page contains sample records for the topic "wyoming cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

CX-012434: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Low Cost Titanium Casting Technology CX(s) Applied: B3.6Date: 41878 Location(s): OhioOffices(s): National Energy Technology Laboratory

402

CX-003403: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-003403: Categorical Exclusion Determination The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration CX(s) Applied: A9, B3.7...

403

CX-002745: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-002745: Categorical Exclusion Determination The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration CX(s) Applied: B3.1, A9...

404

CX-006681: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-006681: Categorical Exclusion Determination New Drilling Location in Section 29 CX(s) Applied: B3.1 Date: 12232009 Location(s): Casper,...

405

CX-006682: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-006682: Categorical Exclusion Determination New Drilling Location in Section 29 (Revision 1) CX(s) Applied: B3.7 Date: 06022010 Location(s):...

406

CX-008486: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-008486: Categorical Exclusion Determination Demonstration of Gas Powered Drilling Operations for Economically-Challenged Wellhead Gas and Evaluation CX(s) Applied:...

407

CX-007941: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Zonal Isolation Improvement for Horizontal Wells Drilling in the Marcellus Shale CX(s) Applied: A9 Date: 02152012 Location(s): Texas...

408

CX-003888: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-003888: Categorical Exclusion Determination Improved Drilling and Fracturing Fluids for Shale Gas Reservoirs CX(s) Applied: B3.6 Date: 09102010...

409

CX-007940: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Zonal Isolation Improvement for Horizontal Wells Drilling in the Marcellus Shale CX(s) Applied: B3.6 Date: 02152012 Location(s): Texas...

410

CX-005582: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Foro Energy, Incorporated - Low-Contact Drilling Technology to Enable Economical Enhance Geothermal System Wells CX(s) Applied: B3.6,...

411

CX-000855: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-000855: Categorical Exclusion Determination 25A5208 - Low-contact Drilling Technology to Enable Economical Engineered Geothermal System Wells CX(s) Applied:...

412

CX-009218: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-009218: Categorical Exclusion Determination Replace Sparge Piping at Bryan Mound Raw Water Intake Structure CX(s) Applied: B1.3 Date: 09202012...

413

CX-007666: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-007666: Categorical Exclusion Determination Addition of Pump, Piping, and Ion Exchange Column in Effluent Treatment Project CX(s) Applied: B2.5 Date: 11...

414

CX-005159: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005159: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - Indiana Geological Survey CX(s) Applied: A9,...

415

CX-005154: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005154: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - University of Kentucky CX(s) Applied: A9, A11,...

416

CX-002823: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-002823: Categorical Exclusion Determination Nebraska College of Technical Agriculture Biomass Facility CX(s) Applied: B5.1 Date: 06242010 Location(s): Curtis, Nebraska...

417

CX-006848: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Reinvestment Act - Deployment of Innovative Energy Efficiency and Renewable Energy - Agriculture - Olson-Ashbrook-Schanno-Uhalde-Zoller Projects CX(s) Applied: B5.1 Date: 1017...

418

CX-003789: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-003789: Categorical Exclusion Determination Grandview-Red Mountain Number 1 Proposed Transmission Line Interconnection CX(s) Applied: B4.6 Date:...

419

CX-006967: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-006967: Categorical Exclusion Determination Mitigation of Syngas Cooler Plugging and Fouling CX(s) Applied: B3.6 Date: 09282011 Location(s): Salt...

420

CX-006279: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-006279: Categorical Exclusion Determination Novel Solid Amine Sorbent Dioxide Capture System CX(s) Applied: B3.6 Date: 08012011 Location(s): Pittsburgh, Pennsylvania...

Note: This page contains sample records for the topic "wyoming cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

CX-011785: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-011785: Categorical Exclusion Determination Ion Advanced Solvent Carbon Dioxide Capture Pilot Project CX(s) Applied: A9, A11 Date: 02192014 Location(s): Colorado...

422

CX-011274: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-011274: Categorical Exclusion Determination Ion Advanced Solvent Carbon Dioxide Capture Pilot Project CX(s) Applied: A9, A11 Date: 09262013 Location(s): North Dakota...

423

CX-003463: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-003463: Categorical Exclusion Determination Carbon Dioxide Capture by Sub-Ambient Membrane Operation CX(s) Applied: A9, B3.6 Date: 08232010...

424

CX-010751: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Solar Ready 2 CX(s) Applied: A9, A11 Date: 08/15/2013 Location(s): Missouri Offices(s): Golden Field Office

425

CX-011391: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Exclusion Determination CX-011391: Categorical Exclusion Determination Municipal Complex Solar Power Project CX(s) Applied: B3.14 Date: 12102013 Location(s): New Jersey...

426

CX-004374: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

74: Categorical Exclusion Determination CX-004374: Categorical Exclusion Determination Solar Electric Power for Nonsectarian Educational and Social CX(s) Applied: A9, B5.1 Date:...

427

CX-011215: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Nepese Marsh Upgrades CX(s) Applied: B2.5 Date: 10/17/2013 Location(s): Illinois Offices(s): Fermi Site Office

428

CX-010880: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Access Road Acquisition Project CX(s) Applied: B1.24 Date: 07252013 Location(s): Oklahoma Offices(s): Southwestern Power Administration Southwestern Power Administration...

429

CX-010716: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Access Road Easement Acquisition CX(s) Applied: B1.24 Date: 07222013 Location(s): Oklahoma Offices(s): Southwestern Power Administration Southwestern Power Administration...

430

CX-005123: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-005123: Categorical Exclusion Determination Oklahoma Municipal Power Authority Large System Rebate Request I CX(s) Applied: B5.1 Date: 01...

431

CX-003923: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Line Crossing CX(s) Applied: B4.9 Date: 09162010 Location(s): Haskell County, Oklahoma Office(s): Southwestern Power Administration Southwestern Power Administration...

432

CX-000734: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

of Methane Hydrates CX(s) Applied: A9 Date: 01222010 Location(s): Stillwater, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory Collect data and...

433

CX-006005: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-006005: Categorical Exclusion Determination Oklahoma Municipal Power Authority Large System Application Request P CX(s) Applied: B5.1...

434

CX-007788: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Line 3016, Structure 31 CX(s) Applied: B1.33 Date: 12292011 Location(s): Oklahoma Offices(s): Southwestern Power Administration Southwestern Power Administration...

435

CX-005754: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-005754: Categorical Exclusion Determination State Energy Program- Oklahoma Municipal Power Authority Large System Application Request O CX(s) Applied: B5.1...

436

CX-007904: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

4: Categorical Exclusion Determination CX-007904: Categorical Exclusion Determination Oklahoma Municipal Power Authority Large Systems Request AD CX(s) Applied: B5.19 Date: 0210...

437

CX-011783: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-011783: Categorical Exclusion Determination Analytical Physics - Scanning Electron Microscope CX(s) Applied: B3.6 Date: 02192014 Location(s):...

438

CX-004989: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-004989: Categorical Exclusion Determination Analytical Physics - Scanning Electron Microscope (SEM) CX(s) Applied: B3.6 Date: 01122011...

439

CX-011324: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-011324: Categorical Exclusion Determination Analytical Physics - Wavelength Dispersive X-Ray Fluorescence Spectroscopy CX(s) Applied: B3.6 Date: 10...

440

CX-004269: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-004269: Categorical Exclusion Determination Analytical Physics - Thermal Analysis CX(s) Applied: B3.6 Date: 10202010 Location(s): Albany, Oregon...

Note: This page contains sample records for the topic "wyoming cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

CX-011798: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-011798: Categorical Exclusion Determination Analytical Physics - Thermal Analysis CX(s) Applied: B3.6 Date: 01302014 Location(s): Oregon...

442

CX-002608: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Sequestered in Geologic Systems with Multicomponent Seismic Technology and Rock Physics Modeling CX(s) Applied: A9 Date: 12112009 Location(s): Austin, Texas Office(s):...

443

CX-011799: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-011799: Categorical Exclusion Determination Analytical Physics - Transmission Electron Microscopy (TEM) CX(s) Applied: B3.6 Date: 01302014...

444

CX-006459: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-006459: Categorical Exclusion Determination Analytical Physics - Transmission Electron Microscopy (TEM) CX(s) Applied: B3.6 Date: 08082011...

445

CX-008011: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-008011: Categorical Exclusion Determination Install EMSL Super-Computer Power Infrastructure CX(s) Applied: B1.7 Date: 06302011 Location(s): Washington...

446

CX-004223: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Center for Integrated Nanotechnologies Gateway - Installation and Operation of Computer Workstation Cluster, Los Alamos National Laboratory CX(s) Applied: B1.3 Date: 0519...

447

CX-011679: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Antifoam Degradation Testing CX(s) Applied: B3.6 Date: 12/05/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

448

CX-012279: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-012279: Categorical Exclusion Determination Vertically Aligned Carbon-Nanotubes Embedded in Ceramic Matrices for Hot Electrode Applications CX(s) Applied: B3.6...

449

CX-009923: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Project Icebreaker CX(s) Applied: A9, B3.1 Date: 01/07/2013 Location(s): Ohio Offices(s): Golden Field Office

450

CX-009555: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-009555: Categorical Exclusion Determination Assisting the Tooling and Machining Industry to Become Energy Efficient CX(s) Applied: A9 Date: 12102012...

451

CX-000835: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-000835: Categorical Exclusion Determination Wachs Cutter Tooling Station (4495) CX(s) Applied: B1.31 Date: 02112010 Location(s): Oak Ridge,...

452

CX-005198: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-005198: Categorical Exclusion Determination Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants CX(s) Applied: A9,...

453

CX-007701: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Halotechnics Inc. - Advanced Molten Glass for Heat Transfer and Thermal Energy Storage CX(s) Applied: A9, B3.6 Date: 11182011...

454

CX-005199: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-005199: Categorical Exclusion Determination Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants CX(s) Applied: A9,...

455

CX-009132: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Landfill Gas Utilization Plant CX(s) Applied: B5.21 Date: 08/02/2012 Location(s): New York Offices(s): Golden Field Office

456

CX-001004: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-001004: Categorical Exclusion Determination West Hackberry Site Security Detection Systems Upgrade (Install) CX(s) Applied: B2.2 Date: 03032010...

457

CX-000301: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-000301: Categorical Exclusion Determination Maryland Revision 1 - Grants to Promote Mid-size Renewables at Private & Government Buildings CX(s) Applied: A7,...

458

CX-004768: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-004768: Categorical Exclusion Determination State Energy Program - Grants to Promote Mid-Size Renewables at Private and Government Buildings CX(s) Applied:...

459

CX-012310: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Sawmill Creek Stream Bank Erosion CX(s) Applied: B1.3 Date: 06/06/2014 Location(s): Illinois Offices(s): Argonne Site Office

460

CX-010338: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Eugene Substation Fiber Interconnection CX(s) Applied: B4.7 Date: 05/21/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

Note: This page contains sample records for the topic "wyoming cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

CX-011531: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Targhee Substation Land Acquisition CX(s) Applied: B1.24 Date: 11/05/2013 Location(s): Idaho Offices(s): Bonneville Power Administration

462

CX-010435: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

De Moss Substation Expansion CX(s) Applied: B4.6 Date: 06/03/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

463

CX-011634: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Closure Turf Installation CX(s) Applied: B6.1 Date: 08/27/2013 Location(s): Texas Offices(s): Pantex Site Office

464

CX-010725: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-010725: Categorical Exclusion Determination 2013 Ross Wood Pole Replacement Projects CX(s) Applied: B1.3 Date: 08192013 Location(s): Washington,...

465

CX-005675: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-005675: Categorical Exclusion Determination Fiscal Year 2011 Kalispell District Wood Pole Replacement Projects CX(s) Applied: B1.3 Date: 04152011 Location(s): Montana...

466

CX-010345: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-010345: Categorical Exclusion Determination North Bend District Wood Poles CX(s) Applied: B1.3 Date: 05092013 Location(s): Oregon, Oregon, Oregon...

467

CX-005967: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-005967: Categorical Exclusion Determination North Bend District Wood Poles: Wendson-Tahkenitch Number 1 and Tahkenitch-Reedsport Number 1 CX(s) Applied:...

468

CX-010424: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-010424: Categorical Exclusion Determination Grand Coulee District Wood Replacement CX(s) Applied: B1.3 Date: 06072013 Location(s): Washington, Washington...

469

CX-005673: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-005673: Categorical Exclusion Determination Fiscal Year 2011 Pasco District Wood Pole Replacement Projects CX(s) Applied: B1.3 Date: 04112011 Location(s): Pasco...

470

CX-010732: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-010732: Categorical Exclusion Determination 2013 Spokane District Wood pole Replacement Projects CX(s) Applied: B1.3 Date: 07312013 Location(s): Washington,...

471

CX-010166: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-010166: Categorical Exclusion Determination Wenatchee District Wood Pole Replacements CX(s) Applied: B1.3 Date: 03222013 Location(s): Washington,...

472

CX-008154: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-008154: Categorical Exclusion Determination In-Kind Wood Pole Replacements - Driscoll-Naselle Number 1 CX(s) Applied: B1.3 Date: 04302012...

473

CX-011165: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Heavy Mineral Separation CX(s) Applied: B3.6 Date: 08/07/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

474

CX-008248: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-008248: Categorical Exclusion Determination Idaho National Laboratory (INL) Closed Circuit Television (CCTV) Replacement Project CX(s) Applied: B2.2 Date: 0407...

475

CX-004342: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-004342: Categorical Exclusion Determination Idaho National Laboratory (INL) Routine Maintenance Activities (Overarching) CX(s) Applied: B1.3 Date: 10192010...

476

CX-010717: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Moodys Radio Tower Land Acquisition CX(s) Applied: B1.24 Date: 07/15/2013 Location(s): Oklahoma Offices(s): Southwestern Power Administration

477

CX-011416: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Technology Integration Program CX(s) Applied: A9, A11 Date: 12/19/2013 Location(s): Ohio Offices(s): National Energy Technology Laboratory

478

CX-010778: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Technology Integration Program CX(s) Applied: A9, A11 Date: 08/23/2013 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory

479

CX-012472: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Technology Integration Program CX(s) Applied: A9, A11, B3.11Date: 41873 Location(s): OhioOffices(s): National Energy Technology Laboratory

480

CX-003354: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

State Energy Program American Recovery and Reinvestment Act - Heating, Ventilating, and Air Conditioning and Window Replacement in Administration Building CX(s) Applied: B5.1...

Note: This page contains sample records for the topic "wyoming cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

CX-010139: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination Permanent Power for MCU Sampling Building Heating, Ventilation and Air Conditioning and Ancillary CX(s) Applied: B2.5 Date: 03072013 Location(s): South...

482

CX-000061: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-000061: Categorical Exclusion Determination Greenville's Heating, Ventilating, and Air Conditioning and Boiler Retrofit CX(s) Applied: B2.5, B5.1 Date: 11122009...

483

CX-006351: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-006351: Categorical Exclusion Determination Retrofit Heating, Ventilation and Air Conditioning and Control Systems in Parks and Recreation Facilities CX(s) Applied:...

484

CX-006628: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination 221-F Canyon Truckwell Heating, Ventilation, and Air Conditioning System CX(s) Applied: B1.5 Date: 08012011 Location(s): Aiken, South...

485

CX-003856: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination Road Prison Geothermal Earth Coupled Heating, Ventilation and Air Conditioning (HVAC) Upgrade CX(s) Applied: B5.1 Date: 09072010 Location(s): Escambia...

486

CX-001671: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

and Conservation Block Grant (EECBG) Health Department Heating, Ventilating, and Air Conditioning (HVAC) RetrofitUpgrade and Revolving Loan Fund (RLF) (S) CX(s) Applied:...

487

CX-009282: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Big 8 - 922, 920, 921 Heating, Ventilation and Air Conditioning Upgrades; 921, 74 Roof Replacement; HPSB Upgrades CX(s) Applied: B2.1,...

488

CX-004909: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination University of Notre Dame - Compact, Efficient Air Conditioning with Ionic Liquid Based Refrigerant CX(s) Applied: B3.6 Date: 08032010...

489

CX-006625: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination 221-F Canyon Truckwell Heating, Ventilation, and Air Conditioning System CX(s) Applied: B1.5 Date: 07292011 Location(s): Aiken, South...

490

CX-008732: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

(INL) Administration Building (IAB) Communication Room Heating, Ventilation, and Air Conditioning (HVAC) Upgrade CX(s) Applied: B1.31 Date: 05212012 Location(s): Idaho...

491

CX-002821: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Teutopolis Community Unit School District 50 - Geothermal Heating, Ventilating, and Air Conditioning Project CX(s) Applied: B5.1 Date: 06242010 Location(s): Teutopolis,...

492

CX-000870: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-000870: Categorical Exclusion Determination West Hackberry Air ConditioningHeating Repairs CX(s) Applied: B1.3 Date: 02052010 Location(s): West...

493

CX-010582: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Spring Creek Property Funding CX(s) Applied: B1.25 Date: 07/16/2013 Location(s): Montana Offices(s): Bonneville Power Administration

494

CX-003222: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

and Reinvestment Act State Energy Program - Eastern Oregon Correctional Institution Solar Thermal CX(s) Applied: B5.1 Date: 08032010 Location(s): Pendleton, Oregon...

495

CX-004251: Categorical Exclusion Determination | Department of...  

Energy Savers [EERE]

CX-004251: Categorical Exclusion Determination High Yield Hybrid Cellulosic Ethanol Process Using High-Impact Feedstock for Commercialization by 2013 CX(s) Applied: A9,...

496

CX-003208: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-003208: Categorical Exclusion Determination Michigan 85% Ethanol Fuel (E85) Infrastructure Project CX(s) Applied: B5.1 Date: 08032010 Location(s):...

497

CX-003471: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-003471: Categorical Exclusion Determination Pennsylvania Ethanol Fuel (E85) Corridor Project - Lew's Service Center CX(s) Applied: B5.1 Date: 0823...

498

CX-011390: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0: Categorical Exclusion Determination CX-011390: Categorical Exclusion Determination Solar Panels and Environmental Education CX(s) Applied: A9, B3.14 Date: 12162013...

499

CX-004740: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-004740: Categorical Exclusion Determination Install Amonix Panels at National Solar Thermal Test Facility CX(s) Applied: B5.1 Date: 11232010...

500

CX-009004: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

04: Categorical Exclusion Determination CX-009004: Categorical Exclusion Determination "Solar Panels on Hudson County Facilities CX(s) Applied: B5.16 Date: 08272012 Location(s):...