Sample records for wyoming coal rank

  1. Low-rank coal research

    SciTech Connect (OSTI)

    Weber, G. F.; Laudal, D. L.

    1989-01-01T23:59:59.000Z

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  2. COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA

    E-Print Network [OSTI]

    in the Powder River Basin in Wyoming and Montana (fig. PQ-1) is considered to be "clean coal." For the location

  3. Upgrading low rank coal using the Koppelman Series C process

    SciTech Connect (OSTI)

    Merriam, N.W., Western Research Institute

    1998-01-01T23:59:59.000Z

    Development of the K-Fuel technology began after the energy shortage of the early 1970s in the United States led energy producers to develop the huge deposits of low-sulfur coal in the Powder River Basin (PRB) of Wyoming. PRB coal is a subbituminous C coal containing about 30 wt % moisture and having heating values of about 18.6 megajoules/kg (8150 Btu/lb). PRB coal contains from 0.3 to 0.5 wt % sulfur, which is nearly all combined with the organic matrix in the coal. It is in much demand for boiler fuel because of the low-sulfur content and the low price. However, the low-heating value limits the markets for PRB coal to boilers specially designed for the high- moisture coal. Thus, the advantages of the low-sulfur content are not available to many potential customers having boilers that were designed for bituminous coal. This year about 250 million tons of coal is shipped from the Powder River Basin of Wyoming. The high- moisture content and, consequently, the low-heating value of this coal causes the transportation and combustion of the coal to be inefficient. When the moisture is removed and the heating value increased the same bundle of energy can be shipped using one- third less train loads. Also, the dried product can be burned much more efficiently in boiler systems. This increase in efficiency reduces the carbon dioxide emissions caused by use of the low-heating value coal. Also, the processing used to remove water and restructure the coal removes sulfur, nitrogen, mercury, and chlorides from the coal. This precombustion cleaning is much less costly than stack scrubbing. PRB coal, and other low-rank coals, tend to be highly reactive when freshly mined. These reactive coals must be mixed regularly (every week or two) when fresh, but become somewhat more stable after they have aged for several weeks. PRB coal is relatively dusty and subject to self-ignition compared to bituminous coals. When dried using conventional technology, PRB coal is even more dusty and more susceptible to spontaneous combustion than the raw coal. Also, PRB coal, if dried at low temperature, typically readsorbs about two- thirds of the moisture removed by drying. This readsorption of moisture releases the heat of adsorption of the water which is a major cause of self- heating of low-rank coals at low temperature.

  4. Low-rank coal oil agglomeration

    DOE Patents [OSTI]

    Knudson, Curtis L. (Grand Forks, ND); Timpe, Ronald C. (Grand Forks, ND)

    1991-01-01T23:59:59.000Z

    A low-rank coal oil agglomeration process. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and usually coal derived.

  5. COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING

    E-Print Network [OSTI]

    Chapter HQ COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

  6. COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING

    E-Print Network [OSTI]

    Chapter GQ COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

  7. Geology of the Hanna Formation, Hanna Underground Coal Gasification Site, Hanna, Wyoming

    SciTech Connect (OSTI)

    Oliver, R.L.; Youngberg, A.D.

    1984-01-01T23:59:59.000Z

    The Hanna Underground Coal Gasification (UCG) study area consists of the SW1/4 of Section 29 and the E1/2SE1/4 of Section 30 in Township 22 North, Range 81 West, Wyoming. Regionally, this is located in the coal-bearing Hanna Syncline of the Hanna Basin in southeast Wyoming. The structure of the site is characterized by beds dipping gently to the northeast. An east-west fault graben complex interrupts this basic trend in the center of the area. The target coal bed of the UCG experiments was the Hanna No. 1 coal in the Hanna Formation. Sedimentary rocks comprising the Hanna Formation consist of a sequence of nonmarine shales, sandstones, coals and conglomerates. The overburden of the Hanna No. 1 coal bed at the Hanna UCG site was divided into four broad local stratigraphic units. Analytical studies were made on overburden and coal samples taken from cores to determine their mineralogical composition. Textural and mineralogical characteristics of sandstones from local stratigraphic units A, B, and C were analyzed and compared. Petrographic analyses were done on the coal including oxides, forms of sulfur, pyrite types, maceral composition, and coal rank. Semi-quantitative spectrographic and analytic geochemical analyses were done on the overburden and coal and relative element concentrations were compared. Trends within each stratigraphic unit were also presented and related to depositional environments. The spectrographic analysis was also done by lithotype. 34 references, 60 figures, 18 tables.

  8. The Hanna, Wyoming, underground coal gasification field test series

    SciTech Connect (OSTI)

    Bartke, T.C.; Gunn, R.D.

    1983-01-01T23:59:59.000Z

    Six field tests of in-situ coal gasification have been conducted by the Department of Energy's Laramie Energy Technology Center Near Hanna, Wyoming with typical gasification rates of 100 tons of coal per day for continuous operation of about 30 days. This paper presents an overview of the Hanna field tests.

  9. Description of Wyoming coal fields and seam analyses

    SciTech Connect (OSTI)

    Glass, G.B.

    1983-01-01T23:59:59.000Z

    Introductory material describe coal-bearing areas, coal-bearing rocks, and the structural geology of coal-bearing areas, discussing coal rank, proximate analyses, sulfur content, heat value, trace elements, carbonizing properties, coking coal, coking operations, in-situ gasification, coal mining, and production. The paper then gives descriptions of the coal seams with proximate analyses, where available, located in the following areas: Powder River coal basin, Green River region, Hanna field, Hams Fork coal region, and Bighorn coal basin. Very brief descriptions are given of the Wind River coal basin, Jackson Hole coal field, Black Hills coal region, Rock Creek coal field, and Goshen Hole coal field. Finally coal resources, production, and reserves are discussed. 76 references.

  10. Coal rank trends in eastern Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.; Trinkle, E.J.

    1984-12-01T23:59:59.000Z

    Examination of coal rank (by vitrinite maximum reflectance) for eastern Kentucky coals has revealed several regional trends. Coal rank varies from high volatile C (0.5% R/sub max/) to medium volatile bituminous (1.1% R/sub max/), and generally increases to the southeast. One east-west-trending rank high and at least four north-south-trending rank highs interrupt the regional increase. The east-west-trending rank high is associated with the Kentucky River faults in northeastern Kentucky. It is the only rank high clearly associated with a fault zone. The four north-south-trending rank highs are parallel with portions of major tectonic features such as the Eastern Kentucky syncline. Overall, though, the association of north-south-trending rank highs with tectonic expression is not as marked as that with the anomaly associated with the Kentucky River faults. It is possible that the rank trends are related to basement features with subdued surface expression. Rank generally increases with depth, and regional trends observed in one coal are also seen in overlying and underlying coals. The cause of the regional southeastward increase in rank is likely to be the combined influence of greater depth of burial and proximity to late Paleozoic orogenic activity. The anomalous trends could be due to increased depth of burial, but are more likely to have resulted from tectonic activity along faults and basement discontinuities. The thermal disturbances necessary to increase the coal rank need not have been great, perhaps on the order of 10-20/sup 0/C (18-36/sup 0/F) above the metamorphic temperatures of the lower rank coals.

  11. Low-rank coal oil agglomeration

    DOE Patents [OSTI]

    Knudson, C.L.; Timpe, R.C.

    1991-07-16T23:59:59.000Z

    A low-rank coal oil agglomeration process is described. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and is usually coal-derived.

  12. Low-rank coal study : national needs for resource development. Volume 2. Resource characterization

    SciTech Connect (OSTI)

    Not Available

    1980-11-01T23:59:59.000Z

    Comprehensive data are presented on the quantity, quality, and distribution of low-rank coal (subbituminous and lignite) deposits in the United States. The major lignite-bearing areas are the Fort Union Region and the Gulf Lignite Region, with the predominant strippable reserves being in the states of North Dakota, Montana, and Texas. The largest subbituminous coal deposits are in the Powder River Region of Montana and Wyoming, The San Juan Basin of New Mexico, and in Northern Alaska. For each of the low-rank coal-bearing regions, descriptions are provided of the geology; strippable reserves; active and planned mines; classification of identified resources by depth, seam thickness, sulfur content, and ash content; overburden characteristics; aquifers; and coal properties and characteristics. Low-rank coals are distinguished from bituminous coals by unique chemical and physical properties that affect their behavior in extraction, utilization, or conversion processes. The most characteristic properties of the organic fraction of low-rank coals are the high inherent moisture and oxygen contents, and the correspondingly low heating value. Mineral matter (ash) contents and compositions of all coals are highly variable; however, low-rank coals tend to have a higher proportion of the alkali components CaO, MgO, and Na/sub 2/O. About 90% of the reserve base of US low-rank coal has less than one percent sulfur. Water resources in the major low-rank coal-bearing regions tend to have highly seasonal availabilities. Some areas appear to have ample water resources to support major new coal projects; in other areas such as Texas, water supplies may be constraining factor on development.

  13. Role of site characteristics in coal gasification. [Hanna, Wyoming

    SciTech Connect (OSTI)

    Bader, B.E.; Glass, R.E.

    1981-12-01T23:59:59.000Z

    Field test data for a series of four underground coal gasification tests (UCG) at a site near Hanna, Wyoming are presented. Results of these field tests were combined with modeling efforts to identify site selective parameters broadly identified as the flow and mechanical properties of a coal seam that can help determine the degree to which any UCG test would be successful. Specifically, the characteristics shown to be important are concluded to be: (1) permeability structure and mobile water, which play a crucial role in determining air flow paths; (2) high permeability zones at midstream and above to act as the primary air flow path; (3) spacing of injection and production wells can be varied to enhance the chance of keeping the air flow paths low in the coal seam; (4) completion of the process wells in a manner that minimizes neighboring permeability inhibits the chance of override; (5) the orthotropic permeability of coal improve UCG results; (6) thermochemical properties of coal are important with respect to the manner of combustion front propogation; and (7) heating will result in stress dependent anisotropic strength characteristics of the coal. Other properties characteristic of a given coal, petrographic constitutents of a coal, chemistry of combustion and the in situ stress distribution are also pointed out as significant factors to be considered in the most efficient use of UCG technique. 14 references, (BLM)

  14. Chemical comminution and deashing of low-rank coals

    DOE Patents [OSTI]

    Quigley, David R.

    1992-12-01T23:59:59.000Z

    A method of chemically comminuting a low-rank coal while at the same time increasing the heating value of the coal. A strong alkali solution is added to a low-rank coal to solubilize the carbonaceous portion of the coal, leaving behind the noncarbonaceous mineral matter portion. The solubilized coal is precipitated from solution by a multivalent cation, preferably calcium.

  15. Chemical comminution and deashing of low-rank coals

    DOE Patents [OSTI]

    Quigley, David R. (Idaho Falls, ID)

    1992-01-01T23:59:59.000Z

    A method of chemically comminuting a low-rank coal while at the same time increasing the heating value of the coal. A strong alkali solution is added to a low-rank coal to solubilize the carbonaceous portion of the coal, leaving behind the noncarbonaceous mineral matter portion. The solubilized coal is precipitated from solution by a multivalent cation, preferably calcium.

  16. DERAILMENT IN WYOMING (2005) http://www.bigcountry.coop/coal.html

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    2005-01-01T23:59:59.000Z

    Mountains to the west had begun to thaw. Icy water and coal dust merged into a thick, dirty slurry and oozed1 DERAILMENT IN WYOMING (2005) http://www.bigcountry.coop/coal.html [Johnson, 2005] Steven Johnson bottleneck in shipments from the nation's most important vein of low-sulfur coal has cut into coal supplies

  17. Geological evaluation of the proposed Rocky Mountain 1 underground coal gasification test site, Hanna, Wyoming

    SciTech Connect (OSTI)

    Oliver, R.L.

    1987-02-01T23:59:59.000Z

    To characterize the proposed Rocky Mountain 1 underground coal gasification test site near Hanna, Wyoming, 30 drill and/or core holes were completed and downhole geophysically logged during the summer of 1986. Core testing was conducted to identify coal quality and predict behavior during gasification. Data were then interpreted to provide information on process parameters and restoration to be used by process and environmental engineers. The coal seam at the Rocky Mountain 1 site dips to the northeast at 7/sup 0/ and shows only minor folding of strata. A fault with 30 feet of stratigraphic displacement is located approximately 300 feet northeast of the northern boundary of the proposed burn area. From core and outcrop observations, tectonic fracturing is predicted to be minor, although local areas of fracturing may exist. Overburden stratigraphy consists of interbedded sandstone, siltstone, and shale with minor coal. The Hanna No. 1 coal (target of the experiments) is approximately 30 feet thick. It contains an upper bench approximately 3 to 4 feet thick of lower quality (higher ash, lower Btu), a central bench about 20 feet thick of higher quality (lower ash, higher Btu), and a lower bench approximately 3 to 4 feet thick also of lower quality. The benches are separated by shaley zones approximately 1 to 2 feet thick, which are correlative across the site. Another shaley zone exists near the base of the central bench. The coal varies vertically and somewhat laterally across the site but averages at a high volatile C bituminous rank. Average-as-received proximate analysis values for the coal are 8.8 wt % moisture, 27.3 wt % ash, 32.0 wt % volatile matter, 31.9 wt % fixed carbon, and approximately 8600 Btu/lb heating value. Average-as-received sulfur content is 0.7 wt %. Site characteristics are very amenable to underground coal gasification, and no hindrances to the test due to geologic conditions are expected. 9 refs., 21 figs., 6 tabs.

  18. FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS

    E-Print Network [OSTI]

    Chapter PS FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS By R of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

  19. EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming.

  20. Viability of underground coal gasification in the 'deep coals' of the Powder River Basin, Wyoming

    SciTech Connect (OSTI)

    NONE

    2007-06-15T23:59:59.000Z

    The objective of this work is to evaluate the PRB coal geology, hydrology, infrastructure, environmental and permitting requirements and to analyze the possible UCG projects which could be developed in the PRB. Project economics on the possible UCG configurations are presented to evaluate the viability of UCG. There are an estimated 510 billion tons of sub-bituminous coal in the Powder River Basin (PRB) of Wyoming. These coals are found in extremely thick seams that are up to 200 feet thick. The total deep coal resource in the PRB has a contained energy content in excess of twenty times the total world energy consumption in 2002. However, only approximately five percent of the coal resource is at depths less than 500 feet and of adequate thickness to be extracted by open pit mining. The balance is at depths between 500 and 2,000 feet below the surface. These are the PRB 'deep coals' evaluated for UCG in this report. The coal deposits in the Powder River Basin of Wyoming are thick, laterally continuous, and nearly flat lying. These deposits are ideal for development by Underground Coal Gasification. The thick deep coal seams of the PRB can be harvested using UCG and be protective of groundwater, air resources, and with minimum subsidence. Protection of these environmental values requires correct site selection, site characterization, impact definition, and impact mitigation. The operating 'lessons learned' of previous UCG operations, especially the 'Clean Cavity' concepts developed at Rocky Mountain 1, should be incorporated into the future UCG operations. UCG can be conducted in the PRB with acceptable environmental consequences. The report gives the recommended development components for UCG commercialization. 97 refs., 31 figs., 57 tabs., 1 app.

  1. Wyoming’s “Rosy” Financial Picture

    E-Print Network [OSTI]

    Schuhmann, Robert A.; Skopek, Tracy A.

    2012-01-01T23:59:59.000Z

    J. (2011b) “Wyoming Clean Coal Efforts Advance,” Casperadministra- tion pushes for clean-coal and carbon capture

  2. Hanna, Wyoming underground coal gasification data base. Volume 1. General information and executive summary

    SciTech Connect (OSTI)

    Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

    1985-08-01T23:59:59.000Z

    This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation. This report covers: (1) history of underground coal gasification leading to the Hanna tests; (2) area characteristics (basic meteorological and socioeconomic data); (3) site selection history; (4) site characteristics; (5) permitting; and (6) executive summary. 5 figs., 15 tabs.

  3. Wyoming’s “Rosy” Financial Picture

    E-Print Network [OSTI]

    Schuhmann, Robert A.; Skopek, Tracy A.

    2012-01-01T23:59:59.000Z

    the Wyoming economy as coal, natural gas, oil, and trona (aeconomy in the months ahead (Mast 2009). Natural gas makes

  4. Investigation of tar sand and heavy oil deposits of Wyoming for underground coal gasification applications

    SciTech Connect (OSTI)

    Trudell, L.G.

    1985-02-01T23:59:59.000Z

    A literature review was conducted to identify and evaluate tar sand and heavy oil deposits of Wyoming which are potentially suitable for in situ processing with process heat or combustible gas from underground coal gasification (UCG). The investigation was undertaken as part of a project to develop novel concepts for expanding the role of UCG in maximizing energy recovery from coal deposits. Preliminary evaluations indicate six surface deposits and three shallow heavy oil fields are within 5 miles of coal deposits, the maximum distance judged to be feasible for UCG applications. A tar sand or heavy oil deposit in the northeast Washakie Basin is less than 250 feet above a zone of four coal seams suitable for UCG, and another deposit near Riverton appears to be interbedded with coal. Three shallow light oil fields found to be within 5 miles of coal may be amenable to application of UCG technology for enhanced oil recovery. Sufficient data are not available for estimating the size of Wyoming's tar sand and heavy oil resource which is suitable for UCG development. Additional investigations are recommended to more fully characterize promising deposits and to assess the potential resource for UCG applications. 54 refs., 10 figs., 2 tabs.

  5. Low-Rank Coal Grinding Performance Versus Power Plant Performance

    SciTech Connect (OSTI)

    Rajive Ganguli; Sukumar Bandopadhyay

    2008-12-31T23:59:59.000Z

    The intent of this project was to demonstrate that Alaskan low-rank coal, which is high in volatile content, need not be ground as fine as bituminous coal (typically low in volatile content) for optimum combustion in power plants. The grind or particle size distribution (PSD), which is quantified by percentage of pulverized coal passing 74 microns (200 mesh), affects the pulverizer throughput in power plants. The finer the grind, the lower the throughput. For a power plant to maintain combustion levels, throughput needs to be high. The problem of particle size is compounded for Alaskan coal since it has a low Hardgrove grindability index (HGI); that is, it is difficult to grind. If the thesis of this project is demonstrated, then Alaskan coal need not be ground to the industry standard, thereby alleviating somewhat the low HGI issue (and, hopefully, furthering the salability of Alaskan coal). This project studied the relationship between PSD and power plant efficiency, emissions, and mill power consumption for low-rank high-volatile-content Alaskan coal. The emissions studied were CO, CO{sub 2}, NO{sub x}, SO{sub 2}, and Hg (only two tests). The tested PSD range was 42 to 81 percent passing 76 microns. Within the tested range, there was very little correlation between PSD and power plant efficiency, CO, NO{sub x}, and SO{sub 2}. Hg emissions were very low and, therefore, did not allow comparison between grind sizes. Mill power consumption was lower for coarser grinds.

  6. Structure, constitution and utilization of low rank Indian coal

    SciTech Connect (OSTI)

    Iyengar, M.S.; Iyengar, V.A. [M.S. Iyengar and Associates, New Delhi (India)

    1996-12-31T23:59:59.000Z

    This paper briefly reviews the work done on lignite and sub-bituminous coals. Surface area and moisture adsorption dependency on functional group is described. The role of hydrogen bonding in the briquetting of lignite and of alkyl groups in inducing caking properties are discussed. The dualistic behavior of abnormal coals as both a low and high rank coal is also discussed in relation to the nature of their sulphur groups. On the utilization side, processes are described for: (1) Utilization of non-caking coal in the reduction of iron ore. Coal is first briquetted using a lime-tar binder. It is then carbonized for reducing iron ore. The bar is recovered and recycled. (2) Production of carbon black from low rank coals. In this process, coal is carbonized at high temperature in a fluidized bed. Carbon black, for tire industry, is obtained with char as by-product. (3) Utilization of flue gases of industry is also discussed. In this new approach, the flue gas is reduced to synthesis gas by additional fuel and the inevitable surplus heat. The viability of the process is illustrated by details of a recent study in a cement plant. In addition to the above, the implication of recycling flue gas in automobile engines to make them more environment friendly and cost effective, is also discussed.

  7. Hanna, Wyoming underground coal gasification field test series

    SciTech Connect (OSTI)

    Bartke, T.C.; Gunn, R.D.

    1983-01-01T23:59:59.000Z

    The six in situ coal gasification field tests conducted by LETC near Hanna, WY, demonstrated typical gasification rates of 100 tons/day for continuous operation of about 30 days. Featuring high coal recovery and high product-gas calorific values, the underground process proved to be simple, reliable, and potentially controllable.

  8. Stabilized thermally beneficiated low rank coal and method of manufacture

    DOE Patents [OSTI]

    Viall, Arthur J. (Colstrip, MT); Richards, Jeff M. (Colstrip, MT)

    1999-01-01T23:59:59.000Z

    A process for reducing the spontaneous combustion tendencies of thermally beneficiated low rank coals employing heat, air or an oxygen containing gas followed by an optional moisture addition. Specific reaction conditions are supplied along with knowledge of equipment types that may be employed on a commercial scale to complete the process.

  9. Stabilized thermally beneficiated low rank coal and method of manufacture

    DOE Patents [OSTI]

    Viall, Arthur J. (Colstrip, MT); Richards, Jeff M. (Colstrip, MT)

    2000-01-01T23:59:59.000Z

    A process for reducing the spontaneous combustion tendencies of thermally beneficiated low rank coals employing heat, air or an oxygen containing gas followed by an optional moisture addition. Specific reaction conditions are supplied along with knowledge of equipment types that may be employed on a commercial scale to complete the process.

  10. Stabilized thermally beneficiated low rank coal and method of manufacture

    DOE Patents [OSTI]

    Viall, A.J.; Richards, J.M.

    1999-01-26T23:59:59.000Z

    A process is described for reducing the spontaneous combustion tendencies of thermally beneficiated low rank coals employing heat, air or an oxygen containing gas followed by an optional moisture addition. Specific reaction conditions are supplied along with knowledge of equipment types that may be employed on a commercial scale to complete the process. 3 figs.

  11. Lignites and Low Rank Coals Conference: Proceedings 2001

    SciTech Connect (OSTI)

    None

    2002-02-01T23:59:59.000Z

    EPRI and the Technische Vereinigung des Grosskraftswerkbetreiber (Technical Association of Large Power Plant Operators) (VGB) jointly held a Conference on Lignites and Low Rank Coals in Wiesbaden, Germany, May 16-18, 2001. These Proceedings include the plenary papers, technical session papers, and rapporteurs' summaries from the conference.

  12. CO2 Sequestration Potential of Texas Low-Rank Coals

    SciTech Connect (OSTI)

    Duane A. McVay; Walter B. Ayers, Jr.; Jerry L. Jensen

    2004-04-01T23:59:59.000Z

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The primary objectives for this reporting period were to construct a coal geological model for reservoir analysis and to continue acquisition of data pertinent to coal characterization that would help in determining the feasibility of carbon dioxide sequestration. Structural analysis and detailed correlation of coal zones are important for reservoir analysis and modeling. Evaluation of existing well logs indicates local structural complexity that complicates interpretations of continuity of the Wilcox Group coal zones. Therefore, we have begun searching for published structural maps for the areas of potential injection CO{sub 2}, near the coal-fired power plants. Preliminary evaluations of data received from Anadarko Petroleum Corporation suggest that coal properties and gas content and chemical composition vary greatly among coal seams. We are assessing the stratigraphic and geographic distributions and the weight of coal samples that Anadarko has provided to select samples for further laboratory analysis. Our goal is to perform additional isotherm analyses with various pure and/or mixed gases to enhance our characterization model. Additionally, we are evaluating opportunities for field determination of permeability with Anadarko, utilizing one of their wells.

  13. Hoe Creek experiments: LLNL's underground coal-gasification project in Wyoming

    SciTech Connect (OSTI)

    Stephens, D.R.

    1981-10-01T23:59:59.000Z

    Under the sponsorship of the US Department of Energy and predecessor organizations, the Lawrence Livermore National Laboratory carried out a laboratory program and three field, underground coal gasification tests near Gillette, Wyoming. This report summarizes that work. Three methods of linking or connecting injection and production wells were used for the UCG field tests: Hoe Creek No. 1 employed explosive fracturing, Hoe Creek No. 2 featured use of reverse combustion, and directional drilling was used for the Hoe Creek No. 3. The Gas Research Institute cosponsored the latter test. Laboratory experiments and modeling, together with a laboratory and field environment program, are necessary adjuncts to the field program. Explosive fracturing in coal was simulated using computer models and laboratory tests. We developed a relationship of total inelastic strains to permeability, which we used to design and interpret a coal outcrop, explosive fracturing experiment at Kemmerer, Wyoming. Coal gasification was also simulated in laboratory experiments and with computer models. The primary aim has been to predict and correlate reaction, thermal-front propagation rates, and product gas composition as a function of bed properties and process operating conditions. Energy recovery in the form of produced gas and liquids amounted to 73% of the energy in the consumed coal. There were essentially no losses to the subsurface formation. The greatest energy loss was in steam production.

  14. Low-rank coal research: Volume 3, Combustion research: Final report. [Great Plains

    SciTech Connect (OSTI)

    Mann, M. D.; Hajicek, D. R.; Zobeck, B. J.; Kalmanovitch, D. P.; Potas, T. A.; Maas, D. J.; Malterer, T. J.; DeWall, R. A.; Miller, B. G.; Johnson, M. D.

    1987-04-01T23:59:59.000Z

    Volume III, Combustion Research, contains articles on fluidized bed combustion, advanced processes for low-rank coal slurry production, low-rank coal slurry combustion, heat engine utilization of low-rank coals, and Great Plains Gasification Plant. These articles have been entered individually into EDB and ERA. (LTN)

  15. Status Report: USGS coal assessment of the Powder River Basin, Wyoming

    SciTech Connect (OSTI)

    James A. Luppens; Timothy J. Rohrbacher; Jon E. Haacke; David C. Scott; Lee M. Osmonson [USGS, Reston, VA (United States)

    2006-07-01T23:59:59.000Z

    This publication reports on the status of the current coal assessment of the Powder River Basin (PRB) in Wyoming and Montana. This slide program was presented at the Energy Information Agency's 2006 EIA Energy Outlook and Modeling Conference in Washington, DC, on March 27, 2006. The PRB coal assessment will be the first USGS coal assessment to include estimates of both regional coal resources and reserves for an entire coal basin. Extensive CBM and additional oil and gas development, especially in the Gillette coal field, have provided an unprecedented amount of down-hole geological data. Approximately 10,000 new data points have been added to the PRB database since the last assessment (2002) which will provide a more robust evaluation of the single most productive U.S. coal basin. The Gillette coal field assessment, including the mining economic evaluation, is planned for completion by the end of 2006. The geologic portion of the coal assessment work will shift to the northern and northwestern portions of the PRB before the end of 2006 while the Gillette engineering studies are finalized. 7 refs.

  16. Low-rank-coal study national needs for resource development. Volume 1. Executive summary

    SciTech Connect (OSTI)

    Elliot, Dr., Martin A.; Hill, George R.; Jonakin, James; Crutchfield, Paul W.; Severson, Donald E.; White, David M.; Yeager, Kurt

    1980-11-01T23:59:59.000Z

    Low-rank coals - lignite and subbituminous - are those which have been subjected to the least amount of metamorphic change during the coal-forming process. As such, they retain greater fractions of moisture and volatile matter from the original peat material, and contain less fixed carbon, than the high-rank coals - bituminous and anthracite. The primary measure used to classify the lower ranks of coal is heating value. Other important characteristics which distinguish the low-rank coals from high-rank coals are discussed in this report. Low-rank coals represent a major, and largely untapped, energy resource for this country. Very extensive deposits of lignite and subbituminous coal exist in the western states, the Gulf coast, and Alaska. Major deposits of low-rank coal are also found in many other countries, most notably the USSR, Australia, Canada, and the central and eastern European nations. Worldwide coal statistics indicate that low-rank coals account for roughly one-third of the total resource and current production tonnages. This report recommends a comprehensive national research, development, and demonstration (RD and D) program to enhance the development of low-rank coals. The major conclusion of this study is that the unique properties of these coals affect the technologies for their extraction, preparation, direct use, and conversion and justify a separate focus on low-rank coals in the national RD and D efforts.

  17. CO2 Sequestration Potential of Texas Low-Rank Coals

    SciTech Connect (OSTI)

    Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

    2003-07-01T23:59:59.000Z

    The objective of this project is to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to further characterize the three areas selected as potential test sites, to begin assessing regional attributes of natural coal fractures (cleats), which control coalbed permeability, and to interview laboratories for coal sample testing. An additional objective was to initiate discussions with an operating company that has interests in Texas coalbed gas production and CO{sub 2} sequestration potential, to determine their interest in participation and cost sharing in this project. Well-log data are critical for defining depth, thickness, number, and grouping of coal seams at the proposed sequestration sites. Therefore, we purchased 15 well logs from a commercial source to make coal-occurrence maps and cross sections. Log suites included gamma ray (GR), self potential (SP), resistivity, sonic, and density curves. Other properties of the coals in the selected areas were collected from published literature. To assess cleat properties and describe coal characteristics, we made field trips to a Jackson coal outcrop and visited Wilcox coal exposures at the Sandow surface mine. Coal samples at the Sandow mine were collected for CO{sub 2} and methane sorption analyses. We contacted several laboratories that specialize in analyzing coals and selected a laboratory, submitting the Sandow Wilcox coals for analysis. To address the issue of cost sharing, we had fruitful initial discussions with a petroleum corporation in Houston. We reviewed the objectives and status of this project, discussed data that they have already collected, and explored the potential for cooperative data acquisition and exchange in the future. We are pursuing a cooperative agreement with them.

  18. Low-rank coal research. Quarterly report, January--March 1990

    SciTech Connect (OSTI)

    Not Available

    1990-08-01T23:59:59.000Z

    This document contains several quarterly progress reports for low-rank coal research that was performed from January-March 1990. Reports in Control Technology and Coal Preparation Research are in Flue Gas Cleanup, Waste Management, and Regional Energy Policy Program for the Northern Great Plains. Reports in Advanced Research and Technology Development are presented in Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Reports in Combustion Research cover Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Coal Fuels, Diesel Utilization of Low-Rank Coals, and Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications. Liquefaction Research is reported in Low-Rank Coal Direct Liquefaction. Gasification Research progress is discussed for Production of Hydrogen and By-Products from Coal and for Chemistry of Sulfur Removal in Mild Gas.

  19. CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS

    SciTech Connect (OSTI)

    Duane A. McVay; Walter B. Ayers, Jr.; Jerry L. Jensen

    2004-07-01T23:59:59.000Z

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main tasks for this reporting period were to correlate well logs and refine coal property maps, evaluate methane content and gas composition of Wilcox Group coals, and initiate discussions concerning collection of additional, essential data with Anadarko. To assess the volume of CO{sub 2} that may be sequestered and volume of methane that can be produced in the vicinity of the proposed Sam Seymour sequestration site, we used approximately 200 additional wells logs from Anadarko Petroleum Corp. to correlate and map coal properties of the 3 coal-bearing intervals of Wilcox group. Among the maps we are making are maps of the number of coal beds, number of coal beds greater than 5 ft thick, and cumulative coal thickness for each coal interval. This stratigraphic analysis validates the presence of abundant coal for CO{sub 2} sequestration in the Wilcox Group in the vicinity of Sam Seymour power plant. A typical wellbore in this region may penetrate 20 to 40 coal beds with cumulative coal thickness between 80 and 110 ft. Gas desorption analyses of approximately 75 coal samples from the 3 Wilcox coal intervals indicate that average methane content of Wilcox coals in this area ranges between 216 and 276 scf/t, basinward of the freshwater boundary indicated on a regional hydrologic map. Vitrinite reflectance data indicate that Wilcox coals are thermally immature for gas generation in this area. Minor amounts of biogenic gas may be present, basinward of the freshwater line, but we infer that most of the Wilcox coalbed gas in the deep coal beds is migrated thermogenic gas. Analysis based on limited data suggest that sites for CO{sub 2} sequestration and enhanced coalbed gas recovery should be located basinward of the Wilcox freshwater contour, where methane content is high and the freshwater aquifer can be avoided.

  20. Low-rank coal oil agglomeration product and process

    DOE Patents [OSTI]

    Knudson, Curtis L. (Grand Forks, ND); Timpe, Ronald C. (Grand Forks, ND); Potas, Todd A. (Plymouth, MN); DeWall, Raymond A. (Grand Forks, ND); Musich, Mark A. (Grand Forks, ND)

    1992-01-01T23:59:59.000Z

    A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-decrepitating, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

  1. Low-rank coal oil agglomeration product and process

    DOE Patents [OSTI]

    Knudson, C.L.; Timpe, R.C.; Potas, T.A.; DeWall, R.A.; Musich, M.A.

    1992-11-10T23:59:59.000Z

    A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-degradable, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

  2. CO2 Sequestration Potential of Texas Low-Rank Coals

    SciTech Connect (OSTI)

    Duane McVay; Walter Ayers, Jr.; Jerry Jensen; Jorge Garduno; Gonzola Hernandez; Rasheed Bello; Rahila Ramazanova

    2006-08-31T23:59:59.000Z

    Injection of CO{sub 2} in coalbeds is a plausible method of reducing atmospheric emissions of CO{sub 2}, and it can have the additional benefit of enhancing methane recovery from coal. Most previous studies have evaluated the merits of CO{sub 2} disposal in high-rank coals. The objective of this research was to determine the technical and economic feasibility of CO{sub 2} sequestration in, and enhanced coalbed methane (ECBM) recovery from, low-rank coals in the Texas Gulf Coast area. Our research included an extensive coal characterization program, including acquisition and analysis of coal core samples and well transient test data. We conducted deterministic and probabilistic reservoir simulation and economic studies to evaluate the effects of injectant fluid composition (pure CO{sub 2} and flue gas), well spacing, injection rate, and dewatering on CO{sub 2} sequestration and ECBM recovery in low-rank coals of the Calvert Bluff formation of the Texas Wilcox Group. Shallow and deep Calvert Bluff coals occur in two, distinct, coalbed gas petroleum systems that are separated by a transition zone. Calvert Bluff coals < 3,500 ft deep are part of a biogenic coalbed gas system. They have low gas content and are part of a freshwater aquifer. In contrast, Wilcox coals deeper than 3,500 ft are part of a thermogenic coalbed gas system. They have high gas content and are part of a saline aquifer. CO{sub 2} sequestration and ECBM projects in Calvert Bluff low-rank coals of East-Central Texas must be located in the deeper, unmineable coals, because shallow Wilcox coals are part of a protected freshwater aquifer. Probabilistic simulation of 100% CO{sub 2} injection into 20 feet of Calvert Bluff coal in an 80-acre 5-spot pattern indicates that these coals can store 1.27 to 2.25 Bcf of CO{sub 2} at depths of 6,200 ft, with an ECBM recovery of 0.48 to 0.85 Bcf. Simulation results of flue gas injection (87% N{sub 2}-13% CO{sub 2}) indicate that these same coals can store 0.34 to 0.59 Bcf of CO{sub 2} with an ECBM recovery of 0.68 to 1.20 Bcf. Economic modeling of CO{sub 2} sequestration and ECBM recovery indicates predominantly negative economic indicators for the reservoir depths (4,000 to 6,200 ft) and well spacings investigated, using natural gas prices ranging from $2 to $12 per Mscf and CO{sub 2} credits based on carbon market prices ranging from $0.05 to $1.58 per Mscf CO{sub 2} ($1.00 to $30.00 per ton CO{sub 2}). Injection of flue gas (87% N{sub 2} - 13% CO{sub 2}) results in better economic performance than injection of 100% CO{sub 2}. CO{sub 2} sequestration potential and methane resources in low-rank coals of the Lower Calvert Bluff formation in East-Central Texas are significant. The potential CO{sub 2} sequestration capacity of the coals ranges between 27.2 and 49.2 Tcf (1.57 and 2.69 billion tons), with a mean value of 38 Tcf (2.2 billion tons), assuming a 72.4% injection efficiency. Estimates of recoverable methane resources range between 6.3 and 13.6 Tcf, with a mean of 9.8 Tcf, assuming a 71.3% recovery factor. Moderate increases in gas prices and/or carbon credits could generate attractive economic conditions that, combined with the close proximity of many CO{sub 2} point sources near unmineable coalbeds, could enable commercial CO{sub 2} sequestration and ECBM projects in Texas low-rank coals. Additional studies are needed to characterize Wilcox regional methane coalbed gas systems and their boundaries, and to assess potential of other low-rank coal beds. Results from this study may be transferable to other low-rank coal formations and regions.

  3. CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS

    SciTech Connect (OSTI)

    Duane A. Mcvay; Walter B. Ayers, Jr.; Jerry L. Jensen

    2004-02-01T23:59:59.000Z

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The primary objectives for this reporting period were to construct a coal geological model for reservoir analysis and to continue modeling studies of CO{sub 2} sequestration performance in coalbed methane reservoirs under various operational conditions. Detailed correlation of coal zones is important for reservoir analysis and modeling. Therefore, we interpreted and created isopleth maps of coal occurrences, and correlated individual coal seams within the coal bearing subdivisions of the Wilcox Group--the Hooper, Simsboro and Calvert Bluff formations. Preliminary modeling studies were run to determine if gravity effects would affect the performance of CO{sub 2} sequestration in coalbed methane reservoirs. Results indicated that gravity could adversely affect sweep efficiency and, thus, volumes of CO{sub 2} sequestered and methane produced in thick, vertically continuous coals. Preliminary modeling studies were also run to determine the effect of injection gas composition on sequestration in low-rank coalbeds. Injected gas composition was varied from pure CO{sub 2} to pure N{sub 2}, and results show that increasing N{sub 2} content degrades CO{sub 2} sequestration and methane production performance. We have reached a Data Exchange Agreement with Anadarko Petroleum Corporation. We are currently incorporating the Anadarko data into our work, and expect these data to greatly enhance the accuracy and value of our studies.

  4. Liquefaction of calcium-containing subbituminous coals and coals of lower rank

    DOE Patents [OSTI]

    Gorbaty, Martin L. (Sanwood, NJ); Taunton, John W. (Seabrook, TX)

    1980-01-01T23:59:59.000Z

    A process for the treatment of a calcium-containing subbituminous coal and coals of lower rank to form insoluble, thermally stable calcium salts which remain within the solids portions of the residue on liquefaction of the coal, thereby suppressing the formation scale, made up largely of calcium carbonate deposits, e.g., vaterite, which normally forms within the coal liquefaction reactor (i.e., coal liquefaction zone), e.g., on reactor surfaces, lines, auxiliary equipment and the like. A solution of a compound or salt characterized by the formula MX, where M is a Group IA metal of the Periodic Table of the Elements, and X is an anion which is capable of forming water-insoluble, thermally stable calcium compounds, is maintained in contact with a particulate coal feed sufficient to impregnate said salt or compound into the pores of the coal. On separation of the impregnated particulate coal from the solution, the coal can be liquefied in a coal liquefaction reactor (reaction zone) at coal liquefaction conditions without significant formation of vaterite or other forms of calcium carbonate on reactor surfaces, auxiliary equipment and the like; and the Group IA metal which remains within the liquefaction bottoms catalyzes the reaction when the liquefaction bottoms are subjected to a gasification reaction.

  5. Rocky Mountain 1: Underground coal gasification test, Hanna, Wyoming. Volume 1. Operations. Summary report

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    The Rocky Mountain 1 underground coal gasification (UCG) test was conducted near Hanna, Wyoming during the period January 1986 through March 1988. The report focuses on operations phases that included site selection, facility design, facility construction, well drilling, gasification and environmental monitoring. Two technologies were evaluated as separate modules: the Extended Linked Well (ELW) and the Controlled Retracting Injection Point (CRIP) processes. The test results, along with a discussion of the key test parameters and conclusions of the gasification phase, are provided. A bibliography and schematics are included.

  6. Political mobilization, venue change, and the coal bed methane conflict in Montana and Wyoming

    SciTech Connect (OSTI)

    Duffy, R.J. [Colorado State University, Fort Collins, CO (United States)

    2005-03-31T23:59:59.000Z

    The emerging conflict over coal bed methane (CBM) exploration and development in the mountain west offers a classic example of what Baumgartner and Jones call a 'wave of criticism.' The cozy subgovernments that have dominated energy exploration and development in the mountain states are now under attack and are struggling to maintain their autonomy. Energy exploration, which was once perceived to have only positive consequences, is now the focus of an intense debate that has managed to unite previously warring factions. This article utilizes a comparative assessment of CBM politics in Montana and Wyoming to explain the connection between changing popular and elite perceptions of the issue, institutional change, and policy change.

  7. High resolution seismic survey (of the) Rawlins, Wyoming underground coal gasification area. Final report

    SciTech Connect (OSTI)

    Youngberg, A.D.; Berkman, E.; Orange, A.S.

    1983-01-01T23:59:59.000Z

    In October 1982, a high resolution seismic survey was conducted at the Gulf Research and Development Company's underground coal gasification test site near Rawlins, Wyoming. The objectives of the survey were to utilize high resolution seismic technology to locate and characterize two underground coal burn zones. Seismic data acquisition and processing parameters were specifically designed to emphasize reflections at the shallow depths of interest. A three-dimensional grid of data was obtained over the Rawlins burn zones. Processing included time varying filters, trace composition, and two-dimensional areal stacking of the data in order to identify burn zone anomalies. An anomaly was discernable resulting from the rubble-collapse cavity associated with the burn zone which was studied in detail at the Rawlins 1 and 2 test sites. 21 refs., 20 figs.

  8. CO2 Sequestration Potential of Texas Low-Rank Coals

    SciTech Connect (OSTI)

    Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

    2006-03-01T23:59:59.000Z

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (ECBM) recovery as an added benefit of sequestration. In this reporting period we revised all of the economic calculations, participated in technology transfer of project results, and began working on project closeout tasks in anticipation of the project ending December 31, 2005. In this research, we conducted five separate simulation investigations, or cases. These cases are (1) CO{sub 2} sequestration base case scenarios for 4,000-ft and 6,200-ft depth coal beds in the Lower Calvert Bluff Formation of east-central Texas, (2) sensitivity study of the effects of well spacing on sequestration, (3) sensitivity study of the effects of injection gas composition, (4) sensitivity study of the effects of injection rate, and (5) sensitivity study of the effects of coal dewatering prior to CO{sub 2} injection/sequestration. Results show that, in most cases, revenue from coalbed methane production does not completely offset the costs of CO{sub 2} sequestration in Texas low-rank coals, indicating that CO{sub 2} injection is not economically feasible for the ranges of gas prices and carbon credits investigated. The best economic performance is obtained with flue gas (13% CO{sub 2} - 87% N{sub 2}) injection, as compared to injection of 100% CO{sub 2} and a mixture of 50% CO{sub 2} and 50% N{sub 2}. As part of technology transfer for this project, we presented results at the West Texas Geological Society Fall Symposium in October 2005 and at the COAL-SEQ Forum in November 2005.

  9. CO2 Sequestration Potential of Texas Low-Rank Coals

    SciTech Connect (OSTI)

    Duane A. McVay; Walter B. Ayers, Jr; Jerry L. Jensen

    2006-05-01T23:59:59.000Z

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (ECBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to (1) determine the effects of permeability anisotropy on performance of CO{sub 2} sequestration and ECBM production in the Lower Calvert Bluff Formation (LCB) of the Wilcox Group coals in east-central Texas, and (2) begin reservoir and economic analyses of CO{sub 2} sequestration and ECBM production using horizontal wells. To evaluate the effects of permeability anisotropy on CO{sub 2} sequestration and ECBM in LCB coal beds, we conducted deterministic reservoir modeling studies of 100% CO{sub 2} gas injection for the 6,200-ft depth base case (Case 1b) using the most likely values of the reservoir parameters. Simulation results show significant differences in the cumulative volumes of CH{sub 4} produced and CO{sub 2} injected due to permeability anisotropy, depending on the orientation of injection patterns relative to the orientation of permeability anisotropy. This indicates that knowledge of the magnitude and orientation of permeability anisotropy will be an important consideration in the design of CO{sub 2} sequestration and ECBM projects. We continued discussions with Anadarko Petroleum regarding plans for additional coal core acquisition and laboratory work to further characterize Wilcox low-rank coals. As part of the technology transfer for this project, we submitted the paper SPE 100584 for presentation at the 2006 SPE Gas Technology Symposium to be held in Calgary, Alberta, Canada on May 15-18, 2006.

  10. CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS

    SciTech Connect (OSTI)

    Duane A. McVay; Walter B. Ayers Jr.; Jerry L. Jensen

    2003-10-01T23:59:59.000Z

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main objective for this reporting period was to further characterize the three areas selected as potential CO{sub 2} sequestration sites. Well-log data are critical for defining depth, thickness, number, and grouping of coal seams at the proposed sequestration sites. Thus, we purchased 12 hardcopy well logs (in addition to 15 well logs obtained during previous quarter) from a commercial source and digitized them to make coal-occurrence maps and cross sections. Detailed correlation of coal zones is important for reservoir analysis and modeling. Thus, we correlated and mapped Wilcox Group subdivisions--the Hooper, Simsboro and Calvert Bluff formations, as well as the coal-bearing intervals of the Yegua and Jackson formations in well logs. To assess cleat properties and describe coal characteristics, we made field trips to Big Brown and Martin Lake coal mines. This quarter we also received CO{sub 2} and methane sorption analyses of the Sandow Mine samples, and we are assessing the results. GEM, a compositional simulator developed by the Computer Modeling Group (CMG), was selected for performing the CO{sub 2} sequestration and enhanced CBM modeling tasks for this project. This software was used to conduct preliminary CO{sub 2} sequestration and methane production simulations in a 5-spot injection pattern. We are continuing to pursue a cooperative agreement with Anadarko Petroleum, which has already acquired significant relevant data near one of our potential sequestration sites.

  11. CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS

    SciTech Connect (OSTI)

    Duane A. McVay; Walter B. Ayers Jr.; Jerry L. Jensen

    2005-05-01T23:59:59.000Z

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main objective for this reporting period was to perform pressure transient testing to determine permeability of deep Wilcox coal to use as additional, necessary data for modeling performance of CO{sub 2} sequestration and enhanced coalbed methane recovery. To perform permeability testing of the Wilcox coal, we worked with Anadarko Petroleum Corporation in selecting the well and intervals to test and in designing the pressure transient test. Anadarko agreed to allow us to perform permeability tests in coal beds in an existing shut-in well (Well APCT2). This well is located in the region of the Sam K. Seymour power station, a site that we earlier identified as a major point source of CO{sub 2} emissions. A service company, Pinnacle Technologies Inc. (Pinnacle) was contracted to conduct the tests in the field. Intervals tested were 2 coal beds with thicknesses of 3 and 7 feet, respectively, at approximately 4,100 ft depth in the Lower Calvert Bluff Formation of the Wilcox Group in east-central Texas. Analyses of pressure transient test data indicate that average values for coalbed methane reservoir permeability in the tested coals are between 1.9 and 4.2 mD. These values are in the lower end of the range of permeability used in the preliminary simulation modeling. These new coal fracture permeability data from the APCT2 well, along with the acquired gas compositional analyses and sorption capacities of CO{sub 2}, CH{sub 4}, and N{sub 2}, complete the reservoir description phase of the project. During this quarter we also continued work on reservoir and economic modeling to evaluate performance of CO{sub 2} sequestration and enhanced coalbed methane recovery.

  12. Process to improve boiler operation by supplemental firing with thermally beneficiated low rank coal

    DOE Patents [OSTI]

    Sheldon, Ray W. (Huntley, MT)

    2001-01-01T23:59:59.000Z

    The invention described is a process for improving the performance of a commercial coal or lignite fired boiler system by supplementing its normal coal supply with a controlled quantity of thermally beneficiated low rank coal, (TBLRC). This supplemental TBLRC can be delivered either to the solid fuel mill (pulverizer) or directly to the coal burner feed pipe. Specific benefits are supplied based on knowledge of equipment types that may be employed on a commercial scale to complete the process. The thermally beneficiated low rank coal can be delivered along with regular coal or intermittently with regular coal as the needs require.

  13. CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS

    SciTech Connect (OSTI)

    Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

    2004-11-01T23:59:59.000Z

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. there were two main objectives for this reporting period. first, they wanted to collect wilcox coal samples from depths similar to those of probable sequestration sites, with the objective of determining accurate parameters for reservoir model description and for reservoir simulation. The second objective was to pursue opportunities for determining permeability of deep Wilcox coal to use as additional, necessary data for modeling reservoir performance during CO{sub 2} sequestration and enhanced coalbed methane recovery. In mid-summer, Anadarko Petroleum Corporation agreed to allow the authors to collect Wilcox Group coal samples from a well that was to be drilled to the Austin Chalk, which is several thousand feet below the Wilcox. In addition, they agreed to allow them to perform permeability tests in coal beds in an existing shut-in well. Both wells are in the region of the Sam K. Seymour power station, a site that they earlier identified as a major point source of CO{sub 2}. They negotiated contracts for sidewall core collection and core analyses, and they began discussions with a service company to perform permeability testing. To collect sidewall core samples of the Wilcox coals, they made structure and isopach maps and cross sections to select coal beds and to determine their depths for coring. On September 29, 10 sidewall core samples were obtained from 3 coal beds of the Lower Calvert Bluff Formation of the Wilcox Group. The samples were desorbed in 4 sidewall core canisters. Desorbed gas samples were sent to a laboratory for gas compositional analyses, and the coal samples were sent to another laboratory to measure CO{sub 2}, CH{sub 4}, and N{sub 2} sorption isotherms. All analyses should be finished by the end of December. A preliminary report shows methane content values for the desorbed coal samples ranged between 330 and 388 scf/t., on ''as received'' basis. Residual gas content of the coals was not included in the analyses, which results in an approximate 5-10% underestimation of in-situ gas content. Coal maps indicate that total coal thickness is 40-70 ft in the Lower Calvert Bluff Formation of the Wilcox Group in the vicinity of the Sam K. Seymour power plant. A conservative estimate indicates that methane in place for a well on 160-acre spacing is approximately 3.5 Bcf in Lower Calvert Bluff coal beds. When they receive sorption isotherm data from the laboratory, they will determine the amount of CO{sub 2} that it may be possible to sequester in Wilcox coals. In December, when the final laboratory and field test data are available, they will complete the reservoir model and begin to simulate CO{sub 2} sequestration and enhanced CH{sub 4} production.

  14. Postburn evaluation for Hanna II, Phases 2 and 3, underground coal gasification experiments, Hanna, Wyoming

    SciTech Connect (OSTI)

    Youngberg, A.D.; Sinks, D.J.; Craig, G.N. II; Ethridge, F.G.; Burns, L.K.

    1983-12-01T23:59:59.000Z

    During 1980 and 1981 the Laramie Energy Technology Center (LETC) conducted a post-burn study at the Hanna II, Phases 2 and 3 underground coal gasification (UCG) site, Hanna, Wyoming. This report contains a summary of the field and laboratory results from the study. Lithologic and geophysical well log data from twenty-two (22) drill holes, combined with high resolution seismic data delineate a reactor cavity 42.7m (140 ft.) long, 35.1 m (115 ft.) and 21.3 m (70 ft.) high that is partially filled with rubble, char and pyrometamorphic rock. Sedimentographic studies were completed on the overburden. Reflectance data on coal samples within the reactor cavity and cavity wall reveal that the coal was altered by temperatures ranging from 245/sup 0/C to 670/sup 0/C (472/sup 0/-1238/sup 0/F). Overburden rocks found within the cavity contain various pyrometamorphic minerals, indicating that temperatures of at least 1200/sup 0/C (2192/sup 0/F) were reached during the tests. The calcite cemented fine-grained sandstone and siltstone directly above the Hanna No. 1 coal bed formed a strong roof above the cavity, unlike other UCG sites such as Hoe Creek which is not calcite cemented. 30 references, 27 figures, 8 tables.

  15. Coal rank trends in western Kentucky coal field and relationship to hydrocarbon occurrence

    SciTech Connect (OSTI)

    Hower, J.C.; Rimmer, S.M.; Williams, D.A.; Beard, J.G. (Univ. of Kentucky, Lexington (USA))

    1989-09-01T23:59:59.000Z

    Extensive oil and gas development has occurred in the high volatile C bituminous region north of the Rough Creek fault zone, but few pools are known within the Webster syncline south of the fault zone. The rank of the Middle Pennsylvanian coals can be used to estimate the level of maturation of the Devonian New Albany Shale, a likely source rock for much of the oil and gas in the coal field. Based on relatively few data points, previous studies on the maturation of the New Albany Shale, which lies about 1 km below the Springfield coal, indicate an equivalent medium volatile bituminous (1.0-1.2% R{sub max}) rank in the Fluorspar district. New Albany rank decreases to an equivalent high volatile B/C (0.6% R{sub max}) north of the Rough Creek fault zone. Whereas the shale in the latter region is situated within the oil generation window, the higher rank region is past the peak of the level of maturation of the New Albany Shale. The significance of the New Albany reflectancy is dependent on the suppression of vitrinite reflectance in organic-rich shales. The possibility of reflectance suppression would imply that the shales could be more mature than studies have indicated.

  16. Wyoming coal-conversion project. Final technical report, November 1980-February 1982. [Proposed WyCoalGas project, Converse County, Wyoming; contains list of appendices with title and identification

    SciTech Connect (OSTI)

    None

    1982-01-01T23:59:59.000Z

    This final technical report describes what WyCoalGas, Inc. and its subcontractors accomplished in resolving issues related to the resource, technology, economic, environmental, socioeconomic, and governmental requirements affecting a project located near Douglas, Wyoming for producing 150 Billion Btu per day by gasifying sub-bituminous coal. The report summarizes the results of the work on each task and includes the deliverables that WyCoalGas, Inc. and the subcontractors prepared. The co-venturers withdrew from the project for two reasons: federal financial assistance to the project was seen to be highly uncertain; and funds were being expended at an unacceptably high rate.

  17. Environmental evaluation and restoration plan of the Hoe Creek Underground Coal Gasification Site, Wyoming: Topical report

    SciTech Connect (OSTI)

    Barteaux, W.L.; Berdan, G.L.; Lawrence, J.

    1986-09-01T23:59:59.000Z

    Three underground coal gasification (UCG) experiments were conducted by Lawrence Livermore National Laboratory (LLNL) at the Hoe Creek Site, Wyoming; the Hoe Creek I experiment was conducted in 1976, the Hoe Creek II experiment in 1977, and the Hoe Creek III experiment in 1979. These experiments have had an impact on the land and groundwater quality at the site, and the Department of Energy (DOE) has requested that Western Research Institute (WRI) develop and implement a site restoration plan. The purpose of the plan is to restore the site to conditions being negotiated with the Wyoming Department of Environmental Quality (WDEQ). To prepare for developing a plan, WRI compiled background information on the site. The geologic and hydrologic characteristics of the site were determined, and the water quality data were analyzed. Modelling the site was considered and possible restoration methods were examined. Samples were collected and laboratory tests were conducted. WRI then developed and began implementing a field-scale restoration test. 41 refs, 46 figs., 13 tabs.

  18. Hanna, Wyoming underground coal gasification data base. Volume 5. Hanna III field test research report

    SciTech Connect (OSTI)

    Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

    1985-08-01T23:59:59.000Z

    This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Hanna III was conducted during the spring and summer of 1977. The test involved only two process wells but also had twelve water monitoring wells, eight in the Hanna No. 1 coal seam and four in an aquifer above the coal seam. The test was designed to obtain information regarding the effects of the process on groundwater within the target seam and the overlying aquifer. The site for Hanna III had a low productivity aquifer above the Hanna No. 1 seam. The wells within the seam and the overlying aquifer were placed in such a manner that maximum information on groundwater flow and quality could be obtained. This report covers: (1) site selection and characterization; (2) test objectives; (3) facilities description; (4) pre-operation tests; (5) test operations summary; and (6) post-test activity. 4 refs., 11 figs., 5 tabs.

  19. Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming

    SciTech Connect (OSTI)

    NONE

    1997-10-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

  20. Low-rank coal research, Task 5.1. Topical report, April 1986--December 1992

    SciTech Connect (OSTI)

    Not Available

    1993-02-01T23:59:59.000Z

    This document is a topical progress report for Low-Rank Coal Research performed April 1986 - December 1992. Control Technology and Coal Preparation Research is described for Flue Gas Cleanup, Waste Management, Regional Energy Policy Program for the Northern Great Plains, and Hot-Gas Cleanup. Advanced Research and Technology Development was conducted on Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Combustion Research is described for Atmospheric Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Fuels (completed 10/31/90), Diesel Utilization of Low-Rank Coals (completed 12/31/90), Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications (completed 10/31/90), Nitrous Oxide Emission, and Pressurized Fluidized-Bed Combustion. Liquefaction Research in Low-Rank Coal Direct Liquefaction is discussed. Gasification Research was conducted in Production of Hydrogen and By-Products from Coals and in Sulfur Forms in Coal.

  1. Results of the groundwater restoration project, Hanna Underground Coal Gasification Test Site, Wyoming: Topical report

    SciTech Connect (OSTI)

    Oliver, R.L.

    1988-01-01T23:59:59.000Z

    Underground coal gasification (UCG) experiments conducted during the 1970s at the Department of Energy (DOE) site near Hanna, Wyoming, formed six underground cavities in the Hanna No. 1 coal seam, an aquifer of low permeability. When the first Hanna UCG experiment began in March 1973, researchers had little information about what effects the geologic or hydrologic characteristics of the area might have on the UCG process; likewise, the effects of UCG on the environment were unknown. Since the UCG experiments were completed, dilute concentrations of pyrolysis products and leachates have been detected in groundwater monitoring wells in and near some of the six cavities. Three primary UCG indicator constituents have been measured at elevated concentrations: phenols, TDS, and sulfate. The Hanna III cavity water exceeded the DOE target level for TDS and sulfate, and the Hanna I cavity water exceeded the DOE target level for phenols. The indicated phenols contamination, however, was in groundwater sampled from a well which was previously used as a production well during the experiment. Water pumped during the restoration project and a new well located approximately 10 ft from the old production well was sampled and no elevated phenols concentration was detected. Therefore, the restoration performed on the Hanna I cavity water was not necessary. The restoration was performed, however, because these indications were not available until during the restoration. Locally, various other constituents exceed DOE target levels, but concentrations are very near target levels and are well within livestock use limits. 2 refs., 7 figs., 5 tabs.

  2. Role of hydrogeology in Rocky Mountain 1 underground coal gasification test, Hanna basin, Wyoming

    SciTech Connect (OSTI)

    Daly, D.J.; Schmit, C.R.; Beaver, F.W.; Evans, J.M. (North Dakota Mining and Mineral Resources Research Institute, Grand Forks (USA))

    1989-09-01T23:59:59.000Z

    Experience has shown that the designs and implementation of Underground Coal Gasification (UCG) operations that are technically sound and environmentally safe require a thorough understanding of the hydrogeology of the UCG site, complemented by an understanding of the potential interactions between the elements of the hydrogeologic system and UCG process. This is significant because UCG is conducted in the saturated zone, consumes large volumes of ground water, and has the potential to adversely affect ground water quality and flow. The textural, mineralogical, chemical, and structural character of the geologic materials constituting the UCG reactor, as well as the occurrence, flow, and quality of fluids moving through that three-dimensional matrix of geologic materials, must be understood. The US Department of Energy and an industry consortium led by the Gas Research Institute recently conducted the Rocky Mountain 1 Test in the Hanna basin of Wyoming. For this test, the hydrogeologic aspects of the site were characterized to an extent unprecedented in UCG testing. This information was then used to develop and evaluate operating strategies intended to prevent or minimize contamination. Such strategies included gasifying at less than hydrostatic pressure to enhance ground water flow toward the gasification modules and to restrict contamination to the module area. Hydrogeologic information also allowed a more complete evaluation of process-setting interactions. For example, a substantial and widespread drop in elevation heat noted for the ground water in the target coal emphasized the importance of an adequate water supply for UCG, particularly in a long-term commercial operation.

  3. Hanna, Wyoming underground coal gasification data base. Volume 2. The Hanna I field test

    SciTech Connect (OSTI)

    Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

    1985-08-01T23:59:59.000Z

    This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project, and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Based on the recommendations of A.D. Little, Inc. in a 1971 report prepared for the US Bureau of Mines, the Hanna I test represented the first field test in reestablishing a field program by the US Bureau of Mines. The test was directed toward comparing results from a thick subbitiminous coal seam with those obtained during the field test series conducted at Gorgas, AL, in the 1940's and 1950's. Hanna I was conducted from March 1973 through February 1974. This report covers: (1) site selection and characteristics; (2) test objectives; (3) facility description; (4) pre-operation tests; (5) test operations summary; and (6) post-test activity. 9 refs., 10 figs., 4 tabs.

  4. Rocky mountain 1: Underground coal-gasification test, Hanna, Wyoming. Summary report, Volume 1. Appendix. Final report

    SciTech Connect (OSTI)

    Vardaman, M.H.

    1989-02-01T23:59:59.000Z

    The Rocky Mountain 1 underground coal gasification test was conducted near Hanna, Wyoming during the period January 1986 through March 1988. These appendixes include information supporting Volume I as well as complete data for certain aspects of the gasification phase. These aspects include daily operations reports, raw and corrected process data, thermocouple and Time Domain Reflectometer results, and monitoring well pressure and level data obtained during the gasification phase. Piping and instrumentation diagrams and supplemental informations on the data acquisition system are included.

  5. Trace element chemistry of coal bed natural gas produced water in the Powder River Basin, Wyoming

    SciTech Connect (OSTI)

    Richard E. Jackson; K.J. Reddy [University of Wyoming, Laramie, WY (United States). Department of Renewable Resources

    2007-09-15T23:59:59.000Z

    Coal bed natural gas (CBNG) produced water is usually disposed into nearby constructed disposal ponds. Geochemistry of produced water, particularly trace elements interacting with a semiarid environment, is not clearly understood. The objective of this study was to collect produced water samples at outfalls and corresponding disposal ponds and monitor pH, iron (Fe), aluminum (Al), chromium (Cr), manganese (Mn), lead (Pb), copper (Cu), zinc (Zn), arsenic (As), boron (B), selenium (Se), molybdenum (Mo), cadmium (Cd), and barium (Ba). Outfalls and corresponding disposal ponds were sampled from five different watersheds including Cheyenne River (CHR), Belle Fourche River (BFR), Little Powder River (LPR), Powder River (PR), and Tongue River (TR) within the Powder River Basin (PRB), Wyoming from 2003 to 2005. Paired tests were conducted between CBNG outfalls and corresponding disposal ponds for each watershed. Results suggest that produced water from CBNG outfalls is chemically different from the produced water from corresponding disposal ponds. Most trace metal concentrations in the produced water increased from outfall to disposal pond except for Ba. In disposal ponds, Ba, As, and B concentrations increased from 2003 to 2005. Geochemical modeling predicted precipitation and dissolution reactions as controlling processes for Al, Cu, and Ba concentrations in CBNG produced water. Adsorption and desorption reactions appear to control As, Mo, and B concentrations in CBNG water in disposal ponds. Overall, results of this study will be important to determine beneficial uses (e.g., irrigation, livestock/wildlife water, and aquatic life) for CBNG produced water in the PRB, Wyoming. 18 refs., 4 figs., 3 tabs.

  6. CO2 Sequestration Potential of Texas Low-Rank Coals

    SciTech Connect (OSTI)

    Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

    2005-10-01T23:59:59.000Z

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (ECBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to perform reservoir simulation and economic sensitivity studies to (1) determine the effects of injection gas composition, (2) determine the effects of injection rate, and (3) determine the effects of coal dewatering prior to CO{sub 2} injection on CO{sub 2} sequestration in the Lower Calvert Bluff Formation (LCB) of the Wilcox Group coals in east-central Texas. To predict CO{sub 2} sequestration and ECBM in LCB coal beds for these three sensitivity studies, we constructed a 5-spot pattern reservoir simulation model and selected reservoir parameters representative of a typical depth, approximately 6,200-ft, of potential LCB coalbed reservoirs in the focus area of East-Central Texas. Simulation results of flue gas injection (13% CO{sub 2} - 87% N{sub 2}) in an 80-acre 5-spot pattern (40-ac well spacing) indicate that LCB coals with average net thickness of 20 ft can store a median value of 0.46 Bcf of CO{sub 2} at depths of 6,200 ft, with a median ECBM recovery of 0.94 Bcf and median CO{sub 2} breakthrough time of 4,270 days (11.7 years). Simulation of 100% CO{sub 2} injection in an 80-acre 5-spot pattern indicated that these same coals with average net thickness of 20 ft can store a median value of 1.75 Bcf of CO{sub 2} at depths of 6,200 ft with a median ECBM recovery of 0.67 Bcf and median CO{sub 2} breakthrough time of 1,650 days (4.5 years). Breakthrough was defined as the point when CO{sub 2} comprised 5% of the production stream for all cases. The injection rate sensitivity study for pure CO{sub 2} injection in an 80-acre 5-spot pattern at 6,200-ft depth shows that total volumes of CO{sub 2} sequestered and methane produced do not have significant sensitivity to injection rate. The main difference is in timing, with longer breakthrough times resulting as injection rate decreases. Breakthrough times for 80-acre patterns (40-acre well spacing) ranged from 670 days (1.8 years) to 7,240 days (19.8 years) for the reservoir parameters and well operating conditions investigated. The dewatering sensitivity study for pure CO{sub 2} injection in an 80-acre 5-spot pattern at 6,200-ft depth shows that total volumes of CO{sub 2} sequestered and methane produced do not have significant sensitivity to dewatering prior to CO{sub 2} injection. As time to start CO{sub 2} injection increases, the time to reach breakthrough also increases. Breakthrough times for 80-acre patterns (40-acre well spacing) ranged from 850 days (2.3 years) to 5,380 days (14.7 years) for the reservoir parameters and well injection/production schedules investigated. Preliminary economic modeling results using a gas price of $7-$8 per Mscf and CO{sub 2} credits of $1.33 per ton CO{sub 2} indicate that injection of flue gas (87% N{sub 2}-13% CO{sub 2}) and 50% N{sub 2}-50% CO{sub 2} are more economically viable than injecting 100% CO{sub 2}. Results also indicate that injection rate and duration and timing of dewatering prior to CO{sub 2} injection have no significant effect on the economic viability of the project(s).

  7. Catalytic steam gasification reactivity of HyperCoals produced from different rank of coals at 600-775{degree}C

    SciTech Connect (OSTI)

    Atul Sharma; Ikuo Saito; Toshimasa Takanohashi [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan). Advanced Fuel Group, Energy Technology Research Institute

    2008-11-15T23:59:59.000Z

    HyperCoal is a clean coal with ash content <0.05 wt %. HyperCoals were prepared from a brown coal, a sub-bituminous coal, and a bituminous raw coal by solvent extraction method. Catalytic steam gasification of these HyperCoals was carried out with K{sub 2}CO{sub 3} at 775, 700, 650, and 600 {degree}C, and their rates were compared. HyperCoals produced from low-rank coals were more reactive than those produced from the high-rank coals. XRD measurements were carried out to understand the difference in gasification reactivity of HyperCoals. Arrhenius plot of ln (k) vs 1/T in the temperature range 600-825{degree}C was a curve rather than a straight line. The point of change was observed at 700{degree}C for HyperCoals from low-rank coals and at 775{degree}C for HyperCoals from high-rank coals. Using HyperCoal produced from low-rank coals as feedstock, steam gasification of coal may be possible at temperatures less than 650{degree}C. 22 refs., 6 figs., 2 tabs.

  8. Low-rank coal research. Quarterly technical progress report, April-June 1984

    SciTech Connect (OSTI)

    Not Available

    1984-08-01T23:59:59.000Z

    Papers in the quarterly technical progress report for the period April-June, 1984, of the Low-Rank Coal Research project have been entered individually into EDB and ERA (17 items). (LTN)

  9. High resolution seismic survey of the Hanna, Wyoming underground coal gasification area

    SciTech Connect (OSTI)

    Not Available

    1983-08-01T23:59:59.000Z

    In June 1983 a high resolution seismic survey was conducted at the Department of Energy, Laramie Energy Technology Center's underground coal gasification test site near Hanna, Wyoming. The objectives of the survey were to locate and characterize underground burn zones and to identify shallow geologic faults at the test site. Seismic data acquisition and processing parameters were based upon prior work in the area, and were specifically designed to emphasize reflections at the shallow, 61 to 91 meter (200 to 300 ft) depths of interest. Data were obtained on two north-south lines along the test site boundary in addition to a three-dimensional grid over the Hanna IV experiment area. Processing included time varying filters, deconvolution, trace composition, and three-dimensional areal stacking of the data in order to identify burn zone anomalies. Anomalies were discernable resulting from the rubble-collapse void above the burn zones in the vicinity of the injection wells at the Hanna IV experiment area. The fault studies disclosed faults at the Hanna IV experiment area which may be responsible for the unexpected problems experienced in the early in-site gasification tests. For the test site the fault system was found to be a generally arcuate east-west trending graben complex with numerous antithetic faults. 15 references, 33 figures, 6 tables.

  10. Hanna, Wyoming underground coal gasification data base. Volume 3. The Hanna II, Phase I field test

    SciTech Connect (OSTI)

    Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

    1985-08-01T23:59:59.000Z

    This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project, and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Hanna II, Phase I was conducted during the spring and summer of 1975, at a site about 700 feet up dip (to the southwest) of the Hanna I test. The test was conducted in two stages - Phase IA and IB. Phase IA consisted of linking and gasification operations between Wells 1 and 3 and Phase IB of linking from the 1-3 gasification zone to Well 2, followed by a short period of gasification from Well 2 to Well 3 over a broad range of air injection rates, in order to determine system turndown capabilities and response times. This report covers: (1) site selection and characteristics; (2) test objectives; (3) facilities description; (4) pre-operational testing; (5) test operations summary; and (6) post-test activity. 7 refs., 11 figs., 8 tabs.

  11. Low-rank coal study. Volume 4. Regulatory, environmental, and market analyses

    SciTech Connect (OSTI)

    Not Available

    1980-11-01T23:59:59.000Z

    The regulatory, environmental, and market constraints to development of US low-rank coal resources are analyzed. Government-imposed environmental and regulatory requirements are among the most important factors that determine the markets for low-rank coal and the technology used in the extraction, delivery, and utilization systems. Both state and federal controls are examined, in light of available data on impacts and effluents associated with major low-rank coal development efforts. The market analysis examines both the penetration of existing markets by low-rank coal and the evolution of potential markets in the future. The electric utility industry consumes about 99 percent of the total low-rank coal production. This use in utility boilers rose dramatically in the 1970's and is expected to continue to grow rapidly. In the late 1980's and 1990's, industrial direct use of low-rank coal and the production of synthetic fuels are expected to start growing as major new markets.

  12. Overburden characterization and post-burn study of the Hoe Creek, Wyoming underground coal gasification site and comparison with the Hanna, Wyoming site

    SciTech Connect (OSTI)

    Ethridge, F.C.; Burns, L.K.; Alexander, W.G.; Craig, G.N. II; Youngberg, A.D.

    1983-01-01T23:59:59.000Z

    In 1978 the third test (Hoe Creek III) in a series of underground coal gasification (UCG) experiments was completed at a site south of Gillette, Wyoming. The post-burn study of the geology of the overburden and interlayered rock of the two coal seams affected by the experiment is based on the study of fifteen cores. The primary purpose of the study was to characterize the geology of the overburden and interlayered rock and to determine and evaluate the mineralogical and textural changes that were imposed by the experiment. Within the burn cavity the various sedimentary units have been brecciated and thermally altered to form several pyrometamorphic rock types of paralava rock, paralava breccia, buchite, buchite breccia and hornfels. High temperature minerals of mullite, cordierite, oligo-clase-andesine, tridymite, cristobalite, clinopyroxenes, and magnetite are common in the pyrometamorphic rocks. The habit of these minerals indicates that they crystallized from a melt. These minerals and textures suggest that the rocks were formed at temperatures between 1200/sup 0/ and 1400/sup 0/C. A comparison of geologic and geological-technological factors between the Hoe Creek III site, which experienced substantial roof collapse, and the Hanna II site, which had only moderate roof collapse, indicates that overburden thickness relative to coal seam thickness, degree of induration of overburden rock, injection-production well spacing, and ultimate cavity size are important controls of roof collapse in the structural setting of the two sites.

  13. Low-rank coal research under the UND/DOE cooperative agreement. Quarterly technical progress report, April 1983-June 1983

    SciTech Connect (OSTI)

    Wiltsee, Jr., G. A.

    1983-01-01T23:59:59.000Z

    Progress reports are presented for the following tasks: (1) gasification wastewater treatment and reuse; (2) fine coal cleaning; (3) coal-water slurry preparation; (4) low-rank coal liquefaction; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization; (8) combustion research and ash fowling; (9) fluidized-bed combustion of low-rank coals; (10) ash and slag characterization; (11) organic structure of coal; (12) distribution of inorganics in low-rank coals; (13) physical properties and moisture of low-rank coals; (14) supercritical solvent extraction; and (15) pyrolysis and devolatilization.

  14. Low-rank coal research: Volume 2, Advanced research and technology development: Final report

    SciTech Connect (OSTI)

    Mann, M.D.; Swanson, M.L.; Benson, S.A.; Radonovich, L.; Steadman, E.N.; Sweeny, P.G.; McCollor, D.P.; Kleesattel, D.; Grow, D.; Falcone, S.K.

    1987-04-01T23:59:59.000Z

    Volume II contains articles on advanced combustion phenomena, combustion inorganic transformation; coal/char reactivity; liquefaction reactivity of low-rank coals, gasification ash and slag characterization, and fine particulate emissions. These articles have been entered individually into EDB and ERA. (LTN)

  15. Thirteenth biennial lignite symposium: technology and utilization of low-rank coals proceedings. Volume 2

    SciTech Connect (OSTI)

    Jones, M.L. (ed.)

    1986-02-01T23:59:59.000Z

    These proceedings are the collected manuscripts from the 1985 Lignite Symposium held at Bismarck, North Dakota on May 21-23, 1985. Sponsorship of the thirteenth biennial meeting was by the United States Department of Energy, the University of North Dakota Energy Research Center, and the Texas University Coal Research Consortium. Seven technical sessions plus two luncheons and a banquet were held during the two and a half day meeting. The final half day included tours of the Great Plains Gasification Plant; Basin Electric's Antelope Valley Power Station; and the Freedom Mine. Sessions covered diverse topics related to the technology and use of low-rank coals including coal development and public policy, combustion, gasification, environmental systems for low-rank coal utilization, liquefaction, beneficiation and coal mining and coal inorganics. All the papers have been entered individually into EDB and ERA.

  16. Thirteenth biennial lignite symposium: technology and utilization of low-rank coals proceedings. Volume 1

    SciTech Connect (OSTI)

    Jones, M.L. (ed.)

    1986-02-01T23:59:59.000Z

    These proceedings are the collected manuscripts from the 1985 Lignite Symposium held at Bismarck, North Dakota on May 21-23. Sponsorship of the thirteenth biennial meeting was by the United States Department of Energy, the University of North Dakota Energy Research Center, and the Texas University Coal Research Consortium. Seven technical sessions were held during the two and a half day meeting. The final half day included tours of the Great Plains Gasification Plant; Basin Electric's Antelope Valley Power Station; and the Freedom Mine. Sessions covered diverse topics related to the technology and use of low-rank coals including coal development and public policy, combustion, gasification, environmental systems for low-rank coal utilization, liquefaction, beneficiation and coal mining and coal inorganics. Twenty-four papers have been entered individually into EDB and ERA.

  17. Process for clean-burning fuel from low-rank coal

    DOE Patents [OSTI]

    Merriam, Norman W. (Laramie, WY); Sethi, Vijay (Laramie, WY); Brecher, Lee E. (Laramie, WY)

    1994-01-01T23:59:59.000Z

    A process for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage.

  18. Transportation costs for new fuel forms produced from low rank US coals

    SciTech Connect (OSTI)

    Newcombe, R.J.; McKelvey, D.G. (TMS, Inc., Germantown, MD (USA)); Ruether, J.A. (USDOE Pittsburgh Energy Technology Center, PA (USA))

    1990-09-01T23:59:59.000Z

    Transportation costs are examined for four types of new fuel forms (solid, syncrude, methanol, and slurry) produced from low rank coals found in the lower 48 states of the USA. Nine low rank coal deposits are considered as possible feedstocks for mine mouth processing plants. Transportation modes analyzed include ship/barge, pipelines, rail, and truck. The largest potential market for the new fuel forms is coal-fired utility boilers without emission controls. Lowest cost routes from each of the nine source regions to supply this market are determined. 12 figs.

  19. Low-rank coal study: national needs for resource development. Volume 3. Technology evaluation

    SciTech Connect (OSTI)

    Not Available

    1980-11-01T23:59:59.000Z

    Technologies applicable to the development and use of low-rank coals are analyzed in order to identify specific needs for research, development, and demonstration (RD and D). Major sections of the report address the following technologies: extraction; transportation; preparation, handling and storage; conventional combustion and environmental control technology; gasification; liquefaction; and pyrolysis. Each of these sections contains an introduction and summary of the key issues with regard to subbituminous coal and lignite; description of all relevant technology, both existing and under development; a description of related environmental control technology; an evaluation of the effects of low-rank coal properties on the technology; and summaries of current commercial status of the technology and/or current RD and D projects relevant to low-rank coals.

  20. Energy Development Opportunities for Wyoming

    SciTech Connect (OSTI)

    Larry Demick

    2012-11-01T23:59:59.000Z

    The Wyoming Business Council, representing the state’s interests, is participating in a collaborative evaluation of energy development opportunities with the NGNP Industry Alliance (an industry consortium), the University of Wyoming, and the US Department of Energy’s Idaho National Laboratory. Three important energy-related goals are being pursued by the State of Wyoming: Ensuring continued reliable and affordable sources of energy for Wyoming’s industries and people Restructuring the coal economy in Wyoming Restructuring the natural gas economy in Wyoming

  1. Petrographic characterization of Kentucky coals: relationship between sporinite spectral fluorescence and coal rank of selected western Kentucky coals. Final report, Part I. [Vitrinite

    SciTech Connect (OSTI)

    Poe, S.H.; Hower, J.C.

    1983-01-01T23:59:59.000Z

    A total of 43 coal samples were analyzed - the majority from western Kentucky, with a few from Pennsylvania for comparative purposes - using quantitative fluorescence microscopy of sporinite to determine if coal rank as determined by vitrinite maximum reflectance could be predicted by data gathered from selected fluorescence parameters. All eight parameters (wavelength of highest intensity, area under curve to the left of the peak, area in the blue wavelengths (400 to 500 nm), green (500 to 570 nm), yellow (570 to 630 nm), blue-red ratio, and red-green ratio were found to statistically predict coal rank. The general research hypothesis, which included all the variables, had a R/sup 2/ = 0.354. The results of the step-wise regression yielded red and yellow (collective R/sup 2/ = 0.341) as the best predictor variables of coal rank. The individual parameters of area of red wavelength and blue-red ratio accounted for the greatest variance in predicting coal rank, while the parameter yellow area was the least predictive of coal rank. 31 references, 7 figures, 5 tables.

  2. Low rank coal upgrading in a flow of hot water

    SciTech Connect (OSTI)

    Masato Morimoto; Hiroyuki Nakagawa; Kouichi Miura [Kyoto University, Kyoto (Japan). Department of Chemical Engineering

    2009-09-15T23:59:59.000Z

    Simultaneous hydrothermal degradation and extraction at around 350{sup o}C using flowing solvent as a reaction/extraction medium were proposed for upgrading brown coal, more specifically, for converting brown coal into several fractions having different molecular weight and chemical structure under mild conditions. When an Australian brown coal, Loy Yang coal, was treated by water at 350{sup o}C under 18 MPa, the coal was separated into four fractions: gaseous product by 8% yield, water-soluble extract at room temperature (soluble) by 23% yield, extract precipitates as solid at room temperature (deposit) by 23% yield, and residual coal (upgraded coal) by 46% yield on daf basis. The separation was found to be realized by in situ extraction of low-molecular-weight substances released from coal macromolecular structure and/or those generated by hydrothermal decomposition reactions at 350{sup o}C. The solid products obtained, deposit and upgraded coal, were characterized in detail to examine the possibility of their effective utilization as solid fuel and chemical feed stock. The upgraded coal showed higher heating value and higher gasification reactivity than the parent coal, indicating that the upgraded coal can be a better solid fuel than the parent coal. The solid extract, deposit, was found to show thermoplasticity at less than 200{sup o}C, suggesting the possibility of utilizing the deposit as a raw material of high performance carbon materials. Several variables affecting the performance of the proposed method are also examined in detail in this paper. 12 refs., 8 figs., 3 tabs.

  3. Liquid CO{sub 2}/Coal Slurry for Feeding Low Rank Coal to Gasifiers

    SciTech Connect (OSTI)

    Marasigan, Jose; Goldstein, Harvey; Dooher, John

    2013-09-30T23:59:59.000Z

    This study investigates the practicality of using a liquid CO{sub 2}/coal slurry preparation and feed system for the E-Gas™ gasifier in an integrated gasification combined cycle (IGCC) electric power generation plant configuration. Liquid CO{sub 2} has several property differences from water that make it attractive for the coal slurries used in coal gasification-based power plants. First, the viscosity of liquid CO{sub 2} is much lower than water. This means it should take less energy to pump liquid CO{sub 2} through a pipe compared to water. This also means that a higher solids concentration can be fed to the gasifier, which should decrease the heat requirement needed to vaporize the slurry. Second, the heat of vaporization of liquid CO{sub 2} is about 80% lower than water. This means that less heat from the gasification reactions is needed to vaporize the slurry. This should result in less oxygen needed to achieve a given gasifier temperature. And third, the surface tension of liquid CO{sub 2} is about 2 orders of magnitude lower than water, which should result in finer atomization of the liquid CO{sub 2} slurry, faster reaction times between the oxygen and coal particles, and better carbon conversion at the same gasifier temperature. EPRI and others have recognized the potential that liquid CO{sub 2} has in improving the performance of an IGCC plant and have previously conducted systemslevel analyses to evaluate this concept. These past studies have shown that a significant increase in IGCC performance can be achieved with liquid CO{sub 2} over water with certain gasifiers. Although these previous analyses had produced some positive results, they were still based on various assumptions for liquid CO{sub 2}/coal slurry properties. This low-rank coal study extends the existing knowledge base to evaluate the liquid CO{sub 2}/coal slurry concept on an E-Gas™-based IGCC plant with full 90% CO{sub 2} capture. The overall objective is to determine if this technology could be used to reduce the cost and improve the efficiency of IGCC plants. The study goes beyond the systems-level analyses and initial lab work that formed the bases of previous studies and includes the following tasks: performing laboratory tests to quantify slurry properties; developing an engineering design of a liquid CO{sub 2} slurry preparation and feed system; conducting a full IGCC plant techno-economic analysis for Powder River Basin (PRB) coal and North Dakota lignite in both water and liquid CO{sub 2} slurries; and identifying a technology development plan to continue the due diligence to conduct a comprehensive evaluation of this technology. The initial task included rheology tests and slurry data analyses that would increase the knowledge and understanding of maximum solids loading capability for both PRB and lignite. Higher coal concentrations have been verified in liquid CO{sub 2} over water slurries, and a coal concentration of 75% by weight in liquid CO{sub 2} has been estimated to be achievable in a commercial application. In addition, lower slurry viscosities have been verified in liquid CO{sub 2} at the same solids loading, where the liquid CO{sub 2}/coal slurry viscosity has been measured to be about a factor of 10 lower than the comparable water slurry and estimated to be less than 100 centipoise in a commercial application. In the following task, an engineering design of a liquid CO{sub 2}/coal slurry preparation and mixing system has been developed for both a batch and continuous system. The capital cost of the design has also been estimated so that it could be used in the economic analysis. An industry search and survey has been conducted to determine if essential components required to construct the feed system are available from commercial sources or if targeted R&D efforts are required. The search and survey concluded that commercial sources are available for selected components that comprise both the batch and continuous type systems. During normal operation, the fuel exits the bottom of the coal silo and is fed to a rod mill fo

  4. Wyoming Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Wyoming Recovery Act State Memo Wyoming has substantial natural resources including coal, natural gas, oil, and wind power. The American Recovery & Reinvestment Act (ARRA) is...

  5. Surface detection of retort gases from an underground coal gasification reactor in steeply dipping beds near Rawlins, Wyoming

    SciTech Connect (OSTI)

    Jones, V.T.; Thune, H.W.

    1982-01-01T23:59:59.000Z

    A near-surface soil-gas geochemical survey was executed at the North Knobs, Wyoming, GR and DC-DOE underground coal gasification (UCG) facility in 1981. The soil-gas detection method offers a new technique for locating potential gas leakage areas before any significant migration avenues can develop. The survey demonstrates that residual gases from the phase 1 burn are still present in the near surface, and product gases generated during the phase II burn clearly were evident. Casing leakage explains most anomalies located in the rock sequence stratigraphically below the coal. It is concluded that a properly designed and operated UCG facility would not experience adverse product gas leakage and would pose no hazard.

  6. Low-rank coal study. Volume 5. RD and D program evaluation

    SciTech Connect (OSTI)

    Not Available

    1980-11-01T23:59:59.000Z

    A national program is recommended for research, development, and demonstration (RD and D) of improved technologies for the enviromentally acceptable use of low-rank coals. RD and D project recommendations are outlined in all applicable technology areas, including extraction, transportation, preparation, handling and storage, conventional combustion and environmental control technology, fluidized bed combustion, gasification, liquefaction, and pyrolysis. Basic research topics are identified separately, as well as a series of crosscutting research activities addressing environmental, economic, and regulatory issues. The recommended RD and D activities are classified into Priority I and Priority II categories, reflecting their relative urgency and potential impact on the advancement of low-rank coal development. Summaries of ongoing research projects on low-rank coals in the US are presented in an Appendix, and the relationships of these ongoing efforts to the recommended RD and D program are discussed.

  7. Performance of low-rank coal in atmospheric fluidized bed combustion. Technology transfer report

    SciTech Connect (OSTI)

    Hajicek, D.R.; Zobeck, B.J.; Mann, M.D.; Miller, B.G.; Ellman, R.C.; Benson, S.A.; Goblirsch, G.M.; Cooper, J.L.; Guillory, J.L.; Eklund, A.G.

    1985-10-01T23:59:59.000Z

    This report presents test data generated at GFETC and discusses the implications of this data in regard to the technical and economic feasibility of using low-rank coals in the AFBC. Atmospheric fluidized bed combustion offers a number of potential advantages over conventional pulverized coal combustion due to the intense turbulence in the fluidized bed and long residence times of solids in the bed without a long linear flow path. Advantages of the AFBC include flexibility to handle varying fuels, sulfur capture by limestone, high combustion efficiency, compact combustor size, lower NO/sub x/ emissions, and reduced slagging and fouling problems. Low-rank coals with high alkali-to-sulfur ratios offer a significant additional advantage: the ability to absorb significant sulfur on the alkaline ash. Results verify that AFBC is particularly well suited for the direct combustion of low-rank coals. With combustion temperatures above 1450/sup 0/F at 20% excess air or higher, the combustion efficiencies while burning low-rank coal were found to be above 98%, with efficiencies above 99% for most tests. The CO emissions were very low, typically below 0.05 lb/MMBtu or 50 ppMv. Overall heat transfer coefficients to water-cooled tubes while burning low-rank coals were comparable to those obtained with other fuels in AFBC, or 20 to 60 Btu/h-ft/sup 2/-/sup 0/F. These are considerably higher than those obtained in conventional coal-fired systems which are typically 5 to 15 Btu/h-ft/sup 2/-/sup 0/F. Factors influencing heat transfer included mass velocity, bed particle size, bed temperature, and ash recycle.

  8. Process for clean-burning fuel from low-rank coal

    DOE Patents [OSTI]

    Merriam, N.W.; Sethi, V.; Brecher, L.E.

    1994-06-21T23:59:59.000Z

    A process is described for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage. 1 fig.

  9. Preburn versus postburn mineralogical and geochemical characteristics of overburden and coal at the Hanna, Wyoming underground coal gasification site

    SciTech Connect (OSTI)

    Oliver, R.L.; Youngberg, A.D.

    1983-12-01T23:59:59.000Z

    Hundreds of mineralogic and geochemical tests were done under US Department of Energy contracts on core samples taken from the Hanna underground coal gasification site. These tests included x-ray diffraction studies of minerals in coal ash, overburden rocks, and heat-altered rocks; x-ray fluorescence analyses of oxides in coal ash and heat-altered rocks; semi-quantitative spectrographic analyses of elements in coal, overburden, and heat-altered rocks; chemical analyses of elements and compounds in coal, overburden, and heat-altered rocks and ASTM proximate and ultimate analyses of coal and heat-altered coal. These data sets were grouped, averaged, and analyzed to provide preburn and postburn mineralogic and geochemical characteristics of rock units at the site. Where possible, the changes in characteristics from the preburn to the postburn state are related to underground coal gasification processes. 11 references, 13 figures, 8 tables.

  10. Laramie, Wyoming December, 1999

    E-Print Network [OSTI]

    Laughlin, Robert B.

    - Industrial Minerals and Uranium W. Dan Hausel, Senior Economic Geologist - Metals and Precious Stones Robert Wyoming. This rig is exploring for coalbed methane in coals of the Almond Formation, Mesaverde Group update................................................................................ 3 Exploration

  11. Co-pyrolysis of low rank coals and biomass: Product distributions

    SciTech Connect (OSTI)

    Soncini, Ryan M.; Means, Nicholas C.; Weiland, Nathan T.

    2013-10-01T23:59:59.000Z

    Pyrolysis and gasification of combined low rank coal and biomass feeds are the subject of much study in an effort to mitigate the production of green house gases from integrated gasification combined cycle (IGCC) systems. While co-feeding has the potential to reduce the net carbon footprint of commercial gasification operations, the effects of co-feeding on kinetics and product distributions requires study to ensure the success of this strategy. Southern yellow pine was pyrolyzed in a semi-batch type drop tube reactor with either Powder River Basin sub-bituminous coal or Mississippi lignite at several temperatures and feed ratios. Product gas composition of expected primary constituents (CO, CO{sub 2}, CH{sub 4}, H{sub 2}, H{sub 2}O, and C{sub 2}H{sub 4}) was determined by in-situ mass spectrometry while minor gaseous constituents were determined using a GC-MS. Product distributions are fit to linear functions of temperature, and quadratic functions of biomass fraction, for use in computational co-pyrolysis simulations. The results are shown to yield significant nonlinearities, particularly at higher temperatures and for lower ranked coals. The co-pyrolysis product distributions evolve more tar, and less char, CH{sub 4}, and C{sub 2}H{sub 4}, than an additive pyrolysis process would suggest. For lignite co-pyrolysis, CO and H{sub 2} production are also reduced. The data suggests that evolution of hydrogen from rapid pyrolysis of biomass prevents the crosslinking of fragmented aromatic structures during coal pyrolysis to produce tar, rather than secondary char and light gases. Finally, it is shown that, for the two coal types tested, co-pyrolysis synergies are more significant as coal rank decreases, likely because the initial structure in these coals contains larger pores and smaller clusters of aromatic structures which are more readily retained as tar in rapid co-pyrolysis.

  12. Hanna, Wyoming underground coal gasification data base. Volume 6. Hanna IVA and IVB field test research report

    SciTech Connect (OSTI)

    Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

    1985-08-01T23:59:59.000Z

    This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. The reports in this series include: The Hanna IV test was designed as the first underground coal gasification test using commercial well spacings of 100 and 150 feet between well pairs in a linear 3-well pattern. The test was initiated in late 1977 and completed in late 1979. This long duration was due to unfavorable geologic conditions (faulting) which could not be successfully overcome resulting in the test being split into Hanna IVA and Hanna IVB with about one year between the conduct of each. This report covers: (1) specific site selection and characteristics; (2) test objectives; (3) facility description; (4) pre-operation tests; (5) test operations summary; and (6) post-test activity. 5 refs., 19 figs., 13 tabs.

  13. Low-rank coal research. Final technical report, April 1, 1988--June 30, 1989, including quarterly report, April--June 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-31T23:59:59.000Z

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  14. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution AndControlling Graphene'sPortal Conversion

  15. CO{sub 2} SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS

    SciTech Connect (OSTI)

    Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

    2005-02-01T23:59:59.000Z

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. There were three main objectives for this reporting period, which related to obtaining accurate parameters for reservoir model description and modeling reservoir performance of CO{sub 2} sequestration and enhanced coalbed methane recovery. The first objective was to collect and desorb gas from 10 sidewall core coal samples from an Anadarko Petroleum Corporation well (APCL2 well) at approximately 6,200-ft depth in the Lower Calvert Bluff Formation of the Wilcox Group in east-central Texas. The second objective was to measure sorptive capacities of these Wilcox coal samples for CO{sub 2}, CH{sub 4}, and N{sub 2}. The final objective was to contract a service company to perform pressure transient testing in Wilcox coal beds in a shut-in well, to determine permeability of deep Wilcox coal. Bulk density of the APCL2 well sidewall core samples averaged 1.332 g/cc. The 10 sidewall core samples were placed in 4 sidewall core canisters and desorbed. Total gas content of the coal (including lost gas and projected residual gas) averaged 395 scf/ton on an as-received basis. The average lost gas estimations were approximately 45% of the bulk sample total gas. Projected residual gas was 5% of in-situ gas content. Six gas samples desorbed from the sidewall cores were analyzed to determine gas composition. Average gas composition was approximately 94.3% methane, 3.0% ethane, and 0.7% propane, with traces of heavier hydrocarbon gases. Carbon dioxide averaged 1.7%. Coal from the 4 canisters was mixed to form one composite sample that was used for pure CO{sub 2}, CH{sub 4}, and N{sub 2} isotherm analyses. The composite sample was 4.53% moisture, 37.48% volatile matter, 9.86% ash, and 48.12% fixed carbon. Mean vitrinite reflectance was 0.54%. Coal rank was high-volatile C to B bituminous. Comparison of the desorbed gas content (395 scf/ton, as received) at reservoir pressure (2,697 psi) with the sorption isotherm indicates that Lower Calvert Bluff coal at this well site is oversaturated, but lost gas may have been overestimated. This high gas content suggests that little or no depressurization would be required to initiate methane production. Sorption isotherms results indicate that the sorptive capacity of CO{sub 2} is about 2.5 times that of CH{sub 4} at 1,000 psia. This ratio is similar to that of higher rank bituminous coals from other basins (e.g., Carroll, and Pashin, 2003), and it is very low in comparison to results of other low-rank coals and to the values that we used in our preliminary reservoir modeling. If this value from the APCL2 well is representative, Wilcox coals in this area will sequester less CO{sub 2} on a per ton basis than we had earlier inferred. However, because measured methane contents are higher, enhanced coalbed methane production potential is greater than we earlier inferred. Pressure transient testing for determining coal fracture permeability will be conducted soon by Pinnacle Technologies. The data from these analyses will be used to finalize our coal model for the reservoir simulation phase of the project.

  16. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    located in Wyoming using PRB coal. These costs take intolocated in Wyoming using PRB coal and take into account the2007 forecast for coal prices for PRB coal. Transmission We

  17. A SUMMARY OF TERTIARY COAL RESOURCES OF THE WIND RIVER BASIN, WYOMING

    E-Print Network [OSTI]

    and C. W. Keighin in U.S. Geological Survey Professional Paper 1625-A 1999 Resource assessment Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great member of the Fort Union Formation. 1999 Resource assessment of selected Tertiary coal beds and zones

  18. Synthesis gas production with an adjustable H{sub 2}/CO ratio through the coal gasification process: effects of coal ranks and methane addition

    SciTech Connect (OSTI)

    Yan Cao; Zhengyang Gao; Jing Jin; Hongchang Zhou; Marten Cohron; Houying Zhao; Hongying Liu; Weiping Pan [Western Kentucky University (WKU), Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology (ICSET)

    2008-05-15T23:59:59.000Z

    Direct production of synthesis gas using coal as a cheap feedstock is attractive but challenging due to its low H{sub 2}/CO ratio of generated synthesis gas. Three typical U.S. coals of different ranks were tested in a 2.5 in. coal gasifier to investigate their gasification reactivity and adjustability on H{sub 2}/CO ratio of generated synthesis gas with or without the addition of methane. Tests indicated that lower-rank coals (lignite and sub-bituminous) have higher gasification reactivity than bituminous coals. The coal gasification reactivity is correlated to its synthesis-gas yield and the total percentage of H{sub 2} and CO in the synthesis gas, but not to the H{sub 2}/CO ratio. The H{sub 2}/CO ratio of coal gasification was found to be correlated to the rank of coals, especially the H/C ratio of coals. Methane addition into the dense phase of the pyrolysis and gasification zone of the cogasification reactor could make the best use of methane in adjusting the H{sub 2}/CO ratio of the generated synthesis gas. The maximum methane conversion efficiency, which was likely correlated to its gasification reactivity, could be achieved by 70% on average for all tested coals. The actual catalytic effect of generated coal chars on methane conversion seemed coal-dependent. The coal-gasification process benefits from methane addition and subsequent conversion on the adjustment of the H{sub 2}/CO ratio of synthesis gas. The methane conversion process benefits from the use of coal chars due to their catalytic effects. This implies that there were likely synergistic effects on both. 25 refs., 3 figs., 3

  19. Hanna, Wyoming underground coal gasification data base. Volume 4. Hanna II, Phases II and III field test research report

    SciTech Connect (OSTI)

    Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

    1985-08-01T23:59:59.000Z

    This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Hanna II, Phases II and III, were conducted during the winter of 1975 and the summer of 1976. The two phases refer to linking and gasification operations conducted between two adjacent well pairs as shown in Figure 1 with Phase II denoting operations between Wells 5 and 6 and Phase III operations between Wells 7 and 8. All of the other wells shown were instrumentation wells. Wells 7 and 8 were linked in November and December 1975. This report covers: (1) specific site selection and characteristics; (2) test objectives; (3) facilities description; (4) pre-operation tests; (5) test operations summary; and (6) post-test activity. 16 refs., 21 figs., 17 tabs.

  20. Wyoming's Budget: From Champagne to Soda Pop

    E-Print Network [OSTI]

    Schuhmann, Robert A; Skopek, Tracy A

    2011-01-01T23:59:59.000Z

    the Wyoming economy as coal, natural gas, oil, and trona (aeconomy in the months ahead (Mast, 7/4/09). Natural gas

  1. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    SciTech Connect (OSTI)

    Kloosterman, Jeff

    2012-12-31T23:59:59.000Z

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

  2. Study of the combustion of low rank coal in a fluidized bed

    SciTech Connect (OSTI)

    Glaser, R.; Grimes, R.W.

    1991-09-01T23:59:59.000Z

    This report describes the results of preliminary combustion tests performed with Eagle Butte Coal in a bubbling, fluidized-bed combustion system. The system was designed for the combustion of low-rank coals and industrial wastes. The work, as proposed, was aimed at not only the evaluation of co-firing of waste material with coal, but also at developing modifications to first generation bubbling bed designs to improve the combustion performance during co-firing. However, the funding for the work was redirected and the combustion tests were suspended soon after the shakedown testing was completed. Consequently, this report describes the results of the tests completed prior to the redirection of the effort and funding. A total of 33 combustion tests were performed in a 6-inch diameter fluidized-bed combustor. Oxygen concentrations were measured at two points in the system; the vent line and at the interface between the fluid bed and the freeboard. These measurements provided a measure of the amount of conversion of coal within the fluidized bed compared to the conversion in the freeboard region. Typically, 75 to 80% of the conversion occurred within the bed. Several experiments were performed in which special bed internals were placed in the bed. The internals were designed to reduce bubble size in the bed thus increasing the surface area of the bubbles and hence promoting oxygen diffusion into the emulsion phase.

  3. Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal

    SciTech Connect (OSTI)

    Rader, Jeff; Aguilar, Kelly; Aldred, Derek; Chadwick, Ronald; Conchieri, John; Dara, Satyadileep; Henson, Victor; Leininger, Tom; Liber, Pawel; Liber, Pawel; Lopez-Nakazono, Benito; Pan, Edward; Ramirez, Jennifer; Stevenson, John; Venkatraman, Vignesh

    2012-03-30T23:59:59.000Z

    The purpose of this project was to evaluate the ability of advanced low rank coal gasification technology to cause a significant reduction in the COE for IGCC power plants with 90% carbon capture and sequestration compared with the COE for similarly configured IGCC plants using conventional low rank coal gasification technology. GE’s advanced low rank coal gasification technology uses the Posimetric Feed System, a new dry coal feed system based on GE’s proprietary Posimetric Feeder. In order to demonstrate the performance and economic benefits of the Posimetric Feeder in lowering the cost of low rank coal-fired IGCC power with carbon capture, two case studies were completed. In the Base Case, the gasifier was fed a dilute slurry of Montana Rosebud PRB coal using GE’s conventional slurry feed system. In the Advanced Technology Case, the slurry feed system was replaced with the Posimetric Feed system. The process configurations of both cases were kept the same, to the extent possible, in order to highlight the benefit of substituting the Posimetric Feed System for the slurry feed system.

  4. Organic contaminants in groundwater mar an underground coal gasification site in northeastern Wyoming

    SciTech Connect (OSTI)

    Stuermer, D.H.

    1982-09-01T23:59:59.000Z

    Three groundwater samples collected near two underground coal gasification (UCG) sites 15 months after the end of gasification were analysed for dissolved organic contaminants. The contaminants consisted of phenols, aromatic carboxylic acids, aromatic hydrocarbons, ketones, aldehydes, pyridines, quinolines, isoquinolines, and aromatic amines. Concentrations ranged up to about 50 ppm with large variations both in the relative concentrations of acidic, neutral, and basic constituents and in the concentrations of individual compounds. Naphthalene o-xylene, 2-methylpyridine, and o-cresol were consistently present in high concentrations and were identified as UCG contaminant-indicator compounds that appear to be particularly useful for monitoring purposes. A simplified method of analysis for these compounds was developed.

  5. Organic contaminants in groundwater near an underground coal gasification site in northeastern Wyoming

    SciTech Connect (OSTI)

    Stuermer, D.H.; Ng, D.J.; Morris, C.J.

    1982-09-01T23:59:59.000Z

    Three groundwater samples collected near two underground coal gasification (UCG) sites 15 months after the end of gasification were analyzed for dissolved organic contaminants. The contaminants consisted of phenols, aromatic carboxylic acids, aromatic hydrocarbons, ketones, aldehydes, pyridines, quinolines, isoquinolines, and aromatic amines. Concentrations ranged up to about 50 ppm with large variations both in the relative concentrations of acidic, neutral, and basic constituents and in the concentrations of individual compounds. Naphthalene, o-xylene, 2-methylpyridine, and o-cresol were consistently present in high concentrations and were identified as UCG contaminant-indicator compounds that appear to be particularly useful for monitoring purposes. A simplified method of analysis for these compounds was developed.

  6. Ground-water hydrologic effects resulting from underground coal gasification experiments at the Hoe Creek Site near Gillette, Wyoming. Interim report, October 1979-March 1980

    SciTech Connect (OSTI)

    Raber, E.; Stone, R.

    1980-05-01T23:59:59.000Z

    This technical note summarizes our activities, to date, on the research project: Ground-Water Hydrologic Effects Resulting from Underground Coal Gasification Experiments (EPA-IAG-79-D-X0795). The gasified coal seam (Felix No. 2 coal) and two overlying aquifers (Felix No. 1 coal and overlying sand) appear to have become interconnected as a result of roof collapse and subsidence at both Hoe Creek Sites II and III near Gillette, Wyoming. To evaluate changes in the ground-water flow regime at the two sites, completion of supplementary wells was necessary to define the distance versus head drawdown relationships in each of the three aquifers. Hydraulic head potentials have been measured at Site III since gasification ended on October 10, 1979. These data are presented in graphic format. Although hydraulic head measurements at Site II seemed to be approaching a steady-state condition 1.5 years after gasification, the subsequent gasification at Site III temporarily altered the ground-water flow patterns. These changes will have a definite effect on contaminant dispersal and will need to be taken into consideration.

  7. Overburden characterization and post-burn study of the Hanna IV, underground coal gasification site, Wyoming, and comparison to other Wyoming UCG sites

    SciTech Connect (OSTI)

    Marcouiller, B.A.; Burns, L.K.; Ethridge, F.G.

    1984-11-01T23:59:59.000Z

    Analysis of 21 post-burn cores taken from the Hanna IV UCG site allows 96 m (315 ft) of overburden to be subdivided into four local stratigraphic units. The 7.6 m (25 ft) thick Hanna No. 1 coal seam is overlain by a laterally discontinuous, 3.3 m (11 ft) thick shaley mudstone (Unit A') in part of the Hanna IV site. A more widespread, 30 m (90 ft) thick well-indurated sandstone (Unit A) overlies the A' unit. Unit A is the roof rock for both of the Hanna IV cavities. Overlying Unit A is a 33 m (108 ft) thick sequence of mudstone and claystone (Unit B), and the uppermost unit at the Hanna IV site (Unit C) is a coarse-grained sandstone that ranges in thickness from 40 to 67 m (131 to 220 ft). Two elliptical cavities were formed during the two phases of the Hanna IV experiment. The larger cavity, Hanna IVa, is 45 x 15 m in plan and has a maximum height of 18 m (59 ft) from the base of the coal seam to the top of the cavity; the Hanna IVb cavity is 40 x 15 m in plan and has a maximum height of 11 m (36 ft) from the base of the coal seam to the top of the cavity. Geotechnical tests indicated that the Hanna IV overburden rocks were moderately strong to strong, based on the empirical classification of Broch and Franklin (1972), and a positive, linear correlation exists between rock strength and volume percent calcite cement. There is an inverse linear correlation between rock strength and porosity for the Hanna IV overburden rocks. 28 refs., 34 figs., 13 tabs..

  8. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    SciTech Connect (OSTI)

    Constance Senior

    2004-12-31T23:59:59.000Z

    The objectives of this program were to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel and to develop a greater understanding of mercury oxidation across SCR catalysts in the form of a simple model. The Electric Power Research Institute (EPRI) and Argillon GmbH provided co-funding for this program. REI used a multicatalyst slipstream reactor to determine oxidation of mercury across five commercial SCR catalysts at a power plant that burned a blend of 87% subbituminous coal and 13% bituminous coal. The chlorine content of the blend was 100 to 240 {micro}g/g on a dry basis. Mercury measurements were carried out when the catalysts were relatively new, corresponding to about 300 hours of operation and again after 2,200 hours of operation. NO{sub x}, O{sub 2} and gaseous mercury speciation at the inlet and at the outlet of each catalyst chamber were measured. In general, the catalysts all appeared capable of achieving about 90% NO{sub x} reduction at a space velocity of 3,000 hr{sup -1} when new, which is typical of full-scale installations; after 2,200 hours exposure to flue gas, some of the catalysts appeared to lose NO{sub x} activity. For the fresh commercial catalysts, oxidation of mercury was in the range of 25% to 65% at typical full-scale space velocities. A blank monolith showed no oxidation of mercury under any conditions. All catalysts showed higher mercury oxidation without ammonia, consistent with full-scale measurements. After exposure to flue gas for 2,200 hours, some of the catalysts showed reduced levels of mercury oxidation relative to the initial levels of oxidation. A model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

  9. Advanced CO{sub 2} Capture Technology for Low Rank Coal IGCC System

    SciTech Connect (OSTI)

    Alptekin, Gokhan

    2013-09-30T23:59:59.000Z

    The overall objective of the project is to demonstrate the technical and economic viability of a new Integrated Gasification Combined Cycle (IGCC) power plant designed to efficiently process low rank coals. The plant uses an integrated CO{sub 2} scrubber/Water Gas Shift (WGS) catalyst to capture over90 percent capture of the CO{sub 2} emissions, while providing a significantly lower cost of electricity (COE) than a similar plant with conventional cold gas cleanup system based on SelexolTM technology and 90 percent carbon capture. TDA’s system uses a high temperature physical adsorbent capable of removing CO{sub 2} above the dew point of the synthesis gas and a commercial WGS catalyst that can effectively convert CO in The overall objective of the project is to demonstrate the technical and economic viability of a new Integrated Gasification Combined Cycle (IGCC) power plant designed to efficiently process low rank coals. The plant uses an integrated CO{sub 2} scrubber/Water Gas Shift (WGS) catalyst to capture over90 percent capture of the CO{sub 2} emissions, while providing a significantly lower cost of electricity (COE) than a similar plant with conventional cold gas cleanup system based on SelexolTM technology and 90 percent carbon capture. TDA’s system uses a high temperature physical adsorbent capable of removing CO{sub 2} above the dew point of the synthesis gas and a commercial WGS catalyst that can effectively convert CO in bituminous coal the net plant efficiency is about 2.4 percentage points higher than an Integrated Gasification Combined Cycle (IGCC) plant equipped with SelexolTM to capture CO{sub 2}. We also previously completed two successful field demonstrations: one at the National Carbon Capture Center (Southern- Wilsonville, AL) in 2011, and a second demonstration in fall of 2012 at the Wabash River IGCC plant (Terra Haute, IN). In this project, we first optimized the sorbent to catalyst ratio used in the combined WGS and CO{sub 2} capture process and confirmed the technical feasibility in bench-scale experiments. In these tests, we did not observe any CO breakthrough both during adsorption and desorption steps indicating that there is complete conversion of CO to CO{sub 2} and H{sub 2}. The overall CO conversions above 90 percent were observed. The sorbent achieved a total CO{sub 2} loading of 7.82 percent wt. of which 5.68 percent is from conversion of CO into CO{sub 2}. The results of the system analysis suggest that the TDA combined shift and high temperature PSA-based Warm Gas Clean-up technology can make a substantial improvement in the IGCC plant thermal performance for a plant designed to achieve near zero emissions (including greater than 90 percent carbon capture). The capital expenses are also expected to be lower than those of Selexol. The higher net plant efficiency and lower capital and operating costs result in substantial reduction in the COE for the IGCC plant equipped with the TDA combined shift and high temperature PSA-based carbon capture system.

  10. Preliminary draft industrial siting administration permit application: Socioeconomic factors technical report. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project in Converse County, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    Under the with-project scenario, WyCoalGas is projected to make a difference in the long-range future of Converse County. Because of the size of the proposed construction and operations work forces, the projected changes in employment, income, labor force, and population will alter Converse County's economic role in the region. Specifically, as growth occurs, Converse County will begin to satisfy a larger portion of its own higher-ordered demands, those that are currently being satisfied by the economy of Casper. Business-serving and household-serving activities, currently absent, will find the larger income and population base forecast to occur with the WyCoalGas project desirable. Converse County's economy will begin to mature, moving away from strict dependence on extractive industries to a more sophisticated structure that could eventually appeal to national, and certainly, regional markets. The technical demand of the WyCoalGas plant will mean a significant influx of varying occupations and skills. The creation of basic manufacturing, advanced trade and service sectors, and concomitant finance and transportation firms will make Converse County more economically autonomous. The county will also begin to serve market center functions for the smaller counties of eastern Wyoming that currently rely on Casper, Cheyenne or other distant market centers. The projected conditions expected to exist in the absence of the WyCoalGas project, the socioeconomic conditions that would accompany the project, and the differences between the two scenarios are considered. The analysis is keyed to the linkages between Converse County and Natrona County.

  11. EIS-0432: Department of Energy Loan Guarantee for Medicine Bow Gasification and Liquefaction Coal-to-Liquids, Carbon County, Wyoming

    Broader source: Energy.gov [DOE]

    DOE is assessing the potential environmental impacts for its proposed action of issuing a Federal loan guarantee to Medicine Bow Fuel & Power LLC (MBFP), a wholly-owned subsidiary of DKRW Advanced Fuels LLC. MBFP submitted an application to DOE under the Federal loan guarantee program pursuant to the Energy Policy Act of 2005 to support the construction and startup of the MBFP coal-to-liquids facility, a coal mine and associated coal handling facilities. This project is inactive.

  12. Wyoming Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    , 2001). CBM extraction involves pumping methane and ground water out of coal seams. The gas and water://wwweng.uwyo.edu/civil/research/water/epmodeler.html. University of Wyoming, Laramie. 4. Wilkerson, G. V., 2002. A GIS model for evaluating the impacts of coal bed of America, Boulder, CO. #12;Problem and Research Objectives: Coal bed methane (CBM) development

  13. WRI-14-R002r CONVERSION OF LOW-RANK WYOMING COALS INTO GASOLINE BY DIRECT LIQUEFACTION

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not FoundInformation DOEInformation Summary Big*Theea Dynamic WRI-14-R002r

  14. Low-rank coal research semiannual report, January 1992--June 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    This semiannual report is a compilation of seventeen reports on ongoing coal research at the University of North Dakota. The following research areas are covered: control technology and coal preparation; advanced research and technology development; combustion; liquefaction and gasification. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  15. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    21 Figure 6: Map of PRB coal mines serviced by the BNSF-UPPRB.of the Powder River Basin (PRB) in Wyoming. Although traffic

  16. Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal

    SciTech Connect (OSTI)

    Rader, Jeff; Aguilar, Kelly; Aldred, Derek; Chadwick, Ronald; Conchieri,; Dara, Satyadileep; Henson, Victor; Leininger, Tom; Liber, Pawel; Nakazono, Benito; Pan, Edward; Ramirez, Jennifer; Stevenson, John; Venkatraman, Vignesh

    2012-11-30T23:59:59.000Z

    This report describes the development of the design of an advanced dry feed system that was carried out under Task 4.0 of Cooperative Agreement DE-FE0007902 with the US DOE, “Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the use of Low- Rank Coal.” The resulting design will be used for the advanced technology IGCC case with 90% carbon capture for sequestration to be developed under Task 5.0 of the same agreement. The scope of work covered coal preparation and feeding up through the gasifier injector. Subcomponents have been broken down into feed preparation (including grinding and drying), low pressure conveyance, pressurization, high pressure conveyance, and injection. Pressurization of the coal feed is done using Posimetric1 Feeders sized for the application. In addition, a secondary feed system is described for preparing and feeding slag additive and recycle fines to the gasifier injector. This report includes information on the basis for the design, requirements for down selection of the key technologies used, the down selection methodology and the final, down selected design for the Posimetric Feed System, or PFS.

  17. Results of Phase 1 postburn drilling and coring, Rocky Mountain 1 Underground Coal Gasification Site, Hanna Basin, Wyoming

    SciTech Connect (OSTI)

    Lindblom, S.R.; Covell, J.R.; Oliver, R.L.

    1990-09-01T23:59:59.000Z

    The Rocky Mountain 1 (RM1) Underground Coal Gasification (UCG) test consisted of two different module configurations: the controlled retracting injection point (CRIP) and elongated linked well (ELW) configurations. The postburn coring of the RM1 UCG site was designed in two phases to fulfill seven objectives outlined in the Western Research Institute's (WRI) annual project plan for 1988--1989. The seven objectives were to (1) delineate the areal extent of the cavities, (2) identify the extent of roof collapse, (3) obtain samples of all major cavity rock types, (4) characterize outflow channels and cavity stratigraphy, (5) characterize the area near CRIP points and ignition points, (6) further define the structural geology of the site, and (7) identify the vertical positioning of the horizontal process wells within the coal seam. Phase 1 of the coring was completed in the summer of 1989 and served to partially accomplish all seven objectives. In relation to the seven objectives, WRI determined that (1) the ELW cavity extends farther to the west and the CRIP cavity was located 5--10 feet farther to the south than anticipated; (2) roof collapse was contained within unit A in both modules; (3) samples of all major rock types were recovered; (4) insufficient data were obtained to characterize the outflow channels, but cavity stratigraphy was well defined; (5) bore holes near the CRIP points and ignition point did not exhibit characteristics significantly different from other bore holes in the cavities; (6) a fault zone was detected between VIW=1 and VIW-2 that stepped down to the east; and (7) PW-1 was only 7--12 feet below the top of the coal seam in the eastern part of the ELW module area; and CIW-1 was located 18--20 feet below the top of the coal seam in the CRIP module area. 7 refs., 7 figs., 1 tab.

  18. Results of Phase 2 postburn drilling, coring, and logging: Rocky Mountain 1 Underground Coal Gasification Test, Hanna, Wyoming

    SciTech Connect (OSTI)

    Oliver, R.L.; Lindblom, S.R.; Covell, J.R.

    1991-02-01T23:59:59.000Z

    The Rocky Mountain 1 (RM1) Underground Coal Gasification (UCG) site consisted of two different module configurations: the controlled retracting injection point (CRIP) and elongated linked well (ELW) configurations. The postburn coring of the RM1 UCG site was designed in two phases to fulfill seven objectives outlined in Western Research Institute's Annual Project Plan for 1989 (Western Research Institute 1989). The seven objectives were to (1) delineate the areal extent of the cavities, (2) identify the extent of roof collapse, (3) obtain samples of all major cavity rock types, (4) characterize outflow channels and cavity stratigraphy, (5) characterize the area near CRIP points and ignition points, (6) further define the structural geology of the site, and (7) identify the vertical positioning of the horizontal process wells within the coal seam. Phase 1 of the coring was completed during the summer of 1989 and served to partially accomplish all seven objectives. A detailed description of Phase 1 results was presented in a separate report (Lindblom et al. 1990). Phase 2, completed during the summer of 1990, was designed to complete the seven objectives; more specifically, to further define the areal extent and location of the cavities, to evaluate the outflow channels for both modules, and to further characterize the structural geology in the ELW module area.

  19. Results of Phase 2 postburn drilling, coring, and logging: Rocky Mountain 1 Underground Coal Gasification Test, Hanna, Wyoming

    SciTech Connect (OSTI)

    Oliver, R.L.; Lindblom, S.R.; Covell, J.R.

    1991-02-01T23:59:59.000Z

    The Rocky Mountain 1 (RM1) Underground Coal Gasification (UCG) site consisted of two different module configurations: the controlled retracting injection point (CRIP) and elongated linked well (ELW) configurations. The postburn coring of the RM1 UCG site was designed in two phases to fulfill seven objectives outlined in Western Research Institute`s Annual Project Plan for 1989 (Western Research Institute 1989). The seven objectives were to (1) delineate the areal extent of the cavities, (2) identify the extent of roof collapse, (3) obtain samples of all major cavity rock types, (4) characterize outflow channels and cavity stratigraphy, (5) characterize the area near CRIP points and ignition points, (6) further define the structural geology of the site, and (7) identify the vertical positioning of the horizontal process wells within the coal seam. Phase 1 of the coring was completed during the summer of 1989 and served to partially accomplish all seven objectives. A detailed description of Phase 1 results was presented in a separate report (Lindblom et al. 1990). Phase 2, completed during the summer of 1990, was designed to complete the seven objectives; more specifically, to further define the areal extent and location of the cavities, to evaluate the outflow channels for both modules, and to further characterize the structural geology in the ELW module area.

  20. Project {open_quotes}Kovin{close_quotes} - economics of upgraded low-rank coal

    SciTech Connect (OSTI)

    Ljubicic, B.; Anderson, C. [Energy & Environmental Research Center, Grand Forks, ND (United States); Bukurov, Z.; Cvijanovic, P. [Faculty of Technical Sciences, Novi Sad (Yugoslavia); Stajner, K. [Electric Power of Serbia, Novi Sad (Yugoslavia)

    1994-12-31T23:59:59.000Z

    Yugoslavia has large reserves of lignitic coal, some of which are in geological settings that are located below the water table, along and under the Danube River, and are difficult to mine. Since conventional strip mining in the area next to the Danube would be difficult, the Kovin lignite will be mined as course lignite-water slurry. This will be the first time that lignite coal has been mined using dredging equipment. The use of dredging technology for the recovery of multiple lignite seams is an expansion of current dredging practices used to recovery precious and other metals such as tin, as well as diamonds, sand, and gravel from alluvial deposits. The proposed lignite dredging is based on selective mining of several discrete layers. The layers consist of either waste material or lignite and can be directed to a disposal area or to further processing. It is expected that dredging will reduce the environmental impact of the mine, be highly productive since it is fully mechanized, and reduce the cost per ton of lignite. The successful operation at the Kovin mine would also enable lignite to be dredged in other reserve areas where a high water table or significant surface water is present, allowing considerable tonnages of lignite, not currently in reserves, to be moved into the minable reserve category.

  1. Wyoming DOE EPSCoR

    SciTech Connect (OSTI)

    Gern, W.A.

    2004-01-15T23:59:59.000Z

    All of the research and human resource development projects were systemic in nature with real potential for becoming self sustaining. They concentrated on building permanent structure, such as faculty expertise, research equipment, the SEM Minority Center, and the School of Environment and Natural Resources. It was the intent of the DOE/EPSCoR project to permanently change the way Wyoming does business in energy-related research, human development for science and engineering careers, and in relationships between Wyoming industry, State Government and UW. While there is still much to be done, the DOE/EPSCoR implementation award has been successful in accomplishing that change and enhancing UW's competitiveness associated with coal utilization, electrical energy efficiency, and environmental remediation.

  2. Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming

    SciTech Connect (OSTI)

    James Bauder

    2008-09-30T23:59:59.000Z

    U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments when water supplies sourced from coalbed methane extraction are plentiful. Constructed wetlands, planted to native, salt tolerant species demonstrated potential to utilize substantial volumes of coalbed methane product water, although plant community transitions to mono-culture and limited diversity communities is a likely consequence over time. Additionally, selected, cultured forage quality barley varieties and native plant species such as Quail bush, 4-wing saltbush, and seaside barley are capable of sustainable, high quality livestock forage production, when irrigated with coalbed methane product water sourced from the Powder River Basin. A consequence of long-term plant water use which was enumerated is elevated salinity and sodicity concentrations within soil and shallow alluvial groundwater into which coalbed methane product water might drain. The most significant conclusion of these investigations was the understanding that phytoremediation is not a viable, effective technique for management of coalbed methane product water under the present circumstances of produced water within the Powder River Basin. Phytoremediation is likely an effective approach to sodium and salt removal from salt-impaired sites after product water discharges are discontinued and site reclamation is desired. Coalbed methane product water of the Powder River Basin is most frequently impaired with respect to beneficial use quality by elevated sodicity, a water quality constituent which can cause swelling, slaking, and dispersion of smectite-dominated clay soils, such as commonly occurring within the Powder River Basin. To address this issue, a commercial-scale fluid-bed, cationic resin exchange treatment process and prototype operating treatment plant was developed and beta-tested by Drake Water Technologies under subcontract to this award. Drake Water Technologies secured U.S. Patent No. 7,368,059-B2, 'Method for removal of benevolent cations from contaminated water', a beta Drake Process Unit (DPU) was developed and deployed for operation in the Powder River Basin. First year operatio

  3. Energy and environmental research emphasizing low-rank coal. Semi-annual report, January--June 1994

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    Summaries of progress on the following tasks are presented: Mixed waste treatment; Hot water extraction of nonpolar organic pollutant from soils; Aqueous phase thermal oxidation wastewater treatment; Review of results from comprehensive characterization of air toxic emissions from coal-fired power plants; Air toxic fine particulate control; Effectiveness of sorbents for trace elements; Catalyst for utilization of methane in selective catalytic reduction of NOx; Fuel utilization properties; Hot gas cleaning; PFBC; catalytic tar cracking; sulfur forms in coal; resid and bitumen desulfurization; biodesulfurization; diesel fuel desulfurization; stability issues; Sorbent carbon development; Evaluation of carbon products; Stable and supercritical chars; Briquette binders; Carbon molecular sieves; Coal char fuel evaporation canister sorbent; Development of a coal by-product classification protocol for utilization; Use of coal ash in recycled plastics and composite materials; Corrosion of advanced structural materials; Joining of advanced structural materials; Resource data evaluation; and the Usti and Labem (Czech Republic) coal-upgrading program.

  4. Coal slurry pipeline based midwest fuel hub

    SciTech Connect (OSTI)

    Huettenhain, H. [Bechtel Technology & Consulting San Francisco, CA (United States)

    1998-12-31T23:59:59.000Z

    Low sulfur Powder River Basin (PRB) coal is a sought after fuel to comply with the year 2000 emission regulation for utility boilers. PRB coal is presently not competitive East of the Mississippi mainly because of railroad switching requirements and boiler designs not compatible with the PRB fuel characteristics. The use of the Lakes for transportation is an exception. The Lakes shipping lanes however, are only open part of the year. It is proposed to construct a coal slurry pipeline from the center of Wyoming coalfields to a hub near Detroit with access to low cost waste energy from power generation stations. The coal slurry pipeline will transport up to 25 million tons per year of fine PRB coal which has been removed from the conventionally transported coal, namely coal transported by rail. The rail delivered coal will have less dust. The system fits the DOE Vision 21 concept to mine and utilize coal in highly efficient systems and with the least environmental impact. The PRB coal is of subbituminous rank and not directly compatible with the boilers in Michigan/Indiana/Ohio area, which are designed to burn bituminous coal. Upgrading of the PRB coal using the hydrothermal slurry upgrading process can transform the PRB coal into a higher Btu content fuel by removing a large portion of the inherent moisture. Such upgraded PRB coal has proven an excellent reactive fuel when burned conventionally as PC fuel, or even when burned in slurry form as Coal Water Fuel (CWF). The cost of the process can be recovered when the process is combined with a coal slurry pipeline transport system. The result is an upgraded competitive fuel or fuels, which can be used for co-firing or re-burning applications to reduce SO{sub 2} and NOx emissions of utility boilers. The fuels can be powdered for direct fuel injection into boilers or blast furnaces as well as CWF. Depending on the stability of the upgraded PRB coal, the pipeline product could also be dewatered and prepared for export. This paper describes the concept and preliminary cost information. It also reports on reactions of the industries, which could be involved in the complex system, namely, coal mining companies, railroads, pipeline operators, fuel suppliers, and utilities.

  5. Rank enhancement of Permian Barakar and Raniganj coal measures in the western part of the Sohagpur coalfield, Madhya Pradesh, India

    SciTech Connect (OSTI)

    Warwick, P.D.; Milici, R.C.; Mukhopadyay, A.; Adhikari, S.

    1999-07-01T23:59:59.000Z

    The Geological Survey of India (GSI) and the U.S. Geological Survey (USGS) are engaged in a study of the coking coal deposits in the Sohagpur coalfield, near Shahdol, Madhya Pradesh. The major occurrences of coking coal in the Sohagpur coalfield are on the northern, down-thrown side of the regional Bamhani-Chilpa fault, where depths to the coking coal range generally from 100 to 500 m. These coal deposits are within the Permian Barakar Formation, which comprises the lower coal measures of the Gondwana Supergroup. Equivalent coal beds on the south side of the fault are generally non-coking, and are currently being mined in open-cast and underground mines, for use as fuel for electric power generation. In this paper, new data are presented which expands on data and ideas originally presented in Mukhopadyay and others. The purpose of this paper is to integrate thermal signatures (vitrinite reflectance and volatile matter) of the principal coal beds of the Sohagpur coalfield with stratigraphic and structural data. In order to characterize the coking coal deposits, the authors have collected more than 100 coal samples from both the Barakar and Raniganj Formations for analyses. The occurrence of coking coal in the Sohagpur coalfield is related primarily to the thermal alteration of the coal beds in the different geologic settings within the coalfield. In addition, differences in the maceral content of the various coal beds and in the chemical and physical composition within each bed depending upon location, play an important role in determining the existence of coking properties for a particular coal deposit. Potential heat sources for thermal alteration include the abundant dolerite intrusives in the region, and greater depth of burial of the coking coal beds on the down-thrown side of the Bamhani-Chilpa fault. Offset along the Bamhani-Chilpa system has been suggested to greater than 400 m. Hot water, similar to that found in other Permian coalfields in India, may have been the agent that metamorphosed the coal in some places but not in others.

  6. Coal-bed methane - New energy for today and the future

    SciTech Connect (OSTI)

    Murray, D.K. (Keith Murray and Associates, Inc., Golden, CO (USA)); Schwochow, S.D. (Colorado School of Mines, Golden (USA))

    1990-05-01T23:59:59.000Z

    Coal is one of the richest known sources of hydrocarbons. This heterogeneous material has the unique characteristic of being both a source and a reservoir of natural gas. By virtue of their maturation to high rank some coals have the capacity to generate more than 8,000 ft{sup 3} of methane per ton of coal. Although most of this gas eventually has been lost over 400 trillion ft{sup 3} remains in place in US coal basins. The Potential Gas Committee has estimated that at least 90 trillion ft{sup 3} likely are recoverable. Coal-bed methane exploration requires application of both coal geology and petroleum geology as well as nonconventional approaches to reservoir engineering. With advanced technologies developed largely through cooperative efforts of the Gas Research Institute and industry, researchers and explorationists are better understanding the geological and engineering peculiarities of coal reservoirs. Commercial coal-bed methane development occurs basically in two diverse geologic settings: (1) thin, shallow coals of Pennsylvanian age in the Black Warrior and Appalachian basins and (2) thicker, deeper coals of Cretaceous age in the Rocky Mountains, principally the San Juan, Piceance, Raton, and Green River basins. Recent exploration has targeted shallow, anomalously thick but lower-rank, low-gas-content Tertiary coals in Wyoming. Coal basins in Washington, British Columbia, and Alberta also show potential. Methane in coal beds is an immense, virtually untapped source of environmentally acceptable, pipeline-quality energy. In light of increasing demand for natural gas, coal-bed methane is becoming an economically viable, low-risk exploratory and development objective.

  7. Jobs and Economic Development from New Transmission and Generation in Wyoming (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01T23:59:59.000Z

    Wyoming is a significant energy exporter, producing nearly 40% of the nation's coal and 10% of the nation's natural gas. However, opportunities to add new energy exports in the form of power generation are limited by insufficient transmission capacity. This fact sheet summarizes results from a recent analysis conducted by NREL for the Wyoming Infrastructure Authority (WIA) that estimates jobs and economic development activity that could occur in Wyoming should the market support new investments in power generation and transmission in the state.

  8. Opportunities in underground coal gasification

    SciTech Connect (OSTI)

    Bloomstran, M.A.; Davis, B.E.

    1984-06-01T23:59:59.000Z

    A review is presented of the results obtained on DOE-sponsored field tests of underground coal gasification in steeply-dipping beds at Rawlins, Wyoming. The coal gas composition, process parameters, and process economics are described. Steeply-dipping coal resources, which are not economically mineable using conventional coal mining methods, are identified and potential markets for underground coal gasification products are discussed. It is concluded that in-situ gasification in steeply-dipping deposits should be considered for commercialization.

  9. Geosphere in underground coal gasification

    SciTech Connect (OSTI)

    Daly, D.J.; Groenewold, G.H.; Schmit, C.R.; Evans, J.M.

    1988-07-01T23:59:59.000Z

    The feasibility of underground coal gasification (UCG), the in-situ conversion of coal to natural gas, has been demonstrated through 28 tests in the US alone, mainly in low-rank coals, since the early 1970s. Further, UCG is currently entering the commercial phase in the US with a planned facility in Wyoming for the production of ammonia-urea from UCG-generated natural gas. Although the UCG process both affects and is affected by the natural setting, the majority of the test efforts have historically been focused on characterizing those aspects of the natural setting with the potential to affect the burn. With the advent of environmental legislation, this focus broadened to include the potential impacts of the process on the environment (e.g., subsidence, degradation of ground water quality). Experience to date has resulted in the growing recognition that consideration of the geosphere is fundamental to the design of efficient, economical, and environmentally acceptable UCG facilities. The ongoing RM-1 test program near Hanna, Wyoming, sponsored by the US Department of Energy and an industry consortium led by the Gas Research Institute, reflects this growing awareness through a multidisciplinary research effort, involving geoscientists and engineers, which includes (1) detailed geological site characterization, (2) geotechnical, hydrogeological, and geochemical characterization and predictive modeling, and (3) a strategy for ground water protection. Continued progress toward commercialization of the UCG process requires the integration of geological and process-test information in order to identify and address the potentially adverse environmental ramifications of the process, while identifying and using site characteristics that have the potential to benefit the process and minimize adverse impacts.

  10. The potential for coalbed gas exploration and production in the Greater Green River Basin, southwest Wyoming and northwest Colorado

    SciTech Connect (OSTI)

    Tyler, R.; Kaiser, W.R.; Scott, A.R.; Hamilton, D.S. [Univ. of Texas, Austin, TX (United States)

    1997-01-01T23:59:59.000Z

    Coalbed gas is an important source of natural gas in the United States. In 1993, approximately 740 BCF of coalbed gas was produced in the United States, or about 4.2% of the nation`s total gas production. Nearly 96% of this coalbed gas is produced from just two basins, the San Juan (615.7 BCF; gas in place 84 TCF) and Black Warrior (105 BCF; gas in place 20 TCF), and current production represents only a fraction of the nation`s estimated 675 TCF of in-place coalbed gas. Coal beds in the Greater Green River Basin in southwest Wyoming and northwest Colorado hold almost half of the gas in place (314 TCF) and are an important source of gas for low-permeability Almond sandstones. Because total gas in place in the Greater Green River Basin is reported to exceed 3,000 TCF (Law et al., 1989), the basin may substantially increase the domestic gas resource base. Therefore, through integrated geologic and hydrologic studies, the coalbed gas potential of the basin was assessed where tectonic, structural, and depositional setting, coal distribution and rank, gas content, coal permeability, and ground-water flow are critical controls on coalbed gas producibility. Synergism between these geologic and hydrologic controls determines gas productivity. High productivity is governed by (1) thick, laterally continuous coals of high thermal maturity, (2) basinward flow of ground water through fractured and permeable coals, down the coal rank gradient toward no-flow boundaries oriented perpendicular to the regional flow direction, and (3) conventional trapping of gas along those boundaries to provide additional sources of gas beyond that sorbed on the coal surface.

  11. A SUMMARY OF COAL IN THE FORT UNION FORMATION (TERTIARY), BIGHORN BASIN,

    E-Print Network [OSTI]

    Chapter SB A SUMMARY OF COAL IN THE FORT UNION FORMATION (TERTIARY), BIGHORN BASIN, WYOMING assessment of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U...........................................................................................................................SB-1 Coal Production History

  12. Low-rank coal research annual report, July 1, 1989--June 30, 1990 including quarterly report, April--June 1990

    SciTech Connect (OSTI)

    Not Available

    1990-11-01T23:59:59.000Z

    Research programs in the following areas are presented: control technology and coal preparation; advance research and technology development; combustion; liquefaction; and gasification. Sixteen projects are included. Selected items have been processed separately for inclusion in the Energy Science and Technology Database.

  13. Investigation of feasibility of injecting power plant waste gases for enhanced coalbed methane recovery from low rank coals in Texas

    E-Print Network [OSTI]

    Saugier, Luke Duncan

    2004-09-30T23:59:59.000Z

    such as power plants. CO2 emissions can be offset by sequestration of produced CO2 in natural reservoirs such as coal seams, which may initially contain methane. Production of coalbed methane can be enhanced through CO2 injection, providing an opportunity...

  14. Overview of Energy Development Opportunities for Wyoming

    SciTech Connect (OSTI)

    Larry Demick

    2012-11-01T23:59:59.000Z

    An important opportunity exists for the energy future of Wyoming that will • Maintain its coal industry • Add substantive value to its indigenous coal and natural gas resources • Improve dramatically the environmental impact of its energy production capability • Increase its Gross Domestic Product These can be achieved through development of a carbon conversion industry that transforms coal and natural gas to synthetic transportation fuels, chemical feedstocks, and chemicals that are the building blocks for the chemical industry. Over the longer term, environmentally clean nuclear energy can provide the substantial energy needs of a carbon conversion industry and be part of the mix of replacement technologies for the current fleet of aging coal-fired electric power generating stations.

  15. Integrating flotation to improve the performance of an HMC circuit treating a low-rank fine coal

    SciTech Connect (OSTI)

    Celik, H.; Polat, M. [Celar Bayar University, Manisa (Turkey)

    2005-11-01T23:59:59.000Z

    One reason that heavy media cyclone (HMC) circuits suffer from the inadvertent loss of magnetite and fine coal is the presence of nonmagnetic material in the magnetic separator feed. In this study, flotation was applied to the undersize fractions of the HMC drain-and-rinse screens to minimize these problems. These fractions, which contain 17.9% nonmagnetic material, are currently sent to magnetic separators and the nonmagnetic portion from the separators contains 39.1% ash. Applying flotation resulted in a clean coal product with an ash content of 8.7% and a calorific value of 6,300 kcal/kg. The refuse from flotation, which will be sent to the magnetic separators, contains 7.7% nonmagnetics.

  16. Wyoming's Budget: From Champagne to Soda Pop

    E-Print Network [OSTI]

    Schuhmann, Robert A; Skopek, Tracy A

    2011-01-01T23:59:59.000Z

    and Skopek: Wyoming’s Budget: From Champagne to Soda Popconstruction money from budget cuts,” Casper Star-Tribune.proposes leaner state budget. ” Associated Press. Neary,

  17. ENCOAL Mild Coal Gasification Project

    SciTech Connect (OSTI)

    Not Available

    1992-02-01T23:59:59.000Z

    ENCOAL Corporation, a wholly-owned subsidiary of Shell Mining Company, is constructing a mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by Shell and SGI International, utilizes low-sulfur Powder River Basin Coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). The products, as alternative fuels sources, are expected to significantly reduce current sulfur emissions at industrial and utility boiler sites throughout the nation, thereby reducing pollutants causing acid rain.

  18. Underground coal gasification: environmental update

    SciTech Connect (OSTI)

    Dockter, L.; Mcternan, E.M.

    1985-01-01T23:59:59.000Z

    To evaluate the potential for ground water contamination by underground coal gasification, extensive postburn groundwater monitoring programs are being continued at two test sites in Wyoming. An overview of the environmental concerns related to UCG and some results to date on the two field sites are presented in this report.

  19. Fluorine in coal and coal by-products

    SciTech Connect (OSTI)

    Robertson, J.D.; Wong, A.S.; Hower, J.C. [Univ. of Kentucky, Lexington, KY (United States)

    1994-12-31T23:59:59.000Z

    Fluorine occurs in awe amounts in most coals. It is typically associated with minerals of the apatite group, principally fluorapatite and clays, and with fluorite, tourmaline, topaz, amphiboles and micas. The average fluorine content of US coal is, according to the tabulation of Swanson, 74 {mu}g/g. In the United States, the lowest average fluorine concentration of 30 {mu}g/g is found in coals from Eastern Kentucky and the highest average value of 160 {mu}g/g is found in coals from Wyoming and New Mexico. The concentration range of fluorine in European coals is similar to that found in the US while the average fluorine content of Australian coals ranges from 15 to 500 {mu}g/g. We have determined the fluorine content in coal and fly ash standards by proton-induced gamma ray emission analysis (PIGE).

  20. Wyoming Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYearBarrels)Wyoming3.40 4.30

  1. Report on surface geology and groundwater investigations of Mortons and Green Valley Well Fields. Final technical report, November 1980-May 1982. [Proposed WyCoalGas Project, Converse County, Wyoming; site evaluation

    SciTech Connect (OSTI)

    None

    1982-01-01T23:59:59.000Z

    The general region of investigation of this report is in the southern part of the Powder River Basin near the Town of Douglas, Wyoming. Two specific areas within this region were investigated to determine the groundwater potential with drilling and testing programs during the years 1973 to 1975. One area of investigation is located approximately 12 miles west of Douglas in T32 and 33N, R73 and 74W, and is known as the Green Valley Well Field. This area is situated in the foothills of the north end of the Laramie Range and encompasses approximately 25 square miles. In this area the Madison Formation limestone and the Flathead Formation sandstone are the aquifers of interest for groundwater production. The second area is located approximately 13 miles north of Douglas in T34 and 35N, R70 and 71W, and is known as the Mortons Well Field. This area encompasses about 30 square miles. In this area, the Lance Formation and Fox Hills Formation sandstones are the aquifers of interest. Contained within the body of this report are two geologic studies prepared by consulting geologists, Dr. Peter Huntoon and Henry Richter. These studies define the pertinent structural and groundwater geologic features in and in the vicinities of the Mortons and Green Valley Well Fields. A relatively complex structural geology was encountered in the Green Valley area. The study of the Mortons area suggests that the geology of this area is relatively uniform. Inventories of the water users in the vicinities of the two study areas are included at the back of this report in Appendix B. These inventories are comprised of water appropriations as recognized by the Wyoming State Engineer's Office. Both groundwater and surface water appropriations are inventoried within the Green Valley study area. Only groundwater appropriations are inventoried within the Mortons study area.

  2. HYDROGENOLYSIS OF A SUB-BITUMINOUS COAL WITH MOLTEN ZINC CHLORIDE SOLUTIONS

    E-Print Network [OSTI]

    Holten, R.R.

    2010-01-01T23:59:59.000Z

    variations in coal from rank to rank, mine to mine, seam tocoal was supplied by the Wyodak t. Resources Development Corporation from the Roland top seam

  3. Sustainable development with clean coal

    SciTech Connect (OSTI)

    NONE

    1997-08-01T23:59:59.000Z

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  4. Ashing properties of coal blends

    SciTech Connect (OSTI)

    Biggs, D.L.

    1982-03-01T23:59:59.000Z

    The fusion properties of sulfur materials present in coals were investigated. The treatment of the samples of eleven different coals is described. Thermal treatment of low temperature ashing (LTA) concentrates of eight of the coals was performed, and raw and wash ashing curves were examined to determine what quantitative correlations, if any, exist between ashing parameters and rank of coal. The actual form of the function which describes the ashing curve is derived.

  5. BLACK THUNDER COAL MINE AND LOS ALAMOS NATIONAL LABORATORY EXPERIMENTAL STUDY

    E-Print Network [OSTI]

    BLACK THUNDER COAL MINE AND LOS ALAMOS NATIONAL LABORATORY EXPERIMENTAL STUDY OF SEISMIC ENERGY of Explosive Engineers, 2-5 Feb 97, Las Vegas, NV #12;BLACK THUNDER COAL MINE AND LOS ALAMOS NATIONAL and David Gross Thunder Basin Coal Company Post Office Box 406 Wright, Wyoming 82732 D. Craig Pearson

  6. Proceedings of the sixteenth biennial low-rank fuels symposium

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    Low-rank coals represent a major energy resource for the world. The Low-Rank Fuels Symposium, building on the traditions established by the Lignite Symposium, focuses on the key opportunities for this resource. This conference offers a forum for leaders from industry, government, and academia to gather to share current information on the opportunities represented by low-rank coals. In the United States and throughout the world, the utility industry is the primary user of low-rank coals. As such, current experiences and future opportunities for new technologies in this industry were the primary focuses of the symposium.

  7. Quarterly review of Methane from Coal Seams Technology. Volume 9, Number 2, January 1992. Rept. for Apr-Jun 91

    SciTech Connect (OSTI)

    McBane, R.A.; Schwochow, S.D.; Stevens, S.H.

    1992-01-01T23:59:59.000Z

    The following reports summarize the results of recent exploration, testing, and production in the Wind River Basin, Wyoming; Powder River Basin, Wyoming and Montana; Greater Green River Coal Region, Wyoming and Colorado; Piceance Basin, Colorado; San Juan Basin, Colorado and New Mexico; Raton Basin, Colorado and New Mexico; Black Warrior Basin, Alabama and the Northern and Central Appalachian Basins. Contents also include: Advances in Laboratory Measurement Techniques of Relative Permeability and Capillary Pressure for Coal Seams; Methane from Coal Seams Research; and Technical Events.

  8. Continuing consolidation in the coal industry

    SciTech Connect (OSTI)

    Gaalaas, T. [Pace Global Energy Services LLC (United States)

    2006-08-15T23:59:59.000Z

    Extensive consolidation has occurred in the coal industry over the past decade. The greatest degree of consolidation has occurred in Northern Appalachia, the Illinois Basin, and the Wyoming portion of the Powder River Basin (PRB), which are the coal supply regions where most observers expect the greatest growth in coal production over the next decade. In addition to reducing the number of alternative suppliers, high level of concentration also tend to result in higher prices, more volatile spot markets, and lower levels of reliability. Therefore, coal-fired generators purchasing in these regions need to respond proactively and strategically to these market trends. 2 figs.

  9. Hg and Se capture and fly ash carbons from combustion of complex pulverized feed blends mainly of anthracitic coal rank in Spanish power plants

    SciTech Connect (OSTI)

    I. Surez-Ruiz; J.C. Hower; G.A. Thomas [Instituto Nacional del Carbon (INCAR-CSIC), Oviedo (Spain)

    2007-01-15T23:59:59.000Z

    In this work, the petrology and chemistry of fly ashes produced in a Spanish power plant from the combustion of complex pulverized feed blends made up of anthracitic/meta-anthracitic coals, petroleum, and natural coke are investigated. It was found that the behavior of fly ash carbons derived from anthracitic coals follows relatively similar patterns to those established for the carbons from the combustion of bituminous coals. Fly ashes were sampled in eight hoppers from two electrostatic precipitator (ESP) rows. The characterization of the raw ashes and their five sieved fractions (from {gt}150 to {lt}25 {mu}m) showed that glassy material, quartz, oxides, and spinels in different proportions are the main inorganic components. As for the organic fraction, the dominant fly ash carbons are anisotropic carbons, mainly unburned carbons derived from anthracitic vitrinite. The concentration of Se and Hg increased in ashes of the second ESP row, this increase being related to the higher proportion of anisotropic unburned carbons, particularly those largely derived from anthracitic vitrinite in the cooler ashes of the ESP (second row) and also related to the decrease in the flue gas temperature. This suggests that the flue gas temperature plays a major role in the concentration of mercury for similar ratios of unburned carbons. It was also found that Hg is highly concentrated in the medium-coarser fractions of the fly ashes ({gt} 45 {mu}m), there being a positive relationship between the amount of these carbons, which are apparently little modified during the combustion process, in the medium-coarse fractions of the ashes and the Hg retention. According to the results obtained, further research on this type of fly ash could be highly productive. 28 refs., 10 figs., 8 tabs.

  10. Wyoming - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalTheE.&Gasolinein7"10"

  11. Quarterly review of methane from coal-seams technology. Volume 7, Number 3, July-September 1989

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The report contains: sources of coal well information; Powder River Basin, Wyoming; greater Green River coal region, Wyoming and Colorado; Piceance Basin, Colorado; San Juan Basin, Colorado and New Mexico; Raton Basin, Colorado and New Mexico; Black Warrior Basin, Alabama; the United States coalbed methane resource; western cretaceous coal seams project; multiple coal seams project; spalling and the development of a hydraulic fracturing strategy for coal; geologic evaluation of critical production parameters for coalbed methane resources; coalbed methane opportunities in Alberta; the coalbed methane forum; eastern coalbed methane forum.

  12. Quarterly review of methane from coal seams Technology. Volume 7, Numbers 1 and 2. October 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    Contents include: basin activities--(western Washington, Powder River Basin, Wyoming, Greater Green River Basin, Wyoming and Colorado, Piceance Basin, Colorado, San Juan Basin, Colorado and New Mexico, Raton Basin, Colorado and New Mexico, Black Warrior Basin, Alabama); features--(research in small-scale gas processing, GRI publications on coalbed methane, coalbed methane information sources); methane from coal seams research--(multiple coal seams project, hydrologic characterization of coal seams, spalling and the development of a hydraulic-fracturing strategy for coal, geologic evaluation of critical production parameters for coalbed methane resources, permeability changes resulting from gas desorption); technical events; departments.

  13. Coal-CO[subscript 2] Slurry Feed for Pressurized Gasifiers: Slurry Preparation System Characterization and Economics

    E-Print Network [OSTI]

    Botero, Cristina

    Gasification-based plants with coal-CO[subscript 2] slurry feed are predicted to be more efficient than those with coal-water slurry feed. This is particularly true for high moisture, low rank coal such as lignite. ...

  14. Energy and environmental research emphasizing low-rank coal: Task 3.4 -- Hot-gas cleaning. Topical report (includes semiannual report for January--June 1995)

    SciTech Connect (OSTI)

    Weber, G.F.; Swanson, M.L.

    1995-06-01T23:59:59.000Z

    This report summarizes the accomplishments of three subtasks completed in support of the current and future hot-gas cleanup activities at the Energy and Environmental Research Center (EERC). The overall objective of the EERC hot-gas cleanup task is to develop reliable methods to remove particulate matter from high-temperature, high-pressure gas streams produced from coal combustion and/or gasification. Near-term task objectives include (1) design, fabrication, and assembly of a high-temperature, high-pressure bench-scale filter vessel; (2) design, fabrication, and assembly of a high-temperature, high-pressure sampling train; and (3) the preliminary design of a pilot-scale high-temperature, high-pressure filter vessel and support systems. Bench-scale hot-gas filter research will be performed with the pressurized fluid-bed reactor (PFBR) or the continuous fluid-bed reactor (CFBR) and a hot-gas filter vessel. The objectives of future work with the bench-scale system will be to determine particulate and vapor-phase alkali degradation of candidate ceramic filter structures as well as filter performance relative to particulate collection efficiency, differential pressure, and filter cleanability. Construction of the high-temperature, high-pressure sampling system was intended to support bench- and pilot-scale activities with respect to conventional particulate sampling (total mass and particle-size distribution) and hazardous air pollutant (HAP) sampling. Finally, pilot-scale tests will be performed to evaluate filter performance and determine alkali corrosion of ceramic materials with a hot-gas filter vessel attached to the EERC Transport Reactor Development Unit (TRDU).

  15. Coal resources of Kyrgyzstan

    SciTech Connect (OSTI)

    Landis, E.R.; Bostick, N.H.; Gluskoter, H.J.; Johnson, E.A. [Geological Survey, Denver, CO (United States); Harrison, C.D. [CQ Inc., Homer City, PA (United States); Huber, D.W.

    1995-12-31T23:59:59.000Z

    The rugged, mountainous country of Kyrgyzstan contains about one-half of the known coal resources of central Asia (a geographic and economic region that also includes Uzbekistan, Tadjikistan and Turkmenistan). Coal of Jurassic age is present in eight regions in Kyrgyzstan in at least 64 different named localities. Significant coal occurrences of about the same age are present in the central Asian countries of Kazakhstan, China, and Russia. Separation of the coal-bearing rocks into individual deposits results more than earth movements before and during formation of the present-day mountains and basins of the country than from deposition in separate basins.Separation was further abetted by deep erosion and removal of the coal-bearing rocks from many areas, followed by covering of the remaining coal-bearing rocks by sands and gravels of Cenozoic age. The total resources of coal in Kyrgyzstan have been reported as about 30 billion tons. In some of the reported localities, the coal resources are known and adequately explored. In other parts of the republic, the coal resources are inadequately understood or largely unexplored. The resource and reserve inventory of Kyrgyzstan is at best incomplete; for some purposes, such as short-term local and long-range national planning, it may be inadequate. Less than 8% of the total estimated resources are categorized as recoverable reserves, and the amount that is economically recoverable is unknown. The coal is largely of subbituminous and high-volatile C bituminous rank, most has low and medium ash and sulfur contents, and coals of higher rank (some with coking qualities) are present in one region. It is recommended that appropriate analyses and tests be made during planning for utilization.

  16. Formation and retention of methane in coal

    SciTech Connect (OSTI)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15T23:59:59.000Z

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  17. Western Coal/Great Lakes Alternative export-coal conference

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    This conference dealt with using the Great Lakes/St. Lawrence Seaway as an alternative to the East and Gulf Coasts for the exporting of coal to Europe and the potential for a piece of the European market for the subbituminous coals of Montana and Wyoming. The topics discussed included: government policies on coal exports; the coal reserves of Montana; cost of rail transport from Western mines to Lake Superior; the planning, design, and operation of the Superior Midwest Energy Terminal at Superior, Wisconsin; direct transfer of coal from self-unloading lakers to large ocean vessels; concept of total transportation from mines to users; disadvantage of a nine month season on the Great Lakes; costs of maritime transport of coal through the Great Lakes to Europe; facilities at the ice-free, deep water port at Sept Iles; the use of Western coals from an environmental and economic viewpoint; the properties of Western coal and factors affecting its use; the feasibility of a slurry pipeline from the Powder River Basin to Lake Superior; a systems analysis of the complete hydraulic transport of coal from the mine to users in Europe; the performance of the COJA mill-burner for the combustion of superfine coal; demand for steam coal in Western Europe; and the effect the New Source Performance Standards will have on the production and use of Western coal. A separate abstract was prepared for each of the 19 papers for the Energy Data Base (EDB); 17 will appear in Energy Research Abstracts (ERA) and 11 in Energy Abstracts for Policy Analysis (EAPA). (CKK)

  18. Comparison of coal tars generated by pyrolysis of Hanna coal and UCG (underground coal gasification) Hanna IVB coal tars

    SciTech Connect (OSTI)

    Barbour, F.A.; Cummings, R.E.

    1986-04-01T23:59:59.000Z

    The compositions of coal tars produced by laboratory and pilot scale apparatus have been compared to those produced during underground coal gasification (UCG) experiments at Hanna, Wyoming. Four coal tars were generated by pyrolysis using the block reactor and the laboratory reference retort, and a fifth coal tar was composited from products produced by UCG. Coal tars were separated into chemically defined fractions and were characterized by gas chromatography. Specific compounds were not identified, but rather fingerprinting or compound-type profiling was used for identifying similarities and differences in the product tars. This permitted the evaluation of the different methods of tar production with respect to one another. The UCG coal tars appeared to have undergone more secondary cracking than the pyrolytic products. The coal tar products from the laboratory reference retort appear to be more indicative of the coal's chemical structure. Products from the block reactor contained lesser amounts of the lighter boiling material. In addition there is organic sulfur contamination as indicated by the large amount of sulfur present in the product tar from the block reactor. 11 refs., 16 figs., 11 tabs.

  19. Biological treatment of underground coal gasification wastewaters

    SciTech Connect (OSTI)

    Bryant, C.W. Jr.; Humenick, M.J.; Cawein, C.C.; Nolan, B.T. III

    1985-05-01T23:59:59.000Z

    Biotreatability studies using underground coal gasification (UCG) wastewaters were performed by the University of Arizona and the University of Wyoming. The University of Arizona researchers found that UCG condensate could be effectively treated by activated sludge, using feed wastewaters of up to 50% strength. Total organic carbon (TOC) and chemical oxygen demand (COD) removals approached 90% during this research. The University of Wyoming researchers found that solvent extraction and hot-gas stripping were effective pretreatments for undiluted UCG condensate and that addition of powdered activated carbon enhanced the biotreatment process. TOC and COD removals resulting from the combination of pretreatments and biotreatment were 91% and 95%, respectively. The yield, decay, and substrate removal rate coefficients were greater in the University of Wyoming study than in the University of Arizona study. This was possibly caused by removing bioinhibitory substances, such as ammonia, with pretreatment. 18 refs., 25 figs., 6 tabs.

  20. Quarterly Review of Methane from Coal Seams Technology. Volume 8, Number 3, April 1991. Rept. for Jul-Sep 90

    SciTech Connect (OSTI)

    McBane, R.A.; Schwochow, S.D.; Stevens, S.H.

    1991-01-01T23:59:59.000Z

    Contents include reports on: Powder River Basin, Wyoming and Montana; Greater Green River Coal Region, Wyoming and Colorado; Uinta Basin, Utah; Piceance Basin, Colorado; San Juan Basin, Colorado and New Mexico; Raton Basin, Colorado and New Mexico; Black Warrior Basin, Alabama; Experimental Fracturing and Propping of Coal-Implications for Hydraulic Fracture Design; Western Cretaceous Coal Seams Project; Multiple Coal Seams Project; Coalbed Methane Technology Development in the Appalachian Basin; Reservoir Engineering and Analysis and Geologic Evaluation of Critical Production Parameters for Coalbed Methane Resources.

  1. SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING

    E-Print Network [OSTI]

    SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING US EPA Project Meeting April 7 2011April 7, 2011/Titan Uranium, VP Development · Deborah LebowAal/EPA Region 8 Air Program Introduction to Titan Uranium USA;PROJECT OVERVIEW ·Site Location·Site Location ·Fremont , Wyoming ·Existing Uranium Mine Permit 381C

  2. Oxygen enhanced switching to combustion of lower rank fuels ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enhanced switching to combustion of lower rank fuels Re-direct Destination: A furnace that combusts fuel, such as coal, of a given minimum energy content to obtain a stated minimum...

  3. Wyoming Natural Gas Processed in Wyoming (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYearBarrels)Wyoming (Million

  4. The Technical and Economic Feasibility of Siting Synfuels Plants in Wyoming

    SciTech Connect (OSTI)

    Anastasia M Gandrik; Rick A Wood; David Bell; William Schaffers; Thomas Foulke; Richard D Boardman

    2011-09-01T23:59:59.000Z

    A comprehensive study has been completed to determine the feasibility of constructing and operating gasification and reforming plants which convert Wyoming fossil resources (coal and natural gas) into the higher value products of power, transportation fuels, and chemical feedstocks, such as ammonia and methanol. Detailed plant designs, simulation models, economic models and well-to-wheel greenhouse gas models were developed, validated by national-level engineering firms, which were used to address the following issues that heretofore have prevented these types of projects from going forward in Wyoming, as much as elsewhere in the United States: 1. Quantification of plant capital and operating expenditures 2. Optimization of plant heat integration 3. Quantification of coal, natural gas, electricity, and water requirements 4. Access to raw materials and markets 5. Requirements for new infrastructure, such as electrical power lines and product pipelines 6. The possible cost-benefit tradeoffs of using natural gas reforming versus coal gasification 7. The extent of labor resources required for plant construction and for permanent operations 8. Options for managing associated CO2 emissions, including capture and uses in enhanced oil recovery and sequestration 9. Options for reducing water requirements such as recovery of the high moisture content in Wyoming coal and use of air coolers rather than cooling towers 10. Permitting requirements 11. Construction, and economic impacts on the local communities This paper will summarize the analysis completed for two major synfuels production pathways, methanol to gasoline and Fischer-Trosph diesel production, using either coal or natural gas as a feedstock.

  5. Determining coal permeabilities through constant pressure production interference testing

    E-Print Network [OSTI]

    Schubarth, Stephen Kurt

    1983-01-01T23:59:59.000Z

    Kurt Schubarth, B. S. , Texas A&M Un1versity Chairman of Advisory Committee: Dr. Stephen A. Holditch The determination of format1on propert1es 1s important to the success of any underground coal gasification (UCG) project. There are many ways.... : "Hydrological Site Characterization for In-Situ Coal Gasification, " 6th Underground Coal Conversion Symposium, July 13-17, 1980. Schrider, L. A. and Jennings, J. W. : "An Underground Coal Gasification Experiment, Hanna, Wyoming, " 1974, SPE 4993. 3. van...

  6. Competitive interstate taxation of western coal

    SciTech Connect (OSTI)

    Kolstad, C.D.; Wolak, F.A. Jr.

    1983-01-01T23:59:59.000Z

    This paper analyzes the potential market power of western states in setting coal severance taxes. An attempt to determine the emphasis placed by the western states on the development of their coal resources is also made. Three market structures are analyzed. One involves a western regional cartel, setting taxes collectively. The other cases are noncooperative tax equilibria with Montana and Wyoming competing against each other. We study the effects on these equilibria of changes in each region's relative emphasis on development of coal resources vs tax revenue. The welfare impacts of these tax setting policies are also addressed. The analysis is based on an activity analysis of US coal markets. The results show that the taxes associated with the noncooperative competitive tax equilibria are close to present tax levels. Additionally, we conclude that western states currently are quite efficient extractors of economic rent from coal produced within their boundaries, in terms of welfare loss per dollar of tax revenue collected. 2 figures.

  7. Arco's research and development efforts in underground coal gasification

    SciTech Connect (OSTI)

    Bell, G.J.; Brandenburg, C.F.; Bailey, D.W.

    1983-01-01T23:59:59.000Z

    Arco's Rocky Hill No. 1 field test provided invaluable experience in gasifying the deep, thick coal resources in Wyoming. Reverse combustion successfully linked the wells and allowed conversion of the highly permeable, very wet coal to a high-quality gas. The test also produced data on overburden subsidence and groundwater effects. Unresolved issues include such items as site selection, ground water protection, surface treatment of product gas, and the interaction of simultaneously operating gas production modules.

  8. Alternative Fuels Data Center: Wyoming Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    production facilities in Wyoming, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  9. Wyoming Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    irrigation systems range from 45% to 60%, while sprinkler, and user oriented bulletins. Results are also available through the Wyoming Water Resources Data Systems library. Research Program #12;Hydrologic Impacts of Improved Irrigation Efficiencies and Land Use Changes

  10. Underground coal gasification: A near-term alternate fuel

    SciTech Connect (OSTI)

    Avasthi, J.; Singleton, A.M.

    1984-06-01T23:59:59.000Z

    Since the beginning of this century underground coal gasification has been considered as an alternative to mining as a means of utilizing the coal resources not recoverable by conventional methods. The energy crunch of the seventies gave a new impetus to it, and several tests were conducted in the U.S. to demonstrate the feasibility of this method in both horizontal and steeply dipping coal resources. Gulf Research and Development Company has conducted two successful underground coal gasification tests near Rawlins, Wyoming, in steeply dipping coal beds. The results of these tests indicate that the present state of the art is advanced enough for utilization of this technique for commercial purposes. A right combination of resource, consumer, and economic factors will dictate future commercialization of underground coal gasification for the U.S. coal resources.

  11. Hydrothermally treated coals for pulverized coal injection. Technical progress report, April 1995--June 1995

    SciTech Connect (OSTI)

    Walsh, D.E.; Rao, P.D.; Ogunsola, O.; Lin, H.K.

    1995-07-01T23:59:59.000Z

    This project is investigating the suitability of hydrothermally dried low-rank coals for pulverized fuel injection into blast furnaces in order to reduce coke consumption. Coal samples from the Beluga coal field and Usibelli Coal Mine, Alaska, are being used for the study. Crushed coal samples were hydrothermally treated at three temperatures, 275, 300 and 325{degrees}C, for residence times ranging from 10 to 120 minutes. Products have been characterized to determine their suitability for pulverized coal injection. Characterization includes proximate and ultimate analyses, vitrinite reflectance, TGA reactivity and thermochemical modeling. A literature survey has been conducted.

  12. Underground coal gasification product quality parameters

    SciTech Connect (OSTI)

    Bruggink, P.R.; Davis, B.E.

    1981-01-01T23:59:59.000Z

    A simplified model is described which will indicate the economic value of the raw product gas from an experimental underground coal gasification test on a real-time basis in order to aid in the optimization of the process during the course of the test. The model relates the properties of the product gas and the injection gas to the cost of producing each of five potential commercial products. This model was utilized to evaluate data during the Gulf-DOE underground coal gasification test at Rawlins, Wyoming in the fall of 1981. 6 refs.

  13. Ground-water effects of the UCG experiments at the Hoe Creek site in northeastern Wyoming

    SciTech Connect (OSTI)

    Mead, S.W.; Wang, F.T.; Stuermer, D.H.

    1981-06-01T23:59:59.000Z

    Ground-water changes and subsidence effects associated with three underground coal gasification (UCG) experiments have been monitored at the Hoe Creek site in northeastern Wyoming. Ground-water quality measurements have extended over a period of four years and have been supplemented by laboratory studies of contaminant sorption by coal. It was found that a broad range of residual gasification products are introduced into the ground-water system. These contaminants may be of environmental significance if they find their way, in sufficient concentrations, into surface waters, or into aquifers from which water is extracted for drinking or agricultural purposes. Fortunately, the concentrations of these contaminants are substantially reduced by sorption on the surrounding coal. However, recent field measurements indicate that there may be significant limitations on this natural cleansing process. The contaminants of potential concern, and the mechanisms that affect their deposition and persistence have been identified.

  14. Simulation assessment of CO2 sequestration potential and enhanced methane recovery in low-rank coalbeds of the Wilcox Group, east-central Texas

    E-Print Network [OSTI]

    Hernandez Arciniegas, Gonzalo

    2006-10-30T23:59:59.000Z

    of enhancing methane recovery from coal. Most previous studies have evaluated the merits of CO2 disposal in high-rank coals. Low-rank coals in the Gulf Coastal plain, specifically in Texas, are possible targets for CO2 sequestration and enhanced methane...

  15. wyoming

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances by Climate6,1996 http://www.eia.doe.govEffects

  16. Sampling and analyses report for December 1992 semiannual postburn sampling at the RMI UCG Site, Hanna, Wyoming

    SciTech Connect (OSTI)

    Lindblom, S.R.

    1993-03-01T23:59:59.000Z

    During December 1992, groundwater was sampled at the site of the November 1987--February 1988 Rocky Mountain 1 underground coal gasification test near Hanna, Wyoming. The groundwater in near baseline condition. Data from the field measurements and analyzes of samples are presented. Benzene concentrations in the groundwater are below analytical detection limits (<0.01 mg/L) for all wells, except concentrations of 0.016 mg/L and 0.013 mg/L in coal seam wells EMW-3 and EMW-1, respectively.

  17. Formation and retention of methane in coal. Final report

    SciTech Connect (OSTI)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15T23:59:59.000Z

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  18. The thermal and structural properties of a Hanna Basin Coal

    SciTech Connect (OSTI)

    Glass, R.E.

    1984-06-01T23:59:59.000Z

    In an effort to understand the cavity growth mechanisms occurring during an Underground Coal Gasification (UCG) test, a study of the thermomechanical effects has been initiated at Sandia National Laboratories. The first phase of this study has been the determination of the intrinsic thermal and structural properties of the Hanna Basin Coal that was utilized in a series of four UCG tests near the town of Hanna, Wyoming. The result of this study is a consistent set of thermal and structural properties of a Hanna Basin coal. This set has been used in a model that successfully simulated the growth of the cavity observed during the Hanna II UCG test.

  19. Preparation for upgrading western subbituminous coal

    SciTech Connect (OSTI)

    Grimes, R.W.; Cha, C.Y.; Sheesley, D.C.

    1990-11-01T23:59:59.000Z

    The objective of this project was to establish the physical and chemical characteristics of western coal and determine the best preparation technologies for upgrading this resource. Western coal was characterized as an abundant, easily mineable, clean, low-sulfur coal with low heating value, high moisture, susceptibility to spontaneous ignition, and considerable transit distances from major markets. Project support was provided by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The research was conducted by the Western Research Institute, (WRI) in Laramie, Wyoming. The project scope of work required the completion of four tasks: (1) project planning, (2) literature searches and verbal contacts with consumers and producers of western coal, (3) selection of the best technologies to upgrade western coal, and (4) identification of research needed to develop the best technologies for upgrading western coals. The results of this research suggest that thermal drying is the best technology for upgrading western coals. There is a significant need for further research in areas involving physical and chemical stabilization of the dried coal product. Excessive particle-size degradation and resulting dustiness, moisture reabsorption, and high susceptibility to spontaneous combustion are key areas requiring further research. Improved testing methods for the determination of equilibrium moisture and susceptibility to spontaneous ignition under various ambient conditions are recommended.

  20. Potential for Coal-to-Liquids Conversion in the U.S.-Resource Base

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Potential for Coal-to-Liquids Conversion in the U.S.-Resource Base Gregory D. Croft1 and Tad W the multi-Hubbert curve analysis to coal production in the United States, we demonstrate that anthracite production of this highest-rank coal. The pro- duction of bituminous coal from existing mines is about 80

  1. Coal is a combustible sedimentary rock and a valuable economic resource. During the Pennsylvanian Period

    E-Print Network [OSTI]

    Polly, David

    Coal is a combustible sedimentary rock and a valuable economic resource. During the Pennsylvanian of years produced the bituminous coals currently found in southwestern Indiana. Bituminous coals in Indiana currently ranks as the seventh-largest coal-producing state in the nation and has an estimated 17.57 billion

  2. Petrographic characterization of Kentucky coals. Final report. Part VI. The nature of pseudovitrinites in Kentucky coals

    SciTech Connect (OSTI)

    Trinkle, E.J.; Hower, J.C.

    1984-02-01T23:59:59.000Z

    Overall average pseudovitrinite content for 1055 eastern Kentucky coal samples is nearly 9% while average percentage of pseudovitrinite for 551 western Kentucky coals is approximately 4%. Examination of variation in pseudovitrinite content relative to rank changes shows uniformity in pseudovitrinite percentages within the 4 to 7 V-type interval for eastern Kentucky coals but a gradual increase in pseudovitrinite content for western Kentucky coals over the same rank interval. Coals from both coal fields show similar, distinct increases in pseudovitrinite percentage in the highest V-type categories. However, it is suggested here that these supposed increases in pseudovitrinite percentages are not real but rather, indicate distinct increase in the brightness of nitrinite resulting from increased alteration of vitrinite beginning at this stage of coalification and continuing into the higher rank stages. This conclusion is reached when it is found that differences between pseudovitrinite and vitrinite reflectance are least in coals at these high rank intervals of Kentucky and, also, when vitrinite particles are often visually observed having brightness equal to that of pseudovitrinite particles. Relation of pseudovitrinite to other sulfur forms and total sulfur in general shows no significant trends, although the relatively high pyritic sulfur content in western Kentucky coals, coupled with relatively low inert percentages suggest the existence of predominantly reducing, or at least non-oxidizing conditions in the Pennsylvanian peat swamps of western Kentucky. Initial work involving Vicker's microhardness testing of coals indicates that microhardness values for pseudovitrinite are higher than those for vitrinite within the same sample regardless of coal rank or coal field from which the sample was collected. 15 references, 9 figures, 9 tables.

  3. DOE - Office of Legacy Management -- Wyoming

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizona ArizonaWyoming Wyoming wy_map Riverton Site

  4. Wyoming Infrastructure Authority | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjin PolysiliconWuxiWyoming DepartmentWyoming

  5. Wyoming State Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjin PolysiliconWuxiWyomingWyoming Office

  6. Coal combustion under conditions of blast furnace injection

    SciTech Connect (OSTI)

    Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

    1995-12-01T23:59:59.000Z

    Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal with particular reference to the coals from the Illinois Basin. Although this research is not yet completed the results to date support the following conclusions: (1) based on the results of computer modeling, lower rank bituminous coals, including coal from the Illinois Basin, compare well in their injection properties with a variety of other bituminous coals, although the replacement ratio improves with increasing rank; (2) based on the results of petrographic analysis of material collected from an active blast furnace, it is clear the coal derived char is entering into the raceway of the blast furnace; (3) the results of reactivity experiments on a variety of coal chars at a variety of reaction temperatures show that lower rank bituminous coals, including coal from the Illinois basin, yield chars with significantly higher reactivities in both air and CO{sub 2} than chars from higher rank Appalachian coals and blast furnace coke. These results indicate that the chars from the lower rank coals should have a superior burnout rate in the tuyere and should survive in the raceway environment for a shorter time. These coals, therefore, will have important advantages at high rates of injection that may overcome their slightly lower replacement rates.

  7. Sampling and analyses report for June 1992 semiannual postburn sampling at the RM1 UCG site, Hanna, Wyoming

    SciTech Connect (OSTI)

    Lindblom, S.R.

    1992-08-01T23:59:59.000Z

    The Rocky Mountain 1 (RMl) underground coal gasification (UCG) test was conducted from November 16, 1987 through February 26, 1988 (United Engineers and Constructors 1989) at a site approximately one mile south of Hanna, Wyoming. The test consisted of dual module operation to evaluate the controlled retracting injection point (CRIP) technology, the elongated linked well (ELW) technology, and the interaction of closely spaced modules operating simultaneously. The test caused two cavities to be formed in the Hanna No. 1 coal seam and associated overburden. The Hanna No. 1 coal seam is approximately 30 ft thick and lays at depths between 350 ft and 365 ft below the surface in the test area. The coal seam is overlain by sandstones, siltstones and claystones deposited by various fluvial environments. The groundwater monitoring was designed to satisfy the requirements of the Wyoming Department of Environmental Quality (WDEQ) in addition to providing research data toward the development of UCG technology that minimizes environmental impacts. The June 1992 semiannual groundwater.sampling took place from June 10 through June 13, 1992. This event occurred nearly 34 months after the second groundwater restoration at the RM1 site and was the fifteenth sampling event since UCG operations ceased. Samples were collected for analyses of a limited suite set of parameters as listed in Table 1. With a few exceptions, the groundwater is near baseline conditions. Data from the field measurements and analysis of samples are presented. Benzene concentrations in the groundwater were below analytical detection limits.

  8. Sampling and analyses report for December 1991 semiannual postburn sampling at the RM1 UCG site, Hanna, Wyoming

    SciTech Connect (OSTI)

    Lindblom, S.R.

    1992-01-01T23:59:59.000Z

    The Rocky Mountain 1 (RM1) underground coal gasification (UCG) test was conducted from November 16, 1987, through February 26, 1988 at a site approximately one mile south of Hanna, Wyoming. The test consisted of a dual-module operation to evaluate the controlled retracting injection point (CRIP) technology, the elongated linked well (ELW) technology, and the interaction of closely spaced modules operating simultaneously. The test caused two cavities to form in the Hanna No. 1 coal seam and associated overburden. The Hanna No. 1 coal seam was approximately 30 ft thick and lay at depths between 350 and 365 ft below the surface in the test area. The coal seam was overlain by sandstones, siltstones, and claystones deposited by various fluvial environments. The groundwater monitoring was designed to satisfy the requirements of the Wyoming Department of Environmental Quality (WDEQ) in addition to providing research data toward the development of UCG technology that minimizes environmental impacts. Further background material and the sampling and analytical procedures associated with the sampling task are described in the Rocky Mountain 1 Postburn Groundwater Monitoring Quality Assurance Plan (Mason and Johnson 1988).

  9. National Park Service- Yellowstone National Park, Wyoming

    Broader source: Energy.gov [DOE]

    Yellowstone National Park, Wyoming, has many historical sites within its boundaries. One of these is the Lamar Buffalo Ranch, a ranch that was set up in the early 1900s to breed buffalo for replacement stock within the park during a time when their numbers were very low. The ranch buildings are currently being used by the Yellowstone Association Institute for ecology classes.

  10. Wyoming Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    Wyoming Water Resources Center Annual Technical Report FY 1999 Introduction Research Program In the west, water is critical to survival. Data and information concerning this resource are very valuable by the Water Research Program. Basic Project Information Category Data Title Water Resources Data System Water

  11. ENCOAL Mild Coal Gasification Project. Annual report, October 1990--September 1991

    SciTech Connect (OSTI)

    Not Available

    1992-02-01T23:59:59.000Z

    ENCOAL Corporation, a wholly-owned subsidiary of Shell Mining Company, is constructing a mild gasification demonstration plant at Triton Coal Company`s Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by Shell and SGI International, utilizes low-sulfur Powder River Basin Coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). The products, as alternative fuels sources, are expected to significantly reduce current sulfur emissions at industrial and utility boiler sites throughout the nation, thereby reducing pollutants causing acid rain.

  12. Wyoming Regional Science Bowl | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    Wyoming Regions Wyoming Regional Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School...

  13. Underground Coal Thermal Treatment Task 6 Topical Report, Utah Clean Coal Program

    SciTech Connect (OSTI)

    Smith, P.J.; Deo, M.; Edding, E.G.; Hradisky, M.; Kelly, K.E.; Krumm, R.; Sarofim, Adel; Wang, D.

    2014-08-15T23:59:59.000Z

    The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coal’s carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: • Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand the feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. • Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. • CO2 storage. In order to help determine the amount of CO2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600°C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325°C showed less or similar capacity to the untreated coals.

  14. FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE EASTERN ROCK SPRINGS UPLIFT,

    E-Print Network [OSTI]

    Chapter GF FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE EASTERN ROCK SPRINGS UPLIFT, GREATER GREEN RIVER BASIN, WYOMING By R.M. Flores,1 A.M. Ochs,2 and L.R. Bader1 in U.S. Geological Survey Professional Paper 1625-A 1 U.S. Geological Survey 2 Consultant, U.S. Geological Survey, Denver, Colorado 1999

  15. Coal pump

    DOE Patents [OSTI]

    Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

    1983-01-01T23:59:59.000Z

    A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

  16. Pumping carbon out of underground coal deposits

    SciTech Connect (OSTI)

    Steinberg, M.

    1999-07-01T23:59:59.000Z

    Thin steam and deep coal deposits are difficult and costly to mine. Underground coal gasification (UCG) with air or oxygen was thought to alleviate this problem. Experimental field tests were conducted in Wyoming and Illinois. Problems were encountered concerning a clear path for the team gasification to take place and removal of gas. The high endothermic heat of reaction requiring large quantities of steam and oxygen makes the process expensive. Safety problems due to incomplete reaction is also of concern. A new approach is proposed which can remedy most of these drawbacks for extracting energy from underground coal deposits. It is proposed to hydrogasify the coal underground with a heated hydrogen gas stream under pressure to produce a methane-rich gas effluent stream. The hydrogasification of coal is essentially exothermic so that no steam or oxygen is required. The gases formed are always in a reducing atmosphere making the process safe. The hydrogen is obtained by thermally decomposing the effluent methane above ground to elemental carbon and hydrogen. The hydrogen is returned underground for further hydrogasification of the coal seam. The small amount of oxygen and sulfur in the coal can be processed out above ground by removal as water and H{sub 2}S. Any CO can be removed by a methanation step returning the methane to process. The ash remains in the ground and the elemental carbon produced is the purest form of coal. The particulate carbon can be slurried with water to produce a fuel stream that can be fed to a turbine for efficient combined cycle power plants with lower CO{sub 2} emissions. Coal cannot be used for combined cycle because of its ash and sulfur content destroys the gas turbine. Depending on its composition of coal seam some excess hydrogen is also produced. Hydrogen is, thus, used to pump pure carbon out of the ground.

  17. Quarterly Review of Methane from Coal-Seams Technology. Volume 9, Number 1, November 1991

    SciTech Connect (OSTI)

    McBane, R.A.; Schwochow, S.D.; Stevens, S.H.

    1991-11-01T23:59:59.000Z

    The paper contains: basin activities--(Powder River Basin, Wyoming and Montana, Wind River Basin-Wyoming, Greater Green River coal region-Wyoming and Colorado, Uinta Basin-Utah, Piceance Basin-Colorado, San Juan Basin-Colorado and New Mexico, Raton Basin-Colorado and New Mexico, and Black Warrior Basin-Alabama); features--(relation between basin hydrology and fruitland gas composition, San Juan Basin, Colorado and New Mexico); methane from coal seams research--(western Cretaceous coal seam project, multiple coal seams project, coalbed methane technology development in the Appalachian Basin, methane from coal deposits technical evaluation and data base (reservoir engineering and analysis), development of formation evaluation technology for coalbed methane development, improved evaluation of coal reservoirs through specialized core analysis, and effective design, real-data analysis, and post-job evaluation of hydraulic fracturing treatments); technical events--(the Coalbed Methane Forums in Denver, Eastern Coalbed Methane Forum in Tuscaloosa, Society of Petroleum Engineers--Gas Technology Symposium, and Society for Mining, Metallurgy, and Exploration--annual meeting).

  18. LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of contaminants at the Riverton, Wyoming, Processing Site. The Riverton site, a Uranium Mill Tailings Radiation Control Act Title I site, located on the Wind River Indian...

  19. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    SciTech Connect (OSTI)

    Edward Levy; Nenad Sarunac; Harun Bilirgen; Wei Zhang

    2005-04-01T23:59:59.000Z

    This is the ninth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, comparative analyses were performed for lignite and PRB coals to determine how unit performance varies with coal product moisture. Results are given showing how the coal product moisture level and coal rank affect parameters such as boiler efficiency, station service power needed for fans and pulverizers and net unit heat rate. Results are also given for the effects of coal drying on cooling tower makeup water and comparisons are made between makeup water savings for various times of the year.

  20. Flow characteristics in underground coal gasification

    SciTech Connect (OSTI)

    Chang, H.L.; Himmelblau, D.M.; Edgar, T.F.

    1982-01-01T23:59:59.000Z

    During the underground coal gasification field test at the Hoe Creek site No. 2, Wyoming, helium pulses were introduced to develop information to characterize the flow field, and to estimate the coefficients in dispersion models of the flow. Quantitative analysis of the tracer response curves shows an increasing departure from a plug flow regime with time because of the combined effects of the free and forced convection in addition to the complex non-uniformity of the flow field. The Peclet number was a function of temperature, pressure, gas recovery and characteristic velocity, as well as the split of the gas between the parallel streams in the model. 17 refs.

  1. ENCOAL mild coal gasification project. Annual report

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    This document is the combination of the fourth quarter report (July--September 1993) and the 1993 annual report for the ENCOAL project. The following pages include the background and process description for the project, brief summaries of the accomplishments for the first three quarters, and a detailed fourth quarter report. Its purpose is to convey the accomplishments and current progress of the project. ENCOAL Corporation, has completed the construction of a mild gasification demonstration plant at Triton Coal Company`s Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by SMC and SGI International, utilizes low-sulfur Powder River Basin coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). ENCOAL submitted an application to the US Department of Energy (DOE) in August 1989, soliciting joint funding of the project in the third round of the Clean Coal Technology Program. The project was selected by DOE in December, 1989 and the Cooperative Agreement approved in September, 1990. Construction, commissioning, and start-up of the ENCOAL mild coal gasification facility was completed in June of 1992, and the project is currently in the operations phase. Some plant modifications have been required and are discussed in this report.

  2. Assessment of coal bed gas prospects

    SciTech Connect (OSTI)

    Moore, T.R. [Phillips Petroleum Co., Bartlesville, OK (United States)

    1996-12-31T23:59:59.000Z

    Coal bed gas is an often overlooked source of clean, methane-rich, H{sub 2}S-free natural gas. The economic development of coal bed gas requires a knowledge of coal gas reservoir characteristics and certain necessary departures from conventional evaluation, drilling, completion, and production practices. In many ways coal seam reservoirs are truly unconventional. Most coals sufficient rank have generated large volumes of gas that may be retained depth in varying amounts through adsorption. Coal gas production can take place only when the reservoir pressure is reduced sufficiently to allow the gas to desorb. Gas flow to the well bore takes place through a hierarchy of natural fractures, not the relatively impermeable coal matrix. Economic production is dependent upon critical factors intrinsic to the reservoir, including coal petrology, gas content, internal formation stratigraphy, fracture distribution, hydrogeology, in situ stress conditions, initial reservoir pressure and pressure regime, and the presence or absence of a {open_quote}free{close_quotes} gas saturation. Further, the coal bed reservoir is readily subject to formation damage through improper drilling, completion, or production techniques. This presentation will review the data types critical to the assessment of any coal seam gas prospect, suggest an outline method for screening such prospects, and point out some possible pitfalls to be considered in any coal bed gas development project.

  3. EA-1581: Sand Hills Wind Project, Wyoming

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management, with DOE’s Western Area Power Administration as a cooperating agency, was preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action had been implemented, Western would have interconnected the proposed facility to an existing transmission line. This project has been canceled.

  4. Mass balances for underground coal gasification in steeply dipping beds

    SciTech Connect (OSTI)

    Lindeman, R.; Ahner, P.; Davis, B.E.

    1980-01-01T23:59:59.000Z

    Two different mass balances were used during the recent underground coal gasification tests conducted in steeply dipping coal beds at Rawlins, Wyoming. The combination of both mass balances proved extremely useful in interpreting the test results. One mass balance which assumed char could be formed underground required the solution of 3 simultaneous equations. The assumption of no char decouples the 3 equations in the other mass balance. Both mass balance results are compared to the test data to provide an interpretation of the underground process.

  5. Coal metamorphism in the upper portion of the Pennsylvanian Sturgis Formation in Western Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.

    1983-12-01T23:59:59.000Z

    Coals from the Pennsylvanian upper Sturgis Formation (Mississippian and Virginian) were sampled from a borehole in Union County, western Kentucky. The coals exhibited two discrete levels of metamorphism. The lower rank coals of high-volatile C bituminous rank were assumed to represent the normal level of metamorphism. A second set of coals of high-volatile A bituminous rank was found to be associated with sphalerite, chlorite, and twinned calcite. The latter mineral assemblages indicate that hydrothermal metamorphism was responsible for the anomalous high rank. Consideration of the sphalerite fluid-inclusion temperatures from nearby ores and coals and the time - temperature aspects of the coal metamorphism suggests that the hydrothermal metamorphic event was in the 150 to 200 C range for a brief time (10/sup 5/-10/sup 5/and yr), as opposed to the longer term (25-50m yr) 60 to 75 C ambient metamorphism.

  6. Chemical analyses of selected thermal springs and wells in Wyoming

    SciTech Connect (OSTI)

    Heasler, H.P.

    1984-06-01T23:59:59.000Z

    Basic chemical data for 27 selected thermal well and springs in Wyoming are presented. The samples were gathered from 1979 through 1982 in an effort to define geothermal resources in Wyoming. The basic data for the 27 analyzed samples generally include location, temperature, flow, date analyzed, and a description of what the sample is from. The chemical analyses for the sample are listed.

  7. High-pressure gasification of Montana subbituminous coal

    SciTech Connect (OSTI)

    Goyal, A.; Bryan, B.; Rehmat, A.

    1991-01-01T23:59:59.000Z

    A data base for the fluidized-bed gasification of different coals at elevated pressures has been developed at the Institute of Gas Technology (IGT) with different ranks of coal at pressures up to 450 psig and at temperatures dictated by the individual coals. Adequate data have been obtained to characterize the effect of pressure on the gasification of Montana Rosebud subbituminous coal and North Dakota lignite. The results obtained with Montana Rosebud subbituminous coal are presented here. This program was funded by the Gas Research Institute. 9 refs., 10 figs., 3 tabs.

  8. Studies of coupled chemical and catalytic coal conversion methods

    SciTech Connect (OSTI)

    Stock, L.M.

    1989-01-01T23:59:59.000Z

    A new base catalyzed C-alkylation reaction that employs a mixture of n-butyllithium and potassium t-butoxide in refluxing heptane to produce coal anions that are subsequently treated with n-alkyl halides at 0{degree}C has been developed. Almost quantitative pyridine solubilization was achieved by C-octylation of a Lower Kittanning coal, PSOC 1197. C-Octylation was less successful for the solubilization of bituminous Illinois No. 6 coal, APCSP 3, and subbituminous Wyodak coal, APCSP 2, which gave 35 and 33% soluble material, respectively. Their O-methyl derivatives yielded 43 and 20% soluble material in the same reaction. The observations are in accord with the concept of Ouchi and his associates that higher rank coals, although more aromatic in character, have a lower degree of polymerization than low rank coals. Relatively mild chemical reactions, such as Calkylation, that lead to modest changes in molecular dimensions, can disrupt intermolecular forces and accomplish solubilization.

  9. Large-block experiments in underground coal gasification

    SciTech Connect (OSTI)

    Not Available

    1982-11-01T23:59:59.000Z

    A major objective of the nation's energy program is to develop processes for cleanly producing fuels from coal. One of the more promising of these is underground coal gasification (UCG). If successful, UCG would quadruple recoverable U.S. coal reserves. Under the sponsorship of the Department of Energy (DOE), Lawrence Livermore National Laboratory (LLNL) performed an early series of UCG field experiments from 1976 through 1979. The Hoe Creek series of tests were designed to develop the basic technology of UCG at low cost. The experiments were conducted in a 7.6-m thick subbituminous coal seam at a relatively shallow depth of 48 m at a site near Gillette, Wyoming. On the basis of the Hoe Creek results, more extensive field experiments were designed to establish the feasibility of UCG for commercial gas production under a variety of gasification conditions. Concepts and practices in UCG are described, and results of the field tests are summarized.

  10. The fate of char-N at pulverized coal conditions Jennifer P. Spinti*, David W. Pershing

    E-Print Network [OSTI]

    Utah, University of

    of Chemical Engineering, University of Utah, Salt Lake City, UT 84112, USA Received 25 January 2002; received 1. Introduction The abundance of coal as an energy source is offset by the negative environmental-programmed gasification in 20% O2 (balance Ar) of 6 coals of varying rank and of the chars produced from the coals

  11. Influence of coal on coke properties and blast-furnace operation

    SciTech Connect (OSTI)

    G.R. Gainieva; L.D. Nikitin [OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (Russian Federation)

    2007-07-01T23:59:59.000Z

    With unstable coal supplies and properties and a fluctuating content of coking coal in the batch at OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (ZSMK) and of bituminous coal at Kuznetskaya enrichment facility, it is important to optimize the rank composition of the batch for coke production.

  12. Subtask 7.4 - Power River Basin Subbituminous Coal-Biomass Cogasification Testing in a Transport Reactor

    SciTech Connect (OSTI)

    Michael Swanson; Daniel Laudal

    2009-03-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) National Energy Technology Laboratory Office of Coal and Environmental Systems has as its mission to develop advanced gasification-based technologies for affordable, efficient, zero-emission power generation. These advanced power systems, which are expected to produce near-zero pollutants, are an integral part of DOE's Vision 21 Program. DOE has also been developing advanced gasification systems that lower the capital and operating costs of producing syngas for chemical production. A transport reactor has shown potential to be a low-cost syngas producer compared to other gasification systems since its high-throughput-per-unit cross-sectional area reduces capital costs. This work directly supports the Power Systems Development Facility utilizing the Kellogg Brown and Root transport reactor located at the Southern Company Services Wilsonville, Alabama, site. Over 3600 hours of operation on 17 different coals ranging from bituminous to lignite along with a petroleum coke has been completed to date in the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center (EERC). The EERC has established an extensive database on the operation of these various fuels in both air- and oxygen-blown modes utilizing a pilot-scale transport reactor gasifier. This database has been useful in determining the effectiveness of design changes on an advanced transport reactor gasifier and for determining the performance of various feedstocks in a transport reactor. The effects of different fuel types on both gasifier performance and the operation of the hot-gas filter system have been determined. It has been demonstrated that corrected fuel gas heating values ranging from 90 to 130 Btu/scf have been achieved in air-blown mode, while heating values up to 230 Btu/scf on a dry basis have been achieved in oxygen-blown mode. Carbon conversions up to 90% have also been obtained and are highly dependent on the oxygen-coal ratio. Higher-reactivity (low-rank) coals appear to perform better in a transport reactor than the less reactive bituminous coals. Factors that affect TRDU product gas quality appear to be coal type, temperature, and oxygen/fuel ratios. During this series of tests, a previously tested baseline Powder River Basin (PRB) subbituminous coal from the Peabody Energy North Antelope Rochelle Mine near Gillette, Wyoming was mixed with 20 wt% biomass. Two types of biomass were used - wood waste and switchgrass. Gas and particulate sampling at several locations in the riser provided information on coal devolatilization and cracking chemistry as a function of residence time, transport gas, and mode of operation. The goal of these tests was to compare the operating data and sample chemistry of the coal-biomass mixture to the PRB coal, with a focus on Fischer-Tropsch coal-to-liquid production in oxygen-blown mode. Data are to be provided to DOE to determine kinetic rates of devolatilization and tar cracking.

  13. NETL: Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Major Demonstrations Major Demonstrations Since 1985, we have helped fund commercial-scale clean coal technology demonstration projects. ICCS | CCPI | PPII | CCTDP | FutureGen...

  14. Characterization of seven United States coal regions. The development of optimal terrace pit coal mining systems

    SciTech Connect (OSTI)

    Wimer, R.L.; Adams, M.A.; Jurich, D.M.

    1981-02-01T23:59:59.000Z

    This report characterizes seven United State coal regions in the Northern Great Plains, Rocky Mountain, Interior, and Gulf Coast coal provinces. Descriptions include those of the Fort Union, Powder River, Green River, Four Corners, Lower Missouri, Illinois Basin, and Texas Gulf coal resource regions. The resource characterizations describe geologic, geographic, hydrologic, environmental and climatological conditions of each region, coal ranks and qualities, extent of reserves, reclamation requirements, and current mining activities. The report was compiled as a basis for the development of hypothetical coal mining situations for comparison of conventional and terrace pit surface mining methods, under contract to the Department of Energy, Contract No. DE-AC01-79ET10023, entitled The Development of Optimal Terrace Pit Coal Mining Systems.

  15. Wyoming Carbon Capture and Storage Institute

    SciTech Connect (OSTI)

    Nealon, Teresa

    2014-06-30T23:59:59.000Z

    This report outlines the accomplishments of the Wyoming Carbon Capture and Storage (CCS) Technology Institute (WCTI), including creating a website and online course catalog, sponsoring technology transfer workshops, reaching out to interested parties via news briefs and engaging in marketing activities, i.e., advertising and participating in tradeshows. We conclude that the success of WCTI was hampered by the lack of a market. Because there were no supporting financial incentives to store carbon, the private sector had no reason to incur the extra expense of training their staff to implement carbon storage. ii

  16. Categorical Exclusion Determinations: Wyoming | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas CategoricalAdministration-Upper Great PlainsWyoming

  17. Energy Incentive Programs, Wyoming | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas Energy Incentive Programs, Texas UpdatedWyoming Energy

  18. Wyoming Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Project JumpWisconsin:WorldWorldIowa:Wuxi,WyomingWind

  19. Hoback, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation,Jersey: EnergySpain) JumpHoback, Wyoming: Energy

  20. Meeteetse, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy8429°,Meeteetse, Wyoming: Energy Resources Jump to:

  1. Midwest, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| OpenMickeyDelaware:Midwest, Wyoming: Energy Resources

  2. Mills, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee|Mililani Town,Millinocket, Maine: EnergyTexas:Wyoming:

  3. Alta, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place: Wayne,Energy Information JumpCoreAltAir FuelsWyoming:

  4. Wilson, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's picture SubmittedWielandJump to:Wilson, Wyoming:

  5. Wyoming Department of Agriculture | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjin PolysiliconWuxi GuofeiWuyishanWyoming

  6. Wyoming Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjin PolysiliconWuxiWyoming Department of

  7. Wyoming Municipal Power Agency | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjin PolysiliconWuxiWyoming

  8. Ralston, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, search Name: Raghuraji AgroRajaramWyoming: Energy

  9. Frannie, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° Show Map LoadingIllinois:Frannie, Wyoming: Energy

  10. Garland, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: Energy ResourcesGangNebraska:Maine: EnergyWyoming:

  11. Implications of ground-water measurements at the Hoe Creek UCG site in northeastern Wyoming

    SciTech Connect (OSTI)

    Mead, S.W.; Wang, F.T.; Stuermer, D.H.; Raber, E.; Ganow, H.C.; Stone, R.

    1980-01-01T23:59:59.000Z

    Underground coal gasification (UCG) promises to become an important source of synthetic fuels. In an effort to provide timely information concerning the environmental implications of the UCG process, we are conducting investigations in conjunction with the UCG experiments carried out in northeastern Wyoming by the Lawrence Livermore National Laboratory. Our ground-water quality measurements have extended over a period of four years and have been supplemented by laboratory studies of contaminant sorption by coal. Cavity roof collapse and aquifer interconnection were also investigated, using surface and subsurface geotechnical instruments, post-burn coring, and hydraulic head measurements. We have found that a broad range of residual gasification products are introduced into the ground-water system. Fortunately, the concentrations of many of these contaminants are substantially reduced by sorption on the surrounding coal. However, some of these materials seem likely to remain in the local groundwater, at low concentrations, for several years. We have attempted to interpret our results in terms of concepts that will assist in the development of effective and practicable control technologies.

  12. Coal gasification power generation, and product market study. Topical report, March 1, 1995--March 31, 1996

    SciTech Connect (OSTI)

    Sheesley, D.; King, S.B.

    1998-12-31T23:59:59.000Z

    This Western Research Institute (WRI) project was part of a WRI Energy Resource Utilization Program to stimulate pilot-scale improved technologies projects to add value to coal resources in the Rocky Mountain region. The intent of this program is to assess the application potential of emerging technologies to western resources. The focus of this project is on a coal resource near the Wyoming/Colorado border, in Colorado. Energy Fuels Corporation/Kerr Coal Company operates a coal mine in Jackson County, Colorado. The coal produces 10,500 Btu/lb and has very low sulfur and ash contents. Kerr Coal Company is seeking advanced technology for alternate uses for this coal. This project was to have included a significant cost-share from the Kerr Coal Company ownership for a market survey of potential products and technical alternatives to be studied in the Rocky Mountain Region. The Energy Fuels Corporation/Kerr Coal Company and WRI originally proposed this work on a cost reimbursable basis. The total cost of the project was priced at $117,035. The Kerr Coal Company had scheduled at least $60,000.00 to be spent on market research for the project that never developed because of product market changes for the company. WRI and Kerr explored potential markets and new technologies for this resource. The first phase of this project as a preliminary study had studied fuel and nonfuel technical alternatives. Through related projects conducted at WRI, resource utilization was studied to find high-value materials that can be targeted for fuel and nonfuel use and eventually include other low-sulfur coals in the Rocky Mountain region. The six-month project work was spread over about a three-year period to observe, measure, and confirm over time-any trends in technology development that would lead to economic benefits in northern Colorado and southern Wyoming from coal gasification and power generation.

  13. X-ray Computed Tomography of coal: Final report

    SciTech Connect (OSTI)

    Maylotte, D.H.; Spiro, C.L.; Kosky, P.G.; Lamby, E.J.

    1986-12-01T23:59:59.000Z

    X-ray Computed Tomography (CT) is a method of mapping with x-rays the internal structures of coal. The technique normally produces 2-D images of the internal structures of an object. These images can be recast to create pseudo 3-D representations. CT of coal has been explored for a variety of different applications to coal and coal processing technology. In a comparison of CT data with conventional coal analyses and petrography, CT was found to offer a good indication of the total ash content of the coal. The spatial distribution of the coal mineral matter as seen with CT has been suggested as an indicator of coal washability. Studies of gas flow through coal using xenon gas as a tracer have shown the extremely complicated nature of the modes of penetration of gas through coal, with significant differences in the rates at which the gas can pass along and across the bedding planes of coal. In a special furnace designed to allow CT images to be taken while the coal was being heated, the pyrolysis and gasification of coal have been studied. Gasification rates with steam and CO/sub 2/ for a range of coal ranks have been obtained, and the location of the gasification reactions within the piece of coal can be seen. Coal drying and the progress of the pyrolysis wave into coal have been examined when the coal was subjected to the kind of sudden temperature jump that it might experience in fixed bed gasifier applications. CT has also been used to examine stable flow structures within model fluidized beds and the accessibility of lump coal to microbial desulfurization. 53 refs., 242 figs., 26 tabs.

  14. Sampling and analyses report for December 1991 semiannual postburn sampling at the RM1 UCG site, Hanna, Wyoming. [Quarterly report, January--March 1992

    SciTech Connect (OSTI)

    Lindblom, S.R.

    1992-01-01T23:59:59.000Z

    The Rocky Mountain 1 (RM1) underground coal gasification (UCG) test was conducted from November 16, 1987, through February 26, 1988 at a site approximately one mile south of Hanna, Wyoming. The test consisted of a dual-module operation to evaluate the controlled retracting injection point (CRIP) technology, the elongated linked well (ELW) technology, and the interaction of closely spaced modules operating simultaneously. The test caused two cavities to form in the Hanna No. 1 coal seam and associated overburden. The Hanna No. 1 coal seam was approximately 30 ft thick and lay at depths between 350 and 365 ft below the surface in the test area. The coal seam was overlain by sandstones, siltstones, and claystones deposited by various fluvial environments. The groundwater monitoring was designed to satisfy the requirements of the Wyoming Department of Environmental Quality (WDEQ) in addition to providing research data toward the development of UCG technology that minimizes environmental impacts. Further background material and the sampling and analytical procedures associated with the sampling task are described in the Rocky Mountain 1 Postburn Groundwater Monitoring Quality Assurance Plan (Mason and Johnson 1988).

  15. Analysis of coal and coal bed methane resources of Warrior basin, Alabama

    SciTech Connect (OSTI)

    Wicks, D.E.; McFall, K.S.; Malone, P.

    1987-09-01T23:59:59.000Z

    The Warrior basin in Alabama is the most active area in the US producing natural gas from coal beds. As of 1986, 300 coal-bed methane wells were producing from eight degasification fields, mainly from the Pennsylvanian coal seams along the eastern margin of the basin. Despite difficult market conditions, drilling and expansion are continuing. A detailed geologic analysis of Warrior basin coal-bed methane targets the areas of the basin that show the most promise for future gas production. The geologic analysis is based on extensive well and core data and basin-wide correlations of the Pennsylvanian coal groups. Four detailed cross sections were constructed, correlating the target coal groups in the basin, namely the Cobb, Pratt, Mary Lee, and Black Creek. They estimate that the Warrior basin contains nearly 20 tcf of in-place coal-bed methane, mainly in three of the target coal groups - the Pratt, Mary Lee, and Black Creek coals, with 4, 7, and 8 tcf, respectively. The east-central area of the basin contains the greatest volume of natural gas resource due to its concentration of thicker, higher ranked coals with high gas content. The geologic analysis also provided the underlying framework for the subsequent engineering analysis of economically recoverable gas reserves. For example, analysis of structure and tectonics showed the east-central area to be promising for gas recovery due to its proximity to the Appalachian structural front and consequent structural deformation and permeability enhancement.

  16. Effects of HyperCoal addition on coke strength and thermoplasticity of coal blends

    SciTech Connect (OSTI)

    Toshimasa Takanohashi; Takahiro Shishido; Ikuo Saito [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Energy Technology Research Institute

    2008-05-15T23:59:59.000Z

    Ashless coal, also known as HyperCoal (HPC), was produced by thermal extraction of three coals of different ranks (Gregory caking coal, Warkworth steam coal, and Pasir subbituminous coal) with 1-methylnaphthalene (1-MN) at 360, 380, and 400{sup o}C. The effects of blending these HPCs into standard coal blends were investigated. Blending HPCs as 5-10% of a standard blend (Kouryusho:Goonyella:K9) enhanced the thermoplasticity over a wide temperature range. For blends made with the Pasir-HPC, produced from a noncaking coal, increasing the extraction temperature from 360 to 400{sup o}C increased the thermoplasticity significantly. Blends containing Warkworth-HPC, produced from a slightly caking coal, had a higher tensile strength than the standard blend in semicoke strength tests. The addition of 10% Pasir-HPC, extracted at 400{sup o}C, increased the tensile strength of the semicokes to the same degree as those made with Gregory-HPC. Furthermore, all HPC blends had a higher tensile strength and smaller weight loss during carbonization. These results suggest that the HPC became integrated into the coke matrix, interacting strongly with the other raw coals. 14 refs., 11 figs., 1 tab.

  17. CO{sub 2} Sequestration Potential of Charqueadas Coal Field in Brazil

    SciTech Connect (OSTI)

    Romanov, V [NETL

    2012-10-23T23:59:59.000Z

    The I2B coal seam in the Charqueadas coal field has been evaluated as a target for enhanced coal bed methane production and CO{sub 2} sequestration. The samples were low rank coals (high volatile bituminous and sub-bituminous) obtained from the I2B seam as ?3? cores. Such properties as sorption capacity, internal structure of the samples, porosity and permeability were of primary interest in this characterization study.

  18. Underground Coal Thermal Treatment

    SciTech Connect (OSTI)

    P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

    2011-10-30T23:59:59.000Z

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?¢ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?¢ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?¢ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?¢ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

  19. Coal industry annual 1994

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    This report presents data on coal consumption, distribution, coal stocks, quality, prices, coal production information, and emissions for a wide audience.

  20. DOE Underground-Coal-Conversion-Program field-test activities for 1979 and 1980. [Pricetown 1, Hoe Creek 3, Hanna IV, and SDB 1

    SciTech Connect (OSTI)

    Bartke, T.C.

    1983-08-01T23:59:59.000Z

    Under the US Department of Energy's Underground-Coal-Conversion program, four field tests were completed in 1979 and preparations were begun in 1980 for two additional field tests to be operated in 1981. The Laramie Energy Technology Center (LETC) and Sandia National Laboratories (SNL) completed Hanna IV, an air gasification test in Wyoming subbituminous coal. The Morgantown Energy Technology Center (METC) completed Pricetown 1, an air gasification test in West Virginia bituminous coal. Lawrence Livermore National Laboratory (LLNL) completed Hoe Creek 3, a steam-oxygen gasification test in Wyoming subbituminous coal. Gulf Research and Development Co. completed Steeply Dipping Beds (SDB) Test 1, primarily an air gasification test in Wyoming subbituminous coal and the first SDB test in the US. In 1980, Gulf R and D Co. began preparation of SDB Test 2, scheduled for operation in the fall of 1981. The DOE project teams at LETC, METC, LLNL, and SNL, in association with the Washington Irrigation and Development Co. (WIDCo), Washington Water Power (WWP), and the State of Washington, are preparing a field test site in the Centralia-Chehalis coal district of Washington. A series of large coal block tests will be completed prior to the field test, scheduled for operation in 1982 or 1983. This field test will utilize a directionally drilled link and steam-oxygen gasification system. This paper summarizes the results of the four recently completed field tests and the plans for additional tests.

  1. EA-1610: Windy Hollow Wind Project, Laramie County, Wyoming

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proponent request to interconnect their proposed Windy Hollow Wind Project in Laramie County, Wyoming, to DOE’s Western Area Power Administration’s transmission system.

  2. Wyoming Water Resources Research Centter Annual Technical Report

    E-Print Network [OSTI]

    Systems, Irrigation Systems, Water Use Efficiency Lead Institute: University of Wyoming Principle objectives: Star Valley is an irrigated agricultural area where irrigation systems were converted from levels are being investigated for periods before and after irrigation system changeover. Although

  3. Structural analysis of the Sheep Mountain anticline, Bighorn Basin, Wyoming

    E-Print Network [OSTI]

    Hennier, Jeffrey Hugh

    1984-01-01T23:59:59.000Z

    STRUCTURAL ANALYSIS OF THE SHEEP MOUNTAIN ANTICLINE, BIGHORN BASIN, WYOMING A Thesis by JEFFREY HUGH HENNIER Submitted to the Graduate College of Texas AIIM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 1984 Major Subject: Geology STRUCTURAL ANALYSIS OF THE SHEEP MOUNTAIN ANTICLINE, BIGHORN BASIN, WYOMING A Thesis by JEFFREY HUGH HENNIER Approved as to style and content by: o n . pan (Chairman of Committee) Ear R. os sn (Member...

  4. ENCOAL Mild Coal Gasification Demonstration Project. Annual report, October 1993--September 1994

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    ENCOAL Corporation, a wholly-owned subsidiary of SMC Mining Company (formerly Shell Mining Company, now owned by Zeigler Coal Holding Company), has completed the construction and start-up of a mild gasification demonstration plant at Triton Coal Company`s Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by SMC and SGI International, utilizes low-sulfur Powder River Basin coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). The LFC technology uses a mild pyrolysis or mild gasification process which involves heating the coal under carefully controlled conditions. The process causes chemical changes in the feed coal in contrast to conventional drying, which leads only to physical changes. Wet subbituminous coal contains considerable water, and conventional drying processes physically remove some of this moisture, causing the heating value to increase. The deeper the coal is physically dried, the higher the heating value and the more the pore structure permanently collapses, preventing resorption of moisture. However, deeply dried Powder River Basin coals exhibit significant stability problems when dried by conventional thermal processes. The LFC process overcomes these stability problems by thermally altering the solid to create PDF and CDL. Several of the major objectives of the ENCOAL Project have now been achieved. The LFC Technology has been essentially demonstrated. Significant quantities of specification CDL have been produced from Buckskin coal. Plant operation in a production mode with respectable availability (approaching 90%) has been demonstrated.

  5. Program for large-scale underground-coal-gasification tests

    SciTech Connect (OSTI)

    Hammesfahr, F.W.; Winter, P.L.

    1982-11-01T23:59:59.000Z

    The continuing development of underground coal gasification technology requires extended multi-module field programs in which the output gas is linked to surface usage. This effort was to appraise whether existing surface facilities in the utility, petroleum refinery, or natural gas industries could be used to reduce the cost of such an extended multi-module test and whether regional demand in areas having underground coal gasification coal resources could support the manufacture of transportation fuels from underground coal gasification gases. To limit the effort to a reasonable level but yet to permit a fair test of the concept, effort was focused on five states, Illinois, New Mexico, Texas, Washington, and Wyoming, which have good underground coal gasification reserves. Studies of plant distribution located 25 potential sites within 3 miles of the underground coal gasification amenable reserves in the five states. Distribution was 44% to utilities, 44% to refineries, and 12% to gas processing facilities. The concept that existing surface facilities, currently or potentially gas-capable, might contribute to the development of underground coal gasification technology by providing a low cost industrial application for the gas produced in a multi-module test appears valid. To further test the concept, three industries were reviewed in depth. These were the electric utility, natural gas, and petroleum industries. When looking at a fuel substitution of the type proposed, each industry had its special perspective. These are discussed in detail in the report.

  6. Proceedings of the eleventh annual underground coal gasification symposium

    SciTech Connect (OSTI)

    Not Available

    1985-12-01T23:59:59.000Z

    The Eleventh Annual Underground Coal Gasification Symposium was sponsored by the Laramie Project Office of the Morgantown Energy Technology Center, US Department of Energy, and hosted by the Western Research Institute, University of Wyoming research Corporation, in Denver, Colorado, on August 11 to 14, 1985. The five-session symposium included 37 presentations describing research on underground coal gasification (UCG) being performed throughout the world. Eleven of the presentations were from foreign countries developing UCG technology for their coal resources. The papers printed in the proceedings have been reproduced from camera-ready manuscripts furnished by the authors. The papers have not been refereed, nor have they been edited extensively. All papers have been processed for inclusion in the Energy Data Base.

  7. Testing of FMI's Coal Upgrading Process

    SciTech Connect (OSTI)

    Vijay Sethi

    2009-03-21T23:59:59.000Z

    WRI and FMI have collaborated to develop and test a novel coal upgrading technology. Proprietary coal upgrading technology is a fluidized bed-based continuous process which allows high through-puts, reducing the coal processing costs. Processing is carried out under controlled oxidizing conditions at mild enough conditions that compared to other coal upgrading technologies; the produced water is not as difficult to treat. All the energy required for coal drying and upgrading is derived from the coal itself. Under the auspices of the Jointly Sponsored Research Program, Cooperative Agreement DE-FC26-98FT40323, a nominal 400 lbs/hour PDU was constructed and operated. Over the course of this project, several low-rank coals were successfully tested in the PDU. In all cases, a higher Btu, low moisture content, stable product was produced and subsequently analyzed. Stack emissions were monitored and produced water samples were analyzed. Product stability was established by performing moisture readsorption testing. Product pyrophobicity was demonstrated by instrumenting a coal pile.

  8. J.Org. Chem. 1984,49, 3033-3035 3033 Proposed SequentialConversion of Coal's

    E-Print Network [OSTI]

    J.Org. Chem. 1984,49, 3033-3035 3033 SchemeI. @& Proposed SequentialConversion of Coal's Native moieties (func- tionalities determined to be important for lignins6and for low-rank coals'). In contrast "C, is one of condensation to make a dimeric furan! Sincein a coal systemthere will be some available

  9. Should we transport coal, gas, or electricity: cost, efficiency, and environmental implications

    SciTech Connect (OSTI)

    Joule A. Bergerson; Lester B. Lave [Carnegie Mellon University, Pittsburgh, PA (US)

    2005-08-15T23:59:59.000Z

    The authors examine the life cycle costs, environmental discharges, and deaths of moving coal via rail, coal to synthetic natural gas via pipeline, and electricity via wire from the Powder River Basin (PRB) in Wyoming to Texas. Which method has least social cost depends on how much additional investment in rail line, transmission, or pipeline infrastructure is required, as well as how much and how far energy is transported. If the existing rail lines have unused capacity, coal by rail is the cheapest method (up to 200 miles of additional track could be added). If no infrastructure exists, greater distances and larger amounts of energy favor coal by rail and gasified coal by pipeline over electricity transmission. For 1,000 miles and 9 gigawatts of power, a gas pipeline is cheapest, has less environmental discharges, uses less land, and is least obtrusive. 28 refs., 4 figs., 3 tabs.

  10. Fixed Bed Countercurrent Low Temperature Gasification of Dairy Biomass and Coal-Dairy Biomass Blends Using Air-Steam as Oxidizer

    E-Print Network [OSTI]

    Gordillo Ariza, Gerardo

    2010-10-12T23:59:59.000Z

    W) countercurrent fixed bed gasifier was rebuilt to perform gasification studies under quasisteady state conditions using dairy biomass (DB) as feedstock and various air-steam mixtures as oxidizing sources. A DB-ash (from DB) blend and a DB-Wyoming coal blend were...

  11. Investigation Of Synergistic NOx Reduction From Cofiring And Air Staged Combustion Of Coal And Low Ash Dairy Biomass In A 30 Kilowatt Low NOx Furnace

    E-Print Network [OSTI]

    Lawrence, Benjamin Daniel

    2013-08-01T23:59:59.000Z

    to address this concern. DB is evaluated as a cofired fuel with Wyoming Powder River Basin (PRB) sub-bituminous coal in a small-scale 29 kW_(t) low NO_(x) burner (LNB) facility. Fuel properties, of PRB and DB revealed the following: a higher heating value...

  12. The relationship between the thermoplastic behavior of blends and their component coals

    SciTech Connect (OSTI)

    Sakurovs, R.

    1999-07-01T23:59:59.000Z

    The thermoplastic behaviors of a number of coking coal blends were measured using proton magnetic resonance thermal analysis (PMRTA) to determine to what extent they were affected by interactions between the component coals. Most blends showed evidence that at temperatures near their temperatures of maximum fluidity the extent to which they fused was different to that expected if the coals did not interact. Only blends of coking coals of different rank fused to a greater extent than expected in the absence of interactions. Semi-anthracite, low rank coals and charcoal reduced the extent of fusion of coking coals to values below those expected if they were acting as inert diluents. These interactions are interpreted as being mediated by transfer of volatile material between the coals on heating.

  13. Guide to journal rankings 1. What are journal rankings?

    E-Print Network [OSTI]

    McCusker, Guy

    Opus Guide to journal rankings 1. What are journal rankings? Journal rankings are metrics that provide information on how a journal performs in comparison with other journals in the same discipline. Articles in high impact journals are more likely to be cited. Good citation counts are often considered

  14. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01T23:59:59.000Z

    Pollutants Associated With Coal Combustion. • E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal • . . . . Coal Desulfurization

  15. Expansion and Enhacement of the Wyoming Coalbed Methane Clearinghouse Website to the Wyoming Energy Resources Information Clearinghouse.

    SciTech Connect (OSTI)

    Hulme, Diana; Hamerlinck, Jeffrey; Bergman, Harold; Oakleaf, Jim

    2010-03-26T23:59:59.000Z

    Energy development is expanding across the United States, particularly in western states like Wyoming. Federal and state land management agencies, local governments, industry and non-governmental organizations have realized the need to access spatially-referenced data and other non-spatial information to determine the geographical extent and cumulative impacts of expanding energy development. The Wyoming Energy Resources Information Clearinghouse (WERIC) is a web-based portal which centralizes access to news, data, maps, reports and other information related to the development, management and conservation of Wyomingâ??s diverse energy resources. WERIC was established in 2006 by the University of Wyomingâ??s Ruckelshaus Institute of Environment and Natural Resources (ENR) and the Wyoming Geographic Information Science Center (WyGISC) with funding from the US Department of Energy (DOE) and the US Bureau of Land Management (BLM). The WERIC web portal originated in concept from a more specifically focused website, the Coalbed Methane (CBM) Clearinghouse. The CBM Clearinghouse effort focused only on coalbed methane production within the Powder River Basin of northeast Wyoming. The CBM Clearinghouse demonstrated a need to expand the effort statewide with a comprehensive energy focus, including fossil fuels and renewable and alternative energy resources produced and/or developed in Wyoming. WERIC serves spatial data to the greater Wyoming geospatial community through the Wyoming GeoLibrary, the WyGISC Data Server and the Wyoming Energy Map. These applications are critical components that support the Wyoming Energy Resources Information Clearinghouse (WERIC). The Wyoming GeoLibrary is a tool for searching and browsing a central repository for metadata. It provides the ability to publish and maintain metadata and geospatial data in a distributed environment. The WyGISC Data Server is an internet mapping application that provides traditional GIS mapping and analysis functionality via the web. It is linked into various state and federal agency spatial data servers allowing users to visualize multiple themes, such as well locations and core sage grouse areas, in one domain. Additionally, this application gives users the ability to download any of the data being displayed within the web map. The Wyoming Energy Map is the newest mapping application developed directly from this effort. With over a 100 different layers accessible via this mapping application, it is the most comprehensive Wyoming energy mapping application available. This application also provides the public with the ability to create cultural and wildlife reports based on any location throughout Wyoming and at multiple scales. The WERIC website also allows users to access links to federal, state, and local natural resource agency websites and map servers; research documents about energy; and educational information, including information on upcoming energy-relate conferences. The WERIC website has seen significant use by energy industry consultants, land management agencies, state and local decision-makers, non-governmental organizations and the public. Continued service to these sectors is desirable but some challenges remain in keeping the WERIC site viable. The most pressing issue is finding the human and financial resources to keep the site continually updated. Initially, the concept included offering users the ability to maintain the site themselves; however, this has proven not to be a viable option since very few people contributed. Without user contributions, the web page relied on already committed university staff to publish and link to the appropriate documents and web-pages. An option that is currently being explored to address this issue is development of a partnership with the University of Wyoming, School of Energy Resources (SER). As part of their outreach program, SER may be able to contribute funding for a full-time position dedicated to maintenance of WERIC.

  16. In-situ coal-gasification data look promising

    SciTech Connect (OSTI)

    Not Available

    1980-07-21T23:59:59.000Z

    According to a report given at the 6th Underground Coal Conversion Symposium (Afton, Oklahoma 1980), the Hoe Creek No. 3 underground coal-gasification experiments Oil Gas J. 77 sponsored by the U.S. Department of Energy and the Gas Research Institute and directed by the University of California Lawrence Livermore Laboratory demonstrated the feasibility of in-situ coal conversion and featured the use of a directionally drilled channel to connect the injection and production wells rather than the reverse-burn ordinarily used to produce the connecting channel. In the test, 2816 cu m of coal weighing (APPROX) 4200 tons was consumed, with (APPROX) 18% of the product gas escaping through the overburden or elsewhere. When air injection was used, the average heating value was 217 Btu/std cu ft. The average thermal efficiency of the burn was 65%, and the average gas composition was 35% hydrogen, 5% methane, 11% carbon monoxide, and 44% carbon dioxide. Subsidence occurred after completion of the test. The Uniwell gasification method, scheduled for use in the final experiment in the Deep-1 series of underground coal-gasification tests in Wyoming, seeks to prevent subsidence by use of concentric pipes which are inserted into the vertical well to control the combustion zone. Underground coal-gasification prospects and the mechanics of subsidence are discussed.

  17. Enhancement of pulverized coal combustion by plasma technology

    SciTech Connect (OSTI)

    Gorokhovski, M.A.; Jankoski, Z.; Lockwood, F.C.; Karpenko, E.I.; Messerle, V.E.; Ustimenko, A.B. [University of Rouen, Rouen (France)

    2007-07-01T23:59:59.000Z

    Plasma-assisted pulverized coal combustion is a promising technology for thermal power plants (TPP). This article reports one- and three- dimensional numerical simulations, as well as laboratory and industrial measurements of coal combustion using a plasma-fuel system (PFS). The chemical kinetic and fluid mechanics involved in this technology are analysed. The results show that a PFS, can be used to promote early ignition and enhanced stabilization of a pulverized coal flame. It is shown that this technology, in addition to enhancing the combustion efficiency of the flame, reduces harmful emissions from power coals of all ranks (brown, bituminous, anthracite and their mixtures). Data summarising the experience of 27 pulverized coal boilers in 16 thermal power plants in several countries (Russia, Kazakhstan, Korea, Ukraine, Slovakia, Mongolia and China), embracing steam productivities from 75 to 670 tons per hour (TPH), are presented. Finally, the practical computation of the characteristics of the PFS, as function of coal properties, is discussed.

  18. US coal reserves: A review and update

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    This report is the third in series of ``U.S. Coal Reserves`` reports. As part of the Administration of the Energy Information Administration (EIA) program to provide information on coal, it presents detailed estimates of domestic coal reserves, which are basic to the analysis and forecasting of future coal supply. It also describes the data, methods, and assumptions used to develop such estimates and explain terminology related to recent data programs. In addition, the report provides technical documentation for specific revisions and adjustments to the demonstrated reserve base (DRB) of coal in the United States and for coal quality and reserve allocations. It makes the resulting data available for general use by the public. This report includes data on recoverable coal reserves located at active mines and on the estimated distribution of rank and sulfur content in those reserves. An analysis of the projected demand and depletion in recoverable reserves at active mines is used to evaluate the areas and magnitude of anticipated investment in new mining capacity.

  19. LLNL Capabilities in Underground Coal Gasification

    SciTech Connect (OSTI)

    Friedmann, S J; Burton, E; Upadhye, R

    2006-06-07T23:59:59.000Z

    Underground coal gasification (UCG) has received renewed interest as a potential technology for producing hydrogen at a competitive price particularly in Europe and China. The Lawrence Livermore National Laboratory (LLNL) played a leading role in this field and continues to do so. It conducted UCG field tests in the nineteen-seventies and -eighties resulting in a number of publications culminating in a UCG model published in 1989. LLNL successfully employed the ''Controlled Retraction Injection Point'' (CRIP) method in some of the Rocky Mountain field tests near Hanna, Wyoming. This method, shown schematically in Fig.1, uses a horizontally-drilled lined injection well where the lining can be penetrated at different locations for injection of the O{sub 2}/steam mixture. The cavity in the coal seam therefore gets longer as the injection point is retracted as well as wider due to reaction of the coal wall with the hot gases. Rubble generated from the collapsing wall is an important mechanism studied by Britten and Thorsness.

  20. Maintaining Low Oxygen (O2) in Coal Fueled Utility Boilers Using CO Instrumentation

    E-Print Network [OSTI]

    Hopkins, D.; Downing, T.

    and the annual fuel savings possible from this 02 reduction. Unit til 1.8 a pulverized coal fired, 565 MW, CE boiler system placed in service July 27, 1982. Complete and safe combustion in this boiler is maintained by continuously monitoring 02 and CO...Il at Muleshoe, Texas. This is a 565 :Megawatt unit utilizing a Combustion Engineering boiler firing sub-bituminous Wyoming coal thrQugh six elevations of tilting tangential nozzles. The boiler is balanced draft with two air preheaters. Environmental...

  1. Flow characteristics in underground coal gasification

    SciTech Connect (OSTI)

    Chang, H.L.; Himmelblau, D.M.; Edgar, T.F.

    1982-01-01T23:59:59.000Z

    During the Hoe Creek No. 2 (Wyoming) underground-coal-gasification field test, researchers introduced helium pulses to characterize the flow field and to estimate the coefficients in dispersion models of the flow. Flow models such as the axial-dispersion and parallel tanks-in-series models allowed interpretation of the in situ combustion flow field from the residence time distribution of the tracer gas. A quantitative analysis of the Hoe Creek tracer response curves revealed an increasing departure from a plug-flow regime with time, which was due to the combined effects of the free and forced convection in addition to the complex nonuniformity of the flow field. The Peclet number was a function of temperature, pressure, gas recovery, and characteristic velocity, as well as the split of the gas between the parallel streams in the model.

  2. Coal industry annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  3. Coal Industry Annual 1995

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  4. Coal industry annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-11-01T23:59:59.000Z

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  5. Microbial solubilization of coal

    DOE Patents [OSTI]

    Strandberg, G.W.; Lewis, S.N.

    1988-01-21T23:59:59.000Z

    The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

  6. Volcanic ash in feed coal and its influence on coal combustion products

    SciTech Connect (OSTI)

    Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.; Brownfield, I.K.; Hower, J.C.; Stricker, G.D.; O'Connor, J.T.

    2000-07-01T23:59:59.000Z

    The US Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana Utility to determine the physical and chemical properties of feed coal and coal combustion products (CCPs) from a coal-fired power plant. The plant utilizes a low-sulfur (.23--.47 weight percent S) coal from the Powder River Basin, Wyoming. Scanning Electron Microscope (SEM) and X-ray diffraction (XRD) analysis of feed coal samples identified two mineral suites. A primary suite (not authigenic) consisting of quartz (detrital and volcanic beta-form grains), biotite, and minor zircon and a secondary authigenic mineral suite containing calcite, alumino-phosphates (crandallite and gorceixite), kaolinite, quartz, anatase, barite, and pyrite. The authigenic minerals are attributed to air-fall and reworked volcanic ash that was deposited in peat-forming mires. The Powder River Basin feed coals contain higher amounts of Ba, Ca, Mg, Na, Sr, and P compared to other analyzed eastern coals. These elements are associated with alumino-phosphate, biotite, calcite, and clay minerals. The element associations are indicative of coal that incorporated volcanic ash during deposition. XRD analysis of CCPs revealed a predominance of glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals in the fly ash; and quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite in the bottom ash. Microprobe and SEM analysis of fly ash samples revealed quartz, zircon, monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, and rounded grains of wollastonite with periclase. The abundant Ca and Mg mineral phases in the fly ashes are related to the presence of carbonate, clay, and phosphate minerals in the feed coal. The Ca- and Mg-rich mineral phases in the CCPs can be attributed to volcanic minerals deposited in the peat-forming mire. Dissolution and alteration of these minerals occurred either in the peat-forming sate or during coalification/diagenesis contributing to the authigenic mineral suite. Additionally, detrital mineral input and epigenetic ground-water flow may have affected the geochemistry of the feed coal.

  7. Wyoming Office of State Lands and Investments | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjin PolysiliconWuxiWyomingWyoming Office of

  8. Wyoming State Historic Preservation Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjin PolysiliconWuxiWyomingWyoming

  9. Association of coal metamorphism and hydrothermal mineralization in Rough Creek fault zone and Fluorspar District, Western Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.; Fiene, F.L.; Trinkle, E.J.

    1983-09-01T23:59:59.000Z

    The ambient coal rank (metamorphism) of the Carboniferous coals in the Western Kentucky coalfield ranges from high volatile A bituminous (vitrinite maximum reflectance up to 0.75% R/sub max/) in the Webster syncline (Webster and southern Union Counties) to high volatile C bituminous (0.45 to 0.60% R/sub max/) over most of the remainder of the area. Anomalous patterns of metamorphism, however, have been noted in coals recovered from cores and mines in fault blocks of the Rough Creek fault zone and Fluorspar District. Coals in Gil-30 borehole (Rough Creek faults, Bordley Quadrangle, Union County) vary with no regard for vertical position, from high volatile C(0.55% R/sub max/) to high volatile A (0.89%R/sub max) bituminous. Examination of the upper Sturgis Formation (Missourian/Virgilian) coals revealed that the higher rank (generally above 0.75% R/sub max/) coals had vein mineral assemblages of sphalerite, twinned calcite, and ferroan dolomite. Lower rank coals had only untwinned calcite. Several sites in Webster County contain various coals (Well (No. 8) to Coiltwon (No. 14)) with vitrinite reflectances up to 0.83% R/sub max/ and associated sphalerite mineralization. Mississippian and Lower Pennsylvanian (Caseyville Formation Gentry coal) coals in the mineralized Fluorspar District have ranks to nearly medium volatile bituminous (1.03% R/sub max/). The regional rank trend exhibited by the fualt zones is generally higher rank than the surrounding areas. Sphalerite mineralization in itself is not unique within Illinois basin coals, but if it was partly responsible for the metamorphism of these coals, then the fluid temperature must have been higher within the above mentioned fault complexes.

  10. Clean Coal Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 Building AmericaEnergyandClassificationClean Coal Research

  11. Clean coal

    SciTech Connect (OSTI)

    Liang-Shih Fan; Fanxing Li [Ohio State University, OH (United States). Dept. of Chemical and Biomolecular Engineering

    2006-07-15T23:59:59.000Z

    The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

  12. Studies of coupled chemical and catalytic coal conversion methods. Ninth quarterly report, October, November, December 1989

    SciTech Connect (OSTI)

    Stock, L.M.

    1989-12-31T23:59:59.000Z

    A new base catalyzed C-alkylation reaction that employs a mixture of n-butyllithium and potassium t-butoxide in refluxing heptane to produce coal anions that are subsequently treated with n-alkyl halides at 0{degree}C has been developed. Almost quantitative pyridine solubilization was achieved by C-octylation of a Lower Kittanning coal, PSOC 1197. C-Octylation was less successful for the solubilization of bituminous Illinois No. 6 coal, APCSP 3, and subbituminous Wyodak coal, APCSP 2, which gave 35 and 33% soluble material, respectively. Their O-methyl derivatives yielded 43 and 20% soluble material in the same reaction. The observations are in accord with the concept of Ouchi and his associates that higher rank coals, although more aromatic in character, have a lower degree of polymerization than low rank coals. Relatively mild chemical reactions, such as Calkylation, that lead to modest changes in molecular dimensions, can disrupt intermolecular forces and accomplish solubilization.

  13. Plasma-supported coal combustion in boiler furnace

    SciTech Connect (OSTI)

    Askarova, A.S.; Karpenko, E.I.; Lavrishcheva, Y.I.; Messerle, V.E.; Ustimenko, A.B. [Kazakh National University, Alma Ata (Kazakhstan). Dept. of Physics

    2007-12-15T23:59:59.000Z

    Plasma activation promotes more effective and environmentally friendly low-rank coal combustion. This paper presents Plasma Fuel Systems that increase the burning efficiency of coal. The systems were tested for fuel oil-free start-up of coal-fired boilers and stabilization of a pulverized-coal flame in power-generating boilers equipped with different types of burners, and burning all types of power-generating coal. Also, numerical modeling results of a plasma thermochemical preparation of pulverized coal for ignition and combustion in the furnace of a utility boiler are discussed in this paper. Two kinetic mathematical models were used in the investigation of the processes of air/fuel mixture plasma activation: ignition and combustion. A I-D kinetic code PLASMA-COAL calculates the concentrations of species, temperatures, and velocities of the treated coal/air mixture in a burner incorporating a plasma source. The I-D simulation results are initial data for the 3-D-modeling of power boiler furnaces by the code FLOREAN. A comprehensive image of plasma-activated coal combustion processes in a furnace of a pulverized-coal-fired boiler was obtained. The advantages of the plasma technology are clearly demonstrated.

  14. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01T23:59:59.000Z

    flow sheet of a K-T coal gasification complex for producingslag or bottom ash, coal gasification, or coal liquefactionCoal (Ref. 46). COAL PREPARATION GASIFICATION 3 K·T GASI FI

  15. Coal liquefaction and hydrogenation

    DOE Patents [OSTI]

    Schindler, Harvey D. (Fair Lawn, NJ); Chen, James M. (Edison, NJ)

    1985-01-01T23:59:59.000Z

    Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

  16. Coal industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-06T23:59:59.000Z

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  17. The use of NMR techniques for the analysis of water in coal and the effect of different coal drying techniques on the structure and reactivity of coal. Final report

    SciTech Connect (OSTI)

    Netzel, D.A.; Miknis, F.P.; Wallace, J.C. Jr.; Butcher, C.H.; Mitzel, J.M.; Turner, T.F.; Hurtubise, R.J.

    1995-02-01T23:59:59.000Z

    Western Research Institute has conducted a study of different methods of coal drying as pretreatment steps before liquefaction. The objectives of this study were to develop a combined chemical dehydration/nuclear magnetic resonance (NMR) method for measuring the moisture content of coal, to measure the changes in coal structure that occur during drying, and to determine the effects of different drying methods on liquefaction reactivity of coals. Different methods of drying were investigated to determine whether coal drying can be accomplished without reducing the reactivity of coals toward liquefaction. Drying methods included thermal, microwave, and chemical dehydration. Coals of rank lignite to high volatile bituminous were studied. Coals that were dried or partially dried thermally and with microwaves had lower liquefaction conversions than coals containing equilibrium moisture contents. However, chemically dried coals had conversions equal to or greater than the premoisturized coals. The conversion behavior is consistent with changes in the physical structure and cross linking reactions because of drying. Thermal and microwave drying appear to cause a collapse in the pore structure, thus preventing donor solvents such as tetralin from contacting reactive sites inside the coals. Chemical dehydration does not appear to collapse the pore structure. These results are supported by the solvent swelling measurements in which the swelling ratios of thermally dried and microwave-dried coals were lower than those of premoisturized coals, indicating a greater degree of cross linking in the dried coals. The swelling ratios of the chemically dried coals were greater than those of the premoisturized coals because the pore structure remaining unchanged or increased when water was removed. These results are consistent with the NMR results, which did not show significant changes in coal chemical structure.

  18. Coal combustion science

    SciTech Connect (OSTI)

    Hardesty, D.R. (ed.); Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

    1990-11-01T23:59:59.000Z

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 91 refs., 40 figs., 9 tabs.

  19. Arco's research and development efforts in underground coal gasification

    SciTech Connect (OSTI)

    Bell, G.J.; Bailey, D.W.; Brandenburg, C.F.

    1983-01-01T23:59:59.000Z

    Arco has studied underground coal gasification (UCG) since the mid-1970's in an attempt to advance the technology. This paper is a review of past and present UCG research and development efforts, starting with Arco's Rocky Hill No. 1 test. Although this first experiment gave Arco invaluable experience for conducting UCG in the deep, wet, thick coal resources of the Powder River Basin in Wyoming, many formidable questions remain to be addressed with the operation of a larger-scale, multi-well test. Unresolved issues include such items as site selection, well design, well linking, overburden subsidence, ground water protection, surface treatment of product gas, and the interaction of simultaneously operating modules.

  20. Integration of waste pyrolysis with coal/oil coprocessing

    SciTech Connect (OSTI)

    Hu, J.; Zhou, P.; Lee, T.L.K.; Comolli, A. [Hydrocarbon Technologies, Inc., Lawrenceville, NJ (United States)

    1998-04-01T23:59:59.000Z

    HTI has developed a novel process, HTI CoPro Plus{trademark}, to produce alternative fuels and chemicals from the combined liquefaction of waste materials, coal, and heavy petroleum residues. Promising results have been obtained from a series of bench tests (PB-01 through PB-06) under the DOE Proof of Concept Program. Recently, HTI acquired a proven technology for the mild co-pyrolysis of used rubber tires and waste refinery or lube oils, developed by the University of Wyoming and Amoco. The feasibility of integration of pyrolysis with coal-oil coprocessing was studied in the eighth bench run (PB-08) of the program. The objective of Run PB-08 was to study the coprocessing of coal with oils derived from mild pyrolysis of scrap tires, waste plastics, and waste lube oils to obtain data required for economic comparisons with the DOE data base. A specific objective was also to study the performance of HTI`s newly improved GelCat{trademark} catalyst in coal-waste coprocessing under low-high (Reactor 1-Reactor 2 temperatures) operating mode. This paper presents the results obtained from Run PB-08, a 17-day continuous operation conducted in August 1997. A total of 5 conditions were tested, including a baseline coal-only condition. During the coprocessing conditions, 343{degrees}C+ pyrolysis oils derived from co-pyrolysis of rubber tires or a mixture of rubber tires and plastics with waste lube oil, were coprocessed with Black Thunder coal using HTI GelCat{trademark} catalyst. In the last condition, rubber tires were pyrolyzed with 524{degrees}C- coal liquid to study the possible elimination of lube oil used as pyrolysis processing oil. Overall coal conversion above 90 W% was achieved.

  1. Rawlins UCG (underground coal gasification) Demonstration Project site characterization report

    SciTech Connect (OSTI)

    Not Available

    1989-04-01T23:59:59.000Z

    The US Department of Energy and Energy International, Inc. have entered into a Cooperative Agreement to conduct a cost-shared UCG field test demonstrating the operation of commercial scale underground coal gasification (UCG) on steeply dipping bed modules to provide synthesis gas for a small scale commercial ammonia plant. The field test and the commercial ammonia plant will be located at the North Knobs site near Rawlins, Wyoming. During this demonstration test, two or more UCG modules will be operated simultaneously until one module is completely consumed and an additional module is brought on line. During this period, the average coal gasification rate will be between 500 and 1200 tons per day. A portion of the raw UCG product gas will be cleaned and converted into a synthesis gas, which will be used as feedstock to a 400--500 ton per day ammonia plant. The UCG facility will continue to operate subsequent to the test demonstration to provide feedstock for the commercial plant. The objective of the geologic site characterization program is to provide a descriptive model that accurately represents the geologic environment of the coal resource that is to be gasified. This model is to be used as an aid in understanding the hydrology of the coal bearing sequence, as a framework for installation of the process wells and the subsequent exploitation of the coal resources. 3 figs., 3 tabs.

  2. Coal Mining (Iowa)

    Broader source: Energy.gov [DOE]

    These sections describe procedures for coal exploration and extraction, as well as permitting requirements relating to surface and underground coal mining. These sections also address land...

  3. Air toxic emissions from the combustion of coal: Identifying and quantifying hazardous air pollutants from US coals

    SciTech Connect (OSTI)

    Szpunar, C.B.

    1992-09-01T23:59:59.000Z

    This report addresses the key air toxic emissions likely to emanate from continued and expanded use of domestic coal. It identifies and quantifies those trace elements specified in the US 1990 Clean Air Act Amendments, by tabulating selected characterization data on various source coals by region, state, and rank. On the basis of measurements by various researchers, this report also identifies those organic compounds likely to be derived from the coal combustion process (although their formation is highly dependent on specific boiler configurations and operating conditions).

  4. NETL: Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuireNETLCareersCoal

  5. Advanced Coal Wind Hybrid: Economic Analysis

    SciTech Connect (OSTI)

    Phadke, Amol; Goldman, Charles; Larson, Doug; Carr, Tom; Rath, Larry; Balash, Peter; Yih-Huei, Wan

    2008-11-28T23:59:59.000Z

    Growing concern over climate change is prompting new thinking about the technologies used to generate electricity. In the future, it is possible that new government policies on greenhouse gas emissions may favor electric generation technology options that release zero or low levels of carbon emissions. The Western U.S. has abundant wind and coal resources. In a world with carbon constraints, the future of coal for new electrical generation is likely to depend on the development and successful application of new clean coal technologies with near zero carbon emissions. This scoping study explores the economic and technical feasibility of combining wind farms with advanced coal generation facilities and operating them as a single generation complex in the Western US. The key questions examined are whether an advanced coal-wind hybrid (ACWH) facility provides sufficient advantages through improvements to the utilization of transmission lines and the capability to firm up variable wind generation for delivery to load centers to compete effectively with other supply-side alternatives in terms of project economics and emissions footprint. The study was conducted by an Analysis Team that consists of staff from the Lawrence Berkeley National Laboratory (LBNL), National Energy Technology Laboratory (NETL), National Renewable Energy Laboratory (NREL), and Western Interstate Energy Board (WIEB). We conducted a screening level analysis of the economic competitiveness and technical feasibility of ACWH generation options located in Wyoming that would supply electricity to load centers in California, Arizona or Nevada. Figure ES-1 is a simple stylized representation of the configuration of the ACWH options. The ACWH consists of a 3,000 MW coal gasification combined cycle power plant equipped with carbon capture and sequestration (G+CC+CCS plant), a fuel production or syngas storage facility, and a 1,500 MW wind plant. The ACWH project is connected to load centers by a 3,000 MW transmission line. In the G+CC+CCS plant, coal is gasified into syngas and CO{sub 2} (which is captured). The syngas is burned in the combined cycle plant to produce electricity. The ACWH facility is operated in such a way that the transmission line is always utilized at its full capacity by backing down the combined cycle (CC) power generation units to accommodate wind generation. Operating the ACWH facility in this manner results in a constant power delivery of 3,000 MW to the load centers, in effect firming-up the wind generation at the project site.

  6. Montana-Wyoming Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb Mar AprYear Jan1,185 11,206 12,49376

  7. Coal plasticity at high heating rates and temperatures. Final technical progress report

    SciTech Connect (OSTI)

    Gerjarusak, S.; Peters, W.A.; Howard, J.B.

    1995-05-01T23:59:59.000Z

    Plastic coals are important feedstocks in coke manufacture, coal liquefaction, gasification, and combustion. During these processes, the thermoplastic behavior of these coals is also important since it may contribute to desirable or undesirable characteristics. For example, during liquefaction, the plastic behavior is desired since it leads to liquid-liquid reactions which are faster than solid-liquid reactions. During gasification, the elastic behavior is undesired since it leads to caking and agglomeration of coal particles which result in bed bogging in fixed or fluidized bed gasifiers. The plastic behavior of different coals was studied using a fast-response plastometer. A modified plastometer was used to measure the torque required to turn at constant angular speed a cone-shaped disk embedded in a thin layer of coal. The coal particles were packed between two metal plates which are heated electrically. Heating rates, final temperatures, pressures, and durations of experiment ranged from 200--800 K/s, 700--1300 K, vacuum-50 atm helium, and 0--40 s, respectively. The apparent viscosity of the molten coal was calculated from the measured torque using the governing equation of the cone-and-plate viscometer. Using a concentrated suspension model, the molten coal`s apparent viscosity was related to the quantity of the liquid metaplast present during pyrolysis. Seven coals from Argonne National Laboratory Premium Coal Sample Bank were studied. Five bituminous coals, from high-volatile to low-volatile bituminous, were found to have very good plastic behavior. Coal type strongly affects the magnitude and duration of plasticity. Hvb coals were most plastic. Mvb and lvb coals, though the maximum plasticity and plastic period were less. Low rank coals such as subbituminous and lignite did not exhibit any plasticity in the present studies. Coal plasticity is moderately well correlated with simple indices of coal type such as the elemental C,O, and H contents.

  8. Astronomy Ranking Task: Stellar Evolution

    E-Print Network [OSTI]

    Farritor, Shane

    Cloud of Gas and Dust C Neutron Star I White Dwarf D Supernova Type II J Black Hole E Nothing K Supernova Type I F Giant L Nova M Gravity Collapse of Gas/Dust Cloud A) Ranking Instructions: Rank, from

  9. Powder River Basin coalbed methane: The USGS role in investigating this ultimate clean coal by-product

    SciTech Connect (OSTI)

    Stricker, G.D.; Flores, R.M.; Ochs, A.M.; Stanton, R.W.

    2000-07-01T23:59:59.000Z

    For the past few decades, the Fort Union Formation in the Powder River Basin has supplied the Nation with comparatively clean low ash and low sulfur coal. However, within the past few years, coalbed methane from the same Fort Union coal has become an important energy by-product. The recently completed US Geological Survey coal resource assessment of the Fort Union coal beds and zones in the northern Rocky Mountains and Great Plains (Fort Union Coal Assessment Team, 1999) has added useful information to coalbed methane exploration and development in the Powder River Basin in Wyoming and Montana. Coalbed methane exploration and development in the Powder River Basin has rapidly accelerated in the past three years. During this time more than 800 wells have been drilled and recent operator forecasts projected more than 5,000 additional wells to be drilled over the next few years. Development of shallow (less than 1,000 ft. deep) Fort Union coal-bed methane is confined to Campbell and Sheridan Counties, Wyoming, and Big Horn County, Montana. The purpose of this paper is to report on the US Geological Survey's role on a cooperative coalbed methane project with the US Bureau of Land Management (BLM), Wyoming Reservoir Management Group and several gas operators. This paper will also discuss the methodology that the USGS and the BLM will be utilizing for analysis and evaluation of coalbed methane reservoirs in the Powder River Basin. The USGS and BLM need additional information of coalbed methane reservoirs to accomplish their respective resource evaluation and management missions.

  10. Coal systems analysis

    SciTech Connect (OSTI)

    Warwick, P.D. (ed.)

    2005-07-01T23:59:59.000Z

    This collection of papers provides an introduction to the concept of coal systems analysis and contains examples of how coal systems analysis can be used to understand, characterize, and evaluate coal and coal gas resources. Chapter are: Coal systems analysis: A new approach to the understanding of coal formation, coal quality and environmental considerations, and coal as a source rock for hydrocarbons by Peter D. Warwick. Appalachian coal assessment: Defining the coal systems of the Appalachian Basin by Robert C. Milici. Subtle structural influences on coal thickness and distribution: Examples from the Lower Broas-Stockton coal (Middle Pennsylvanian), Eastern Kentucky Coal Field, USA by Stephen F. Greb, Cortland F. Eble, and J.C. Hower. Palynology in coal systems analysis The key to floras, climate, and stratigraphy of coal-forming environments by Douglas J. Nichols. A comparison of late Paleocene and late Eocene lignite depositional systems using palynology, upper Wilcox and upper Jackson Groups, east-central Texas by Jennifer M.K. O'Keefe, Recep H. Sancay, Anne L. Raymond, and Thomas E. Yancey. New insights on the hydrocarbon system of the Fruitland Formation coal beds, northern San Juan Basin, Colorado and New Mexico, USA by W.C. Riese, William L. Pelzmann, and Glen T. Snyder.

  11. Development of an Advanced Deshaling Technology to Improve the Energy Efficiency of Coal Handling, Processing, and Utilization Operations

    SciTech Connect (OSTI)

    Rick Honaker; Gerald Luttrell

    2007-09-30T23:59:59.000Z

    The concept of using a dry, density-based separator to achieve efficient, near-face rock removal, commonly referred to as deshaling, was evaluated in several applications across the U.S.. Varying amounts of high-density rock exist in most run-of-mine feed. In the central Appalachian coalfields, a rock content exceeding 50% in the feed to a preparation plant is commonplace due to high amounts of out-of-seam dilution made necessary by extracting coal from thin seams. In the western U.S, an increase in out-of-seam dilution and environmental regulations associated with combustion emissions have resulted in a need to clean low rank coals and dry cleaning may be the only option. A 5 ton/hr mobile deshaling unit incorporating a density-based, air-table technology commercially known as the FGX Separator has been evaluated at mine sites located within the states of Utah, Wyoming, Texas, West Virginia, Virginia, Pennsylvania and Kentucky. The FGX technology utilizes table riffling principles with air as the medium. Air enters through the table and creates a fluidized bed of particles comprised of mostly fine, high density particles. The high density particle bed lifts the low-density coal particles to the top of the bed. The low-density coal moves toward the front of the table due to mass action and the downward slope of the table. The high-density particles settle through the fluidized particle bed and, upon making contact with the table, moves toward the back of the table with the assistance of table vibration. As a result, the low-density coal particles exit the front of the table closest to the feed whereas the high-density, high-ash content particles leave on the side and front of the table located at the farthest from the feed entry. At each test site, the run-of-mine feed was either directly fed to the FGX unit or pre-screened to remove the majority of the -6mm material. The surface moisture of the feed must be maintained below 9%. Pre-screening is required when the surface moisture of the feed coal exceeds the maximum limit. However, the content of -6mm in the feed to the FGX separator should be maintained between 10% and 20% to ensure an adequate fluidized bed. A parametric evaluation was conducted using a 3-level experimental design at each test site to identify the optimum separation performance and parameter values. The test data was used to develop empirical expressions that describe the response variables (i.e., mass yield and product ash content) as a function of the operating parameter values. From this process, it was established that table frequency and longitudinal slope are the most critical factors in controlling both mass yield and clean coal ash while the cross table slope was the least significant. Fan blower frequency is a critical parameter that controls mass yield. Although the splitter positions between product and middling streams and the middling and tailing streams were held constant during the tests, a separate evaluation indicated that performance is sensitive to splitter position within certain lengths of the table and insensitive in others. For a Utah bituminous coal, the FGX separator provided clean coal ash contents that ranged from a low of 8.57% to a high of 12.48% from a feed coal containing around 17% ash. From the 29 tests involved in the statistically designed test program, the average clean coal ash content was 10.76% while the tailings ash content averaged around 72%. One of the best separation performances achieved an ash reduction from 17.36% to 10.67% while recovering 85.9% of the total feed mass, which equated to an ash rejection value of around 47%. The total sulfur content was typically decreased from 1.61% to 1.49%. These performances were quantified by blending the middlings stream with the clean coal product. At a second Utah site, coal sources from three different bituminous coal seams were treated by the FGX deshaling unit. Three parameter values were varied based on the results obtained from Site No. 1 to obtain the optimum results shown in Table E-1. Approximately 9 tests w

  12. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    is produced via coal gasification, then, depending on thenot be amenable to coal gasification and, thus, Eastern coalto represent a coal-to- hydrogen gasification process that

  13. Economic Development from New Generation and Transmission in Wyoming and Colorado

    SciTech Connect (OSTI)

    Keyser, D.; Lantz, E.

    2013-03-01T23:59:59.000Z

    This report analyzes the potential economic impacts in Colorado and Wyoming of a 225 MW natural gas fired electricity generation facility and a 900 MW wind farm constructed in Wyoming as well as a 180 mile, 345 kV transmission line that runs from Wyoming to Colorado. This report and analysis is not a forecast, but rather an estimate of economic activity associated with a hypothetical scenario.

  14. Economic Development from New Generation and Transmission in Wyoming and Colorado (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This report analyzes the potential economic impacts in Colorado and Wyoming of a 225 MW natural gas fired electricity generation facility and a 900 MW wind farm constructed in Wyoming as well as a 180 mile, 345 kV transmission line that runs from Wyoming to Colorado. This report and analysis is not a forecast, but rather an estimate of economic activity associated with a hypothetical scenario.

  15. Coal data: A reference

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  16. Enhanced Coal Bed Methane Recovery and CO2 Sequestration in the Powder River Basin

    SciTech Connect (OSTI)

    Eric P. Robertson

    2010-06-01T23:59:59.000Z

    Unminable coal beds are potentially large storage reservoirs for the sequestration of anthropogenic CO2 and offer the benefit of enhanced methane production, which can offset some of the costs associated with CO2 sequestration. The objective of this report is to provide a final topical report on enhanced coal bed methane recovery and CO2 sequestration to the U.S. Department of Energy in fulfillment of a Big Sky Carbon Sequestration Partnership milestone. This report summarizes work done at Idaho National Laboratory in support of Phase II of the Big Sky Carbon Sequestration Partnership. Research that elucidates the interaction of CO2 and coal is discussed with work centering on the Powder River Basin of Wyoming and Montana. Sorption-induced strain, also referred to as coal swelling/shrinkage, was investigated. A new method of obtaining sorption-induced strain was developed that greatly decreases the time necessary for data collection and increases the reliability of the strain data. As coal permeability is a strong function of sorption-induced strain, common permeability models were used to fit measured permeability data, but were found inadequate. A new permeability model was developed that can be directly applied to coal permeability data obtained under laboratory stress conditions, which are different than field stress conditions. The coal permeability model can be used to obtain critical coal parameters that can be applied in field models. An economic feasibility study of CO2 sequestration in unminable coal seams in the Powder River Basin of Wyoming was done. Economic analyses of CO2 injection options are compared. Results show that injecting flue gas to recover methane from CBM fields is marginally economical; however, this method will not significantly contribute to the need to sequester large quantities of CO2. Separating CO2 from flue gas and injecting it into the unminable coal zones of the Powder River Basin seam is currently uneconomical, but can effectively sequester over 86,000 tons (78,200 Mg) of CO2 per acre while recovering methane to offset costs. The cost to separate CO2 from flue gas was identified as the major cost driver associated with CO2 sequestration in unminable coal seams. Improvements in separations technology alone are unlikely to drive costs low enough for CO2 sequestration in unminable coal seams in the Powder River Basin to become economically viable. Breakthroughs in separations technology could aid the economics, but in the Powder River Basin, they cannot achieve the necessary cost reductions for breakeven economics without incentives.

  17. COAL DESULFURIZATION PRIOR TO COMBUSTION

    E-Print Network [OSTI]

    Wrathall, J.

    2013-01-01T23:59:59.000Z

    90e COAL DESULFURIZATION PRIOR TO COMBUSTION J. Wrathall, T.of coal during combustion. The process involves the additionCOAL DESULFURIZATION PRIOR TO COMBUSTION Lawrence Berkeley

  18. coal | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Technologies for Coal Storage and Feed Preparation AlternativesSupplements to Coal - Feedstock Flexibility DOE Supported R&D for CoalBiomass Feed and Gasification...

  19. Petrographic characterization of Kentucky coals. Quarterly progress report, March-May 1983

    SciTech Connect (OSTI)

    Hower, J.C.; Ferm, J.C.; Cobb, J.C.; Trinkle, E.J.; Frankie, K.A.; Poe, S.H.; Baynard, D.N.; Graese, A.M.; Raione, R.P.

    1983-01-01T23:59:59.000Z

    This project consists of three specific areas of coal petrology: spectral fluorescence of liptinite macerals; properties of semi-inert macerals; and size/form/microlithotype association of pyrite/marcasite. Techniques developed in the first three areas were used in additional research on Mannington and Dunbar coals in western Kentucky and the Alma coal zone in eastern Kentucky. Some of the findings are: percent variations (pseudovitrinite-vitrinite/vitrinite X100) indicate greater dispersions in Vicker's microhardness values, MH(v), of vitrinite and pseudovitrinite from eastern Kentucky coals than those of western Kentucky coals; reflectance data confirm a previously suspected rank increase from eastern Knott and Magoffin Counties to eastern Pike County; microhardness investigation of Upper Elkhorn 2 coal in eastern Kentucky indicates that pseudovitrinite is consistently harder than vitrinite; and of the western coals studied, Dunbar and Lead Creek, there appears to be some correlations between vitrinite, ash, sulfur, and thickness. 6 tables.

  20. Illinois coal reserve assessment and database development. Final report

    SciTech Connect (OSTI)

    Treworgy, C.G.; Prussen, E.I.; Justice, M.A.; Chenoweth, C.A. [and others

    1997-11-01T23:59:59.000Z

    The new demonstrated reserve base estimate of coal of Illinois is 105 billion short tons. This estimate is an increase from the 78 billion tons in the Energy Information Administration`s demonstrated reserve base of coal, as of January 1, 1994. The new estimate arises from revised resource calculations based on recent mapping in a number of countries, as well as significant adjustments for depletion due to past mining. The new estimate for identified resources is 199 billion tons, a revision of the previous estimate of 181 billion tons. The new estimates incorporate the available analyses of sulfur, heat content, and rank group appropriate for characterizing the remaining coal resources in Illinois. Coal-quality data were examined in conjunction with coal resource mapping. Analyses of samples from exploration drill holes, channel samples from mines and outcrops, and geologic trends were compiled and mapped to allocate coal resource quantities to ranges of sulfur, heat content, and rank group. The new allocations place almost 1% of the demonstrated reserve base of Illinois in the two lowest sulfur categories, in contrast to none in the previous allocation used by the Energy Information Administration (EIA). The new allocations also place 89% of the demonstrated reserve base in the highest sulfur category, in contrast to the previous allocation of 69% in the highest category.

  1. Effects of aquifer interconnection resulting from underground coal gasification

    SciTech Connect (OSTI)

    Stone, R.

    1983-09-01T23:59:59.000Z

    Lawrence Livermore National Laboratory evaluated the effects of aquifer interconnection caused by the collapse of cavities formed in coal seams by two small underground coal gasification experiments in the Powder River Basin, Wyoming. Flow models and field measurements were used to show that the water from one or both of the upper aquifers enters the collapse, rubble and flows down to the lowest aquifer (the gasified coal seam) where it flows away from the collapse zones. The investigations showed that the hydraulic conductivity of the collapse rubble is less than that of the aquifers and provides only a moderately permeable interconnection between them, a marked reduction in hydraulic conductivity of the gasified coal seam near the collapse zones restricts the flow in the seam, away from them; changes in the hydraulic head and flow patterns caused by aquifer interconnection extend generally only 60-90 m away from the experiment sites, whereas flow in the uppermost aquifer at one of the sites may be influenced as far away as 122 m. At both sites, the aquifer interconnection allows water from the uppermost (sand) aquifer, which contains the poorest quality water of the 3 aquifers, to enter one or both of the underlying aquifers.

  2. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01T23:59:59.000Z

    Coal Cleaning Costs Process Clean Coal Produced, * T/D (DryMM$ Net Operating Cost, $/T (Clean Coal Basis) Net OperatingCost, $/T (Clean Coal Bases) Case NA Hazen KVB Battelle

  3. Structural analysis of the Sheep Mountain anticline, Bighorn Basin, Wyoming 

    E-Print Network [OSTI]

    Hennier, Jeffrey Hugh

    1984-01-01T23:59:59.000Z

    in the Phosphoria Formation at the northwest plunge of Sheep Mountain. 38 10 Pi diagram plot of bedding attitudes in the Mowry Shale at the extreme northwest plunge of Sheep Mountain . 40 A. Photograph of flatirons formed in weathered Phosphoria beds along... sedimentalogical transition zone or hinge line extended from Mexico through the western U. S. to Canada, separating the deeply subsiding Cordilleran geosynclinal trough to the west in Idaho and Utah from stable cratonic shelf to the east in Wyoming (Thomas...

  4. Gravity interpretation of the northern Overthrust Belt, Idaho and Wyoming

    E-Print Network [OSTI]

    Silver, Wendy Ilene

    1979-01-01T23:59:59.000Z

    provide a potential source of information about the configuration of the sedimentary rock / Precambrian basement interface as well as the geometry of the overlying younger rocks. GRAVITY DA. A Regional Gravity The regional gravity field of Wyoming..., Jurassic and Lower Cretaceous units. It may therefore be concluded that the uplifts of the Precambrian basement were fomed after the deposition of those overly1ng sedimentary rocks. ACKNOWLEDGEMEWTS I w1sh to thank Dr, R. R. Berg, chairman of my...

  5. PageRank of integers

    E-Print Network [OSTI]

    K. M. Frahm; A. D. Chepelianskii; D. L. Shepelyansky

    2012-05-29T23:59:59.000Z

    We build up a directed network tracing links from a given integer to its divisors and analyze the properties of the Google matrix of this network. The PageRank vector of this matrix is computed numerically and it is shown that its probability is inversely proportional to the PageRank index thus being similar to the Zipf law and the dependence established for the World Wide Web. The spectrum of the Google matrix of integers is characterized by a large gap and a relatively small number of nonzero eigenvalues. A simple semi-analytical expression for the PageRank of integers is derived that allows to find this vector for matrices of billion size. This network provides a new PageRank order of integers.

  6. Coalbed methane production enhancement by underground coal gasification

    SciTech Connect (OSTI)

    Hettema, M.H.H.; Wolf, K.H.A.A.; Neumann, B.V.

    1997-12-31T23:59:59.000Z

    The sub-surface of the Netherlands is generally underlain by coal-bearing Carboniferous strata at greater depths (at many places over 1,500 m). These coal seams are generally thinner than 3 meter, occur in groups (5--15) within several hundred meters and are often fairly continuous over many square kilometers. In many cases they have endured complex burial history, influencing their methane saturation. In certain particular geological settings, a high, maximum coalbed methane saturation, may be expected. Carboniferous/Permian coals in the Tianjin-region (China) show many similarities concerning geological settings, rank and composition. Economical coalbed methane production at greater depths is often obstructed by the (very) low permeabilities of the coal seams as with increasing depth the deformation of the coal reduces both its macro-porosity (the cleat system) and microporosity. Experiments in abandoned underground mines, as well as after underground coal gasification tests indicate ways to improve the prospects for coalbed methane production in originally tight coal reservoirs. High permeability areas can be created by the application of underground coal gasification of one of the coal seams of a multi-seam cycle with some 200 meter of coal bearing strata. The gasification of one of the coal seams transforms that seam over a certain area into a highly permeable bed, consisting of coal residues, ash and (thermally altered) roof rubble. Additionally, roof collapse and subsidence will destabilize the overburden. In conjunction this will permit a better coalbed methane production from the remaining surrounding parts of the coal seams. Moreover, the effects of subsidence will influence the stress patterns around the gasified seam and this improves the permeability over certain distances in the coal seams above and below. In this paper the effects of the combined underground coal gasification and coalbed methane production technique are regarded for a single injection well. Known geotechnical aspects are combined with results from laboratory experiments on compaction of thermally treated rubble. An axi-symmetric numerical model is used to determine the effects induced by the gasified coal seam. The calculation includes the rubble formation, rubble compaction and induced stress effects in the overlying strata. Subsequently the stress effects are related to changes in coal permeability, based on experimental results of McKee et al.

  7. Using HEM surveys to evaluate disposal of by-product water from CBNG development in the Powder River Basin, Wyoming

    SciTech Connect (OSTI)

    Lipinski, B.A.; Sams, J.I.; Smith, B.D. (USGS, Denver, CO); Harbert, W.P.

    2008-05-01T23:59:59.000Z

    Production of methane from thick, extensive coal beds in the Powder River Basin ofWyoming has created water management issues. Since development began in 1997, more than 650 billion liters of water have been produced from approximately 22,000 wells. Infiltration impoundments are used widely to dispose of by-product water from coal bed natural gas (CBNG) production, but their hydrogeologic effects are poorly understood. Helicopter electromagnetic surveys (HEM) were completed in July 2003 and July 2004 to characterize the hydrogeology of an alluvial aquifer along the Powder River. The aquifer is receiving CBNG produced water discharge from infiltration impoundments. HEM data were subjected to Occam’s inversion algorithms to determine the aquifer bulk conductivity, which was then correlated to water salinity using site-specific sampling results. The HEM data provided high-resolution images of salinity levels in the aquifer, a result not attainable using traditional sampling methods. Interpretation of these images reveals clearly the produced water influence on aquifer water quality. Potential shortfalls to this method occur where there is no significant contrast in aquifer salinity and infiltrating produced water salinity and where there might be significant changes in aquifer lithology. Despite these limitations, airborne geophysical methods can provide a broadscale (watershed-scale) tool to evaluate CBNG water disposal, especially in areas where field-based investigations are logistically prohibitive. This research has implications for design and location strategies of future CBNG water surface disposal facilities within the Powder River Basin.

  8. Predictors of plasticity in bituminous coals. Final technical report

    SciTech Connect (OSTI)

    Lloyd, W. G.; Reasoner, J. W.; Hower, J. C.; Yates, L. P.; Clark, C. P.; Davis, E.; Fitzpatrick, A.; Irefin, A.; Jiminez, A.; Jones, T. M.

    1984-02-01T23:59:59.000Z

    A group of 40 hvb coals, mostly from western Kentucky fields, has been examined with regard to ASTM Gieseler plastometric properties. Twenty-nine of these coals have also been studied over a range of temperatures by isothermal Gieseler plastometry. Raw Gieseler data provide melting and coking slopes and readily calculable fluidity spans. Maximum fluidity by slope intersection is a more consistent measure than observed maximum fluidity. Isothermal slopes and maximum fluidities follow Arrhenius temperature dependencies, with activation energies related systematically to fluid properties. These freshly sampled coals are also characterized by chemical, physical and petrographic criteria, by quantitative solvent extractions, by pyrolysis gas chromatography, by Fourier Transform infrared analysis of coals and extraction residues, by the HPLC analysis of coal extracts, and by optical microscopy of coals and Gieseler semi-coke residues. Multiple linear regression analysis yields three-term expressions which estimate maximum fluidities (both ASTM and isothermal) with R values of .90 to .92. Slopes and critical temperatures are similarly predictable. Plastometer experiments with selected coals under superatmospheric pressures show both melting slopes and maximum fluidities to be sharply increased, the latter by one to three orders of magnitude. Some suggestions are offered to accommodate this new information into the general body of knowledge concerning the phenomenon of plasticity in mid-ranked coals. 81 references, 28 figures, 40 tables.

  9. Petrology of Jurassic (Kimmeridgian) coals, Atlantic Continental Shelf, New Jersey

    SciTech Connect (OSTI)

    Hower, J.C.; Wild, G.D. (Univ. of Kentucky, Lexington, KY (United States))

    1993-08-01T23:59:59.000Z

    Ten coals of Kimmeridgian age were recovered from the COST B-3 borehole, offshore New Jersey. Separation of the coal from other cuttings was done at 1.8 specific gravity, meaning that partings and mineral-rich lithotypes were lost in processing. The coals are distributed over an interval of 3.49 to 3.93 km depth. Coal rank, by vitrinite maximum reflectance, spans the lower portion of the high volatile A bituminous range. A single Cretaceous coal with 0.32%R[sub max] occurs at 2.08 km depth. Vitrinite content ranges from 51 to over 90% with vitrinite content generally increasing upward in the section. Telinite with resinite cell fillings is an important vitrinite form. Resinite occurs in concentrations of up to 9% in the Jurassic coals and is nearly 12% in the Cretaceous lignite. Fusinite plus semifusinite ranges from 2 to 31%. Inertinite occurs in a wide variety of forms from low-reflectance semifusinite to massive, structureless fusinite. Inertodetrinite also is a component of the abundant detrital bands of some of the Jurassic coals. The gravity separation did not eliminate all mineral matter. Massive pyrite and marcasite occur in several coals and clay occurs with the detrital minerals.

  10. Upgraded Coal Interest Group

    SciTech Connect (OSTI)

    Evan Hughes

    2009-01-08T23:59:59.000Z

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  11. Coal Severance Tax (North Dakota)

    Broader source: Energy.gov [DOE]

    The Coal Severance Tax is imposed on all coal severed for sale or industrial purposes, except coal used for heating buildings in the state, coal used by the state or any political subdivision of...

  12. Ammonia emission inventory for the state of Wyoming

    SciTech Connect (OSTI)

    Kirchstetter, Thomas W.; Maser, Colette R.; Brown, Nancy J.

    2003-12-17T23:59:59.000Z

    Ammonia (NH{sub 3}) is the only significant gaseous base in the atmosphere and it has a variety of impacts as an atmospheric pollutant, including the formation of secondary aerosol particles: ammonium sulfate and ammonium nitrate. NH{sub 3} preferentially forms ammonium sulfate; consequently ammonium nitrate aerosol formation may be limited by the availability of NH{sub 3}. Understanding the impact of emissions of oxides of sulfur and nitrogen on visibility, therefore, requires accurately determined ammonia emission inventories for use in air quality models, upon which regulatory and policy decisions increasingly depend. This report presents an emission inventory of NH{sub 3} for the state of Wyoming. The inventory is temporally and spatially resolved at the monthly and county level, and is comprised of emissions from individual sources in ten categories: livestock, fertilizer, domestic animals, wild animals, wildfires, soil, industry, mobile sources, humans, and publicly owned treatment works. The Wyoming NH{sub 3} inventory was developed using the Carnegie Mellon University (CMU) Ammonia Model as framework. Current Wyoming-specific activity data and emissions factors obtained from state agencies and published literature were assessed and used as inputs to the CMU Ammonia Model. Biogenic emissions from soils comprise about three-quarters of the Wyoming NH{sub 3} inventory, though emission factors from soils are highly uncertain. Published emission factors are scarce and based on limited measurements. In Wyoming, agricultural land, rangeland, and forests comprise 96% of the land area and essentially all of the estimated emissions from soils. Future research on emission rates of NH{sub 3} for these land categories may lead to a substantial change in the magnitude of soil emissions, a different inventory composition, and reduced uncertainty in the inventory. While many NH{sub 3} inventories include annual emissions, air quality modeling studies require finer temporal resolution. Published studies indicate higher emission rates from soils and animal wastes at higher temperatures, and temporal variation in fertilizer application. A recent inverse modeling study indicates temporal variation in regional NH{sub 3} emissions. Monthly allocation factors were derived to estimate monthly emissions from soils, livestock and wild animal waste based on annual emission estimates. Monthly resolution of NH{sub 3} emissions from fertilizers is based on fertilizer sales to farmers. Statewide NH{sub 3} emissions are highest in the late spring and early summer months.

  13. Integration of waste pyrolysis with coal/oil coprocessing

    SciTech Connect (OSTI)

    Hu, J.; Zhou, P.; Lee, T.L.K.; Comolli, A.

    1998-07-01T23:59:59.000Z

    HTI has developed a novel process, HTI CoPro Plus{trademark}, to produce alternative fuels and chemicals from the combined liquefaction of waste materials, coal, and heavy petroleum residues. Promising results have been obtained from a series of bench tests (PB-01 through PB-06) under the DOE Proof of Concept Program. Recently, HTI acquired a proven technology for the mild co-pyrolysis of used rubber tires and waste refinery or lube oils, developed by the University of Wyoming and Amoco. The feasibility of integration of pyrolysis with coal-oil coprocessing was studied in the eighth bench run (PB-08) of the program. The objective of Run PM-08 was to study the coprocessing of coal with oils derived from mild pyrolysis of scrap tires, waste plastics, and waste lube oils to obtain data required for economic comparisons with the DOE data base. A specific objective was also to study the performance of HTI's newly improved GelCat{trademark} catalyst in coal-waste coprocessing under low-high (Reactor 1-Reactor 2 temperatures) operating mode. This paper presents the results obtained from Run PB-08, a 17-day continuous operation conducted in August 1997. A total of 5 conditions, 343 C + pyrolysis oils derived from co-pyrolysis of rubber tires or a mixture of rubber tires and plastics with waste lube oil, were coprocessed with Black Thunder coal using HTI GelCat{trademark} catalyst. In the last condition, rubber tires were pyrolyzed with 524 C coal liquid to study the possible elimination of lube oil used as pyrolysis processing oil. Overall coal conversion above 90 W% was achieved. Distillate yield as high as 69.2 W% was obtained while hydrogen consumption was only 4.4 W%. The distinct advantage of this process is the increase in hydrogen efficiency as both hydrogen consumption and C{sub 1}{minus}C{sub 3} gas yield decrease. Economic evaluation shows that co-processing of plastics with oil, coal, or mixed oil and coal reduces the equivalent crude oil price to a competitive level. This demonstrates that a combined process of coal liquefaction and waste pyrolysis is economically viable.

  14. The ENCOAL Mild Coal Gasification Project, A DOE Assessment

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2002-03-15T23:59:59.000Z

    This report is a post-project assessment of the ENCOAL{reg_sign} Mild Coal Gasification Project, which was selected under Round III of the U.S. Department of Energy (DOE) Clean Coal Technology (CCT) Demonstration Program. The CCT Demonstration Program is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of commercial-scale facilities. The ENCOAL{reg_sign} Corporation, a wholly-owned subsidiary of Bluegrass Coal Development Company (formerly SMC Mining Company), which is a subsidiary of Ziegler Coal Holding Company, submitted an application to the DOE in August 1989, soliciting joint funding of the project in the third round of the CCT Program. The project was selected by DOE in December 1989, and the Cooperative Agreement (CA) was approved in September 1990. Construction, commissioning, and start-up of the ENCOAL{reg_sign} mild coal gasification facility was completed in June 1992. In October 1994, ENCOAL{reg_sign} was granted a two-year extension of the CA with the DOE, that carried through to September 17, 1996. ENCOAL{reg_sign} was then granted a six-month, no-cost extension through March 17, 1997. Overall, DOE provided 50 percent of the total project cost of $90,664,000. ENCOAL{reg_sign} operated the 1,000-ton-per-day mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming, for over four years. The process, using Liquids From Coal (LFC{trademark}) technology originally developed by SMC Mining Company and SGI International, utilizes low-sulfur Powder River Basin (PRB) coal to produce two new fuels, Process-Derived Fuel (PDF{trademark}) and Coal-Derived Liquids (CDL{trademark}). The products, as alternative fuel sources, are capable of significantly lowering current sulfur emissions at industrial and utility boiler sites throughout the nation thus reducing pollutants causing acid rain. In support of this overall objective, the following goals were established for the ENCOAL{reg_sign} Project: Provide sufficient quantity of products for full-scale test burns; Develop data for the design of future commercial plants; Demonstrate plant and process performance; Provide capital and O&M cost data; and Support future LFC{trademark} technology licensing efforts. Each of these goals has been met and exceeded. The plant has been in operation for nearly 5 years, during which the LFC{trademark} process has been demonstrated and refined. Fuels were made, successfully burned, and a commercial-scale plant is now under contract for design and construction.

  15. Utilization ROLE OF COAL COMBUSTION

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    , materials left after combustion of coal in conventional and/ or advanced clean-coal technology combustors and advanced clean-coal technology combustors. This paper describes various coal combustion products produced (FGD) products from pulverized coal and advanced clean-coal technology combustors. Over 70% of the CCPs

  16. International perspectives on coal preparation

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  17. Molecular accessibility in oxidized and dried coals. Quarterly report

    SciTech Connect (OSTI)

    Kispert, L.D.

    1995-06-01T23:59:59.000Z

    The objective of this research project is to determine the molecular and structural changes that occur in swelled coal as a result of oxidation and moisture loss both in the presence and absence of light using the newly developed EPR spin probe method. The proposed study will make it possible to deduce the molecular accessibility distribution in swelled, oxidized APCS coal for each rank as a function of (1) size (up to 6 nm) and shape, (2) the relative acidic/basic reactive site distributions, and (3) the role of hydrogen bonding as a function of swelling solvents. The advantage of the EPR method is that it permits molecules of selected shape, size and chemical reactivity to be used as probes of molecular accessible regions of swelled coal. From such data an optimum catalyst can be designed to convert oxidized coal into a more convenient form and methods can be devised to lessen the detrimental weathering processes.

  18. Indonesian coal mining

    SciTech Connect (OSTI)

    NONE

    2008-11-15T23:59:59.000Z

    The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

  19. Microbial solubilization of coal

    DOE Patents [OSTI]

    Strandberg, Gerald W. (Farragut, TN); Lewis, Susan N. (Knoxville, TN)

    1990-01-01T23:59:59.000Z

    This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.

  20. Coal Production 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-29T23:59:59.000Z

    Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

  1. Coal gasification apparatus

    DOE Patents [OSTI]

    Nagy, Charles K. (Monaca, PA)

    1982-01-01T23:59:59.000Z

    Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

  2. Autothermal coal gasification

    SciTech Connect (OSTI)

    Konkol. W.; Ruprecht, P.; Cornils, B.; Duerrfeld, R.; Langhoff, J.

    1982-03-01T23:59:59.000Z

    Test data from the Ruhrchemie/Ruhrkohle Texaco coal gasification demonstration plant at Oberhausen are reported. (5 refs.)

  3. The key to minimizing minesite versus utility laboratory analyses on Powder River Basin coals

    SciTech Connect (OSTI)

    Rexin, M.G.

    1995-08-01T23:59:59.000Z

    Powder River Basin (PRB) coals are continuing to expand their areas of use into regions previously reserved for higher ranked coals. PRB coals are subbituminous by rank. Inherent moisture values of 25 to 30 percent are the norm. PRB coals, being lower rank in nature, also tend to oxidize very easily. These factors combined produce a coal which can cause analysis problems for laboratories unaccustomed to PRB coals. In fact, even laboratories that deal with this type of coal on a daily basis can experience analytical difficulties. Special care needs to be taken by both minesite laboratory and the utility laboratory to ensure accurate analyses. Cooperation between both parties is the key to reproducible analyses. Only by working together can parties fully analyze the situation and develop analytical methods acceptable to both. This paper will describe the methods employed by the Caballo Rojo Mine (CRM) and the Georgia Power Company (GPC) to resolve laboratory analysis differences found during shipments by CRM to GPC beginning in 1994. The following topics are discussed: initial comparative results, analytical investigations, the cooperative process, recent comparative results, and conclusions.

  4. Advanced coal conversion process demonstration. Progress report, January 1, 1992--December 31, 1992

    SciTech Connect (OSTI)

    NONE

    1993-12-01T23:59:59.000Z

    This report contains a description of the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1992, through December 31, 1992. This project demonstrates an advanced thermal coal drying process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. The SynCoal{reg_sign} process enhances low-rank, western coals, usually with a moisture content of 25 to 55 percent, sulfur content of 0.5 to 1.5 percent, and heating value of 5,500 to 9,000 British thermal units per pound (Btu/lb), by producing a stable, upgraded, coal product with a moisture content as low as 1 percent, sulfur content as low as 0.3 percent, and heating value up to 12,000 Btu/lb. The 45-ton-per-hour unit is located adjacent to a unit train loadout facility at Western Energy Company`s Rosebud coal mine near Colstrip, Montana. The demonstration plant is sized at about one-tenth the projected throughput of a multiple processing train commercial facility. The demonstration drying and cooling equipment is currently near commercial size. Rosebud SynCoal Partnership`s ACCP Demonstration Facility entered Phase III, Demonstration Operation, in April 1992 and has been operating in an extended startup mode since that time. As with any new developing technology, a number of unforeseen obstacles have been encountered; however, Rosebud SynCoal Partnership has instituted an aggressive program to overcome these obstacles.

  5. Coal production 1989

    SciTech Connect (OSTI)

    Not Available

    1990-11-29T23:59:59.000Z

    Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

  6. Northern Cheyenne Reservation Coal Bed Natural Resource Assessment and Analysis of Produced Water Disposal Options

    SciTech Connect (OSTI)

    Shaochang Wo; David A. Lopez; Jason Whiteman Sr.; Bruce A. Reynolds

    2004-07-01T23:59:59.000Z

    Coalbed methane (CBM) development in the Powder River Basin (PRB) is currently one of the most active gas plays in the United States. Monthly production in 2002 reached about 26 BCF in the Wyoming portion of the basin. Coalbed methane reserves for the Wyoming portion of the basin are approximately 25 trillion cubic feet (TCF). Although coal beds in the Powder River Basin extend well into Montana, including the area of the Northern Cheyenne Indian Reservation, the only CBM development in Montana is the CX Field, operated by the Fidelity Exploration, near the Wyoming border. The Northern Cheyenne Reservation is located on the northwest flank of the PRB in Montana with a total land of 445,000 acres. The Reservation consists of five districts, Lame Deer, Busby, Ashland, Birney, and Muddy Cluster and has a population of 4,470 according to the 2000 Census. The CBM resource represents a significant potential asset to the Northern Cheyenne Indian Tribe. Methane gas in coal beds is trapped by hydrodynamic pressure. Because the production of CBM involves the dewatering of coalbed to allow the release of methane gas from the coal matrix, the relatively large volume of the co-produced water and its potential environmental impacts are the primary concerns for the Tribe. Presented in this report is a study conducted by the Idaho National Engineering and Environmental Laboratory (INEEL) and the Montana Bureau of Mines and Geology (MBMG) in partnership with the Northern Cheyenne Tribe to assess the Tribe’s CBM resources and evaluate applicable water handling options. The project was supported by the U.S. Department of Energy (DOE) through the Native American Initiative of the National Petroleum Technology Office, under contract DEAC07- 99ID13727. Matching funds were granted by the MBMG in supporting the work of geologic study and mapping conducted at MBMG.

  7. Advanced progress concepts for direct coal liquefaction

    SciTech Connect (OSTI)

    Anderson, R.; Derbyshire, F.; Givens, E. [Univ. of Kentucky Center for Applied Energy Research, Lexington, KY (United States)] [and others

    1995-09-01T23:59:59.000Z

    Given the low cost of petroleum crude, direct coal liquefaction is still not an economically viable process. The DOE objectives are to further reduce the cost of coal liquefaction to a more competitive level. In this project the primary focus is on the use of low-rank coal feedstocks. A particular strength is the use of process-derived liquids rather than model compound solvents. The original concepts are illustrated in Figure 1, where they are shown on a schematic of the Wilsonville pilot plant operation. Wilsonville operating data have been used to define a base case scenario using run {number_sign}263J, and Wilsonville process materials have been used in experimental work. The CAER has investigated: low severity CO pretreatment of coal for oxygen rejection, increasing coal reactivity and mg inhibiting the propensity for regressive reactions; the application of more active. Low-cost Fe and Mo dispersed catalysts; and the possible use of fluid coking for solids rejection and to generate an overhead product for recycle. CONSOL has investigated: oil agglomeration for coal ash rejection, for the possible rejection of ash in the recycled resid, and for catalyst addition and recovery; and distillate dewaxing to remove naphthenes and paraffins, and to generate an improved quality feed for recycle distillate hydrogenation. At Sandia, research has been concerned with the production of active hydrogen donor distillate solvent fractions produced by the hydrogenation of dewaxed distillates and by fluid coking via low severity reaction with H{sub 2}/CO/H{sub 2}O mixtures using hydrous metal oxide and other catalysts.

  8. Underground coal gasification data base. [Information on 14 US DOE sponsored tests; also available on computer tapes

    SciTech Connect (OSTI)

    Cena, R.J.; Thorsness, C.B.; Ott, L.L.

    1982-11-24T23:59:59.000Z

    The Lawrence Livermore National Laboratory has developed a data base containing results from fourteen DOE-sponsored underground coal gasification (UCG) field tests. These tests include three performed by LLNL near Gillette, Wyoming at the Hoe Creek site, eight performed by LETC at a site near Hanna, Wyoming, two by GULF near Rawlings, Wyoming, and one performed by METC near Princetown, West Virginia. All tests were done in flat lying coal seams except the Rawlings tests, which utilized a steeply dipping seam. The report presents process parameters and the results of material and energy balances for each test in a variety of forms. The raw process data used to construct the data base is first discussed along with material and energy balance conventions. Following this, each test is described with the process geometry and a brief operating chronology given. Differential and integral summary information in tabular and graphic form is provided for each test. Computer tapes of the entire data base may be requested from the authors through the Lawrence Livermore National Laboratory.

  9. Ranking species in mutualistic networks

    E-Print Network [OSTI]

    Domínguez-García, Virginia

    2015-01-01T23:59:59.000Z

    Understanding the architectural subtleties of ecological networks, believed to confer them enhanced stability and robustness, is a subject of outmost relevance. Mutualistic interactions have been profusely studied and their corresponding bipartite networks, such as plant-pollinator networks, have been reported to exhibit a characteristic "nested" structure. Assessing the importance of any given species in mutualistic networks is a key task when evaluating extinction risks and possible cascade effects. Inspired in a recently introduced algorithm --similar in spirit to Google's PageRank but with a built-in non-linearity-- here we propose a method which --by exploiting their nested architecture-- allows us to derive a sound ranking of species importance in mutualistic networks. This method clearly outperforms other existing ranking schemes and can become very useful for ecosystem management and biodiversity preservation, where decisions on what aspects of ecosystems to explicitly protect need to be made.

  10. Proceedings of the thirteenth annual underground coal gasification symposium

    SciTech Connect (OSTI)

    Martin, J.W.; Barone, S.P. (eds.)

    1987-08-01T23:59:59.000Z

    The Thirteenth Annual Underground Coal Gasification Symposium was cosponsored by the Morgantown Energy Technology Center's Laramie Projects Office and Gas Research Institute of Chicago, Illinois, and hosted by the Western Research Institute of Laramie, Wyoming. The symposium was held in Laramie, Wyoming, during the period, August 24 to 26, 1987. Papers printed in these Proceedings were reproduced from camera-ready manuscripts furnished by the authors. They have not been refereed nor have they been edited after receipt for publishing. The purpose for this annual meeting is to provide an opportunity for scientists working in the technology to present their research results, exchange ideas, and discuss their future plans. Nearly 100 attendees from industry, academia, Government, and eight countries, including Belgium, Brazil, France, the Netherlands, Japan, West Germany, India, and Yugoslavia participated. Forty-seven papers were presented in five formal sessions covering Technology, International, Environmental, and General Topics and one informal poster session dominantly covering laboratory and modeling studies. Industrial papers have been processed for inclusion in the Energy Data Base.

  11. Coal recovery process

    DOE Patents [OSTI]

    Good, Robert J. (Grand Island, NY); Badgujar, Mohan (Williamsville, NY)

    1992-01-01T23:59:59.000Z

    A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

  12. Subsidence associated with single and multi-cavities for underground coal gasification

    SciTech Connect (OSTI)

    Avasthi, J.M.; Harloff, G.J.

    1982-06-01T23:59:59.000Z

    An extension of the 3-dimensional theoretical development of Berry and Sales has brought their subsidence predictions into agreement with the NCB's comprehensive set of empirical data. The new elastic parameters fit the amplitude of ground level subsidence. Another modification of the theory makes the subsidence profiles agree with the NCB data. The extended theory has predicted: (1) subsidence for an actual US coalmining case with multiple cavities, and (2) subsidence level and profile for a recent in situ coal-gasification test carried out in Wyoming in a steeply dipping seam.

  13. Encoal mild coal gasification project: Encoal project final report, July 1, 1997--July 31, 1997

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    This document is the summative report on the ENCOAL Mild Coal Gasification Project. It covers the time period from September 17, 1990, the approval date of the Cooperative Agreement between ENCOAL and the US Department of Energy (DOE), to July 17, 1997, the formal end of DOE participation in the Project. The Cooperative Agreement was the result of an application by ENCOAL to the DOE soliciting joint funding under Round III of the Clean Coal Technology Program. By June 1992, the ENCOAL Plant had been built, commissioned and started up, and in October 1994, ENCOAL was granted a two-year extension, carrying the project through to September 17, 1996. No-cost extensions have moved the Cooperative Agreement end date to July 17, 1997 to allow for completion of final reporting requirements. At its inception, ENCOAL was a subsidiary of Shell Mining Company. In November 1992, Shell Mining Company changed ownership, becoming a subsidiary of Zeigler Coal Holding Company (Zeigler) of Fairview Heights, Illinois. Renamed successively as SMC Mining Company and then Bluegrass Coal Development Company, it remained the parent entity for ENCOAL, which has operated a 1,000-ton/day mild coal gasification demonstration plant near Gillette, Wyoming for nearly 5 years. ENCOAL operates at the Buckskin Mine owned by Triton Coal Company (Triton), another Zeigler subsidiary.

  14. LLNL Underground-Coal-Gasification Project. Quarterly progress report, July-September 1981

    SciTech Connect (OSTI)

    Stephens, D.R.; Clements, W. (eds.) [eds.

    1981-11-09T23:59:59.000Z

    We have continued our laboratory studies of forward gasification in small blocks of coal mounted in 55-gal drums. A steam/oxygen mixture is fed into a small hole drilled longitudinally through the center of the block, the coal is ignited near the inlet and burns toward the outlet, and the product gases come off at the outlet. Various diagnostic measurements are made during the course of the burn, and afterward the coal block is split open so that the cavity can be examined. Development work continues on our mathematical model for the small coal block experiments. Preparations for the large block experiments at a coal outcrop in the Tono Basin of Washington State have required steadily increasing effort with the approach of the scheduled starting time for the experiments (Fall 1981). Also in preparation is the deep gasification experiment, Tono 1, planned for another site in the Tono Basin after the large block experiments have been completed. Wrap-up work continues on our previous gasification experiments in Wyoming. Results of the postburn core-drilling program Hoe Creek 3 are presented here. Since 1976 the Soviets have been granted four US patents on various aspects of the underground coal gasification process. These patents are described here, and techniques of special interest are noted. Finally, we include ten abstracts of pertinent LLNL reports and papers completed during the quarter.

  15. Predictors of plasticity in bituminous coals. Technical progress report No. 2, March 1, 1982

    SciTech Connect (OSTI)

    Lloyd, W. G.; Reasoner, J. W.; Hower, J. C.; Yates, L. P.; Clark, C. P.; Jones, T. M.; Sturgeon, L. P.; Whitt, J. M.

    1982-03-01T23:59:59.000Z

    The approach of this study is to secure three dozen (or more) coals of varying rank, composition and plasticity, and to analyze these coals carefully by standard chemical and petrographic techniques. The bitumen fractions will be determined, both by THF (asphaltenes but not preasphaltenes) and DMF (everything). Pyrolysis gas chromatography on both whole coals and extracted residues will compare capacities to generate metaplast. Extracts from coals with plasticities differing by at least four orders of magnitude will be examined for identifiable differences; extraction residues will be subjected to differential FTIR analysis. All of the data will be combined and subjected to systematic statistical analysis with the objective of identifying predictors of coal plasticity. This report describes the work in the first six months of the study. During this period equipment and instrumentation has been obtained, 24 coal samples have been obtained, the nonclassical methods have been developed and checked out, and an appreciable amount of experimentl data has been obtained.

  16. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    anthracite, lignite and brown coal. While bituminous coal isproduction of lignite and brown coal, which also increasedtonnes. Whereas lignite and brown coal accounted for 4% of

  17. Coal: the new black

    SciTech Connect (OSTI)

    Tullo, A.H.; Tremblay, J.-F.

    2008-03-15T23:59:59.000Z

    Long eclipsed by oil and natural gas as a raw material for high-volume chemicals, coal is making a comeback, with oil priced at more than $100 per barrel. It is relatively cheap feedstock for chemicals such as methanol and China is building plants to convert coal to polyolefins on a large scale and interest is spreading worldwide. Over the years several companies in the US and China have made fertilizers via the gasification of coal. Eastman in Tennessee gasifies coal to make methanol which is then converted to acetic acid, acetic anhydride and acetate fiber. The future vision is to convert methanol to olefins. UOP and Lurgi are the major vendors of this technology. These companies are the respective chemical engineering arms of Honeywell and Air Liquide. The article reports developments in China, USA and India on coal-to-chemicals via coal gasification or coal liquefaction. 2 figs., 2 photo.

  18. Lincoln County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and WindLighting ControlWyoming: Energy Resources Jump to:

  19. Washakie County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpageWalthallFacilityVermont:Washakie County, Wyoming:

  20. Sheridan County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York: EnergySumoncle Solar EnergyNebraska: EnergyWyoming:

  1. Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Billion Cubic Feet) Wyoming Dry

  2. Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Billion Cubic Feet) Wyoming

  3. Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Million Cubic Feet) Wyoming

  4. Wyoming Department of Environmental Quality | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Project JumpWisconsin:WorldWorldIowa:Wuxi,Wyoming

  5. Wyoming/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Projectsource History View New Pages RecentWyoming/Wind

  6. Hot Springs County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:County, Wyoming: Energy Resources Jump to:

  7. Wyoming County, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, New York: EnergyWynnedale,Wyoming County, New

  8. Wyoming County, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, New York: EnergyWynnedale,Wyoming County,

  9. Wyoming County, West Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, New York: EnergyWynnedale,Wyoming

  10. Wyoming Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYearBarrels)Wyoming

  11. Wyoming Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYearBarrels)Wyoming3.40

  12. Guide to Permitting Electric Transmission Lines in Wyoming | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy InformationGettop ScienceInformation Wyoming Jump

  13. Teton County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained ByManagement IncDrillbe niceOpenWyoming: Energy Resources

  14. Crook County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCp HoldingsCrofutt'sWyoming: Energy Resources Jump

  15. Wyoming Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts RegionsPaulShadesVirginiaWyoming Regions National

  16. Montana-Dakota Utilities Co (Wyoming) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:NortheastMontana-Dakota Utilities Co (Wyoming)

  17. Wyoming Game and Fish Department | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjin PolysiliconWuxiWyoming Department

  18. Red Butte, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRay County,Open EnergyRecentButte, Wyoming:

  19. Fremont County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° Show MapFredericksburgIdaho: EnergyWyoming:

  20. Technical and economic assessment of particle control technology for direct coal fueled turbines: Final report

    SciTech Connect (OSTI)

    DiBella, C.A.W.; Thomas, R.L.; Rubow, L.N.; Zaharchuk, R.

    1987-02-01T23:59:59.000Z

    Gilbert/Commomwealth (1984) analyzed ten different concepts for high-temperature, high-pressure control of gas stream particulate matter in coal-fueled pressurized fluidized-bed combustion (PFBC) systems. This paper analyzes the five higher ranking concepts of the Gilbert study at direct coal fueled turbine conditions which are even more severe than PFBC conditions. The five concepts are ceramic crossflow filter, ceramic bag filter, granular bed filter, and advanced cyclones. Five ranking factors were used: economic, design, operations complexity, materials/mechanical, and development status. (DLC)

  1. ENCOAL mild coal gasification project public design and construction report

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    This Public Design Report describes the 1000 ton per day ENCOAL mild coal gasification demonstration plant now in operation at the Buckskin Mine near Gillette, Wyoming. The objective of the project is to demonstrate that the proprietary Liquids From Coal (LFC) technology can reliably and economically convert low Btu PRB coal into a superior, high-Btu solid fuel (PDF), and an environmentally attractive low-sulfur liquid fuel (CDL). The Project`s plans also call for the production of sufficient quantities of PDF and CDL to permit utility companies to carry out full scale burn tests. While some process as well as mechanical design was done in 1988, the continuous design effort was started in July 1990. Civil construction was started in October 1990; mechanical erection began in May 1991. Virtually all of the planned design work was completed by July 1991. Most major construction was complete by April 1992 followed by plant testing and commissioning. Plant operation began in late May 1992. This report covers both the detailed design and initial construction aspects of the Project.

  2. High frequency electromagnetic burn monitoring for underground coal gasification

    SciTech Connect (OSTI)

    Deadrick, F.J.; Hill, R.W.; Laine, E.F.

    1981-06-17T23:59:59.000Z

    This paper describes the use of high frequency electromagnetic waves to monitor an in-situ coal gasification burn process, and presents some recent results obtained with the method. Both the technique, called HFEM (high frequency electromagnetic) probing, the HFEM hardware used are described, and some of the data obtained from the LLNL Hoe Creek No. 3 underground coal gasification experiment conducted near Gillette, Wyoming are presented. HFEM was found to be very useful for monitoring the burn activity found in underground coal gasification. The technique, being a remote sensing method which does not require direct physical contact, does not suffer from burnout problems as found with thermocouples, and can continue to function even as the burn progresses on through the region of interest. While HFEM does not replace more conventional instrumentation such as thermocouples, the method does serve to provide data which is unobtainable by other means, and in so doing it complements the other data to help form a picture of what cannot be seen underground.

  3. LLNL Underground Coal Gasification Project annual report - fiscal year 1984

    SciTech Connect (OSTI)

    Stephens, D.R.; O'Neal, E.M. (eds.)

    1985-06-15T23:59:59.000Z

    The Laboratory has been conducting an interdisciplinary underground coal gasification program since 1974 under the sponsorship of DOE and its predecessors. We completed three UCG tests at the Hoe Creek site near Gillette, Wyoming, during the period 1975 to 1979. Five small field experiments, the large-block tests, were completed from 1981 to 1982 at the exposed coal face in the WIDCO coal mine near Centralia, Washington. A larger test at the same location, the partial-seam CRIP test, was completed during fiscal year 1984. In conjunction with the DOE and an industrial group lead by the Gas Research Institute, we have prepared a preliminary design for a large-scale test at the WIDCO site. The planned test features dual injection and production wells, module interaction, and consumption of 20,000 tons of coal during a hundred-day steam-oxygen gasification. During fiscal year 1984, we documented the large-block excavations. The cavities were elongated, the cavity cross sections were elliptical, and the cavities contained ash and slag at the bottom, char and dried coal above that, and a void at the top. The results from the large-block tests provided enough data to allow us to construct a composite model, CAVSM. Preliminary results from the model agree well with the product-gas chemistry and cavity shape observed in the large-block tests. Other models and techniques developed during the year include a transient, moving-front code, a two-dimensional, reactive-flow code using the method of lines, and a wall-recession-rate model. In addition, we measured the rate of methane decomposition in the hot char bed and developed an engineering rate expression to estimate the magnitude of the methane-decomposition reaction. 16 refs., 30 figs., 1 tab.

  4. Robust Rankings for College Football

    E-Print Network [OSTI]

    2012-01-06T23:59:59.000Z

    Oct 11, 2011 ... tournament at the end of a season to determine the best team (or national champion). ?Department of Management Sciences, University of Iowa, Iowa City, IA, ... practice. One such method, which is one of six computer rankings used ...... inconsequential set I. One could also manually choose a completely ...

  5. Coal sector profile

    SciTech Connect (OSTI)

    Not Available

    1990-06-05T23:59:59.000Z

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  6. Structural geology of the northern termination of the Crawford Thrust, western Wyoming

    E-Print Network [OSTI]

    Evans, James Paul

    1983-01-01T23:59:59.000Z

    Comparison with Previous Work CONCLUSIONS. REFERENCES CITED. VITA, 106 107 116 177 136 139 144 1X LIST OF FIGUPES F IGUPE PAGE Generalized map of the Utah-Wyoming-Idaho Th!ust Belt, showing study area location.... . . . . . . . . , . . . . . . . Strati graphi c column for the Utah-Wyom; ng- Idaho !hrust Belt Examples of Listric Normal faults From Wyoming. . 14 Cross sections A-A' through C-C' tron Brown and Spang ('l9/8) 21 Cross sections D-D' through ! -F' from Brown and Spang (1978) 22...

  7. POLYTOPES OF MINIMUM POSITIVE SEMIDEFINITE RANK 1 ...

    E-Print Network [OSTI]

    2012-05-23T23:59:59.000Z

    M ? rank M. In Exam- ple 2.3 we saw that the first inequality may be strict. We now ..... Let Si denote the ith row of SP . Since rank SP = n+ 1, we have ? n+2.

  8. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01T23:59:59.000Z

    ~ - - - - - ' Gri~ing Feed Coal Slurry Feed Pump Filterused to heat a coal-solvent slurry up to the tempera- turePULVERIZED COAL DISSOLVER PRODUCT SLURRY L-. 5 TJ'OON , ~ (

  9. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    a particular type of coal, each of which is inherentlyThere are four classes of coal: bituminous, sub-bituminous,minerals Metallic ores Coal Crude petroleum Gasoline Fuel

  10. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    coal-to-hydrogen plant capital costs .Capital cost of pulverized coal plant ($/kW) Capital cost ofIGCC coal plant ($/kW) Capital cost of repowering PC plant

  11. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01T23:59:59.000Z

    Clean Coal Produced, * T/D (Dry Basis) Installed Plant Cost,Plant Cost, MM$ Net Operating Cost, $/T (Clean Coal Basis)Cost increments fora 25246 ton coal per day SRC plant are

  12. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    5 Figure 1: Map of U.S. coal plants and generating1: Map of U.S. coal plants and generating units (GED, 2006a)of an electric generating coal power plant that would be

  13. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    Council (NCC), 2006, “Coal: America’s Energy Future”, VolumeAssessments to Inform Energy Policy, “Coal: Research andOF RAIL TRANSPORTATION OF COAL The Federal Energy Regulatory

  14. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    OF RAIL TRANSPORTATION OF COAL The Federal Energy RegulatoryPlants Due to Coal Shortages”, Federal Energy RegulatoryCouncil (NCC), 2006, “Coal: America’s Energy Future”, Volume

  15. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    of total electricity generation is because coal plants haveplants come to play an important role in the electricity generationplants will be built in the years around 2020, thereby increasing coal’s share of electricity generation

  16. Computer models to support investigations of surface subsidence and associated ground motion induced by underground coal gasification. [STEALTH Codes

    SciTech Connect (OSTI)

    Langland, R.T.; Trent, B.C.

    1981-01-01T23:59:59.000Z

    Two computer codes compare surface subsidence induced by underground coal gasification at Hoe Creek, Wyoming, and Centralia, Washington. Calculations with the STEALTH explicit finite-difference code are shown to match equivalent, implicit finite-element method solutions for the removal of underground material. Effects of removing roof material, varying elastic constants, investigating thermal shrinkage, and burning multiple coal seams are studied. A coupled, finite-difference continuum rigid-block caving code is used to model underground opening behavior. Numerical techniques agree qualitatively with empirical studies but, so far, underpredict ground surface displacement. The two methods, numerical and empirical, are most effective when used together. It is recommended that the thermal characteristics of coal measure rock be investigated and that additional calculations be carried out to longer times so that cooling influences can be modeled.

  17. Computer models to support investigations of surface subsidence and associated ground motion induced by underground coal gasification

    SciTech Connect (OSTI)

    Trent, B.C.; Langland, R.T.

    1981-08-01T23:59:59.000Z

    Two computer codes compare surface subsidence induced by underground coal gasification at Hoe Creek, Wyoming, and Centralia, Washington. Calculations with the STEALTH explicit finite-difference code are shown to match equivalent, implicit finite-element method solutions for the removal of underground material. Effects of removing roof material, varying elastic constants, investigating thermal shrinkage, and burning multiple coal seams are studied. A coupled, finite-difference continuum rigid-block caving code is used to model underground opening behavior. Numerical techniques agree qualitatively with empirical studies but, so far, underpredict ground surface displacement. The two methods, numerical and empirical, are most effective when used together. It is recommended that the thermal characteristics of coal measure rock be investigated and that additional calculations be carried out to longer times so that cooling influences can be modeled.

  18. Pulverized coal fuel injector

    DOE Patents [OSTI]

    Rini, Michael J. (Hebron, CT); Towle, David P. (Windsor, CT)

    1992-01-01T23:59:59.000Z

    A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

  19. Study of catalytic diffusion in coal. Final report, 1983-1984

    SciTech Connect (OSTI)

    Kispert, L.D.

    1984-09-01T23:59:59.000Z

    The purpose of these studies is to determine the pore (hole) size and pore shape distribution in standard bituminous coal samples from various Alabama coal seams such as that of the Mary Lee, Black Creek and Pratt during and after swelling of the coal with different solvents at various temperatures. These samples come from the Penn State Coal Sample Bank at Pennsylvania State University Coal Research Section and from Alabama's Mineral Industries. Methods were developed in the laboratory whereby free-radical probes of varying sizes can be diffused into the coal under various conditions. These probes can be detected and the environment surrounding the probes can be deduced by electron paramagnetic resonance (EPR) methods. To date, it has been found that not only can the shape and size of the pores be determined, but that the size distribution varies from one bituminous coal seam to another, even for coal of the same rank, suggesting a different optimal catalyst should be used for each seam. The effect of oxygen on the coal samples during grinding has been studied; however, the free radical technique appears to be insensitive to the presence of oxygen effects. The goal is to determine the structural differences between various bituminous coals.

  20. Coal Mining Regulations (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky Administrative Regulation Title 405 chapters 1, 2, 3, 5, 7, 8, 10, 12, 16, 18 and 20 establish the laws governing coal mining in the state.

  1. Coal Development (Nebraska)

    Broader source: Energy.gov [DOE]

    This section provides for the development of newly-discovered coal veins in the state, and county aid for such development.

  2. Coal Market Module This

    Gasoline and Diesel Fuel Update (EIA)

    on fossil energy technologies. This includes 800 million to fund projects under the Clean Coal Power Initiative (CCPI) program, focusing on projects that capture and sequester...

  3. Coal Market Module

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    on fossil energy technologies. This includes 800 million to fund projects under the Clean Coal Power Initiative (CCPI) program, focusing on projects that capture and sequester...

  4. Coal liquefaction quenching process

    DOE Patents [OSTI]

    Thorogood, Robert M. (Macungie, PA); Yeh, Chung-Liang (Bethlehem, PA); Donath, Ernest E. (St. Croix, VI)

    1983-01-01T23:59:59.000Z

    There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

  5. Clean Coal Projects (Virginia)

    Broader source: Energy.gov [DOE]

    This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

  6. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    coal (PC) or integrated gasification combined cycle ( IGCC)coal (PC) or integrated gasification combined cycle (IGCC)will be integrated gasification combined cycle (IGCC) (Same

  7. Coal Mining Tax Credit (Arkansas)

    Broader source: Energy.gov [DOE]

    The Coal Mining Tax Credit provides an income or insurance premium tax credit of $2.00 per ton of coal mined, produced or extracted on each ton of coal mined in Arkansas in a tax year. An...

  8. COAL DESULFURIZATION PRIOR TO COMBUSTION

    E-Print Network [OSTI]

    Wrathall, J.

    2013-01-01T23:59:59.000Z

    Corporation, 5-25~79. on Coal Liquefaction at ChevronHamersma, et a L, "Meyers Process for Coal Desulfurization,"in Wheelock, Coal Desulfurization, ACS Symp. Ser 64 (1977(.

  9. Illinois Coal Revival Program (Illinois)

    Broader source: Energy.gov [DOE]

    The Illinois Coal Revival Program is a grants program providing partial funding to assist with the development of new, coal-fueled electric generation capacity and coal gasification or IGCC units...

  10. Sandia National Laboratories: Clean Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ManagementClean Coal Clean Coal The term clean coal refers to a number of initiatives that seek to reduce or eliminate the hazardous emission or byproducts that result from using...

  11. PressurePressure Indiana Coal Characteristics

    E-Print Network [OSTI]

    Fernández-Juricic, Esteban

    TimeTime PressurePressure · Indiana Coal Characteristics · Indiana Coals for Coke · CoalTransportation in Indiana · Coal Slurry Ponds Evaluation · Site Selection for Coal Gasification · Coal-To-Liquids Study, CTL · Indiana Coal Forecasting · Under-Ground Coal Gasification · Benefits of Oxyfuel Combustion · Economic

  12. Catalytic Two-Stage Liquefaction (CTSL{trademark}) process bench studies and PDU scale-up with sub-bituminous coal. Final report

    SciTech Connect (OSTI)

    Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.T.; Stalzer, R.H.; Smith, T.O.

    1993-03-01T23:59:59.000Z

    Reported are the details and results of Laboratory and Bench-Scale experiments using sub-bituminous coal conducted at Hydrocarbon Research, Inc., under DOE Contract No. DE-AC22-88PC88818 during the period October 1, 1988 to December 31, 1992. The work described is primarily concerned with testing of the baseline Catalytic Two-Stage Liquefaction (CTSL{trademark}) process with comparisons with other two stage process configurations, catalyst evaluations and unit operations such as solid separation, pretreatments, on-line hydrotreating, and an examination of new concepts. In the overall program, three coals were evaluated, bituminous Illinois No. 6, Burning Star and sub-bituminous Wyoming Black Thunder and New Mexico McKinley Mine seams. The results from a total of 16 bench-scale runs are reported and analyzed in detail. The runs (experiments) concern process variables, variable reactor volumes, catalysts (both supported, dispersed and rejuvenated), coal cleaned by agglomeration, hot slurry treatments, reactor sequence, on-line hydrotreating, dispersed catalyst with pretreatment reactors and CO{sub 2}/coal effects. The tests involving the Wyoming and New Mexico Coals are reported herein, and the tests involving the Illinois coal are described in Topical Report No. 2. On a laboratory scale, microautoclave tests evaluating coal, start-up oils, catalysts, thermal treatment, CO{sub 2} addition and sulfur compound effects were conducted and reported in Topical Report No. 3. Other microautoclave tests are described in the Bench Run sections to which they refer such as: rejuvenated catalyst, coker liquids and cleaned coals. The microautoclave tests conducted for modelling the CTSL{trademark} process are described in the CTSL{trademark} Modelling section of Topical Report No. 3 under this contract.

  13. Fuel blending with PRB coal

    SciTech Connect (OSTI)

    McCartney, R.H.; Williams, R.L. Jr. [Roberts and Schaefer, Chicago, IL (United States)

    2009-03-15T23:59:59.000Z

    Many methods exist to accomplish coal blending at a new or existing power plant. These range from a basic use of the secondary (emergency) stockout/reclaim system to totally automated coal handling facilities with segregated areas for two or more coals. Suitable choices for different sized coal plant are discussed, along with the major components of the coal handling facility affected by Powder River Basin coal. 2 figs.

  14. Thermal and Structural Constraints on the Tectonic Evolution of the Idaho-Wyoming-Utah Thrust Belt

    E-Print Network [OSTI]

    Chapman, Shay Michael

    2013-08-09T23:59:59.000Z

    The timing of motion on thrust faults in the Idaho-Wyoming-Utah (IWU) thrust belt comes from synorogenic sediments, apatite thermochronology and direct dating of fault rocks coupled with good geometrical constraints of the subsurface structure...

  15. Wyoming State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-10-01T23:59:59.000Z

    The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming.

  16. EA-1155: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook, Wyoming

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to comply with the Environmental Protection Agency's ground-water standards set forth in 40 CFR 192 at the Spook, Wyoming Uranium Mill...

  17. Economic Development from Gigawatt-Scale Wind Deployment in Wyoming (Presentation)

    SciTech Connect (OSTI)

    Lantz, E.

    2011-05-23T23:59:59.000Z

    This presentation provides an overview of economic development in Wyoming from gigawatt-scale wind development and includes a discussion of project context, definitions and caveats, a deployment scenario, modeling inputs, results, and conclusions.

  18. Graphic values for some organic constituents of beneficiated coal samples

    SciTech Connect (OSTI)

    Kohlenberger, L.B.

    1991-01-01T23:59:59.000Z

    The first objective of this one-year project is to obtain analytical data on a series of fractions of coal sample IBC-101 of widely varying ash content obtained via a froth flotation physical coal cleaning process. Froth flotation is the fractionation technique to be used rather than float/sink testing as in the Stansfield-Sutherland method because (1) most of the data in our files which were used in the development of these techniques were froth flotation tests and (2) as a way of showing that the fractionating is as effective by one technique as the other, so long as no chemical changes are effected. Analytical values will be obtained in the Coal Analysis Laboratory for moisture, ash, volatile matter, fixed carbon, total carbon, hydrogen, nitrogen, oxygen, total sulfur, sulfate sulfur, organic sulfur, and calorific value. The next objective will be to plot the various values of each of the analyzed species versus its corresponding ash values to obtain x/y plots for each as a function of ash. From the resulting curves, it should be possible to calculate for coal sample IBC-101 a precise measure of its mineral matter content, its dry or moist ,mineral-matter-free calorific value as used in determining the rank of the coal sample, calculate organic sulfur values corresponding to each ash value in cases where the relationship is linear, and possibly find other analyzed values which have a direct correlation with the mineral matter content of the coal.

  19. ENCOAL mild coal gasification demonstration project. Annual report, October 1994--September 1995

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    This document is the combination of the fourth quarter report (July - September 1995) and the 1995 annual report for the ENCOAL project. The following pages include the background and process description for the project, brief summaries of the accomplishments for the first three quarters, and a detailed fourth quarter report. Its purpose is to convey the accomplishments and current progress of the project. ENCOAL Corporation, a wholly-owned subsidiary of SMC Mining Company (formerly Shell Mining company, now owned by Zeigler Coal Holding Company), has completed the construction and start-up of a mild gasification demonstration plant at Triton Coal Company`s Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by SMC and SGI International, utilizes low-sulfur Powder River Basis coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). The products, as alternative fuels sources, are expected to significantly lower current sulfur emissions at industrial and utility boiler sites throughout the nation, thereby reducing pollutants causing acid rain. In the LFC technology, coal is first deeply dried to remove water physically. The temperature is further raised in a second stage which results in decomposition reactions that form the new products. This chemical decomposition (mild gasification) creates gases by cracking reactions from the feed coal. The chemically altered solids are cooled and further processed to make PDF. The gases are cooled, condensing liquids as CDL, and the residual gases are burned in the process for heat. The process release for the ENCOAL plant predicted that one ton of feed coal would yield roughly {1/2} ton of PDF and {1/2} barrel of CDL. By varying plant running conditions, however, it has since been learned that the actual CDL recovery rate may be as much as 15% to 20% above the projections.

  20. Search for: "coal" | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    coal" Find + Advanced Search Advanced Search All Fields: "coal" Title: Full Text: Bibliographic Data: Creator Author: Name Name ORCID Search Authors Type: All Accepted...

  1. Illinois Coal Development Program (Illinois)

    Broader source: Energy.gov [DOE]

    The Illinois Coal Development Program seeks to advance promising clean coal technologies beyond research and towards commercialization. The program provides a 50/50 match with private industry...

  2. Clean coal technologies market potential

    SciTech Connect (OSTI)

    Drazga, B. (ed.)

    2007-01-30T23:59:59.000Z

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  3. Aqueous geochemistry of the Thermopolis hydrothermal system, southern Bighorn Basin, Wyoming, U.S.A.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kaszuba, John P. [University of Wyoming; Sims, Kenneth W.W. [University of Wyoming; Pluda, Allison R.

    2014-03-01T23:59:59.000Z

    The Thermopolis hydrothermal system is located in the southern portion of the Bighorn Basin, in and around the town of Thermopolis, Wyoming. It is the largest hydrothermal system in Wyoming outside of Yellowstone National Park. The system includes hot springs, travertine deposits, and thermal wells; published models for the hydrothermal system propose the Owl Creek Mountains as the recharge zone, simple conductive heating at depth, and resurfacing of thermal waters up the Thermopolis Anticline.

  4. EIS-0450: TransWest Express Transmission Project in Wyoming, Colorado, Utah, and Nevada

    Broader source: Energy.gov [DOE]

    This EIS, prepared jointly by DOE's Western Area Power Administration and the Department of the Interior's Bureau of Land Management (Wyoming State Office), evaluates the potential environmental impacts of granting a right-of-way for the TransWest Express Transmission Project and amending a land use plan. The project consists of an overhead transmission line that would extend approximately 725 miles from south-central Wyoming, through Colorado and Utah. Western proposes to be a joint owner of the project.

  5. Jobs and Economic Development from New Transmission and Generation in Wyoming

    SciTech Connect (OSTI)

    Lantz, E.; Tegen, S.

    2011-03-01T23:59:59.000Z

    This report is intended to inform policymakers, local government officials, and Wyoming residents about the jobs and economic development activity that could occur should new infrastructure investments in Wyoming move forward. The report and analysis presented is not a projection or a forecast of what will happen. Instead, the report uses a hypothetical deployment scenario and economic modeling tools to estimate the jobs and economic activity likely associated with these projects if or when they are built.

  6. Application of geological studies to overburden collapse at underground coal gasification experiments

    SciTech Connect (OSTI)

    Ethridge, F.G.; Alexander, W.G.; Craig, G.N. II; Burns, L.K.; Youngberg, A.D.

    1983-08-01T23:59:59.000Z

    Detailed geologic and mineralogic studies were conducted on the Hanna, Wyoming, and Hoe Creek, Wyoming, underground coal gasification sites. These studies demonstrate the importance geologic factors have on controlling overburden collapse into the reactor cavity during and after coal gasification and on subsequent environmental problems. Parameters that control the collapse of overburden material into the reactor cavity include: duration of the burn; maximum span of unsupported roof rock; lateral and vertical homogeneity, permeability and rock strength; and thickness of overburden materials. At the Hoe Creek I experiment, a small reactor cavity and a correspondingly short maximum span of unsupported roof rock consisting of fine-grained, low permeability overbank deposits resulted in minimal collapse. At the Hoe Creek II experiment, a significant amount of collapse occurred due to an increased span of unsupported roof rock comprised of poorly consolidated, more permeable channel sandstones and a limited amount of overburden mudstones and siltstones. Roof rock collapse extended to the surface at the Hoe Creek III experiment where the roof rock consisted of highly permeable, poorly consolidated channel sandstones. The unit comprising the reactor cavity roof rock at the Hanna II experimental site is a laterally continuous lacustrine delta deposit, which primarily consists of sandstones with lesser amounts of interbedded siltstones and claystones. Calcite cement has reduced permeability and interstitial waters which probably kept spalling of the roof rock to a minimum. Consequently, roof rock collapse at the Hanna II experiment was much less extensive than at the Hoe Creek II and III experiments.

  7. Advanced Coal Conversion Process Demonstration Project

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    Western Energy Company (WECO) was selected by the Department of Energy (DOE) to demonstrate the Advanced Coal Conversion Process (ACCP) which upgrades low rank coals into high Btu, low sulfur, synthetic bituminous coal. As specified in the Corporate Agreement, RSCP is required to develop an Environmental Monitoring Plan (EMP) which describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) identify monitoring activities that will be undertaken to show compliance to applicable regulations, (2) confirm the specific environmental impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base of the assessment of the environmental performance of the technology demonstrated by the project. The EMP specifies the streams to be monitored (e.g. gaseous, aqueous, and solid waste), the parameters to be measured (e.g. temperature, pressure, flow rate), and the species to be analyzed (e.g. sulfur compounds, nitrogen compounds, trace elements) as well as human health and safety exposure levels. The operation and frequency of the monitoring activities is specified, as well as the timing for the monitoring activities related to project phase (e.g. preconstruction, construction, commissioning, operational, post-operational). The EMP is designed to assess the environmental impacts and the environmental improvements resulting from construction and operation of the project.

  8. Method for coal liquefaction

    DOE Patents [OSTI]

    Wiser, Wendell H. (Kaysville, UT); Oblad, Alex G. (Salt Lake City, UT); Shabtai, Joseph S. (Salt Lake City, UT)

    1994-01-01T23:59:59.000Z

    A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400.degree. C. at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1.

  9. Coal liquefaction process

    DOE Patents [OSTI]

    Carr, Norman L. (Allison Park, PA); Moon, William G. (Cheswick, PA); Prudich, Michael E. (Pittsburgh, PA)

    1983-01-01T23:59:59.000Z

    A C.sub.5 -900.degree. F. (C.sub.5 -482.degree. C.) liquid yield greater than 50 weight percent MAF feed coal is obtained in a coal liquefaction process wherein a selected combination of higher hydrogen partial pressure, longer slurry residence time and increased recycle ash content of the feed slurry are controlled within defined ranges.

  10. An assessment of the quality of selected EIA data series: Coal data, 1983--1988

    SciTech Connect (OSTI)

    Not Available

    1991-11-25T23:59:59.000Z

    The purpose of this report is to present information on the quality of some of the Energy Information Administration`s (EIA) coal data. This report contains discussions of data on production, direct labor hours, recoverable reserves, and prices from 1983 through 1988. Chapter 2 of this report presents a summary of the EIA coal data collection and identifies other sources providing similar data. Chapters 3 and 4 focus on data on coal production and direct labor hours, respectively. Detailed comparisons with data from the Mine Safety and Health Administration (MSHA) and State mining agencies are presented. Chapter 5 examines recoverable reserves. Included are internal comparisons as well as comparisons with other published reserve-related data, namely those of BXG, Inc. Chapter 6 describes how EIA obtains estimates of coal prices and discusses the variability in the prices caused by factors such as mine type, coal rank, and region. 5 figs., 5 tabs.

  11. Research on chemical factors in underground coal gasification. Final technical report

    SciTech Connect (OSTI)

    Edgar, T.F.

    1985-09-01T23:59:59.000Z

    The goal of this research has been to acquire experimental data and develop mathematical models in order to analyze results from laboratory-scale and field-scale experiments on underground coal gasification (UCG), especially for low-rank coals such as Texas lignite. Experimental data for water injection in a combustion tube, coal core combustion, and coal block gasification are reported; in parallel, a mathematical model for the combustion tube temperature profile and gas composition was developed which compared favorably with experimental data. A mathematical model for predicting gas composition and coal recovery in the Hoe Creek field experiment has been completed and verified with field data. Two experiments have been constructed to obtain data on reactions of interest to UCG; these include an apparatus for determining the kinetics of tar cracking and a microreactor for analyzing the process dynamics of the water gas shift reaction carried out in a fixed bed catalytic system. 44 refs., 60 figs., 22 tabs.

  12. Coal in China

    SciTech Connect (OSTI)

    Minchener, A.J. [IEA Clean Coal Centre, London (United Kingdom)

    2005-07-01T23:59:59.000Z

    The article gives an overview of the production and use of coal in China, for power generation and in other sectors. Coal use for power generation was 850 million tonnes in 2003 and 800 million tonnes in the non-power sector. The majority of power will continue to be produced from coal, with a trend towards new larger pulverised coal fired units and introduction of circulating fluidised bed combustors. Stricter regulations are forcing introduction of improved pollution control technologies. It seems likely that China will need international finance to supplement private and state investment to carry out a programme to develop and apply clean coal technologies. The author concludes that there is evidence of a market economy being established but there is a need to resolve inconsistencies with the planned aspects of the economy and that additional policies are needed in certain sectors to achieve sustainable development. 1 ref., 2 figs., 2 tabs.

  13. California-Wyoming Grid Integration Study: Phase 1 -- Economic Analysis

    SciTech Connect (OSTI)

    Corbus, D.; Hurlbut, D.; Schwabe, P.; Ibanez, E.; Milligan, M.; Brinkman, G.; Paduru, A.; Diakov, V.; Hand, M.

    2014-03-01T23:59:59.000Z

    This study presents a comparative analysis of two different renewable energy options for the California energy market between 2017 and 2020: 12,000 GWh per year from new California in-state renewable energy resources; and 12,000 GWh per year from Wyoming wind delivered to the California marketplace. Either option would add to the California resources already existing or under construction, theoretically providing the last measure of power needed to meet (or to slightly exceed) the state's 33% renewable portfolio standard. Both options have discretely measurable differences in transmission costs, capital costs (due to the enabling of different generation portfolios), capacity values, and production costs. The purpose of this study is to compare and contrast the two different options to provide additional insight for future planning.

  14. State coal profiles, January 1994

    SciTech Connect (OSTI)

    Not Available

    1994-02-02T23:59:59.000Z

    The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.

  15. Regional geology of eastern Idaho and western Wyoming

    SciTech Connect (OSTI)

    Link, P.K.; Kuntz, M.A.; Platt, L.B. (eds.)

    1993-01-01T23:59:59.000Z

    The first section, Regional Synthesis, consists of a single 53-page chapter entitled The track of the Yellowstone hot spot: Volcanism faulting, and uplift.'' The authors' approach is to interpret major features or regional geology as resulting in large part from the last 16 Ma of southwesterly migration by the North American plate over a stationary thermal plume in the mantle. Evidence that may relate to the Yellowstone hot spot model is presented under headings dealing with volcanic track of the hot spot, neotectonic faulting associated with the hot spot, and regional topographic anomalies which may have resulted from hot spot-induced uplift or subsidence. The second section of the book deals with the Idaho-Wyoming thrust belt. Each chapter is a separate article by different authors, so coverage is of selected topics in the Idaho-Wyoming thrust belt rather than a comprehensive overview. Extensional tectonics is the topic of the book's third section. Field investigations of two major structures, the Grand Valley fault and the Teton normal fault, are presented in chapters eight and nine, respectively. Chapter ten focuses on surficial gravity slide sheets that are well-exposed in the area, with particular emphasis on their structural features and mechanisms of emplacement. The final 90 pages of the book make up a four-chapter section that deals with the eastern Snake River plain (ESRP). Topical coverage is quite varied, ranging from details of Quaternary stratigraphy at one site to an overview of the eastern Snake River plain basaltic volcanism and an investigation of ignimbrites of the Heise volcanic field.

  16. Process-scale modeling of elevated wintertime ozone in Wyoming.

    SciTech Connect (OSTI)

    Kotamarthi, V. R.; Holdridge, D. J.; Environmental Science Division

    2007-12-31T23:59:59.000Z

    Measurements of meteorological variables and trace gas concentrations, provided by the Wyoming Department of Environmental Quality for Daniel, Jonah, and Boulder Counties in the state of Wyoming, were analyzed for this project. The data indicate that highest ozone concentrations were observed at temperatures of -10 C to 0 C, at low wind speeds of about 5 mph. The median values for nitrogen oxides (NOx) during these episodes ranged between 10 ppbv and 20 ppbv (parts per billion by volume). Measurements of volatile organic compounds (VOCs) during these periods were insufficient for quantitative analysis. The few available VOCs measurements indicated unusually high levels of alkanes and aromatics and low levels of alkenes. In addition, the column ozone concentration during one of the high-ozone episodes was low, on the order of 250 DU (Dobson unit) as compared to a normal column ozone concentration of approximately 300-325 DU during spring for this region. Analysis of this observation was outside the scope of this project. The data analysis reported here was used to establish criteria for making a large number of sensitivity calculations through use of a box photochemical model. Two different VOCs lumping schemes, RACM and SAPRC-98, were used for the calculations. Calculations based on this data analysis indicated that the ozone mixing ratios are sensitive to (a) surface albedo, (b) column ozone, (c) NOx mixing ratios, and (d) available terminal olefins. The RACM model showed a large response to an increase in lumped species containing propane that was not reproduced by the SAPRC scheme, which models propane as a nearly independent species. The rest of the VOCs produced similar changes in ozone in both schemes. In general, if one assumes that measured VOCs are fairly representative of the conditions at these locations, sufficient precursors might be available to produce ozone in the range of 60-80 ppbv under the conditions modeled.

  17. The International Coal Statistics Data Base user's guide

    SciTech Connect (OSTI)

    Not Available

    1991-06-01T23:59:59.000Z

    The ICSD is a microcomputer-based system which presents four types of data: (1) the quantity of coal traded between importers and exporters, (2) the price of particular ranks of coal and the cost of shipping it in world trade, (3) a detailed look at coal shipments entering and leaving the United States, and (4) the context for world coal trade in the form of data on how coal and other primary energy sources are used now and are projected to be used in the future, especially by major industrial economies. The ICSD consists of more than 140 files organized into a rapid query system for coal data. It can operate on any IBM-compatible microcomputer with 640 kilobytes memory and a hard disk drive with at least 8 megabytes of available space. The ICSD is: 1. A menu-driven, interactive data base using Dbase 3+ and Lotus 1-2-3. 2. Inputs include official and commercial statistics on international coal trade volumes and consumption. 3. Outputs include dozens of reports and color graphic displays. Output report type include Lotus worksheets, dBase data bases, ASCII text files, screen displays, and printed reports. 4. Flexible design permits user to follow structured query system or design his own queries using either Lotus or dBase procedures. 5. Incudes maintenance programs to configure the system, correct indexing errors, back-up work, restore corrupted files, annotate user-created files and update system programs, use DOS shells, and much more. Forecasts and other information derived from the ICSD are published in EIA's Annual Prospects for World Coal Trade (DOE/EIA-0363).

  18. Consensus Coal Production Forecast for

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Consensus Coal Production Forecast for West Virginia 2009-2030 Prepared for the West Virginia Summary 1 Recent Developments 2 Consensus Coal Production Forecast for West Virginia 10 Risks References 27 #12;W.Va. Consensus Coal Forecast Update 2009 iii List of Tables 1. W.Va. Coal Production

  19. Clean coal technology: The new coal era

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The Clean Coal Technology Program is a government and industry cofunded effort to demonstrate a new generation of innovative coal processes in a series of full-scale showcase`` facilities built across the country. Begun in 1986 and expanded in 1987, the program is expected to finance more than $6.8 billion of projects. Nearly two-thirds of the funding will come from the private sector, well above the 50 percent industry co-funding expected when the program began. The original recommendation for a multi-billion dollar clean coal demonstration program came from the US and Canadian Special Envoys on Acid Rain. In January 1986, Special Envoys Lewis and Davis presented their recommendations. Included was the call for a 5-year, $5-billion program in the US to demonstrate, at commercial scale, innovative clean coal technologies that were beginning to emerge from research programs both in the US and elsewhere in the world. As the Envoys said: if the menu of control options was expanded, and if the new options were significantly cheaper, yet highly efficient, it would be easier to formulate an acid rain control plan that would have broader public appeal.

  20. Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1989-02-01T23:59:59.000Z

    This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

  1. Data base for the analysis of compositional characteristics of coal seams and macerals. Final report. Part 2. A multivariate study of the interrelationships among selected variables of the organic fraction of samples of United States' coals

    SciTech Connect (OSTI)

    Gerencher, J.J. Jr.

    1983-01-01T23:59:59.000Z

    Multivariate statistical techniques have been applied to study interrelationships among 12 variables within a set of 277 coals representing whole-seam channel, column, and core samples obtained from each of the 6 coal provinces of the United States, and varying in rank from lignite through anthracite. The data are maintained in computerized data base at The Pennsylvania State University Coal Research Section. The variables selected are components of the elemental analysis (carbon, oxygen, organic sulfur, hydrogen, and nitrogen), selected components of the proximate analysis (volatile matter and moisture), calorific value, reflectance of vitrinite, and the relative proportions of the 3 maceral groups (total vitrinite, inertinite, and liptinite group macerals). Faactor analyses performed on the entire data set and on subsets separated on the basis of rank, geographic location, and by cluster analysis indicated that rank is the most important factor in determining the amount of variation of each data set. The rank-dependent variables for the entire data set are carbon, reflectance, oxygen, volatile matter, calorific value, and moisture. The maceral groups account for the next greatest source of variation. Organic sulfur is independent of the first 2 factors and is the third most important source of variation. Cluster analyses indicated that the most significant partitioning produces 4 groups which are differentiated primarily on the basis of rank, maceral composition, and organic sulfur content. Factor analyses of the individual groups provide insights into the coalification processes of these more homogeneous coal associations.

  2. Rawlins UCG (underground coal gasification) Demonstration Project site characterization report

    SciTech Connect (OSTI)

    Not Available

    1989-04-01T23:59:59.000Z

    The United States Department of Energy and Energy International, Inc. have entered into a Cooperative Agreement to conduct a cost-shared UCG field test demonstrating the operation of commercial scale Underground Coal Gasification (UCG) on steeply dipping bed modules to provide synthesis gas for a small scale commercial ammonia plant. The field test and the commercial ammonia plant will be located at the North Knobs site near Rawlins, Wyoming. During this demonstration test, two or more UCG modules will be operated simultaneously until one module is completely consumed and an additional module is brought on line. During this period, the average coal gasification rate will be between 500 and 1200 tons per day. A portion of the raw UCG product gas will be cleaned and converted into a synthesis gas, which will be used as feedstock to a 400--500 ton per day ammonia plant. The UCG facility will continue to operate subsequent to the test demonstration to provide feedstock for the commercial plant. The objective of the hydrologic site characterization program is to provide an accurate representation of the hydrologic environment within the area to be gasified. This information will aid in the placement and operation of the process wells in relation to the ground water source. 21 refs., 14 figs., 6 tabs.

  3. Slag Penetration into Refractory Lining of Slagging Coal Gasifier

    SciTech Connect (OSTI)

    Matyas, Josef; Sundaram, S. K.; Rodriguez, Carmen P.; Edmondson, Autumn B.; Arrigoni, Benjamin M.

    2008-10-25T23:59:59.000Z

    The impurities in coal are converted into molten slag typically containing SiO2, FeO, CaO, and Al2O3 when coal feedstock is burned in slagging gasifiers. The slag flows down the gasifier sidewalls, dissolves, and penetrates and reacts with the refractory lining that protects the stainless steel shell of the gasifier from elevated temperatures (1300–1600°C). Refractories composed primarily of Cr2O3 have been found most resistant to slag corrosion, but they continue to fail performance requirements because of low resistance to spalling. Post-mortem analysis of high-chromia refractory bricks collected from commercial gasifiers suggests that the spalling is affected by the depth of slag penetration that is in turn affected by the wettability and interconnected porosity of the refractory as well as the slag viscosity. Laboratory tests were conducted to measure the viscosity of slags (Wyoming Powder River Basin [PRB], Pocahontas #3, and Pittsburgh #8), their contact angle on refractories (chromia-alumina [Aurex 75SR] and high-chromia [Serv 95 and Aurex 95P]), and the apparent porosity of selected refractories. In addition, the depth of slag penetration as a function of time and temperature was determined for various refractory-slag combinations. The results of laboratory tests were used to develop a refractory material that has high resistance to penetration by molten slag and thus has a potential to have a substantially longer service life than the materials currently being used.

  4. A CHARACTERIZATION AND EVALUATION OF COAL LIQUEFACTION PROCESS STREAMS

    SciTech Connect (OSTI)

    G.A. Robbins; R.A. Winschel; S.D. Brandes

    1999-05-01T23:59:59.000Z

    This is the first Annual Technical Report of activities under DOE Contract No. DE-AC22-94PC93054. Activities from the first three quarters of the fiscal 1998 year were reported previously as Quarterly Technical Progress Reports (DOE/PC93054-57, DOE/PC93054-61, and DOE/PC93054-66). Activities for the period July 1 through September 30, 1998, are reported here. This report describes CONSOL's characterization of process-derived samples obtained from HTI Run PB-08. These samples were derived from operations with Black Thunder Mine Wyoming subbituminous coal, simulated mixed waste plastics, and pyrolysis oils derived from waste plastics and waste tires. Comparison of characteristics among the PB-08 samples was made to ascertain the effects of feed composition changes. A comparison also was made to samples from a previous test (Run PB-06) made in the same processing unit, with Black Thunder Mine coal, and in one run condition with co-fed mixed plastics.

  5. Recent advances in coal geochemistry

    SciTech Connect (OSTI)

    Chyi, L.L. (Dept. of Geology, Univ. of Akron, Akron, OH (US)); Chou, C.-L. (Illinois State Geological Survey, 615 E. Peabody Drive, Champaign, IL (US))

    1990-01-01T23:59:59.000Z

    Chapters in this collection reflect the recent emphasis both on basic research in coal geochemistry and on applied aspects related to coal utilization. Geochemical research on peat and coal generates compositional data that are required for the following reasons. First, many studies in coal geology require chemical data to aid in interpretation for better understanding of the origin and evolution of peat and coal. Second, coal quality assessment is based largely on composition data, and these data generate useful insights into the geologic factors that control the quality of coal. Third, compositional data are needed for effective utilization of coal resources and to reflect the recent emphasis on both basic research in coal geochemistry and environmental aspects related to coal utilization.

  6. Coal liquefaction process

    DOE Patents [OSTI]

    Wright, C.H.

    1986-02-11T23:59:59.000Z

    A process is described for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range. 1 fig.

  7. Coal liquefaction process

    DOE Patents [OSTI]

    Wright, Charles H. (Overland Park, KS)

    1986-01-01T23:59:59.000Z

    A process for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range.

  8. Clean coal today

    SciTech Connect (OSTI)

    none,

    1990-01-01T23:59:59.000Z

    This is the first issue of the Clean Coal Today publication. Each issue will provide project status reports, feature articles about certain projects and highlight key events concerning the US Clean Coal Technology Demonstration Program. Projects described in this publication include: Colorado-Ute Electric Association Circulating Fluidized Bed Combustor Project at Nucla, Colorado; Babcock and Wilcox coolside and limestone injection multistage burner process (dry sorbent injection); Coal Tech's Advanced Cyclone Combustor Project; and the TIDD pressurized fluidized bed combustor combined cycle facility in Brilliant, Ohio. The status of other projects is included.

  9. Coal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuildingCoal Combustion Products Coal Combustion ProductsCoal to

  10. Coal | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1AAcquisitionDevelopmentChooseCoal Coal Coal

  11. Coal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCityFundCo-benefits EvaluationCoalCoalCoal

  12. RANK-SPARSITY INCOHERENCE FOR MATRIX DECOMPOSITION ...

    E-Print Network [OSTI]

    2009-06-11T23:59:59.000Z

    Jun 11, 2009 ... nuclear norm of the components. We develop a notion of rank-sparsity incoherence, expressed as an uncertainty principle between the sparsity ...

  13. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    of deploying advanced coal power in the Chinese context,”12 2.6. International coal prices and12 III. Chinese Coal

  14. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic29 Figure 9. Sensitivity to Coal

  15. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    farms with advanced coal generation facilities and operatingfarms with advanced coal generation facilities and operatingin the stand-alone coal generation option (IGCC+CCS plant)

  16. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    services. Power generation Coal increasingly dominates28 Thermal coal electricity generation efficiency alsostudy examines four coal-thermal generation technology types

  17. Coal-Biomass Feed and Gasification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal-Biomass Feed and Gasification The Coal-Biomass Feed and Gasification Key Technology is advancing scientific knowledge of the production of liquid hydrocarbon fuels from coal...

  18. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    generation systems. Coal energy density could be increasedfuel reserves were coal by energy content; 19% were oil, andConsumption, 2007 coal/primary energy consumption Source: BP

  19. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    19 3.4. Coking coal for iron & steels FOB export value for coking coal was relatively stables FOB export value for coking coal significantly increased

  20. Clean Coal Power Initiative | Department of Energy

    Office of Environmental Management (EM)

    Clean Coal Power Initiative Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other...

  1. Aqueous coal slurry

    DOE Patents [OSTI]

    Berggren, Mark H.; Smit, Francis J.; Swanson, Wilbur W.

    1993-04-06T23:59:59.000Z

    An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

  2. Aqueous coal slurry

    DOE Patents [OSTI]

    Berggren, Mark H. (Golden, CO); Smit, Francis J. (Arvada, CO); Swanson, Wilbur W. (Golden, CO)

    1993-01-01T23:59:59.000Z

    An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

  3. Quarterly coal report

    SciTech Connect (OSTI)

    Young, P.

    1996-05-01T23:59:59.000Z

    The Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for October through December 1995 and aggregated quarterly historical data for 1987 through the third quarter of 1995. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  4. Clean Coal Research

    Broader source: Energy.gov [DOE]

    DOE's clean coal R&D is focused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled...

  5. Clean Coal Technology (Indiana)

    Broader source: Energy.gov [DOE]

    A public utility may not use clean coal technology at a new or existing electric generating facility without first applying for and obtaining from the Utility Regulatory Commission a certificate...

  6. Coal Liquefaction desulfurization process

    DOE Patents [OSTI]

    Givens, Edwin N. (Bethlehem, PA)

    1983-01-01T23:59:59.000Z

    In a solvent refined coal liquefaction process, more effective desulfurization of the high boiling point components is effected by first stripping the solvent-coal reacted slurry of lower boiling point components, particularly including hydrogen sulfide and low molecular weight sulfur compounds, and then reacting the slurry with a solid sulfur getter material, such as iron. The sulfur getter compound, with reacted sulfur included, is then removed with other solids in the slurry.

  7. Coal liquefaction process

    DOE Patents [OSTI]

    Skinner, Ronald W. (Allentown, PA); Tao, John C. (Perkiomenville, PA); Znaimer, Samuel (Vancouver, CA)

    1985-01-01T23:59:59.000Z

    This invention relates to an improved process for the production of liquid carbonaceous fuels and solvents from carbonaceous solid fuels, especially coal. The claimed improved process includes the hydrocracking of the light SRC mixed with a suitable hydrocracker solvent. The recycle of the resulting hydrocracked product, after separation and distillation, is used to produce a solvent for the hydrocracking of the light solvent refined coal.

  8. Method for coal liquefaction

    DOE Patents [OSTI]

    Wiser, W.H.; Oblad, A.G.; Shabtai, J.S.

    1994-05-03T23:59:59.000Z

    A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400 C at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1. 1 figures.

  9. Excavation of the Partial Seam CRIP underground coal gasification test site

    SciTech Connect (OSTI)

    Cena, R.J.; Britten, J.A.; Thorsness, C.B.

    1987-08-14T23:59:59.000Z

    In the fall of 1983, Lawrence Livermore National Laboratory conducted the Partial Seam CRIP (PSC) underground coal gasification (UCG) field experiment at the Washington Irrigation and Development Company mine near Centralia, Washington. The test, in the subbituminous Big Dirty coal seam, lasted 30 days during which time 1400 cubic meters of coal were consumed from two injection/production well combinations. In the spring of 1986, normal mining activity in the vicinity of the PSC test allowed the opportunity to carefully excavate the experiment and examine the post-burn cavities. The mining operation dug out the front and back half of the test area and most of the overburden above the UCG cavities, leaving approximately 23,000 cubic meters of earth containing the main portion of the test area undisturbed. Under direction of the Wyoming Research Institute (WRI), this remaining earth was carefully excavated, in slices perpendicular to the original injection/production line, using small earthmoving equipment to uncover and sample the final burn cavities. Preliminary results of the excavation were presented by WRI at the 12th Underground Coal Conversion Symposium. We present additional results and conclusions based on all of the information obtained. Topics covered include: comparison to material balance and thermal instrumentation data, analysis and composition of samples taken from the cavity and general cavity shape and characteristics in comparison with mechanistic models of cavity growth. 10 refs., 10 figs., 1 tab.

  10. Burn cavity growth during the Hoe Creek No. 3 underground coal gasification experiment

    SciTech Connect (OSTI)

    Hill, R.W.

    1981-01-14T23:59:59.000Z

    A detailed history is given of the growth of the burn cavity during the first month of the Hoe Creek No. 3 underground coal gasification experiment near Gillette, Wyoming, in 1979. The changing shape of the cavity with time is inferred from data from three types of instruments installed throughout the experimental zone: (1) thermocouples at various levels in a number of holes, to map temperatures; (2) extensometers at various levels in other holes, to detect motions of the overburden material; and (3) high-frequency electromagnetic (HFEM) scans made between various pairs of holes, to detect cavities and zones of burning coal. Additional data on the final shape of the underground cavity are derived from the results of a core drilling program carried out from the surface after the burn had ended. This study of cavity growth history has contributed significantly to our understanding of how the in situ coal gasification process operates in sites like Hoe Creek. The diagnostic system provided invaluable information on cavity growth and on the interaction between the two coal seams. Some new problems with injection well survival and slag production in oxygen-steam burns were brought out, and the importance of understanding and controlling heat loss mechanisms was amply demonstrated. Although no one system of underground diagnostics can give all of the information needed to fully describe the in situ process, a combination of several diagnostic systems can be used to deduce a self-consistent description.

  11. Burn cavity growth during the Hoe Creek No. 3 underground-coal-gasification experiment

    SciTech Connect (OSTI)

    Hill, R.W.

    1981-06-08T23:59:59.000Z

    A detailed history is given of the growth of the burn cavity during the first month of the Hoe Creek No. 3 underground coal gasification experiment near Gillette, Wyoming, in 1979. The changing shape of the cavity with time is inferred from data from three types of instruments installed throughout the experimental zone: (1) thermocouples at various levels in a number of holes, to map temperatures; (2) extensometers at various levels in other holes, to detect motions of the overburden material; and (3) high-frequency electromagnetic scans made between various pairs of holes, to detect cavities and zones of burning coal. Additional data on the final shape of the underground cavity is derived from the results of a core drilling program carried out from the surface after the burn had ended. This study of cavity growth history has contributed significantly to our understanding of how the in-situ coal gasification process operates in sites like Hoe Creek. The diagnostic system provided invaluable information on cavity growth and on the interaction between the two coal seams. Some new problems with injection well survival and slag production in oxygen-steam burns were brought out, and the importance of understanding and controlling heat loss mechanisms was amply demonstrated. Although no one system of underground diagnostics can give all of the information needed to fully describe the in-situ process, a combination of several diagnostic systems can be used to deduce a self-consistent description.

  12. Top for economics Rank Business School

    E-Print Network [OSTI]

    Lin, Xiaodong

    Top for economics Rank Business School 1 University of Chicago: Booth Rutgers Business School University of Toronto: Rotman Cranfield School of Management University of California at Irvine: Merage University of Rochester: Simon Columbia/London Business School 2 3 4 5 6 7 8 9 10 Rank Business School 1

  13. (psd) rank of a nonnegative matrix w

    E-Print Network [OSTI]

    2013-05-20T23:59:59.000Z

    at least k and we pose the problem of deciding whether the psd rank is exactly k. Using geometry ... referred to as the psd rank of P) is exactly the smallest k such that P is the linear image of an ..... References. [1] J. Bochnak, M. Coste, M. Roy.

  14. Geologic assessment of natural gas from coal seams in the Warrior Basin, Alabama. Topical report, September 1985-September 1986

    SciTech Connect (OSTI)

    McFall, K.S.; Wicks, D.E.; Kuuskraa, V.A.

    1986-11-01T23:59:59.000Z

    This study provides a detailed geologic assessment of the coal deposits in the Warrior Basin area that have high potential for natural gas from coal seams. The estimate of the natural gas in place in the four major coal groups is 19.8 trillion cubic feet. Although the bulk of the gas in place is in the deeper areally extensive Black Creek and Mary Lee coal groups, the more shallow Pratt coal group also shows good potential for coal seam gas. The most concentrated areas of methane in place are in the eastern portion of the Warrior Basin. These areas coincide with thick accumulations of high rank coals and their associated higher gas contents. These areas also appear to have been structurally altered, leading to enhanced permeability to gas and water. Thus, the eastern portions of the basin appear more favorable for coalbed methane production due to high gas contents, attractive coal thicknesses, closely-spaced coal cleats and joints, and moderate depths to the coal horizons.

  15. Universal Emergence of PageRank

    E-Print Network [OSTI]

    K. M. Frahm; B. Georgeot; D. L. Shepelyansky

    2011-10-19T23:59:59.000Z

    The PageRank algorithm enables to rank the nodes of a network through a specific eigenvector of the Google matrix, using a damping parameter $\\alpha \\in ]0,1[$. Using extensive numerical simulations of large web networks, with a special accent on British University networks, we determine numerically and analytically the universal features of PageRank vector at its emergence when $\\alpha \\rightarrow 1$. The whole network can be divided into a core part and a group of invariant subspaces. For $ \\alpha \\rightarrow 1$ the PageRank converges to a universal power law distribution on the invariant subspaces whose size distribution also follows a universal power law. The convergence of PageRank at $ \\alpha \\rightarrow 1$ is controlled by eigenvalues of the core part of the Google matrix which are extremely close to unity leading to large relaxation times as for example in spin glasses.

  16. North Fork well, Shoshone National Forest, Park County, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1985-03-01T23:59:59.000Z

    Drilling of a 5000-foot exploratory gas and oil well by Marathon Oil Company is proposed for Section 34, T52N, R106W, near Pagoda Creek in the Shoshone National Forest, Park County, Wyoming. An area 75 feet by 80 feet would be cleared of all vegetation and graded nearly flat for the drill pad and reserve pit. The drilling rig, pipe rack, generator, tool house, living facilities, drilling mud pump, pit, and supply platform all would be built on the drill pad. A blooie hole would contain cuttings and dust from the air drilling. Support facilities would include a helicopter staging area along Clocktower Creek approximately one mile south of the Yellowstone Highway and a 2550-foot temporary water pipeline from Pagoda Creek to the well site. Personnel, equipment, and supplies would be trucked to the helicopter staging area and shuttled to the proposed location by helicopters. Lease stipulations prohibit drilling before September 8; therefore, the starting date would be the late fall of the respective year and would have to be completed by the following January 1. Approval of the exploratory well would not include approval of production facilities.

  17. National Uranium Resource Evaluation: Newcastle Quadrangle, Wyoming and South Dakota

    SciTech Connect (OSTI)

    Santos, E S; Robinson, K; Geer, K A; Blattspieler, J G

    1982-09-01T23:59:59.000Z

    Uranium resources of the Newcastle 1/sup 0/x2/sup 0/ Quadrangle, Wyoming and South Dakota were evaluated to a depth of 1500 m (5000 ft) using available surface and subsurface geologic information. Many of the uranium occurrences reported in the literature and in reports of the US Atomic Energy Commission were located, sampled and described. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, were outlined. Areas favorable for uranium deposits in the subsurface were evaluated using gamma-ray logs. Based on surface and subsurface data, two areas have been delineated which are underlain by rocks deemed favorable as hosts for uranium deposits. One of these is underlain by rocks that contain fluvial arkosic facies in the Wasatch and Fort Union Formations of Tertiary age; the other is underlain by rocks containing fluvial quartzose sandstone facies of the Inyan Kara Group of Early Cretaceous age. Unfavorable environments characterize all rock units of Tertiary age above the Wasatch Formation, all rock units of Cretaceous age above the Inyan Kara Group, and most rock units of Mesozoic and Paleozoic age below the Inyan Kara Group. Unfavorable environments characterize all rock units of Cretaceous age above the Inyan Kara Group, and all rock units of Mesozoic and Paleozoic age below the Inyan Kara Group.

  18. Coal Problems 1. Name two examples of clean coal technology and in what manner do they clean the coal?

    E-Print Network [OSTI]

    Bowen, James D.

    Coal Problems 1. Name two examples of clean coal technology and in what manner do they clean the coal? a. Coal Washing- Crushing coal then mixing it with a liquid to allow the impurities to settle. b burning coal altogether. With integrated gasification combined cycle (IGCC) systems, steam and hot

  19. Method of extracting coal from a coal refuse pile

    DOE Patents [OSTI]

    Yavorsky, Paul M. (Monongahela, PA)

    1991-01-01T23:59:59.000Z

    A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

  20. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01T23:59:59.000Z

    of coal sulfur K-T gasification process SRC I process U. S.flow sheet of a K-T coal gasification complex for producingProduction via K-T Gasification" © CEP Aug. 78. Feed

  1. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    application of new clean coal technologies with near zeroapplication of new clean coal technologies with near zero

  2. Composition and properties of coals from the Yurty coal occurrence

    SciTech Connect (OSTI)

    N.G. Vyazova; L.N. Belonogova; V.P. Latyshev; E.A. Pisar'kova [Irkutsk State University, Irkutsk (Russia). Research Institute of Oil and Coal Chemistry and Synthesis

    2008-10-15T23:59:59.000Z

    Coals from the Yurty coal occurrence were studied. It was found that the samples were brown non-coking coals with low sulfur contents (to 1%) and high yields of volatile substances. The high heat value of coals was 20.6-27.7 MJ/kg. The humic acid content varied from 5.45 to 77.62%. The mineral matter mainly consisted of kaolinite, a-quartz, and microcline. The concentration of toxic elements did not reach hazardous values.

  3. Measurement and Modeling of Sorption-Induced Strain and Permeability Changes in Coal

    SciTech Connect (OSTI)

    Eric P. Robertson

    2005-10-01T23:59:59.000Z

    Strain caused by the adsorption of gases was measured in samples of subbituminous coal from the Powder River basin of Wyoming, U.S.A., and high-volatile bituminous coal from the Uinta-Piceance basin of Utah, U.S.A. using a newly developed strain measurement apparatus. The apparatus can be used to measure strain on multiple small coal samples based on the optical detection of the longitudinal strain. The swelling and shrinkage (strain) in the coal samples resulting from the adsorption of carbon dioxide, nitrogen, methane, helium, and a mixture of gases was measured. Sorption-induced strain processes were shown to be reversible and easily modeled with a Langmuir-type equation. Extended Langmuir theory was applied to satisfactorily model strain caused by the adsorption of gas mixtures using the pure gas Langmuir strain constants. The amount of time required to obtain accurate strain data was greatly reduced compared to other strain measurement methods. Sorption-induced changes in permeability were also measured as a function of pres-sure. Cleat compressibility was found to be variable, not constant. Calculated variable cleat-compressibility constants were found to correlate well with previously published data for other coals. During permeability tests, sorption-induced matrix shrinkage was clearly demonstrated by higher permeability values at lower pore pressures while holding overburden pressure constant. Measured permeability data were modeled using three dif-ferent permeability models from the open literature that take into account sorption-induced matrix strain. All three models poorly matched the measured permeability data because they overestimated the impact of measured sorption-induced strain on permeabil-ity. However, by applying an experimentally derived expression to the measured strain data that accounts for the confining overburden pressure, pore pressure, coal type, and gas type, the permeability models were significantly improved.

  4. Coal combustion system

    DOE Patents [OSTI]

    Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN); Tramm, Peter C. (Indianapolis, IN)

    1988-01-01T23:59:59.000Z

    In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

  5. Suppression of dominant topographic overprints in gravity data by adaptive filtering: southern Wyoming Province

    E-Print Network [OSTI]

    Black, Ross A.

    1992-09-10T23:59:59.000Z

    . Surv. Prof. Pap. 793, 39 pp., 1973. Black, R. A., S. B. Smithson, and R. L. Kirlin, Adaptive filtering of gravity and topography data, western U.S. (abstract), Eos Trans./AGU, 68, 280, 1987. Clarke, G. K. C., Linear filters to suppress terrain... and uranium potential of Precambrian conglomerates in SE Wyoming: rep. DJBX-139-81, 551 pp., Bendix Field Engineering Corp., 1981. Klein, T. L., The geology and geochemistry of the sulphide deposits of the Seminoe District, Carbon Co. Wyoming, Ph...

  6. (Basic properties of coals and other solids)

    SciTech Connect (OSTI)

    Not Available

    1991-11-25T23:59:59.000Z

    This report discusses basic properties of bituminous, subbituminous, and lignite coals. Properties of coal liquids are also investigated. Heats of immersion in strong acids are found for Pittsburgh {number sign}8, Illinois {number sign}6, and Wyodak coals. Production of coal liquids by distillation is discussed. Heats of titration of coal liquids and coal slurries are reported. (VC)

  7. Advanced Coal Conversion Process Demonstration Project. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    This detailed report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project. This U.S. Department of Energy (DOE) Clean Coal Technology Project demonstrates an advanced thermal coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to high-quality, low-sulfur fuel. During this reporting period, the primary focus for the project was to expand market awareness and acceptability for the products and the technology. The use of covered hopper cars has been successful and marketing efforts have focused on this technique. Operational improvements are currently aimed at developing fines marketing systems, increasing throughput capacity, decreasing operation costs, and developing standardized continuous operator training. Testburns at industrial user sites were also conducted. A detailed process description; technical progress report including facility operations/plant production, facility testing, product testing, and testburn product; and process stability report are included. 3 figs., 8 tabs.

  8. Ranking Outlier Nodes in Subspaces of Attributed Graphs

    E-Print Network [OSTI]

    Antwerpen, Universiteit

    . Our graph outlier ranking (GOutRank) introduces scoring functions based on these selected subgraphs by looking at the most promising objects first. They 1http://www.ipd.kit.edu/~muellere/GOutRank/ allow users

  9. Heat Recovery from Coal Gasifiers

    E-Print Network [OSTI]

    Wen, H.; Lou, S. C.

    1981-01-01T23:59:59.000Z

    This paper deals with heat recovery from pressurized entrained and fixed bed coal gasifiers for steam generation. High temperature waste heat, from slagging entrained flow coal gasifier, can be recovered effectively in a series of radiant...

  10. The Caterpillar Coal Gasification Facility 

    E-Print Network [OSTI]

    Welsh, J.; Coffeen, W. G., III

    1983-01-01T23:59:59.000Z

    This paper is a review of one of America's premier coal gasification installations. The caterpillar coal gasification facility located in York, Pennsylvania is an award winning facility. The plant was recognized as the 'pace setter plant of the year...

  11. Surface Coal Mining Regulations (Mississippi)

    Broader source: Energy.gov [DOE]

    The Surface Coal Mining Regulations are a combination of permitting requirements and environmental regulations that limit how, where and when coal can be mined. It protects lands that are under...

  12. The world price of coal

    E-Print Network [OSTI]

    Ellerman, A. Denny

    1994-01-01T23:59:59.000Z

    A significant increase in the seaborne trade for coal over the past twenty years has unified formerly separate coal markets into a world market in which prices move in tandem. Due to its large domestic market, the United ...

  13. Hydrogen from Coal Edward Schmetz

    E-Print Network [OSTI]

    Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Cells, Turbines, and Carbon Capture & Sequestration #12;Production Goal for Hydrogen from Coal Central Separation System PSA Membrane Membrane Carbon Sequestration Yes (87%) Yes (100%) Yes (100%) Hydrogen

  14. Montana Coal Mining Code (Montana)

    Broader source: Energy.gov [DOE]

    The Department of Labor and Industry is authorized to adopt rules pertaining to safety standards for all coal mines in the state. The Code requires coal mine operators to make an accurate map or...

  15. 2009 Coal Age Buyers Guide

    SciTech Connect (OSTI)

    NONE

    2009-07-15T23:59:59.000Z

    The buyers guide lists more than 1200 companies mainly based in the USA, that provide equipment and services to US coal mines and coal preparation plants. The guide is subdivided by product categories.

  16. Hydroliquefaction of coal

    DOE Patents [OSTI]

    Sze, Morgan C. (Upper Montclair, NJ); Schindler, Harvey D. (Fairlawn, NJ)

    1982-01-01T23:59:59.000Z

    Coal is catalytically hydroliquefied by passing coal dispersed in a liquefaction solvent and hydrogen upwardly through a plurality of parallel expanded catalyst beds, in a single reactor, in separate streams, each having a cross-sectional flow area of no greater than 255 inches square, with each of the streams through each of the catalyst beds having a length and a liquid and gas superficial velocity to maintain an expanded catalyst bed and provide a Peclet Number of at least 3. If recycle is employed, the ratio of recycle to total feed (coal and liquefaction solvent) is no greater than 2:1, based on volume. Such conditions provide for improved selectivity to liquid product to thereby reduce hydrogen consumption. The plurality of beds are formed by partitions in the reactor.

  17. Healy Clean Coal Project

    SciTech Connect (OSTI)

    None

    1997-12-31T23:59:59.000Z

    The Healy Clean Coal Project, selected by the U.S. Department of Energy under Round 111 of the Clean Coal Technology Program, has been constructed and is currently in the Phase 111 Demonstration Testing. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the U.S. Department of Energy. Construction was 100% completed in mid-November of 1997, with coal firing trials starting in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate from this 50-megawatt plant are expected to be significantly lower than current standards.

  18. Pyrolysis of coal

    DOE Patents [OSTI]

    Babu, Suresh P. (Willow Springs, IL); Bair, Wilford G. (Morton Grove, IL)

    1992-01-01T23:59:59.000Z

    A method for mild gasification of crushed coal in a single vertical elongated reaction vessel providing a fluidized bed reaction zone, a freeboard reaction zone, and an entrained reaction zone within the single vessel. Feed coal and gas may be fed separately to each of these reaction zones to provide different reaction temperatures and conditions in each reaction zone. The reactor and process of this invention provides for the complete utilization of a coal supply for gasification including utilization of caking and non-caking or agglomerating feeds in the same reactor. The products may be adjusted to provide significantly greater product economic value, especially with respect to desired production of char having high surface area.

  19. CONSORTIUM FOR CLEAN COAL UTILIZATION

    E-Print Network [OSTI]

    Subramanian, Venkat

    CONSORTIUM FOR CLEAN COAL UTILIZATION Call for Proposals Date of Issue: July 29, 2013 The Consortium for Clean Coal Utilization (CCCU) at Washington University in St. Louis was established in January of Clean Coal Utilization. The format may be a conference or workshop, or a seminar given by a leading

  20. Clean Coal Power Initiative

    SciTech Connect (OSTI)

    Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

    2006-03-31T23:59:59.000Z

    This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

  1. PNNL Coal Gasification Research

    SciTech Connect (OSTI)

    Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

    2010-07-28T23:59:59.000Z

    This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

  2. Underground coal gasification. Presentations

    SciTech Connect (OSTI)

    NONE

    2007-07-01T23:59:59.000Z

    The 8 presentations are: underground coal gasification (UCG) and the possibilities for carbon management (J. Friedmann); comparing the economics of UCG with surface gasification technologies (E. Redman); Eskom develops UCG technology project (C. Gross); development and future of UCG in the Asian region (L. Walker); economically developing vast deep Powder River Basin coals with UCG (S. Morzenti); effectively managing UCG environmental issues (E. Burton); demonstrating modelling complexity of environmental risk management; and UCG research at the University of Queensland, Australia (A.Y. Klimenko).

  3. EIA - Coal Distribution

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127byForms What'sAnnual Coal

  4. Coal-Producing Region

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2Climate, OceanPublicationandCoal Coal.

  5. Petrography of the Herrin (No. 11) coal in western Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.; Wild, G.D.

    1981-06-01T23:59:59.000Z

    The Herrin (No.11) coal in western Kentucky is in the upper part of the Pennsylvanian (Des Moinesian) Carbondale Formation. Samples were obtained from 13 mines in Kentucky and one mine in Illinois in three equal benches from two to three channels for a total of 93 samples. The rank of the coal (as vitrinite reflectance) is high volatile C bituminous in the Moorman Syncline and high volatile A bituminous in the Webster Syncline. Reflectance does not vary between mines in the Moorman Syncline. The percentage of total vitrinite macerals for each mine is over 85% and the percentage of total vitrinite plus liptinite macerals is over 89% (average over 90%) (both on dry, mineral-free basis). 37 refs.

  6. Data from selected Almond Formation outcrops -- Sweetwater County, Wyoming

    SciTech Connect (OSTI)

    Jackson, S.R.; Rawn-Schatzinger, V.

    1993-12-01T23:59:59.000Z

    The objectives of this research program are to: (1) determine the reservoir characteristics and production problems of shoreline barrier reservoirs; and (2) develop methods and methodologies to effectively characterize shoreline barrier reservoirs to predict flow patterns of injected and produced fluids. Two reservoirs were selected for detailed reservoir characterization studies -- Bell Creek field, Carter County, Montana, that produces from the Lower Cretaceous (Albian-Cenomanian) Muddy Formation, and Patrick Draw field, Sweetwater County, Wyoming that produces from the Upper Cretaceous (Campanian) Almond Formation of the Mesaverde Group. An important component of the research project was to use information from outcrop exposures of the producing formations to study the spatial variations of reservoir properties and the degree to which outcrop information can be used in the construction of reservoir models. A report similar to this one presents the Muddy Formation outcrop data and analyses performed in the course of this study (Rawn-Schatzinger, 1993). Two outcrop localities, RG and RH, previously described by Roehler (1988) provided good exposures of the Upper Almond shoreline barrier facies and were studied during 1990--1991. Core from core well No. 2 drilled approximately 0.3 miles downdip of outcrop RG was obtained for study. The results of the core study will be reported in a separate volume. Outcrops RH and RG, located about 2 miles apart were selected for detailed description and drilling of core plugs. One 257-ft-thick section was measured at outcrop RG, and three sections {approximately}145 ft thick located 490 and 655 feet apart were measured at the outcrop RH. Cross-sections of these described profiles were constructed to determine lateral facies continuity and changes. This report contains the data and analyses from the studied outcrops.

  7. Plastic wastes as modifiers of the thermoplasticity of coal

    SciTech Connect (OSTI)

    M.A. Diez; C. Barriocanal; R. Alvarez [Instituto Nacional del Carbon (INCAR), Oviedo (Spain)

    2005-12-01T23:59:59.000Z

    Plastic waste recycling represents a major challenge in environmental protection with different routes now available for dealing with mechanical, chemical, and energy recycling. New concepts in plastic waste recycling have emerged so that now such wastes can be used to replace fossil fuels, either as an energy source or as a secondary raw material. Our objective is to explore the modification of the thermoplastic properties of coal in order to assess the possibility of adding plastic waste to coal for the production of metallurgical coke. Two bituminous coals of different rank and thermoplastic properties were used as a base component of blends with plastic wastes such as high-density polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), poly(ethylene terephthalate) (PET), and acrilonitrile-butadiene-styrene copolymer (ABS). In all cases, the addition of plastic waste led to a reduction in Gieseler maximum fluidity, the extent of the reduction depending on the fluidity of the base coal, and the amount, the molecular structure, and the thermal behavior of the polymer. As a consequence, the amount of volatile matter released by the plastic waste before, during, and after the maximum fluidity of the coal and the hydrogen-donor and hydrogen-acceptor capacities of the polymer were concluded to be key factors in influencing the extent of the reduction in fluidity and the development of anisotropic carbons. The incorporation of the plastic to the carbon matrix was clearly established in semicokes produced from blends of a high-fluid coal and the plastic tested by SEM examination. 42 refs., 10 figs., 7 tabs.

  8. Characterization of chars from coal-tire copyrolysis

    SciTech Connect (OSTI)

    Mastral, A.M.; Callen, M.S.; Murillo, R. [CSIC, Zaragoza (Spain). Inst. de Carboquimica] [CSIC, Zaragoza (Spain). Inst. de Carboquimica; Alvarez, R.; Clemente, C. [UM, Madrid (Spain). ETS de Ingenieros de Minas] [UM, Madrid (Spain). ETS de Ingenieros de Minas

    1999-07-01T23:59:59.000Z

    The objective of this work is the characterization of the solid conversion product from coal-tire copyrolysis because, nowadays, any new process should be faced without resolving the problem of the subproducts generated. A low-rank coal and a nonspecific mixture of scrap automotive tires, 50/50 w/w, have been coprocessed at 400 C for 30 min at different H{sub 2} pressures and atmospheres. Once the most valuable conversion products, the liquids, were recovered by tetrahydrofuran extraction, a complementary battery of analytical techniques was applied to characterize the solids or chars, looking for their possible use. {sup 13}C nuclear magnetic resonance, infrared, immediate and ultimate analyses, ASA, and scanning electron microscopy-energy-dispersive X-ray spectrometry were performed on them. By X-ray diffractometry the presence of sphalerite, pyrrhotite, and anhydrite was detected. Thermogravimetric studies demonstrated that the combustion induction temperature is 400 C. Char combustion tests at 900 C with discussion of NO{sub x}, SO{sub x}, and polycyclic aromatic hydrocarbon emissions are included. Mineral matter behaves as if only coal is processed with the Zn exception, from ZnO in the tire, which is converted into ZnS. It is shown that the char organic component has a higher aromaticity than the one from coal.

  9. Graphic values for some organic constitutents of beneficiated coal samples

    SciTech Connect (OSTI)

    Kohlenberger, L.B. (Illinois State Geological Survey, Champaign, IL (United States))

    1992-01-01T23:59:59.000Z

    Graphic techniques exist which can accurately predict values for calorific value, organic sulfur, and possibly other constituents of the organic portion of beneficiated coal sample fractions. These techniques also permit a determination of coal rank to be made without the use of the approximations required in the standard procedure. Fractions of IBC-101 with varying ash contents were produced by froth flotation. The various fractions were analyzed by the coal analysis laboratory and the particular data type was plotted in each case vs. the individual ash content of each fraction, using Lotus 123 and Freelace software packages. Such plots for calorific value and organic sulfur have, so far, been made. These curves and the information they contain are discussed in this report. A comparison of the graphic mineral matter value with the usual one calculated from the Parr approximation has been made. Eventually, the data may lead to an effective way to estimate inorganic carbon, hydrogen, nitrogen, and other organic constitents of coal. All data will be made available to researchers.

  10. Pore size distribution and accessible pore size distribution in bituminous coals

    SciTech Connect (OSTI)

    Sakurovs, Richard [ORNL; He, Lilin [ORNL; Melnichenko, Yuri B [ORNL; Radlinski, Andrzej Pawell [ORNL; Blach, Tomasz P [ORNL

    2012-01-01T23:59:59.000Z

    The porosity and pore size distribution of coals determine many of their properties, from gas release to their behavior on carbonization, and yet most methods of determining pore size distribution can only examine a restricted size range. Even then, only accessible pores can be investigated with these methods. Small-angle neutron scattering (SANS) and ultra small-angle neutron scattering (USANS) are increasingly used to characterize the size distribution of all of the pores non-destructively. Here we have used USANS/SANS to examine 24 well-characterized bituminous and subbituminous coals: three from the eastern US, two from Poland, one from New Zealand and the rest from the Sydney and Bowen Basins in Eastern Australia, and determined the relationships of the scattering intensity corresponding to different pore sizes with other coal properties. The range of pore radii examinable with these techniques is 2.5 nm to 7 {micro}m. We confirm that there is a wide range of pore sizes in coal. The pore size distribution was found to be strongly affected by both rank and type (expressed as either hydrogen or vitrinite content) in the size range 250 nm to 7 {micro}m and 5 to 10 nm, but weakly in intermediate regions. The results suggest that different mechanisms control coal porosity on different scales. Contrast-matching USANS and SANS were also used to determine the size distribution of the fraction of the pores in these coals that are inaccessible to deuterated methane, CD{sub 4}, at ambient temperature. In some coals most of the small ({approx} 10 nm) pores were found to be inaccessible to CD{sub 4} on the time scale of the measurement ({approx} 30 min - 16 h). This inaccessibility suggests that in these coals a considerable fraction of inherent methane may be trapped for extended periods of time, thus reducing the effectiveness of methane release from (or sorption by) these coals. Although the number of small pores was less in higher rank coals, the fraction of total pores that was inaccessible was not rank dependent. In the Australian coals, at the 10 nm to 50 nm size scales the pores in inertinites appeared to be completely accessible to CD{sub 4}, whereas the pores in the vitrinite were about 75% inaccessible. Unlike the results for total porosity that showed no regional effects on relationships between porosity and coal properties, clear regional differences in the relationships between fraction of closed porosity and coal properties were found. The 10 to 50 nm-sized pores of inertinites of the US and Polish coals examined appeared less accessible to methane than those of the inertinites of Australian coals. This difference in pore accessibility in inertinites may explain why empirical relationships between fluidity and coking properties developed using Carboniferous coals do not apply to Australian coals.

  11. Provable Low-Rank Tensor Recovery

    E-Print Network [OSTI]

    2014-02-26T23:59:59.000Z

    Feb 26, 2014 ... rank, which here we refer to as the sum-of-nuclear-norms (SNN), has been proposed in [23] and serves as a tractable measure of the tensor ...

  12. Penalty Decomposition Methods for Rank Minimization ?

    E-Print Network [OSTI]

    2010-11-22T23:59:59.000Z

    Nov 22, 2010 ... In Section 2, we establish some technical results on a class of rank minimization ..... Without loss of generality, assume that {( ¯Zk. X,. ¯. Zk ...... Department of Electrical and Computer Engineering, University of Illinois, 2009.

  13. Biochemical transformation of coals

    DOE Patents [OSTI]

    Lin, M.S.; Premuzic, E.T.

    1999-03-23T23:59:59.000Z

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

  14. Catalytic coal liquefaction process

    DOE Patents [OSTI]

    Garg, D.; Sunder, S.

    1986-12-02T23:59:59.000Z

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

  15. Petrographic characterization of Kentucky coals. Quarterly progress report, December 1981-February 1982

    SciTech Connect (OSTI)

    Hower, J.C.; Ferm, J.C.; Cobb, J.C.; Trinkle, E.J.; Frankie, K.A.; Poe, S.H.; Baynard, D.N.

    1982-01-01T23:59:59.000Z

    The project involves three specific areas of coal petrology: spectral fluorescence of liptinite macerals; properties of semi-inert macerals; and size/form/microlithotype association of pyrite/marcasite. Additional research on the Mannington and Dunbar coals in western Kentucky will apply techniques developed in the first three areas. Suites of coals from other states will also be studied to expand the variability for the project which involves the determination of coal rank through the use of fluorescence measurements on sporinite, all samples have been studied and data analysis is still incomplete. Interpretation of results will be presented in future reports. The actual developments of pseudovitrinites are being investigated. Two possible mechanisms for the origin of pseudovitrinites have been suggested. The first mechanism is differential coalification of similar materials. The second factor for influencing the development of pseudovitrinite is an actual difference in original plant composition. Pyrite analysis of western Kentucky coals has been completed, however data reduction is still incomplete. Changes in the petrography of western coals may be related to depositional environments of the coal.

  16. Glacial geology of the West Tensleep Drainage Basin, Bighorn Mountains, Wyoming

    SciTech Connect (OSTI)

    Burggraf, G.B.

    1980-08-01T23:59:59.000Z

    The glacial deposits of the West Tensleep Basin in the Bighorn Mountains of Wyoming are mapped and a relative chromology established. The deposits are correlated with the regional model as defined in the Wind River Mountains. A statistical analysis is performed on the density and weathering characteristics of the surficial boulders to determine their validity as indicators of relative age. (ACR)

  17. Assessment of Impacts from Adopting the 2006 International Energy Conservation Code for Residential Buildings in Wyoming

    SciTech Connect (OSTI)

    Lucas, Robert G.

    2007-10-01T23:59:59.000Z

    The state of Wyoming currently does not have a statewide building energy efficiency code for residential buildings. The U.S. Department of Energy has requested Pacific Northwest National Laboratory (PNNL) to estimate the energy savings, economic impacts, and pollution reduction from adopting the 2006 International Energy Conservation Code (IECC). This report addresses the impacts for low-rise residential buildings only.

  18. EIS-0267: BPA/Lower Valley Transmission System Reinforcement Project, Wyoming

    Broader source: Energy.gov [DOE]

    This EIS analyzes BPA and LVPL proposal to construct a new 115-kV line from BPA’s Swan Valley Substation near Swan Valley in Bonneville County, Idaho about 58 km (36 miles) east to BPA’s Teton Substation near Jackson in Teton County, Wyoming.

  19. DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming

    Broader source: Energy.gov [DOE]

    Research sponsored by the U.S. Department of Energy Oil and Natural Gas Program has found a way to distinguish between groundwater and the water co-produced with coalbed natural gas, thereby boosting opportunities to tap into the vast supply of natural gas in Wyoming as well as Montana.

  20. National Coal Quality Inventory (NACQI)

    SciTech Connect (OSTI)

    Robert Finkelman

    2005-09-30T23:59:59.000Z

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.