Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wy nv ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA  

Gasoline and Diesel Fuel Update (EIA)

176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY...

2

San Juan Montana Thrust Belt WY Thrust Belt Black Warrior  

U.S. Energy Information Administration (EIA) Indexed Site

San San Juan Montana Thrust Belt WY Thrust Belt Black Warrior Paradox - San Juan NW (2) Uinta- Piceance Paradox - San Juan SE (2) Florida Peninsula Appalachian- NY (1) Appalachian OH-PA (2) Appalachian Eastern PA (3) Appalachian Southern OH (4) Appalachian Eastern WV (5) Appalachian WV-VA (6) Appalachian TN-KY (7) Piceance Greater Green River Eastern OR-WA Ventura Williston Williston NE (2) Williston NW (1) Williston South (3) Eastern Great Basin Ventura West, Central, East Eastern OR-WA Eastern Great Basin Appalachian Denver Florida Peninsula Black Warrior W Y T h ru st B e lt Powder River Paradox- Uinta- Grtr Green River MT Thrust Belt Powder River North (1) Powder River South (2) Denver North (1) Denver South (3) Denver Middle (2) TX CA MT AZ ID NV NM CO IL OR UT KS WY IA NE SD MN ND OK FL WI MO AL WA GA AR LA MI IN PA NY NC MS TN KY VA OH SC

3

PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C  

U.S. Energy Information Administration (EIA) Indexed Site

100,000 MMCF > 100,000 MMCF Basin Outline Powder River Basin WY MT CO SD NE ND 1 2 Index Map for 2 Powder River Basin Panels 2001 Reserve Summary for All Powder River Basin Fields...

4

PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C  

U.S. Energy Information Administration (EIA) Indexed Site

Mbbl 10,000.1 - 100,000 Mbbl Basin Outline Powder River Basin WY MT CO SD NE ND 1 2 Index Map for 2 Powder River Basin Panels 2001 Reserve Summary for All Powder River Basin Fields...

5

PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C  

U.S. Energy Information Administration (EIA) Indexed Site

100,000 MBOE > 100,000 MBOE Basin Outline Powder River Basin WY MT CO SD NE ND 1 2 Index Map for 2 Powder River Basin Panels 2001 Reserve Summary for All Powder River Basin Fields...

6

PR B_WY_C BM HILIGHT POWELL KIT TY WELL D RAW SC OT T MIKES D  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Reserve Class Gas Reserve Class No 2001 gas reserves 0.1 - 10 MMCF 10.1 - 100 MMCF 100.1 - 1,000 MMCF 1,000.1 - 10,000 MMCF 10,000.1 - 100,000 MMCF > 100,000 MMCF Basin Outline CO Index Map For 2 Powder River Basin Panels WY MT SD NE ND Powder River Basin 1 2 NE Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Powder River 543 193,456 2,398,604 593,223 Basin 2001 Reserve Summary for All Powder River Basin Fields PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas,

7

PR B_WY_C BM HILIGHT POWELL KIT TY WELL D RAW SC OT T MIKES D  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Reserve Class Liquids Reserve Class No 2001 liquids reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1 - 10,000 Mbbl 10,000.1 - 100,000 Mbbl Basin Outline CO Index Map For 2 Powder River Basin Panels WY MT SD NE ND Powder River Basin 1 2 NE Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Powder River 543 193,456 2,398,604 593,223 Basin 2001 Reserve Summary for All Powder River Basin Fields PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by

8

PR B_WY_C BM HILIGHT POWELL KIT TY WELL D RAW SC OT T MIKES D  

U.S. Energy Information Administration (EIA) Indexed Site

BOE Reserve Class BOE Reserve Class No 2001 reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1 - 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE Basin Outline CO Index Map For 2 Powder River Basin Panels WY MT SD NE ND Powder River Basin 1 2 NE Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Powder River 543 193,456 2,398,604 593,223 Basin 2001 Reserve Summary for All Powder River Basin Fields PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM PR B_WY_C BM The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas,

9

Category:Cheyenne, WY | Open Energy Information  

Open Energy Info (EERE)

WY WY Jump to: navigation, search Go Back to PV Economics By Location Media in category "Cheyenne, WY" The following 15 files are in this category, out of 15 total. SVFullServiceRestaurant Cheyenne WY Powder River Energy Corporation.png SVFullServiceRestauran... 59 KB SVMidriseApartment Cheyenne WY Powder River Energy Corporation.png SVMidriseApartment Che... 58 KB SVQuickServiceRestaurant Cheyenne WY Powder River Energy Corporation.png SVQuickServiceRestaura... 58 KB SVStandAloneRetail Cheyenne WY Powder River Energy Corporation.png SVStandAloneRetail Che... 58 KB SVHospital Cheyenne WY Powder River Energy Corporation.png SVHospital Cheyenne WY... 57 KB SVLargeHotel Cheyenne WY Powder River Energy Corporation.png SVLargeHotel Cheyenne ... 57 KB SVLargeOffice Cheyenne WY Powder River Energy Corporation.png

10

NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA  

Gasoline and Diesel Fuel Update (EIA)

0.00-1.99 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 1996 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 1996 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost and Quality of Fuels for Electric Plants," and Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Note: In 1996, consumption of natural gas for agricultural use

11

Rolling Hills (WY) | Open Energy Information  

Open Energy Info (EERE)

WY) WY) Jump to: navigation, search Name Rolling Hills (WY) Facility Rolling Hills (WY) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco Developer PacifiCorp Location Converse WY Coordinates 43.08080003°, -105.8497953° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.08080003,"lon":-105.8497953,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

12

Category:Reno, NV | Open Energy Information  

Open Energy Info (EERE)

NV" NV" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Reno NV Nevada Power Co.png SVFullServiceRestauran... 63 KB SVHospital Reno NV Nevada Power Co.png SVHospital Reno NV Nev... 72 KB SVLargeHotel Reno NV Nevada Power Co.png SVLargeHotel Reno NV N... 68 KB SVLargeOffice Reno NV Nevada Power Co.png SVLargeOffice Reno NV ... 68 KB SVMediumOffice Reno NV Nevada Power Co.png SVMediumOffice Reno NV... 67 KB SVMidriseApartment Reno NV Nevada Power Co.png SVMidriseApartment Ren... 68 KB SVOutPatient Reno NV Nevada Power Co.png SVOutPatient Reno NV N... 66 KB SVPrimarySchool Reno NV Nevada Power Co.png SVPrimarySchool Reno N... 71 KB SVQuickServiceRestaurant Reno NV Nevada Power Co.png SVQuickServiceRestaura... 66 KB SVSecondarySchool Reno NV Nevada Power Co.png

13

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating...  

Open Energy Info (EERE)

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating and Revising 100 Years of Studies The USGS published a USGS Professional Paper in 2010 entitled

14

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating...  

Open Energy Info (EERE)

Search Share this page on Facebook icon Twitter icon Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating and Revising 100 Years of Studies Dataset Summary...

15

NV Energy- Energy Plus New Homes Program  

Energy.gov (U.S. Department of Energy (DOE))

NV Energy offers the Energy Plus New Homes Program provides rebates to certified builders in the NV Energy service territory that build high-efficiency homes. (Rebates are only available to home...

16

DOE/NV442 Environmental  

Office of Legacy Management (LM)

NV442 NV442 Environmental Verification Sampling and Analysis Plan for Sediment and, Rulison Drilling Effluent Pond Environmental Restoration This report has been re,produced from the best available copy. Available in paper copy and microfiche. Number of pages in this report: 55 DOE and DOE contractors can obtain copies of this report from: Office of Sciennific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831. (615) 576-8401. This report is publicly available from the Department of Commerce, National Technical Information Service, 5285 Port Royal Road, Springfield. VPi 22 16 1. (703) 487-4650. VERIFICATION SAMPLING AND ANALYSIS PLAN FOR SEDIMENT AND WATER SAMPLING RULISON DRILLING EFFLUENT POND DOE Nevada Operations Office Las Vegas, Nevada

17

DOE - Office of Legacy Management -- Lost Creek - WY 01  

Office of Legacy Management (LM)

Lost Creek - WY 01 Lost Creek - WY 01 FUSRAP Considered Sites Site: Lost Creek (WY.01 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is one of a group of 77 FUSRAP considered sites for which few, if any records are available in their respective site files to provide an historical account of past operations and their relationship, if any, with MED/AEC operations. Reviews of contact lists, accountable station lists, health and safety records and other documentation of the period do not provide sufficient information to warrant further search of historical records for information on these sites. These site files remain "open" to

18

NV Energy Electricity Storage Valuation  

SciTech Connect

This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

2013-06-30T23:59:59.000Z

19

DOE - Office of Legacy Management -- University of Nevada - NV...  

Office of Legacy Management (LM)

AT (49-1)-624); in 1980's, work with uranium ore was still being performed under NRC license. NV.01-1 NV.01-2 NV.01-3 Site Disposition: Eliminated - Radiation levels below...

20

NV: Nessus Vulnerability Visualization for the Web  

SciTech Connect

Network vulnerability is a critical component of network se- curity. Yet vulnerability analysis has received relatively lit- tle attention from the security visualization community. In this paper we describe nv, a web-based Nessus vulnerability visualization. Nv utilizes treemaps and linked histograms to allow system administrators to discover, analyze, and man- age vulnerabilities on their networks. In addition to visual- izing single Nessus scans, nv supports the analysis of sequen- tial scans by showing which vulnerabilities have been fixed, remain open, or are newly discovered. Nv was also designed to operate completely in-browser, to avoid sending sensitive data to outside servers. We discuss the design of nv, as well as provide case studies demonstrating vulnerability analysis workflows which include a multiple-node testbed and data from the 2011 VAST Challenge.

Harrison, Lane [University of North Carolina, Charlotte; Spahn, Riley B [ORNL; Iannacone, Michael D [ORNL; Downing, Evan P [ORNL; Goodall, John R [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wy nv ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NV-TRIBE-SUMMIT LAKE PAIUTE TRIBE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NV-TRIBE-SUMMIT LAKE PAIUTE TRIBE NV-TRIBE-SUMMIT LAKE PAIUTE TRIBE Location: Tribe NV-TRIBE-SUMMIT NV LAKE PAIUTE TRIBE American Recovery and Reinvestment Act: Proposed Action or Project Description The Summit Lake Paiute Tribe of Nevada will conduct energy building retrofits on several tribal-owned buildings including: Maintenance Shop (insulate walls and cover insulation to keep in place); Bunkhouse (replace single-pane glass windows, and repair or replace two exit doors); Tribal Administrative Office (replace old electric water heater and three air conditioner/heaters, and replace single-pane glass windows): Community Well Shed (install walls, cover insulation, and replace single-pane glass windows); Cabin #1 and Cabin #2 (insulate and/or replace single-pane windows). Conditions: None

22

DOE - Office of Legacy Management -- Shoal Test Site - NV 03  

Office of Legacy Management (LM)

Shoal Test Site - NV 03 Shoal Test Site - NV 03 FUSRAP Considered Sites Site: SHOAL TEST SITE (NV.03 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Sand Springs Range NV.03-1 Location: Near U.S. Highway 50 , Fallon , Nevada NV.03-2 Evaluation Year: 1987 NV.03-2 Site Operations: Underground nuclear detonation site. NV.03-1 Site Disposition: Eliminated - Potential for contamination remote NV.03-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: None at the Surface and Fission Fragments Within the Subsurface NV.03-1 Radiological Survey(s): Yes Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to SHOAL TEST SITE NV.03-1 - Report (NVO-1229-105 Part I); Evaluation of the Project

23

Local Event - Nevada Test Site, Las Vegas, NV | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Event - Nevada Test Site, Las Vegas, NV Local Event - Nevada Test Site, Las Vegas, NV October 26, 2013 10:00AM PDT to October 27, 2013 5:00PM PDT Las Vegas Intertribal...

24

NV Energy (Southern Nevada)- Solar Hot Water Incentive Program  

Energy.gov (U.S. Department of Energy (DOE))

NV Energy is providing an incentive for its residential customers to install solar water heaters on their homes. As of May 1, 2012, NV Energy electric customers in Southern Nevada who own their...

25

NV Energy (Southern Nevada) - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NV Energy (Southern Nevada) - Residential Energy Efficiency Rebate NV Energy (Southern Nevada) - Residential Energy Efficiency Rebate Program NV Energy (Southern Nevada) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Program Info State Nevada Program Type Utility Rebate Program Rebate Amount Refrigerator/freezer Recycling: $50 Air Conditioners: Up to $1000 Variable Speed Pool Pump: $200 '''Pool Pump and duct system rebates are temporarily suspended. Contact NV Energy for additional information on funding and program availability.''' NV Energy offers rebates for the installation of high efficiency A/C units, air source heat pumps, and pool pumps for residential customers in southern

26

Category:Las Vegas, NV | Open Energy Information  

Open Energy Info (EERE)

NV" NV" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Las Vegas NV Nevada Power Co.png SVFullServiceRestauran... 63 KB SVHospital Las Vegas NV Nevada Power Co.png SVHospital Las Vegas N... 74 KB SVLargeHotel Las Vegas NV Nevada Power Co.png SVLargeHotel Las Vegas... 69 KB SVLargeOffice Las Vegas NV Nevada Power Co.png SVLargeOffice Las Vega... 68 KB SVMediumOffice Las Vegas NV Nevada Power Co.png SVMediumOffice Las Veg... 70 KB SVMidriseApartment Las Vegas NV Nevada Power Co.png SVMidriseApartment Las... 68 KB SVOutPatient Las Vegas NV Nevada Power Co.png SVOutPatient Las Vegas... 65 KB SVPrimarySchool Las Vegas NV Nevada Power Co.png SVPrimarySchool Las Ve... 69 KB SVQuickServiceRestaurant Las Vegas NV Nevada Power Co.png SVQuickServiceRestaura...

27

AMG Advanced Metallurgical Group NV | Open Energy Information  

Open Energy Info (EERE)

AMG Advanced Metallurgical Group NV AMG Advanced Metallurgical Group NV Jump to: navigation, search Name AMG Advanced Metallurgical Group NV Place Wayne, Pennsylvania Zip 19087 Product US-based specialty metals company offering metallurgical products and vacuum furnace systems; manufactures high purity polysilicon. References AMG Advanced Metallurgical Group NV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. AMG Advanced Metallurgical Group NV is a company located in Wayne, Pennsylvania . References ↑ "AMG Advanced Metallurgical Group NV" Retrieved from "http://en.openei.org/w/index.php?title=AMG_Advanced_Metallurgical_Group_NV&oldid=342143" Categories: Clean Energy Organizations

28

BLM-NV-WN-ES-08-01-1310, NV-020-08-01 | Open Energy Information  

Open Energy Info (EERE)

BLM-NV-WN-ES-08-01-1310, NV-020-08-01 BLM-NV-WN-ES-08-01-1310, NV-020-08-01 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: BLM-NV-WN-ES-08-01-1310, NV-020-08-01 EA at Blue Mountain Geothermal Area for Geothermal/Power Plant Blue Mountain Geothermal Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Nevada Geothermal Power Consultant Environmental Management Associates Geothermal Area Blue Mountain Geothermal Area Project Location Nevada Project Phase Geothermal/Power Plant Techniques Development Drilling, Downhole Techniques, Drilling Techniques, Well Testing Techniques Comments Power Plant on Adjacent Private lands Time Frame (days) NEPA Process Time 380 Participating Agencies Lead Agency BLM

29

NE-20  

Office of Legacy Management (LM)

hi v. !&-2:. hi v. !&-2:. /qL lo 1 OCT 2 9 1984 NE-20 -. Authorization for Remedial Action of the Ashland 2 Site, Tonawanda, New York f! Joe LaGrone, Manager Oak Ridge Operations Office Based on the Aerial Radiological Survey (Attachment 1) and a "walk-on" radiologlcal survey (Attachment 2 , excerpted from the ORNL draft report "Ground-Level Investigation of Anomalous Gamma Radiation Levels in the Tonawanda, New York, Area," January 1980), the property identified as Ashland 2 is authorized for remedial action. It should be noted that the attached survey data are for designation purposes only and Bechtel National, Inc. (EM), should conduct appropriate comprehensive characterization surveys to determine the extent and magnitude of the

30

NE-23,  

Office of Legacy Management (LM)

t:"'. ? - ' t:"'. ? - ' y5 NE-23, wk$& Dr. Joseph A. Warburton Chainnan, Radiological and Toxicological Safety Board University of Nevada System DRI/ASC, P.O. Box 60220 Reno, Nevada 89506 Dear Dr. Warburton: The Department of Energy (DOE), as part of its Formerly Utilized Sites Remedial Action Program (FUSRAP), has reviewed information on the Mackay School of M ines facility at the University of Nevada, Reno, Nevada, to determine whether it contains residual radioactivity traceable to activities conducted on behalf of the Atomic Energy Commission (a predecessor to DOE). A radiological survey indicated that the radiation levels at the involved portion of the facility are at or near background levtrls. Therefore, no remedial action is required, and DGE is eliminating

31

NE-24  

Office of Legacy Management (LM)

VW- VW- 50 "id AU6 3 1983 NE-24 .' . _ : ' : R&D Decontamination Projects Under the Formerly Utilized Sites Remedial Actlon Program (FUSRAP) '_ F .- ,: 'J,.LaGrone, Manager . Oak Ridge Operations Office As a result of the House-Senate Conference Report and the Energy and Water Appropriations Act for FY 1984, and based on the data in the attached reports indicating radioactive contamination in excess of acceptable guidelines, the sites listed in the attachment and their respective vicinity properties (contaminated with radioactive materials from these sites) are being designated as decontamination research and development projects under the FUSRAP. Each site and the associated vicinity properties should be treated as a separate project. The objective of each project is to decontaminate the vicinity properties

32

DOE - Office of Legacy Management -- Spook Site - WY 0-01  

Office of Legacy Management (LM)

Spook Site - WY 0-01 Spook Site - WY 0-01 FUSRAP Considered Sites Site: Spook Site (WY.0-01) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Documents Related to Spook Site 2012 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites-Spook, Wyoming, Disposal Site. LMS/S09461. February 2013 U.S. Department of Energy 2008 UMTRCA Title I Annual Report January 2009 Spook, Wyoming U.S. Department of Energy 2007 UMTRCA Title I Annual Report December 2007 Spook, Wyoming FACT SHEET - Spook, Wyoming This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I

33

DOE - Office of Legacy Management -- Riverton Mill Site - WY 0-04  

Office of Legacy Management (LM)

Mill Site - WY 0-04 Mill Site - WY 0-04 FUSRAP Considered Sites Site: Riverton Mill Site (WY.0-04 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Riverton, Wyoming, Processing Site Documents Related to Riverton Mill Site Data Validation Package for the November 2008 Groundwater and Surface Water Sampling at the Riverton, Wyoming, Processing Site. February 2009 U. S. Department of Energy (DOE) Status and Planned Actions at the Riverton, Wyoming, Uranium Mill Tailing Radiation Control Act (UMTRCA) Title I Site April Gil, PhD Environment Team Lead Office of Legacy Management (LM) May 2, 20122 Status and Action Summary 􀂄 Surface

34

NV Energy - Energy Smart Schools Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NV Energy - Energy Smart Schools Program NV Energy - Energy Smart Schools Program NV Energy - Energy Smart Schools Program < Back Eligibility Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heating Appliances & Electronics Commercial Lighting Lighting Manufacturing Windows, Doors, & Skylights Program Info State Nevada Program Type Utility Rebate Program Rebate Amount varies; contact program administrator The Energy Smart Schools program helps Nevada school districts reduce energy consumption, improve learning environments, and save money by implementing energy efficiency improvements in new and existing K-12 schools. The Program helps schools identify cost-effective projects, offers

35

EIS-0413: Searchlight Wind Energy Project, Searchlight, NV | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13: Searchlight Wind Energy Project, Searchlight, NV 13: Searchlight Wind Energy Project, Searchlight, NV EIS-0413: Searchlight Wind Energy Project, Searchlight, NV Summary The Department of the Interior's Bureau of Land Management, with DOE's Western Area Power Administration as a cooperating agency, prepared this EIS to evaluate the environmental impacts of a proposal to construct and operate 156 wind turbine generators and related facilities on public lands surrounding the town of Searchlight, Nevada. The proposal includes a substation that would be operated by Western. Public Comment Opportunities None available at this time. Documents Available for Download May 16, 2013 EIS-0413: Record of Decision Searchlight Wind Energy Project, Searchlight, NV January 15, 2013 EIS-0413: Final Environmental Impact Statement

36

NV Energy (Northern Nevada) - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NV Energy (Northern Nevada) - Residential Energy Efficiency Rebate NV Energy (Northern Nevada) - Residential Energy Efficiency Rebate Program NV Energy (Northern Nevada) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Maximum Rebate 30% of cost Program Info State Nevada Program Type Utility Rebate Program Rebate Amount Refrigerator/freezer Recycling: $50 Furnaces: $50-$125 Boilers: $75-$100 Provider Nevada Energy - Northern '''As of November 30, 2011, furnace and boiler rebates have been suspended until further notice. View the program web site for additional details and contact information.''' NV Energy offers rebates for the installation of high efficiency stand-alone gas furnaces and gas boilers for residential customers in

37

NV Energy, Inc. Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

NV Energy, Inc. Smart Grid Project NV Energy, Inc. Smart Grid Project Jump to: navigation, search Project Lead NV Energy, Inc. Country United States Headquarters Location Las Vegas, Nevada Recovery Act Funding $$137,877,906 Total Project Value $$275,755,812 Coverage Area Coverage Map: NV Energy, Inc. Smart Grid Project Coordinates 36.114646°, -115.172816° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

38

A Deeper Look at 2NV | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Deeper Look at 2NV | National Nuclear Security Administration Deeper Look at 2NV | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > A Deeper Look at 2NV A Deeper Look at 2NV Posted By Bob Osborn, NNSA Chief Information Officer computer screens When Administrator D'Agostino extended the challenge to build a single, integrated enterprise through the OneNNSA initiative, we

39

NV Energy formerly Sierra Pacific Power | Open Energy Information  

Open Energy Info (EERE)

NV Energy (formerly Sierra Pacific Power) NV Energy (formerly Sierra Pacific Power) Place Reno, Nevada Zip 89520 Sector Efficiency Product Nevada-based, subsidiary of NV Energy/Sierra Pacific Resources, electric utility. NV Energy has developed energy efficiency projects. Coordinates 32.944065°, -97.578279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.944065,"lon":-97.578279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

40

DOE - Office of Legacy Management -- U S Bureau of Mines Reno Station - NV  

NLE Websites -- All DOE Office Websites (Extended Search)

Reno Station - Reno Station - NV 06 FUSRAP Considered Sites Site: U.S. BUREAU OF MINES RENO STATION (NV.06) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: U.S. BOM Metallurgy Research Center, Dept of the Interior NV.06-1 Location: 1605 Evans Avenue , Reno , Nevada NV.06-1 NV.06-2 Evaluation Year: 1987 NV.06-1 Site Operations: Research and development activities involving uranium. NV.06-2 Site Disposition: Eliminated - Potential for contamination remote NV.06-3 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium NV.06-2 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to U.S. BUREAU OF MINES RENO STATION NV.06-1 - Memorandum/Checklist; Wallo to the File; Subject: U.S.

Note: This page contains sample records for the topic "wy nv ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

NV-063-EA06-098 | Open Energy Information  

Open Energy Info (EERE)

NV-063-EA06-098 NV-063-EA06-098 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: NV-063-EA06-098 EA at Reese River Geothermal Area for Geothermal/Exploration Reese River Valley Geothermal Exploration Project Environmental Assessment General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Sierra Geothermal Power Geothermal Area Reese River Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Slim Holes, Thermal Gradient Holes Time Frame (days) Application Time 142 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Battle Mountain Managing Field Office BLM Mount Lewis Field Office Funding Agencies none provided

42

NV-020-08-CX-65 | Open Energy Information  

Open Energy Info (EERE)

NV-020-08-CX-65 NV-020-08-CX-65 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: NV-020-08-CX-65 CX at Desert Peak Geothermal Area for Geothermal/Exploration, Vibroseis seismic survey at Desert Peak Geothermal site General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Ormat Technologies Inc Geothermal Area Desert Peak Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Passive Seismic Techniques Time Frame (days) Application Time 15 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office none provided Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates

43

NV-EA-030-07-05 | Open Energy Information  

Open Energy Info (EERE)

NV-EA-030-07-05 NV-EA-030-07-05 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: NV-EA-030-07-05 EA at Salt Wells Geothermal Area for Geothermal/Exploration Salt Wells Geothermal Drilling EA General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Vulcan Power Company Consultant Tetra Tech, Inc., EMPSi Geothermal Area Salt Wells Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Thermal Gradient Holes Time Frame (days) Application Time 158 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates

44

NV-020-06-EA-12 | Open Energy Information  

Open Energy Info (EERE)

NV-020-06-EA-12 NV-020-06-EA-12 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: NV-020-06-EA-12 DNA at {{{GeothermalArea}}} for Geothermal/Exploration, {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant GERLACH GEOTHERMAL LLC Geothermal Area {{{GeothermalArea}}}"{{{GeothermalArea}}}" cannot be used as a page name in this wiki. Project Location Project Phase Geothermal/Exploration Techniques Thermal Gradient Holes Comments Evidence of bond requested but never received. File closed without action. Time Frame (days) Application Time 14 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office

45

NV Energy (Northern Nevada) - Solar Hot Water Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NV Energy (Northern Nevada) - Solar Hot Water Incentive Program NV Energy (Northern Nevada) - Solar Hot Water Incentive Program NV Energy (Northern Nevada) - Solar Hot Water Incentive Program < Back Eligibility Commercial Fed. Government Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Residential electric customers: Lesser of 50% or $2,000 Residential gas customers: Lesser of 30% or $3,000 Small commercial gas customers: Lesser of 30% or $7,500 Nonprofits, schools and other public gas customers: Lesser of 50% or $30,000 Program Info Start Date 2/1/2011 State Nevada Program Type Utility Rebate Program Rebate Amount Residential electric customers: Lesser of 50% or $2,000 Residential gas customers: $14.50 per therm Small commercial gas customers: $14.50 per therm

46

Remote Sensing For Geothermal Exploration Over Buffalo Valley, Nv | Open  

Open Energy Info (EERE)

Sensing For Geothermal Exploration Over Buffalo Valley, Nv Sensing For Geothermal Exploration Over Buffalo Valley, Nv Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Remote Sensing For Geothermal Exploration Over Buffalo Valley, Nv Details Activities (1) Areas (1) Regions (0) Abstract: Remote sensing is a useful tool for identifying the surface expression of geothermal systems based on characteristic mineral assemblages that result from hydrothermal alteration (Kratt et al., 2004; Vaughan et al., 2005). Buffalo Valley in Pershing and Lander Counties, Nevada, is an area of high potential for geothermal energy production (Shevenell et al., 2004). Geothermal heat is expressed by several hot springs with surface temperatures of up to 79°C (Olmsted et al., 1975). The hot springs and a chain of Quaternary cinder cones appear to be

47

Energies Nouvelles et Environnement NV ENE | Open Energy Information  

Open Energy Info (EERE)

Energies Nouvelles et Environnement NV ENE Energies Nouvelles et Environnement NV ENE Jump to: navigation, search Name Energies Nouvelles et Environnement NV (ENE) Place Brussels, Belgium Zip B-1150 Sector Solar Product Producer of photovoltaic solar power systems for space and terrestrial use. Coordinates 50.848385°, 4.349685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.848385,"lon":4.349685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

48

EA-1938: Grieve Unit CO2 Enhanced Recovery Project, Natrona County, WY |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Grieve Unit CO2 Enhanced Recovery Project, Natrona County, 8: Grieve Unit CO2 Enhanced Recovery Project, Natrona County, WY EA-1938: Grieve Unit CO2 Enhanced Recovery Project, Natrona County, WY SUMMARY The Bureau of Land Management prepared, with DOE's Western Area Power Administration (Western) as a cooperating agency, an EA to analyze the potential environmental impacts of a proposal by Elk Petroleum Incorporated to implement enhanced recovery from the Cretaceous Muddy "Grieve Sand" in the Grieve Unit using a miscible carbon dioxide (CO2) flood with water injection to assist with reservoir repressurization. The proposed action includes drilling ten new wells; installing a CO2 pipeline, an aboveground 230 kV transmission line, an underground 25 kV power distribution line, and two electrical substations; replacing and enlarging an existing infield

49

DOE - Office of Legacy Management -- Crooks Gap AEC Ore Buying Station - WY  

NLE Websites -- All DOE Office Websites (Extended Search)

Crooks Gap AEC Ore Buying Station - Crooks Gap AEC Ore Buying Station - WY 0-02 FUSRAP Considered Sites Site: Crooks Gap AEC Ore Buying Station (WY.0-02 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were operated during the period late-1949 through the mid-1960s. During this period the AEC established ore-buying stations in new uranium producing areas where it appeared that ore production would be sufficient to support a uranium milling operation. The

50

File:USDA-CE-Production-GIFmaps-WY.pdf | Open Energy Information  

Open Energy Info (EERE)

WY.pdf WY.pdf Jump to: navigation, search File File history File usage Wyoming Ethanol Plant Locations Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 188 KB, MIME type: application/pdf) Description Wyoming Ethanol Plant Locations Sources United States Department of Agriculture Related Technologies Biomass, Biofuels, Ethanol Creation Date 2010-01-19 Extent State Countries United States UN Region Northern America States Wyoming External links http://www.nass.usda.gov/Charts_and_Maps/Ethanol_Plants/ File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 16:22, 27 December 2010 Thumbnail for version as of 16:22, 27 December 2010 1,650 × 1,275 (188 KB) MapBot (Talk | contribs) Automated bot upload

51

DOE - Office of Legacy Management -- Riverton AEC Ore Buying Station - WY  

NLE Websites -- All DOE Office Websites (Extended Search)

Riverton AEC Ore Buying Station - Riverton AEC Ore Buying Station - WY 0-03 FUSRAP Considered Sites Site: Riverton AEC Ore Buying Station (WY.0-03 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were operated during the period late-1949 through the mid-1960s. During this period the AEC established ore-buying stations in new uranium producing areas where it appeared that ore production would be sufficient to support a uranium milling operation. The

52

EA-1938: Grieve Unit CO2 Enhanced Recovery Project, Natrona County, WY |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Grieve Unit CO2 Enhanced Recovery Project, Natrona County, 8: Grieve Unit CO2 Enhanced Recovery Project, Natrona County, WY EA-1938: Grieve Unit CO2 Enhanced Recovery Project, Natrona County, WY SUMMARY The Bureau of Land Management prepared, with DOE's Western Area Power Administration (Western) as a cooperating agency, an EA to analyze the potential environmental impacts of a proposal by Elk Petroleum Incorporated to implement enhanced recovery from the Cretaceous Muddy "Grieve Sand" in the Grieve Unit using a miscible carbon dioxide (CO2) flood with water injection to assist with reservoir repressurization. The proposed action includes drilling ten new wells; installing a CO2 pipeline, an aboveground 230 kV transmission line, an underground 25 kV power distribution line, and two electrical substations; replacing and enlarging an existing infield

53

Tracking Emission Rate Dynamics of NV Centers in Nanodiamonds  

E-Print Network (OSTI)

Spontaneous emission from crystal centers is influenced by both the photonic local density of states and non-radiative processes. Here we monitor the spontaneous emission of single nitrogen vacancy (NV) centers as their host diamond is reduced in size from a large monolithic crystal to a nanocrystal by successive cycles of oxidation. The size reduction induces a quenching of the NV radiative emission. New non-radiative channels lead to a decrease of the fluorescence intensity and the excited state lifetime. In one case we observe the onset of blinking which may provide a route to understand these additional non-radiative decay channels.

Faraz A Inam; Andrew M Edmonds; Michael J Steel; Stefania Castelletto

2013-05-28T23:59:59.000Z

54

NV-020-07-EA-01 | Open Energy Information  

Open Energy Info (EERE)

EA-01 EA-01 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: NV-020-07-EA-01 EA at Jersey Valley Geothermal Area for Geothermal/Well Field, Geothermal/Exploration, Jersey Valley Geothermal Exploration Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Ormat Technologies Inc Consultant Environmental Management Associates Geothermal Area Jersey Valley Geothermal Area Project Location Near Fallon, NV Project Phase Geothermal/Well Field, Geothermal/Exploration Techniques Drilling Techniques, Observation Wells Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office none provided

55

GRR/Section 3-NV-b - State Land Access | Open Energy Information  

Open Energy Info (EERE)

NV-b - State Land Access < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-NV-b - State Land Access...

56

DOE - Office of Legacy Management -- Titanium Metals Corp Div of NLO - NV  

Office of Legacy Management (LM)

Titanium Metals Corp Div of NLO - Titanium Metals Corp Div of NLO - NV 07 FUSRAP Considered Sites Site: TITANIUM METALS CORP., DIV. OF NLO (NV.07 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Henderson , Nevada NV.07-1 Evaluation Year: 1994 NV.07-1 Site Operations: Experimental work on electrolyzing uranium contaminated magnesium fluoride. NV.07-2 Site Disposition: Eliminated - Potential for contamination considered remote NV.07-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium NV.07-2 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to TITANIUM METALS CORP., DIV. OF NLO NV.07-1 - DOE Memorandum; Williams to the File; Elimination of the

57

GRR/Section 13-NV-a - Land Use Assessment | Open Energy Information  

Open Energy Info (EERE)

NV-a - Land Use Assessment < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 13-NV-a - Land Use...

58

NE Blog Archive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ne/blog-archive 1000 Independence Ave. SWWashington DC ne/blog-archive 1000 Independence Ave. SWWashington DC 20585202-586-5000 en Generation IV International Forum Updates Technology Roadmap and Builds Future Collaboration http://energy.gov/ne/articles/generation-iv-international-forum-updates-technology-roadmap-and-builds-future ne/articles/generation-iv-international-forum-updates-technology-roadmap-and-builds-future" class="title-link">Generation IV International Forum Updates Technology Roadmap and Builds Future Collaboration

59

NV Energy Sierra Pacific Resources | Open Energy Information  

Open Energy Info (EERE)

Resources Resources Jump to: navigation, search Name NV Energy/Sierra Pacific Resources Place Reno, Nevada Zip 89511 Product Sierra Pacific Resources is a holding company whose principal subsidiary is NV Energy (formerly the separate entities Nevada Power Company and Sierra Pacific Power Company). Coordinates 32.944065°, -97.578279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.944065,"lon":-97.578279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

60

File:INL-geothermal-nv.pdf | Open Energy Information  

Open Energy Info (EERE)

nv.pdf nv.pdf Jump to: navigation, search File File history File usage Nevada Geothermal Resources Size of this preview: 432 × 600 pixels. Full resolution ‎(2,877 × 3,995 pixels, file size: 847 KB, MIME type: application/pdf) Description Nevada Geothermal Resources Sources Idaho National Laboratory Authors Patrick Laney; Julie Brizzee Related Technologies Geothermal Creation Date 2003-11-01 Extent State Countries United States UN Region Northern America States Nevada File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:42, 16 December 2010 Thumbnail for version as of 12:42, 16 December 2010 2,877 × 3,995 (847 KB) MapBot (Talk | contribs) Automated upload from NREL's "mapsearch" data

Note: This page contains sample records for the topic "wy nv ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

File:EnergyResourcePermittingNV.pdf | Open Energy Information  

Open Energy Info (EERE)

EnergyResourcePermittingNV.pdf EnergyResourcePermittingNV.pdf Jump to: navigation, search File File history File usage File:EnergyResourcePermittingNV.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 3 4 5 6 7 8 9 10 11 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 97 KB, MIME type: application/pdf, 11 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 11:16, 15 October 2012 Thumbnail for version as of 11:16, 15 October 2012 1,275 × 1,650, 11 pages (97 KB) Dklein2012 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage

62

MiniBooNE  

SciTech Connect

To begin, we examine the relationship between MiniBooNE and the neutrino beam geometry at Fermilab. In Figure 1, a schematic representation is shown of the plan view of the location of MiniBooNE relative to SciBooNE and the NuMI target, where it can be seen that SciBooNE and MiniBooNE share the same beamline and neutrino flux, and therefore share some of the same systematic effects -- A combined analysis between the two experimental groups could yield a superior result compared to segregated individual analysis. MiniBooNE makes an angle of 6.3 degrees with the NuMI beamline, an off-axis measurement if you will, that provides a relatively high yield of electron neutrinos from kaon decay. Furthermore, the proton beam incident on the MiniBooNE target possesses a 53 MHz structure that will be important in timing studies related to the low energy excess. Let's review of the results of the MiniBooNE: As is well known, MiniBooNE, a test of the LSND effect [1], adds experimental inspiration to the possible existence of new phenomena; although two neutrino-family oscillations were shown to be an unlikely candidate to explain the LSND effect, a low energy excess of 3.0 sigma in the neutrino sector at energies between 200 to 475 MeV [2] - an effect that appears to have no counterpart in the antineutrino sector [3], combined with the 3.8 sigma LSND result - at roughly 50 MeV - strains phenomenology for insight. Miniboones continues to run and collect antineutrino data; will combine disappearance analysis with SciBooNE; take data from the NuMI target, an unusual source with a potentially new look at the low energy anomaly; and use beam timing techniques to further constrain phenomenological models. In this paper we will review current topics related to MiniBooNE and other associated experiments and phenomenology.

Stefanski, Ray; /Fermilab

2009-10-01T23:59:59.000Z

63

Eliyahu Ne'eman  

NLE Websites -- All DOE Office Websites (Extended Search)

Eliyahu Ne'eman Eliyahu Ne'eman Consulting Engineer on Lighting and Daylighting Lawrence Berkeley National Laboratory This speaker was a visiting speaker who delivered a talk or talks on the date(s) shown at the links below. This speaker is not otherwise associated with Lawrence Berkeley National Laboratory, unless specifically identified as a Berkeley Lab staff member. Eliyahu Ne'eman is a leading international expert on lighting and daylighting. He has been involved in education, research and practice for over 40 years while working in Israel, UK, Germany and the US(LBNL). He has worked extensively in the area of occupant response in luminous spaces and he has been leading the CIE Task Group that has revised the CIE Museum Lighting Guide. This Speaker's Seminars Control of Damage to Museum Objects by Optical Radiation

64

RECIPIENT:Desert Research Institute STATE:NV PROJECT Tall Tower...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Institute STATE:NV PROJECT Tall Tower Wind Energy Monitoring and Numerical Model Validation in Southern Nevada; NREl Tracking TITLE: No. 11-012 Funding Opportunity...

65

NV-020-03-26 | Open Energy Information  

Open Energy Info (EERE)

6 6 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: NV-020-03-26 EA at Desert Peak Geothermal Area for Geothermal/Power Plant, Desert Peak 2 Geothermal Project Environmental Assessment General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant ORNI 3, LLC Consultant Argonne National Laboratory, Environmental Management Associates, Inc. (EMA) Geothermal Area Desert Peak Geothermal Area Project Location Nevada Project Phase Geothermal/Power Plant Techniques Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office none provided Funding Agencies none provided Surface Manager BLM, private Mineral Manager BLM

66

DOI-BLM-NV-B020-????-???-EA | Open Energy Information  

Open Energy Info (EERE)

B020-????-???-EA B020-????-???-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-B020-????-???-EA EA at Grass Valley Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Ormat Technologies Inc Geothermal Area Grass Valley Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Battle Mountain Managing Field Office BLM Mount Lewis Field Office Funding Agencies none provided Surface Manager none provided Mineral Manager none provided Selected Dates Relevant Numbers Lead Agency

67

EA-NV-030-05-08 | Open Energy Information  

Open Energy Info (EERE)

5-08 5-08 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: EA-NV-030-05-08 EA at Salt Wells Geothermal Area for Geothermal/Exploration Salt Wells Geothermal Plant Development Final EA General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Nevada Geothermal Specialists, LLC Consultant Tetra Tech, Inc. Geothermal Area Salt Wells Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager none provided Mineral Manager Nevada Selected Dates Application

68

DOI-BLM-NV-C010-????-????-CX | Open Energy Information  

Open Energy Info (EERE)

????-????-CX ????-????-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-????-????-CX CX at Dixie Valley Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Ormat Technologies Inc Geothermal Area Dixie Valley Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Thermal Gradient Holes Comments No Doc Number- CX was never processed. Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office none provided Funding Agencies none provided Surface Manager none provided Mineral Manager none provided

69

Preliminary technical data report: WyCoalGas project water system. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project, Converse County, Wyoming  

SciTech Connect

The WyCoalGas, Inc. Proposed coal gasification plant site is approximately 16 miles north of Douglas, Wyoming, located generally in Sections 27 and 34, T35N, R70W of the sixth prinicpal meridian. The plant site is located in typical high plateau plains of central Wyoming. Climate in the area is typical of semi-arid central Wyoming and is subject to wide variations in temperature. Precipitation in the area averages about 14 inches per year, of which about 10 inches fall during the April-September irrigation season. Projected water requirements at the plant site are 6020 acre-feet per year. Since the proposed plant site is not near any major streams or rivers, water must be transported to it. Water will be supplied from four sources - two surface water and two groundwater. The two surface water sources are LaPrele Reservoir and flood flows from the North Platte River with a 1974 appropriations date. LaPrele Reservoir is located approximately 14 miles west of Douglas, Wyoming, and is shown on Figure A-1. Water will be released from LaPrele Reservoir and flow down LaPrele Creek to the North Platte River. Water from the North Platte River will be diverted at a point in Section 7 of T33N, R71W. The LaPrele water and excess water from the North Platte will be pumped from the river and stored in Panhandle Reservoir No. 1, which is also referred to as Combs Reservoir. A pipeline will convey water from Panhandle Reservoir No. 1 to the coal gasification plant site. The two groundwater sources are located north of Douglas and west of Douglas.

1982-01-01T23:59:59.000Z

70

DOI-BLM-NV-C010-2011-0001-EA | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-C010-2011-0001-EA DOI-BLM-NV-C010-2011-0001-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2011-0001-EA EA at Coyote Canyon Geothermal Area for Geothermal/Power Plant TGP Coyote Canyon Utilization Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Terra-Gen Power LLC Consultant CH2M Hill Ltd Geothermal Area Coyote Canyon Geothermal Area Project Location Churchill County, NV, Churchill County, NV Project Phase Geothermal/Power Plant Techniques Exploration Drilling, Observation Wells, Well Testing Techniques Comments Utilization Time Frame (days) NEPA Process Time 214 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City

71

DOI-BLM-NV-CO1000-2010-0021-CX | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-CO1000-2010-0021-CX DOI-BLM-NV-CO1000-2010-0021-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-CO1000-2010-0021-CX CX at Coyote Canyon Geothermal Area for Geothermal/Exploration, {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant TGP Dixie Development LLC Geothermal Area Coyote Canyon Geothermal Area Project Location Churchill County, NV, Churchill County, NV Project Phase Geothermal/Exploration Techniques Magnetotelluric Methods Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager Nevada Mineral Manager BLM

72

GRR/Section 7-NV-a - Permit to Construct and Permit to Operate | Open  

Open Energy Info (EERE)

7-NV-a - Permit to Construct and Permit to Operate 7-NV-a - Permit to Construct and Permit to Operate < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-NV-a - Permit to Construct and Permit to Operate 07NVAPermitToConstructAndPermitToOperate (3).pdf Click to View Fullscreen Contact Agencies Nevada Division of Environmental Protection Triggers None specified Click "Edit With Form" above to add content 07NVAPermitToConstructAndPermitToOperate (3).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative _ 7-NV-a.1 and 6-NV-a.2 - Has an Environmental Review been Completed for Construction? The developer must make sure to undergo an environmental process before

73

DOI-BLM-NV-CO1000-2010-0022-CX | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-CO1000-2010-0022-CX DOI-BLM-NV-CO1000-2010-0022-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-CO1000-2010-0022-CX CX at Coyote Canyon Geothermal Area for Geothermal/Exploration, {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Terra-Gen Power LLC Geothermal Area Coyote Canyon Geothermal Area Project Location Churchill County, NV, Churchill County, NV Project Phase Geothermal/Exploration Techniques Electromagnetic Techniques, Magnetotelluric Techniques, Seismic Techniques Time Frame (days) Application Time 213 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided

74

www.eia.gov  

U.S. Energy Information Administration (EIA)

MO MT NE NV NH NJ NM NY NC ND OH OK OR PA RI SC SD TN TX UT VT VA WA WV WI WY U.S. Number of states in which marketer is licensed ... Service Tech & Research Corp

75

C:\\ANNUAL\\VENTCHAP.V8\\NGA.VP  

Gasoline and Diesel Fuel Update (EIA)

4 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99...

76

C:\\ANNUAL\\VENTCHAP.V8\\NGAla1109.vp  

Gasoline and Diesel Fuel Update (EIA)

0 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Sources: Energy...

77

NGA98fin5.vp  

Annual Energy Outlook 2012 (EIA)

NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99...

78

U.S. Energy Information Administration | Annual Energy Outlook...  

Annual Energy Outlook 2012 (EIA)

3 Regional maps Figure F6. Coal supply regions WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI MT NE...

79

EA-NV-030-07-006 | Open Energy Information  

Open Energy Info (EERE)

7-006 7-006 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: EA-NV-030-07-006 EA at Carson Lake Corral Geothermal Area for Geothermal/Well Field Ormat Carson Lake Geothermal Exploration Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Ormat Technologies Inc Consultant MHA Environmental Consulting, Inc. Geothermal Area Carson Lake Corral Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Exploration Drilling, Slim Holes, Thermal Gradient Holes Time Frame (days) Application Time 345 NEPA Process Time 296 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater

80

Meeting Location: Las Vegas, NV- DOE Office at Lossee Road  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11 11 th EM QUALITY ASSURANCE CORPORATE BOARD MEETING Meeting Location: Las Vegas, NV- DOE Office at Lossee Road With Limited Conference Call Capabilities Room: 6404 Agenda for May 1, 2012 1:00-1:15 pm Agenda, Introductions, Status of Action Items from Last Board Meeting Bob Murray (EM-43) 1:15-1:35 pm Discussion and Summary of the Site ISM/QA Declarations Steven Ross (EM-43) 1:35-2:05 pm Status of Phase II Follow-up Reviews for Field Offices including Use and Status of the Standard Review Plan Bob Toro (EM-43) 2:05-2:35 pm Overview of EM QA Program (as provided to DNFSB) Matthew Moury (EM-40) Bob Murray (EM-43) 2:35-3:05 pm (BOARD VOTE)

Note: This page contains sample records for the topic "wy nv ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NV-020-08-DNA-52 | Open Energy Information  

Open Energy Info (EERE)

DNA-52 DNA-52 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: NV-020-08-DNA-52 DNA at {{{GeothermalArea}}} for Geothermal/Exploration, {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Gerlach Geothermal LLC Geothermal Area {{{GeothermalArea}}}"{{{GeothermalArea}}}" cannot be used as a page name in this wiki. Project Location Project Phase Geothermal/Exploration Techniques Thermal Gradient Holes Comments NOI for TGH at Gavvs Valley Time Frame (days) Application Time 14 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office BLM Black Rock Field Office Funding Agencies none provided

82

DOI-BLM-NV-CO1000-2010-0010-CX | Open Energy Information  

Open Energy Info (EERE)

CX CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-CO1000-2010-0010-CX CX at Coyote Canyon Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Terra-Gen Power LLC Geothermal Area Coyote Canyon Geothermal Area Project Location Churchill County, NV, Churchill County, NV Project Phase Geothermal/Exploration Techniques Electromagnetic Techniques Time Frame (days) Application Time 209 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates

83

Category:Omaha, NE | Open Energy Information  

Open Energy Info (EERE)

Omaha, NE Omaha, NE Jump to: navigation, search Go Back to PV Economics By Location Media in category "Omaha, NE" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Omaha NE Omaha Public Power District.png SVFullServiceRestauran... 63 KB SVHospital Omaha NE Omaha Public Power District.png SVHospital Omaha NE Om... 61 KB SVLargeHotel Omaha NE Omaha Public Power District.png SVLargeHotel Omaha NE ... 61 KB SVLargeOffice Omaha NE Omaha Public Power District.png SVLargeOffice Omaha NE... 63 KB SVMediumOffice Omaha NE Omaha Public Power District.png SVMediumOffice Omaha N... 65 KB SVMidriseApartment Omaha NE Omaha Public Power District.png SVMidriseApartment Oma... 62 KB SVOutPatient Omaha NE Omaha Public Power District.png SVOutPatient Omaha NE ...

84

GRR/Section 4-NV-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

4-NV-a - State Exploration Process 4-NV-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-NV-a - State Exploration Process 04NVAStateExplorationProcess (1).pdf Click to View Fullscreen Contact Agencies Nevada Division of Minerals Nevada Department of Wildlife Nevada Division of Environmental Protection Regulations & Policies NAC 534A.190: Individual Geothermal Well NAC 534A.193: Geothermal Project Area Triggers None specified Click "Edit With Form" above to add content 04NVAStateExplorationProcess (1).pdf 04NVAStateExplorationProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative ____ 4-NV-a.1 - Is the Proposed Activity Pre-Drilling Exploration or Exploration

85

GRR/Section 17-NV-a - Aesthetic Resource Assessment | Open Energy  

Open Energy Info (EERE)

GRR/Section 17-NV-a - Aesthetic Resource Assessment GRR/Section 17-NV-a - Aesthetic Resource Assessment < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 17-NV-a - Aesthetic Resource Assessment 17NVAAestheticResourceAssessment.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 17NVAAestheticResourceAssessment.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Add Text Print PDF Retrieved from "http://en.openei.org/w/index.php?title=GRR/Section_17-NV-a_-_Aesthetic_Resource_Assessment&oldid=685690" Categories: Regulatory Roadmap State Sections

86

ENVIRONMENTAL ASSESSMENT DOI-BLM-NV-W030-2010-0006-EA; DOE/EA-1810  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOI-BLM-NV-W030-2010-0006-EA; DOE/EA-1810 SAN EMIDIO GEOTHERMAL EXPLORATION PROJECT Geothermal Drilling Permits Geothermal Leases NVN-42707, NVN-75233, and NVN-74196 Exploration Well Numbers 62-4, 68-33, 57-33, 73-9, 84-16, and 87-16 Washoe County, Nevada October 2010 Prepared by: U.S. Bureau of Land Management Winnemucca District Office BLM Black Rock Field Office/Nevada 5100 E. Winnemucca Blvd. Winnemucca NV 89445-2921 U. S. Department of Energy Cooperating Agency Environmental Assessment San Emidio Geothermal Exploration Project It is the mission of the Bureau of Land Management to sustain the health, diversity, and productivity of the public lands for the use and enjoyment of present and future generations. BLM/NV/WN/EA-10/31+1792 DOI-BLM-NV-W030--2010-0006-EA;

87

GRR/Section 1-NV-a - State Land Use Planning | Open Energy Information  

Open Energy Info (EERE)

-NV-a - State Land Use Planning -NV-a - State Land Use Planning < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 1-NV-a - State Land Use Planning 01NVAStateLandUsePlanning (1).pdf Click to View Fullscreen Contact Agencies Nevada Division of State Lands Regulations & Policies NRS 278: Planning and Zoning Triggers None specified Click "Edit With Form" above to add content 01NVAStateLandUsePlanning (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative _ 1-NV-a.1 - Inventory Population Data, Land Use Survey, Housing, and Economic Data According to the Planner's Guide, a land use plan ought to consider:

88

DOI-BLM-NV-B020-2011-0015-EA | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-B020-2011-0015-EA EA at Abraham Hot Springs Geothermal Area for GeothermalPower Plant General NEPA Document Info Energy Sector Geothermal energy Environmental...

89

Local Event - Nevada Test Site, Las Vegas, NV | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Event - Nevada Test Site, Las Vegas, NV Local Event - Nevada Test Site, Las Vegas, NV Local Event - Nevada Test Site, Las Vegas, NV October 25, 2013 9:00AM PDT National Day of Remembrance Local Event Where: National Atomic Testing Museum 755 E Flamingo Rd Las Vegas, NV 89119 On June 11th, 2013, Senators Mark Udall (D-CO) and Lamar Alexander (R-TN) introduced a bipartisan resolution to designate October 30 as the fifth annual National Day of Remembrance for former nuclear weapons workers and uranium miners who proudly served their country starting with the Manhattan Project through present day. Representatives from the DOE, Federal Government, and Atomic Testing Museum will speak on behalf of former workers. Admission to the National Atomic Testing Museum will be free for the day. Local coordinators will have a booth and conduct outreach on the

90

NE-23 W  

Office of Legacy Management (LM)

>:-1. ,- '"CC3 >:-1. ,- '"CC3 . ' NE-23 .+ W h itm~ l-l& Mr. Victor 3. Canilov, Director Museum of Science and Industry East 57th Street and Lake Shore Drive Chicago, Illinois 60037 Dear kr. Danilov: The Department of Energy (DOE), as part of its Formerly Utilized Sites Remedial Action Program (FUSPSIP), has reviewed information on the Museum cf Science and Industry, Chicago, Illinois, to determine whether it contains residual radioactivity traceable to activities conducted on behalf of the Manhattan Engineer District or the Atomic Energy C o m m ission (predecessors to DOE). A radiological survey indicated that the radiation levels are equal to natural background. Therefore, no remedial action is required, ant DOE is eliminating the Museum of Science and Industry from further

91

NV/YMP radiological control manual, Revision 2  

Science Conference Proceedings (OSTI)

The Nevada Test Site (NTS) and the adjacent Yucca Mountain Project (YMP) are located in Nye County, Nevada. The NTS has been the primary location for testing nuclear explosives in the continental US since 1951. Current activities include operating low-level radioactive and mixed waste disposal facilities for US defense-generated waste, assembly/disassembly of special experiments, surface cleanup and site characterization of contaminated land areas, and non-nuclear test operations such as controlled spills of hazardous materials at the hazardous Materials (HAZMAT) Spill Center (HSC). Currently, the major potential for occupational radiation exposure is associated with the burial of low-level nuclear waste and the handling of radioactive sources. Planned future remediation of contaminated land areas may also result in radiological exposures. The NV/YMP Radiological Control Manual, Revision 2, represents DOE-accepted guidelines and best practices for implementing Nevada Test Site and Yucca Mountain Project Radiation Protection Programs in accordance with the requirements of Title 10 Code of Federal Regulations Part 835, Occupational Radiation Protection. These programs provide protection for approximately 3,000 employees and visitors annually and include coverage for the on-site activities for both personnel and the environment. The personnel protection effort includes a DOE Laboratory Accreditation Program accredited dosimetry and personnel bioassay programs including in-vivo counting, routine workplace air sampling, personnel monitoring, and programmatic and job-specific As Low as Reasonably Achievable considerations.

Gile, A.L. [comp.] [comp.

1996-11-01T23:59:59.000Z

92

Atmospheric Radioxenon Measurements in North Las Vegas, NV  

Science Conference Proceedings (OSTI)

PNNL deployed the ARSA radioxenon measurement system in North Las Vegas for two weeks in February and March 2006 for the purpose of measuring the radioxenon background at a level of sensitivity much higher than previously done in the vicinity of the NTS. The measurements establish what might be expected if future measurements are taken at NTS itself. The measurements are also relevant to test site readiness. A second detector, the PEMS, built and operated by DRI, was deployed in conjunction with the ARSA and contained a PIC, aerosol collection filters, and meteorological sensors. Originally, measurements were also to be performed at Mercury, NV on the NTS, but these were canceled due to initial equipment problems with the ARSA detector. Some of the radioxenon measurements detected 133Xe at levels up to 3 mBq/m3. This concentration of radioxenon is consistent with the observation of low levels of radioxenon emanating from distance nuclear reactors. Previous measurements in areas of high nuclear reactor concentration have shown similar results, but the western US, in general, does not have many nuclear reactors. Measurements of the wind direction indicate that the air carrying the radioxenon came from south of the detector and not from the NTS.

Milbrath, Brian D.; Cooper, Matthew W.; Lidey, Lance S.; Bowyer, Ted W.; Hayes, James C.; McIntyre, Justin I.; Karr, L.; Shafer, D.; Tappen, J.

2006-07-31T23:59:59.000Z

93

DOI-BLM-NV-W010-2011-0004-CX | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-W010-2011-0004-CX DOI-BLM-NV-W010-2011-0004-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W010-2011-0004-CX CX at Dixie Valley Geothermal Area for Geothermal/Exploration, AltaRock Seismic Survey General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant AltaRock Energy Inc Geothermal Area Dixie Valley Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Passive Seismic Techniques Time Frame (days) Application Time 160 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office Humboldt River Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates

94

EA-1944: Ormat Technologies Brady Hot Springs Project, Churchill County, NV  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

944: Ormat Technologies Brady Hot Springs Project, Churchill 944: Ormat Technologies Brady Hot Springs Project, Churchill County, NV EA-1944: Ormat Technologies Brady Hot Springs Project, Churchill County, NV SUMMARY Ormat Technologies, Inc. (Ormat) proposes to use DOE and cost share funding to study the Brady Hot Springs geothermal Field 15-12RD well. This is an EGS Demonstration project divided into three phases. During Phase 1, Ormat characterized the target well to prepare for stimulation activities in Phase 2, Phase 2: Well Stimulation and Collection/Analysis of Stimulation Monitoring Data and Phase 3: Long-term testing of the system. Phase 2 and 3 activities would occur at Ormat's Brady Hot Springs geothermal field in Churchill County, NV on public lands managed by the Bureau of Land Management (BLM) and Bureau of Reclamation (BOR). Since Phases 2 and 3

95

GRR/Section 14-NV-d - 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-NV-d - 401 Water Quality Certification GRR/Section 14-NV-d - 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-NV-d - 401 Water Quality Certification 14NVDSection401WaterQualityCertification.pdf Click to View Fullscreen Contact Agencies Nevada Division of Environmental Protection Regulations & Policies Section 401 of the Clean Water Act (33 U.S.C. 1341) Triggers None specified Click "Edit With Form" above to add content 14NVDSection401WaterQualityCertification.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Section 401 of the Clean Water Act (33 U.S.C. 1341) requires activities in

96

DOI-BLM-NV-W010-2010-0043-CX | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-W010-2010-0043-CX DOI-BLM-NV-W010-2010-0043-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W010-2010-0043-CX CX at Abraham Hot Springs Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Oski Energy LLC Geothermal Area Abraham Hot Springs Geothermal Area Project Location Utah Project Phase Geothermal/Exploration Techniques Seismic Techniques Time Frame (days) Application Time 68 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office Humboldt River Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 6/2/2010

97

GRR/Section 5-NV-a - Drilling Well Development | Open Energy Information  

Open Energy Info (EERE)

5-NV-a - Drilling Well Development 5-NV-a - Drilling Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-NV-a - Drilling Well Development 05NVADrillingWellDevelopment.pdf Click to View Fullscreen Contact Agencies Nevada Division of Minerals Nevada Division of Water Resources Regulations & Policies Nevada Revised Statutes (NRS) Nevada Administrative Code (NAC) Triggers None specified Click "Edit With Form" above to add content 05NVADrillingWellDevelopment.pdf 05NVADrillingWellDevelopment.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A person may not drill or operate a geothermal well or drill an exploratory well without obtaining a permit from the Administrator of the Nevada

98

GRR/Section 5-FD-b - Drilling Pre-Application Process NV only | Open Energy  

Open Energy Info (EERE)

5-FD-b - Drilling Pre-Application Process NV only 5-FD-b - Drilling Pre-Application Process NV only < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-FD-b - Drilling Pre-Application Process NV only 05-FD-b - DrillingApplicationProcess.pdf Click to View Fullscreen Contact Agencies Bureau of Land Management United States Forest Service Regulations & Policies Energy Policy Act of 2005 Geothermal Steam Act of 1970 43 CFR 3261: Drilling Operations, Getting A Permit Triggers None specified Click "Edit With Form" above to add content 05-FD-b - DrillingApplicationProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

99

DOI-BLM-NV-C010-2012-0035-DNA | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-C010-2012-0035-DNA DOI-BLM-NV-C010-2012-0035-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0035-DNA DNA at Dead Horse Wells Geothermal Area for Geothermal/Well Field {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Ormat Technologies Inc Geothermal Area Dead Horse Wells Geothermal Area Project Location California Project Phase Geothermal/Well Field Techniques Production Wells Comments Geothermal Drilling Permits 12-A-12, 54A-11, 62-11, and Sundry Notice Well 65-11 Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided

100

GRR/Section 14-NV-e - Groundwater Discharge Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-NV-e - Groundwater Discharge Permit GRR/Section 14-NV-e - Groundwater Discharge Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-NV-e - Groundwater Discharge Permit 14NVEGroundwaterDischargePermit.pdf Click to View Fullscreen Contact Agencies Nevada Division of Environmental Protection Regulations & Policies NAC 445A NRS 445A Triggers None specified Click "Edit With Form" above to add content 14NVEGroundwaterDischargePermit.pdf 14NVEGroundwaterDischargePermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Nevada Division of Environmental Protection (NDEP) Bureau of Water Pollution Control is responsible for protecting Nevada water quality from

Note: This page contains sample records for the topic "wy nv ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NV Energy (Northern Nevada Gas) - SureBet Business Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NV Energy (Northern Nevada Gas) - SureBet Business Energy NV Energy (Northern Nevada Gas) - SureBet Business Energy Efficiency Rebate Program (Nevada) NV Energy (Northern Nevada Gas) - SureBet Business Energy Efficiency Rebate Program (Nevada) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Installer/Contractor Institutional Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Manufacturing Home Weatherization Insulation Design & Remodeling Appliances & Electronics Water Heating Program Info State Nevada Program Type Utility Rebate Program Rebate Amount High Efficiency Boilers Input MBH $1.25 Boiler Reset Control Boiler $500 Boiler Tune-up Boiler $300 High Efficiency Furnaces Input MBH $1 Commercial Water Heaters Unit $150

102

DOI-BLM-NV-W030-20??-????-CX | Open Energy Information  

Open Energy Info (EERE)

NV-W030-20??-????-CX NV-W030-20??-????-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W030-20??-????-CX CX at Mcgee Mountain Geothermal Area for Geothermal/Exploration McGee Mountain Gravity Survey General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Geothermal Technical Partners Geothermal Area Mcgee Mountain Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Gravity Techniques Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office Humboldt River Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Relevant Numbers

103

GRR/Section 5-FD-b - Drilling Pre-Application Process NV only | Open Energy  

Open Energy Info (EERE)

5-FD-b - Drilling Pre-Application Process NV only 5-FD-b - Drilling Pre-Application Process NV only < GRR(Redirected from GRR/Section 5-FD-b - Drilling Application Process) Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-FD-b - Drilling Pre-Application Process NV only 05-FD-b - DrillingApplicationProcess.pdf Click to View Fullscreen Contact Agencies Bureau of Land Management United States Forest Service Regulations & Policies Energy Policy Act of 2005 Geothermal Steam Act of 1970 43 CFR 3261: Drilling Operations, Getting A Permit Triggers None specified Click "Edit With Form" above to add content 05-FD-b - DrillingApplicationProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

104

GRR/Section 6-NV-a - Transportation Permit | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 6-NV-a - Transportation Permit GRR/Section 6-NV-a - Transportation Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-NV-a - Transportation Permit 06NVATransportationPermit.pdf Click to View Fullscreen Contact Agencies Nevada Department of Transportation Nevada Department of Motor Vehicles Regulations & Policies Nevada Traffic Laws for Size Weight Load Triggers None specified Click "Edit With Form" above to add content 06NVATransportationPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Nevada Department of Transportation (NDOT) regulates the transport of oversized loads on Nevada's roads. NDOT regulates oversized loads in order

105

GRR/Section 14-NV-b - NPDES Permit Program | Open Energy Information  

Open Energy Info (EERE)

4-NV-b - NPDES Permit Program 4-NV-b - NPDES Permit Program < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-NV-b - NPDES Permit Program 14NVBNPDESPermitProgram.pdf Click to View Fullscreen Contact Agencies Nevada Division of Environmental Protection Nevada Division of Water Resources nevada Regulations & Policies Nevada Revised Statutes (NRS) Nevada Administrative Code (NAC) Nevada Water Pollution Control Law: NRS 445A.300-445A.730 Triggers None specified Click "Edit With Form" above to add content 14NVBNPDESPermitProgram.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

106

DOI-BLM-NV-CC-ES-11-10-1793 | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-CC-ES-11-10-1793 DOI-BLM-NV-CC-ES-11-10-1793 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-CC-ES-11-10-1793 EIS at Salt Wells Geothermal Area for Geothermal/Power Plant Salt Wells Geothermal Energy Projects EIS General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EIS Applicant Ormat Technologies Inc, Gradient Resources (formerly Vulcan Power), Sierra Pacific Power Co, Consultant EMPSi Geothermal Area Salt Wells Geothermal Area Project Location Nevada Project Phase Geothermal/Power Plant Techniques Development Drilling Time Frame (days) NEPA Process Time 749 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater

107

DOI-LM-NV-W010-2012-0061-CX | Open Energy Information  

Open Energy Info (EERE)

LM-NV-W010-2012-0061-CX LM-NV-W010-2012-0061-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-LM-NV-W010-2012-0061-CX CX at Desert Queen Geothermal Area for Geothermal/Exploration, Geothermal Temperature Gradient Well Drilling at Desert Queen General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Nevada Bureau of Mines and Geology Geothermal Area Desert Queen Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Thermal Gradient Holes Time Frame (days) Application Time 127 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office Humboldt River Funding Agencies none provided Surface Manager BLM

108

GRR/Section 15-NV-a - Nevada Clean Air Act Process | Open Energy  

Open Energy Info (EERE)

15-NV-a - Nevada Clean Air Act Process 15-NV-a - Nevada Clean Air Act Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 15-NV-a - Nevada Clean Air Act Process 15NVANevadaCleanAirActProcess.pdf Click to View Fullscreen Contact Agencies Nevada Division of Environmental Protection United States Environmental Protection Agency Regulations & Policies Nevada Revised Statutes (NRS) Nevada Administrative Code (NAC) Triggers None specified Click "Edit With Form" above to add content 15NVANevadaCleanAirActProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The federal Clean Air Act is administered by the United States

109

GRR/Section 4-FD-b - Exploration Pre-Application Process (NV only) | Open  

Open Energy Info (EERE)

GRR/Section 4-FD-b - Exploration Pre-Application Process (NV only) GRR/Section 4-FD-b - Exploration Pre-Application Process (NV only) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-FD-b - Exploration Pre-Application Process (NV only) 04FDBExplorationPreApplicationProcess.pdf Click to View Fullscreen Contact Agencies Bureau of Land Management United States Forest Service Regulations & Policies 43 CFR 3251 Exploration Operations: Getting BLM Approval 43 CFR 3261 Drilling Operations: Getting a Permit Triggers None specified Click "Edit With Form" above to add content 04FDBExplorationPreApplicationProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

110

GRR/Section 12-NV-a - Flora and Fauna Considerations | Open Energy  

Open Energy Info (EERE)

2-NV-a - Flora and Fauna Considerations 2-NV-a - Flora and Fauna Considerations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 12-NV-a - Flora and Fauna Considerations 12NVAFloraFaunaConsiderations.pdf Click to View Fullscreen Contact Agencies Nevada Department of Wildlife Nevada State Office of Energy Regulations & Policies NRS 701.600 et seq Triggers None specified Click "Edit With Form" above to add content 12NVAFloraFaunaConsiderations.pdf 12NVAFloraFaunaConsiderations.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Nevada has a particular state notification and review process for wildlife considerations for all energy projects 10 megawatts or greater. The process

111

DOI-BLM-NV-C010-2009-0051-CX | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-C010-2009-0051-CX DOI-BLM-NV-C010-2009-0051-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2009-0051-CX CX at Soda Lake Geothermal Area for Geothermal/Exploration, Magnetotelluric Survey at Soda Lake General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Global Magma Energy Group Geothermal Area Soda Lake Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Magnetotelluric Techniques Comments The Bureau of Reclamation has deferred surface management authority to the BLM for this project. Time Frame (days) Application Time 27 Participating Agencies Lead Agency Nevada Funding Agency none provided Managing District Office Carson City

112

GRR/Section 18-NV-c - Waste Disposal Permit | Open Energy Information  

Open Energy Info (EERE)

NV-c - Waste Disposal Permit NV-c - Waste Disposal Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-NV-c - Waste Disposal Permit 18NVCWasteDisposalPermit.pdf Click to View Fullscreen Contact Agencies Nevada Division of Environmental Protection Regulations & Policies Nevada Revised Statutes (NRS) Nevada Administrative Code (NAC) Triggers None specified Click "Edit With Form" above to add content 18NVCWasteDisposalPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Within the Nevada Division of Environmental Protection in Nevada, the Bureau of Waste Management (BWM) operates a permitting and compliance

113

GRR/Section 11-NV-a - Cultural Considerations | Open Energy Information  

Open Energy Info (EERE)

1-NV-a - Cultural Considerations 1-NV-a - Cultural Considerations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-NV-a - Cultural Considerations 11NVACulturalConsiderations (1).pdf Click to View Fullscreen Contact Agencies Nevada State Historic Preservation Office Nevada State Office of Energy Nevada Public Utilities Commission National Park Service Advisory Council on Historic Preservation Regulations & Policies National Historic Preservation Act Native American Graves Protection Act Triggers None specified Click "Edit With Form" above to add content 11NVACulturalConsiderations (1).pdf 11NVACulturalConsiderations (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

114

DOI-BLM-NV-CO1000-2010-0011-CX | Open Energy Information  

Open Energy Info (EERE)

CO1000-2010-0011-CX CO1000-2010-0011-CX CX at Coyote Canyon Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Terra-Gen Power LLC Geothermal Area Coyote Canyon Geothermal Area Project Location Churchill County, NV, Churchill County, NV Project Phase Geothermal/Exploration Techniques Electromagnetic Techniques Time Frame (days) Application Time 209 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 6/30/2009 Decision Document Date 1/25/2010 Relevant Numbers Lead Agency Doc Number DOI-BLM-NV-C010-2010-0011-CX

115

EA-1944: Ormat Technologies Brady Hot Springs Project, Churchill County, NV  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

944: Ormat Technologies Brady Hot Springs Project, Churchill 944: Ormat Technologies Brady Hot Springs Project, Churchill County, NV EA-1944: Ormat Technologies Brady Hot Springs Project, Churchill County, NV SUMMARY Ormat Technologies, Inc. (Ormat) proposes to use DOE and cost share funding to study the Brady Hot Springs geothermal Field 15-12RD well. This is an EGS Demonstration project divided into three phases. During Phase 1, Ormat characterized the target well to prepare for stimulation activities in Phase 2, Phase 2: Well Stimulation and Collection/Analysis of Stimulation Monitoring Data and Phase 3: Long-term testing of the system. Phase 2 and 3 activities would occur at Ormat's Brady Hot Springs geothermal field in Churchill County, NV on public lands managed by the Bureau of Land Management (BLM) and Bureau of Reclamation (BOR). Since Phases 2 and 3

116

DOI-BLM-NV-C010-2013-0026-DNA | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-C010-2013-0026-DNA DOI-BLM-NV-C010-2013-0026-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2013-0026-DNA DNA at Dixie Valley Geothermal Area for Geothermal/Well Field, Above ground drilling water pipeline (temporary) General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant TGP Coyote Canyon LLC Geothermal Area Dixie Valley Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Production Wells Time Frame (days) Application Time 56 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM

117

DOI-BLM-NV-C010-2013-0037-DNA | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-C010-2013-0037-DNA DOI-BLM-NV-C010-2013-0037-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2013-0037-DNA DNA at Gabbs Valley Geothermal Area for Geothermal/Well Field, {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant ORNI 47 LLC Geothermal Area Gabbs Valley Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Drilling Methods Comments GDP Wild Rose Unit Well 57-11 Time Frame (days) Application Time 1 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM

118

GRR/Section 3-NV-c - Encroachment Permit for NDOT ROW | Open Energy  

Open Energy Info (EERE)

GRR/Section 3-NV-c - Encroachment Permit for NDOT ROW GRR/Section 3-NV-c - Encroachment Permit for NDOT ROW < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-NV-c - Encroachment Permit for NDOT ROW 03NVCEncroachment (1).pdf Click to View Fullscreen Contact Agencies Nevada Department of Transportation Regulations & Policies NRS Chapter 405 Control and Preservation of Public Highways Triggers None specified Click "Edit With Form" above to add content 03NVCEncroachment (1).pdf 03NVCEncroachment (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Nevada Department of Transportation (NDOT) grants permits for permanent installations within State rights-of-way and in areas maintained by the

119

GRR/Section 14-NV-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

4-NV-c - Underground Injection Control Permit 4-NV-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-NV-c - Underground Injection Control Permit 14NVCUndergroundInjectionControlPermit.pdf Click to View Fullscreen Contact Agencies Nevada Division of Environmental Protection Nevada Division of Minerals Nevada Division of Water Resources Bureau of Land Management Regulations & Policies Nevada Revised Statutes (NRS) Nevada Administrative Code (NAC) Triggers None specified Click "Edit With Form" above to add content 14NVCUndergroundInjectionControlPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

120

GRR/Section 14-NV-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-NV-d - Section 401 Water Quality Certification GRR/Section 14-NV-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-NV-d - Section 401 Water Quality Certification 14NVDSection401WaterQualityCertification.pdf Click to View Fullscreen Contact Agencies Nevada Division of Environmental Protection Regulations & Policies Section 401 of the Clean Water Act (33 U.S.C. 1341) Triggers None specified Click "Edit With Form" above to add content 14NVDSection401WaterQualityCertification.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Section 401 of the Clean Water Act (33 U.S.C. 1341) requires activities in

Note: This page contains sample records for the topic "wy nv ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

DOI-BLM-NV-C010-2012-0069-CX | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-C010-2012-0069-CX DOI-BLM-NV-C010-2012-0069-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0069-CX CX at Abraham Hot Springs Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Ormat Technologies Inc Geothermal Area Abraham Hot Springs Geothermal Area Project Location Utah Project Phase Geothermal/Exploration Techniques Thermal Gradient Holes Time Frame (days) Application Time 27 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates

122

GRR/Section 14-NV-a - Nonpoint Source Pollution | Open Energy Information  

Open Energy Info (EERE)

NV-a - Nonpoint Source Pollution NV-a - Nonpoint Source Pollution < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-NV-a - Nonpoint Source Pollution 14NVANonpointSourcePollution.pdf Click to View Fullscreen Contact Agencies Nevada Division of Environmental Protection Regulations & Policies Nevada Revised Statutes (NRS) Nevada Administrative Code (NAC) Triggers None specified Click "Edit With Form" above to add content 14NVANonpointSourcePollution.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Nevada Division of Environmental Protection (NDEP) developed its initial Nonpoint Source Pollution Management Program and Nonpoint Pollution

123

GRR/Section 6-NV-b - Construction Stormwater Permit | Open Energy  

Open Energy Info (EERE)

NV-b - Construction Stormwater Permit NV-b - Construction Stormwater Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-NV-b - Construction Stormwater Permit 06NVBConstructionStormWaterPermit (1).pdf Click to View Fullscreen Contact Agencies Nevada Division of Environmental Protection Regulations & Policies Nevada Revised Statue 445A Nevada Administrative Code 445A.228 to 445A.272 Triggers None specified Click "Edit With Form" above to add content 06NVBConstructionStormWaterPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A developer who disturbs more than one acre and less than five acres must

124

GRR/Section 19-NV-a - Water Access and Water Rights Issues | Open Energy  

Open Energy Info (EERE)

GRR/Section 19-NV-a - Water Access and Water Rights Issues GRR/Section 19-NV-a - Water Access and Water Rights Issues < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-NV-a - Water Access and Water Rights Issues 19NVAWaterAccessAndWaterRightsIssues.pdf Click to View Fullscreen Contact Agencies Nevada Division of Water Resources Nevada Division of Environmental Protection Regulations & Policies Nevada Revised Statutes (NRS) NRS, Chapter 445A - water controls NRS, Chapter 533 - adjudication of vested water rights and appropriation of public waters NRS, Chapter 534 - outlines underground water and well NRS, Chapter 534A - geothermal resources Nevada Administrative Code (NAC) NAC, Chapter 445A - water controls Triggers None specified Click "Edit With Form" above to add content

125

GRR/Section 20-NV-a - Well Abandonment Process | Open Energy Information  

Open Energy Info (EERE)

20-NV-a - Well Abandonment Process 20-NV-a - Well Abandonment Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 20-NV-a - Well Abandonment Process 20NVAWellAbandonmentProcess (1).pdf Click to View Fullscreen Contact Agencies [[Nevada Division of Minerals]] Regulations & Policies NAC 534A.470 NAC 534A.540 Triggers None specified Click "Edit With Form" above to add content 20NVAWellAbandonmentProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the procedure for plugging or abandoning a well in the state of Nevada. The Nevada Division of Minerals ("division")

126

GRR/Section 5-NV-b - Sundry Notice | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 5-NV-b - Sundry Notice GRR/Section 5-NV-b - Sundry Notice < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-NV-b - Sundry Notice 05NVBSundryNotice (2).pdf Click to View Fullscreen Contact Agencies Nevada Division of Minerals Regulations & Policies NAC 534A Geothermal Resources Triggers None specified Click "Edit With Form" above to add content 05NVBSundryNotice (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Nevada Division of Minerals can issue a sundry notice form for various modifications, minor changes, and routine maintenance of a well that is not covered under the initial permit or application. The developer should

127

DOI-BLM-NV-W010-2010-0043-CX-2 | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-W010-2010-0043-CX-2 DOI-BLM-NV-W010-2010-0043-CX-2 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W010-2010-0043-CX-2 CX at Abraham Hot Springs Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Geothermal Technical Partners Geothermal Area Abraham Hot Springs Geothermal Area Project Location Utah Project Phase Geothermal/Exploration Techniques Geophysical Techniques, Slim Holes, Thermal Gradient Holes, Well Testing Techniques Time Frame (days) Application Time 148 Participating Agencies Lead Agency BLM Funding Agency DOE Managing District Office Winnemucca Managing Field Office Humboldt River Funding Agencies none provided

128

DOI-BLM-NV-B020-2009-0030-CX | Open Energy Information  

Open Energy Info (EERE)

NV-B020-2009-0030-CX NV-B020-2009-0030-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-B020-2009-0030-CX CX at Alum Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Sierra Geothermal Power Geothermal Area Alum Geothermal Area Project Location California Project Phase Geothermal/Exploration Techniques Time Frame (days) Application Time 35 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Battle Mountain Managing Field Office BLM Tonopah Field Office Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 12/11/2008 Decision Document Date 1/15/2009

129

DOI-BLM-NV-B020-2008-0071-DNA | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-B020-2008-0071-DNA DOI-BLM-NV-B020-2008-0071-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-B020-2008-0071-DNA DNA at Reese River Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Sierra Geothermal Partners Geothermal Area Reese River Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Time Frame (days) Application Time 26 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Battle Mountain Managing Field Office BLM Mount Lewis Field Office Funding Agencies none provided Surface Manager none provided Mineral Manager none provided Selected Dates

130

DOI-BLM-NV-W010-2011-0100-CX | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-W010-2011-0100-CX DOI-BLM-NV-W010-2011-0100-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W010-2011-0100-CX CX at Abraham Hot Springs Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Ormat Nevada Inc. Geothermal Area Abraham Hot Springs Geothermal Area Project Location Utah Project Phase Geothermal/Exploration Techniques Time Frame (days) Application Time 149 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office BLM Winnemucca Field Office Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 1/31/2011

131

DOI-BLM-NV-C010-2012-0016-DNA | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-C010-2012-0016-DNA DOI-BLM-NV-C010-2012-0016-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0016-DNA DNA at Salt Wells Geothermal Area for Geothermal/Well Field {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Ormat Technologies Inc Geothermal Area Salt Wells Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Production Wells Comments Geothermal Drilling Permit 85-5 Production Well Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM

132

GRR/Section 7-NV-c - State PUC Process | Open Energy Information  

Open Energy Info (EERE)

7-NV-c - State PUC Process 7-NV-c - State PUC Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-NV-c - State PUC Process 07NVCStatePUCProcess.pdf Click to View Fullscreen Contact Agencies Public Utilities Commission of Nevada Regulations & Policies Nevada Revised Statutes (NRS) Nevada Administrative Code (NAC) Practice Before the PUCN: NAC 703.481 to 703.845 Triggers None specified Click "Edit With Form" above to add content 07NVCStatePUCProcess.pdf 07NVCStatePUCProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A Certificate of Public Convenience and Necessity (CPCN) is required for the development of both energy generation facilities and transmission

133

GRR/Section 6-NV-c - Drinking Water Permit | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 6-NV-c - Drinking Water Permit GRR/Section 6-NV-c - Drinking Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-NV-c - Drinking Water Permit 06NVCDrinkingWaterPermit.pdf Click to View Fullscreen Contact Agencies Nevada Division of Water Resources Nevada Division of Environmental Protection Public Utilities Commission of Nevada Regulations & Policies NRS 445A Water Controls NAC 445A Water Controls (Regulations) Triggers None specified Click "Edit With Form" above to add content 06NVCDrinkingWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative According to NRS 445A, the Nevada Division of Water Resources is charged

134

DOI-BLM-NV-C010-2012-0051-EA | Open Energy Information  

Open Energy Info (EERE)

-EA -EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0051-EA EA at Coyote Canyon Geothermal Area for Geothermal/Exploration Coyote Canyon South Geothermal Exploration Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Terra-Gen Power LLC Consultant EMPSi Geothermal Area Coyote Canyon Geothermal Area Project Location Churchill County, NV, Churchill County, NV Project Phase Geothermal/Exploration Techniques Exploratory Well Comments This EA covers an extension of a previously approved exploration project, "Coyote Canyon Geothermal Exploration Project." Exploration results indicated the resource may be to the south of the already approved area. The BLM determined that this new EA would be needed to cover this new land area proposed for disturbance.

135

GRR workshop at GRC scheduled for 10/2 in Reno, NV | OpenEI Community  

Open Energy Info (EERE)

GRR workshop at GRC scheduled for 10/2 in Reno, NV GRR workshop at GRC scheduled for 10/2 in Reno, NV Home > Groups > Geothermal Regulatory Roadmap Kyoung's picture Submitted by Kyoung(155) Contributor 6 September, 2012 - 09:05 GRC + workshop + GRR + Reno + October The GRR workshop at GRC has been scheduled for Tuesday, October 2, 2012 in Reno, NV. During the workshop, we will be reviewing project progress to date, analysis of information gathered, and potential future plans. For more information, please see the workshop wiki page. Groups: Geothermal Regulatory Roadmap Login to post comments Kyoung's blog Latest blog posts Kyoung Geothermal NEPA Workshop at GRC Posted: 14 Oct 2013 - 20:19 by Kyoung Jweers New Robust References! Posted: 7 Aug 2013 - 18:23 by Jweers 1 comment(s) 1 of 15 ›› Groups Menu You must login in order to post into this group.

136

DOI-BLM-NV-C010-2010-0016-EA | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-C010-2010-0016-EA DOI-BLM-NV-C010-2010-0016-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2010-0016-EA EA at Patua Geothermal Area for Geothermal/Well Field, Geothermal/Power Plant Patua Geothermal Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Vulcan Power Company Geothermal Area Patua Geothermal Area Project Location Fernley, Nevada Project Phase Geothermal/Well Field, Geothermal/Power Plant Techniques Airborne Electromagnetic Survey Time Frame (days) Application Time 417 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BOR, Nevada, Privately Held

137

DOI-BLM-NV-C010-2011-0517-DNA | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-C010-2011-0517-DNA DOI-BLM-NV-C010-2011-0517-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2011-0517-DNA DNA at Dead Horse Wells Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Ormat Technologies Inc Geothermal Area Dead Horse Wells Geothermal Area Project Location California Project Phase Geothermal/Exploration Techniques Drilling Techniques Time Frame (days) Application Time 26 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates

138

GRR/Section 9-NV-a - State Environmental Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 9-NV-a - State Environmental Process GRR/Section 9-NV-a - State Environmental Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 9-NV-a - State Environmental Process 09NVAStateEnvironmentalProcess.pdf Click to View Fullscreen Contact Agencies Nevada State Clearinghouse Nevada Public Utilities Commission Nevada Division of Environmental Protection Regulations & Policies Utility Environmental Protection Act NAC 445C - Environmental Requirements Triggers None specified Click "Edit With Form" above to add content 09NVAStateEnvironmentalProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

139

DOI-BLM-NV-W030-2010-0006-EA | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-W030-2010-0006-EA DOI-BLM-NV-W030-2010-0006-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W030-2010-0006-EA EA at San Emidio Desert Geothermal Area for Geothermal/Exploration San Emidio Geothermal Exploration Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant US Geothermal Inc Consultant JBR Environmental Consultants Inc. Geothermal Area San Emidio Desert Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Drilling Methods, Flow Test Time Frame (days) NEPA Process Time 725 Participating Agencies Lead Agency DOE Funding Agency DOE Managing District Office Winnemucca Managing Field Office BLM Black Rock Field Office Funding Agencies none provided

140

US NE MA Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

NE MA NE MA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US NE MA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US NE MA Expenditures dollars ELECTRICITY ONLY average per household * Massachusetts households use 109 million Btu of energy per home, 22% more than the U.S. average. * The higher than average site consumption results in households spending 22% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers, keeps average site electricity consumption in the state low relative to other parts of the U.S. However, spending on electricity is closer to the national average due to higher

Note: This page contains sample records for the topic "wy nv ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

US NE MA Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

NE MA NE MA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US NE MA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US NE MA Expenditures dollars ELECTRICITY ONLY average per household * Massachusetts households use 109 million Btu of energy per home, 22% more than the U.S. average. * The higher than average site consumption results in households spending 22% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers, keeps average site electricity consumption in the state low relative to other parts of the U.S. However, spending on electricity is closer to the national average due to higher

142

Synergistic acceleration of thyroid hormone degradation by phenobarbital and the PPAR{alpha} agonist WY14643 in rat hepatocytes  

Science Conference Proceedings (OSTI)

Energy balance is maintained by controlling both energy intake and energy expenditure. Thyroid hormones play a crucial role in regulating energy expenditure. Their levels are adjusted by a tight feedback-controlled regulation of thyroid hormone production/incretion and by their hepatic metabolism. Thyroid hormone degradation has previously been shown to be enhanced by treatment with phenobarbital or other antiepileptic drugs due to a CAR-dependent induction of phase II enzymes of xenobiotic metabolism. We have recently shown, that PPAR{alpha} agonists synergize with phenobarbital to induce another prototypical CAR target gene, CYP2B1. Therefore, it was tested whether a PPAR{alpha} agonist could enhance the phenobarbital-dependent acceleration of thyroid hormone elimination. In primary cultures of rat hepatocytes the apparent half-life of T3 was reduced after induction with a combination of phenobarbital and the PPAR{alpha} agonist WY14643 to a larger extent than after induction with either compound alone. The synergistic reduction of the half-life could be attributed to a synergistic induction of CAR and the CAR target genes that code for enzymes and transporters involved in the hepatic elimination of T3, such as OATP1A1, OATP1A3, UGT1A3 and UGT1A10. The PPAR{alpha}-dependent CAR induction and the subsequent induction of T3-eliminating enzymes might be of physiological significance for the fasting-induced reduction in energy expenditure by fatty acids as natural PPAR{alpha} ligands. The synergism of the PPAR{alpha} agonist WY14643 and phenobarbital in inducing thyroid hormone breakdown might serve as a paradigm for the synergistic disruption of endocrine control by other combinations of xenobiotics.

Wieneke, N.; Neuschaefer-Rube, F. [University of Potsdam, Institute of Nutrition Science, Biochemistry of Nutrition, Arthur-Scheunert-Allee 114-116, D14558 Nuthetal (Germany); Bode, L.M. [University of Potsdam, Institute of Nutrition Science, Food Chemistry, Arthur-Scheunert-Allee 114-116, D14558 Nuthetal (Germany); Kuna, M. [University of Potsdam, Institute of Nutrition Science, Biochemistry of Nutrition, Arthur-Scheunert-Allee 114-116, D14558 Nuthetal (Germany); Andres, J. [Charite - Campus Benjamin Franklin, Department of Endocrinology, Diabetes and Nutrition, Hindenburgdamm 30, 12200 Berlin (Germany); Carnevali, L.C. [Universidade de Sao Paulo, Departamento de Biologia Celular e Desenvolvimento, Instituto de Ciencias Biomedicas, Sao Paulo, SP (Brazil); Hirsch-Ernst, K.I. [Georg-August-Universitaet Goettingen, Institute of Pharmakology and Toxikology, Molekular Pharmakology, Robert-Koch-Str. 40, D-37075 Goettingen (Germany); Pueschel, G.P. [University of Potsdam, Institute of Nutrition Science, Biochemistry of Nutrition, Arthur-Scheunert-Allee 114-116, D14558 Nuthetal (Germany)], E-mail: gpuesche@uni-potsdam.de

2009-10-01T23:59:59.000Z

143

Preliminary draft industrial siting administration permit application: Socioeconomic factors technical report. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project in Converse County, Wyoming  

SciTech Connect

Under the with-project scenario, WyCoalGas is projected to make a difference in the long-range future of Converse County. Because of the size of the proposed construction and operations work forces, the projected changes in employment, income, labor force, and population will alter Converse County's economic role in the region. Specifically, as growth occurs, Converse County will begin to satisfy a larger portion of its own higher-ordered demands, those that are currently being satisfied by the economy of Casper. Business-serving and household-serving activities, currently absent, will find the larger income and population base forecast to occur with the WyCoalGas project desirable. Converse County's economy will begin to mature, moving away from strict dependence on extractive industries to a more sophisticated structure that could eventually appeal to national, and certainly, regional markets. The technical demand of the WyCoalGas plant will mean a significant influx of varying occupations and skills. The creation of basic manufacturing, advanced trade and service sectors, and concomitant finance and transportation firms will make Converse County more economically autonomous. The county will also begin to serve market center functions for the smaller counties of eastern Wyoming that currently rely on Casper, Cheyenne or other distant market centers. The projected conditions expected to exist in the absence of the WyCoalGas project, the socioeconomic conditions that would accompany the project, and the differences between the two scenarios are considered. The analysis is keyed to the linkages between Converse County and Natrona County.

1982-01-01T23:59:59.000Z

144

Preliminary draft industrial siting administration permit application: Socioeconomic factors technical report. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project in Converse County, Wyoming  

SciTech Connect

Under the with-project scenario, WyCoalGas is projected to make a difference in the long-range future of Converse County. Because of the size of the proposed construction and operations work forces, the projected changes in employment, income, labor force, and population will alter Converse County's economic role in the region. Specifically, as growth occurs, Converse County will begin to satisfy a larger portion of its own higher-ordered demands, those that are currently being satisfied by the economy of Casper. Business-serving and household-serving activities, currently absent, will find the larger income and population base forecast to occur with the WyCoalGas project desirable. Converse County's economy will begin to mature, moving away from strict dependence on extractive industries to a more sophisticated structure that could eventually appeal to national, and certainly, regional markets. The technical demand of the WyCoalGas plant will mean a significant influx of varying occupations and skills. The creation of basic manufacturing, advanced trade and service sectors, and concomitant finance and transportation firms will make Converse County more economically autonomous. The county will also begin to serve market center functions for the smaller counties of eastern Wyoming that currently rely on Casper, Cheyenne or other distant market centers. The projected conditions expected to exist in the absence of the WyCoalGas project, the socioeconomic conditions that would accompany the project, and the differences between the two scenarios are considered. The analysis is keyed to the linkages between Converse County and Natrona County.

Not Available

1982-01-01T23:59:59.000Z

145

DOI-BLM-NV-C010-2012-0058-DNA | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » DOI-BLM-NV-C010-2012-0058-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0058-DNA DNA at Dixie Meadows Geothermal Area for Geothermal/Well Field {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Ormat Technologies Inc Geothermal Area Dixie Meadows Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Observation Wells Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided

146

DOI-BLM-NV-W030-2012-0011-DNA | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » DOI-BLM-NV-W030-2012-0011-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W030-2012-0011-DNA DNA at San Emidio Desert Geothermal Area for Geothermal/Well Field 2012 San Emidio Geothermal 2 Observation Wells General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant US Geothermal Inc Geothermal Area San Emidio Desert Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Observation Wells Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office BLM Black Rock Field Office Funding Agencies none provided

147

DOI-BLM-NV-C010-2009-0018-EA | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » DOI-BLM-NV-C010-2009-0018-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2009-0018-EA EA at Soda Lake Geothermal Area for Geothermal/Well Field Environmental Assessment: Magma Energy Soda Lake Well 41B-33 General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Magma Energy Geothermal Area Soda Lake Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Production Wells Time Frame (days) Application Time 112 NEPA Process Time 3 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater

148

DOI-BLM-NV-W010-2011-0004-CX | Open Energy Information  

Open Energy Info (EERE)

W010-2011-0004-CX W010-2011-0004-CX (Redirected from DOI-BL-NV-W010-2011-0004-CX) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W010-2011-0004-CX CX at Dixie Valley Geothermal Area for Geothermal/Exploration, AltaRock Seismic Survey General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant AltaRock Energy Inc Geothermal Area Dixie Valley Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Passive Seismic Techniques Time Frame (days) Application Time 160 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office Humboldt River Funding Agencies none provided Surface Manager BLM

149

DOI-BLM-NV-C010-2009-0030-CX | Open Energy Information  

Open Energy Info (EERE)

09-0030-CX 09-0030-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2009-0030-CX CX at Carson Lake Corral Geothermal Area for Geothermal/Exploration, {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Vulcan Power Company Geothermal Area Carson Lake Corral Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Thermal Gradient Holes Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Relevant Numbers Lead Agency Doc Number DOI-BLM-NV-W010-2009-0030-CX

150

ENVIRONMENTAL ASSESSMENT DOI-BLM-NV-W010-2012-0057-EA DOE/EA-1944  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ASSESSMENT ASSESSMENT DOI-BLM-NV-W010-2012-0057-EA DOE/EA-1944 Brady Hot Springs Well 15-12 Hydro-Stimulation January 2013 Prepared by: U.S. Department of the Interior Bureau of Land Management Winnemucca District Office 5100 E. Winnemucca Blvd. Winnemucca, Nevada 89445-2921 Cooperating Agency: U.S. Department of Energy Golden Field Office 1617 Cole Blvd. Golden, Colorado 80401 Winnemucca District Office / Nevada BLM Humboldt River Field Office/Nevada DOI-BLM-NV-W010-2012-0057-EA DOE/EA-1944 It is the mission of the Bureau of Land Management to sustain the health, diversity, and productivity of the public lands for the use and enjoyment of present and future generations. TABLE OF CONTENTS 1.0 INTRODUCTION ...................................................................................................1

151

DOI-BLM-NV-B020-2011-0048-CX | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » DOI-BLM-NV-B020-2011-0048-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-B020-2011-0048-CX CX at Silver Peak Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant CHB Metal Foote Corporation Geothermal Area Silver Peak Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Time Frame (days) Application Time 36 Participating Agencies Lead Agency BLM Funding Agency none provided

152

GRR/Section 3-NV-a - State Land Leasing Process and Land Access | Open  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 3-NV-a - State Land Leasing Process and Land Access < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-NV-a - State Land Leasing Process and Land Access 03NVAStateLandLeasingProcess.pdf Click to View Fullscreen Contact Agencies Nevada Division of State Lands Regulations & Policies Nevada Revised Statutes (NRS) Nevada Administrative Code (NAC) NRS 322.010-322.040 Leases for Extraction of Oil, Coal, Gas or Geothermal Resources Triggers None specified Click "Edit With Form" above to add content 03NVAStateLandLeasingProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

153

Mercury Flux Measurements: An Intercomparison and Assessment: Nevada Mercury Emissions Project (NvMEP)  

Science Conference Proceedings (OSTI)

An understanding of the contribution of natural nonpoint mercury sources to regional and global atmospheric mercury pools is critical for developing emission inventories, formulating environmental regulations, and assessing human and ecological health risks. This report discusses the results of the Nevada Mercury Emissions Project (NvMEP) and takes a close look at the emerging technologies used to obtain mercury flux field data. In specific, it provides an intercomparison of mercury flux measurements obt...

1998-12-14T23:59:59.000Z

154

Identifying Challenging Operating Hours for Solar Intergration in the NV Energy System  

Science Conference Proceedings (OSTI)

Abstract-- In this paper, the ability of the Nevada (NV) Energy generation fleet to meet its system balancing requirements under different solar energy penetration scenarios is studied. System balancing requirements include capacity, ramp rate, and ramp duration requirements for load following and regulation. If, during some operating hours, system capability is insufficient to meet these requirements, there is certain probability that the balancing authoritys control and reliability performance can be compromised. These operating hours are considered as challenging hours. Five different solar energy integration scenarios have been studied. Simulations have shown that the NV Energy system will be potentially able to accommodate up to 942 MW of solar photovoltaic (PV) generation. However, the existing generation scheduling procedure should be adjusted to make it happen. Fast-responsive peaker units need to be used more frequently to meet the increasing ramping requirements. Thus, the NV Energy system operational cost can increase. Index TermsSolar Generation, Renewables Integration, Balancing Process, Load Following, Regulation.

Etingov, Pavel V.; Lu, Shuai; Guo, Xinxin; Ma, Jian; Makarov, Yuri V.; Chadliev, Vladimir; Salgo, Richard

2012-05-09T23:59:59.000Z

155

Overview of NE Research Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NE Research Programs NE Research Programs Sue Lesica Office of Nuclear Energy U.S. Department of Energy July 31, 2013 2 R&D Budgets FY 2013 FY 2014 Congressional Request House Mark Senate Mark SMR Licensing Technical Support 62,999 70,000 110,000 70,000 Small Modular Reactor R&D 23,958 20,000 20,000 20,000 Next Generation Nuclear Plant 38,720 0 0 0 LWR Sustainability 24,218 21,500 21,500 21,500 Advanced Reactor Concepts 21,178 31,000 45,000 21,000 Reactor Concepts RD&D 108,075 72,500 86,500 62,500 Modeling and Simulation Hub 24,588 24,300 24,300 24,300 Crosscutting Technology Development 17,242 13,901 27,885 25,437 NEAMS 13,646 9,536 National Scientific Users Facility 14,563 14,563 14,563 14,563 Nuclear Energy Enabling Technologies 70,040 62,300 66,748 62,300

156

Microsoft Word - DRAFT DSW NV PA 12_12_13 lmm  

NLE Websites -- All DOE Office Websites (Extended Search)

12/12/13 PROGRAMMATIC AGREEMENT AMONG THE U.S. DEPARTMENT OF ENERGY-WESTERN AREA POWER ADMINISTRATION, ADVISORY COUNCIL ON HISTORIC PRESERVATION, NEVADA STATE HISTORIC PRESERVATION OFFICER, NEVADA STATE LANDS DEPARTMENT, BUREAU OF LAND MANAGEMENT, BUREAU OF RECLAMATION, AND NATIONAL PARK SERVICE REGARDING MAINTENANCE AND MINOR CONSTRUCTION ACTIVITIES AT EXISTING WESTERN TRANSMISSION LINES, FACILITIES AND PROPERTIES IN NEVADA WHEREAS, the United States Department of Energy, Western Area Power Administration (Western) operates and maintains, through its Desert Southwest Regional Office (DSW) and Sierra Nevada Regional Office (SNR), an extensive electrical power delivery system throughout the state of Nevada (NV), which includes transmission lines, substations, communication sites and ancillary

157

DOI-BLM-NV-C010-2012-0068-DNA | Open Energy Information  

Open Energy Info (EERE)

DNA DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0068-DNA DNA at Tungsten Mountain Geothermal Area for Geothermal/Well Field {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Ormat Technologies Inc Geothermal Area Tungsten Mountain Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Observation Wells Comments Geothermal Drilling Permit Well # 14-23 Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates

158

DOI-BLM-NV-C010-2013-0020-DNA | Open Energy Information  

Open Energy Info (EERE)

DNA DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2013-0020-DNA DNA at Patua Geothermal Area for Geothermal/Well Field Gradient Resources Geothermal Drilling Permit General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Gradient Resources Geothermal Drilling Permit Application Well 14-28 Geothermal Area Patua Geothermal Area Project Location Fernley, Nevada Project Phase Geothermal/Well Field Techniques Production Wells Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BOR Mineral Manager BLM Selected Dates

159

DOI-BLM-NV-C010-2010-0006-EA | Open Energy Information  

Open Energy Info (EERE)

-EA -EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2010-0006-EA EA at Gabbs Valley Geothermal Area for Geothermal/Exploration Gabbs Valley and Dead Horse Wells Geothermal Exploration Projects General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Ormat Technologies Inc Consultant Environmental Management Associates Geothermal Area Gabbs Valley Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Downhole Techniques, Drilling Techniques, Exploration Drilling, Well Testing Techniques Time Frame (days) Application Time 363 NEPA Process Time 363 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City

160

DOI-BLM-NV-B020-2011-0026-EA | Open Energy Information  

Open Energy Info (EERE)

26-EA 26-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-B020-2011-0026-EA EA at Silver Peak Geothermal Area for Geothermal/Exploration Clayton Valley Geothermal Exploration Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Ram Power Consultant EPG, Inc., Environmental Management Associates Geothermal Area Silver Peak Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Drilling Techniques, Exploration Drilling, Well Testing Techniques Comments Project abandoned; Unitization #: NVN-89376X Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Battle Mountain

Note: This page contains sample records for the topic "wy nv ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DOI-BLM-NV-B020-2008-????-CX | Open Energy Information  

Open Energy Info (EERE)

CX CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-B020-2008-????-CX CX at Silver Peak Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Sierra Geothermal Power Geothermal Area Silver Peak Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Time Frame (days) Application Time 27 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Battle Mountain Managing Field Office BLM Tonopah Field Office Funding Agencies none provided Surface Manager none provided Mineral Manager none provided Selected Dates Application Date 9/29/2008

162

DOI-BLM-NV-B020-2008-????-?? | Open Energy Information  

Open Energy Info (EERE)

?? ?? Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-B020-2008-????-?? {{{EnvironmentalAnalysisType}}} at Reese River Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type Applicant Sierra Geothermal Power Geothermal Area Reese River Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Seismic Techniques, Thermal Gradient Holes Time Frame (days) Application Time 0 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Battle Mountain Managing Field Office BLM Mount Lewis Field Office Funding Agencies none provided Surface Manager none provided

163

NV Energy (Southern Nevada) - SureBet Business Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southern Nevada) - SureBet Business Energy Efficiency Southern Nevada) - SureBet Business Energy Efficiency Rebate Program NV Energy (Southern Nevada) - SureBet Business Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Installer/Contractor Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heating Appliances & Electronics Commercial Lighting Lighting Manufacturing Windows, Doors, & Skylights Program Info State Nevada Program Type Utility Rebate Program Rebate Amount '''Existing Facilities''' T-8 Lamps: $2 - $7/lamp T-8/T-5 High Bay Replacement for HID: $0.30/watt reduced Delamping of T-12: $4 - $9

164

DOI-BLM-NV-C010-2010-0010-EA | Open Energy Information  

Open Energy Info (EERE)

EA EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2010-0010-EA EA at Dixie Valley Geothermal Area for Geothermal/Exploration Coyote Canyon and Dixie Meadows Geothermal Exploration General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Terra-Gen Power LLC Consultant CH2M Hill Ltd Geothermal Area Dixie Valley Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Downhole Techniques, Drilling Techniques, Exploration Drilling, Well Testing Techniques Time Frame (days) Application Time 265 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater

165

DOI-BLM-NV-C010-2011-0516-EA | Open Energy Information  

Open Energy Info (EERE)

516-EA 516-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2011-0516-EA EA at Dixie Meadows Geothermal Area for Geothermal/Exploration, Geothermal/Well Field Dixie Meadows Geothermal Exploration Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Ormat Technologies Inc Consultant JBR Environmental Consultants, Inc. Geothermal Area Dixie Meadows Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration, Geothermal/Well Field Techniques Drilling Techniques, Thermal Gradient Holes Time Frame (days) Application Time 308 NEPA Process Time 510 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City

166

DOI-BLM-NV-C010-2012-0046-DNA | Open Energy Information  

Open Energy Info (EERE)

-DNA -DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0046-DNA DNA at Tungsten Mountain Geothermal Area for Geothermal/Well Field {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Ormat Technologies Inc Geothermal Area Tungsten Mountain Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Observation Wells Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Decision Document Date 4/16/2012 Relevant Numbers

167

DOI-BLM-NV-C010-2011-0016-EA | Open Energy Information  

Open Energy Info (EERE)

EA EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2011-0016-EA EA at Patua Geothermal Area for Well Field Patua Geothermal Project Phase II General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Gradient Resources Consultant Panorama Environmental, Inc. Geothermal Area Patua Geothermal Area Project Location Fernley, Nevada Project Phase Well Field Techniques Exploratory Well, Thermal Gradient Holes Time Frame (days) NEPA Process Time 327 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Nevada Managing Field Office Carson City Funding Agencies none provided Surface Manager BLM, BOR Mineral Manager BLM Selected Dates

168

DOI-BLM-NV-C010-2012-0029-EA | Open Energy Information  

Open Energy Info (EERE)

29-EA 29-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0029-EA EA at Tungsten Mountain Geothermal Area for Geothermal/Well Field Tungsten Mountain Geothermal Exploration Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Ormat Technologies Inc Consultant Environmental Management Associates Geothermal Area Tungsten Mountain Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Downhole Techniques, Drilling Techniques, Exploration Drilling, Well Testing Techniques Time Frame (days) NEPA Process Time 407 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City

169

DOI-BLM-NV-B020-2010-0106-CX | Open Energy Information  

Open Energy Info (EERE)

-0106-CX -0106-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-B020-2010-0106-CX CX at Alum Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Sierra Geothermal Power Geothermal Area Alum Geothermal Area Project Location California Project Phase Geothermal/Exploration Techniques Hyperspectral Imaging, Magnetic Techniques, Magnetotellurics, Slim Holes, Z-Axis Tipper Electromagnetics Comments airborne thermal survey Time Frame (days) Application Time 182 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Battle Mountain Managing Field Office BLM Tonopah Field Office

170

NE - Nuclear Energy - Energy Conservation Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NUCLEAR ENERGY (NE) NUCLEAR ENERGY (NE) ENERGY CONSERVATION PLAN NE has heavily emphasized the use of flexiplace, both regular and situational. Since approximately 56 percent of NE staff use flexiplace, our plan is based on the Forrestal/Germantown (FORS/GTN) office spaces, and flexiplace office space. There are other common sense actions and policies that will be used to improve energy efficiency in the offices at both FORS and GTN. In the FORS/GTN office space: 1. Use flexiplace to the maximum extent possible. Saving an average of 1.5 gallons of gasoline per day per person (e.g., 13 miles per work x 2 = 26 miles, an average of 17 mpg), on a normal workday, NE employees save (56 percent of 145 = 71 times 1.2 days per pay period = 85.2 workdays x 1.5 gals = 127.8 gallons/pay

171

Dynamic polarization of single nuclear spins by optical pumping of NV color centers in diamond at room temperature  

E-Print Network (OSTI)

We report a versatile method to efficiently polarize single nuclear spins in diamond, which is based on optical pumping of a single NV color center and mediated by a level-anti crossing in its excited state. A nuclear spin polarization higher than 98% is achieved at room temperature for the 15N nuclear spin associated to the NV center, corresponding to $\\mu$K effective nuclear spin temperature. We then show simultaneous deterministic initialization of two nuclear spins (13C and 15N) in close vicinity to a NV defect. Such robust control of nuclear spin states is a key ingredient for further scaling up of nuclear-spin based quantum registers in diamond.

V. Jacques; P. Neumann; J. Beck; M. Markham; D. Twitchen; J. Meijer; F. Kaiser; G. Balasubramanian; F. Jelezko; J. Wrachtrup

2008-08-01T23:59:59.000Z

172

NV Energy Large-Scale Photovoltaic Integration Study: Intra-Hour Dispatch and AGC Simulation  

SciTech Connect

The uncertainty and variability with photovoltaic (PV) generation make it very challenging to balance power system generation and load, especially under high penetration cases. Higher reserve requirements and more cycling of conventional generators are generally anticipated for large-scale PV integration. However, whether the existing generation fleet is flexible enough to handle the variations and how well the system can maintain its control performance are difficult to predict. The goal of this project is to develop a software program that can perform intra-hour dispatch and automatic generation control (AGC) simulation, by which the balancing operations of a system can be simulated to answer the questions posed above. The simulator, named Electric System Intra-Hour Operation Simulator (ESIOS), uses the NV Energy southern system as a study case, and models the systems generator configurations, AGC functions, and operator actions to balance system generation and load. Actual dispatch of AGC generators and control performance under various PV penetration levels can be predicted by running ESIOS. With data about the load, generation, and generator characteristics, ESIOS can perform similar simulations and assess variable generation integration impacts for other systems as well. This report describes the design of the simulator and presents the study results showing the PV impacts on NV Energy real-time operations.

Lu, Shuai; Etingov, Pavel V.; Meng, Da; Guo, Xinxin; Jin, Chunlian; Samaan, Nader A.

2013-01-02T23:59:59.000Z

173

NV energy electricity storage valuation : a study for the DOE Energy Storage Systems program.  

SciTech Connect

This study examines how grid-level electricity storage may benefit the operations of NV Energy, and assesses whether those benefits are likely to justify the cost of the storage system. To determine the impact of grid-level storage, an hourly production cost model of the Nevada Balancing Authority (%22BA%22) as projected for 2020 was created. Storage was found to add value primarily through the provision of regulating reserve. Certain storage resources were found likely to be cost-effective even without considering their capacity value, as long as their effectiveness in providing regulating reserve was taken into account. Giving fast resources credit for their ability to provide regulating reserve is reasonable, given the adoption of FERC Order 755 (%22Pay-for-performance%22). Using a traditional five-minute test to determine how much a resource can contribute to regulating reserve does not adequately value fast-ramping resources, as the regulating reserve these resources can provide is constrained by their installed capacity. While an approximation was made to consider the additional value provided by a fast-ramping resource, a more precise valuation requires an alternate regulating reserve methodology. Developing and modeling a new regulating reserve methodology for NV Energy was beyond the scope of this study, as was assessing the incremental value of distributed storage.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader [Pacific Northwest National Laboratory, Richland, WA; Jin, Chunlian [Pacific Northwest National Laboratory, Richland, WA

2013-06-01T23:59:59.000Z

174

Wyoming coal-conversion project. Final technical report, November 1980-February 1982. [Proposed WyCoalGas project, Converse County, Wyoming; contains list of appendices with title and identification  

Science Conference Proceedings (OSTI)

This final technical report describes what WyCoalGas, Inc. and its subcontractors accomplished in resolving issues related to the resource, technology, economic, environmental, socioeconomic, and governmental requirements affecting a project located near Douglas, Wyoming for producing 150 Billion Btu per day by gasifying sub-bituminous coal. The report summarizes the results of the work on each task and includes the deliverables that WyCoalGas, Inc. and the subcontractors prepared. The co-venturers withdrew from the project for two reasons: federal financial assistance to the project was seen to be highly uncertain; and funds were being expended at an unacceptably high rate.

None

1982-01-01T23:59:59.000Z

175

DOI-BLM-NV-C010-2012-0057-CX | Open Energy Information  

Open Energy Info (EERE)

CX CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0057-CX CX at Dixie Meadows Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Ormat Technologies Inc Geothermal Area Dixie Meadows Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Thermal Gradient Holes Time Frame (days) Application Time 25 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 5/24/2012 Decision Document Date 6/18/2012

176

DOI-BLM-NV-C010-2011-0015-CX | Open Energy Information  

Open Energy Info (EERE)

5-CX 5-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2011-0015-CX CX at Patua Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Gradient Resources Geothermal Area Patua Geothermal Area Project Location Fernley, Nevada Project Phase Geothermal/Exploration Techniques Time Frame (days) Application Time 23 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BOR Mineral Manager none provided Selected Dates Application Date 1/18/2011 Decision Document Date 2/10/2011

177

DOI-BLM-NV-C010-2012-0019-DNA | Open Energy Information  

Open Energy Info (EERE)

-DNA -DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0019-DNA DNA at Salt Wells Geothermal Area for Geothermal/Well Field {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Ormat Technologies Inc Geothermal Area Salt Wells Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Observation Wells Comments GDP Well 18-5 Observation Well Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Document Type GPD

178

DOI-BLM-NV-063-EA08-091 | Open Energy Information  

Open Energy Info (EERE)

-EA08-091 -EA08-091 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-063-EA08-091 EA at Buffalo Valley Hot Springs Geothermal Area for Geothermal/Power Plant Jersey Valley and Buffalo Valley Geothermal Development Projects General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Ormat Technologies Inc Consultant Environmental Management Associates; Great Basin Ecology; Cogstone Resource Management; Kautz Environmental Consultants Geothermal Area Buffalo Valley Hot Springs Geothermal Area Project Location Nevada Project Phase Geothermal/Power Plant Techniques Production Wells Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Battle Mountain

179

DOI-BLM-NV-CO1000-2010-0009-CX | Open Energy Information  

Open Energy Info (EERE)

10-0009-CX 10-0009-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-CO1000-2010-0009-CX CX at Dixie Meadows Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Terra-Gen Power LLC Geothermal Area Dixie Meadows Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Electromagnetic Techniques Time Frame (days) Application Time 209 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 6/30/2009

180

DOI-BLM-NV-C010-2013-0023-DNA | Open Energy Information  

Open Energy Info (EERE)

3-0023-DNA 3-0023-DNA DNA at Dead Horse Wells Geothermal Area for Geothermal/Well Field {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Ormat Technologies Inc Geothermal Area Dead Horse Wells Geothermal Area Project Location California Project Phase Geothermal/Well Field Techniques Observation Wells Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Document Type GPD Decision Document Date 1/31/2013 Relevant Numbers Lead Agency Doc Number DOI-BLM-NV-C010-2013-0023-DNA Serial Number NVN-083929 Lease Numbers

Note: This page contains sample records for the topic "wy nv ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

DOI-BLM-NV-C010-2012--044-DNA | Open Energy Information  

Open Energy Info (EERE)

-044-DNA -044-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012--044-DNA DNA at {{{GeothermalArea}}} for Geothermal/Power Plant, Ormatt Nevada Sundry Notice -Geotechnical Work General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Ormatt Nevada, Inc Geothermal Area {{{GeothermalArea}}}"{{{GeothermalArea}}}" cannot be used as a page name in this wiki. Project Location Project Phase Geothermal/Power Plant Techniques Drilling Methods Comments Sundry Notice to drill 3 boreholes to evaluate engineering characteristics of potential power plant location Time Frame (days) Participating Agencies Lead Agency Nevada Funding Agency none provided Managing District Office Carson City

182

DOI-BLM-NV-W010-2010-0041-CX | Open Energy Information  

Open Energy Info (EERE)

W010-2010-0041-CX W010-2010-0041-CX CX at Brady Hot Springs Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Stephen D. Muir Geothermal Area Brady Hot Springs Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Seismic Techniques Time Frame (days) Application Time 115 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office Humboldt River Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 4/2/2010 Application Document Type POO Decision Document Date 7/26/2010 Relevant Numbers Lead Agency Doc Number DOI-BLM-NV-W010-2010-0041-CX

183

DOI-BLM-NV-C010-2012-0073-DNA | Open Energy Information  

Open Energy Info (EERE)

2-0073-DNA 2-0073-DNA DNA at Tungsten Mountain Geothermal Area for Geothermal/Well Field Ormat Nevada Inc. Geothermal Drilling Permit 24-23 General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Ormat Technologies Inc Geothermal Area Tungsten Mountain Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Observation Wells Comments Geothermal Drilling Permit 24-23 Observation Well Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Decision Document Date 9/26/2012 Relevant Numbers Lead Agency Doc Number DOI-BLM-NV-C010-2012-0073-DNA

184

DOI-BLM-NV-C010-2012-0005-DNA | Open Energy Information  

Open Energy Info (EERE)

05-DNA 05-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0005-DNA DNA at McCoy Geothermal Area for Geothermal/Well Field {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Magma Energy Geothermal Area McCoy Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Observation Wells Comments GDP Well # 62-8 and 17-20 Time Frame (days) Application Time 1 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 2011/10/18

185

DOI-BLM-NV-B020-2012-0214-EA | Open Energy Information  

Open Energy Info (EERE)

2-0214-EA 2-0214-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-B020-2012-0214-EA EA at Silver Peak Geothermal Area for Geothermal/Exploration Silver Peak Area Geothermal Exploration Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Rockwood Lithium Inc Consultant Environmental Management Associates, Inc. Geothermal Area Silver Peak Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Drilling Techniques, Well Testing Techniques Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Battle Mountain Managing Field Office BLM Tonopah Field Office Funding Agencies none provided

186

GRR/Section 4-NV-b - Temporary Use of Ground Water for Exploration | Open  

Open Energy Info (EERE)

b - Temporary Use of Ground Water for Exploration b - Temporary Use of Ground Water for Exploration < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-NV-b - Temporary Use of Ground Water for Exploration 04NVBTemporaryUseOfGroundWaterForExploration.pdf Click to View Fullscreen Contact Agencies Nevada Division of Water Resources Regulations & Policies NAC 534.444 Waiver to use water to explore for oil, gas or geothermal resources Triggers None specified Click "Edit With Form" above to add content 04NVBTemporaryUseOfGroundWaterForExploration.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Nevada Division of Water Resources (NDWR) may grant a waiver of the

187

DOI-BLM-NV-W010-2010-0004-EA | Open Energy Information  

Open Energy Info (EERE)

-EA -EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W010-2010-0004-EA EA at New York Canyon Geothermal Area for Geothermal/Exploration New York Canyon Geothermal Exploration Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Terra-Gen Power LLC Consultant CH2M Hill Ltd Geothermal Area New York Canyon Geothermal Area Project Location Lovelock, Nevada Project Phase Geothermal/Exploration Techniques Exploration Drilling, Well Testing Techniques Time Frame (days) Application Time 326 NEPA Process Time 354 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office Humboldt River Funding Agencies none provided

188

DOI-BLM-NV-C010-2012-0028-DNA | Open Energy Information  

Open Energy Info (EERE)

C010-2012-0028-DNA C010-2012-0028-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0028-DNA DNA at Dead Horse Wells Geothermal Area for Geothermal/Well Field {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Ormat Technologies Inc Geothermal Area Dead Horse Wells Geothermal Area Project Location California Project Phase Geothermal/Well Field Techniques Flow Test, Injectivity Test Comments Sundry Notice: Flow Test Well 85-11 and simultaneously Inject Test Well 68-1 and 24A-6 Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided

189

DOI-BLM-NV-C010-2012-0020-DNA | Open Energy Information  

Open Energy Info (EERE)

-DNA -DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0020-DNA DNA at Salt Wells Geothermal Area for Geothermal/Well Field {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Ormat Technologies Inc Geothermal Area Salt Wells Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Observation Wells Comments Geothermal Drilling Permit 11A-32 Observation Well Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Decision Document Date 1/27/2012

190

NV Energy (Northern Nevada) - SureBet Business Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northern Nevada) - SureBet Business Energy Efficiency Northern Nevada) - SureBet Business Energy Efficiency Rebate Program NV Energy (Northern Nevada) - SureBet Business Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Installer/Contractor Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heating Appliances & Electronics Commercial Lighting Lighting Manufacturing Windows, Doors, & Skylights Program Info State Nevada Program Type Utility Rebate Program Rebate Amount '''Existing Facilities''' T-8 Lamps: $2 - $7/lamp New T8/T5 Fixture: $0.30/watt reduced T-8/T-5 High Bay Replacement for HID: $0.30/watt reduced

191

DOI-BLM-NV-C010-2011-0514-EA | Open Energy Information  

Open Energy Info (EERE)

-EA -EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2011-0514-EA EA at McCoy Geothermal Area for Geothermal/Well Field McCoy II Geothermal Exploration Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Magma Energy Geothermal Area McCoy Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Time Frame (days) NEPA Process Time 560 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Document Type ROW Scoping Initiated Date 2010/04/06

192

DOI-BLM-NV-W010-2011-0001-EA | Open Energy Information  

Open Energy Info (EERE)

10-2011-0001-EA 10-2011-0001-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W010-2011-0001-EA EA at Grass Valley Geothermal Area for Geothermal/Exploration, Geothermal/Well Field Leach Hot Springs Geothermal Exploration Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Ormat Technologies Inc Consultant JBR Environmental Consultants, Inc. Geothermal Area Grass Valley Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration, Geothermal/Well Field Techniques Development Drilling, Exploration Drilling, Well Testing Techniques Time Frame (days) Application Time 345 NEPA Process Time 274 Participating Agencies Lead Agency BLM Funding Agency none provided

193

DOI-BLM-NV-C010-2011-0527-CX | Open Energy Information  

Open Energy Info (EERE)

27-CX 27-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2011-0527-CX CX at Dixie Valley Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant AltaRock Energy Inc Geothermal Area Dixie Valley Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Passive Seismic Techniques Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Decision Document Date 6/6/2011 Relevant Numbers Lead Agency

194

DOI-BLM-NV-W030-2012-0020-CX | Open Energy Information  

Open Energy Info (EERE)

20-CX 20-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W030-2012-0020-CX CX at Pinto Hot Springs Geothermal Area for Geothermal/Exploration, Pinto Hot Springs Geothermal Gradient Well Drilling General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Nevada Bureau of Mines and Geology Geothermal Area Pinto Hot Springs Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Thermal Gradient Holes Time Frame (days) Application Time 128 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office BLM Black Rock Field Office Funding Agencies none provided Surface Manager none provided

195

DOI-BLM-NV-B020-2011-0017-CX | Open Energy Information  

Open Energy Info (EERE)

1-0017-CX 1-0017-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-B020-2011-0017-CX CX at Silver Peak Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant CHB Metal Foote Corporation Geothermal Area Silver Peak Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Time Frame (days) Application Time 49 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Battle Mountain Managing Field Office BLM Tonopah Field Office Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 10/22/2010 Decision Document Date 12/10/2010

196

DOI-BLM-NV-W010-2012-0005-EA | Open Energy Information  

Open Energy Info (EERE)

2-0005-EA 2-0005-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W010-2012-0005-EA EA at New York Canyon Geothermal Area for Geothermal/Power Plant, Geothermal/Transmission, Geothermal/Well Field New York Canyon Geothermal Utilization and Interconnect Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Terra-Gen Power LLC Consultant EMPSi Geothermal Area New York Canyon Geothermal Area Project Location Lovelock, Nevada Project Phase Geothermal/Power Plant, Geothermal/Transmission, Geothermal/Well Field Techniques Development Drilling, Downhole Techniques Time Frame (days) Application Time 735 NEPA Process Time 509 Participating Agencies Lead Agency BLM

197

DOI-BLM-NV-C010-2010-0008-EA | Open Energy Information  

Open Energy Info (EERE)

C010-2010-0008-EA C010-2010-0008-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2010-0008-EA EA at Soda Lake Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Magma Energy Consultant JBR Environmental Consultants, Inc. Geothermal Area Soda Lake Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Downhole Techniques, Drilling Techniques, Exploration Drilling, Well Testing Techniques Time Frame (days) Application Time 292 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided

198

DOI-BLM-NV-C010-2010-0008-CX | Open Energy Information  

Open Energy Info (EERE)

0-0008-CX 0-0008-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2010-0008-CX CX at Dixie Meadows Geothermal Area for Geothermal/Exploration Dixie Meadows Seismic Survey General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Terra-Gen Power LLC Geothermal Area Dixie Meadows Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Electromagnetic Techniques Time Frame (days) Application Time 209 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 6/30/2009

199

DOI-BLM-NV-C010-2013-0007-DNA | Open Energy Information  

Open Energy Info (EERE)

07-DNA 07-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2013-0007-DNA DNA at Dead Horse Wells Geothermal Area for Geothermal/Well Field {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Ormat Technologies Inc Geothermal Area Dead Horse Wells Geothermal Area Project Location California Project Phase Geothermal/Well Field Techniques Observation Wells Comments Geothermal Drilling Permit Well 38-12 Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates

200

DOI-BLM-NV-W010-2012-0057-EA | Open Energy Information  

Open Energy Info (EERE)

57-EA 57-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W010-2012-0057-EA EA at Brady Hot Springs Geothermal Area for Geothermal/Well Field Brady Hot Springs Well 15-12 Hydro-Stimulation General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Brady Power Partners Geothermal Area Brady Hot Springs Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Downhole Techniques Time Frame (days) Application Time 378 Participating Agencies Lead Agency BLM Funding Agency DOE Managing District Office Winnemucca Managing Field Office Humboldt River Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 1/5/2012

Note: This page contains sample records for the topic "wy nv ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

DOE/NV-441 Nevada Environmental Restoration Project Rulison Drilling Effluent  

Office of Legacy Management (LM)

Ru\-- 7-2-4@ Ru\-- 7-2-4@ DOE/NV-441 Nevada Environmental Restoration Project Rulison Drilling Effluent Pond Site Long-Term Groundwater Monitoring Plan July 1996 Environmental Restoration U.S. Department of Energy This report has been reproduced from the best available copy. Available in paper copy and microfiche. Number of pages in this report: 5 1 DOE and DOE contractors cari obtain copies of this report from: Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 3783 1. (61 5) 576-8401. This report is publicly available from the Department of Commerce, National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22 16 1. (703) 487-4650. RULISON DRILLING EFFLUENT POND SITE LONG-TERM GROUNDWATER MONITORING PLAN DOE Nevada Operations Office

202

DOI-BLM-NV-C010-2012-0048-DNA | Open Energy Information  

Open Energy Info (EERE)

48-DNA 48-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0048-DNA DNA at Salt Wells Geothermal Area for Geothermal/Well Field, Enell Salt Wells LLC Geothermal Drilling Permits 44-35, 61-2, 68-35, and 16-36 General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Enel Salt Wells LLC Geothermal Area Salt Wells Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Observation Wells Comments Geothermal Drilling Permits 44-35, 61-2, 68-35, and 16-36 Observation Wells Time Frame (days) Participating Agencies Lead Agency Nevada Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater

203

DOI-BLM-NV-W010-2010-0040-CX | Open Energy Information  

Open Energy Info (EERE)

W010-2010-0040-CX W010-2010-0040-CX CX at {{{GeothermalArea}}} for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Presco Energy LLC Geothermal Area {{{GeothermalArea}}}"{{{GeothermalArea}}}" cannot be used as a page name in this wiki. Project Location Project Phase Geothermal/Exploration Techniques Reflection Survey Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office Humboldt River Funding Agencies none provided Surface Manager BLM, BOR Mineral Manager BLM, BOR Selected Dates Application Date 1/25/2010 Relevant Numbers Lead Agency Doc Number DOI-BLM-NV-W030-2010-???-CX Serial Number NVN-088196

204

DOI-BLM-NV-0063-EA06-100 | Open Energy Information  

Open Energy Info (EERE)

0063-EA06-100 0063-EA06-100 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-0063-EA06-100 EA at {{{GeothermalArea}}} for Geothermal/Exploration Jersey Valley Geothermal Exploration Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Ormat Technologies Inc Geothermal Area {{{GeothermalArea}}}"{{{GeothermalArea}}}" cannot be used as a page name in this wiki. Project Location Project Phase Geothermal/Exploration Techniques Drilling Techniques, Well Testing Techniques Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office Humboldt River Funding Agencies none provided

205

DOI-BLM-NV-C010-2012-0050-EA | Open Energy Information  

Open Energy Info (EERE)

EA EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0050-EA EA at Dead Horse Wells Geothermal Area for Geothermal/Well Field, Geothermal/Power Plant Wild Rose Geothermal Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Ormat Technologies Inc Consultant EMPSi Geothermal Area Dead Horse Wells Geothermal Area Project Location California Project Phase Geothermal/Well Field, Geothermal/Power Plant Techniques Development Drilling, Drilling Techniques Time Frame (days) Application Time 245 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided

206

DOI-BLM-NV-CO10-2011-0501-EA | Open Energy Information  

Open Energy Info (EERE)

CO10-2011-0501-EA CO10-2011-0501-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-CO10-2011-0501-EA EA at Patua Geothermal Area for Geothermal/Well Field Gradient Resources, Inc. Patua Geothermal Project Phase II General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Gradient Resources Geothermal Area Patua Geothermal Area Project Location Fernley, Nevada Project Phase Geothermal/Well Field Techniques Production Wells, Thermal Gradient Holes Time Frame (days) NEPA Process Time 85 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM, BOR

207

DOI-BLM-NV-E030-2011-0017-CX | Open Energy Information  

Open Energy Info (EERE)

E030-2011-0017-CX E030-2011-0017-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-E030-2011-0017-CX CX at Abraham Hot Springs Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant USGS Geothermal Area Abraham Hot Springs Geothermal Area Project Location Utah Project Phase Geothermal/Exploration Techniques Time Frame (days) Application Time 134 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM Elko District Office Managing Field Office none provided Funding Agencies none provided Surface Manager BLM Mineral Manager none provided Selected Dates Application Date 2/24/2011

208

DOI-BLM-NV-B020-2010-????-CX | Open Energy Information  

Open Energy Info (EERE)

10-????-CX 10-????-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-B020-2010-????-CX CX at Abraham Hot Springs Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Ormat Technologies Inc Geothermal Area Abraham Hot Springs Geothermal Area Project Location Utah Project Phase Geothermal/Exploration Techniques Thermal Gradient Holes Time Frame (days) Application Time 36 Participating Agencies Lead Agency BLM Funding Agency DOE Managing District Office Battle Mountain Managing Field Office BLM Mount Lewis Field Office Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 12/20/2010

209

GRR/Section 18-NV-a - Underground Storage Tank | Open Energy Information  

Open Energy Info (EERE)

a - Underground Storage Tank a - Underground Storage Tank < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-NV-a - Underground Storage Tank 18NVAUndergroundStorageTank.pdf Click to View Fullscreen Contact Agencies Nevada Division of Environmental Protection Regulations & Policies Nevada Revised Statutes (NRS) Nevada Administrative Code (NAC) Triggers None specified Click "Edit With Form" above to add content 18NVAUndergroundStorageTank.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Nevada Division of Environmental Protection (NDEP) administers the Underground Storage Tank (UST) Program for the State of Nevada.

210

DOI-BLM-NV-C010-2011-0004-CX | Open Energy Information  

Open Energy Info (EERE)

CX CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2011-0004-CX CX at Dixie Valley Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant AltaRock Energy Inc Geothermal Area Dixie Valley Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Seismic Techniques Time Frame (days) Application Time 77 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager none provided Selected Dates Application Date 11/4/2010 Decision Document Date 1/20/2011

211

GRR/Section 18-NV-b - State RCRA Process | Open Energy Information  

Open Energy Info (EERE)

b - State RCRA Process b - State RCRA Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-NV-b - State RCRA Process 18NVBStateRCRAProcess.pdf Click to View Fullscreen Contact Agencies Nevada Division of Environmental Protection Regulations & Policies Nevada Revised Statutes (NRS) Nevada Administrative Code (NAC) Triggers None specified Click "Edit With Form" above to add content 18NVBStateRCRAProcess.pdf 18NVBStateRCRAProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Within the Nevada Division of Environmental Protection in Nevada, the Bureau of Waste Management (BWM) operates a permitting and compliance

212

DOI-BLM-NV-C010-2013-0022-DNA | Open Energy Information  

Open Energy Info (EERE)

22-DNA 22-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2013-0022-DNA DNA at Dixie Meadows Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Ormat Technologies Inc Geothermal Area Dixie Meadows Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Thermal Gradient Holes Comments Core hole/TGH Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Document Type NOI

213

GRR/Section 4-NV-c - Monitoring Well Waiver | Open Energy Information  

Open Energy Info (EERE)

c - Monitoring Well Waiver c - Monitoring Well Waiver < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-NV-c - Monitoring Well Waiver 04NVCMonitoringWellWaiver (1).pdf Click to View Fullscreen Contact Agencies Nevada Division of Water Resources Regulations & Policies NAC 534.148 Monitoring Well defined NAC 534.441 Waiver to drill monitoring well Triggers None specified Click "Edit With Form" above to add content 04NVCMonitoringWellWaiver (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Nevada Division of Water Resources (NDWR) may grant a waiver of the general drilling requirements for good cause shown. One common form of

214

DOI-BLM-NV-W010-2009-0018-CX | Open Energy Information  

Open Energy Info (EERE)

-0018-CX -0018-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W010-2009-0018-CX CX at Abraham Hot Springs Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Gradient Resources Geothermal Area Abraham Hot Springs Geothermal Area Project Location Utah Project Phase Geothermal/Exploration Techniques Geophysical Methods Time Frame (days) Application Time 7 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office Humboldt River Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 2/19/2009

215

DOI-BLM-NV-C010-2011-0504-CX | Open Energy Information  

Open Energy Info (EERE)

04-CX 04-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2011-0504-CX CX at Patua Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Gradient Resources Geothermal Area Patua Geothermal Area Project Location Fernley, Nevada Project Phase Geothermal/Exploration Techniques Time Frame (days) Application Time 32 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City, Winnemucca Managing Field Office none provided Funding Agencies none provided Surface Manager BOR Mineral Manager none provided Selected Dates Application Date 4/22/2011 Decision Document Date 5/24/2011

216

DOI-BLM-NV-E030-20??-????-?? | Open Energy Information  

Open Energy Info (EERE)

0-20??-????-?? 0-20??-????-?? Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-E030-20??-????-?? EA at Abraham Hot Springs Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Standard Steam Trust LLC Geothermal Area Abraham Hot Springs Geothermal Area Project Location Utah Project Phase Geothermal/Exploration Techniques Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM Elko District Office Managing Field Office none provided Funding Agencies none provided Surface Manager none provided Mineral Manager none provided Selected Dates Relevant Numbers Lead Agency

217

DOI-BLM-NV-C010-2011-0014-CX | Open Energy Information  

Open Energy Info (EERE)

4-CX 4-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2011-0014-CX CX at Patua Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Gradient Resources Geothermal Area Patua Geothermal Area Project Location Fernley, Nevada Project Phase Geothermal/Exploration Techniques Reflection Survey Time Frame (days) Application Time 8 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BOR Mineral Manager none provided Selected Dates Application Date 1/5/2011 Decision Document Date 1/13/2011

218

DOI-BLM-NV-C010-2011-0019-CX | Open Energy Information  

Open Energy Info (EERE)

9-CX 9-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2011-0019-CX CX at Gabbs Valley Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Geoglobal US Gabbs LLC Geothermal Area Gabbs Valley Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Time Frame (days) Application Time 0 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager none provided Selected Dates Application Date 2/17/2011 Decision Document Date 2/17/2011

219

DOI-BLM-NV-B010-2011-0015-EA | Open Energy Information  

Open Energy Info (EERE)

-2011-0015-EA -2011-0015-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-B010-2011-0015-EA EA at McGuiness Hills Geothermal Area for Geothermal/Power Plant McGinness Hills Geothermal Development Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Ormat Technologies Inc Consultant Great Basin Ecology, Inc.; JBR Environmental Consultants; NAVCON; WCRM, Inc. Geothermal Area McGuiness Hills Geothermal Area Project Location Nevada Project Phase Geothermal/Power Plant Techniques Drilling Techniques, Production Wells, Well Testing Techniques Comments McGinnis Hills Geothermal Area, not on Master list of geothermal areas - no adjacent areas are appropriate. Time Frame (days)

220

DOI-BLM-NV-W030-2010-0021-CX | Open Energy Information  

Open Energy Info (EERE)

30-2010-0021-CX 30-2010-0021-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W030-2010-0021-CX CX at San Emidio Desert Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant US Geothermal Inc Geothermal Area San Emidio Desert Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Seismic Techniques Time Frame (days) Application Time 132 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office BLM Black Rock Field Office Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 4/23/2010

Note: This page contains sample records for the topic "wy nv ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DOI-BLM-NV-W030-2011-0007-CX | Open Energy Information  

Open Energy Info (EERE)

7-CX 7-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W030-2011-0007-CX CX at San Emidio Desert Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant US Geothermal Inc Geothermal Area San Emidio Desert Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Seismic Techniques Time Frame (days) Application Time 39 Participating Agencies Lead Agency BLM Funding Agency US Department of Energy Office of Energy Efficiency and Renewable Energy (DOE EERE) Managing District Office Winnemucca Managing Field Office BLM Black Rock Field Office Funding Agencies none provided Surface Manager BLM,

222

DOI-BLM-NV-W010-2010-0039-CX | Open Energy Information  

Open Energy Info (EERE)

-0039-CX -0039-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W010-2010-0039-CX CX at Abraham Hot Springs Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Terra-Gen Power LLC Geothermal Area Abraham Hot Springs Geothermal Area Project Location Utah Project Phase Geothermal/Exploration Techniques Micro-Earthquake Time Frame (days) Application Time 64 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office Humboldt River Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 5/12/2010

223

Interatomic Coulombic decay following Ne 1s Auger decay in NeAr  

SciTech Connect

Using momentum-resolved electron-ion multicoincidence spectroscopy, we have investigated interatomic Coulombic decay (ICD) in the heteronuclear NeAr dimer following Ne 1s Auger decay. The measured intensity ratio for the three ICD transitions Ne{sup 2+}(2s{sup -1}2p{sup -1} {sup 1}P)Ar to Ne{sup 2+}(2p{sup -2} {sup 1}S)-Ar{sup +}(3p{sup -1}), Ne{sup 2+}(2s{sup -1}2p{sup -1} {sup 1}P)Ar to Ne{sup 2+}(2p{sup -2} {sup 1}D)-Ar{sup +}(3p{sup -1}), and Ne{sup 2+}(2s{sup -1}2p{sup -1} {sup 3}P)Ar to Ne{sup 2+}(2p{sup -2} {sup 3}P)-Ar{sup +}(3p{sup -1}) reasonably agree with predictions. The kinetic energy release distribution for the fragmentation to Ne{sup 2+}(2p{sup -2} {sup 1}D)-Ar{sup +}(3p{sup -1}) after the ICD transition from singlet Ne{sup 2+}(2s{sup -1}2p{sup -1} {sup 1}P)Ar state, which is a mirror image of the kinetic energy distribution of the emitted ICD electrons, suggests that the corresponding ICD rate is roughly two times lower than predicted by ab initio calculations.

Ouchi, T.; Sakai, K.; Fukuzawa, H.; Ueda, K. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Higuchi, I.; Tamenori, Y. [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198 (Japan); Demekhin, Ph. V.; Chiang, Y.-C.; Stoychev, S. D.; Kuleff, A. I. [Theoretische Chemie, Universitaet Heidelberg, D-69120 Heidelberg (Germany); Mazza, T. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Cimaina and Dipartimento di Fisica, Universita degli Studi di Milano, via Celoria 16, I-20133 Milano (Italy); Schoeffler, M. [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Nagaya, K.; Yao, M. [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Saito, N. [National Institute of Advanced Industrial Science and Technology, National Meteorology Institute of Japan, Tsukuba 305-8568 (Japan)

2011-05-15T23:59:59.000Z

224

RECIPIENT:Nevada State Office of Energy STATE:NV PROJECT Renewable Energy and Energy Efficiency Revolving Loan Program -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada State Office of Energy STATE:NV Nevada State Office of Energy STATE:NV PROJECT Renewable Energy and Energy Efficiency Revolving Loan Program - Enigma Energy TITLE: Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number cm Number DE-FOA"()000052 DE-EE-OOOOO84 GFO-0000084-012 EE84 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 4S1.1A), I have made the foUowmg determination: Cx, EA, EIS APPENDIX AND NUMBER: Description: 85.1 Actions to conserve energy, demonstrate potential energy conservation. and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical assistance to individuals (such as builders. owners, consultants. designers). organizations (such as utilities). and state

225

NE SARE Arbuscular Mycorrhiza Research following canola  

E-Print Network (OSTI)

NE SARE Arbuscular Mycorrhiza Research Corn grown following canola Corn grown following soybeans The planting of canola, a non-mycorrhizal crop, has been shown to reduce arbuscular mycorrhizal fungi following canola. To address this problem, we intercropped canola with oats, a mycorrhizal crop

Kaye, Jason P.

226

Capacity Value of PV and Wind Generation in the NV Energy System  

Science Conference Proceedings (OSTI)

Calculation of photovoltaic (PV) and wind power capacity values is important for estimating additional load that can be served by new PV or wind installations in the electrical power system. It also is the basis for assigning capacity credit payments in systems with markets. Because of variability in solar and wind resources, PV and wind generation contribute to power system resource adequacy differently from conventional generation. Many different approaches to calculating PV and wind generation capacity values have been used by utilities and transmission operators. Using the NV Energy system as a study case, this report applies peak-period capacity factor (PPCF) and effective load carrying capability (ELCC) methods to calculate capacity values for renewable energy sources. We show the connection between the PPCF and ELCC methods in the process of deriving a simplified approach that approximates the ELCC method. This simplified approach does not require generation fleet data and provides the theoretical basis for a quick check on capacity value results of PV and wind generation. The diminishing return of capacity benefit as renewable generation increases is conveniently explained using the simplified capacity value approach.

Lu, Shuai; Diao, Ruisheng; Samaan, Nader A.; Etingov, Pavel V.

2012-09-01T23:59:59.000Z

227

DOE/NV--514 U.S. Department of Energy Nevada Operations Office  

E-Print Network (OSTI)

This document presents a general plan to investigate the nature and extent of COPCs at CAUs composed of collection systems and distribution systems (i.e., leachfields) used to dispose of various effluents. All of the features related to the effluent disposal are collectively referred to as "leachfield systems" in this Work Plan. The purpose of the corrective action investigation(s) is to: . Identify the presence, distribution, and nature of COPCs at leachfield systems including septic tanks, leachfields, and associated wastewater collection systems. . Provide sufficient information and data to develop and evaluate appropriate corrective actions for leachfield CAUs. This Work Plan was developed using the U.S. Environmental Protection Agency (EPA) Data Quality Objectives (DQOs) (EPA, 1994c) process to clearly define the goals for collecting and using environmental data and to design a data collection program that will satisfy these goals. General DQOs applicable to the leachfield CAUs were identified in a scoping meeting between the DOE/NV Leachfield Work Plan Section: 1.0 Revision: 1 Date: 12/28/98 and the NDEP as described in Section3.0. Corrective Action Unit-specific DQO scoping meetings will be held prior to the preparation of the CAIPs. 1.2 Scope The scope of this Work Plan is to provide general information concerning the investigation of the leachfield CAUs, thereby eliminating redundant documentation and streamlining the corrective action investigation process. The scope of the CAIPs is the resolution of problem statement(s) identified in the DQO process. The general problem identified for the leachfield CAUs is that various potentially hazardous or radioactive effluents may have been released at the CAUs and that existing data are insufficient to support the d...

Environmental Restoration Division; Controlled Copy No; Revision No

1998-01-01T23:59:59.000Z

228

NE Blog Archive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blog Archive Blog Archive NE Blog Archive RSS December 31, 2013 GIF Policy Group Meeting in Brussels, Belgium, November 2013 Generation IV International Forum Updates Technology Roadmap and Builds Future Collaboration The Generation IV International Forum (GIF) held its 36th Policy Group (PG) meeting on November 21-22 in Brussels, Belgium. The PG reviewed progress on a number of on-going actions and received progress reports from the GIF Experts Group (EG) and the GIF Senior Industry Advisory Panel (SIAP). December 12, 2013 The basics of small modular reactor technology explained. | Infographic by Sarah Gerrity, Energy Department. Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear

229

Microsoft PowerPoint - NE- Milton  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University University Program (NEUP) Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities Ingrid M. Milton Department of Energy Office of Nuclear Energy July 9, 2009 195725 (2) Overview The Office of Nuclear Energy (NE) is committed to strengthening the Nation's educational programs in nuclear science and engineering. * Established the Nuclear Energy University Program (NEUP). * Award grants and contracts through competitive selection process. NEUP enables universities to maintain and expand their nuclear science curriculum and programs to ensure future availability of technical experts for U.S. nuclear programs. * NEUP is managed by the Center for Advanced Energy Studies (CAES). 2 195725 (3) Nuclear Energy University Program -

230

Mr. Andrew Wallo, III, NE-23  

Office of Legacy Management (LM)

9% L'Enfam Plaza, S, W.. Warhin@on, D.C. 2002ijl74j Tekphow (202) 488ddO 9% L'Enfam Plaza, S, W.. Warhin@on, D.C. 2002ijl74j Tekphow (202) 488ddO 7117-03.87.cdy.'i3 23 September 1967 ~ s ~ Mr. Andrew Wallo, III, NE-23 Oivision of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND IJNIVFRSITIES , The attached elimination reconnnendation was prepar!ad in accordance with your suggestion during our meeting on 22 September! The recommendation includes 26 colleges and universities identified,in Enclosure 4 to Aerospace letter subject: Status of Actions - FUSRAP Site List, dated 27 May 1987; three institutions (Tufts College, University of Virginia, and the University of Washington) currently identified!on ithe FUSRAP list of sites under consideration; and six institutions recently iden-

231

REPLY TO ATTN OF NE-301  

Office of Legacy Management (LM)

N\I&?' d,' g N\I&?' d,' g 4 DATE. fdov 2 5 1980 REPLY TO ATTN OF NE-301 .* - memoraadu SUBJECT Remedial Action for Linde Air Products Plant, Tonawanda, New York TO W. E. Mott, EV In view of the General Counsel's reconsideration of the authority to proceed with remedial action on this site and your determination that remedial action is needed to protect the public health and safety, we will include this site in our program for remedial action. of this memorandum. Oak Ridge is requested to do so by copy I am somewhat surprised at the urgency of remedial action which you implied in your memorandum since your previous memorandum designating this site stated that it has a low priority. The site radiological survey report DOE/EV-005/5 concludes that air and water contamination were below the non-occupational

232

NE Press Releases | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Press Releases Press Releases NE Press Releases RSS December 12, 2013 Energy Department Announces New Investment in Innovative Small Modular Reactor The Energy Department tannounced an award to NuScale Power LLC to support a new project to design, certify and help commercialize innovative small modular reactors in the United States. November 12, 2013 Public Invited to Comment on Draft Environmental Assessment for the Resumption of Transient Testing of Nuclear Fuels and Materials The U.S. Department of Energy invites the public to read and comment on a draft environmental assessment it has prepared for a proposal to resume transient testing of nuclear fuels and materials at either Idaho National Laboratory (INL) or Sandia National Laboratories (SNL). November 4, 2013 Factsheet: Second Meeting of the United States-Japan Bilateral Commission

233

Notices 888 First Street, NE., Washington, DC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11 Federal Register 11 Federal Register / Vol. 76, No. 122 / Friday, June 24, 2011 / Notices 888 First Street, NE., Washington, DC 20426. The filings in the above-referenced proceeding are accessible in the Commission's eLibrary system by clicking on the appropriate link in the above list. They are also available for review in the Commission's Public Reference Room in Washington, DC. There is an eSubscription link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov or call (866) 208-3676 (toll free). For TTY, call (202) 502-8659. Dated: June 20, 2011. Kimberly D. Bose, Secretary. [FR Doc. 2011-15859 Filed 6-23-11; 8:45 am]

234

Notices 888 First Street NE., Washington, DC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

53 Federal Register 53 Federal Register / Vol. 78, No. 56 / Friday, March 22, 2013 / Notices 888 First Street NE., Washington, DC 20426. This filing is accessible on-line at http://www.ferc.gov, using the ''eLibrary'' link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an ''eSubscription'' link on the Web site that enables subscribers to receive email notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please email FERCOnlineSupport@ferc.gov, or call (866) 208-3676 (toll free). For TTY, call (202) 502-8659. Comment Date: 5:00 p.m. Eastern Time on April 2, 2013. Dated: March 15, 2013. Kimberly D. Bose, Secretary. [FR Doc. 2013-06602 Filed 3-21-13; 8:45 am] BILLING CODE 6717-01-P

235

Mr. Andrew Wallo, III, NE-23  

Office of Legacy Management (LM)

suite 7900,955 L%l/onr Plaza, S. W., Washingion, D.C. 20024.?174,, Telephone: (202) 488.~ suite 7900,955 L%l/onr Plaza, S. W., Washingion, D.C. 20024.?174,, Telephone: (202) 488.~ Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 7117~03.87.dy.43 23 September 1987 I j / Dear Mr. Wallo: I ELIMINATION RECOMMENDATION -- COLLEGES AND UN&ITIES I . The attached elimination recommendation was prepared in accordance with your suggestion during our meeting on 22 September!. The recommend includes 26 colleges and universities identified,in Enclosure 4 to Aerospace letter subject: Status of Actions 27 May 1987; three institutions (Tufts and the University of Washington) currently list of sites under consideration; and six institutions tified during a search of Hanford records.

236

M r. Andrew Wallo, III, NE-23  

Office of Legacy Management (LM)

300.955 L*Enfom Plaza, S. Iv.. Washrhington. D.C. 200242174, Tekphonc (202) 300.955 L*Enfom Plaza, S. Iv.. Washrhington. D.C. 200242174, Tekphonc (202) 7117-03.87.cdy.43 23 September 1987 M r. Andrew Wallo, III, NE-23 Division of Facility & Site Deconnnissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear M r. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES The attached elimination recommendation was prepared in accordi with your suggestion during our meeting on 22 September. The reconu includes 26 colleges and universities identified.in Enclosure 4 to Aerospace letter subject: Status of Actions - FUSRAP Sites List, da: 27 May 1987; three institutions.(Tufts College, University of Virgil and the University of Washington) currently identified'on the FUSFN list of sites under consideration; and six.institutions recently idI

237

MiniBooNE Oscillation Results 2011  

SciTech Connect

The MiniBooNE neutrino oscillation search experiment at Fermilab has recently updated results from a search for {bar {nu}}{sub {mu}} {yields} {bar {nu}}{sub e} oscillations, using a data sample corresponding to 8.58 x 10{sup 20} protons on target in anti-neutrino mode. This high statistics result represent an increase in statistics of 52% compared to result published in 2010. An excess of 57.7 {+-} 28.5 events is observed in the energy range 200 MeV < E{sub {nu}} < 3000 MeV. The data favor LSND-like {bar {nu}}{sub {mu}} {yields} {bar {nu}}{sub e} oscillations over a background only hypothesis at 91.1% confidence level in the energy range 475 < E{sub {nu}} < 3000 MeV.

Djurcic, Zelimir

2012-01-01T23:59:59.000Z

238

NE-23 List of California Sites NE-23 Hattie Car-well, SAN/NSQA Division  

Office of Legacy Management (LM)

NE-23 NE-23 Hattie Car-well, SAN/NSQA Division Attached for your information is the list of California sites we identified in our search of Manhattdn Engineer District records for the Formerly Utilized Sites Remedial Action Program (FUSRAP). None of the facilities listed qualified"fbr'FUSRAP:'~- The only site in California,that was included in FUSRAP was Gilman Hall on the University of California-Berkeley Campus. All California sites that are in our Surplus Facilities Management Prcgram are under San Francisco Operations and are at the Santa Susana Field Laboratory or the University of California-Davis. If you have questions on any of the sites on the list, please call me at FTS 233-5439. /ct( Andrew Walls III. Desiynation and Certification Manager

239

Version 1.0 Lithium hyper ne splitting  

E-Print Network (OSTI)

Version 1.0 Lithium hyper#12;ne splitting Krzysztof Pachucki #3; Institute of Theoretical Physics approach for the calculation of relativistic m#11; 6 corrections to the lithium ground state hyper#12;ne problem. We will concentrate on lithium as the simplest alkali-metal atom, for which several precise

Pachucki, Krzysztof

240

Traffic Flow Measurement: Experiences with NeTraMet  

Science Conference Proceedings (OSTI)

This memo records experiences in implementing and using the Traffic Flow Measurement Architecture and Meter MIB. It discusses the implementation of NeTraMet (a traffic meter) and NeMaC (a combined manager and meter reader), considers the writing of ...

N. Brownlee

1997-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "wy nv ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Nuclear deformation of {sup 20}Ne from {sup 20}Ne(105 MeV)+{sup 208}Pb scattering  

Science Conference Proceedings (OSTI)

We have measured differential cross section for quasielastic scattering of {sup 20}Ne+{sup 208}Pb at a lab energy of 105 MeV. The data are analyzed by a rotational-model coupled-channels calculation including the 0{sup +} ground state, 2{sup +} and 4{sup +} states of {sup 20}Ne.

Strojek, I.; Czarnacki, W.; Keeley, N. [Department of Nuclear Reaction, The Andrzej Soltan Institute for Nuclear Studies, 00681 Warsaw (Poland); Kisielinski, M.; Piasecki, E.; Rusek, K. [Department of Nuclear Reaction, The Andrzej Soltan Institute for Nuclear Studies, 00681 Warsaw (Poland); Heavy Ion Laboratory, Warsaw University, 02093 Warsaw (Poland); Kliczewski, S.; Siudak, R. [Niewodniczanski Institute of Nuclear Physics PAN, 31342 Cracow (Poland); Kordiasz, A.; Trzcinska, A. [Heavy Ion Laboratory, Warsaw University, 02093 Warsaw (Poland); Koshchiy, E. [V. N. Karazin Kharkiv National University, 61077 Kharkiv (Ukraine); Kowalczyk, M. [Heavy Ion Laboratory, Warsaw University, 02093 Warsaw (Poland); Faculty of Physics, Warsaw University, 00681 Warsaw (Poland); Piorkowska, A.; Stuad, A. [University of Silesia, 40007 Katowice (Poland)

2010-04-26T23:59:59.000Z

242

CA Mr. Andrew Wallo, III, NE-23  

Office of Legacy Management (LM)

?9OQ, 95.5 L'E&nt Plaza, SW.. W.ashin@.m, D.C. 20024.2174, Tekphone: (202) 488AQOO ?9OQ, 95.5 L'E&nt Plaza, SW.. W.ashin@.m, D.C. 20024.2174, Tekphone: (202) 488AQOO 7117-03.B7.cdy.43 23 September 1987 CA Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Oepartment of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES zh/ ! o-01 lM!tl5 ML)!o-05 PI 77!0> The attached elimination recoannendation was prepared in accordance . -1 rlL.0~ with your suggestion during our meeting on 22 September. The recommendation flD.o-02 includes 26 colleges and universities identified~in Enclosure 4 to Aerospace letter subject: Status of Actions - FUSRAP Site List, dated MO.07. 27 May 1987; three institutions (Tufts College, University of Virginia, UCIIOJ and the University of Washington) currently identified on the FUSRAP

243

Mr. Andrew Wallo, III, NE-23  

Office of Legacy Management (LM)

300, 955 L'E~~MI Phm.SW.:. Washin@on. LX. 200242174, T~kphonc(202)48ll. 5 300, 955 L'E~~MI Phm.SW.:. Washin@on. LX. 200242174, T~kphonc(202)48ll. 5 7117-03.87.cdy.43 23 September 1987 cA Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES M/).0-05 pl 0.0% The attached elimination recommendation was prepared in accordance ML.05 with your suggestion during our meeting on 22 September. The recommendation flD.o-02 includes 26 colleges and universities identified.in Enclosure 4 to Aerospace letter subject: Status of Actions - FUSRAP Site List, dated NO.03. 27 May 1987; three institutions (Tufts College, University of Virginia, rJc..of and the University of Washington) currently identified on the FUSRAP

244

Pion inelastic scattering from sup 20 Ne  

SciTech Connect

Angular distributions for {sup 20}Ne({pi}{sup {plus minus}}, {pi}{sup {plus minus}}{prime}) were measured on the Energetic Pion Channel and Spectrometer (EPICS) at the Clinton P. Anderson Meson Physics Facility (LAMPF). Data were taken with both {pi}{sup {plus}} and {pi}{sup {minus}} over an angular range of 12{degree} to 90{degree} for T{sub {pi}}=180 MeV and with {pi}{sup +} from 15{degree} to 90{degree} for T{sub {pi}}=120 MeV. The data were analyzed using both the distorted-wave impulse approximation (DWIA) and the coupled-channels impulse approximation (CCIA) with collective transition densities. In addition, microscopic transition densities were used in the DWIA analysis for states in the lowest rotational bands. The transitions to the 6.73-MeV 0{sup +} and several 1{sup {minus}} states, including the states at 5.79 MeV and 8.71 MeV, were studied using several models for the transition density. Strong evidence for the importance of two-step routes in pion inelastic scattering was seen in several angular distributions, including the 5.79-MeV 1{sup {minus}}, the first three 4{sup +} states, and the 8.78-MeV 6{sup +}. 100 refs., 81 figs., 33 tabs.

Burlein, M. (Pennsylvania Univ., Philadelphia, PA (USA). Dept. of Physics)

1989-12-01T23:59:59.000Z

245

Property:EIA/861/IsoNe | Open Energy Information  

Open Energy Info (EERE)

IsoNe IsoNe Jump to: navigation, search Property Name ISO_NE Property Type Boolean Description Indicates that the organization conducts operations in the New England ISO region [1] References ↑ "EIA Form EIA-861 Final Data File for 2010 - 861 Webfile Layout for 2010.doc" Pages using the property "EIA/861/IsoNe" Showing 25 pages using this property. (previous 25) (next 25) B Bangor Hydro-Electric Co + true + Barton Village, Inc (Utility Company) + true + Bozrah Light & Power Company + true + C Central Maine Power Co + true + Central Vermont Pub Serv Corp + true + CinCap IV, LLC + true + CinCap V LLC + true + Cinergy Capital & Trading, Inc + true + City of Chicopee, Massachusetts (Utility Company) + true + City of Holyoke, Massachusetts (Utility Company) + true +

246

Neutral Current Elastic Interactions in MiniBooNE  

SciTech Connect

Neutral Current Elastic (NCE) interactions in MiniBooNE are discussed. In the neutrino mode MiniBooNE reported: the flux averaged NCE differential cross section as a function of four-momentum transferred squared, an axial mass (M{sub A}) measurement, and a measurement of the strange quark spin content of the nucleon, {Delta}s. In the antineutrino mode we present the background-subtracted data which is compared with the Monte Carlo predictions.

Dharmapalan, Ranjan; /Alabama U.

2011-10-01T23:59:59.000Z

247

RECIPIENT:Desert Research Institute STATE:NV PROJECT Tall Tower Wind Energy Monitoring and Numerical Model Validation in Southern Nevada; NREl Tracking  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Desert Research Institute STATE:NV Desert Research Institute STATE:NV PROJECT Tall Tower Wind Energy Monitoring and Numerical Model Validation in Southern Nevada; NREl Tracking TITLE: No. 11-012 Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number NREl-11-012 G010337 Based on my review of the information concerning the proposed action, as NEPA CompHance Officer (authorized under DOE Order 451.1A), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited to, literature surveys, inventories, audits), data analYSis (including computer modeling), document preparation (such as conceptual deSign or feasibility studies, analytical energy supply and demand studies), and dissemination (including, but not limited to, document mailings, publication, and distribution;

248

Record of Technical Change {number_sign}2 for ''Corrective Action Investigation Plan for Corrective Action Unit 240: Area 25 Vehicle Washdown, Nevada Test Site, Nevada,'' Revision 0, DOE/NV--532  

Science Conference Proceedings (OSTI)

This Record of Technical Change updates the technical informatioin provided in ''Corrective Action Investigation Plan for Corrective Action Unit 240: Area 25 Vehicle Washdown, Nevada Test Site, Nevada,'' Revision 0, DOE/NV--532.

USDOE Nevada Operations Office

2000-03-16T23:59:59.000Z

249

Geobotanical Remote Sensing Applied to Targeting New Geothermal Resource Locations in the U.S. Basin and Range with a Focus on Dixie Meadows, NV  

DOE Green Energy (OSTI)

This paper presents an overview of the work our collaboration is doing to increase the detailed mapped resource base for geothermal exploration in the Western US. We are imaging several large areas in the western US with high resolution airborne hyperspectral and satellite multispectral sensors. We have now entered the phase where the remote sensing techniques and tools we are developing are mature enough to be combined with other geothermal exploration techniques such as aeromagnetic, seismic, well logging and coring data. The imaging sensors and analysis techniques we have developed have the ability to map visible faults, surface effluents, altered minerals, subtle hidden faults. Large regions are being imaged at reasonable costs. The technique of geobotanical remote sensing for geothermal signatures is based on recent successes in mapping hidden faults, high temperature altered mineralization, clays, hot and cold springs and CO2 effluents the Long Valley Caldera and Mammoth Mountain in California. The areas that have been imaged include Mammoth Mountain and the Long Valley Caldera, Dixie Meadows NV, Fish Lake Valley NV, and Brady Hot Springs. Areas that are being imaged in the summer of 2003 are the south moat of the Long Valley Caldera, Mammoth Mountain western Pickles, Nash, Kasameyer, Foxall, Martini, Cocks, Kennedy-Bowdoin, McKnight, Silver, Potts, flanks, Mono Inyo chain north of Mammoth Mountain in CA, and the Humboldt Block in NV. This paper focuses on presenting the overview of the high-resolution airborne hyperspectral image acquisition that was done at Dixie Meadows NV in August 2002. This new imagery is currently being analyzed and combined with other field data by all of the authors on this paper. Results of their work up until the time of the conference will be presented in papers in the remote sensing session.

Pickles, W. L.; Nash, G. D.; Calvin, W. M.; Martini, B. A.; Cocks, P. A.; Kenedy-Bowdoin, T.; Mac Knight, R. B.; Silver, E. A.; Potts, D. C.; Foxall, W.; Kasameyer, P.; Waibel, A. F.

2003-01-01T23:59:59.000Z

250

D:\NE WEB Sites\NE\nerac\nov2001minutes.wpd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 5-6, 2001, DoubleTree Hotel, Arlington, Virginia November 5-6, 2001, DoubleTree Hotel, Arlington, Virginia NERAC members present: John Ahearne Robert Long Joseph Comfort Warren F. Miller, Jr. Michael L. Corradini Benjamin F. Montoya Jose Luis Cortez Sekazi Mtingwa Allen Croff Lura Powell James Duderstadt (Chair) Richard Reba Marvin Fertel Joy Rempe Beverly Hartline John Taylor Andrew Klein Charles E. Till Dale Klein (Monday only) Neil Todreas NERAC members absent: Thomas Cochran Allen Sessoms Maureen S. Crandall Daniel C. Sullivan Steve Fetter C. Bruce Tarter Leslie Hartz Ashok Thadani (ad hoc) J. Bennett Johnston Joan Woodard Linda C. Knight Also present: Robert Card, Under Secretary, USDOE Nancy Carder, NERAC Staff Charles Forsberg, Researcher, Oak Ridge National Laboratory Norton Haberman, Senior Technical Advisor, NE, USDOE

251

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

9 9 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 1999 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 1999 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost and Quality of Fuels for Electric Plants," and Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental

252

C:\ANNUAL\VENTCHAP.V8\NGAla1109.vp  

Gasoline and Diesel Fuel Update (EIA)

Energy Energy Information Administration / Natural Gas Annual 2000 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Note: Commercial prices include natural gas delivered for use as vehicle fuel. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ 17. Average Price of Natural Gas Delivered to U.S. Residential

253

NGA98fin5.vp  

Gasoline and Diesel Fuel Update (EIA)

8 8 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 1998 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 1998 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost and Quality of Fuels for Electric Plants," and Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental

254

C:\ANNUAL\VENTCHAP.V8\NGAla1109.vp  

Gasoline and Diesel Fuel Update (EIA)

2000 2000 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-99.99 10.00-11.99 12.00+ 19. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 2000 (Dollars per Thousand Cubic Feet) Figure 20. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 2000 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost and Quality of Fuels for Electric Plants," and Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural

255

C:\Annual\VENTCHAP.V8\NGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

2002 2002 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," and Form EIA 910, "Monthly Natural Gas Marketer Survey." 17. Average Price of Natural Gas Delivered to U.S. Commercial Consumers, 2002 (Dollars per Thousand Cubic Feet) Figure 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK 16. Average Price of Natural Gas Delivered to U.S. Residential Consumers, 2002 (Dollars per Thousand Cubic Feet) Figure Source: Energy Information Administration

256

Microsoft Word - Figure_18_19.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 0.00-2.49 2.50-4.49 4.50-6.49 6.50-8.49 8.50-10.49 10.50+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK MD 0.00-2.49 2.50-4.49 4.50-6.49 6.50-8.49 8.50-10.49 10.50+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK Figure 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 2004 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Power Consumers, 2004 (Dollars per Thousand Cubic Feet) Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Note: States where the electric power price has been withheld (see Table 23) are included in the $0.00-$2.49 price category.

257

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

49 49 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK MD 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK Figure 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 2003 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Power Consumers, 2003 (Dollars per Thousand Cubic Feet) Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Note: States where the electric power price has been withheld (see Table 23) are included in the $0.00-$1.99 price category.

258

C:\Annual\VENTCHAP.V8\NGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

2 2 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 2002 (Dollars per Thousand Cubic Feet) Figure Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK 19. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 2002 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost

259

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

9 9 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Note: Commercial prices include natural gas delivered for use as vehicle fuel. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 16. Average Price of Natural Gas Delivered to U.S. Residential Consumers, 1999 (Dollars per Thousand Cubic Feet) Figure

260

C:\ANNUAL\VENTCHAP.V8\NGA.VP  

Gasoline and Diesel Fuel Update (EIA)

8 8 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Note: Commercial prices include natural gas delivered for use as vehicle fuel. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 16. Average Price of Natural Gas Delivered to U.S. Residential Consumers, 1997 (Dollars per Thousand Cubic Feet) Figure

Note: This page contains sample records for the topic "wy nv ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

C:\ANNUAL\VENTCHAP.V8\NewNGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

2001 2001 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 28. Average Price of Natural Gas Delivered to U.S. Onsystem Residential Consumers, 2001 (Dollars per Thousand Cubic Feet) Figure 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK Note: Commercial prices include natural gas delivered for use as vehicle fuel. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition."

262

NGA98fin5.vp  

Gasoline and Diesel Fuel Update (EIA)

1998 1998 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Note: Commercial prices include natural gas delivered for use as vehicle fuel. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 16. Average Price of Natural Gas Delivered to U.S. Residential Consumers, 1998 (Dollars per Thousand Cubic Feet) Figure

263

C:\ANNUAL\VENTCHAP.V8\NewNGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

2001 2001 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 30. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 2001 (Dollars per Thousand Cubic Feet) Figure 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK 31. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 2001 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of

264

An Audiomagnetotelluric Survey Over The Chaves Geothermal Field (Ne  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » An Audiomagnetotelluric Survey Over The Chaves Geothermal Field (Ne Portugal) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Audiomagnetotelluric Survey Over The Chaves Geothermal Field (Ne Portugal) Details Activities (0) Areas (0) Regions (0) Abstract: In an attempt to define the resistivity model of the Chaves geothermal field in NE Portugal, a detailed survey with scalar audiomagnetotelluric measurements was performed. The soundings were made in the frequency range from 2300 to 4.1 Hz. Electrical resistivity models were derived from the application of 1-D inversion, 2-D trial and error modeling and 2-D inversion procedures. The resistivities inside the geothermal field are low, reaching not more than 30 Ωm and increasing up to 60-150 Ωm

265

Municipal Energy Agency of NE | Open Energy Information  

Open Energy Info (EERE)

Municipal Energy Agency of NE Municipal Energy Agency of NE Jump to: navigation, search Name Municipal Energy Agency of NE Place Nebraska Utility Id 21352 Utility Location Yes Ownership P NERC Location MRO NERC MRO Yes NERC SPP Yes NERC WECC Yes RTO SPP Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from

266

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

2 2 Regional maps Figure F7. Coal demand regions Figure F7. Coal Demand Regions CT,MA,ME,NH,RI,VT OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP Region Content Region Code NY,PA,NJ VA,NC,SC GA,FL IN,IL,MI,WI Region Content Region Code 14. CU 13. MT 16. PC 15. ZN 12. WS 11. C2 9. AM 5. GF 8. KT 4. S2 7. EN 6. OH 2. YP 1. NE 3. S1 10. C1 KY,TN 8. KT 16. PC AK,HI,WA,OR,CA 10. C1 CT,MA,ME,NH,RI,VT OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP Region Content Region Code NY,PA,NJ VA,NC,SC GA,FL IN,IL,MI,WI Region Content Region Code 14. CU 13. MT

267

U.S. Energy Information Administration | Annual Energy Outlook 2011  

Gasoline and Diesel Fuel Update (EIA)

4 4 Regional maps Figure F7. Coal demand regions Figure F7. Coal Demand Regions CT,MA,ME,NH,RI,VT OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP Region Content Region Code NY,PA,NJ VA,NC,SC GA,FL IN,IL,MI,WI Region Content Region Code 14. CU 13. MT 16. PC 15. ZN 12. WS 11. C2 9. AM 5. GF 8. KT 4. S2 7. EN 6. OH 2. YP 1. NE 3. S1 10. C1 KY,TN 8. KT 16. PC AK,HI,WA,OR,CA 10. C1 CT,MA,ME,NH,RI,VT OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP Region Content Region Code NY,PA,NJ VA,NC,SC GA,FL IN,IL,MI,WI Region Content Region Code 14. CU 13. MT

268

19Ne levels studied with the 18F(d,n)19Ne*(18F+p) reaction  

Science Conference Proceedings (OSTI)

A good understanding of the level structure of 19Ne around the proton threshold is critical to estimating the destruction of long-lived 18F in novae. Here we report the properties of levels in 19Ne in the excitation energy range of 6.9 Ex 8.4 MeV studied via the proton-transfer 18F(d, n)Ne reaction at the Holifield Radioactive Ion Beam Facility. The populated 19Ne levels decay by breakup into p + 18F and + 15O particles. The results presented in this manuscript are those of levels that are simultaneously observed from the breakup into both channels. An s-wave state is observed at 1468 keV above the proton threshold, which is a potential candidate for a predicted broad J = 1/2+ state. The proton and partial widths are deduced to be p = 228 50 keV and = 130 30 keV for this state.

Adekola, A. S. [Ohio University, Athens; Brune, C. R. [Ohio University; Bardayan, Daniel W [ORNL; Blackmon, Jeffery C [Louisiana State University; Chae, K. Y. [University of Tennessee, Knoxville (UTK); Cizewski, J. A. [Rutgers University; Jones, K. L. [University of Tennessee, Knoxville (UTK); Kozub, R. L. [Tennessee Technological University; Massey, T. [Ohio University; Nesaraja, Caroline D [ORNL; Pain, Steven D [ORNL; ShrinerJr., J. F. [Tennessee Technological University; Smith, Michael Scott [ORNL; Thomas, J. S. [Rutgers University

2012-01-01T23:59:59.000Z

269

MiniBooNE "Windows on the Universe"  

Science Conference Proceedings (OSTI)

Progress in the last few decades has left neutrino physics with several vexing issues. Among them are the following questions: (1) Why are lepton mixing angles so different from those in the quark sector? (2) What is the most probable range of the reactor mixing angle? (3) Is the atmospheric mixing angle maximal? (4) What is the number of fermion generations? These are some of the issues that neutrino science hopes to study; this article will explore these questions as part of a more general scientific landscape, and will discuss the part MiniBooNE might play in this exploration. We discuss the current state of measurements taken by MiniBooNE, and emphasize the uniqueness of neutrino oscillations as an important probe into the 'Windows on the Universe.'

Stefanski, Ray; /Fermilab

2010-12-09T23:59:59.000Z

270

File:EIA-Williston-NE-Gas.pdf | Open Energy Information  

Open Energy Info (EERE)

Williston-NE-Gas.pdf Williston-NE-Gas.pdf Jump to: navigation, search File File history File usage Williston Basin, Northeast Part By 2001 Gas Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 5.95 MB, MIME type: application/pdf) Description Williston Basin, Northeast Part By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Montana, North Dakota, South Dakota File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

271

Overview of DOE-NE Proliferation and Terrorism Risk Assessment  

SciTech Connect

Research objectives are: (1) Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; (2) Develop improvements in the affordability of new reactors to enable nuclear energy; (3) Develop Sustainable Nuclear Fuel Cycles; and (4) Understand and minimize the risks of nuclear proliferation and terrorism. The goal is to enable the use of risk information to inform NE R&D program planning. The PTRA program supports DOE-NE's goal of using risk information to inform R&D program planning. The FY12 PTRA program is focused on terrorism risk. The program includes a mix of innovative methods that support the general practice of risk assessments, and selected applications.

Sadasivan, Pratap [Los Alamos National Laboratory

2012-08-24T23:59:59.000Z

272

Neutrino and Antineutrino Cross sections at MiniBooNE  

SciTech Connect

The MiniBooNE experiment has reported a number of high statistics neutrino and anti-neutrino cross sections -among which are the charged current quasi-elastic (CCQE) and neutral current elastic (NCE) neutrino scattering on mineral oil (CH2). Recently a study of the neutrino contamination of the anti-neutrino beam has concluded and the analysis of the anti-neutrino CCQE and NCE scattering is ongoing.

Dharmapalan, Ranjan; /Alabama U.

2011-10-01T23:59:59.000Z

273

Ne IX emission-line ratios in solar active regions  

Science Conference Proceedings (OSTI)

Emission-line ratios for Ne IX are derived and compared with observational data for solar active regions obtained with the SOLEX B spectrometer on the P78-1 satellite. Excellent agreement is obtained, providing support for the atomic data adopted in the calculations and resolving discrepancies between existing theoretical calculations and solar data. The calculated R-ratio for the low-density limit agrees well with the SOLEX observations. 47 references.

Keenan, F.P.; Mccann, S.M.; Kingston, A.E.; Mckenzie, D.L.

1987-07-01T23:59:59.000Z

274

Vanishing N=20 Shell Gap: Study of Excited States in {sup 27,28}Ne  

Science Conference Proceedings (OSTI)

This Letter reports on the {sup 1}H({sup 28}Ne,{sup 28}Ne) and {sup 1}H({sup 28}Ne,{sup 27}Ne) reactions studied at intermediate energy using a liquid hydrogen target. From the cross section populating the first 2{sup +} excited state of {sup 28}Ne, and using the previously determined B(E2) value, the neutron quadrupole transition matrix element has been calculated to be M{sub n}=13.8{+-}3.7 fm{sup 2}. In the neutron knockout reaction, two low-lying excited states were populated in {sup 27}Ne. Only one of them can be interpreted by the sd shell model while the additional state may intrude from the fp shell. These experimental observations are consistent with the presence of fp shell configurations at low excitation energy in {sup 27,28}Ne nuclei caused by a vanishing N=20 shell gap at Z=10.

Dombradi, Zs.; Fueloep, Zs. [Institute of Nuclear Research of the Hungarian Academy of Sciences, P.O. Box 51, Debrecen, H-4001 (Hungary); Elekes, Z. [Institute of Nuclear Research of the Hungarian Academy of Sciences, P.O. Box 51, Debrecen, H-4001 (Hungary); Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Saito, A.; Baba, H.; Demichi, K.; Gomi, T.; Hasegawa, H.; Kanno, S.; Kawai, S.; Kurita, K.; Matsuyama, Y.; Sakai, H.K.; Takeshita, E.; Togano, Y.; Yamada, K. [Rikkyo University, 3 Nishi-Ikebukuro, Toshima, Tokyo 171 (Japan); Aoi, N.; Ishihara, M.; Kishida, T.; Kubo, T. [Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)] (and others)

2006-05-12T23:59:59.000Z

275

2013 Annual DOE-NE Materials Research Coordination Meeting | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 Annual DOE-NE Materials Research Coordination Meeting 2013 Annual DOE-NE Materials Research Coordination Meeting 2013 Annual DOE-NE Materials Research Coordination Meeting The Reactor Materials element of the Nuclear Energy Enabling Technologies (NEET) program conducted its FY 2013 coordination meeting as a series of four web-conferences to act as a forum for the nuclear materials research community. The purpose of this meeting was to report on current and planned nuclear materials research, identify new areas of collaboration and promote greater coordination among the various Office of Nuclear Energy (NE) programs. Currently, materials research is performed in several NE programs, including NE Advanced Modeling and Simulation (NEAMS), Fuel Cycle Research and Development (FCRD), Advanced Reactor Technologies

276

2013 Annual DOE-NE Materials Research Coordination Meeting | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 Annual DOE-NE Materials Research Coordination Meeting 2013 Annual DOE-NE Materials Research Coordination Meeting 2013 Annual DOE-NE Materials Research Coordination Meeting The Reactor Materials element of the Nuclear Energy Enabling Technologies (NEET) program conducted its FY 2013 coordination meeting as a series of four web-conferences to act as a forum for the nuclear materials research community. The purpose of this meeting was to report on current and planned nuclear materials research, identify new areas of collaboration and promote greater coordination among the various Office of Nuclear Energy (NE) programs. Currently, materials research is performed in several NE programs, including NE Advanced Modeling and Simulation (NEAMS), Fuel Cycle Research and Development (FCRD), Advanced Reactor Technologies

277

R-Process in Collapsing O/Ne/Mg Cores  

E-Print Network (OSTI)

Several circumstantial arguments point to the formation of the third r-process peak at A about 190, near platinum, in stars of mass of about 8-10 solar masses: 1) The delayed production of europium with respect to iron imposes a time scale that restricts the progenitor stars to less than about 10 solar masses; 2) the r-process demands a dominant robust mechanism at least for barium and above, since the relative abundance pattern of those r-process elements in low-metallicity stars is consistent with the solar pattern; 3) stars of about 8-10 solar masses produce nearly identical degenerate O/Ne/Mg cores that collapse due to electron capture; and 4) the resulting low-mass cores may produce both an r-process in a prompt explosion and a subsequent r-process in a neutrino driven wind. The prompt explosion of an O/Ne/Mg core yields low entropy and low electron fraction, and hence may produce a reasonable r-process peak at A about 190 as well as all of the r-process elements with Z greater than 56. The possible diff...

Wheeler, J C; Hillebrandt, W; Cowan, John J.; Hillebrandt, Wolfgang

1997-01-01T23:59:59.000Z

278

R-Process in Collapsing O/Ne/Mg Cores  

E-Print Network (OSTI)

Several circumstantial arguments point to the formation of the third r-process peak at A about 190, near platinum, in stars of mass of about 8-10 solar masses: 1) The delayed production of europium with respect to iron imposes a time scale that restricts the progenitor stars to less than about 10 solar masses; 2) the r-process demands a dominant robust mechanism at least for barium and above, since the relative abundance pattern of those r-process elements in low-metallicity stars is consistent with the solar pattern; 3) stars of about 8-10 solar masses produce nearly identical degenerate O/Ne/Mg cores that collapse due to electron capture; and 4) the resulting low-mass cores may produce both an r-process in a prompt explosion and a subsequent r-process in a neutrino driven wind. The prompt explosion of an O/Ne/Mg core yields low entropy and low electron fraction, and hence may produce a reasonable r-process peak at A about 190 as well as all of the r-process elements with Z greater than 56. The possible differences in the neutrino-driven wind and associated r-process due to the low-mass neutron stars expected in this mass range are also discussed.

J. Craig Wheeler; John J. Cowan; Wolfgang Hillebrandt

1997-11-22T23:59:59.000Z

279

A Case Study For Geothermal Exploration In The Ne German Basin...  

Open Energy Info (EERE)

icon Twitter icon A Case Study For Geothermal Exploration In The Ne German Basin- Integrated Interpretation Of Seismic Tomography, Litho-Stratigraphy, Salt Tectonics, And...

280

Idaho National Laboratory DOE-NE's National Nuclear Capability-  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4-2023 4-2023 Idaho National Laboratory DOE-NE's National Nuclear Capability- Developing and Maintaining the INL Infrastructure TEN-YEAR SITE PLAN DOE/ID-11474 Final June 2012 Sustainable INL continues to exceed DOE goals for reduction in the use of petroleum fuels - running its entire bus fleet on biodiesel while converting 75% of its light-duty fleet to E85 fuel. The Energy Systems Laboratory (ESL), slated for completion this year, will be a state-of-the-art laboratory with high-bay lab space where leading bioenergy feedstock processing, advanced battery testing, and hybrid energy systems integration research will be conducted. The Advanced Test Reactor is the world's most advanced nuclear research capability - crucial to (1) the ongoing development of safe, efficient

Note: This page contains sample records for the topic "wy nv ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NE-24 Unlverslty of Chicayo Remedial Action Plan  

Office of Legacy Management (LM)

(YJ 4 tlsj .?I2 (YJ 4 tlsj .?I2 416 17 1983 NE-24 Unlverslty of Chicayo Remedial Action Plan 22&d 7 IA +-- E. I.. Keller, Director Technical Services Division Oak Ridge Operations Ufflce In response to your memorandum dated July 29, 1983, the Field Task Proposal/Agreement (FTP/A) received frw Aryonne National Laboratory (ANL) appears to be satisfactory, and this office concurs in the use of ANL to provide the decontamination effort as noted in the FTP/A. The final decontaminatton report should Include the data needed for certiff- cation of the cleanup and any contamination left In place, e.g., sewer lines should be so documented in the permanent records of the University as well as the certification documents and reports. The remedial action to be conducted appears to be clearly InsIgnifIcant from an environmental

282

Participants: William Naughton, COHMED Bill Sherman, NE HLRW Task Force  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

conference call May 27, 1998 conference call May 27, 1998 Participants: William Naughton, COHMED Bill Sherman, NE HLRW Task Force Bob Fronczak, AAR Mike Butler, UETC Ray English, DOE-NR George Ruberg, UETC Kevin Blackwell, FRA Markus Popa, DOE-RW Sandy Covi, UP The Rail Topic Group is currently in a transitional mode, moving simultaneously toward closure of the two rail information matrices, Comparison of CVSA Recommended National Procedures and Out-Of-Service Criteria for the Enhanced Safety Inspection of Commercial Highway Vehicles Transporting Transuranics, Spent Nuclear Fuel, and High Level Waste to Rail Inspection Standards, and Rail and Highway Regulations Relative to the Transportation of Radioactive Materials and their Applicability to States, Tribes, Shippers, and Carriers, (both

283

EG&G SURVEY REPORT NE-F-003  

Office of Legacy Management (LM)

EBJG EBJG -ENERGY MEASUREMENTS GROUP EG&G SURVEY REPORT NE-F-003 FEBRUARY 1983 NJT& THE REMOTE SENSING lRtlORlllORY OF THE UNITED STATES DEPARTMENT OF ENERGY AN AERIAL RADIOLOGICAL SURVEY OF AN AREA SURROUNDING THE FORMER M IDDLESEX SAMPLING PLANT IN M IDDLESEX, N E W JERSEY DATE OF SURVEY: M A Y 1978 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or

284

PNM Resources 2401 Aztec NE, MS-Z100  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PNM Resources PNM Resources 2401 Aztec NE, MS-Z100 Albuquerque, NM 87107 505-241-2025 Fax 505 241-2384 PNMResources.com October 29, 2013 Mr. Christopher Lawrence Office of Electricity Delivery and Energy Reliability (OE-20) U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 Submitted electronically via email to: Christopher.Lawrence@hq.doe.gov Dear Mr. Lawrence: Subject: Department of Energy (DOE)- Improving Performance of Federal Permitting and Review of Infrastructure Projects, Request for Information, 78 Fed. Reg. 53436 (Aug. 29, 2013) PNM Resources (PNMR) is an energy holding company with 2012 consolidated operating revenues of $1.3 billion. Through its regulated utilities, PNM and TNMP, PNMR serves electricity to more than 739,000 homes and businesses in New

285

CA M r. Andrew Wallo, III. NE-23  

Office of Legacy Management (LM)

i5W 95.5 L' i5W 95.5 L' E&nt plom. S. W.:. Washingr on. D.C. ZOOX2i74, Tekphm: (202) 488-6OGb 7II7-03.87.cdy.43 23 September 1987. Ii CA M r. Andrew Wallo, III. NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear M r. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES pqq.0' 05 PI ;p.03- The attached elimination recommendation was prepared in accordance ,I ML.05 with your suggestion during our meeting on 22 September. The recommendation flO.O-02 includes 26 colleges and universities identified in Enclosure 4 to Aerospace letter subject: Status of Actions - FUSRAP Site List, dated 27 May 1987; three institutions (Tufts College, University of Virginia, and the University of Washington) currently identified on the FUSRAP

286

The DA{Phi}NE beam position monitors  

SciTech Connect

The beam diagnostics network of DA{Phi}NE, the Frascati {Phi}-factory, includes more than 110 beam position monitors divided between button monitors and striplines. The shape of the vacuum chamber changes along the accelerator implying several different geometries for these monitors. Moreover, in the two interaction regions of the collider where the electron and positron beams pass into the same chamber, a six-button configuration has been used. A bench calibration of each family of BPMs and striplines is being performed. A polynomial correction function has been derived by fitting the calibration results. An analytical-numerical analysis of the buttons` geometry has been done in order to compare the experimental with the theoretical results. {copyright} {ital 1997 American Institute of Physics.}

Ghigo, A.; Sannibale, F.; Serio, M.; Vaccarezza, C. [INFN Laboratori Nazionali di Frascati-00044 Frascati (Roma)-Italy

1997-01-01T23:59:59.000Z

287

Charged-Current Interaction Measurements in MiniBooNE  

SciTech Connect

Neutrino oscillation is the only known phenomenon for physics beyond the standard model. To investigate this phenomenon, the understanding of low energy neutrino scattering (200NE finds that a simple Fermi gas model, with appropriate adjustments, accurately characterizes the CCQE events on carbon. The extracted parameters include an effective axial mass, MA=1.23 {+-} 0.20 GeV, and a Pauli-blocking parameter, kappa = 1.019 {+-} 0.011.

Katori, Teppei; /Indiana U.

2007-09-01T23:59:59.000Z

288

Microsoft PowerPoint - NEAC Battelle NE Capabilities 062408.ppt  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

R&D Facility Requirements NEAC Meeting Progress Report June 24, 2008 2 Facilitization of U.S. Nuclear R&D Infrastructure Three-step study process: * First, ASNE requested Battelle Memorial Institute to develop Industry- and-University-supported list of capabilities and facilities necessary to conduct a comprehensive nuclear R&D program. (Draft, June 12, 2008) * Second, INL, using input from all DOE and other sources, will determine current facilities and their condition and availability to support next 20 years of nuclear R&D. (Draft, June 30, 2008) * Third, recommendations will be made on priorities and on existing facilities to be maintained/preserved or otherwise supported by NE regardless of location or ownership. (Executive Team Meeting, July 1, 2008)

289

EA-1909: South Table Wind Project, Kimball County, NE | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09: South Table Wind Project, Kimball County, NE 09: South Table Wind Project, Kimball County, NE EA-1909: South Table Wind Project, Kimball County, NE Summary DOE's Western Area Power Administration is preparing this EA to evaluate the environmental impacts of interconnecting the proposed South Table Wind Project, which would generate approximately 60 megawatts from about 40 turbines, to Western's existing Archer-Sidney 115-kV Transmission Line in Kimball County, Nebraska. Public Comment Opportunities None available at this time. Documents Available for Download August 28, 2012 EA-1909: Finding of No Significant Impact South Table Wind Project, Kimball County, NE July 16, 2012 EA-1909: Final Environmental Assessment South Table Wind Project, Kimball County, NE February 29, 2012 EA-1909: Draft Environmental Assessment

290

Reconnaissance geochemical assessment of the Clover Mountains Bureau of Land Management Wilderness Study Area (NV-050-139), Lincoln County, Nevada  

SciTech Connect

This report presents the results of a mineral survey of the Clover Mountains Wilderness Study Area, Lincoln County, Nevada. The Clover Mountains Geology-Energy-Minerals (GEM) Resource Area (GRA) includes the Clover Mountains Wilderness Study Area (WSA) NV 050-0139. The GRA is located in south-central Lincoln County, Nevada, near the town of Caliente. There are two mining districts on the periphery of the WSA: (1) the Pennsylvania district, just northwest of the WSA, which is still active and has produced about $50,000 worth of gold, silver, and copper; (2) the Viola district, on the southern boundary of the WSA, the total production of which was less than $400,000, mostly from fluorspar. No patented or unpatented claims exist within the WSA. The rocks exposed in the WSA are almost entirely Tertiary rhyolites; below these rocks are Paleozoic and Mesozoic sedimentary rocks that have been locally mineralized, as in the Pennsylvania district. Stream-sediment and heavy-mineral-concentrate samples were collected and analyzed spectrographically by the US Geological Survey. The analytical results indicate that anomalous concentrations of thorium and barium occur along the western border of the WSA. Minor thorium, barium, and tin anomalies are scattered throughout the WSA. 6 refs., 5 tabs. (ACR)

Hoffman, J.D.; Day, G.W.

1984-01-01T23:59:59.000Z

291

The MiniBooNE detector technical design report  

SciTech Connect

The MiniBooNE experiment [1] is motivated by the LSND observation, [2] which has been interpreted as {nu}{sub {mu}} {yields} {nu}{sub e} oscillations, and by the atmospheric neutrino deficit, [3,4,5] which may be ascribed to {nu}{sub {mu}} oscillations into another type of neutrino. MiniBooNE is a single-detector experiment designed to: obtain {approx} 1000 {nu}{sub {mu}} {yields} {nu}{sub e} events if the LSND signal is due to {nu}{sub {mu}} {yields} {nu}{sub e} oscillations, establishing the oscillation signal at the > 5{sigma} level as shown in Fig. 1.1; extend the search for {nu}{sub {mu}} {yields} {nu}{sub e} oscillations significantly beyond what has been studied previously if no signal is observed; search for {nu}{sub {mu}} disappearance to address the atmospheric neutrino deficit with a signal that is a suppression of the rate of {nu}{sub {mu}}C {yields} {mu}N events from the expected 600,000 per year; measure the oscillation parameters as shown in Fig. 1.2 if oscillations are observed; and test CP conservation in the lepton sector if oscillations are observed by running with separate {nu}{sub {mu}} and {bar {nu}}{sub {mu}} beams. The detector will consist of a spherical tank 6.1 m (20 feet) in radius, as shown in Fig. 1.3, that stands in a 45-foot diameter cylindrical vault. An inner tank structure at 5.75 m radius will support 1280 8-inch phototubes (10% coverage) pointed inward and optically isolated from the outer region of the tank. The tank will be filled with 807 t of mineral oil, resulting in a 445 t fiducial volume. The outer tank volume will serve as a veto shield for identifying particles both entering and leaving the detector with 240 phototubes mounted on the tank wall. Above the detector tank will be an electronics enclosure that houses the fast electronics and data acquisition system and a utilities enclosure that houses the plumbing, overflow tank, and calibration laser. The detector will be located {approx} 550 m from the Booster neutrino source. The neutrino beam, produced using 8 GeV protons from the Booster at FNAL, will consist of a target within a focusing system, followed by a {approx}50 m long pion decay volume. The low energy, high intensity and 1 {micro}s time-structure of a neutrino beam produced from the Booster beam are ideal for this experiment. We assume that the Booster can reliably deliver protons for a typical run which is two-thirds of a calendar year. The sensitivities discussed above assume the experiment receives 5 x 10{sup 20} protons per year. This Booster experiment is compatible with the Fermilab collider and MI programs. The Booster must run at 7.5 Hz to accommodate the MiniBooNE and collider programs simultaneously. The current schedule calls for data-taking to begin by the end of calendar year 2001.

I. Stancu et al.

2003-04-18T23:59:59.000Z

292

Wind Program: Stakeholder Engagement and Outreach  

Wind Powering America (EERE)

Outreach Outreach Printable Version Bookmark and Share The Stakeholder Engagement and Outreach initiative of the U.S. Department of Energy's Wind Program is designed to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. Highlights Resources Wind Resource Maps State Activities What activities are happening in my state? AK AL AR AZ CA CO CT DC DE FL GA HI IA ID IL IN KS KY LA MA MD ME MI MN MO MS MT NC ND NE NH NJ NM NV NY OH OK OR PA RI SC SD TN TX UT VA VT WA WI WV WY Installed wind capacity maps. Features A image of a house with a residential-scale small wind turbine. Small Wind for Homeowners, Farmers, and Businesses Stakeholder Engagement & Outreach Projects

293

Annual Energy Outlook 2012  

Gasoline and Diesel Fuel Update (EIA)

2 2 Source: U.S. Energy Information Administration, Office of Energy Analysis. U.S. Energy Information Administration / Annual Energy Outlook 2010 213 Appendix F Regional Maps Figure F1. United States Census Divisions Pacific East South Central South Atlantic Middle Atlantic New England West South Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI Middle Atlantic New England East North Central West North Central Pacific West South Central East South Central South Atlantic Mountain Source: U.S. Energy Information Administration, Office of Integrated Analysis and Forecasting. Appendix F Regional Maps Figure F1. United States Census Divisions U.S. Energy Information Administration | Annual Energy Outlook 2012

294

Assumptions to the Annual Energy Outlook 2007 Report  

Gasoline and Diesel Fuel Update (EIA)

clothes drying, ceiling fans, coffee makers, spas, home security clothes drying, ceiling fans, coffee makers, spas, home security systems, microwave ovens, set-top boxes, home audio equipment, rechargeable electronics, and VCR/DVDs. In addition to the major equipment-driven end-uses, the average energy consumption per household is projected for other electric and nonelectric appliances. The module's output includes number Energy Information Administration/Assumptions to the Annual Energy Outlook 2007 19 Pacific East South Central South Atlantic Middle Atlantic New England West South Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI Middle Atlantic New England East North Central West North Central Pacific West South Central East South Central

295

U.S. Energy Information Administration | Annual Energy Outlook 2011  

Gasoline and Diesel Fuel Update (EIA)

1 1 Regional maps Figure F6. Coal supply regions Figure F6. Coal Supply Regions WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI MT NE IA KS MI AZ NM 500 0 SCALE IN MILES APPALACHIA Northern Appalachia Central Appalachia Southern Appalachia INTERIOR NORTHERN GREAT PLAINS Eastern Interior Western Interior Gulf Lignite Dakota Lignite Western Montana Wyoming, Northern Powder River Basin Wyoming, Southern Powder River Basin Western Wyoming OTHER WEST Rocky Mountain Southwest Northwest KY AK 1000 0 SCALE IN MILES Source: U.S. Energy Information Administration, Office

296

CA CAIOlf Mr. Andrew Wallo. III, NE-23  

Office of Legacy Management (LM)

kire 7900. 955 L*E,,fa,u PLUG S. W.. Washin@ on. D.C. 20024-2174, Tekphme: (202) 488-6000 kire 7900. 955 L*E,,fa,u PLUG S. W.. Washin@ on. D.C. 20024-2174, Tekphme: (202) 488-6000 7117-03.87.cdy.43 23 September 1987 CA CAIOlf Mr. Andrew Wallo. III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 CT.05 FL .0-o/ lti.Ob id.Or Dear Mr. Wallo: In/. O-01 flA.05 ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES Mbj.o-03 I4 v.o+ The attached elimination recommendation was prepared in accordance ML.o= with your suggestion during our meeting on 22 September. The recommendation nO.O-02 includes 26 colleges and universities identified.in Enclosure 4 to Aerospace letter subject: Status of Actions - FUSRAP Site List, dated N0.63' 27 May 1987; three institutions (Tufts College, University of Virginia, kfC900

297

{sup 17}O({alpha},{gamma}){sup 21}Ne and {sup 17}O({alpha},n){sup 20}Ne for the weak s process  

Science Conference Proceedings (OSTI)

The ratio of the reaction rates of the competing channels {sup 17}O({alpha}{gamma}){sup 21}Ne and {sup 17}O({alpha},n){sup 20}Ne determines the efficiency of {sup 16}O as a neutron poison in the s process in low metallicity rotating stars. It has a large impact on the element production, either producing elements to the mass range of A=90 in case of a significant poisoning effect or extending the mass range up to the region of A=150 if the {gamma} channel is of negligible strength. We present an improved study of the reaction {sup 17}O({alpha},n){sup 20}Ne, including an independent measurement of the {sup 17}O({alpha},n{sub 1}){sup 20}Ne channel. A simultaneous R-Matrix fit to both the n{sub 0} and the n{sub 1} channels has been performed. New reaction rates, including recent data on the {sup 17}O({alpha},{gamma}){sup 21}Ne reaction, have been calculated and used as input for stellar network calculations and their impact on the s process in rotating massive stars is discussed.

Best, A.; Goerres, J.; Beard, M.; Couder, M.; Boer, R. de; Falahat, S.; Gueray, R. T.; Kontos, A.; Kratz, K.-L.; LeBlanc, P. J.; Li, Q.; O'Brien, S.; Oezkan, N.; Pignatari, M.; Sonnabend, K.; Talwar, R.; Tan, W.; Uberseder, E.; Wiescher, M. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States) and Department for Biogeochemistry, Max-Planck-Institute for Chemistry, 55020 Mainz (Germany); Department of Physics, Kacaeli University, Umuttepe 41380, Kocaeli (Turkey); Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Department for Biogeochemistry, Max-Planck-Institute for Chemistry, 55020 Mainz (Germany); Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Department of Physics, Kacaeli University, Umuttepe 41380, Kocaeli (Turkey); Department of Physics, University of Basel, Basel 4056 (Switzerland); Institute for Applied Physics, Goethe-University Frankfurt, 60325 Frankfurt (Germany); Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)

2012-11-20T23:59:59.000Z

298

Level-resolved R-matrix calculations for the electron-impact excitation of Ne{sup 3+} and Ne{sup 6+}  

SciTech Connect

Large-scale R-matrix calculations are carried out for the electron-impact excitation of Ne{sup 3+} and Ne{sup 6+}. For Ne{sup 3+}, a 581-LSJ-level R-matrix intermediate coupling frame transformation calculation is made for excitations up to the n=4 shell. For some transitions, large effective collision strength differences are found with current 23-jKJ-level Breit-Pauli R-matrix and earlier 22-LSJ-level R-matrix jj omega (JAJOM) calculations. For Ne{sup 6+}, a 171-jKJ-level Breit-Pauli R-matrix calculation is made for excitations up to the n=5 shell. For some transitions, large effective collision strength differences are found with current 46-jKJ-level Breit-Pauli R-matrix and earlier 46-LSJ-level R-matrix JAJOM calculations. Together with existing R-matrix calculations for other ion stages, high-quality excitation data are now available for astrophysical and laboratory plasma modeling along the entire Ne isonuclear sequence.

Ludlow, J. A.; Lee, T. G.; Ballance, C. P.; Loch, S. D.; Pindzola, M. S. [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States)

2011-08-15T23:59:59.000Z

299

A Case Study For Geothermal Exploration In The Ne German Basin- Integrated  

Open Energy Info (EERE)

Geothermal Exploration In The Ne German Basin- Integrated Geothermal Exploration In The Ne German Basin- Integrated Interpretation Of Seismic Tomography, Litho-Stratigraphy, Salt Tectonics, And Thermal Structure Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: A Case Study For Geothermal Exploration In The Ne German Basin- Integrated Interpretation Of Seismic Tomography, Litho-Stratigraphy, Salt Tectonics, And Thermal Structure Details Activities (0) Areas (0) Regions (0) Abstract: Unavailable Author(s): K. Bauer, I. Moeck, B. Norden, A. Schulze, M. H. Weber Published: Publisher Unknown, 2009 Document Number: Unavailable DOI: Unavailable Retrieved from "http://en.openei.org/w/index.php?title=A_Case_Study_For_Geothermal_Exploration_In_The_Ne_German_Basin-_Integrated_Interpretation_Of_Seismic_Tomography,_Litho-Stratigraphy,_Salt_Tectonics,_And_Thermal_Structure&oldid=390106"

300

EcoCAR: The NeXt Challenge | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCAR: The NeXt Challenge EcoCAR: The NeXt Challenge EcoCAR: The NeXt Challenge May 18, 2010 - 7:30am Addthis While most college students' experience with vehicles goes no further than the beater they picked up for a few thousand dollars, students participating in the EcoCAR: The NeXT Challenge competition get to experience the cutting-edge of driving technology. The competition, which was established by the U.S. Department of Energy and General Motors, is a three year advanced vehicle engineering contest. Yesterday, May 17, was the first day of their Year 2 judging sessions. In EcoCAR, students from 16 universities across North America are competing against each other to build the most environmentally sustainable and practical vehicle. This year's teams have adopted a number of advanced

Note: This page contains sample records for the topic "wy nv ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

DOE/NV?325?Rev  

NLE Websites -- All DOE Office Websites (Extended Search)

dependent on waste stream characteristics. 3.2.6 Handling Waste packages that require remote handling may incur additional cost for the generator and delay waste profile...

302

Towards a study of the {sup 22}Ne(p,{gamma}){sup 23}Na reaction at LUNA  

SciTech Connect

The {sup 22}Ne(p,{gamma}){sup 23}Na reaction is a part of the hydrogen burning NeNa cycle. In second-generation stars hydrogen burning may proceed via this cycle. The rate of the {sup 22}Ne(p,{gamma}){sup 23}Na reaction depends on the strength of several resonances in the energy range of the LUNA 400 kV accelerator which have never been observed in direct experiments. A related study is under preparation at LUNA.

Cavanna, Francesca; Depalo, Rosanna; Menzel, Marie-Luise [Dipartimento di fisica, Universita di Genova, and INFN Sezione di Genova, Genova (Italy); Dipartimento di fisica, Universita di Padova, and INFN Sezione di Padova, Padova (Italy); Helmholtz Zentrum Dresden-Rossendorf, Dresden (Germany); Collaboration: LUNA Collaboration

2012-11-20T23:59:59.000Z

303

Analysis of ISO NE Balancing Requirements: Uncertainty-based Secure Ranges for ISO New England Dynamic Inerchange Adjustments  

SciTech Connect

The document describes detailed uncertainty quantification (UQ) methodology developed by PNNL to estimate secure ranges of potential dynamic intra-hour interchange adjustments in the ISO-NE system and provides description of the dynamic interchange adjustment (DINA) tool developed under the same contract. The overall system ramping up and down capability, spinning reserve requirements, interchange schedules, load variations and uncertainties from various sources that are relevant to the ISO-NE system are incorporated into the methodology and the tool. The DINA tool has been tested by PNNL and ISO-NE staff engineers using ISO-NE data.

Etingov, Pavel V.; Makarov, Yuri V.; Wu, Di; Hou, Zhangshuan; Sun, Yannan; Maslennikov, S.; Luo, X.; Zheng, T.; George, S.; Knowland, T.; Litvinov, E.; Weaver, S.; Sanchez, E.

2013-01-31T23:59:59.000Z

304

Microsoft PowerPoint - Freeze.NE PA Overview_052511.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Used Fuel Disposition Campaign Used Fuel Disposition Campaign Summary of DOE-NE PA Modeling for Storage and Disposal of Used Nuclear Fuel (UNF), High-Level Radioactive Waste (HLW), and Low-Level Waste (LLW) Geoff Freeze Sandia National Laboratories PA Community of Practice Technical Exchange May 25-26, 2011 Print Close Used Fuel Disposition 2 DOE-Nuclear Energy (NE) - PA Modeling Activities NE Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (Waste IPSC) Used Fuel Disposition (UFD) Generic Performance Assessment Model (GPAM) *** Initial modeling focus in both campaigns in on UNF/HLW disposal Print Close Used Fuel Disposition 3  UFD GPAM  Short time horizon (2-3 yrs) - Simplified generic system models (i.e., PA-fidelity using GoldSim) - Current computing capabilities

305

Skåne County, Sweden: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Skåne County, Sweden: Energy Resources Skåne County, Sweden: Energy Resources Jump to: navigation, search Name Skåne County, Sweden Equivalent URI DBpedia GeoNames ID 3337385 Coordinates 55.98333°, 13.5° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.98333,"lon":13.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

306

DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-NE Light Water Reactor Sustainability Program and EPRI DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan Nuclear power has contributed almost 20% of the total amount of electricity generated in the United States over the past two decades. High capacity factors and low operating costs make nuclear power plants (NPPs) some of the most economical power generators available. Further, nuclear power remains the single largest contributor (nearly 70%) of non-greenhouse gas-emitting electric power generation in the United States. Even when major refurbishments are performed to extend operating life, these plants continue to represent cost-effective, low-carbon assets to the nation's

307

DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-NE Light Water Reactor Sustainability Program and EPRI DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan Nuclear power has contributed almost 20% of the total amount of electricity generated in the United States over the past two decades. High capacity factors and low operating costs make nuclear power plants (NPPs) some of the most economical power generators available. Further, nuclear power remains the single largest contributor (nearly 70%) of non-greenhouse gas-emitting electric power generation in the United States. Even when major refurbishments are performed to extend operating life, these plants continue to represent cost-effective, low-carbon assets to the nation's

308

ARM - Field Campaign - 1996 NARSTO Northeast Field Study (NARSTO-NE)  

NLE Websites -- All DOE Office Websites (Extended Search)

6 NARSTO Northeast Field Study (NARSTO-NE) 6 NARSTO Northeast Field Study (NARSTO-NE) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 1996 NARSTO Northeast Field Study (NARSTO-NE) 1996.07.01 - 1996.07.28 Lead Scientist : Larry Kleinman For data sets, see below. Description The DOE G-1 aircraft was deployed in the New York City metropolitan area as part of the North American Research Strategy for Tropospheric Ozone-Northeast effort to determine the causes of elevated ozone levels in the northeastern United States. Measurements of ozone, ozone precursors, and other photochemically active trace gases were made upwind and downwind of New York City with the objective of characterizing the ozone formation process and its dependence on ambient levels of NOx and volatile organic

309

Charged-Current Neutral Pion production at SciBooNE  

SciTech Connect

SciBooNE, located in the Booster Neutrino Beam at Fermilab, collected data from June 2007 to August 2008 to accurately measure muon neutrino and anti-neutrino cross sections on carbon below 1 GeV neutrino energy. SciBooNE is studying charged current interactions. Among them, neutral pion production interactions will be the focus of this poster. The experimental signature of neutrino-induced neutral pion production is constituted by two electromagnetic cascades initiated by the conversion of the {pi}{sup 0} decay photons, with an additional muon in the final state for CC processes. In this poster, I will present how we reconstruct and select charged-current muon neutrino interactions producing {pi}{sup 0}'s in SciBooNE.

Catala-Perez, J.; /Valencia U., IFIC

2009-10-01T23:59:59.000Z

310

First Direct Measurement of the {sup 17}F(p,{gamma}){sup 18}Ne Cross Section  

SciTech Connect

The rate of the {sup 17}F(p,{gamma}){sup 18}Ne reaction is important in various astrophysical events. A previous {sup 17}F(p,p){sup 17}F measurement identified a 3{sup +} state providing the strongest resonance contribution, but the resonance strength was unknown. We have directly measured the {sup 17}F(p,{gamma}){sup 18}Ne reaction using a mixed beam of {sup 17}F and {sup 17}O at ORNL. The resonance strength for the 3{sup +} resonance in {sup 18}Ne was found to be {omega}{gamma}=33{+-}14(stat){+-}17(syst) meV, corresponding to a {gamma} width of {gamma}{sub {gamma}}=56{+-}24(stat){+-}30(syst) meV. An upper limit on the direct capture of S(E){<=}65 keV b was determined at an energy of 800 keV.

Chipps, K. A.; Greife, U. [Colorado School of Mines, Golden, Colorado 80401 (United States); Bardayan, D. W.; Smith, M. S. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Blackmon, J. C. [Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Chae, K. Y.; Moazen, B. H.; Pittman, S. T. [University of Tennessee, Knoxville, Tennessee 37996 (United States); Hatarik, R.; Peters, W. A. [Rutgers University, New Brunswick, New Jersey 08901 (United States); Kozub, R. L.; Shriner, J. F. Jr. [Tennessee Technological University, Cookeville, Tennessee 38505 (United States); Matei, C. [Oak Ridge Associated Universities, Oak Ridge, Tennessee 37830 (United States); Nesaraja, C. D.; Pain, S. D. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); University of Tennessee, Knoxville, Tennessee 37996 (United States)

2009-04-17T23:59:59.000Z

311

N NE EX XT T G GE EN NE ER RA AT TI IO ON N S SA AF FE EG  

NLE Websites -- All DOE Office Websites (Extended Search)

NE NE EX XT T G GE EN NE ER RA AT TI IO ON N S SA AF FE EG GU UA AR RD DS S I IN NI IT TI IA AT TI IV VE E ( (N NG GS SI I) ) O OP PP PO OR RT TU UN NI IT TI IE ES S F FO OR R S ST TU UD DE EN NT TS S A AN ND D Y YO OU UN NG G P PR RO OF FE ES SS SI IO ON NA AL LS S I IN NT TE ER RE ES ST TE ED D I IN N S SA AF FE EG GU UA AR RD DS S/ /N NO ON NP PR RO OL LI IF FE ER RA AT TI IO ON N The Next Generation Safeguards Initiative (NGSI) was launched by the National Nuclear Security Administration (NNSA) in FY 2008 to develop the policies, concepts, technologies, expertise, and infrastructure necessary to strengthen and sustain the international safeguards system as it evolves to meet new challenges over the next 25 years. NGSI's Human Capital Development subprogram 1 aims to revitalize and expand the international safeguards human capital base in the United States by attracting, educating, training, and retaining

312

MiniBooNE as related to Windows on the Universe  

SciTech Connect

The measurement of absolute neutrino and anti-neutrino cross-sections, the observation of a 'low energy anomaly' in the neutrino sector, the constraints placed on the LSND effect by a non-observation of neutrino oscillations, the search for neutrino and anti-neutrino appearance, and for the possible existence of new heavy particles makes MiniBooNE a major contributor to the current view of the Universe. This paper addresses specific model constraints set by the MiniBooNE data, and explores expectations for further remaining analysis of the data.

Stefanski, Ray; /Fermilab

2009-12-01T23:59:59.000Z

313

36 SEPTEMBER | 2012 WiNd TURbiNE CAPACiTY  

E-Print Network (OSTI)

36 SEPTEMBER | 2012 WiNd TURbiNE CAPACiTY FRONTiER FROM SCAdA ThE WORld hAS SEEN A significant contributor to this growth. The wind turbine generated energy depends on the wind potential and the turbine of wind turbines. Supervi- sory control and data acquisition (SCADA) systems record wind turbine

Kusiak, Andrew

314

Charged current single pion cross section measurement at MiniBooNE  

SciTech Connect

We present MiniBooNE's preliminary {nu}{sub {mu}} CC1{pi}{sup +} cross section measurement, calculated using the ratio of CC1{pi}{sup +} to CCQE events. We find the inclusive CC1{pi}{sup +} measurement to be below the nuance [1] and NEUGEN [2] expectations.

Wascko, M.O.; /Louisiana State U.

2006-02-01T23:59:59.000Z

315

A generic network interface architecture for a networked processor array (NePA)  

Science Conference Proceedings (OSTI)

Recently Network-on-Chip (NoC) technique has been proposed as a promising solution for on-chip interconnection network. However, different interface specification of integrated components raises a considerable difficulty for adopting NoC techniques. ... Keywords: interconnection network, multiprocessor systemon-chip (MPSoC), network interface, network-on-chip (NoC), networked processor array (NePA)

Seung Eun Lee; Jun Ho Bahn; Yoon Seok Yang; Nader Bagherzadeh

2008-02-01T23:59:59.000Z

316

THERMALIZATION OF THE ION KINETIC ENERGY IN A Ne GAS PUFF PINCH MODEL*  

E-Print Network (OSTI)

THERMALIZATION OF THE ION KINETIC ENERGY IN A Ne GAS PUFF PINCH MODEL* J. L. Giuliani, J. W Department of Energy/NNSA, Washington DC USA Full understanding of the dynamics, population kinetics, and energy budget of a K-shell radiating Z-pinch remains a challenging problem in high energy density plasma

317

Km3NeT, a Deep Sea Challenge for Neutrino Astronomy  

Science Conference Proceedings (OSTI)

The groups presently pursuing neutrino telescope projects in the Mediterranean Sea; ANTARES, NEMO, and NESTOR, have formed the new KM3NeT consortium to study the construction of a cubic kilometre-scale neutrino telescope for the Northern hemisphere. ...

Ciro Bigongiari

2007-10-01T23:59:59.000Z

318

Nonuniformity of CBF response to NE-or ANG II-induced hypertension in rabbits  

SciTech Connect

The regional response of brain vasculature to moderate hypertension was investigated using two hypertensive drugs, norepinephrine (NE) and angiotensin II (ANG II), infused intravenously at low concentrations (increase in blood pressure 15-40 mmHg). Regional cerebral blood flow (rCBF) was measured in unanesthetized and anesthetized rabbits using the (/sup 14/C)ethanol saturation technique. (1) In both groups of animals, NE and ANG II induced regional differences in the flow changes as compared with controls, confirming a regional (or segmental) heterogeneity in the regulatory mechanisms to hypertension. (2) The responses to identical rises in blood pressure (BP) in most of the structures analyzed depended on the drug used. In the unanesthetized rabbits, the increase in vascular resistance induced by NE was greater than that induced by ANG II. (3) With the two drugs, there was no correlation between the flow changes in any of the structures considered and either the BP increase or the BP level in unanesthetized animals. However, these flow changes were correlated with the BP increase in anesthetized animals, although differences between the effects of NE and ANG II were again observed. This study suggests that cerebrovascular regulatory mechanisms in hypertension are probably more complex than a simple myogenic reaction. Their heterogeneity and their dependence both on the cause of hypertension and on the presence of anesthetics suggest the intervention of an integrating pathway.

Reynier-Rebuffel, A.M.; Aubineau, P.; Issertial, O.; Seylaz, J.

1987-07-01T23:59:59.000Z

319

NE-Rank: A Novel Graph-Based Keyphrase Extraction in Twitter  

Science Conference Proceedings (OSTI)

The massive growth of the micro-blogging service Twitter has shed the light on the challenging problem of summarizing a collection of large number of tweets. This paper attempts to extract topical key phrases that would represent topics in tweets. Due ... Keywords: Keyphrase Extraction, Graph-based Ranking, Hashtag, Twitter, PageRank, TextRank, NE-Rank

Abdelghani Bellaachia; Mohammed Al-Dhelaan

2012-12-01T23:59:59.000Z

320

Zwischenbericht zum DFG-Forschungsvorhaben NE 902/2-1 SCHR 570/6-1  

E-Print Network (OSTI)

.3 Anwendungsperspektiven. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4 Arbeits- und Ergebnisbericht 10 4.3 Wissenschaftliche Mitarbeiter/in Dipl.-Ing. Vera Ebbing Besch¨aftigungszeitraum: seit 1. Oktober 2006 1.4 Fachgebiet;Zwischenbericht zum DFG-Forschungsvorhaben NE 902/2-1 SCHR 570/6-1 10 4 Arbeits- und Ergebnisbericht Basierend auf

Neff, Patrizio

Note: This page contains sample records for the topic "wy nv ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

AEOSup ltr to Dear Customer  

Gasoline and Diesel Fuel Update (EIA)

WA WA OR CA ID NV UT AZ NM CO WY MT ND SD NE KS OK TX MN IA MO AR LA WI IL KY IN OH WV TN MS AL GA SC NC VA PA NY VT ME NH MA RI CT NJ DE MD D.C. FL MI Electricity Supply Regions 1 ECAR 2 ERCOT 3 MAAC 4 MAIN 5 MAPP 6 NY 7 NE 8 FL 9 STV 10 SPP 11 NWP 12 RA 13 CNV 13 11 12 2 10 5 9 8 1 6 7 3 AK 15 14 H I 14 AK 15 H I Figure 2. Electricity Market Module (EMM) Regions 1. ECAR = East Central Area Reliability Coordination Agreement 2. ERCOT = Electric Reliability Council of Texas 3. MACC = Mid-Atlantic Area Council 4. MAIN = Mid-America Interconnected Network 5. MAPP = Mid-Continent Area Power Pool 6. NY = Northeast Power Coordinating Council/ New York 7. NE = Northeast Power Coordinating Council/ New England 8. FL = Southeastern Electric Reliability Council/ Florida 9. STV = Southeastern Electric Reliability Council /excluding Florida 10. SPP

322

Searches for New Physics at MiniBooNE: Sterile Neutrinos and Mixing Freedom  

SciTech Connect

The MiniBooNE experiment was designed to perform a search for {nu}{sub {mu}} {yields} {nu}{sub e} oscillations in a region of {Delta}m{sup 2} and sin{sup 2} 2{theta} very different from that allowed by standard, three-neutrino oscillations, as determined by solar and atmospheric neutrino experiments. This search was motivated by the LSND experimental observation of an excess of {bar {nu}}{sub e} events in a {bar {nu}}{sub {mu}} beam which was found compatible with two-neutrino oscillations at {Delta}m{sup 2} {approx} 1 eV{sup 2} and sin{sup 2} 2{theta} < 1%. If confirmed, such oscillation signature could be attributed to the existence of a light, mostly-sterile neutrino, containing small admixtures of weak neutrino eigenstates. In addition to a search for {nu}{sub {mu}} {yields} {nu}{sub e} oscillations, MiniBooNE has also performed a search for {bar {nu}}{sub {mu}} {yields} {bar {nu}}{sub e} oscillations, which provides a test of the LSND two-neutrino oscillation interpretation that is independent of CP or CPT violation assumptions. This dissertation presents the MiniBooNE {nu}{sub {mu}} {yields} {nu}{sub e} and {bar {nu}}{sub {mu}} {yields} {bar {nu}}{sub e} analyses and results, with emphasis on the latter. While the neutrino search excludes the two-neutrino oscillation interpretation of LSND at 98% C.L., the antineutrino search shows an excess of events which is in agreement with the two-neutrino {bar {nu}}{sub {mu}} {yields} {bar {nu}}{sub e} oscillation interpretation of LSND, and excludes the no oscillations hypothesis at 96% C.L. Even though the neutrino and antineutrino oscillation results from MiniBooNE disagree under the single sterile neutrino oscillation hypothesis, a simple extension to the model to include additional sterile neutrino states and the possibility of CP violation allows for differences between neutrino and antineutrino oscillation signatures. In view of that, the viability of oscillation models with one or two sterile neutrinos is investigated in global fits to MiniBooNE and LSND data, with and without constraints from other oscillation experiments with similar sensitivities to those models. A general search for new physics scenarios which would lead to effective non-unitarity of the standard 3 x 3 neutrino mixing matrix, or mixing freedom, is also performed using neutrino and antineutrino data available from MiniBooNE.

Karagiorgi, Georgia S.; /MIT

2010-07-01T23:59:59.000Z

323

Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)  

SciTech Connect

The Nuclear Energy Computational Fluid Dynamics Advanced Modeling and Simulation (NE-CAMS) system is being developed at the Idaho National Laboratory (INL) in collaboration with Bettis Laboratory, Sandia National Laboratory (SNL), Argonne National Laboratory (ANL), Utah State University (USU), and other interested parties with the objective of developing and implementing a comprehensive and readily accessible data and information management system for computational fluid dynamics (CFD) verification and validation (V&V) in support of nuclear energy systems design and safety analysis. The two key objectives of the NE-CAMS effort are to identify, collect, assess, store and maintain high resolution and high quality experimental data and related expert knowledge (metadata) for use in CFD V&V assessments specific to the nuclear energy field and to establish a working relationship with the U.S. Nuclear Regulatory Commission (NRC) to develop a CFD V&V database, including benchmark cases, that addresses and supports the associated NRC regulations and policies on the use of CFD analysis. In particular, the NE-CAMS system will support the Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program, which aims to develop and deploy advanced modeling and simulation methods and computational tools for reliable numerical simulation of nuclear reactor systems for design and safety analysis. Primary NE-CAMS Elements There are four primary elements of the NE-CAMS knowledge base designed to support computer modeling and simulation in the nuclear energy arena as listed below. Element 1. The database will contain experimental data that can be used for CFD validation that is relevant to nuclear reactor and plant processes, particularly those important to the nuclear industry and the NRC. Element 2. Qualification standards for data evaluation and classification will be incorporated and applied such that validation data sets will result in well-defined, well-characterized data. Element 3. Standards will be established for the design and operation of experiments for the generation of new validation data sets that are to be submitted to NE-CAMS that addresses the completeness and characterization of the dataset. Element 4. Standards will be developed for performing verification and validation (V&V) to establish confidence levels in CFD analyses of nuclear reactor processes; such processes will be acceptable and recognized by both CFD experts and the NRC.

Kimberlyn C. Mousseau

2011-10-01T23:59:59.000Z

324

ANL/NE-13/9 SHARP Assembly-Scale Multiphysics Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

NE-13/9 NE-13/9 SHARP Assembly-Scale Multiphysics Demonstration Simulations Mathematics and Computation Division & Nuclear Engineering Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information

325

Ronald E. Gill (NE), Scoville, ID - Level I Curtis Roth (EM), Idaho  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E. Gill (NE), E. Gill (NE), Scoville, ID - Level I Curtis Roth (EM), Idaho Falls, ID - Level I Jared T. Howerton (NNSA), Oak Ridge, TN - Level I Richard L. Person (NNSA), DOE HQ - Level I Phillip (Tony) A. Polk (EM), Aiken, SC (Savannah River) - Level IV Jane Powell-Dolan (LM), Cincinnati, OH - Level I Eric M. Thompson (NNSA), Oak Ridge, TN - Level II Congratulations to our newly certified FPDs! The Certification Review Board (CRB or 'the Board') convened on Friday, Sep- tember 24 to review certifi- cation candidates and dis- cuss several topics. The Department of Energy (DOE) met the FY2010 tar- gets for the Root Cause Analysis, Corrective Action Plan metrics 7 and 8, as fol- lows: DOE surpassed the target for Metric #7 (95% of pro-

326

DOE-NE-STD-1004-92; Root Cause Analysis Guidance Document  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NE-STD-1004-92 NE-STD-1004-92 DOE GUIDELINE ROOT CAUSE ANALYSIS GUIDANCE DOCUMENT February 1992 U.S. Department of Energy Office of Nuclear Energy Office of Nuclear Safety Policy and Standards Washington, D.C. 20585 ii ABSTRACT DOE Order 5000.3A, "Occurrence Reporting and Processing of Operations Information," investigation and reporting of occurrences (including the performance of root cause analysis) requires the and the selection, implementation, and follow-up of corrective actions. The level of effort expended should be based on the significance attached to the occurrence. Most off-normal occurrences need only a scaled- down effort while most emergency occurrences should be investigated using one or more of the formal analytical models. A discussion of methodologies, instructions, and worksheets in this document guides

327

File:USDA-CE-Production-GIFmaps-NE.pdf | Open Energy Information  

Open Energy Info (EERE)

NE.pdf NE.pdf Jump to: navigation, search File File history File usage Nebraska Ethanol Plant Locations Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 278 KB, MIME type: application/pdf) Description Nebraska Ethanol Plant Locations Sources United States Department of Agriculture Related Technologies Biomass, Biofuels, Ethanol Creation Date 2010-01-19 Extent State Countries United States UN Region Northern America States Nebraska External links http://www.nass.usda.gov/Charts_and_Maps/Ethanol_Plants/ File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 16:18, 27 December 2010 Thumbnail for version as of 16:18, 27 December 2010 1,650 × 1,275 (278 KB) MapBot (Talk | contribs) Automated bot upload

328

NE-23 Disposal of Offsite-Generated Defense Radioactive Waste, Ventron  

Office of Legacy Management (LM)

pi/L +3 pi/L +3 *3L 52. NE-23 Disposal of Offsite-Generated Defense Radioactive Waste, Ventron FUSRAP Site Jill E. Lytle, DP-12 NE-23 The Office of Remedial Action and Waste Technology has received a request from the Technical Services Division, DOE-Oak Ridge Operations Office, for a determination of the appropriate disposal location for the material which will result from remedial action of the Ventron site in Beverly, Massachusetts. The Ventron site was used from 1942 to 1948 under contract to the ME0 and AEC for converting uranium oxide to uranium metal powder, as well as later operations involving recovery of uranium from scrap uranium and turnings from the fuel fabrication plant at Hanford, Washington. Full-scale remedial action, anticipated to result in approximately 5,000

329

Neutron Transfer Studied with a Radioactive beam of 24Ne, using TIARA at SPIRAL  

E-Print Network (OSTI)

A general experimental technique for high resolution studies of nucleon transfer reactions using radioactive beams is briefly described, together with the first new physics results that have been obtained with the new TIARA array. These first results from TIARA are for the reaction 24Ne(d,p)25Ne, studied in inverse kinematics with a pure radioactive beam of 100,000 pps from the SPIRAL facility at GANIL. The reaction probes the energies of neutron orbitals relevant to very neutron rich nuclei in this mass region and the results highlight the emergence of the N=16 magic number for neutrons and the associated disappearance of the N=20 neutron magic number for the very neutron rich neon isotopes.

W. N. Catford; C. N. Timis; R. C. Lemmon; M. Labiche; N. A. Orr; L. Caballero; R. Chapman; M. Chartier; M. Rejmund; H. Savajols; for the TIARA Collaboration

2009-12-20T23:59:59.000Z

330

A combined muon-neutrino and electron-neutrino oscillation search at MiniBooNE  

SciTech Connect

MiniBooNE seeks to corroborate or refute the unconfirmed oscillation result from the LSND experiment. If correct, the result implies that a new kind of massive neutrino, with no weak interactions, participates in neutrino oscillations. MiniBooNE searches for {nu}{sub {mu}} {yields} {nu}{sub e} oscillations with the Fermi National Accelerator Laboratory 8 GeV beam line, which produces a {nu}{sub {mu}} beam with an average energy of {approx} 0.8 GeV and an intrinsic {nu}{sub e} content of 0.4%. The neutrino detector is a 6.1 m radius sphere filled with CH{sub 2}, viewed by 1540 photo-multiplier tubes, and located 541 m downstream from the source. This work focuses on the estimation of systematic errors associated with the neutrino flux and neutrino interaction cross section predictions, and in particular, on constraining these uncertainties using in-situ MiniBooNE {nu}{sub {mu}} charged current quasielastic (CCQE) scattering data. A data set with {approx} 100,000 events is identified, with 91% CCQE purity. This data set is used to measure several parameters of the CCQE cross section: the axial mass, the Fermi momentum, the binding energy, and the functional dependence of the axial form factor on four-momentum transfer squared. Constraints on the {nu}{sub {mu}} and {nu}{sub e} fluxes are derived using the {nu}{sub {mu}} CCQE data set. A Monte Carlo study of a combined {nu}{sub {mu}} disappearance and {nu}{sub e} appearance oscillation fit is presented, which improves the {nu}{sub {mu}} {yields} {nu}{sub e} oscillation sensitivity of MiniBooNE with respect to a {nu}{sub e} appearance-only fit by 1.2-1.5{sigma}, depending on the value of {Delta}m{sup 2}.

Monroe, Jocelyn R.; /Columbia U.

2006-07-01T23:59:59.000Z

331

Constraints on electromagnetic properties of sterile neutrinos from MiniBooNE results  

E-Print Network (OSTI)

Among the class of models with small mixing angles between sterile and active neutrinos, we place constraints on the effective muon-to-sterile neutrino magnetic and electric dipole transition moments from the combined MiniBooNE results for the sterile neutrino mass range of $10\\;\\mathrm{MeV}distribution as a function of polar angle. However, good agreement with the anomalous event distribution in reconstructed energy can be achieved for some values of magnetic and electric moments.

Alexander Radionov

2013-03-19T23:59:59.000Z

332

Collapse and expansion in the bright-rimmed cloud SFO 11NE  

E-Print Network (OSTI)

We report the results of a search for the double-peaked blue-skewed infall signature in the bright-rimmed cloud core SFO 11NE SMM1. Observations of the optically thick HCO$^{+}$ and optically thin H$^{13}$CO$^{+}$ J=3--2 lines reveal that there is indeed a characteristic double-peaked line profile, but skewed to the red rather than the blue. Modelling of the dust continuum emission and line profiles show that the motions within SFO 11NE SMM1 are consistent with a collapsing central core surrounded by an expanding outer envelope. We show that the collapse is occurring at a similar rate to that expected onto a single solar-mass protostar and is unlikely to represent the large-scale collapse of gas onto the infrared cluster seen at the heart of SFO 11NE SMM1. The outer envelope is expanding at a much greater rate than that expected for a photoevaporated flow from the cloud surface. The modelled expansion is consistent with the bulk cloud re-expansion phase predicted by radiative-driven implosion models of cometary clouds.

M. A Thompson; G. J. White

2004-02-24T23:59:59.000Z

333

The Sound Emission Board of the KM3NeT Acoustic Positioning System  

E-Print Network (OSTI)

We describe the sound emission board proposed for installation in the acoustic positioning system of the future KM3NeT underwater neutrino telescope. The KM3NeT European consortium aims to build a multi-cubic kilometre underwater neutrino telescope in the deep Mediterranean Sea. In this kind of telescope the mechanical structures holding the optical sensors, which detect the Cherenkov radiation produced by muons emanating from neutrino interactions, are not completely rigid and can move up to dozens of meters in undersea currents. Knowledge of the position of the optical sensors to an accuracy of about 10 cm is needed for adequate muon track reconstruction. A positioning system based on the acoustic triangulation of sound transit time differences between fixed seabed emitters and receiving hydrophones attached to the kilometre-scale vertical flexible structures carrying the optical sensors is being developed. In this paper, we describe the sound emission board developed in the framework of KM3NeT project, whi...

Llorens, C D; Sogorb, T; Bou--Cabo, M; Martnez-Mora, J A; Larosa, G; Adrin-Martnez, S

2012-01-01T23:59:59.000Z

334

Benthic biological and biogeochemical patterns and processes across an oxygen minimum zone (Pakistan margin, NE Arabian Sea)  

E-Print Network (OSTI)

(Pakistan margin, NE Arabian Sea) Gregory L. Cowie a,?, Lisa A. Levin b a The Sir John Murray Laboratories), and organic matter (OM) availability on benthic communities and processes across the Pakistan Margin

Levin, Lisa

335

Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)  

SciTech Connect

NE-KAMS knowledge base will assist computational analysts, physics model developers, experimentalists, nuclear reactor designers, and federal regulators by: (1) Establishing accepted standards, requirements and best practices for V&V and UQ of computational models and simulations, (2) Establishing accepted standards and procedures for qualifying and classifying experimental and numerical benchmark data, (3) Providing readily accessible databases for nuclear energy related experimental and numerical benchmark data that can be used in V&V assessments and computational methods development, (4) Providing a searchable knowledge base of information, documents and data on V&V and UQ, and (5) Providing web-enabled applications, tools and utilities for V&V and UQ activities, data assessment and processing, and information and data searches. From its inception, NE-KAMS will directly support nuclear energy research, development and demonstration programs within the U.S. Department of Energy (DOE), including the Consortium for Advanced Simulation of Light Water Reactors (CASL), the Nuclear Energy Advanced Modeling and Simulation (NEAMS), the Light Water Reactor Sustainability (LWRS), the Small Modular Reactors (SMR), and the Next Generation Nuclear Power Plant (NGNP) programs. These programs all involve computational modeling and simulation (M&S) of nuclear reactor systems, components and processes, and it is envisioned that NE-KAMS will help to coordinate and facilitate collaboration and sharing of resources and expertise for V&V and UQ across these programs. In addition, from the outset, NE-KAMS will support the use of computational M&S in the nuclear industry by developing guidelines and recommended practices aimed at quantifying the uncertainty and assessing the applicability of existing analysis models and methods. The NE-KAMS effort will initially focus on supporting the use of computational fluid dynamics (CFD) and thermal hydraulics (T/H) analysis for M&S of nuclear reactor systems, components and processes, and will later expand to include materials, fuel system performance and other areas of M&S as time and funding allow.

Rich Johnson; Kimberlyn C. Mousseau; Hyung Lee

2011-09-01T23:59:59.000Z

336

Astrophysically Important 19Ne States Studied with the 2H(18F,alpha+15O)n Reaction  

Science Conference Proceedings (OSTI)

The nuclear structure of {sup 19}Ne near the proton threshold is of interest for understanding the rates of proton-induced reactions on {sup 18}F in novae. Analogues for several states in the mirror nucleus {sup 19}F have not yet been identified in {sup 19}Ne indicating the level structure of {sup 19}Ne in this region is incomplete. The {sup 18}F(d;n){sup 19}Ne and {sup 18}F(d,p){sup 19}F reactions have been measured simultaneously at E{sub c.m.} = 14.9 MeV. The experiments were performed at the Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory (ORNL) by bombarding a 720-mg/cm{sub 2} CD{sub 2} target with a radioactive {sup 18}F beam. The {sup 19}Ne states of interest near the proton threshold decay by breakup into a and {sup 15}O particles. These decay products were detected in coincidence with position-sensitive E-{Delta}E silicon telescopes. The {alpha} and {sup 15}N particles from the break up of the mirror nucleus {sup 19}F were also measured with these detectors. Particle identification, coincidence, and Q-value requirements enable us to distinguish the reaction of interest from other reactions. The reconstruction of relative energy of the detected particles reveals the excited states of {sup 19}Ne and {sup 19}F which are populated. The neutron (proton) angular distributions for states in {sup 19}Ne ({sup 19}F) were extracted using momentum conservation. The observed states in {sup 19}Ne and {sup 19}F will be presented.

Adekola, Aderemi S [ORNL; Bardayan, Daniel W [ORNL; Blackmon, Jeff C [ORNL; Brune, C. [Ohio University; Chae, K. Y. [University of Tennessee, Knoxville (UTK); Champagne, A. E. [University of North Carolina, Chapel Hill; Domizioli, Carlo P [ORNL; Greife, U. [Colorado School of Mines, Golden; Heinen, Z. [Ohio University; Hornish, M. [Ohio University; Johnson, Micah [ORNL; Jones, K. L. [University of Tennessee, Knoxville (UTK); Kapler, R. [University of Tennessee, Knoxville (UTK); Livesay, Jake [ORNL; Ma, Zhanwen [ORNL; Massey, T. [Ohio University; Moazen, Brian [University of Tennessee, Knoxville (UTK); Nesaraja, Caroline D [ORNL; Pain, Steven D [ORNL; ShrinerJr., J. F. [Tennessee Technological University; Thomas, J. S. [Rutgers University; Smith, Nathan A [ORNL; Smith, Michael Scott [ORNL; Visser, D. W. [University of North Carolina, Chapel Hill; Voinov, A. [Ohio University

2009-01-01T23:59:59.000Z

337

NE-24  

Office of Legacy Management (LM)

the Bureau of Hines Site at Albany, Oregon, for Remedial the Bureau of Hines Site at Albany, Oregon, for Remedial Action Under the Formerly Utilized Sites Remedial Action Program I L@ _I' J.-La&one, Manager Oak Ridge Operations Office Based on the data in the attached draft reports, it has been determined that the subject site is contaminated with residual radioactive material ' as a result of Manhattan Engineer District/Atomic Energy Commission operations P * at this site. The contamination is in excess of the acceptable guidelines and warrants some form of remedial action under the Fornlerly Utilized Sites Reriledial Action Program. It should be noted that the attached reports are draft reports and although subject to change, the changes expected will not effect the designation of the site; therefore, the reports are Suitable for -

338

NE-23  

Office of Legacy Management (LM)

s,' s,' Whidd Pk. Yilljam West West Orange Tennis Club, Inc. 200 Pleasant Valley Way West Orange, New Jersey 07052 Dear Mr. West: The Department of Energy (DOE), as part of its Formerly Utilized Sites Remedial Action Program (FUSRAP), has reviewed information on Vitro Laboratories, formerly located on what is now property of the West Orange Tennis Club, to determine whether it contains residual radioactivity traceable to activities conducted on behalf of the Atomic Energy Commission (a predecessor to DOE). A radiological survey indicated that the radiation levels and radionuclide concentrations are at or near natural background levels. Therefore, no remedial action is required, and DOE is eliminating the former Vitro site from further consideration under FL&RAP.

339

1 Summary: NE cod FSP survey 2003-08 The trawler Abbie Lee was  

E-Print Network (OSTI)

chartered in October/November 2008 to carry out the sixth in a series of FSP surveys of cod and other gadoids off the NE coast of England. Surveys since 2005 have utilised tows spread out over the survey area, with additional tows in defined areas with coarser seabed types (hard ground) where cod abundance is expected to be greatest. As in previous FSP surveys, cod were most abundant on or near the hard ground, whereas haddock were mainly on the softer seabed sediments offshore. Whiting distribution showed no clear relationship with seabed type. 6 5

Jos De Oliveira; Guy Pasco; Mike Armstrong; Peter Randall; Cefas Lowestoft

2009-01-01T23:59:59.000Z

340

Temperature Effects on the Perturber Induced Shift of Dopant Ionization Energies in He and Ne  

SciTech Connect

In this Letter, temperature effects on the perturber induced shift {Delta}{sub D}({rho}{sub P}) [{rho}{sub P} {equivalent_to} perturber number density] of the dopant ionization energy in the repulsive gases Ne and He are investigated at low to medium perturber densities (i.e., {rho}{sub P} {<=} 6.0 x 10{sup 21} cm{sup -3}). We show that these effects arise form changes in the ensemble averaged dopant/perturber polarization energy rather than from changes in the energy of the quasi-free electron.

C Evans; Y Lushtak; X Shi; L Li; G Findley

2011-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "wy nv ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Horn Operational Experience in K2K, MiniBooNE, NuMI and CNGS  

E-Print Network (OSTI)

This paper gives an overview of the operation and experience gained in the running of magnetic horns in conventional neutrino beam lines (K2K, MiniBooNE, NuMI and CNGS) over the last decade. Increasing beam power puts higher demands on horn conductors but even more on their hydraulic and electrical systems, while the horn environment itself becomes more hostile due to radiation. Experience shows that designing horns for remote handling and testing them extensively without beam become prerequisites for successful future neutrino beam lines.

Pardons, A

2008-01-01T23:59:59.000Z

342

DOE-NE Proliferation and Terrorism Risk Assessment: FY12 Plans Update  

SciTech Connect

This presentation provides background information on FY12 plans for the DOE Office of Nuclear Energy Proliferation and Terrorism Risk Assessment program. Program plans, organization, and individual project elements are described. Research objectives are: (1) Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; (2) Develop improvements in the affordability of new reactors to enable nuclear energy; (3) Develop Sustainable Nuclear Fuel Cycles; and (4) Understand and minimize the risks of nuclear proliferation and terrorism - Goal is to enable the use of risk information to inform NE R&D program planning.

Sadasivan, Pratap [Los Alamos National Laboratory

2012-06-21T23:59:59.000Z

343

Radiative rates and electron impact excitation rate coefficients for Ne-like selenium, Se XXV  

Science Conference Proceedings (OSTI)

In this article we report calculations of energy levels, radiative rates, electron impact collision strengths, and effective collision strengths for transitions among the 241 fine-structure levels arising from 2l{sup 8} and 2l{sup 7}n{sup '}l{sup '} (n{sup '{241 levels. The effective collision strengths are reported for all 28920 transitions among the 241 levels over a wide temperature range up to 10 keV. To assess the reliability and accuracy of the present collisional data, we have performed a 27-state close-coupling calculation, employing the Dirac R-matrix theory. The results from the close-coupling calculation and the independent-process calculation for the identical target states are found to be in good agreement. - Highlights: {yields} Radiative and collisional atomic data are presented for the lowest 241 fine-structure levels in Ne-like Se. {yields} Calculations are performed using the FAC package. {yields} Resonances enhance significantly a large amount of transitions. {yields} Radiative damping effects are significant for many transitions. {yields} Close-coupling effects are small in Ne-like Se.

Wang, K.; Chen, C.Y., E-mail: chychen@fudan.edu.cn; Huang, M.; Wang, Y.S.; Zou, Y.M.

2011-07-15T23:59:59.000Z

344

Photoionization-pumped, Ne II, x-ray laser studies project. Final report  

SciTech Connect

The energetics of this pumping scheme are shown. Short-pulse (50 to 100 ps) laser irradiation of an appropriate x-ray flashlamp medium generates broad-band emission in the range of 300 to 800 eV which preferentially photoionizes Ne to the /sup 2/S state of Ne II creating an inversion at approximately 27 eV. Although this approach does not depend on precise spectral overlap between the x-ray pump radiation and the medium to be pumped, it does require that the x-ray medium remain un-ionized prior to photoionization by the soft x-ray emission. Well-controlled focus conditions are required to ensure that the x-ray medium is not subjected to electron or x-ray preheat prior to irradiation by the soft x-ray source. The magnitude of the population inversion is predicted to be critically dependent upon rapid photoionization of the two states; therefore, ultra-short pulse irradiation of the laser flashlamps is required.

Richardson, M.C.; Hagelstein, P.L.; Eckart, M.J.; Forsyth, J.M.; Gerrassimenko, M.; Soures, J.M.

1984-01-01T23:59:59.000Z

345

Helioseismic Constraints on the Solar Ne/O Ratio and Heavy Element Abundances  

E-Print Network (OSTI)

We examine the constraints imposed by helioseismic data on the solar heavy element abundances. In prior work we argued that the measured depth of the surface convection zone R_CZ and the surface helium abundance Y_surf were good metallicity indicators which placed separable constraints on light metals (CNONe) and the heavier species with good relative meteoritic abundances. The resulting interiors-based abundance scale was higher than some published studies based on 3D model atmospheres at a highly significant level. In this paper we explore the usage of the solar sound speed in the radiative interior as an additional diagnostic, and find that it is sensitive to changes in the Ne/O ratio even for models constructed to have the same R_CZ and Y_surf. Three distinct helioseismic tests (opacity in the radiative core, ionization in the convection zone, and the core mean molecular weight) yield consistent results. Our preferred O, Ne and Fe abundances are 8.86 +/-0.04, 8.15 +/-0.17 and 7.50 +/-0.05 respectively. Th...

Delahaye, F; Pinsonneault, L; Zeippen, C J

2010-01-01T23:59:59.000Z

346

Light charged particle emission from hot $^{32}$S$^{*}$ formed in $^{20}$Ne + $^{12}$C reaction  

E-Print Network (OSTI)

Inclusive energy distributions for light charged particles ($p, d, t$ and $\\alpha$) have been measured in the $^{20}$Ne (158, 170, 180, 200 MeV) + $^{12}$C reactions in the angular range 10$^{o}$ -- 50$^{o}$. Exclusive light charged particle energy distribution measurements were also done for the same system at 158 MeV bombarding energy by in-plane light charged particle -- fragment coincidence. Pre-equilibrium components have been separated out from proton energy spectra using moving source model considering two sources. The data have been compared with the predictions of the statistical model code CASCADE. It has been observed that significant deformation effects were needed to be introduced in the compound nucleus in order to explain the shape of the evaporated $d, t$ energy spectra. For protons, evaporated energy spectra were rather insensitive to nuclear deformation, though angular distributions could not be explained without deformation. Decay sequence of the hot $^{32}$S nucleus has been investigated through exclusive light charged particle measurements using the $^{20}$Ne (158 MeV) + $^{12}$C reaction. Information on the sequential decay chain has been extracted through comparison of the experimental data with the predictions of the statistical model. It is observed from the present analysis that exclusive light charged particle data may be used as a powerful tool to probe the decay sequence of hot light compound systems.

Aparajita Dey; S. Bhattacharya; C. Bhattacharya; K. Banerjee; T. K. Rana; S. Kundu; S. R. Banerjee; S. Mukhopadhyay; D. Gupta; R. Saha

2008-07-01T23:59:59.000Z

347

Characterization of nonthermal Ne-N{sub 2} mixture radio frequency discharge  

Science Conference Proceedings (OSTI)

This paper deals with optical emission spectroscopic studies of low pressure (p=0.1{yields}0.5 mbar) Ne-N{sub 2} capacitively coupled radio frequency (rf) plasma that can be used for plasma nitriding, etc. It reports the methods to calculate the electron temperature (T{sub e}) in nonthermal plasmas. Since, the selected Ne I lines, used to calculate electron temperature, are found in corona balance; therefore, it allows us to use modified Boltzmann technique to calculate electron temperature. Langmuir probe is also used to calculate electron temperature and electron energy distribution functions (EEDFs). The measurements are worked out for different discharge parameters like neon percentage, filling pressure and RF power. It is found that electron temperature increases with the increase in neon percentage and decreases with the increase in pressure, whereas excitation temperature (T{sub exc}) increases with power, neon percentage, and decreases with pressure. It is also observed that electron temperature measured by Langmuir probe technique is slightly greater than the one measured via modified Boltzmann plot method. The tails of the EEDFs gain height and extend toward the higher energy with the increase in neon percentage in the mixture.

Rehman, N. U.; Zakaullah, M. [Department of Physics, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Khan, F. U. [Department of Physics, Gomal University, 29050 D.I. Khan (Pakistan); Naseer, S. [Department of Physics, Peshawar University, 25120 Peshawar (Pakistan)

2008-12-15T23:59:59.000Z

348

Measurement of the nu(mu)-CCQE cross-section in the SciBooNE experiment  

SciTech Connect

SciBooNE is a neutrino and anti-neutrino cross-section experiment at Fermilab, USA. The SciBooNE experiment is summarized and two independent CCQE analyses are described. For one of the analyses, an absolute {nu}{sub {mu}}-CCQE cross section in the neutrino energy region (0.6-1.6) GeV is shown and the technique developed for such a purpose is also explained. The total cross section measured over this energy range agrees well with expectations, based on the NEUT event generator and using a value of 1.21 GeV for the CCQE axial mass.

Alcaraz-Aunion, Jose Luis; /Barcelona, IFAE; Walding, Joseph; /Imperial Coll., London

2009-09-01T23:59:59.000Z

349

New Results from MiniBooNE Charged-Current Quasi-Elastic Anti-Neutrino Data  

SciTech Connect

MiniBooNE anti-neutrino charged-current quasi-elastic (CCQE) data is compared to model predictions. The main background of neutrino-induced events is examined first, where three independent techniques are employed. Results indicate the neutrino flux is consistent with a uniform reduction of {approx}20% relative to the largely uncertain prediction. After background subtraction, the Q{sup 2} shape of {bar v}{sub {mu}} CCQE events is consistent with the model parameter MA = 1.35 GeV determined from MiniBooNE v{sub {mu}} CCQE data, while the normalization is {approx} 20% high compared to the same prediction.

Grange, Joseph

2011-07-01T23:59:59.000Z

350

U.S. Energy Information Administration | Annual Energy Outlook...  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2012 Regional maps Figure F6. Coal supply regions WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT...

351

U.S. Energy Information Administration | Annual Energy Outlook...  

Gasoline and Diesel Fuel Update (EIA)

1 Regional maps Figure F4. Oil and gas supply model regions Figure F4. Oil and Gas Supply Model Regions Atlantic WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA...

352

Laser Rock Drilling on the History Channel - The NE Multimedia Collection  

NLE Websites -- All DOE Office Websites (Extended Search)

Departments > System Technologies & Diagnostics > Videos Departments > System Technologies & Diagnostics > Videos Laser Oil & Gas Well Drilling: Laser Rock Drilling on the History Channel Argonne's Laser Applications Lab and researcher Claude Reed (NE) appeared in the History Channel program "Modern Marvels: Drilling" (May 10, 2006). "Modern Marvels" relates the ingenuity, invention and imagination behind everyday items, technological breakthroughs and man-made wonders. :: Please wait until video loads completely :: Argonne Experts Dr. Claude B. Reed is one of the Experts featured in the Argonne Experts Guide. The video is in mp4 format. Closed Captioning Transcript Live Closed captioning of the video is not available; however -as an alternative- we provide a transcript of the audio portion of this video as a separate web page.

353

Markus Popa, DOE (OCRWM) Bill Sherman, NE HLRW Task Force Robert Holden, NCAI  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minutes Monday, November 3rd 2:00-3:00 p.m. (EST) Minutes Monday, November 3rd 2:00-3:00 p.m. (EST) Participants included: Markus Popa, DOE (OCRWM) Bill Sherman, NE HLRW Task Force Robert Holden, NCAI Mike Butler, UETC Bob Fronczak, AAR Kevin Blackwell, FRA Mike Butler (UETC) greeted participants and informed the group of previous notification by Robert Light (Mescalero Apache Tribe), Robert Centracco (FRA), and Mike Calhoun (FRA) that they would be unable to join the call. Mr. Butler began the call with a brief update on the status of Matrix 1, now entitled "Summary of Rail and Highway Regulations and their Applicability to States, Tribes, Shippers, and Carriers." He informed the group that he had completed an initial draft of the matrix, but that he was making substantial revisions to it and therefore he had not distributed it to the entire group for

354

NE-24 R&D Decontamination Projects Under the Formerly Utilized Sites Remedial  

Office of Legacy Management (LM)

" _ ,' ,:.' : " _ ,' ,:.' : NE-24 R&D Decontamination Projects Under the Formerly Utilized Sites Remedial Action Program (FUSRAP) '. * * ,~~'.'J.' L.aGrone, Manager Oak Ridge Operations O fffce As a result of the House-Senate Conference Report and the Energy and W a ter Appropriations Act for FY 1984, and based on the data in the attached reports indicating radioactive contamination In excess of acceptable guidelines, the sites listed In the attachment and their respectfve vicinity properties (contaminated with radioactive materials from these sites) are being designated as decontamination research and development projects under the FUSRAP. Each site and the associated vicinity properties should be treated as a separate project. . . -_ The objectjve of each project is to decontaminate the vicinity properties

355

NE-23 Elimination of the Chupadera Mesa and Los Alamos County Industrial Waste  

Office of Legacy Management (LM)

AM? 2 2 1986 AM? 2 2 1986 NE-23 Elimination of the Chupadera Mesa and Los Alamos County Industrial Waste Line Sites from Further Consideration for FUSRAP Inclusion Carlos E. Garcia, Director Environmental Safety and Health Division Albuquerque Operations Office The enclosed material is being provided to you to document the final actions taken under the Department's Formerly Utilized Sites Remedial Action Program (FUSRAP) for the Chupadera Mesa area and the Los Alamos County Industrial Waste Lines, New Mexico. Copies of designation/ elimination reviews for each of the sites are enclosed for your records. We have determined that neither site warrants inclusion in the remedial action program. Primary sources of data for this determination were two survey reports prepared through your Division, LA-10256-MS, "Radiological

356

K-SHELL PHOTOIONIZATION AND PHOTOABSORPTION OF Ne, Mg, Si, S, Ar, AND Ca  

Science Conference Proceedings (OSTI)

We present extensive computations of photoabsorption and photoionization cross sections across the K-edge of Ne, Mg, Si, S, Ar, and Ca ions with less than 11 electrons. The calculations are performed using the Breit-Pauli R-matrix method and include the effects of radiative and Auger damping by means of an optical potential. The wave functions are constructed from single-electron orbital bases obtained using a Thomas-Fermi-Dirac statistical model potential. Configuration interaction is considered among all fine-structure levels within the n = 2 complex. The damping processes affect the resonances converging to the K thresholds causing them to display symmetric profiles of constant width that smear the otherwise sharp edge at the photoionization thresholds.

Witthoeft, M. C.; Kallman, T. R. [NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Bautista, M. A. [Department of Physics, Virginia Polytechnic and State University, Blacksburg, VA 24061 (United States); Mendoza, C. [Centro de Fisica, Instituto Venezolano de Investigaciones CientIficas (IVIC), Caracas 1020A (Venezuela, Bolivarian Republic of); Palmeri, P.; Quinet, P. [Astrophysique et Spectroscopie, Universite de Mons-Hainaut, B-7000 Mons (Belgium)], E-mail: bautista@vt.edu

2009-05-15T23:59:59.000Z

357

Effect of supplementation on vitamin A and zinc nutriture of children in northeast (NE) Thailand  

SciTech Connect

Previous surveys of the nutritional status of young children in NE Thailand suggested that they may benefit from vitamin A (VA) and/or zinc (Zn) supplementation. 140 children, with low plasma retinol concentrations were entered in a double-blind study. They were randomized and supplemented with either VA, Zn, VA + Zn or placebo each weekday for 6 mos. All subjects consumed their usual diet that provided adequate protein, less than recommended calories, fat, Zn and VA. Biochemical indices of VA and Zn status increased significantly. The children had adequate VA liver stores as assessed by relative dose response. Zn supplementation resulted in improvement of vision restoration time in dim light using rapid dark adaptometry. VA and Zn synergistically normalized conjunctival epithelium after a 6 mo supplementation. Data suggest that functional improvements of populations with suboptimal VA and Zn nutriture can be accomplished by supplementation with {lt}2 times of RDA of these nutrients.

Udomkesmalee, E.; Dhanamitta, S.; Charoenklatkul, S.; Tantipopipat, S.; Banjong, O.; Rojroongwasinkul, N.; Kramer, T.R.; Smith, J.C. Jr. (Mahidol Univ., Nakhon Pathom (Thailand) USDA, Beltsville, MD (United States))

1991-03-11T23:59:59.000Z

358

First direct measurement of resonance strengths in {sup 17}O({alpha},{gamma}){sup 21}Ne  

SciTech Connect

The reaction {sup 17}O({alpha},{gamma}){sup 21}Ne has been measured by in-beam {gamma} spectroscopy for the first time in the energy range E{sub {alpha}=}750-1650 keV using highly enriched anodized Ta{sub 2}({sup 17}O){sub 5} targets. Resonances were found at E{sub {alpha}=} 1002, 1386, and 1619 keV. Their strengths and primary {gamma}-ray branchings are given. The new results exclude the low reaction rate of Descouvemont and support the rate of Caughlan and Fowler. Implications for the neutron poisoning efficiency of {sup 16}O in the weak s-process are discussed.

Best, A.; Goerres, J.; Couder, M.; Boer, R. de; Falahat, S.; Kontos, A.; LeBlanc, P. J.; Li, Q.; O'Brien, S.; Sonnabend, K.; Talwar, R.; Uberseder, E.; Wiescher, M. [Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

2011-05-15T23:59:59.000Z

359

KM3NeT:a large underwater neutrino telescope in the Mediterranean Sea  

E-Print Network (OSTI)

High energy neutrinos produced in astrophysical processes will allow for a new way of studying the universe. In order to detect the expected flux of high energy neutrinos from specific astrophysical sources, neutrino telescopes of a scale of a km^3 of water will be needed. A Northern Hemisphere detector is being proposed to be sited in a deep area of the Mediterranean Sea. This detector will provide complimentary sky coverage to the IceCube detector being built at the South Pole. The three neutrino telescope projects in the Mediterranean (ANTARES, NEMO and NESTOR) are partners in an effort to design, and build such a km^3 size neutrino telescope, the KM3NeT. The EU is funding a 3-year Design Study; the status of the Design Study is presented and some technical issues are discussed.

P. A. Rapidis; for the KM3NeT consortium

2008-03-17T23:59:59.000Z

360

BP Studentship* in the Department of Earth Sciences of the University of Oxford Tectonic evolution of the Parnaiba cratonic basin, NE Brazil  

E-Print Network (OSTI)

of the Parnaiba cratonic basin, NE Brazil Supervisors: Prof. A. B. Watts and Dr. M. Daly (BP) * Subject to funding structure and petroleum play. The focus will be on the Parnaiba basin in NE Brazil, one of the world in Brazil and the UK, will involve the acquisition of seismic reflection and refraction profile data along

Note: This page contains sample records for the topic "wy nv ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Using MiniBooNE neutral current elastic cross section results to constrain 3+1 sterile neutrino models  

E-Print Network (OSTI)

The MiniBooNE Neutral Current Elastic (NCEL) cross section results are used to extract limits in the $\\Delta m^{2}-\\sin^{2}\\vartheta_{\\mu s}$ plane for a 3+1 sterile neutrino model with a mass splitting $0.1 \\leq \\Delta m^{2} \\leq 10.0$ eV$^{2}$. GENIE is used with a cross section model close to the one employed by MiniBooNE to make event rate predictions using simulations on the MiniBooNE target material CH$_{2}$. The axial mass is a free parameter in all fits. Sterile modifications to the flux and changes to the cross section in the simulation relate the two and allow limits to be set on sterile neutrino mixing using cross section results. The large axial mass problem makes it necessary for experiments to perform their own axial mass fits, but a prior fit to the same dataset could mask a sterile oscillation signal. Results are given with and without a penalty term on the axial mass from a prior fit. We find that a simultaneous fit to the axial mass and the sterile neutrino parameters favours very high axial mass values. The general problems that the current uncertainty on charged-current quasi-elastic (CCQE) cross sections at MiniBooNE energies pose for sterile neutrino measurements are discussed.

Callum Wilkinson; Susan Cartwright; Lee Thompson

2013-09-04T23:59:59.000Z

362

Measurements of nuclear $?$-ray line emission in interactions of protons and $?$ particles with N, O, Ne and Si  

E-Print Network (OSTI)

$\\gamma$-ray production cross sections have been measured in proton irradiations of N, Ne and Si and $\\alpha$-particle irradiations of N and Ne. In the same experiment we extracted also line shapes for strong $\\gamma$-ray lines of $^{16}$O produced in proton and $\\alpha$-particle irradiations of O. For the measurements gas targets were used for N, O and Ne and a thick foil was used for Si. All targets were of natural isotopic composition. Beams in the energy range up to 26 MeV for protons and 39 MeV for $\\alpha$-particles have been delivered by the IPN-Orsay tandem accelerator. The $\\gamma$ rays have been detected with four HP-Ge detectors in the angular range 30$^{\\circ}$ to 135$^{\\circ}$. We extracted 36 cross section excitation functions for proton reactions and 14 for $\\alpha$-particle reactions. For the majority of the excitation functions no other data exist to our knowledge. Where comparison with existing data was possible usually a very good agreement was found. It is shown that these data are very interesting for constraining nuclear reaction models. In particular the agreement of cross section calculations in the nuclear reaction code TALYS with the measured data could be improved by adjusting the coupling schemes of collective levels in the target nuclei $^{14}$N, $^{20,22}$Ne and $^{28}$Si. The importance of these results for the modeling of nuclear $\\gamma$-ray line emission in astrophysical sites is discussed.

H. Benhabiles-Mezhoud; J. Kiener; J. -P. Thibaud; V. Tatischeff; I. Deloncle; A. Coc; J. Duprat; C. Hamadache; A. Lefebvre-Schuhl; J. -C. Dalouzy; F. De Grancey; F. De Oliveira; F. Dayras; N. De Srville; M. -G. Pellegriti; L. Lamia; S. Ouichaoui

2010-11-11T23:59:59.000Z

363

First Direct Measurement of the 17F(p,gamma)18Ne Cross Section  

SciTech Connect

The rate of the 17F(p,gamma)18Ne reaction is of significant importance in astrophysical events like novae and x-ray bursts. A previous 17F(p,p)17F measurement identified the 3+ state in 18Ne predicted to dominate the rate above 0.2 GK at a center of mass energy of 599.8 keV, but the resonance strength for proton capture was unknown. We have directly measured the 17F(p,gamma)18Ne reaction with the Daresbury Recoil Separator, using a mixed beam of radioactive 17F and stable 17O from the HRIBF at ORNL. The resonance strength for the 599.8 keV resonance in 18Ne was found to be = 33 14(stat) 17(sys) meV, corresponding to a width of = 56 24(stat) 30(sys) meV. Additionally, an upper limit on the direct capture S factor of S(E) < 65 keV b was determined at an intermediate energy of 800 keV.

Chipps, K. [Colorado School of Mines, Golden; Bardayan, Daniel W [ORNL; Blackmon, Jeff C [ORNL; Chae, K. Y. [University of Tennessee, Knoxville (UTK); Greife, U. [Colorado School of Mines, Golden; Hatarik, Robert [Rutgers University; Kozub, R. L. [Tennessee Technological University; Matei, Catalin [Oak Ridge Associated Universities (ORAU); Moazen, Brian [University of Tennessee, Knoxville (UTK); Nesaraja, Caroline D [ORNL; Pain, Steven D [ORNL; Peters, W. A. [Rutgers University; Pittman, S. T. [University of Tennessee, Knoxville (UTK); ShrinerJr., J. F. [Tennessee Technological University; Smith, Michael Scott [ORNL

2008-01-01T23:59:59.000Z

364

Demonstration Assessment of LED Roadway Lighting: NE Cully Boulevard Portland, OR  

Science Conference Proceedings (OSTI)

A new roadway lighting demonstration project was initiated in late 2010, which was planned in conjunction with other upgrades to NE Cully Boulevard, a residential collector road in the northeast area of Portland, OR. With the NE Cully Boulevard project, the Portland Bureau of Transportation hoped to demonstrate different light source technologies and different luminaires side-by-side. This report documents the initial performance of six different newly installed luminaires, including three LED products, one induction product, one ceramic metal halide product, and one high-pressure sodium (HPS) product that represented the baseline solution. It includes reported, calculated, and measured performance; evaluates the economic feasibility of each of the alternative luminaires; and documents user feedback collected from a group of local Illuminating Engineering Society (IES) members that toured the site. This report does not contain any long-term performance evaluations or laboratory measurements of luminaire performance. Although not all of the installed products performed equally, the alternative luminaires generally offered higher efficacy, more appropriate luminous intensity distributions, and favorable color quality when compared to the baseline HPS luminaire. However, some products did not provide sufficient illumination to all areasvehicular drive lanes, bicycle lanes, and sidewalksor would likely fail to meet design criteria over the life of the installation due to expected depreciation in lumen output. While the overall performance of the alternative luminaires was generally better than the baseline HPS luminaire, cost remains a significant barrier to widespread adoption. Based on the cost of the small quantity of luminaires purchased for this demonstration, the shortest calculated payback period for one of the alternative luminaire types was 17.3 years. The luminaire prices were notably higher than typical prices for currently available luminaires purchased in larger quantities. At prices that are more typical, the payback would be less than 10 years. In addition to the demonstration luminaires, a networked control system was installed for additional evaluation and demonstration purposes. The capability of control system to measure luminaire input power was explored in this study. A more exhaustive demonstration and evaluation of the control system will be the subject of future GATEWAY report(s).

Royer, Michael P.; Poplawski, Michael E.; Tuenge, Jason R.

2012-06-29T23:59:59.000Z

365

NV/YMP RADIOLOGICAL CONTROL MANUAL  

SciTech Connect

This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) and the Yucca Mountain Office of Repository Development (YMORD). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations Part 835 (10 CFR 835), Occupational Radiation Protection. Programs covered by this manual are located at the Nevada Test Site (NTS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Pleasanton, California; and at Andrews Air Force Base, Maryland. In addition, field work by NNSA/NSO at other locations is also covered by this manual.

U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE; BECHTEL NEVADA

2004-11-01T23:59:59.000Z

366

DRI Renewable Energy Center (REC) (NV)  

Science Conference Proceedings (OSTI)

The primary objective of this project was to utilize a flexible, energy-efficient facility, called the DRI Renewable Energy Experimental Facility (REEF) to support various renewable energy research and development (R&D) efforts, along with education and outreach activities. The REEF itself consists of two separate buildings: (1) a 1200-ft2 off-grid capable house and (2) a 600-ft2 workshop/garage to support larger-scale experimental work. Numerous enhancements were made to DRI's existing renewable power generation systems, and several additional components were incorporated to support operation of the REEF House. The power demands of this house are satisfied by integrating and controlling PV arrays, solar thermal systems, wind turbines, an electrolyzer for renewable hydrogen production, a gaseous-fuel internal combustion engine/generator set, and other components. Cooling needs of the REEF House are satisfied by an absorption chiller, driven by solar thermal collectors. The REEF Workshop includes a unique, solar air collector system that is integrated into the roof structure. This system provides space heating inside the Workshop, as well as a hot water supply. The Workshop houses a custom-designed process development unit (PDU) that is used to convert woody biomass into a friable, hydrophobic char that has physical and chemical properties similar to low grade coal. Besides providing sufficient space for operation of this PDU, the REEF Workshop supplies hot water that is used in the biomass treatment process. The DRI-REEF serves as a working laboratory for evaluating and optimizing the performance of renewable energy components within an integrated, residential-like setting. The modular nature of the system allows for exploring alternative configurations and control strategies. This experimental test bed is also highly valuable as an education and outreach tool both in providing an infrastructure for student research projects, and in highlighting renewable energy features to the public.

Hoekman, S. Kent; Broch, Broch; Robbins, Curtis; Jacobson, Roger; Turner, Robert

2012-12-31T23:59:59.000Z

367

len Jr. Bl!ukr.'.lrd NV  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

some time. For example, Southen has been collaborating with DOE on an Integrated Distribution Management System ("IDMS") since 2005. IDMS began as a demonstration project on how...

368

Fine structure collision strengths and line ratios for [Ne V] in infrared and optical sources  

E-Print Network (OSTI)

Improved collisions strengths for the mid-infrared and optical transitions in Ne V are presented. Breit-Pauli R-Matrix calculations for electron impact excitation are carried out with fully resolved near-threshold resonances at very low energies. In particular, the fine structure lines at 14 micron and 24 micron due to transitions among the ground state levels 1s^22s^22p^3 (^3P_{0,1,2}), and the optical/near-UV lines at 2973, 3346 and 3426 Angstrom transitions among the ^3P_{0,1,2}, ^1D_2, ^1S_0 levels are described. Maxwellian averaged collision strengths are tabulated for all forbidden transistion within the ground configuration. Significant differences are found in the low temperature range Te < 10000 K for both the FIR and the opitcal transitions compared to previous results. An analysis of the 14/24 line ratio in low-energy-density (LED) plasma conditions reveals considerable variation; the effective rate coefficient may be dominated by the very low-energy behaviour rather than the maxwellian averaged...

Dance, Michael; Nahar, Sultana N; Pradhan, Anil K

2013-01-01T23:59:59.000Z

369

Particle decay branching ratios for states of astrophysical importance in 19Ne  

E-Print Network (OSTI)

We have measured proton and alpha-particle branching ratios of excited states in 19Ne formed using the 19F(3He,t) reaction at a beam energy of 25 MeV. These ratios have a large impact on the astrophysical reaction rates of 15O(alpha,gamma), 18F(p,gamma) and 18F(p,alpha), which are of interest in understanding energy generation in x-ray bursts and in interpreting anticipated gamma-ray observations of novae. We detect decay protons and alpha-particles using a silicon detector array in coincidence with tritons measured in the focal plane detector of our Enge split-pole spectrograph. The silicon array consists of five strip detectors of the type used in the Louvain-Edinburgh Detector Array, subtending angles from 130 degrees to 165 degrees with approximately 14% lab efficiency. The correlation angular distributions give additional confidence in some prior spin-parity assignments that were based on gamma branchings. We measure Gamma_p/Gamma=0.387+-0.016 for the 665 keV proton resonance, which agrees well with the direct measurement of Bardayan et al.

D. W. Visser; J. A. Caggiano; R. Lewis; W. B. Handler; A. Parikh; P. D. Parker

2003-08-08T23:59:59.000Z

370

Color transparency after the NE18 and E665 experiments: Outllok and perspectives at CEBAF  

E-Print Network (OSTI)

CEBAF is a high-luminocity factory of virtual photons with variable virtuality $Q^{2}$ and transverse size. This makes CEBAF, in particular after the energy upgrade to (8-12)GeV, an ideal facility for uncovering new phenomena, and opening new windows, at the interface of the perturbative and nonperturbative QCD. We discuss color transparency as the case for a broad program on electroproduction of vector mesons $\\rho^{0},\\,\\omega^{0},\\,\\phi^{0}$ and their radial excitations $\\rho',\\,\\omega',\\,\\phi'$ at CEBAF. We also comment on the second generation of experiments on color transparency in $^{4}He(e,e'p)$ scattering, which are also feasible at CEBAF. In 1994, we can make more reliable projections into future because our understanding of the onset of color transparency has greatly been augmented by two experiments completed in 1993:\\\\ i) no effect of CT was seen in the SLAC NE18 experiment on $A(e,e'p)$ scattering at virtualities of the exchanged photon $Q^{2} \\lsim 7$ GeV$^{2}$, \\\\ ii) strong signal of CT was observed in the FNAL E665 experiment on exclusive $\\rho^{0}$- meson production in deep inelastic scattering in the same range of $Q^{2}$. \\\\ We discuss the impact of these observations on the CEBAF experimental program. We argue they both are good news, both were anticipated theoretically, and both rule in the correct QCD mechanism of the onset of CT.

J. Nemchik; N. N. Nikolaev; B. G. Zakharov

1994-06-06T23:59:59.000Z

371

An intensity-modulated dual-wavelength He-Ne laser for remote sensing of methane  

SciTech Connect

The differential absorption laser radar for methane sensing detects a leakage of methane gas by emitting into the atmosphere the light of a wavelength absorbable by methane, receiving the light returning after being reflected or scattered on a road or wall surface, etc., and measuring the light intensity lost during the travel. This methane detection system is highly practicable as it makes an instantaneous remote detection possible. The authors have developed a new He-Ne laser that could be used as the light source for the above system. This device emits a two-wavelength laser beam (one wavelength absorbable by methane and the other not absorbable by methane but used for referential purposes) from a single plasma tube, and there is no possibility of the axes of the two-wavelength component deviating from each other. Further, using this laser, they have developed a vehicle-mounted type differential absorption laser radar system which has successfully detected low density methane leakage while the vehicle was moving.

Ueki, T.; Tanaka, H.; Uehara, K.

1988-01-01T23:59:59.000Z

372

Controlling the nonlinear intracavity dynamics of large He-Ne laser gyroscopes  

E-Print Network (OSTI)

A model based on Lamb's theory of gas lasers is applied to a He-Ne ring laser gyroscope in order to estimate and remove the laser dynamics contribution from the rotation measurements. The intensities of the counter-propagating laser beams exiting one cavity mirror are continuously observed together with a monitor of the laser population inversion. These observables, once properly calibrated with a dedicated procedure, allow us to estimate cold cavity and active medium parameters driving the main part of the nonlinearities of the system. The parameters identification and noise subtraction procedure has been verified by means of a Monte Carlo study of the system, and experimentally tested on the G-Pisa ring laser oriented with the normal to the ring plane almost parallel to the Earth rotation axis. In this configuration the Earth rotation-rate provides the maximum Sagnac effect while the contribution of the orientation error is reduced at minimum. After the subtraction of laser dynamics by a Kalman filter, the ...

Cuccato, Davide; Belfi, Jacopo; Beverini, Nicol; Ortolan, Antonello; Di Virgilio, Angela

2013-01-01T23:59:59.000Z

373

A Measurement of the Neutrino Neutral Current Pi0 Cross Section at MiniBooNE  

SciTech Connect

The MiniBooNE neutrino beam and detector at Fermilab are used to study the production of neutral current {pi}{sup 0} events. The cross sections for neutrino interactions with mineral oil (CH{sub 2}) are reported for resonantly produced and coherently produced single {pi}{sup 0} events. We measure a resonant single {pi}{sup 0} cross section of {sigma}({nu}{sub {mu}} N {pi}{sup 0}) = (0.0129 {+-} 0.0011(stat.) {+-} 0.0043(syst.)) x 10{sup -36} cm{sup 2}/CH{sub 2} at a mean neutrino energy of 1.26 GeV. We measure a coherent single {pi}{sup 0} cross section of {sigma}({nu}{sub {mu}} A {yields} {nu}{sub {mu}} A {pi}{sup 0}) = (0.00077 {+-} 0.00016 (stat.) {+-} 0.00036 (syst.)) x 10{sup -36} cm{sup 2}/CH{sub 2} at mean neutrino energy 1.12 GeV.

Raaf, Jennifer Lynne; /Cincinnati U.

2005-05-01T23:59:59.000Z

374

High Level Requirements for the Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)  

Science Conference Proceedings (OSTI)

The US Department of Energy, Office of Nuclear Energy (DOE-NE), has been tasked with the important mission of ensuring that nuclear energy remains a compelling and viable energy source in the U.S. The motivations behind this mission include cost-effectively meeting the expected increases in the power needs of the country, reducing carbon emissions and reducing dependence on foreign energy sources. In the near term, to ensure that nuclear power remains a key element of U.S. energy strategy and portfolio, the DOE-NE will be working with the nuclear industry to support safe and efficient operations of existing nuclear power plants. In the long term, to meet the increasing energy needs of the U.S., the DOE-NE will be investing in research and development (R&D) and working in concert with the nuclear industry to build and deploy new, safer and more efficient nuclear power plants. The safe and efficient operations of existing nuclear power plants and designing, licensing and deploying new reactor designs, however, will require focused R&D programs as well as the extensive use and leveraging of advanced modeling and simulation (M&S). M&S will play a key role in ensuring safe and efficient operations of existing and new nuclear reactors. The DOE-NE has been actively developing and promoting the use of advanced M&S in reactor design and analysis through its R&D programs, e.g., the Nuclear Energy Advanced Modeling and Simulation (NEAMS) and Consortium for Advanced Simulation of Light Water Reactors (CASL) programs. Also, nuclear reactor vendors are already using CFD and CSM, for design, analysis, and licensing. However, these M&S tools cannot be used with confidence for nuclear reactor applications unless accompanied and supported by verification and validation (V&V) and uncertainty quantification (UQ) processes and procedures which provide quantitative measures of uncertainty for specific applications. The Nuclear Energy Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Utah State University and others with the objective of establishing a comprehensive and web-accessible knowledge base that will provide technical services and resources for V&V and UQ of M&S in nuclear energy sciences and engineering. The knowledge base will serve as an important resource for technical exchange and collaboration that will enable credible and reliable computational models and simulations for application to nuclear reactor design, analysis and licensing. NE-KAMS will serve as a valuable resource for the nuclear industry, academia, the national laboratories, the U.S. Nuclear Regulatory Commission (NRC) and the public and will help ensure the safe, economical and reliable operation of existing and future nuclear reactors. From its inception, NE-KAMS will directly support nuclear energy research, development and demonstration programs within the U.S. Department of Energy (DOE), including the CASL, NEAMS, Light Water Reactor Sustainability (LWRS), Small Modular Reactors (SMR), and Next Generation Nuclear Power Plant (NGNP) programs. These programs all involve M&S of nuclear reactor systems, components and processes, and it is envisioned that NE-KAMS will help to coordinate and facilitate collaboration and sharing of resources and expertise for V&V and UQ across these programs.

Rich Johnson; Hyung Lee; Kimberlyn C. Mousseau

2011-09-01T23:59:59.000Z

375

The Search for Meterorites with Complex Exposure Histories Amoung Ordinary Chondrites with Low 3HE/21NE Ratios  

DOE Green Energy (OSTI)

In calculating cosmic-ray exposure ages of meteorites it is generally assumed that the meteoroids were expelled from a shielded position within their parent body and then experienced a single stage exposure before colliding with Earth. The combination of noble gas and radionuclide measurements in several large meteorites, such as Jilin and Bur Ghelaui, have revealed complex exposure histories: i.e. an initial exposure on the surface of an asteroid (or within meter-sized meteoroid), followed by a second exposure as a smaller object. In fact, orbital dynamics calculations predicted that at least 30% of the meteorites arriving on Earth experienced two- or multiple-stage exposure histories [1]. More recently, after the recognition that the Yarkovsky effect plays an important role in delivering meteorites from the asteroid belt to Earth-crossing orbits, it was confirmed that complex exposure histories should be common [2]. Nevertheless, despite the ability to measure a wide range of radionuclides with accelerator mass spectrometry (AMS), only a few meteorites with complex exposure histories have been identified [e.g. 3,4]. The question is whether the relatively paucity of complex exposure histories is real or have we simply overlooked complex-exposure histories. In this work we focus on meteorites with low {sup 3}He/{sup 21}Ne ratios, since it is known that most meteorites with complex exposure histories have relatively low {sup 3}He/{sup 21}Ne ratios, i.e. the {sup 3}He/{sup 21}Ne ratio is below the ''Bern-line''. Several hypotheses have been suggested for these low {sup 3}He/{sup 21}Ne ratios, including solar heating in low-perihelion orbits, shock-related diffusion of He during the collision that ejected the meteoroid, or an artifact of high shielding conditions [4]. The first two hypotheses seem to be supported by low radiogenic {sup 4}He concentrations in samples with low {sup 3}He, whereas Monte Carlo calculations have shown that some of the low {sup 3}He/{sup 21}Ne ratios may be due to high shielding conditions in objects with radii > 1m [5]. To elucidate these issues, we selected 15 samples with known noble gas concentrations [6] for radionuclide studies and obtained aliquots of the samples adjacent to those measured for noble gases. The specific goal is the identification of complex exposure histories among samples having low {sup 3}He/{sup 21}Ne ratios. All samples have {sup 3}He deficiencies of >20% relative to the ''Bern-line'' (Table 1). Most of the selected samples also have low {sup 22}Ne/{sup 21}Ne ratios ({le}1.1), indicative of high shielding during most of their cosmic-ray exposure (Table 1), whereas one sample (Suizhou) was selected because of its relatively low {sup 81}Kr concentration [7]. In addition, we selected QUE 93021, for which initial radionuclide results suggested a short exposure age. Here we present cosmogenic {sup 10}Be, {sup 26}Al and {sup 36}Cl in stone and metal fractions for the 16 ordinary chondrites listed in Table 1.

Welton, K C; Nishiizumi, K; Caffee, M W

2001-04-30T23:59:59.000Z

376

A measurement of the neutral current neutrino-nucleon elastic cross section at MiniBooNE  

SciTech Connect

The neutral current neutrino-nucleon elastic interaction {nu} N {yields} {nu} N is a fundamental process of the weak interaction ideally suited for characterizing the structure of the nucleon neutral weak current. This process comprises {approx}18% of neutrino events in the neutrino oscillation experiment, MiniBooNE, ranking it as the experiment's third largest process. Using {approx}10% of MiniBooNE's available neutrino data, a sample of these events were identified and analyzed to determine the differential cross section as a function of the momentum transfer of the interaction, Q{sup 2}. This is the first measurement of a differential cross section with MiniBooNE data. From this analysis, a value for the nucleon axial mass M{sub A} was extracted to be 1.34 {+-} 0.25 GeV consistent with previous measurements. The integrated cross section for the Q{sup 2} range 0.189 {yields} 1.13 GeV{sup 2} was calculated to be (8.8 {+-} 0.6(stat) {+-} 0.2(syst)) x 10{sup -40} cm{sup 2}.

Cox, David Christopher; /Indiana U.

2008-02-01T23:59:59.000Z

377

Determination of the {sup 22}Ne{sub nucl}/{sup 4}He{sub rad} ratio in natural uranium-rich fluorite by mass spectrometry  

Science Conference Proceedings (OSTI)

A determination by noble gas mass spectrometry of {sup 22}Ne production through the combined reactions {sup 19}F({alpha},n){sup 22}Na({beta}{sup +}){sup 22}Ne and {sup 19}F({alpha},p){sup 22}Ne on natural calcium fluoride is made for the first time. Six samples of U-rich fluorite from a fluorspar deposit in Mexico were used to determine the {sup 22}Ne{sub nucl}/{sup 4}He{sub rad} ratio generated by the spontaneous decay of U during the last 32 Ma. The obtained ratio (1.33 {+-} 0.11) x10{sup -5} (95% confidence), is compared to other experimental data on natural uranium oxides and theoretical values.

Sole, Jesus; Pi, Teresa [Instituto de Geologia, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Coyoacan, 04510 Mexico D.F. (Mexico)

2006-10-15T23:59:59.000Z

378

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Selection Tool: New Construction Windows Window Selection Tool: New Construction Windows The Window Selection Tool will take you through a series of design conditions pertaining to your design and location. It is a step-by-step decision-making tool to help determine the most energy efficient window for your house. SELECT LOCATION: AK Anchorage AK Fairbanks AL Birmingham AL Mobile AR Little Rock AZ Flagstaff AZ Phoenix AZ Tucson CA Arcata CA Bakersfield CA Daggett CA Fresno CA Los Angeles CA Red Bluff CA Sacramento CA San Diego CA San Francisco CO Denver CO Grand Junction CT Hartford DC Washington DE Wilmington FL Daytona Beach FL Jacksonville FL Miami FL Tallahassee FL Tampa GA Atlanta GA Savannah HI Honolulu IA Des Moines ID Boise IL Chicago IL Springfield IN Indianapolis KS Wichita KY Lexington KY Louisville LA Lake Charles LA New Orleans LA Shreveport MA Boston MD Baltimore ME Portland MI Detroit MI Grand Rapids MI Houghton MN Duluth MN Minneapolis MO Kansas City MO St. Louis MS Jackson MT Billings MT Great Falls NC Raleigh ND Bismarck NE Omaha NH Concord NJ Atlantic City NM Albuquerque NV Las Vegas NV Reno NY Albany NY Buffalo NY New York OH Cleveland OH Dayton OK Oklahoma City OR Medford OR Portland PA Philadelphia PA Pittsburgh PA Williamsport RI Providence SC Charleston SC Greenville SD Pierre TN Memphis TN Nashville TX Brownsville TX El Paso TX Fort Worth TX Houston TX Lubbock TX San Antonio UT Cedar City UT Salt Lake City VA Richmond VT Burlington WA Seattle WA Spokane WI Madison WV Charleston WY Cheyenne AB Edmonton MB Winnipeg ON Toronto PQ Montreal SELECT HOUSE TYPE:

379

Buildings Energy Data Book: 3.9 Educational Facilities  

Buildings Energy Data Book (EERE)

6 6 2010 Regional New Construction and Renovations Expenditures for Public K-12 Schools ($Million) Region New Schools Additions Renovation Total Region 1 (CT, MA, ME, NH, RI, VT) Region 2 (NJ, NY, PA) Region 3 (DE, MD, VA, WV) Region 4 (KY, NC, SC, TN) Region 5 (AL, FL, GA, MS) Region 6 (IN, MI, OH) Region 7 (IL, MN, WI) Region 8 (IA, KS, MO, NE) Region 9 (AR, LA, OK, TX) Region 10 (CO, MT, ND, NM, SD, UT, WY) Region 11 (AZ, CA, HI, NV) Region 12 (AK, ID, OR, WA) Total Source(s): School Planning & Management, 16th Annual School Construction Report, Feb. 2011 p. CR3 8,669.5 3,074.1 2,796.8 14,540.4 1,605.4 407.3 275.2 2,287.9 258.2 181.8 158.1 598.1 1,653.9 479.6 387.8 2,521.2 548.2 130.9 93.3 772.4 309.3 206.1 135.3 650.7 217.6 231.4 187.8 636.8 1,338.0 327.6 175.9 1,841.4 359.6 286.3 278.9 924.8

380

C:\ANNUAL\VENTCHAP.V8\NewNGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

1 1 55 0 2 4 6 8 10 Residential Onsystem Commercial Onsystem Industrial Onsystem Vehicle Fuel Electric Utilities Dollars per Thousand Cubic Feet 0 30 60 90 120 150 180 210 240 270 300 330 Dollars per Thousand Cubic Meters 1997 1998 1999 2000 2001 25. Average Price of Natural Gas Delivered to Consumers in the United States, 1997-2001 Figure Note: Prices are calculated from onsystem sales. Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition" and Federal Energy Regulatory Commission (FERC), Form FERC- 423, "Monthly Report of Cost and Quality of Fuels for Electric Plants." Energy Information Administration / Natural Gas Annual 2001 56 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA

Note: This page contains sample records for the topic "wy nv ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

regionalmaps  

Gasoline and Diesel Fuel Update (EIA)

LNG Imports LNG Imports Pacifi c (9) Moun tain (8) CA (12) AZ/N M (11) W. North Centr al (4) W. South Centr al (7) E. South Centr al (6) E. North Centr al (3) S. Atlan tic (5) FL (10) Mid. Atlan tic (2) New Engl. (1) W. Cana da E. Cana da MacK enzie Alask a Cana da Offsh ore and LNG Mexic o Baha mas Primary Flows Secondary Flows Pipeline Border Crossing Figure 6. Coal Supply Regions Source: Energy Information Administration. Office of Integrated Analysis and Forecasting WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI MT NE IA KS MI AZ NM 500 0 SCALE IN MILES APPALACHIA Northern Appalachia Central Appalachia Southern Appalachia INTERIOR NORTHERN GREAT PLAINS Eastern Interior Western Interior Gulf Lignite Dakota Lignite Western Montana Wyoming, Northern Powder River Basin Wyoming, Southern Powder River Basin Western Wyoming

382

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

WA WA MT ID OR WY ND SD CA NV UT CO NE KS AZ NM OK TX MN WI MI IA IL IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Japan Mexico Mexico Algeria Canada Canada Canada Canada Canada Canada Canada Algeria Mexico Trinidad Canada Canada Nigeria Oman Qatar Trinidad Gulf of Mexico Gulf of Mexico Gulf of Mexico Canada Trinidad Trinidad Gulf of Mexico Malaysia 13,623 Figure 8. Interstate Movements of Natural Gas in the United States, 2003 (Million Cubic Feet) Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Energy Information Administration / Natural Gas Annual 2003 Supplemental Data From Volume To From Volume To CT RI RI MA MA CT VA DC MD DC 366,224 655,731 666,614 633,960 144,284 43,869 536,776 63,133 36,848

383

C:\ANNUAL\VENTCHAP.V8\NewNGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

6 6 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK 27. Average City Gate Price of Natural Gas in the United States, 2001 (Dollars per Thousand Cubic Feet) Figure Sources: Energy Information Administration (EIA), Form EIA-857, "Monthly Report of Natural Gas Purchases and Deliveries to Consumers." 0 2 4 6 8 10 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 Dollars per Thousand Cubic Feet 0 40 80 120 160 200 240 280 320 Dollars per Thousand Cubic Meters Constant Dollars Nominal Dollars Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Constant dollars: Prices were converted to 2001 dollars using the chain-type

384

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

and clothes drying. In addition to the major equipment-driven and clothes drying. In addition to the major equipment-driven end-uses, the average energy consumption per household is projected for other electric and nonelectric Energy Information Administration/Assumptions to the Annual Energy Outlook 2006 19 Pacific East South Central South Atlantic Middle Atlantic New England West South Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI Middle Atlantic New England East North Central West North Central Pacific West South Central East South Central South Atlantic Mountain Figure 5. United States Census Divisions Source:Energy Information Administration,Office of Integrated Analysis and Forecasting. Report #:DOE/EIA-0554(2006) Release date: March 2006

385

regionalmaps  

Gasoline and Diesel Fuel Update (EIA)

Specific LNG Terminals Specific LNG Terminals Generic LNG Terminals Pacifi c (9) Moun tain (8) CA (12) AZ/N M (11) W. North Centr al (4) W. South Centr al (7) E. South Centr al (6) E. North Centr al (3) S. Atlan tic (5) FL (10) Mid. Atlan tic (2) New Engl. (1) W. Cana da E. Cana da MacK enzie Alask a Cana da Offsh ore and LNG Mexic o Baha mas Primary Flows Secondary Flows Pipeline Border Crossing Specific LNG Terminals Generic LNG Terminals Figure 6. Coal Supply Regions Source: Energy Information Administration. Office of Integrated Analysis and Forecasting WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI MT NE IA KS MI AZ NM 500 0 SCALE IN MILES APPALACHIA Northern Appalachia Central Appalachia Southern Appalachia INTERIOR NORTHERN GREAT PLAINS Eastern Interior Western Interior Gulf Lignite Dakota Lignite Western Montana

386

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2013 Annual Energy Outlook 2013 Source: U.S. Energy Information Administration, Office of Energy Analysis. U.S. Energy Information Administration / Annual Energy Outlook 2010 213 Appendix F Regional Maps Figure F1. United States Census Divisions Pacific East South Central South Atlantic Middle Atlantic New England West South Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI Middle Atlantic New England East North Central West North Central Pacific West South Central East South Central South Atlantic Mountain Source: U.S. Energy Information Administration, Office of Integrated Analysis and Forecasting. Appendix F Regional Maps Figure F1. United States Census Divisions U.S. Energy Information Administration | Annual Energy Outlook 2013

387

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

Energy Energy Information Administration / Natural Gas Annual 1999 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity and Value of Natural Gas Report," and the United States Minerals Management Service. None 1-15,000 15,001-100,000 100,001-200,000 200,001-500,000 500,001 and over 4. Marketed Production of Natural Gas in the United States, 1999 (Million Cubic Feet) Figure 5. Marketed Production of Natural Gas in Selected States, 1995-1999 Figure T e x a s L o u i s i a n a O k l a h o m a N e w M e x i c o W y o m i n g C o l o r a d o K a n s a s A l a b a m a A l a s k a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 6 7 Trillion Cubic Feet Billion Cubic Meters 95 96 97 98 99 Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity and Value

388

DOE/EIA-0131(96) Distribution Category/UC-960 Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

ID ID OR WY ND SD CA NV UT CO NE KS AZ NM OK TX MN WI MI IA IL IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Japan Mexico Mexico Algeria Canada Canada Canada Canada Canada Canada Canada Algeria Canada United Arab Emirates Interstate Movements of Natural Gas in the United States, 1996 (Volumes Reported in Million Cubic Feet) Supplemental Data From Volume To From Volume To (T) AL KY (T) MA ME (T) AL LA MA NH (T) AL MO (T) MA NJ (T) AL SC MD DC CT RI RI MA DE MD VA DC MA CT (T) Trucked Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." E I A NERGY NFORMATION DMINISTRATION 906,407 355,260 243,866 220 384,311 576,420 823,799 842,114 27,271 126,012 133 602,841 266 579,598 16,837 268,138 48,442 182,511 219,242 86,897 643,401 619,703 8,157 937,806 292,711 869,951 12,316 590,493 118,256

389

Microsoft Word - Figure_14_15.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 0.00-2.49 2.50-4.49 4.50-6.49 6.50-8.49 8.50-10.49 10.50+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY MD PA WI NY VT NH MA CT ME RI NJ DC NC SC GA AL MS LA FL HI AK DE 0 2 4 6 8 10 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 Dollars per Thousand Cubic Feet 0 40 80 120 160 200 240 280 320 360 Dollars per Thousand Cubic Meters Constant Dollars Nominal Dollars Figure 14. Average Price of Natural Gas Delivered to Residential Consumers, 1980-2004 Figure 15. Average City Gate Price of Natural Gas in the United States, 2004 (Dollars per Thousand Cubic Feet) Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," and Form EIA-910, "Monthly Natural Gas Marketer Survey." Constant dollars: Prices were converted to 2004 dollars using the chain-type price indexes for Gross Domestic Product

390

Slide 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inventory map reflects the non-federally owned SNF and HLW covered by the Nuclear Waste Policy Act Inventory map reflects the non-federally owned SNF and HLW covered by the Nuclear Waste Policy Act 2 Metric Tons Heavy Metal (MTHM) 3 Based on actual data through 2002 , as provided in the RW-859, and projected discharges for 2003-2010 which are rounded to two significant digits. Reflects trans-shipments as of end-2002. End of Year 2010 SNF & HLW Inventories 1 Approximately 64,000 MTHM 2 of Spent Nuclear Fuel (SNF) 3 & 275 High-Level Radioactive Waste (HLW) Canisters CT 1,900 TX 2,000 MD 1,200 VT 610 RI MT WY NE 790 SD ND OK KS 600 TX 2,000 LA 1,200 AR 1,200 IA 480 MN 1,100 WI 1,300 KY TN 1,500 MS 780 AL 3,000 GA 2,400 FL 2,900 NC 3,400 VA 2,400 WV OH 1,100 PA 5,800 ME 540 NJ 2,400 DE MI 2,500 MA 650 NH 480 IN SC 3,900 CO MO 670 IL 8,400 NY 3,300 CA 2,800 AZ 1,900 NM OR 360 NV UT WA 600 ID < 1 Commercial HLW 275 Canisters (~640 MTHM)

391

C:\ANNUAL\VENTCHAP.V8\NewNGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

18 18 Energy Information Administration / Natural Gas Annual 2001 Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity and Value of Natural Gas Report," and the United States Minerals Management Service. 0 1 2 3 4 5 6 7 T e x a s L o u i s i a n a N e w M e x i c o O k l a h o m a W y o m i n g C o l o r a d o A l a b a m a K a n s a s A l a s k a C a l i f o r n i a A l l O t h e r S t a t e s Trillion Cubic Feet 0 30 60 90 120 150 180 Billion Cubic Meters 1997 1998 1999 2000 2001 2001 16. Marketed Production of Natural Gas in Selected States, 1997-2001 Figure Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity and Value of Natural Gas Report," and the United States Minerals Management Service. None 1-15,000 15,001-100,000 100,001-200,000 200,001-500,000 500,001-and over WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI

392

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

WA WA MT ID OR WY ND SD CA NV UT CO NE KS AZ NM OK TX MN WI MI IA IL IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Japan Mexico Mexico Algeria Canada Canada Canada Canada Canada Canada Canada Algeria Canada United Arab Emirates Australia Australia Trinidad Qatar Malaysia Canada Mexico Interstate Movements of Natural Gas in the United States, 1999 (Volumes Reported in Million Cubic Feet) Supplemental Data From Volume To From Volume To (T) AL TX MA NH CT RI MD DC DE MD RI MA MA CT VA DC (T) Trucked Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." E I A NERGY NFORMATION DMINISTRATION 837,902 415,636 225,138 232 308,214 805,614 803,034 800,345 685 147 628,589 9,786 790,088 17,369 278,302 40,727 214,076 275,629 51,935 843,280 826,638 9,988 998,603 553,440 896,187 11,817 629,551 98,423

393

Green Power Network: Can I Buy Green Power in My State?  

NLE Websites -- All DOE Office Websites (Extended Search)

Can I Buy Green Power in my State? Community Renewable Energy Development Consumer Protection Large Purchasers of Green Power Can I Buy Green Power in My State? Click on your state below to find out which organizations offer green power in your state. The results will include utility green pricing programs, retail green power products offered in competitive electricity markets, and renewable energy certificate (REC) products sold separate from electricity. For additional information about these distinct products, see our Overview of Green Power Markets. Map of the United States. AK AL AR AZ CA CO CT DC DE FL GA HI IA ID IL IN KS KY LA MA MD ME MI MN MO MS MT NC ND NE NH NJ NM NV NY OH OK OR PA RI SC SD TN TX UT VA VT WA WI WV WY Alabama Alaska Arizona Arkansas California Colorado Connecticut Connecticut Delaware Delaware Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Maryland Massachusetts Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Hampshire New Jersey New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Vermont Virginia Washington West Virginia Wisconsin Wyoming Washington, DC

394

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

Supply Supply 17 Energy Information Administration / Natural Gas Annual 1999 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity and Value of Natural Gas Report," and the United States Minerals Management Service. None 1-15,000 15,001-100,000 100,001-200,000 200,001-500,000 500,001 and over 4. Marketed Production of Natural Gas in the United States, 1999 (Million Cubic Feet) Figure 5. Marketed Production of Natural Gas in Selected States, 1995-1999 Figure T e x a s L o u i s i a n a O k l a h o m a N e w M e x i c o W y o m i n g C o l o r a d o K a n s a s A l a b a m a A l a s k a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 6 7 Trillion Cubic Feet Billion Cubic Meters 95 96 97 98 99 Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity

395

Measurement of the reaction O-17(?,n)Ne-20 and its impact on the s process in massive stars  

E-Print Network (OSTI)

The ratio between the rates of the reactions O-17(\\alpha,n)Ne-20 and O-17(\\alpha,\\gamma)Ne-21 determines whether O-16 is an efficient neutron poison for the s process in massive stars, or if most of the neutrons captured by O-16(n,\\gamma) are recycled into the stellar environment. This ratio is of particular relevance to constrain the s process yields of fast rotating massive stars at low metallicity. Recent results on the (\\alpha,\\gamma) channel have made it necessary to measure the (\\alpha,n) reaction more precisely and investigate the effect of the new data on s process nucleosynthesis in massive stars. We present a new measurement of the O-17(\\alpha, n) reaction using a moderating neutron detector. In addition, the (\\alpha, n_1) channel has been measured independently by observation of the characteristic 1633 keV \\gamma-transition in Ne-20. The reaction cross section was determined with a simultaneous R-matrix fit to both channels. (\\alpha,n) and (\\alpha, \\gamma) resonance strengths of states lying below the covered energy range were estimated using their known properties from the literature. A new O-17(\\alpha,n) reaction rate was deduced for the temperature range 0.1 GK to 10 GK. It was found that in He burning conditions the (\\alpha,\\gamma) channel is strong enough to compete with the neutron channel. This leads to a less efficient neutron recycling compared to a previous suggestion of a very weak (\\alpha,\\gamma) channel. S process calculations using our rates confirm that massive rotating stars do play a significant role in the production of elements up to Sr, but they strongly reduce the s process contribution to heavier elements.

A. Best; M. Beard; J. Grres; M. Couder; R. deBoer; S. Falahat; R. T. Gray; A. Kontos; K. -L. Kratz; P. J. LeBlanc; Q. Li; S. O'Brien; N. zkan; M. Pignatari; K. Sonnabend; R. Talwar; W. Tan; E. Uberseder; M. Wiescher

2013-04-23T23:59:59.000Z

396

A Measurement of the muon neutrino charged current quasielastic interaction and a test of Lorentz violation with the MiniBooNE experiment  

SciTech Connect

The Mini-Booster neutrino experiment (MiniBooNE) at Fermi National Accelerator Laboratory (Fermilab) is designed to search for {nu}{sub {mu}} {yields} {nu}{sub e} appearance neutrino oscillations. Muon neutrino charged-current quasi-elastic (CCQE) interactions ({nu}{sub {mu}} + n {yields} {mu} + p) make up roughly 40% of our data sample, and it is used to constrain the background and cross sections for the oscillation analysis. Using high-statistics MiniBooNE CCQE data, the muon-neutrino CCQE cross section is measured. The nuclear model is tuned precisely using the MiniBooNE data. The measured total cross section is {sigma} = (1.058 {+-} 0.003 (stat) {+-} 0.111 (syst)) x 10{sup -38} cm{sup 2} at the MiniBooNE muon neutrino beam energy (700-800 MeV). {nu}{sub e} appearance candidate data is also used to search for Lorentz violation. Lorentz symmetry is one of the most fundamental symmetries in modern physics. Neutrino oscillations offer a new method to test it. We found that the MiniBooNE result is not well-described using Lorentz violation, however further investigation is required for a more conclusive result.

Katori, Teppei; /Indiana U.

2008-12-01T23:59:59.000Z

397

The Uncertainties in the 22Ne + alpha-capture Reaction Rates and the Production of the Heavy Magnesium Isotopes in Asymptotic Giant Branch Stars of Intermediate Mass  

E-Print Network (OSTI)

We present new rates for the 22Ne(alpha, n)25Mg and 22Ne(alpha,gamma)26Mg reactions, with uncertainties that have been considerably reduced compared to previous estimates, and we study how these new rates affect the production of the heavy magnesium isotopes in models of intermediate mass Asymptotic Giant Branch (AGB) stars of different initial compositions. All the models have deep third dredge-up, hot bottom burning and mass loss. Calculations have been performed using the two most commonly used estimates of the 22Ne + alpha rates as well as the new recommended rates, and with combinations of their upper and lower limits. The main result of the present study is that with the new rates, uncertainties on the production of isotopes from Mg to P coming from the 22Ne + alpha-capture rates have been considerably reduced. We have therefore removed one of the important sources of uncertainty to effect models of AGB stars. We have studied the effects of varying the mass-loss rate on nucleosynthesis and discuss other uncertainties related to the physics employed in the computation of stellar structure, such as the modeling of convection, the inclusion of a partial mixing zone and the definition of convective borders. These uncertainties are found to be much larger than those coming from 22Ne + alpha-capture rates, when using our new estimates. Much effort is needed to improve the situation for AGB models.

A. Karakas; M. Lugaro; M. Wiescher; J. Goerres; C. Ugalde

2006-01-27T23:59:59.000Z

398

Measuring the speed of light using beating longitudinal modes in an open-cavity HeNe laser  

E-Print Network (OSTI)

We describe an undergraduate laboratory that combines an accurate measurement of the speed of light, a fundamental investigation of a basic laser system, and a nontrivial use of statistical analysis. Students grapple with the existence of longitudinal modes in a laser cavity as they change the cavity length of an adjustable-cavity HeNe laser and tune the cavity to produce lasing in the TEM$_{00}$ mode. For appropriate laser cavity lengths, the laser gain curve of a HeNe laser allows simultaneous operation of multiple longitudinal modes. The difference frequency between the modes is measured using a self-heterodyne detection with a diode photodetector and a radio frequency spectrum analyzer. Asymmetric effects due to frequency pushing and frequency pulling, as well as transverse modes, are minimized by simultaneously monitoring and adjusting the mode structure as viewed with a Fabry-Perot interferometer. The frequency spacing of longitudinal modes is proportional to the inverse of the cavity length with a prop...

D'Orazio, Daniel J; Schultz, Justin T; Sidor, Daniel; Best, Micheal; Goodfellow, Kenneth; Scholten, Robert E; White, James D; 10.1119/1.3299281

2010-01-01T23:59:59.000Z

399

Direct Total Cross Section Measurement of the 16O(?,?)20Ne Reaction at Ec.m. = 2.26 MeV  

Science Conference Proceedings (OSTI)

In stellar helium burning, (16)O represents the endpoint of the helium-burning sequence due to the low rate of (16)O(alpha,gamma)(20)Ne. We present a new direct measurement of the total capture reaction rate of (16)O(alpha,gamma)(20)Ne at E(c.m.) = 2.26MeV employing the DRAGON recoil separator. For the first time, the total S factor and its contributing direct capture transitions could be determined in one experiment.

Hager, Ulrike; Brown, James R.; Buchmann, Lothar R.; Carmona-Gallardo, Mariano; Erikson, Luke E.; Fallis, Jennifer S.; Greife, Uwe; Hutcheon, Dave; Ottewell, Dave; Ruiz, Chris; Sjue, Sky; Vockenhuber, Cristof

2011-08-23T23:59:59.000Z

400

35 COFibE, Series A. U. S. ATOXIC ENERGY CCMMISSION r'C Cj NE# YORK OPERATIONS OFFICE  

Office of Legacy Management (LM)

COFibE, Series A. COFibE, Series A. - U. S. ATOXIC ENERGY CCMMISSION r'C Cj NE# YORK OPERATIONS OFFICE HEkLTH AND SAFETY DIVISION (Merril Eicsnbud, Dirsator) MONTHLY REPORT OF FIELD ACTIVITIES (This report%v,rs%~~~nth period) Indusorial Ii~iene Branoh m a . . 0 . . c . . . o W. B. Harris, Chief Radiation Branch . y y e 0e . e . e . . . . e . . . Hanson Blatz, Chief Fi:e and Accident Branch D e a o o . . . ..s . . B. J. Kehoe, Chief Medical Advioer, Dr. J. A. Quiglsy Siometrician, Dr. A. E. Brandt TABLF OF COEpTmS PRODUCTION COWTRACTORS ._ Feed Nabrlals Production Centor '$iiddlcsexSampling Plnnt Harshaw ChuoicalCompa~ Wlin&rodt Chen!icrl Works tie. Ontario Storage Area b Vit*o Mnufacturing CompaW B4ikhem Steel F'lrnt - IpcknuMnr Clifton Roducts CompvIy Drush Bcx@.Uun~ Company - Luckcy

Note: This page contains sample records for the topic "wy nv ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

REP&V TO ATTNJF: NE-23 SUWECC Commercial Facilities Used by National Lead Company of Ohio in Support  

Office of Legacy Management (LM)

REP&V TO REP&V TO ATTNJF: NE-23 SUWECC Commercial Facilities Used by National Lead Company of Ohio in Support 'of FMPC Operations TO: Robert E. Lynch Procuresnent and CorXracts Division, AD-42 Oak Ridge Operations Office The Division of Facility and Site Decormnissioning Projects (DFSP) is responsible for managing the Department's Formerly Utilized Sites Remedial Action Program (FUSRAP). The purposes of FUSRAP are (1) to identify facilities formerly operated for or by the Manhattan Engineer District (NED) and Atomic Energy Commission (AEC) which may have been radioactively contaminated as a result of these operations, (2) to determine if the facilities require remedial action, and (3) where DOE has authority, to conduct the remedial action. Authority for remedial action under FUSRAP is

402

REP&V TO ATTNOF: NE-23 SUBJECT: Commercial Facilities Used by National Lead Company of Ohio in Support  

Office of Legacy Management (LM)

x:Y" x:Y" . .' 3023 I\ \ 'a' '. Unita? -&&s Coverament , ,Q,.l. ),&, ,(>.. Department of Energy riGmorandum / d6a 2/. $3 DATE: JL(L 2 8 ;;$5 co. /3 .-J/ co,/3 REP&V TO ATTNOF: NE-23 SUBJECT: Commercial Facilities Used by National Lead Company of Ohio in Support of FMPC Operations TO: Robert E. Lynch Procuremnent and Contracts Division, AD-42 Oak Ridge Operations Office The Division of Facility and Site Decommissioning Projects (DFSD) is responsible for managing the Department's Formerly Utilized Sites Remedial Action Program (FuSRAP). The purposes of FUSRAP are (1) to identify facilities formerly operated for or by the Manhattan Engineer District (NED) and Atomic Energy Commission (AEC) which may have been radioactively contaminated as a result of these operations, (2) to determine if the

403

Using the X-FEL to photo-pump X-ray laser transitions in He-like Ne  

SciTech Connect

Nearly four decades ago H-like and He-like resonantly photo-pumped laser schemes were proposed for producing X-ray lasers. However, demonstrating these schemes in the laboratory has proved to be elusive because of the difficulty of finding a strong resonant pump line. With the advent of the X-ray free electron laser (X-FEL) at the SLAC Linac Coherent Light Source (LCLS) we now have a tunable X-ray laser source that can be used to replace the pump line in previously proposed laser schemes and allow researchers to study the physics and feasibility of resonantly photo-pumped laser schemes. In this paper we use the X-FEL at 1174 eV to photo-pump the singly excited 1s2p state of He-like Ne to the doubly excited 2p3p state and model gain on the 2p3p-2p2s transition at 175 eV and the 2p3p-1s3p transition at 1017 eV. One motivation for studying this scheme is to explore possible quenching of the gain due to strong non-linear coupling effects from the intense X-FEL beam We compare this scheme with photo-pumping the He-like Ne ground state to the 1s3p singly excited state followed by lasing on the 3p-2s and 3d-2p transitions at 158 and 151 eV. Experiments are being planned at LCLS to study these laser processes and coherent quantum effects.

Nilsen, J; Rohringer, N

2011-08-30T23:59:59.000Z

404

PETROPHYSICAL INVESTIGATION OF THE SECONDARY RECOVERY POTENTIAL IN THE CHERRY CANYON FORMATION NE LEA FIELD LEA COUNTY, NEW MEXICO  

Science Conference Proceedings (OSTI)

Read and Stevens has proposed the evaluation of the waterflood potential from the Cherry Canyon formation in the NE Lea Field in lea County, New Mexico. Much of the development in this area is approaching primary recovery limitations; additional recovery of remaining oil reserves by waterflood needs to be evaluated. The Cherry Canyon formation is composed of fine grained sandstone, containing clay material which results in high water saturation, and also has the tendency to swell and reduce reservoir permeability--the ability of fluid to flow through the rock pores and fractures. There are also abundant organic materials that interfere with obtaining reliable well logs. These complications have limited oil in place calculations and identification of net pay zones, presenting a challenge to the planned waterflood. Core analysis of the Cherry Canyon should improve the understanding of existing well logs and possibly indicate secondary recovery measures, such as waterflood, to enhance field recovery. Lacking truly representative core to provide accurate analyses, Read and Stevens will obtain and preserve fresh core. The consulting firm of T. Scott Hickman and Associates will then collaborate on special core analyses and obtain additional well logs for a more detailed analysis of reservoir properties. The log interpretation will be compared to the core analysis results, and the entire collected data set will be used to assess the potential and economic viability of successfully waterflooding the identified oil zones. Successful results from the project will improve accuracy of log interpretation and establish a methodology for evaluating secondary recovery by waterflood.

T. Scott Hickman

2002-06-01T23:59:59.000Z

405

Measurements of nuclear $\\gamma$-ray line emission in interactions of protons and $\\alpha$ particles with N, O, Ne and Si  

E-Print Network (OSTI)

$\\gamma$-ray production cross sections have been measured in proton irradiations of N, Ne and Si and $\\alpha$-particle irradiations of N and Ne. In the same experiment we extracted also line shapes for strong $\\gamma$-ray lines of $^{16}$O produced in proton and $\\alpha$-particle irradiations of O. For the measurements gas targets were used for N, O and Ne and a thick foil was used for Si. All targets were of natural isotopic composition. Beams in the energy range up to 26 MeV for protons and 39 MeV for $\\alpha$-particles have been delivered by the IPN-Orsay tandem accelerator. The $\\gamma$ rays have been detected with four HP-Ge detectors in the angular range 30$^{\\circ}$ to 135$^{\\circ}$. We extracted 36 cross section excitation functions for proton reactions and 14 for $\\alpha$-particle reactions. For the majority of the excitation functions no other data exist to our knowledge. Where comparison with existing data was possible usually a very good agreement was found. It is shown that these data are very in...

Benhabiles-Mezhoud, H; Thibaud, J -P; Tatischeff, V; Deloncle, I; Coc, A; Duprat, J; Hamadache, C; Lefebvre-Schuhl, A; Dalouzy, J -C; De Grancey, F; De Oliveira, F; Dayras, F; De Srville, N; Pellegriti, M -G; Lamia, L; Ouichaoui, S

2010-01-01T23:59:59.000Z

406

THE INFLUENCE OF UNCERTAINTIES IN THE {sup 15}O({alpha}, {gamma}){sup 19}Ne REACTION RATE ON MODELS OF TYPE I X-RAY BURSTS  

SciTech Connect

We present a Monte Carlo calculation of the astrophysical rate of the {sup 15}O({alpha}, {gamma}){sup 19}Ne reaction based on an evaluation of published experimental data. By considering the likelihood distributions of individual resonance parameters derived from measurements, estimates of upper and lower limits on the reaction rate at the 99.73% confidence level are derived in addition to the recommended, median value. These three reaction rates are used as input for three separate calculations of Type I X-ray bursts (XRBs) using spherically symmetric, hydrodynamic simulations of an accreting neutron star. In this way the influence of the {sup 15}O({alpha}, {gamma}){sup 19}Ne reaction rate on the peak luminosity, recurrence time, and associated nucleosynthesis in models of Type I XRBs is studied. Contrary to previous findings, no substantial effect on any of these quantities is observed in a sequence of four bursts when varying the reaction rate between its lower and upper limits. Rather, the differences in these quantities are comparable to the burst-to-burst variations with a fixed reaction rate, indicating that uncertainties in the {sup 15}O({alpha}, {gamma}){sup 19}Ne reaction rate do not strongly affect the predictions of this Type I XRB model.

Davids, Barry [TRIUMF, Vancouver, BC V6T 2A3 (Canada); Cyburt, Richard H. [Joint Institute for Nuclear Astrophysics and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI (United States); Jose, Jordi [Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya and Institut d'Estudis Espacials de Catalunya, Barcelona (Spain); Mythili, Subramanian [Physics Department, George Mason University, Fairfax, VA (United States)

2011-07-01T23:59:59.000Z

407

Measurement of Neutrino-Nucleon Neutral-Current Elastic Scattering Cross-section at SciBooNE  

SciTech Connect

In this thesis, results of neutrino-nucleon neutral current (NC) elastic scattering analysis are presented. Neutrinos interact with other particles only with weak force. Measurement of cross-section for neutrino-nucleon reactions at various neutrino energy are important for the study of nucleon structure. It also provides data to be used for beam flux monitor in neutrino oscillation experiments. The cross-section for neutrino-nucleon NC elastic scattering contains the axial vector form factor G{sub A}(Q{sup 2}) as well as electromagnetic form factors unlike electromagnetic interaction. G{sub A} is propotional to strange part of nucleon spin ({Delta}s) in Q{sup 2} {yields} 0 limit. Measurement of NC elastic cross-section with smaller Q{sup 2} enables us to access {Delta}s. NC elastic cross-sections of neutrino-nucleon and antineutrino-nucleon were measured earlier by E734 experiment at Brookheaven National Laboratory (BNL) in 1987. In this experiment, cross-sections were measured in Q{sup 2} > 0.4 GeV{sup 2} region. Result from this experiment was the only published data for NC elastic scattering cross-section published before our experiment. SciBooNE is an experiment for the measurement of neutrino-nucleon scattering cross-secitons using Booster Neutrino Beam (BNB) at FNAL. BNB has energy peak at 0.7 GeV. In this energy region, NC elastic scattering, charged current elastic scattering, charged current pion production, and neutral current pion production are the major reaction branches. SciBar, electromagnetic calorimeter, and Muon Range Detector are the detectors for SciBooNE. The SciBar consists of finely segmented scintillators and 14336 channels of PMTs. It has a capability to reconstruct particle track longer than 8 cm and separate proton from muons and pions using energy deposit information. Signal of NC elastic scattering is a single proton track. In {nu}p {yields} {nu}p process, the recoil proton is detected. On the other hand, most of {nu}n {yields} {nu}n is invisible because there are only neutral particles in final state, but sometimes recoil neutron is scattered by proton and recoil proton is detected. Signal of this event is also single proton track. Event selection for the single proton track events using geometrical and dE/dx information of reconstructed track is performed. After the event selection, NC elastic scattering data sample is obtained. They includes {nu}p {yields} {nu}p and {nu}n {yields} {nu}n is obtained. Absolute cross-section as a function of Q{sup 2} is evaluated from this NC elastic scattering data sample.

Takei, Hideyuki; /Tokyo Inst. Tech.

2009-02-01T23:59:59.000Z

408

NE Press Releases  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

press-releases 1000 Independence Ave. SWWashington DC press-releases 1000 Independence Ave. SWWashington DC 20585202-586-5000 en Energy Department Announces New Investment in Innovative Small Modular Reactor http://energy.gov/articles/energy-department-announces-new-investment-innovative-small-modular-reactor Energy Department Announces New Investment in Innovative Small Modular Reactor

409

NE photo galleries  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis (11) Programs: Advanced Fuel Cycle Initiative (6) Engineering and Structural Mechanics (3) Heat Transfer and Fluid Mechanics (6) Risk Methodology and Evaluation (2)...

410

A survey of Existing V&V, UQ and M&S Data and Knowledge Bases in Support of the Nuclear Energy - Knowledge base for Advanced Modeling and Simulation (NE-KAMS)  

SciTech Connect

The Nuclear Energy - Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Oak Ridge National Laboratory, Utah State University and others. The objective of this consortium is to establish a comprehensive knowledge base to provide Verification and Validation (V&V) and Uncertainty Quantification (UQ) and other resources for advanced modeling and simulation (M&S) in nuclear reactor design and analysis. NE-KAMS will become a valuable resource for the nuclear industry, the national laboratories, the U.S. NRC and the public to help ensure the safe operation of existing and future nuclear reactors. A survey and evaluation of the state-of-the-art of existing V&V and M&S databases, including the Department of Energy and commercial databases, has been performed to ensure that the NE-KAMS effort will not be duplicating existing resources and capabilities and to assess the scope of the effort required to develop and implement NE-KAMS. The survey and evaluation have indeed highlighted the unique set of value-added functionality and services that NE-KAMS will provide to its users. Additionally, the survey has helped develop a better understanding of the architecture and functionality of these data and knowledge bases that can be used to leverage the development of NE-KAMS.

Hyung Lee; Rich Johnson, Ph.D.; Kimberlyn C. Moussesau

2011-12-01T23:59:59.000Z

411

Microsoft Word - Figure_3_4.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 None 1-15,000 15,001-100,000 100,001-200,000 200,001-500,000 500,001-and over WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK GOM 0 1 2 3 4 5 6 7 T e x a s G u l f o f M e x i c o N e w M e x i c o O k l a h o m a W y o m i n g L o u i s i a n a C o l o r a d o A l a s k a K a n s a s A l a b a m a A l l O t h e r S t a t e s Trillion Cubic Feet 0 30 60 90 120 150 180 Billion Cubic Meters 2002 2003 2002 Figure 4. Marketed Production of Natural Gas in Selected States and the Gulf of Mexico, 2002-2003 Figure 3. Marketed Production of Natural Gas in the United States and the Gulf of Mexico, 2003 (Million Cubic Feet) GOM = Gulf of Mexico Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly and Annual Quantity and Value of Natural Gas Report," and the United States Mineral Management

412

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Marketed Production ",35,"Monthly","9/2013","1/15/1973" Natural Gas Marketed Production ",35,"Monthly","9/2013","1/15/1973" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_prod_whv_a_epg0_vgm_mmcf_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_whv_a_epg0_vgm_mmcf_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/19/2013 6:54:27 AM" "Back to Contents","Data 1: Natural Gas Marketed Production " "Sourcekey","N9050US2","N9050FX2","N9050AL2","N9050AK2","N9050AZ2","N9050AR2","N9050CA2","N9050CO2","N9050FL2","N9050IL2","N9050IN2","N9050KS2","N9050KY2","N9050LA2","N9050MD2","N9050MI2","N9050MS2","N9050MO2","N9050MT2","N9050NE2","N9050NV2","N9050NM2","N9050NY2","N9050ND2","N9050OH2","N9050OK2","N9050OR2","N9050PA2","N9050SD2","N9050TN2","N9050TX2","N9050UT2","N9050VA2","N9050WV2","N9050WY2"

413

C:\Annual\VENTCHAP.V8\NGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

6 6 Energy Information Administration / Natural Gas Annual 2002 0 1 2 3 4 5 6 7 T e x a s G u l f o f M e x i c o N e w M e x i c o O k l a h o m a W y o m i n g L o u i s i a n a C o l o r a d o A l a s k a K a n s a s C a l i f o r n i a A l l O t h e r S t a t e s Trillion Cubic Feet 0 30 60 90 120 150 180 Billion Cubic Meters 2001 2002 2001 Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity and Value of Natural Gas Report," and the United States Minerals Management Service. 4. Marketed Production of Natural Gas in Selected States and the Gulf of Mexico, 2001-2002 Figure None 1-15,000 15,001-100,000 100,001-200,000 200,001-500,000 500,001-and over WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK GOM 3. Marketed Production of Natural Gas in the United States and the Gulf of Mexico, 2002 (Million Cubic Feet) Figure GOM = Gulf of Mexico Sources:

414

C:\Annual\VENTCHAP.V8\NGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

Energy Energy Information Administration / Natural Gas Annual 2002 0 1 2 3 4 5 6 7 T e x a s G u l f o f M e x i c o N e w M e x i c o O k l a h o m a W y o m i n g L o u i s i a n a C o l o r a d o A l a s k a K a n s a s C a l i f o r n i a A l l O t h e r S t a t e s Trillion Cubic Feet 0 30 60 90 120 150 180 Billion Cubic Meters 2001 2002 2001 Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity and Value of Natural Gas Report," and the United States Minerals Management Service. 4. Marketed Production of Natural Gas in Selected States and the Gulf of Mexico, 2001-2002 Figure None 1-15,000 15,001-100,000 100,001-200,000 200,001-500,000 500,001-and over WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK GOM 3. Marketed Production of Natural Gas in the United States and the Gulf of Mexico, 2002 (Million Cubic Feet) Figure GOM = Gulf of Mexico Sources:

415

C:\ANNUAL\VENTCHAP.V8\NGAla1109.vp  

Gasoline and Diesel Fuel Update (EIA)

0 0 Energy Information Administration / Natural Gas Annual 2000 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity and Value of Natural Gas Report," and the United States Minerals Management Service. None 1-15,000 15,001-100,000 100,001-200,000 200,001-500,000 500,001 and over 4. Marketed Production of Natural Gas in the United States, 2000 (Million Cubic Feet) Figure 5. Marketed Production of Natural Gas in Selected States, 1996-2000 Figure T e x a s L o u i s i a n a N e w M e x i c o O k l a h o m a W y o m i n g C o l o r a d o K a n s a s A l a b a m a A l a s k a C a l i f o r n i a O t h e r S t a t e s 0 1 2 3 4 5 6 7 0 30 60 90 120 150 180 Trillion Cubic Feet Billion Cubic Meters 1996 1997 1998 1999 2000 Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly

416

in construction Munger Graduate  

E-Print Network (OSTI)

Auxiliary Library (SAL) Dining Services340 315 Cobb Track & Angell Field Varian Physics Sequoia Hall William Lou Henry Hoover House Vaden Health Center Bing Nursery School Stanford Community Recreation CAMPUSDREAST SERRA ST ROTH WY NELSO N M ALL LAN E B LANEC STANFORD AVE LASUENMALL PINE HILL RD NE PAM PAS LN

Gross, James J.

417

Research Needs for Magnetic Fusion Energy Sciences. Report of the Research Needs Workshop (ReNeW) Bethesda, Maryland, June 8-12, 2009  

SciTech Connect

Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide a strategic framework for realizing practical fusion energy. The portfolio is the product of ten months of fusion-community study and discussion, culminating in a Workshop held in Bethesda, Maryland, from June 8 to June 12, 2009. The Workshop involved some 200 scientists from Universities, National Laboratories and private industry, including several scientists from outside the US. Largely following the Basic Research Needs model established by the Office of Basic Energy Sciences (BES ), the Report presents a collection of discrete research activities, here called 'thrusts.' Each thrust is based on an explicitly identified question, or coherent set of questions, on the frontier of fusion science. It presents a strategy to find the needed answers, combining the necessary intellectual and hardware tools, experimental facilities, and computational resources into an integrated, focused program. The thrusts should be viewed as building blocks for a fusion program plan whose overall structure will be developed by OFES , using whatever additional community input it requests. Part I of the Report reviews the issues identified in previous fusion-community studies, which systematically identified the key research issues and described them in considerable detail. It then considers in some detail the scientific and technical means that can be used to address these is sues. It ends by showing how these various research requirements are organized into a set of eighteen thrusts. Part II presents a detailed and self-contained discussion of each thrust, including the goals, required facilities and tools for each. This Executive Summary focuses on a survey of the ReNeW thrusts. The following brief review of fusion science is intended to provide context for that survey. A more detailed discussion of fusion science can be found in an Appendix to this Summary, entitled 'A Fusion Primer.'

None

2009-06-08T23:59:59.000Z

418

Research Needs for Magnetic Fusion Energy Sciences. Report of the Research Needs Workshop (ReNeW) Bethesda, Maryland, June 8-12, 2009  

SciTech Connect

Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide a strategic framework for realizing practical fusion energy. The portfolio is the product of ten months of fusion-community study and discussion, culminating in a Workshop held in Bethesda, Maryland, from June 8 to June 12, 2009. The Workshop involved some 200 scientists from Universities, National Laboratories and private industry, including several scientists from outside the US. Largely following the Basic Research Needs model established by the Office of Basic Energy Sciences (BES ), the Report presents a collection of discrete research activities, here called 'thrusts.' Each thrust is based on an explicitly identified question, or coherent set of questions, on the frontier of fusion science. It presents a strategy to find the needed answers, combining the necessary intellectual and hardware tools, experimental facilities, and computational resources into an integrated, focused program. The thrusts should be viewed as building blocks for a fusion program plan whose overall structure will be developed by OFES , using whatever additional community input it requests. Part I of the Report reviews the issues identified in previous fusion-community studies, which systematically identified the key research issues and described them in considerable detail. It then considers in some detail the scientific and technical means that can be used to address these is sues. It ends by showing how these various research requirements are organized into a set of eighteen thrusts. Part II presents a detailed and self-contained discussion of each thrust, including the goals, required facilities and tools for each. This Executive Summary focuses on a survey of the ReNeW thrusts. The following brief review of fusion science is intended to provide context for that survey. A more detailed discussion of fusion science can be found in an Appendix to this Summary, entitled 'A Fusion Primer.'

2009-06-08T23:59:59.000Z

419

OUTLINE OF TESTIMONY FOR PBI/RF/NV  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TESTIMONY TESTIMONY STATEMENT OF JOHN C. LAYTON INSPECTOR GENERAL DEPARTMENT OF ENERGY BEFORE THE SUBCOMMITTEE ON OVERSIGHT AND INVESTIGATIONS UNITED STATES HOUSE OF REPRESENTATIVES 10:00 A.M. October 23, 1997 SUMMARY OF STATEMENT BY JOHN C. LAYTON The Office of Inspector General, Department of Energy (DOE), has identified deficiencies in the administration of performance-based contracts. For example, we found: Incentive fees were excessive in relation to the cost of the work. * An incentive fee of $225,000 was paid to replace a ventilation fan when the cost of this work for the year was only $25,000. Incentive fees were paid for work completed before the establishment of the performance objective. * A $776,000 incentive fee was paid for work completed on experiments before the

420

Nevada Environmental Restoration Project DOE/NV-368 Project Chariot...  

Office of Legacy Management (LM)

of cosmic rays to the background radiation field iraries with altitude and geomagnetic latitude. The earth's magnetic field traps some of the cosmic rays, I so a larger...

Note: This page contains sample records for the topic "wy nv ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

NNSA Network Vision (2NV) | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

version Facebook Twitter Youtube Flickr NNSA Blog October 2013 (1) September 2013 (18) August 2013 (17) July 2013 (20) June 2013 (19) May 2013 (25) April 2013 (17) March 2013...

422

NV Energy (Northern Nevada) - SureBet Business Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Equipment: 4 - 200 Ice Machines: 50 - 500 Commercial Custom Retrofit: 0.10kWh on peak; 0.05kWh off peak Air Cooled Units: 8 - 15ton, plus bonus efficiency...

423

NV Energy (Southern Nevada) - SureBet Business Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Equipment: 4 - 1,000 Ice Machines: 50 - 500 Commercial Custom Retrofit: 0.10kWh on peak; 0.05kWh off peak Air Cooled Units: 12 - 18ton, plus bonus efficiency...

424

Direct total cross section measurement of the {sup 16}O({alpha}, {gamma}){sup 20}Ne reaction at E{sub c.m.}=2.26 MeV  

Science Conference Proceedings (OSTI)

In stellar helium burning, {sup 16}O represents the endpoint of the helium-burning sequence due to the low rate of {sup 16}O({alpha},{gamma}){sup 20}Ne. We present a new direct measurement of the total capture reaction rate of {sup 16}O({alpha},{gamma}){sup 20}Ne at E{sub c.m.}=2.26 MeV employing the DRAGON recoil separator. For the first time, the total S factor and its contributing direct capture transitions could be determined in one experiment.

Hager, U.; Greife, U. [Colorado School of Mines, Golden, Colorado (United States); Brown, J. R. [Department of Physics, University of York, York, YO10 5DD (United Kingdom); Buchmann, L.; Fallis, J.; Hutcheon, D.; Ottewell, D.; Ruiz, C.; Sjue, S. [TRIUMF, Vancouver, Canada V6T 2A3 (Canada); Carmona-Gallardo, M. [Instituto de Estructura de la Materia, CSIC E-28006 Madrid (Spain); Erikson, L. [Pacific Northwest National Laboratory, Richland, WA (United States); Vockenhuber, C. [ETH Zurich, Zurich (Switzerland)

2011-08-15T23:59:59.000Z

425

EIS-0438: Interconnection of the Proposed Hermosa West Wind Farm Project, Albany County, WY  

Energy.gov (U.S. Department of Energy (DOE))

This EIS will evaluate the environmental impacts of interconnecting the proposed 300-megawatt Hermosa West Wind Farm Project, in Albany County, Wyoming, with DOEs Western Area Power Administrations existing Craig-Ault 345-kilovolt transmission line.

426

Microsoft PowerPoint - FY 2012 AOP MEETING.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2012 Purchase Power * Next Steps 1 FY2011 Hydrology Update FY2011 Hydrology Update Forecast For The Remainder of WY 2011 WY 2011 WY 2010 WY 2011 WY 2010 Lake Powell (maf) %...

427

Clouds, Aerosols and Precipitation in the Marine Boundary Layer (CAP-MBL) AMF Deployment Graciosa Island, Azores, NE Atlantic Ocean May 2009-December 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

the Marine Boundary Layer (CAP-MBL) Graciosa Island, Azores, NE Atlantic Ocean May 2009-December 2010 Rob Wood, University of Washington CAP-MBL Proposal Team AMF Deployment Team Thanks to Mark Miller: AMF Site Scientist Kim Nitschke: AMF Site Manager Importance of Low-Clouds for Climate Imperative that we understand the processes controlling the formation, maintenance and dissipation of low clouds in order to improve their representation in climate models. Which clouds matter for climate sensitivity? Climate Feedbacks Model Intercomparison Project (CFMIP) 12 slab ocean models 2xCO 2 - control Correlation of global mean CRF with local values Mark Webb, Hadley Center 90 N 45 N 0 45 S 90S 0 90 E 180 90 W 0

428

REP&" TO A~NOF: NE-23 SUBJECT: Commercial Facilities Used by National Lead Company of Ohio iin Support  

Office of Legacy Management (LM)

tifr'itG!'l' &i&s Coverament tifr'itG!'l' &i&s Coverament --_ , ,&,.i +.&r, ,' ,T.L ' Department of Energy / REP&" TO A~NOF: NE-23 SUBJECT: Commercial Facilities Used by National Lead Company of Ohio iin Support of FMPC Operations TO: Robert E. Lynch Procuremnent and Contracts Division, AD-42 Oak Ridge Operations Office , / I I The Division of Facility and Site Oecomnissioning Projects (OF%) is responsible for managing the Department's Formerly Utilized Sites Remedial Action Program (FUSRAP). The purposes of FUSRAP are (1) to identify facilities formerly operated for or by the Manhattan Engineer District (WED) and Atomic Energy Commission (AEC) which may have been'radioactively contaminated as a result of these operations, (5) to determine if the

429

Enhanced T-lymphocyte blastogenic response to tuberculin (PPD) in children of northeast (NE) Thailand supplemented with vitamin A (VA) and zinc (Zn)  

SciTech Connect

Beneficial effects of Va and/or Zn supplementation of children in NE Thailand are described in a companion abstract. In the same study, blastogenic response (BR) of T-lymphocytes to concanavalin-A (ConA) and PPD were assayed in cultures containing mononuclear cells (MNC) or whole blood (WB). Methods were previously described. Children were previously vaccinated with BCG. BR to ConA of MNC or WB from children supplemented with VA, Zn, VA + Zn or placebo were similar. BR to PPD of MNC was higher in children receiving VA + Zn than placebo, but not in children supplemented with VA or Zn alone. Data indicate that children with suboptimal VA and Zn nutriture supplemented with < 2 times RDA of these nutrients showed enhanced cellular immunity to PPD. This observation is relevant to BCG immunization program and thus may benefit public health.

Kramer, T.R.; Udomkesmalee, E.; Dhanamitta, S.; Sirisinha, S.; Charoenkiatkul, S.; Tantipopipat, S.; Banjong, O.; Rojroongwasinkul, N.; Smith, J.C. Jr. (Dept. of Agriculture, Beltsville, MD (United States) Mahidol Univ., Nakhon Pathom (Thailand))

1991-03-15T23:59:59.000Z

430

Idaho National Laboratory Ten-year Site Plan (2012 through 2021) -- DOE-NE's National Nuclear Capability -- Developing and Maintaining the INL Infrastructure  

Science Conference Proceedings (OSTI)

To meet long-term objectives to transform the Idaho National Laboratory (INL), we are providing an integrated, long-term vision of infrastructure requirements that support research, development and demonstration (RD&D) goals outlined in the DOE strategic plans, including the NE Roadmap and reports such as Facilities for the Future of Nuclear Energy Research: A Twenty-year Outlook. The goal of the INL Ten-year Site Plan (TYSP) is to clearly link RD&D mission goals and INL core capabilities with infrastructure requirements (single and multi-program), establish the 10-year end-state vision for INL complexes, identify and prioritize infrastructure and capability gaps, as well as the most efficient and economic approaches to closing those gaps.

Cal Ozaki

2010-06-01T23:59:59.000Z

431

Ne{sup +} ion sputtering effect on amorphous Ga-In-Zn-O thin-film surface investigated by high-resolution XPS  

Science Conference Proceedings (OSTI)

The effect of Ne{sup +} ion sputtering on amorphous Ga-In-Zn-O (a-GIZO) thin films was investigated by using surface-sensitive, synchrotron-radiation-based, high-resolution X-ray photoelectron spectroscopy (XPS). a-GIZO thin films having different compositions (Ga{sub 2}O{sub 3}:In{sub 2}O{sub 3}:ZnO = 1:1:1, 2:2:1, 3:2:1, 4:2:1) were investigated. It was found out that the amounts of the In and Zn contents relative to that of Ga decreased noticeably after sufficient sputtering, and that there occurred a subgap state above the valence band maximum and metallic states at the In 3d and 4d core levels as well as at the Fermi edge.

Kang, Se-Jun; Lee, Mi Ji [Department of Physics, POSTECH, Pohang 790-784 (Korea, Republic of); Baik, Jae Yoon; Kim, Hyeong-Do; Thakur, Anup [Pohang Accelerator Laboratory, POSTECH, Pohang 790-784 (Korea, Republic of); Shin, Hyun-Joon [Department of Physics, POSTECH, Pohang 790-784 (Korea, Republic of); Pohang Accelerator Laboratory, POSTECH, Pohang 790-784 (Korea, Republic of); Chung, JaeGwan; Lee, Eunha; Lee, Jaecheol; Lee, JaeHak [A E Group, Samsung Advanced Institute of Technology, Yongin-si 440-712 (Korea, Republic of)

2011-12-23T23:59:59.000Z

432

Slide 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Wyoming: Where Power Transmission & Generation Meet Wyoming: Where Power Transmission & Generation Meet Wyoming Infrastructure Authority Given our vast resources, we're the Energy Gateway to the West June 21, 2011 Fort Collins, CO 1 Loyd G. Drain Executive Director Meeting Transmission Challenges in the Rocky Mountain Region 2 Wyoming * Wyoming is #1 in total energy produced in the U.S. * #1 in coal production-PRB coal is marketed in 37 states * #2 in natural gas production * #1 in uranium reserves * #1 in developable Class 6 & 7 wind resource in the West * In the last year, WY has added 2BCFD+ of gas pipeline capacity o El Paso's Ruby Line from Opal, WY to Malin, OR: 1.5 BCFD o TransCanada's Bison Line from NE WY to ND: .477 BCFD

433

Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS) Code Verification and Validation Data Standards and Requirements: Fluid Dynamics Version 1.0  

SciTech Connect

V&V and UQ are the primary means to assess the accuracy and reliability of M&S and, hence, to establish confidence in M&S. Though other industries are establishing standards and requirements for the performance of V&V and UQ, at present, the nuclear industry has not established such standards or requirements. However, the nuclear industry is beginning to recognize that such standards are needed and that the resources needed to support V&V and UQ will be very significant. In fact, no single organization has sufficient resources or expertise required to organize, conduct and maintain a comprehensive V&V and UQ program. What is needed is a systematic and standardized approach to establish and provide V&V and UQ resources at a national or even international level, with a consortium of partners from government, academia and industry. Specifically, what is needed is a structured and cost-effective knowledge base that collects, evaluates and stores verification and validation data, and shows how it can be used to perform V&V and UQ, leveraging collaboration and sharing of resources to support existing engineering and licensing procedures as well as science-based V&V and UQ processes. The Nuclear Energy Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Utah State University and others with the objective of establishing a comprehensive and web-accessible knowledge base to provide V&V and UQ resources for M&S for nuclear reactor design, analysis and licensing. The knowledge base will serve as an important resource for technical exchange and collaboration that will enable credible and reliable computational models and simulations for application to nuclear power. NE-KAMS will serve as a valuable resource for the nuclear industry, academia, the national laboratories, the U.S. Nuclear Regulatory Commission (NRC) and the public and will help ensure the safe, economical and reliable operation of existing and future nuclear reactors.

Greg Weirs; Hyung Lee

2011-09-01T23:59:59.000Z

434

A confirmative spin-parity assignment for the key 6.15 MeV state in $^{18}$Ne of astrophysical importance  

E-Print Network (OSTI)

Proton resonant states in $^{18}$Ne have been investigated by the resonant elastic scattering of $^{17}$F+$p$. The $^{17}$F beam was separated by the CNS radioactive ion beam separator (CRIB), and bombarded a thick H$_2$ gas target at 3.6 MeV/nucleon. The recoiled light particles were measured by using three sets of ${\\Delta}$E-E Si telescope at scattering angles of $\\theta$$_{lab}$$\\approx 3^\\circ$, 10$^\\circ$ and 18$^\\circ$, respectively. Four resonances, {\\it i.e.}, at $E_{x}$=6.15, 6.30, 6.85, and 7.05 MeV, were observed clearly. By $R$-matrix analysis of the excitation functions, $J^{\\pi}$=1$^-$ was firmly assigned to the 6.15 MeV state which is a key state in calculating the reaction rate of $^{14}$O($\\alpha$,$p$)$^{17}$F reaction. This reaction was thought to be one of the most probable key reactions for the breakout from the hot-CNO cycle to the $rp$-process in type I x-ray bursts In addition, a new excited state observed at $E_{x}$=6.85 MeV was tentatively assigned as 0$^{-}$, which could be the analog state of 6.880 MeV, 0$^{-}$ in mirror $^{18}$O.

J. Hu; J. J. He; S. W. Xu; H. Yamaguchi; K. David; P. Ma; J. Su; H. W. Wang; T. Nakao; Y. Wakabayashi; T. Teranishi; J. Y. Moon; H. S. Jung; T. Hashimoto; A. Chen; D. Irvine; S. Kubono

2013-06-17T23:59:59.000Z

435

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Televisions in Homes in West Region, Divisions, and States, 2009" 1 Televisions in Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,,,,,"Pacific Census Division" ,,,,"Mountain North Sub-Division",,,"Mountain South Sub-Division" ,"Total U.S.1 (millions)",,,"Total Mountain North",,,"Total Mountain South" ,,"Total West","Total Mountain",,,"ID, MT, UT, WY",,,,"Total Pacific",,"AK, HI, OR, WA" "Televisions",,,,,"CO",,,"AZ","NM, NV",,"CA" "Total Homes",113.6,24.8,7.9,3.9,1.9,2,4,2.3,1.7,16.9,12.2,4.7

436

Energy for the future with Ris from nuclear power to sustainable energy Ris NatioNal laboRatoRy foR sustaiNable eNeRgy  

E-Print Network (OSTI)

Energy for the future ­ with Risø from nuclear power to sustainable energy Risø NatioNal laboRatoRy foR sustaiNable eNeRgy edited by MoRteN JastRup #12;Energy for the future #12;Energy for the future ­ with Risø from nuclear power to sustainable energy Translated from 'Energi til fremtiden ­ med Risø fra

437

Completed Sites Listing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hallam Nuclear Power Facility, NE Hallam Nuclear Power Facility, NE 1969 1998 2. Piqua Nuclear Power Facility, OH 1969 1998 3. Bayo Canyon, NM 1982 1998 4. Kellex/Pierpont, NJ 1982 1998 5. University of California, CA 1982 1998 6. Acid/Pueblo Canyons, NM 1984 1999 7. Chupadera Mesa, NM 1984 1999 8. Canonsburg, PA 1986 1999 9.Shiprock, NM 1987 2000 10. Middlesex Municipal Landfill, NJ 1987 2000 11. Niagara Falls Storage Site Vicinity Properties, NY 1987 2001 12. Salt Lake City, UT 1989 2001 13. Spook, WY 1989 2001 14. National Guard Armory, IL 1989 2002 15. University of Chicago, IL 1989 2005 16. Green River, UT 1990 2005 17. Lakeview, OR 1990 2006 18. Riverton, WY 1990 2006 19. Tuba City, AZ 1990 2006 20 Durango, CO 1991 2007 21. Lowman, ID 1992 2007 22. Pagano Salvage Yard, NM 1992 2007 23. Elza Gate, TN 1992 2007 24. Albany Research Center, OR

438

Framework to Evaluate Water Demands and Availability for Electrical Power Production Within Watersheds Across the United States: Dev elopment and Applications  

Science Conference Proceedings (OSTI)

A framework to evaluate the water resources available to sustain present and projected electrical power production is under development and has been applied to four case studies around the United States. Those case studies are: the Lower Coosa River Basin (AL), the Muskingum River Basin (OH), the San Juan River Basin (CO, UT, AZ, NM), and the Platte River Basin (NE, CO, WY). The river basins were chosen for the case studies because of the difference among these basins, including climatic conditions, wate...

2005-12-12T23:59:59.000Z

439

Research Needs for Fusion-Fission Hybrid Systems. Report of the Research Needs Workshop (ReNeW) Gaithersburg, Maryland, September 30 - October 2, 2009  

Science Conference Proceedings (OSTI)

Largely in anticipation of a possible nuclear renaissance, there has been an enthusiastic renewal of interest in the fusion-fission hybrid concept, driven primarily by some members of the fusion community. A fusion-fission hybrid consists of a neutron-producing fusion core surrounded by a fission blanket. Hybrids are of interest because of their potential to address the main long-term sustainability issues related to nuclear power: fuel supply, energy production, and waste management. As a result of this renewed interest, the U.S. Department of Energy (DOE), with the participation of the Office of Fusion Energy Sciences (OFES), Office of Nuclear Energy (NE), and National Nuclear Security Administration (NNSA), organized a three-day workshop in Gaithersburg, Maryland, from September 30 through October 2, 2009. Participants identified several goals. At the highest level, it was recognized that DOE does not currently support any R&D in the area of fusion-fission hybrids. The question to be addressed was whether or not hybrids offer sufficient promise to motivate DOE to initiate an R&D program in this area. At the next level, the workshop participants were asked to define the research needs and resources required to move the fusion-fission concept forward. The answer to the high-level question was given in two ways. On the one hand, when viewed as a standalone concept, the fusion-fission hybrid does indeed offer the promise of being able to address the sustainability issues associated with conventional nuclear power. On the other hand, when participants were asked whether these hybrid solutions are potentially more attractive than contemplated pure fission solutions (that is, fast burners and fast breeders), there was general consensus that this question could not be quantitatively answered based on the known technical information. Pure fission solutions are based largely on existing both fusion and nuclear technology, thereby prohibiting a fair side-by-side comparison. Another important issue addressed at the conference was the time scale on which long-term sustainability issues must be solved. There was a wide diversity of opinion and no consensus was possible. One group, primarily composed of members of the fission community, argued that the present strategies with respect to waste management (on-site storage) and fuel supply (from natural uranium) would suffice for at least 50 years, with the main short-term problem being the economics of light water reactors (LWRs). Many from the fusion community believed that the problems, particularly waste management, were of a more urgent nature and that we needed to address them sooner rather than later. There was rigorous debate on all the issues before, during, and after the workshop. Based on this debate, the workshop participants developed a set of high-level Findings and Research Needs and a companion set of Technical Findings and Research Needs. In the context of the Executive Summary it is sufficient to focus on the high-level findings which are summarized.

None

2009-09-30T23:59:59.000Z

440

WH ITNEY CAN YON-CART ER CR K YELLOW CR EEK_WY_D PIN EVIEW AN  

U.S. Energy Information Administration (EIA) Indexed Site

Gas, Energy Information Administration pursuant to studies required by Section 604 of the Energy Policy and Conservation Act Amendments of 2000 (P.L. 106-469). The boundaries are...

Note: This page contains sample records for the topic "wy nv ne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA  

Gasoline and Diesel Fuel Update (EIA)

accomplishments accomplishments are impressive in themselves, and associ- ated with each milestone is the expansion of future produc- tion opportunities as another technical barrier is overcome. The extension of recovery opportunities into deep water has established the deep offshore as an area of considerable national significance. A second source of increased supply is gas from coalbed formations. Natural gas production from coalbed methane fields continued to grow in 1996 as projects initiated mainly in the early to mid 1990's matured through the dewatering phase into higher rates of gas production. Coalbed forma- tions contribute almost 1 trillion cubic feet, roughly 5 per- cent, to total U.S. production. Continued production growth from coalbeds is not likely in light of the precipitous drop in new wells completed in coalbed formations since the termination of the production tax

442

NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA  

Annual Energy Outlook 2012 (EIA)

857, "Monthly Report of Natural Gas Purchases and Deliveries to Consumers." 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 15. Average City Gate Price of Natural...

443

Existing and proposed surface and undergoing coal mines region VIII summary. [In CO, MT, ND, UT, WY, SD  

SciTech Connect

Coal mining is expected to increase three-fold between 1978 and about 1985 in the EPA Region VIII States (Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming). This report provides detailed information on existing, proposed, and speculative mines. The information includes location, mine operator, quantity of coal mined, and type of mine.

Kimball, D.B.

1979-02-01T23:59:59.000Z

444

Examination and experimental constraints of the stellar reaction rate factor $N_A $ of the $^{18}$Ne($?$,$p$)$^{21}$Na reaction at temperatures of X-Ray Bursts  

E-Print Network (OSTI)

The $^{18}$Ne($\\alpha$,$p$)$^{21}$Na reaction is one key for the break-out from the hot CNO-cycles to the $rp$-process. Recent papers have provided reaction rate factors $N_A $ which are discrepant by at least one order of magnitude. The compatibility of the latest experimental results is tested, and a partial explanation for the discrepant $N_A$ is given. A new rate factor is derived from the combined analysis of all available data. The new rate factor is located slightly below the higher rate factor by Matic {\\it et al.}\\ at low temperatures and significantly below at higher temperatures whereas it is about a factor of five higher than the lower rate factor recently published by Salter {\\it et al.}

P. Mohr; A. Matic

2013-03-06T23:59:59.000Z

445

Heavy isotope production by multinucleon transfer reactions with /sup 254/Es. [101 MeV /sup 16/O, 98 MeV /sup 18/O, 127 MeV /sup 22/Ne  

Science Conference Proceedings (OSTI)

Fast automated on-line and quasi-on-line radiochemical techniques were applied to search for new isotopes, to measure their decay characteristics, and to study the cross sections of the heaviest, most neutron-rich actinide isotopes in reactions of /sup 16,18/O and /sup 22/Ne projectiles with /sup 254/Es as a target. The measured yields for isotopes up to Lr-260 are three or more orders of magnitude higher than in any other reaction used so far. A comparison with data for similar transfers from /sup 248/Cm targets is made. Transfer cross sections are extrapolated for the production of unknown, neutron-rich isotopes of elements 101 through 105, and the unique potential of /sup 254/Es as a target to make these exoctic nuclei accessible is demonstrated. 18 refs., 2 figs., 1 tab.

Schaedel, M.; Bruechle, W.; Bruegger, M.; Gaeggeler, H.; Moody, K.J.; Schardt, D.; Suemmerer, K.; Hulet, E.K.; Douran, A.D.; Dougan, R.J.

1985-01-01T23:59:59.000Z

446

Please cite this article in press as: Gilfillan, S.M.V., et al., He and Ne as tracers of natural CO2 migration up a fault from a deep reservoir. Int. J. Greenhouse Gas Control (2011), doi:10.1016/j.ijggc.2011.08.008  

E-Print Network (OSTI)

of Greenhouse Gas Control journal homepage: www.elsevier.com/locate/ijggc He and Ne as tracers of natural CO22 Noble gases Carbon isotopes Geological storage of CO2 Natural analogues a b s t r a c t Capture that could arise from a diffuse leakage of CO2 from a storage site. This is because there are many natural

447

DOI-BLM-NV-C010-2012-0070-CX | Open Energy Information  

Open Energy Info (EERE)

C010-2012-0070-CX C010-2012-0070-CX CX at Dixie Valley Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant US Navy Geothermal Program Office Geothermal Area Dixie Valley Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Magnetotelluric Methods, Reflection Survey Time Frame (days) Application Time 115 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 4/30/2012 Revised Application Date 7/27/2012 Decision Document Date 8/23/2012 Relevant Numbers

448

DOE/NV/10845 IT U S VECAS LIBRARY UC-703 I?. DESERT RESEARCH INSTITUTE  

Office of Legacy Management (LM)

0845 0845 IT U S VECAS LIBRARY UC-703 I?. DESERT RESEARCH INSTITUTE 3 I 'UNIVERSITY OF . ? .NEVADA SYSTEM Jenny B. Chapman Sam L. Hokett EVALUATION OF GROUNDWATER MONITORING AT O F F S m NUCLEAR TEST AREAS March 1991 WATER RESOURCES CENTER Publication #45085 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. EVALUATION OF GROUNDWATER MONITORING AT OFFSITE NUCLEAR TEST AREAS b-r Jenny B. Chapman Sam L Hokett Water Resources Center Desett Research Institute University of Nevada System Publication X45085 prepared for Nevada Operations Office U . S . :Department of Energy IAS Vegas, Nevada March 1991 The work upon which this report is based was supported by the U . S

449

Geothermal Prospecting using Hyperspectral Imaging and Field Observations, Dixie Meadows, NV  

DOE Green Energy (OSTI)

In an ongoing project to relate surface hydrothermal alteration to structurally controlled geothermal aquifers, we mapped a 16 km swath of the eastern front of the Stillwater Range using Hyperspectral fault and mineral mapping techniques. The Dixie Valley Fault system produces a large fractured aquifer heating Pleistocene aged groundwater to a temperature of 285 C at 5-6 km. Periodically over the last several thousand years, seismic events have pushed these heated fluids to the surface, leaving a rich history of hydrothermal alteration in the Stillwater Mountains. At Dixie Hot Springs, the potentiometric surface of the aquifer intersects the surface, and 75 C waters flow into the valley. We find a high concentration of alunite, kaolinite, and dickite on the exposed fault surface directly adjacent to a series of active fumaroles on the range front fault. This assemblage of minerals implies interaction with water in excess of 200 C. Field spectra support the location of the high temperature mineralization. Fault mapping using a Digital Elevation Model in combination with mineral lineation and field studies shows that complex fault interactions in this region are improving permeability in the region leading to unconfined fluid flow to the surface. Seismic studies conducted 10 km to the south of Dixie Meadows show that the range front fault dips 25-30 to the southeast (Abbott et al., 2001). At Dixie Meadows, the fault dips 35 to the southeast, demonstrating that this region is part of the low angle normal fault system that produced the Dixie Valley Earthquake in 1954 (M=6.8). We conclude that this unusually low angle faulting may have been accommodated by the presence of heated fluids, increasing pore pressure within the fault zone. We also find that younger synthetic faulting is occurring at more typical high angles. In an effort to present these findings visually, we created a cross-section, illustrating our interpretation of the subsurface structure and the hypothesized locations of increased permeability. The success of these methods at Dixie Meadows will greatly improve our understanding of other Basin and Range geothermal systems.

Kennedy-Bowdoin, T; Silver, E; Martini, B; Pickles, W

2004-04-26T23:59:59.000Z

450

NV Energy (Northern Nevada Gas) - SureBet Business Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Trap 50 Pipe Wrap-Hot Water or Steam Boiler Linear Foot 4 Domestic Hot Water Pipe Wrap Linear Foot 2 Roof Insulation SF-Roof Area 0.10 Demand Controlled Ventilation...

451

ENVIRONMENTAL ASSESSMENT DOI-BLM-NV-W010-2012-0057-EA DOE/EA...  

NLE Websites -- All DOE Office Websites (Extended Search)

prepared to disclose and analyze environmental effects of developing and testing a geothermal reservoir by using enhanced geothermal system (EGS) technologies, as proposed by...

452

Electron-Mediated Nuclear-Spin Interactions Between Distant NV Centers  

E-Print Network (OSTI)

We propose a scheme enabling controlled quantum coherent interactions between separated nitrogen-vacancy centers in diamond in the presence of strong magnetic fluctuations. The proposed scheme couples nuclear qubits employing the magnetic dipole-dipole interaction between the electron spins and, crucially, benefits from the suppression of the effect of environmental magnetic field fluctuations thanks to a strong microwave driving. This scheme provides a basic building block for a full-scale quantum information processor or quantum simulator based on solid-state technology.

A. Bermudez; F. Jelezko; M. B. Plenio; A. Retzker

2011-07-13T23:59:59.000Z

453

RECIPIENT:Nevada State Office of Energy STATE:NV PROJECT Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

improvements in generator efficiency and appliance efficiency ratings. development of energy-efficient manufacturing or industrial practices. and small-scale conservation and...

454

DOI-BLM-NV-C010-2011-00016-EA | Open Energy Information  

Open Energy Info (EERE)

roads. These facilities would be connected to the previously proposed geothermal power plant for the Patua Phase I project or to a new nominal 60MW net geothermal power...

455

GRR/Section 8-NV-a - Transmission | Open Energy Information  

Open Energy Info (EERE)

of wastewater, which support or service an electric generating plant. 2. Electric transmission lines and transmission substations that: (a) Are designed to operate at 200...

456

Microsoft Word - DRAFT DSW NV PA 9_6_13 lmm  

NLE Websites -- All DOE Office Websites (Extended Search)

PARK SERVICE REGARDING MAINTENANCE AND MINOR CONSTRUCTION ACTIVITIES AT EXISTING WESTERN TRANSMISSION LINES, FACILITIES AND PROPERTIES IN ARIZONA WHEREAS, the United States...

457

NV Energy Solar Integration Study: Cycling and Movements of Conventional Generators for Balancing Services  

DOE Green Energy (OSTI)

With an increasing penetration level of solar power in the southern Nevada system, the impact of solar on system operations needs to be carefully studied from various perspectives. Qualitatively, it is expected that the balancing requirements to compensate for solar power variability will be larger in magnitude; meanwhile, generators providing load following and regulation services will be moved up or down more frequently. One of the most important tasks is to quantitatively evaluate the cycling and movements of conventional generators with solar power at different penetration levels. This study is focused on developing effective methodologies for this goal and providing a basis for evaluating the wear and tear of the conventional generators

Diao, Ruisheng; Lu, Shuai; Etingov, Pavel V.; Ma, Jian; Makarov, Yuri V.; Guo, Xinxin

2011-07-01T23:59:59.000Z

458

DOI-BLM-NV-C010-2011-0501-EA | Open Energy Information  

Open Energy Info (EERE)

501-EA 501-EA EA at Patua Geothermal Area for Geothermal/Well Field Patua Geothermal Project Phase II General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Gradient Resources Consultant Panorama Environmental, Inc. Geothermal Area Patua Geothermal Area Project Location Fernley, Nevada Project Phase Geothermal/Well Field Techniques Development Drilling, Exploration Drilling, Well Testing Techniques Time Frame (days) Application Time 494 NEPA Process Time 327 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Sierra Front, Stillwater Funding Agencies none provided Surface Manager BLM, BOR, Private Mineral Manager BLM Selected Dates Application Date 2011/01/14

459

survey of the Badlands Wilderness Study Area (NV-OIO-184). Elko County. Nevada.  

E-Print Network (OSTI)

This open file report summarizes the results of a Bureau of Mines wilderness study and will be incorporated in a joint report with the Geological Survey. The report is preliminary and has not been edited or reviewed for conformity with the Bureau of Mines editorial standards. Work on this study was conducted by personnel from Intermountain Field

Terry J. Kreidler

1984-01-01T23:59:59.000Z