Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wv northeastern plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

U.S. DOE Industrial Technologies Program – Technology Delivery Plant-Wide Assessment at PPG Industries, Natrium, WV  

SciTech Connect (OSTI)

PPG and West Virginia University performed a plantwide energy assessment at the PPG’s Natrium, WV chemical plant, an energy-intensive manufacturing facility producing chlor-alkali and related products. Implementation of all the assessment recommendations contained in this report could reduce plant energy consumption by 8.7%, saving an estimated 10,023,192 kWh/yr in electricity, 6,113 MM Btu/yr in Natural Gas, 401,156 M lb/yr in steam and 23,494 tons/yr in coal and reduce carbon dioxide emissions by 241 mm lb/yr. The total cost savings would amount to approximately $2.9 mm/yr. Projects being actively implemented will save $1.7 mm/yr; the remainder are undergoing more detailed engineering study.

Lester, Stephen R.; Wiethe, Jeff; Green, Russell; Guice, Christina; Gopalakrishnan, Bhaskaran; Turton, Richard

2007-09-28T23:59:59.000Z

2

West Virginia Smart Grid Implementation Plan (WV SGIP) Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WV DoE-NRCCE-APERC DRAFT February 16, 2009 1 West Virginia Smart Grid Implementation Plan (WV SGIP) Project APERC Report on Customer Complaints to WV PSC about Electric Power...

3

Category:Elkins, WV | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWind Farm JumpBLM)Development5Elkins, WV Jump

4

Microsoft PowerPoint - WV SGIP 101810 rev1.pptx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

k d t l di t * Operate resiliently against attack and natural disaster ...the enabler 3 West Virginia Smart Grid Implementation Plan (WV SGIP) p ( ) If you don't know where you...

5

DOE - Office of Legacy Management -- Reduction Pilot Plant - WV 01  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePAOsborne Co -0-19GasK

6

Jointly sponsored by the WV Geriatric Education Center and CAMC Health Education and Research Institute  

E-Print Network [OSTI]

Jointly sponsored by the WV Geriatric Education Center and CAMC Health Education and Research, WV Geriatric Education Center Assistant Professor, WVU Internal Medicine and Geriatrics Participants CREDIT HOUR STATEMENT Physicians - The CAMC Health Education and Research Institute designates this live

Mohaghegh, Shahab

7

Fermilab Today | Northeastern University  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works: 2008SubmitMu2eIowaNortheastern

8

Scoping Study for Demand Respose DFT II Project in Morgantown, WV  

SciTech Connect (OSTI)

This scoping study describes the underlying data resources and an analysis tool for a demand response assessment specifically tailored toward the needs of the Modern Grid Initiatives Demonstration Field Test in Phase II in Morgantown, WV. To develop demand response strategies as part of more general distribution automation, automated islanding and feeder reconfiguration schemes, an assessment of the demand response resource potential is required. This report provides the data for the resource assessment for residential customers and describes a tool that allows the analyst to estimate demand response in kW for each hour of the day, by end-use, season, day type (weekday versus weekend) with specific saturation rates of residential appliances valid for the Morgantown, WV area.

Lu, Shuai; Kintner-Meyer, Michael CW

2008-06-06T23:59:59.000Z

9

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Morgantown, WV

10

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Morgantown, WV 26507

11

Albany, OR Anchorage, AK Morgantown, WV Pittsburgh, PA Sugar Land, TX Website: www.netl.doe.gov  

E-Print Network [OSTI]

efficiency, near-zero emissions and water usage, and carbon dioxide (co2 ) capture. Project Description se),NetLisleadingtheresearch,development,anddemonstrationofsoFcsforboth domestic coal and natural gas fueled central generation power systems that will enable low cost, high energy technology Laboratory 3610 collins Ferry road P.o. Box 880 Morgantown, WV 26507-0880 304

Azad, Abdul-Majeed

12

Krzysztof Ciesielski # , Department of Mathematics, West Virginia University, Morgantown, WV 265066310, USA, email: K Cies@math.wvu.edu, internet  

E-Print Network [OSTI]

Krzysztof Ciesielski # , Department of Mathematics, West Virginia University, Morgantown, WV was partially supported by 2002/03 West Virginia University Senate Research Grant. + The second author wishes to thank West Virginia University for its hospitality in years 1998­2001, where the results presented here

Ciesielski, Krzysztof Chris

13

1WV Business & Economic Review 1 Summer 2009 Volume 17 Summer 2009 West Virginia University College of Business and Economics  

E-Print Network [OSTI]

1WV Business & Economic Review 1 Summer 2009 Volume 17 · Summer 2009 West Virginia University ..........................................................6 The West Virginia County Employment Mix and the National Economy by George W. Hammond, Associate. That means that the economic performance of all West Virginia's counties depend, to some extent, on what

Mohaghegh, Shahab

14

New Biorefinery Will Bring Jobs to Northeastern Oregon | Department...  

Broader source: Energy.gov (indexed) [DOE]

New Biorefinery Will Bring Jobs to Northeastern Oregon New Biorefinery Will Bring Jobs to Northeastern Oregon August 9, 2010 - 10:00am Addthis A computer-generate image shows the...

15

NORTHEASTERN UNIVERSITY Graduate School of Engineering  

E-Print Network [OSTI]

a lot of platform specific code integrated into the rest of the application code, making portability's generic hardware interface to the specific API used by the selected special purpose processor would also like to thank Professor Laurie Smith King and the rest of the members of the Northeastern

Leeser, Miriam

16

anwr northeastern alaska: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

24 25 Next Page Last Page Topic Index 1 Late Pleistocene and Holocene glaciation of the Fish Lake valley, northeastern Alaska Range, Geosciences Websites Summary: in the...

17

File:EIA-Appalach5-eastWV-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to:December 2010 Thumbnail forMB)

18

File:EIA-Appalach5-eastWV-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to:December 2010 Thumbnail forMB)Gas Reserve Class

19

File:EIA-Appalach5-eastWV-LIQ.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to:December 2010 Thumbnail forMB)Gas Reserve

20

File:EIA-Appalach6-WV-VA-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to:December 2010 Thumbnail forMB)Gas

Note: This page contains sample records for the topic "wv northeastern plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

File:EIA-Appalach6-WV-VA-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to:December 2010 Thumbnail forMB)GasSouthern West

22

File:EIA-Appalach6-WV-VA-LIQ.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to:December 2010 Thumbnail forMB)GasSouthern West Ă—

23

Natural gas pricing in the Northeastern U.S.  

E-Print Network [OSTI]

This paper examines natural gas pricing at five citygate locations in the northeastern United States using daily and weekly price series for the years 1994-97. In particular, the effects of the natural gas price at Henry ...

Gunnarshaug, Jasmin

1998-01-01T23:59:59.000Z

24

Macrurous Decapods from the Bearpaw Shale (Cretaceous: Campanian) of Northeastern Montana  

E-Print Network [OSTI]

Macrurous Decapods from the Bearpaw Shale (Cretaceous: Campanian) of Northeastern Montana Rodney M THE BEARPAW SHALE (CRETACEOUS: CAMPANIAN) OF NORTHEASTERN MONTANA RODNEY M. FELDMANN, GALE A. BISHOP Shale of north- eastern Montana were studied to characterize the occurrence, preservation

Kammer, Thomas

25

Did the northeastern Gulf of Mexico become greener after the Deepwater Horizon oil spill?  

E-Print Network [OSTI]

#12;Did the northeastern Gulf of Mexico become greener after the Deepwater Horizon oil spill ecosystem in the northeastern Gulf of Mexico (NEGOM) from the Deepwater Horizon oil spill (April ­ July 2010 explosion occurred on the Deepwater Horizon (DWH) oil drilling platform in the northeastern Gulf of Mexico

Meyers, Steven D.

26

Megadroughts in Northeastern US History Implications for our Future?  

E-Print Network [OSTI]

). *Shorter but possibly more intense droughts occurred 5,480 and 5,745 years ago as seen by new XRF data; droughts 5-6000 years ago also evident MWP Kenna measuring elemental abundances with XRF Futureanalyses #12 & duration over past 15,000 years in Hudson Valley & Northeastern US -Use XRF to fill in gaps in Piermont

27

argentina northeastern captive: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

argentina northeastern captive First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Fibrous-clay mineral...

28

E-Print Network 3.0 - assam northeastern india Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Arunachal Pradesh... : Naga Hills, Assam, India. Distribution: northeastern India and Nepal (Hi- malayas Region); Bangladesh... : Naga Hills, Asm ... Source: Murphy, Bob -...

29

Importance of physical processes on near-surface nutrient distributions in summer in the northeastern Gulf of Mexico  

E-Print Network [OSTI]

As part of the northeastern Gulf of Mexico chemical oceanography and hydrography study, data on salinity, nutrients, and surface chlorophyll were collected three times per year over the northeastern Gulf of Mexico along 11 cross-shelf (normal...

Belabbassi, Leila

2001-01-01T23:59:59.000Z

30

J. Nvar et al.Stand biomass in Tamaulipan thornscrub of northeastern Mexico Original article  

E-Print Network [OSTI]

J. Návar et al.Stand biomass in Tamaulipan thornscrub of northeastern Mexico Original article Estimating stand biomass in the Tamaulipan thornscrub of northeastern Mexico José Návara* , Eduardo Méndeza standing biomass measurements and estimates using quadrat attributes in the Tamaulipan thornscrub

Paris-Sud XI, Université de

31

Assessment of Inundation Risk from Sea Level Rise and Storm Surge in Northeastern Coastal National Parks  

E-Print Network [OSTI]

Assessment of Inundation Risk from Sea Level Rise and Storm Surge in Northeastern Coastal National of inundation risk from sea level rise and storm surge in northeastern coastal national parks. Journal of Coastal Research, 00(0), 000­000. Coconut Creek (Florida), ISSN 0749-0208. Sea level rise and an increase

Wang, Y.Q. "Yeqiao"

32

Significant reduction of surface solar irradiance induced by aerosols in a suburban region in northeastern China  

E-Print Network [OSTI]

Significant reduction of surface solar irradiance induced by aerosols in a suburban region in northeastern China Xiangao Xia,1 Hongbin Chen,1 Zhanqing Li,1,2 Pucai Wang,1 and Jiankai Wang1 Received 25 May region in northeastern China. Aerosol properties derived from Sun photometer measurements and aerosol

Li, Zhanqing

33

E-Print Network 3.0 - affecting northeastern brazil Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Guy- ana, known as the Guianas-Brazil... of northeastern Brazil, French Guiana, Suriname and Guyana (1975-77). In A. C. Jones and L. Villegas (Editors... working group met in...

34

Late Holocene hurricane activity and climate variability in the Northeastern Gulf of Mexico  

E-Print Network [OSTI]

Hurricane activity in the Northeastern Gulf of Mexico and its relationship to regional and large-scale climate variability during the Late Holocene is explored. A 4500-year record of hurricane-induced storm surges is ...

Lane, Daniel Philip

2011-01-01T23:59:59.000Z

35

Northeastern University E c o n o m i c s  

E-Print Network [OSTI]

questions about Northeastern University and the College of Social Sciences and Humanities. *myPAWS/DARS The most important source of official curricular information is the Degree Audit and Reporting System (DARS

Sridhar, Srinivas

36

The Evolution of the Built Environment of the Margi Ethnic Group of Northeastern Nigeria  

E-Print Network [OSTI]

This dissertation is a story of the evolution of the domestic sphere of the Margi ethnic group of northeastern Nigeria. The evolution started with round huts and fences that were constructed mainly with pieces of stones ...

Birdling, Emmanuel Awidau

2013-05-31T23:59:59.000Z

37

Origin and distribution of sand types, northeastern U.S. Atlantic continental shelf  

E-Print Network [OSTI]

. 28 Map of the northeastern U. S. Atlantic continental margin showing locations of samples used in this study. 31 Plot of relative entropy values for harmonics 2 through 24 for samples from the northeastern U. S. Atlantic continental shelf. 36... Shape frequency distributions for harmonics 2, 19, 21, and 23 of the three grain shape types. . . . . . . . . . . . . . . . 37 SEM photographs of Type 1 fine quartz sands (coastal plain-derived). SEM photographs of Type 2 fine quartz sands (glacial...

Leschak, Pamela

1985-01-01T23:59:59.000Z

38

Geology and engineering geology of a Wilcox lignite deposit in northeastern Rusk County, Texas  

E-Print Network [OSTI]

GEOLOGY AND ENGINEERING GEOLOGY OF A WILCOX LIGNITE DEPOSIT IN NORTHEASTERN RUSK COUNTY, TEXAS A Thesis by William F. Cole Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree...) (Member) (Member) (Member) (Member) ad of Department) August 1980 ABSTRACT Geology and Engineering Geology of a Wilcox Lignite Deposit in Northeastern Rusk County, Texas (August, 1980) William 7. Cole, B. S. , Texas ASM University Chairman...

Cole, William F.

1980-01-01T23:59:59.000Z

39

Power Plant Power Plant  

E-Print Network [OSTI]

Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

Tingley, Joseph V.

40

Amazon River water in the northeastern Caribbean Sea and its effect on larval reef fish assemblages during April 2009  

E-Print Network [OSTI]

Amazon River water in the northeastern Caribbean Sea and its effect on larval reef fish assemblages.S.A. ABSTRACT During April to June 2009, a large bolus of Amazon River water impacted the northeastern Caribbean Ocean waters to the north, with Caribbean surface waters showing intermediate values. Plankton net tows

Note: This page contains sample records for the topic "wv northeastern plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

DENDROCLIMATOLOGY ALONG CLIFF ENVIRONMENTS OF NORTHEASTERN WEST VIRGINIA: A COMPARISON OF RIDGETOP PINES AND CLIFF-LINE RED CEDAR  

E-Print Network [OSTI]

DENDROCLIMATOLOGY ALONG CLIFF ENVIRONMENTS OF NORTHEASTERN WEST VIRGINIA: A COMPARISON OF RIDGETOP and compare two drought-sensitive tree-ring chronologies from cliff sites in northeastern West Virginia; one), held at The Mountain Institute on Spruce Knob, West Virginia, we sought to explore

Manning, Sturt

42

NORTHEASTERN NATURALIST2008 15(3):375390 Status and Distribution of Fish in an Acid-impacted  

E-Print Network [OSTI]

of the northeastern US. Introduction The ecological impacts of anthropogenic acidification (acid rain) on fishNORTHEASTERN NATURALIST2008 15(3):375­390 Status and Distribution of Fish in an Acid to chemical barriers that limit upstream movement during high flow in a few streams. As recovery from acid

Kraft, Clifford E.

43

Anthropogenic and Natural Emissions of Mercury (Hg) in the northeastern United Jeffrey MacAdam Sigler  

E-Print Network [OSTI]

Abstract Anthropogenic and Natural Emissions of Mercury (Hg) in the northeastern United States impact may depend on the emission rate. Anthropogenic Hg emissions in the United States are poorly characterized. Natural Hg emissions are poorly understood worldwide, due to lack of data or measurement systems

Lee, Xuhui

44

The Role of Cetaceans in the Shelf-Edge Region of the Northeastern United States  

E-Print Network [OSTI]

The Role of Cetaceans in the Shelf-Edge Region of the Northeastern United States JAMES H. W. HAIN, MARTIN A. M. HYMAN, ROBERT D. KENNEY, and HOWARD E. WINN Introduction Man has been, and continues to be, RI 02881; the present address of J. H. W. Hain is Associated Scientists at Woods Hole, Box 721, Woods

45

Relating fish biomass to habitat and chemistry in headwater streams of the northeastern United States  

E-Print Network [OSTI]

Relating fish biomass to habitat and chemistry in headwater streams of the northeastern United influencing total fish biomass in streams, but few studies have evaluated the relative influence of habitat and pH together. We measured total fish biomass, stream habitat, and stream pH in sixteen sites from

Kraft, Clifford E.

46

NORTHEASTERN NATURALIST2006 13(1):3538 Sea Lamprey Attached to a Greenland Shark in the  

E-Print Network [OSTI]

NORTHEASTERN NATURALIST2006 13(1):35­38 Sea Lamprey Attached to a Greenland Shark in the St fork length, male Somniosus microcephalus (Greenland shark) on 9 October 2004 in Baie St. Pancrace, St observation of a sea lamprey attached to a Somniosus microcephalus (Bloch and Schneider) (Greenland shark

Myers, Ransom A.

47

Project Information Form Project Title Intercity Travel in Northeastern Non-metropolitan Regions: What Roles do  

E-Print Network [OSTI]

) USDOT $73,000 Total Project Cost $73,000 Agency ID or Contract Number DTRT13-G-UTC29 Start and End DatesProject Information Form Project Title Intercity Travel in Northeastern Non-metropolitan Regions September 2014 to August 2016 Brief Description of Research Project Little is known about intercity travel

California at Davis, University of

48

Assessing XRF for the geochemical characterization of radiolarian chert artifacts from northeastern North America  

E-Print Network [OSTI]

Assessing XRF for the geochemical characterization of radiolarian chert artifacts from northeastern 2012 Keywords: Chert XRF Geochemistry Non-destructive Weathering Quarries Quebec a b s t r a c-ray fluorescence (ED-XRF) as a first-order technique to determine chert whole-rock geochemistry for archaeological

Long, Bernard

49

Late Quaternary deposition and facies model for karstic Lake Estanya (North-eastern Spain)  

E-Print Network [OSTI]

Late Quaternary deposition and facies model for karstic Lake Estanya (North-eastern Spain) MARIO-50059 Zaragoza, Spain (E-mail: mariomm@ipe.csic.es) EAWAG, Swiss Federal Institute of Aquatic Research Ca´diz, Poli´gono Ri´o San Pedro s/n, 11510 Puerto Real (Ca´diz), Spain Associate Editor: Stephen

Gilli, Adrian

50

NUVABAT: Northeastern University Virtual Ankle and Balance Trainer Ye Ding1, Mark Sivak1  

E-Print Network [OSTI]

NUVABAT: Northeastern University Virtual Ankle and Balance Trainer Ye Ding1, Mark Sivak1 , Brian-373-5274. ABSTRACT The ability to control the ankle muscles and produce adequate range ofmotion in the ankle joints, such as stroke or traumatic brain injury, frequently lose gait and balance function due in part to loss of ankle

Mavroidis, Constantinos

51

Fibrous-clay mineral formation and soil evolution in Aridisols of northeastern Patagonia, Argentina  

E-Print Network [OSTI]

Fibrous-clay mineral formation and soil evolution in Aridisols of northeastern Patagonia, Argentina PatagĂłnico, CONICET, Avd. Brown s/n, 9120, Puerto Madryn, Chubut, Argentina b Departamento de EdafologĂ­a, EPS horizons; Chubut province of Argentina 1. Introduction Palygorskite and sepiolite are clay minerals

Ahmad, Sajjad

52

SHORTER NOTES An Adiantopsis Hybrid from Northeastern Argentina and Vicinity.--During  

E-Print Network [OSTI]

SHORTER NOTES An Adiantopsis Hybrid from Northeastern Argentina and Vicinity.--During a recent collecting trip to the Parque Nacional Iguazu´, Misiones, Argentina, an unusual specimen of Adiantopsis and often sympatric in the American tropics. In contrast, the hybrid is restricted to Argentina, Brazil

Barker, Michael S.

53

112Proceedings of the 2009 Northeastern Recreation Research Symposium GTR-NRS-P-66 Diane Kuehn  

E-Print Network [OSTI]

112Proceedings of the 2009 Northeastern Recreation Research Symposium GTR-NRS-P-66 Diane Kuehn (McAvoy and Dustin 1983, Vander Stoep and Gramann 1987, Duncan and Martin 2002, Kuehn and Thompson erosion) (Kuehn and Habig 2005, Kuehn and Thompson 2007). The strong stewardship ethic of many ELODWA

54

Ice storm impacts on woody debris and debris dam formation in northeastern U.S. streams  

E-Print Network [OSTI]

Ice storm impacts on woody debris and debris dam formation in northeastern U.S. streams Clifford E and associated streams. During 1999 and 2000, tree canopy damage, stream physical habitat, and wood deposition were evaluated within 51 first-, second-, and third-order streams located within five eastern

Kraft, Clifford E.

55

Analyzing the effectiveness of alternative fuel reductions of a forested landscape in Northeastern China  

E-Print Network [OSTI]

Analyzing the effectiveness of alternative fuel reductions of a forested landscape in Northeastern reduction, and fiscal input. We used the LANDIS model to study the effects of alternative fuel reduction to the effective fire suppression started in the early 1950s. Consequently, high fuel accumulation coupled

He, Hong S.

56

NORTHEASTERN NATURALIST2009 16(2):307313 Variation in Ozone Sensitivity Within Indian Hemp and  

E-Print Network [OSTI]

NORTHEASTERN NATURALIST2009 16(2):307­313 Variation in Ozone Sensitivity Within Indian Hemp , and Dennis R. Decoteau1 Abstract - Sixteen selections of Apocynum cannabinum (Indian Hemp) and nine, adaxial stipple, similar to symptoms ascribed to ambient ozone in the field. Indian Hemp was more

Decoteau, Dennis R.

57

Smallmouth Bass Seasonal Dynamics in Northeastern South Dakota Glacial Lakes Thomas D. Bacula  

E-Print Network [OSTI]

Department of Game, Fish and Parks, and South Dakota State University. #12;iv ABSTRACT Smallmouth BassSmallmouth Bass Seasonal Dynamics in Northeastern South Dakota Glacial Lakes BY Thomas D. Bacula and Fisheries Science (Fisheries Option) South Dakota State University 2009 #12;11 Smallmouth Bass Seasonal

58

Dynamics of wood recruitment in streams of the northeastern US Dana R. Warren a,  

E-Print Network [OSTI]

: Large woody debris LWD Riparian forest Wood recruitment Wood dynamics Stream restoration Debris dam restoration efforts often incorporate large wood. In most cases, however, stream restoration projectsDynamics of wood recruitment in streams of the northeastern US Dana R. Warren a, *, Clifford E

Kraft, Clifford E.

59

214Proceedings of the 2009 Northeastern Recreation Research Symposium GTR-NRS-P-66 Ethel Wilkerson  

E-Print Network [OSTI]

214Proceedings of the 2009 Northeastern Recreation Research Symposium GTR-NRS-P-66 Ethel Wilkerson quality recreational experiences (Manfredo et al.1983) with protection of environmental values (Kuss and Leung 2001). Degradation of trails can also impact the quality and enjoyment of recreation experiences

60

Structural restoration of Louann Salt and overlying sediments, De Soto Canyon Salt Basin, northeastern Gulf of Mexico  

E-Print Network [OSTI]

The continental margin of the northeastern Gulf of Mexico is suited for seismic stratigraphic analysis and salt tectonism analysis. Jurassic strata include the Louann Salt on the continental shelf and upper slope of the Destin Dome OCS area...

Guo, Mengdong

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wv northeastern plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Neural network analysis of sparse datasets ?? an application to the fracture system in folds of the Lisburne Formation, northeastern Alaska  

E-Print Network [OSTI]

with conventional statistical analysis, were used to examine the effects of folding, bed thickness, structural position, and lithology on the fracture properties distributions in the Lisburne Formation, folded and exposed in the northeastern Brooks Range of Alaska...

Bui, Thang Dinh

2005-11-01T23:59:59.000Z

62

Taxonomy and distribution of sea anemones (Cnidaria: Actiniaria and Corallimorpharia) from deep water of the northeastern Pacific  

E-Print Network [OSTI]

Sea anemones sensu lato (members of cnidarian orders Actiniaria and Corallimorpharia) occurring in water of the northeastern Pacific Ocean greater than 1,000 m (to the abyssal plain) are poorly known. Based on the literature and specimens we...

Eash-Loucks, Wendy E.; Fautin, Daphne G.

2012-07-04T23:59:59.000Z

63

Preconstruction of the Honey Lake Hybrid Power Plant  

SciTech Connect (OSTI)

The work undertaken under this Contract is the prosecution of the preconstruction activities, including preliminary engineering design, well field development, completion of environmental review and prosecution of permits, and the economic and financial analysis of the facility. The proposed power plant is located in northeastern California in Lassen County, approximately 25 miles east of the town of Susanville. The power plant will use a combination of wood residue and geothermal fluids for power generation. The plant, when fully constructed, will generate a combined net output of approximately 33 megawatts which will be sold to Pacific Gas and Electric Company (PG E) under existing long-term power sales contracts. Transfer of electricity to the PG E grid will require construction of a 22-mile transmission line from the power plant to Susanville. 11 refs., 12 figs., 7 tabs.

Not Available

1988-04-30T23:59:59.000Z

64

Preconstruction of the Honey Lake Hybrid Power Plant: Final report  

SciTech Connect (OSTI)

The work undertaken under this Contract is the prosecution of the preconstruction activities, including preliminary engineering design, well field development, completion of environmental review and prosecution of permits, and the economic and financial analysis of the facility. The proposed power plant is located in northeastern California in Lassen County, approximately 25 miles east of the town of Susanville. The power plant will use a combination of wood residue and geothermal fluids for power generation. The plant, when fully constructed, will generate a combined net output of approximately 33 megawatts which will be sold to Pacific Gas and Electric Company (PGandE) under existing long-term power sales contracts. Transfer of electricity to the PGandE grid will require construction of a 22-mile transmission line from the power plant to Susanville. 11 refs., 12 figs., 4 tabs.

Not Available

1988-04-30T23:59:59.000Z

65

Black Bear Prep plant replaces high-frequency screens with fine wire sieves  

SciTech Connect (OSTI)

At the Black Bear prep plant (near Wharncliffe, WV, USA) the clean coal from the spirals traditionally reported to high-frequency screens, which removed high-ash clay fines. Screens have inherent inefficiencies that allow clean coal to report to the screen underflow. The goal of this project was to capture the maximum amount of spiral clean coal while still removing the high-ash clay material found in the spiral product. The reduction of the circulating load and plant downtime for unscheduled maintenance were projected as additional benefits. After the plant upgrade, the maintenance related to the high frequency screens was eliminated and an additional 2.27 tons per hour (tph) of fine coal was recovered, which resulted in a payback period of less than one year. The article was adapted from a paper presented at Coal Prep 2007 in April 2007, Lexington, KY, USA. 1 ref., 1 fig., 1 tab.

Barbee, C.J.; Nottingham, J.

2007-12-15T23:59:59.000Z

66

Developer Installed Treatment Plants  

E-Print Network [OSTI]

-installed treatment plants. These treatment plants are more commonly known as package wastewater treatment plants. 1

unknown authors

2008-01-01T23:59:59.000Z

67

wvBLACK DIAMONDS Engineering and  

E-Print Network [OSTI]

's fossil fuel resources. This gift will enable our students and faculty to conduct research aimed, information technology, and operations support. Prior to joining ICG in 2005, Kitts' career included Operations. He began his lecture by acknowledging the great strides that the coal industry has made over

Mohaghegh, Shahab

68

wvBLACK DIAMONDS table of contents  

E-Print Network [OSTI]

'RE ON THE WEB! www.mine.cemr.wvu.edu Statler College of Engineering and Mineral Resources DEPARTMENT OF MINING

Mohaghegh, Shahab

69

wvBLACK DIAMONDS table of contents  

E-Print Network [OSTI]

with mining! WE'RE ON THE WEB! www.mine.cemr.wvu.edu College of Engineering and Mineral Resources DEPARTMENT

Mohaghegh, Shahab

70

Analysis of tidal current observations over the northeastern shelf of the Gulf of Mexico  

E-Print Network [OSTI]

ANALYSIS OF TIDAL CURRENT OBSERVATIONS OVER THE NORTHEASTERN SHELF OF THE GULF OF MEXICO A Thesis By DONALD LEE DURHAM Submitted to the Graduate College of the Texas A&M University in partial fulfillment of the requirements for the degree... by Project 286 of the Texas A&M Research Foundation; this project is sponsored by the Office of Naval Research under Contract Nonr 2119(04). The Texas State Fellowship which was granted to me by the Graduate College of Texas A&M University...

Durham, Donald L

1967-01-01T23:59:59.000Z

71

Archaeofaunal insights on pinniped-human interactions in the northeastern Pacific  

SciTech Connect (OSTI)

Human exploitation of pinnipeds has considerable antiquity but shows increasing impacts on population numbers in the Holocene. Pinnipeds are a rich source of fat as well as protein. A few well-documented cases of regional extirpation of seals and sea lions by non-industrial peoples exist. The northeastern Pacific region, from southern California to Alaska, has yielded archaeological evidence for distributions and abundances of eared seals that differs markedly from historically documented biogeography. This is especially true of the northern fur seal (Callorhinus ursinus), among the most common pinnipeds in many archaeological sites from the Santa Barbara Channel area through to Kodiak Islands. This chapter reviews contemporary eared seal biogeography, evidence for the earlier timing and extent, of occurrence of northern fur seals along the northeastern Pacific coast, zooarchaeological and isotopic evidence for their foraging and probable maintenance of rookeries in lower latitudes, and for their disappearance from the southernmost part of their ancient distribution well before European contact. It also reviews ongoing debates over the behavioral ecology of ancient fur seals and over humans role in contributing to their disappearance.

Gifford-Gonzales, D; Newsome, S; Koch, P; Guilderson, T; Snodgrass, J; Burton, R

2004-02-07T23:59:59.000Z

72

Ophiolitic terranes of northern and central Alaska and their correlatives in Canada and northeastern Russia  

SciTech Connect (OSTI)

All of the major ophiolitic terranes (Angayucham, Tozitna, Innoko, Seventymile, and Goodnews terranes) in the northern and central Alaska belong to the Tethyan-type' of Moores (1982) and were obducted onto Paleozoic and Proterozoic continental and continental margin terranes in Mesozoic time. Tethyan-type' ophiolitic assemblages also occur in the Slide Mountain terrane in the Canadian Cordillera and extend from western Alaska into northeastern Russia. Although investigators have suggested widely different ages from their times of abduction onto the continent, these ophiolitic terranes display some remarkably similar features: (1) they consist of a stack of imbricated thrust slices dominated by ocean floor sediments, basalt, and high-level gabbro of late Paleozoic and Triassic age; (2) their mafic-ultramafic complexes generally are confined to the uppermost thrust sheets; (3) they lack the large tectonic melanges zones and younger accretionary flysch deposits associated with the ophiolitic terranes of southern Alaska and the Koryak region of northeastern Russia; (4) blueschist mineral assemblages occur in the lower part of these ophiolite terranes and (or) in the underlying continental terranes; and (5) they are bordered on their outboard' side by Mesozoic intraoceanic volcanic arc terranes. Recent geochemical and geologic studies of the mafic-ultramafic complexes in the Anagayucham and Tozitna terranes strongly suggest they were generated in a supra-subduction zone (SSZ) and that they are directly overlain by volcanic rocks of the Koyukuk terrane.

Patton, W.W. Jr. (Geological Survey, Menlo Park, CA (United States))

1993-04-01T23:59:59.000Z

73

Abundance and distribution of paralarval cephalopods in relation to mesoscale hydrographic features in the northeastern Gulf of Mexico  

E-Print Network [OSTI]

. Additional specimens were collected from 1m˛ MOCNESS tows taken during a 1997 Student Training and Research cruise, as well as from meter net tows done as part of 1998 and 1999 'NEGOM' (Northeastern Gulf of Mexico) Chemical Oceanography and Hydrography...

Cady, Robert B

2001-01-01T23:59:59.000Z

74

GROWTH OF PACIFIC SAUR~ COWLABlS SAlRA, IN THE NORTHEASTERN AND NORTHWESTERN PACIFIC OCEANI  

E-Print Network [OSTI]

the northeastern and northwestern Pacific Ocean was studied using otolith growth increments. We found that growth, Cololabis saira (Brevoort), is distributed throughout the North Pacific Ocean and is one of the most the northwestern Pacific Ocean. Details of sampling and methods of reading otoliths are summarized in Table 1

75

The Cabo de la Vela MaficUltramafic Complex, Northeastern Colombian Caribbean region: a record of Multistage evolution  

E-Print Network [OSTI]

The Cabo de la Vela Mafic­Ultramafic Complex, Northeastern Colombian Caribbean region: a record-related rocks have been described from the Colombian Caribbean (MacDonald 1964; Lockwood 1965; Alvarez 1967. Geological setting The Meso-Cenozoic history of the Colombian Andes in the Caribbean region is characterized

Bermingham, Eldredge

76

Ground-water effects of the UCG experiments at the Hoe Creek site in northeastern Wyoming  

SciTech Connect (OSTI)

Ground-water changes and subsidence effects associated with three underground coal gasification (UCG) experiments have been monitored at the Hoe Creek site in northeastern Wyoming. Ground-water quality measurements have extended over a period of four years and have been supplemented by laboratory studies of contaminant sorption by coal. It was found that a broad range of residual gasification products are introduced into the ground-water system. These contaminants may be of environmental significance if they find their way, in sufficient concentrations, into surface waters, or into aquifers from which water is extracted for drinking or agricultural purposes. Fortunately, the concentrations of these contaminants are substantially reduced by sorption on the surrounding coal. However, recent field measurements indicate that there may be significant limitations on this natural cleansing process. The contaminants of potential concern, and the mechanisms that affect their deposition and persistence have been identified.

Mead, S.W.; Wang, F.T.; Stuermer, D.H.

1981-06-01T23:59:59.000Z

77

Plants & Animals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Los Alamos, NM 87545 (505) 667-0216 Email We sample many plants and animals, including wild and domestic crops, game animals, fish, and food products from animals, as well as...

78

Basement/cover rock relations of the Dry Fork Ridge Anticline termination, northeastern Bighorn Mountains, Wyoming and Montana  

E-Print Network [OSTI]

, Northeastern Bighorn Mountains, Wyoming and Montana. (August 1986) Peter Hill Hennings, B. S. , Texas A&M University Chairman of Advisory Committee: Dr. John H. Spang Field mapping on scales of 1:6, 000 and 1: 12, 000 indicate that the basement involved... in the Field Area Methodology DATA. PAGE I 3 7 10 12 17 25 25 28 Field Map. Interpretive Data: Cross Sections Dry Fork Ridge Anticline. Faole Point Anticline and the Mountain Flank. . Basement Geometry. Fracture Analysis...

Hennings, Peter Hill

1986-01-01T23:59:59.000Z

79

Origin of alkali-feldspar granites: An example from the Poimena Granite, northeastern Tasmania, Australia  

SciTech Connect (OSTI)

The Lottah Granite is a composite pluton of tin mineralized strongly peraluminous alkali-feldspar granite which intrudes the Poimena Granite, a major component of the mid-Devonian Blue Tier Batholith of northeastern Tasmania. Earlier workers interpreted the Lottah Granite as a metasomatised differentiate of the Poimena Granite. The Poimena Granite is a slightly peraluminous, felsic, I-type biotite granite which contains restite minerals and shows linear trends on Harker plots, both consistent with restite separation. The mineralogy, chemical variation, and isotopic characteristics of the Lottah Granite are consistent with origin as a magma genetically unrelated to the host granite. The Lottah Granite contains sanidine, albite, topaz, zinnwaldite and other minerals consistent with crystallization from a melt. Furthermore, Rb-Sr isotopic dating indicates that the Lottah Granite was emplaced about 10 Ma after the Poimena Granite, and initial Sr and Nd isotope ratios indicate that the Lottah Granite was derived from a higher-{sup 87}Sr/{sup 86}Sr, higher-{epsilon}Nd source composition. Chemical and mineralogical evolution of the Lottah Granite conform to the experimental behavior of Li-F-rich melts, and indicate a possible crystallization temperature range as extreme as 750-430{degree}C. Many other examples of alkali-feldspar granite, and much of the associated mineralization, are probably also of essentially primary magmatic origin rather than of metasomatic or hydrothermal origin as commonly interpreted. They may also be genetically unrelated to granites with which they are associated.

Mackenzie, D.E.; Black, L.P.; Sun, Shensu (Bureau of Mineral Resources, Canberra (Australia))

1988-10-01T23:59:59.000Z

80

Cold flow production of crude bitumen at the Burnt Lake Project, northeastern Alberta  

SciTech Connect (OSTI)

The bitumen from the Clearwater Formation of the Cold Lake oil sands deposit in northeastern Alberta, Canada, has been deemed to be too viscous for production without the addition of heat. Since the 1970s, various operators have experimented with cyclic steam stimulation and steamflood. By 1990, cyclic steam injection was the only commercial recovery process in this area. Between 1990 and 1993, Suncor tested the cold flow production of crude bitumen at the Burnt Lake Project. Bitumen and sand were produced together through the use of progressive cavity pumps without the assistance of steam. The initial wells produced at unexpectedly high rates. As the test was expanded to a larger area, the productivity was found to vary significantly. Damage of the shale caprock in some of the initial wells was observed, probably due to sand production and change in in situ stresses. This then caused water influx from the aquifer above the caprock to the oil sands reservoir and prohibited bitumen production. This paper discusses the production performance of the wells, the challenges of cold flow production, and the results of various field research programs undertaken in an attempt to tackle these challenges.

Yeung, K.C. [Suncor, Inc., Calgary, Alberta (Canada)

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "wv northeastern plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Avian use of forest habitats in the Pembina hills of northeastern North Dakota. Resource pub  

SciTech Connect (OSTI)

North Dakota has the least extensive total area of forested habitats of any of the 50 United States. Although occurring in limited area, forest communities add considerably to the total ecological diversity of the State. The forests of the Pembina Hills region in northeastern North Dakota are one of only three areas large enough to be considered of commercial value. During 1981 the authors studied the avifauna of the upper valley of the Pembina River in the Pembina Hills. Field work extended from 20 April to 23 July; breeding bird censuses were conducted 7 June to 2 July. Of the 120 bird species recorded during the study period, 79 species were recorded during the breeding season. The total breeding population was estimated at nearly 76,000 breeding pairs. The wood warblers (Parulidae) were the most numerous family, accounting for about 28,000 breeding pairs. The yellow warbler (Dendroica petechia) was the most abundant breeding species, making up 19.4% of the population. American redstart (Setophaga ruticilla) was second in abundance, accounting for 10.5% of the breeding population. Largest breeding densities occurred in the willow (Salix sp.) shrub community.

Faanes, C.A.; Andrew, J.M.

1983-12-31T23:59:59.000Z

82

Implications of ground-water measurements at the Hoe Creek UCG site in northeastern Wyoming  

SciTech Connect (OSTI)

Underground coal gasification (UCG) promises to become an important source of synthetic fuels. In an effort to provide timely information concerning the environmental implications of the UCG process, we are conducting investigations in conjunction with the UCG experiments carried out in northeastern Wyoming by the Lawrence Livermore National Laboratory. Our ground-water quality measurements have extended over a period of four years and have been supplemented by laboratory studies of contaminant sorption by coal. Cavity roof collapse and aquifer interconnection were also investigated, using surface and subsurface geotechnical instruments, post-burn coring, and hydraulic head measurements. We have found that a broad range of residual gasification products are introduced into the ground-water system. Fortunately, the concentrations of many of these contaminants are substantially reduced by sorption on the surrounding coal. However, some of these materials seem likely to remain in the local groundwater, at low concentrations, for several years. We have attempted to interpret our results in terms of concepts that will assist in the development of effective and practicable control technologies.

Mead, S.W.; Wang, F.T.; Stuermer, D.H.; Raber, E.; Ganow, H.C.; Stone, R.

1980-01-01T23:59:59.000Z

83

Bagdad Plant  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06Hot-Humid- EngineB2Bagdad Plant 585 Silicon

84

Stratigraphic architecture of the Tonganoxie Paleovalley Fill (Lower Virgilian) in Northeastern Kansas  

SciTech Connect (OSTI)

Lower Pennsylvanian paleovalley-confined sandstones are important petroleum reservoirs in the Midwest. In Kansas, such reservoirs have produced approximately 220 million bbl of oil and 1.7 tcf of gas. Valley-fill successions tend to become muddy upward, but there can be considerable local heterogeneity in which reservoir sandstones pass laterally into muddy sandstones or nonreservoir shales. The lack of understanding of this reservoir heterogeneity can lead to low drilling success rates. The Tonganoxie paleovalley (Upper Pennsylvanian, northeastern Kansas) contains facies very similar to Lower Pennsylvanian (Morrowan) valley fills, and can provide an outcrop- and subsurface-based model of sandstone deposition. The Tonganoxie paleovalley was incised during lowered sea level and filled during the subsequent transgression. Sandstones occur in four distinct architectural elements that were deposited during different phases of transgression. Type I sandstone consists of a belt of sandstone and conglomerate 3-18 m thick and confined to the trunk valley and wider portions of tributary valleys. Type I sandstone consists of amalgamated channel fills, has little or no mud, and has the highest porosity and permeability. The type I sandstone is overlain by estuarine deposits of sandstone (type II sandstones), rippled argillaceous sandstone to sandy mudstone, and coal. Most of the paleovalley was filled during this stage. The type II sandstones are narrow (1.5 km wide) arcuate bodies up to 8 km long and were likely deposited in tidal point bars near the fluvial to tidal transition, are either isolated sandstone bodies or are incised into type I sandstone. Type III sandstone bodies occur at the upstream limits of narrow tributaries and are probably bay-head deltas. Well logs indicate a range of mud content. Type IV sandstone is a thin (3 m) discontinuous sheet of marine sandstone deposited after most of the paleovalley had been filled.

Feldman, H.R. [Kansas Geological Survey, Lawrence, KS (United States); Gibling, M.R.; Wightman, W.G. [Dalhousie Univ., Nova Scotia (Canada)] [and others

1995-07-01T23:59:59.000Z

85

Plant Operational Status - Pantex Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNews & Blog »Physics PhysicsWeek »Plant

86

2D versus 1D ground-motion modelling for the Friuli region, north-eastern Italy1 W. Imperatori1, *  

E-Print Network [OSTI]

2D versus 1D ground-motion modelling for the Friuli region, north-eastern Italy1 2 W. Imperatori1 and CO2 Storage Security Division, BRGM, 3 avenue C. Guillemin, 450607 Orléans Cedex 2, France.8 9 affects ground motions, particularly in terms of peak ground velocity (PGV). The decay of PGV14

Boyer, Edmond

87

Ecophysiological Responses of C3 Forbs and C4 Grasses to Drought and Rain on a Tallgrass Prairie in Northeastern Kansas  

E-Print Network [OSTI]

Ecophysiological responses to drought and a 3-cm rain were measured in seven C3 forb and five C4 grass species on a tallgrass prairie in northeastern Kansas. In general, midday leaf water potentials and conductances increased after rain to a greater...

Martin, Craig E.; Harris, Fred S.; Norman, Frank J.

1991-01-01T23:59:59.000Z

88

Waste Treatment Plant Overview  

Office of Environmental Management (EM)

contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the...

89

NUCLEAR PLANT OPERATIONS AND  

E-Print Network [OSTI]

NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: neutron flux, cur- rent noise, vibration diagnostics: Swedish Nuclear Powe

Pázsit, Imre

90

Ethylene insensitive plants  

SciTech Connect (OSTI)

Nucleic acid and polypeptide sequences are described which relate to an EIN6 gene, a gene involved in the plant ethylene response. Plant transformation vectors and transgenic plants are described which display an altered ethylene-dependent phenotype due to altered expression of EIN6 in transformed plants.

Ecker, Joseph R. (Carlsbad, CA); Nehring, Ramlah (La Jolla, CA); McGrath, Robert B. (Philadelphia, PA)

2007-05-22T23:59:59.000Z

91

Plant fatty acid hydroxylases  

DOE Patents [OSTI]

This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

Somerville, Chris (Portola Valley, CA); Broun, Pierre (Burlingame, CA); van de Loo, Frank (Lexington, KY)

2001-01-01T23:59:59.000Z

92

Technology Data for Energy Plants June 2010  

E-Print Network [OSTI]

............................................................................................... 79 13 Centralised Biogas Plants

93

Plant Phenotype Characterization System  

SciTech Connect (OSTI)

This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

Daniel W McDonald; Ronald B Michaels

2005-09-09T23:59:59.000Z

94

Plant centromere compositions  

DOE Patents [OSTI]

The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

Mach, Jennifer M. (Chicago, IL); Zieler, Helge (Del Mar, CA); Jin, RongGuan (Chesterfield, MO); Keith, Kevin (Three Forks, MT); Copenhaver, Gregory P. (Chapel Hill, NC); Preuss, Daphne (Chicago, IL)

2011-08-02T23:59:59.000Z

95

Plant centromere compositions  

DOE Patents [OSTI]

The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

Mach, Jennifer (Chicago, IL); Zieler, Helge (Chicago, IL); Jin, RongGuan (Chicago, IL); Keith, Kevin (Chicago, IL); Copenhaver, Gregory (Chapel Hill, NC); Preuss, Daphne (Chicago, IL)

2007-06-05T23:59:59.000Z

96

Plant centromere compositions  

DOE Patents [OSTI]

The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

Keith, Kevin; Copenhaver, Gregory; Preuss, Daphne

2006-10-10T23:59:59.000Z

97

Plant centromere compositions  

DOE Patents [OSTI]

The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

Mach, Jennifer (Chicago, IL); Zieler, Helge (Chicago, IL); Jin, James (Chicago, IL); Keith, Kevin (Chicago, IL); Copenhaver, Gregory (Chapel Hill, NC); Preuss, Daphne (Chicago, IL)

2006-06-26T23:59:59.000Z

98

Plant centromere compositions  

DOE Patents [OSTI]

The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

Mach; Jennifer M. (Chicago, IL), Zieler; Helge (Del Mar, CA), Jin; RongGuan (Chesterfield, MO), Keith; Kevin (Three Forks, MT), Copenhaver; Gregory P. (Chapel Hill, NC), Preuss; Daphne (Chicago, IL)

2011-11-22T23:59:59.000Z

99

Poisonous Plant Management.  

E-Print Network [OSTI]

. Carefully examine plants being grazed. Generally, a Significant quantity of toxic plant must be consumed to be lethaL Many times these plants are readily identified in the field by evidence of grazing. Also helpful at this time is a rumen sample... poisonous plants were most severe at heavy stocking rates, while few losses occurred at light stocking levels. Death ? losses were also directly related to kinds or combinations of livestock being grazed. When combinations of cattle, sheep and goats...

McGinty, Allan

1985-01-01T23:59:59.000Z

100

Plant design: Integrating Plant and Equipment Models  

SciTech Connect (OSTI)

Like power plant engineers, process plant engineers must design generating units to operate efficiently, cleanly, and profitably despite fluctuating costs for raw materials and fuels. To do so, they increasingly create virtual plants to enable evaluation of design concepts without the expense of building pilot-scale or demonstration facilities. Existing computational models describe an entire plant either as a network of simplified equipment models or as a single, very detailed equipment model. The Advanced Process Engineering Co-Simulator (APECS) project (Figure 5) sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) seeks to bridge the gap between models by integrating plant modeling and equipment modeling software. The goal of the effort is to provide greater insight into the performance of proposed plant designs. The software integration was done using the process-industry standard CAPE-OPEN (Computer Aided Process Engineering–Open), or CO interface. Several demonstration cases based on operating power plants confirm the viability of this co-simulation approach.

Sloan, David (Alstrom Power); Fiveland, Woody (Alstrom Power); Zitney, S.E.; Osawe, Maxwell (Ansys, Inc.)

2007-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "wv northeastern plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Power Plant Cycling Costs  

SciTech Connect (OSTI)

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

102

NUCLEAR PLANT AND CONTROL  

E-Print Network [OSTI]

NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: software require- ments, safety analysis, formal for the digital protection systems of a nuclear power plant. When spec- ifying requirements for software and CRSA processes are described using shutdown system 2 of the Wolsong nuclear power plants as the digital

103

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technologies through verify storage permanence and track plume movement. * Geospatial data resources-Developing resources to improve access to geospatial data for public...

104

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to offshore hydrocarbon production and the recovery of unconventional resources like shale gas, estimating CO 2 storage potential in various types of geologic formations, and...

105

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sequestration Core Flow Laboratory Background Sequestration of CO 2 and production of coalbed methane (CBM) can affect the strata in various ways. For example, coal can swell...

106

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

priations) to the FutureGen Industrial Alliance (Alliance) to build FutureGen 2.0-a clean coal repowering program and CO 2 pipeline and storage network. The FutureGen 2.0 Program...

107

Argus Energy WV, LLC wins 2007 Wetlands West Virginia Award  

SciTech Connect (OSTI)

Argus Energy's Kiah Creek Operation has received the 2007 Wetlands West Virginia Award presented by the West Virginian Coal Association. The operation was originally a 1267 acre underground mine in the Coalburg seam. Underground mining commenced in 2000 until the end of 2003 with more than two million tons of coal being produced. The creation of the wetlands was achieved during the operations. 8 photos.

NONE

2007-07-15T23:59:59.000Z

108

P O Box 6004 Morgantown, WV 26506-6004  

E-Print Network [OSTI]

-5242 Fax: (304) 293-4890 Email: finaid@mail.wvu.edu We're on the Web! www.finaid.wvu.edu 2010-2011 STUDENT

Mohaghegh, Shahab

109

P O Box 6004 Morgantown, WV 26506-6004  

E-Print Network [OSTI]

% of students complete online at www.fafsa.gov Please consider using FAFSA on the Web. There is a FAFSA worksheet that can be downloaded from the FAFSA web site. The Financial Aid Office will also have a supply

Mohaghegh, Shahab

110

P O Box 6004 Morgantown, WV 26506-6004  

E-Print Network [OSTI]

're on the Web! www.finaid.wvu.edu 2009-2010 STUDENT AID REPORT Once you submit your FAFSA to the federal

Mohaghegh, Shahab

111

P O Box 6004 Morgantown, WV 26506-6004  

E-Print Network [OSTI]

-5242 Fax: (304) 293-4890 Email: finaid@mail.wvu.edu We're on the Web! www.finaid.wvu.edu 2011-2012 STUDENT

Mohaghegh, Shahab

112

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from Fossil Energy R&D 1 Bezdek, R. Wendling, R., The Return on Investment of the Clean Coal Technology Program in the USA. Energy Policy, Vol. 54, March 2013, pp. 104-112 2...

113

West Virginia Smart Grid Implementation Plan (WV SGIP) Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

views on the following: 1) whether the electric power utilities have shown interests in upgrading their distribution service equipment, etc., 2) whether the state regulatory...

114

West Virginia Smart Grid Implementation Plan (WV SGIP) Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun Deng Associate Research PhysicistWestNA NAWV

115

West Virginia Smart Grid Implementation Plan (WV SGIP) Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun Deng Associate Research PhysicistWestNA NAWV

116

ARM - Campaign Instrument - mfrsr-wv1barn  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation DesertgovInstrumentsap-surf Comments?govInstrumentsmaeri Comments? We

117

ARM - Campaign Instrument - mfrsr-wv1mich  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation DesertgovInstrumentsap-surf Comments?govInstrumentsmaeri Comments? Wemich Comments? We would

118

DOE - Office of Legacy Management -- Morgantown Ordnance Works - WV 03  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePA 3003A AEC Ore Buying

119

Microsoft PowerPoint - WV SGIP 101810 rev1.pptx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping RichlandScattering Properties of AggregatesVirginia Smart Grid

120

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Houston, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne National Laboratory

Note: This page contains sample records for the topic "wv northeastern plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Abstract Beringia, including Alaska and North-Eastern Siberia, has long been a focal point for biogeographical research in a wide range of plant and animal taxa.  

E-Print Network [OSTI]

BerlinHeidelberg,Dordrecht,ISBN:9783540921608 #12;174 J. Geml et al. 1 Introduction Climatic and geological changes in the Tertiary East Branch of Russian Academy of Sciences, Portovaya Str. 18, Magadan, 685000, Russia D.L. Taylor reasons. First, due to its diverse land- scape and climate and the fact that much of the region remained

Taylor, Lee

122

Source Contribution Analysis of Surface Particulate Polycyclic Aromatic Hydrocarbon Concentrations in Northeastern Asia by Source-receptor Relationships  

SciTech Connect (OSTI)

We analyzed the sourceereceptor relationships for particulate polycyclic aromatic hydrocarbon (PAH) concentrations in northeastern Asia using an aerosol chemical transport model. The model successfully simulated the observed concentrations. In Beijing (China) benzo[a]pyren (BaP) concentrations are due to emissions from its own domain. In Noto, Oki and Tsushima (Japan), transboundary transport from northern China (>40°N, 40-60%) and central China (30-40°N, 10-40%) largely influences BaP concentrations from winter to spring, whereas the relative contribution from central China is dominant (90%) in Hedo. In the summer, the contribution from Japanese domestic sources increases (40-80%) at the 4 sites. Contributions from Japan and Russia are additional source of BaP over the northwestern Pacific Ocean in summer. The contribution rates for the concentrations from each domain are different among PAH species depending on their particulate phase oxidation rates. Reaction with O3 on particulate surfaces may be an important component of the PAH oxidation processes.

Inomata, Yayoi; Kajino, Mizuo; Sato, Keiichi; Ohara, Toshimasa; Kurokawa, Jun-Ichi; Ueda, Hiromasa; Tang, Ning; Hayakawa, Kazuichi; Ohizumi, Tsuyoshi; Akimoto, Hajime

2013-11-01T23:59:59.000Z

123

Advancing the Deployment of Utility-Scale Photovoltaic Plants in the Northeast  

SciTech Connect (OSTI)

As one of the premier research laboratories operated by the Department of Energy, Brookhaven National Laboratory (BNL) is pursuing an energy research agenda that focuses on renewable energy systems and will help to secure the nation's energy security. A key element of the BNL research is the advancement of grid-connected utility-scale solar photovoltaic (PV) plants, particularly in the northeastern part of the country where BNL is located. While a great deal of information has been generated regarding solar PV systems located in mostly sunny, hot, arid climates of the southwest US, very little data is available to characterize the performance of these systems in the cool, humid, frequently overcast climates experienced in the northeastern portion of the country. Recognizing that there is both a need and a market for solar PV generation in the northeast, BNL is pursuing research that will advance the deployment of this important renewable energy resource. BNL's research will leverage access to unique time-resolved data sets from the 37MWp solar array recently developed on its campus. In addition, BNL is developing a separate 1MWp solar research array on its campus that will allow field testing of new PV system technologies, including solar modules and balance of plant equipment, such as inverters, energy storage devices, and control platforms. These research capabilities will form the cornerstone of the new Northeast Solar Energy Research Center (NSERC) being developed at BNL. In this paper, an overview of BNL's energy research agenda is given, along with a description of the 37MWp solar array and the NSERC.

Lofaro R.; Villaran, M; Colli, A.

2012-06-03T23:59:59.000Z

124

Conditional sterility in plants  

DOE Patents [OSTI]

The present disclosure provides methods, recombinant DNA molecules, recombinant host cells containing the DNA molecules, and transgenic plant cells, plant tissue and plants which contain and express at least one antisense or interference RNA specific for a thiamine biosynthetic coding sequence or a thiamine binding protein or a thiamine-degrading protein, wherein the RNA or thiamine binding protein is expressed under the regulatory control of a transcription regulatory sequence which directs expression in male and/or female reproductive tissue. These transgenic plants are conditionally sterile; i.e., they are fertile only in the presence of exogenous thiamine. Such plants are especially appropriate for use in the seed industry or in the environment, for example, for use in revegetation of contaminated soils or phytoremediation, especially when those transgenic plants also contain and express one or more chimeric genes which confer resistance to contaminants.

Meagher, Richard B. (Athens, GA); McKinney, Elizabeth (Athens, GA); Kim, Tehryung (Taejeon, KR)

2010-02-23T23:59:59.000Z

125

PHYSICAL PLANT POLICY & PROCEDURE  

E-Print Network [OSTI]

PHYSICAL PLANT POLICY & PROCEDURE TITLE PHYSICAL PLANT HIGH VOLTAGE PREVENTIVE MAINTENANCE OBJECTIVE AND PURPOSE To establish a consistent policy of performing Preventive Maintenance on high voltage by the G.S.A. Preventive Maintenance sections E- 29 (high voltage oil circuit breaker), E-32 (high voltage

Fernandez, Eduardo

126

Plant fatty acid hydroxylase  

DOE Patents [OSTI]

The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

Somerville, Chris (Portola Valley, CA); van de Loo, Frank (Lexington, KY)

2000-01-01T23:59:59.000Z

127

Modulating lignin in plants  

DOE Patents [OSTI]

Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

2013-01-29T23:59:59.000Z

128

Plant Ecology An Introduction  

E-Print Network [OSTI]

1 Plant Ecology An Introduction Ecology as a Science Study of the relationships between living and causes of the abundance and distribution of organisms Ecology as a Science We'll use the perspective of terrestrial plants Basic ecology - ecological principles Applied ecology - application of principles

Cochran-Stafira, D. Liane

129

RESEARCH ARTICLE PLANT GENETICS  

E-Print Network [OSTI]

relative) in the Brassicaceae plant family is determined by the genotype of the plant at the self-incompatibility-locus phenotype in a self-incompatible Arabidopsis species. Selection has created a dynamic repertoire of s of regulation among alleles. S porophytic self-incompatibility (SI) is a genetic system that evolved in hermaph

Napp, Nils

130

NUCLEAR PLANT OPERATIONS AND  

E-Print Network [OSTI]

NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: moderator temper ature coefficient, reactivity co reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed absorption cross-section behavior. Consequently, if NUCLEAR TECHNOLOGY VOL. 140 NOV. 2002 147 #12;Demazičre

Demazičre, Christophe

131

NUCLEAR PLANT OPERATIONS AND  

E-Print Network [OSTI]

NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: moderator temper- ature coefficient, reactivity co reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed. Consequently, if*E-mail: demaz@nephy.chalmers.se NUCLEAR TECHNOLOGY VOL. 140 NOV. 2002 147 #12;high-burnup fuel

Pázsit, Imre

132

Top 10 plant pathogenic bacteria in molecular plant pathology.  

E-Print Network [OSTI]

plants are being closely grouped together, for example pv.oryzae pv. oryzae AvrXa21 and implications for plant innatePseudomonas syringae pv. tomato in Tanzania. Plant Dis. 91,

2012-01-01T23:59:59.000Z

133

Calibration of Cotton Planting Mechanisms.  

E-Print Network [OSTI]

per foot. To obtain a perfect stand of one plant to Foot, a minimum of 1 to a maximum of 11 plants per foot wonld have to be thinned out. The number for picker wheel- drop planting mechanisms ranged from a minimum of 2 to a maxi- mum of 27 plants... per foot, requiring the removal of from 1 to 26 nlants per foot to leave one plant per foot. CONTENTS Introduction History of cotton planter development ------------.---------------------------------- Cottonseed planting mechanisms Requirements...

Smith, H. P. (Harris Pearson); Byrom, Mills H. (Mills Herbert)

1936-01-01T23:59:59.000Z

134

Virginia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

135

Ohio Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

136

Arkansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

137

Michigan Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

138

California Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

139

Alabama Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

140

Texas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

Note: This page contains sample records for the topic "wv northeastern plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Pennsylvania Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

142

Tennessee Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

143

Georgia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

144

Nebraska Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

145

Arizona Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

146

Connecticut Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

147

Maryland Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

148

Illinois Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

149

Florida Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

150

Wisconsin Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

151

Minnesota Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

152

Nuclear Power Plant Design Project  

E-Print Network [OSTI]

Nuclear Power Plant Design Project A Response to the Environmental and Economic Challenge Of Global.............................................................................................................. 4 3. Assessment of the Issues and Needs for a New Plant

153

Plant Vascular Biology 2010  

SciTech Connect (OSTI)

This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

Ding, Biao

2014-11-17T23:59:59.000Z

154

Geothermal Demonstration Plant  

Office of Scientific and Technical Information (OSTI)

a 50 W e binary conversion plant at Heber was initiated and is presented herein. Chevron Oil Company (the field operator) predicts that the reservoir i ill decline from an initial...

155

Plant Operations Executive Director  

E-Print Network [OSTI]

Campus North Campus Recycling Operations Materials Human Resources Payroll Misc Svs Special Projects Planning Spray Shop Glass Shop Upholstery Shop Plant IT Painting Services G. Weincouff Human Resources Business Services Estimating Shutdown Coordination Scheduling L. Rastique Human Resources 67398 M

Awtar, Shorya

156

B Plant facility description  

SciTech Connect (OSTI)

Buildings 225B, 272B, 282B, 282BA, and 294B were removed from the B Plant facility description. Minor corrections were made for tank sizes and hazardous and toxic inventories.

Chalk, S.E.

1996-10-04T23:59:59.000Z

157

Plant Site Refrigeration Upgrade  

E-Print Network [OSTI]

Bayer Corporation operates a multi-division manufacturing facility in Bushy Park, South Carolina. Low temperature refrigeration (-4°F) is required by many of the chemical manufacturing areas and is provided by a Plant Site Refrigeration System...

Zdrojewski, R.; Healy, M.; Ramsey, J.

158

GEOTHERMAL POWER GENERATION PLANT  

SciTech Connect (OSTI)

Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

Boyd, Tonya

2013-12-01T23:59:59.000Z

159

Evaluating the Contribution of Climate Forcing and Forest Dynamics to Accelerating Carbon Sequestration by Forest Ecosystems in the Northeastern U.S.: Final Report  

SciTech Connect (OSTI)

This report summarizes work to improve quantitative understanding of the terrestrial ecosystem processes that control carbon sequestration in unmanaged forests It builds upon the comprehensive long-term observations of CO2 fluxes, climate and forest structure and function at the Harvard Forest in Petersham, MA. This record includes the longest CO2 flux time series in the world. The site is a keystone for the AmeriFlux network. Project Description The project synthesizes observations made at the Harvard Forest HFEMS and Hemlock towers, which represent the dominant mixed deciduous and coniferous forest types in the northeastern United States. The 20+ year record of carbon uptake at Harvard Forest and the associated comprehensive meteorological and biometric data, comprise one of the best data sets to challenge ecosystem models on time scales spanning hourly, daily, monthly, interannual and multi-decadal intervals, as needed to understand ecosystem change and climate feedbacks.

Munger, J. William [Harvard University, SEAS] (ORCID:0000000210428452); Foster, David R. [Harvard University, Harvard Forest; Richardson, Andrew D. [Harvard University, OEB

2014-10-01T23:59:59.000Z

160

Pinellas Plant facts  

SciTech Connect (OSTI)

The Pinellas Plant, near St. Petersburg, Florida, is wholly owned by the United States Government. It is operated for the Department of Energy (DOE) by GE Aerospace, Neutron Devices (GEND). This plant was built in 1956 to manufacture neutron generators, a principal component in nuclear weapons. The neutron generators built at Neutron Devices consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. Production of these devices has necessitated the development of several uniquely specialized areas of competence and supporting facilities. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology; hermetic seals between glass, ceramic, glass-ceramic, and metal materials; plus high voltage generation and measurement technology. The existence of these capabilities at Neutron Devices has led directly to the assignment of other weapon application products: the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Other product assignments such as active and reserve batteries and the radioisotopically-powered thermoelectric generator evolved from the plant`s materials measurement and controls technologies which are required to ensure neutron generator life.

NONE

1990-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "wv northeastern plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Native Vegetation Planting Guidelines  

E-Print Network [OSTI]

1 Native Vegetation Planting Guidelines Based on Sustainability Goals for the Macquarie Campus #12.................................................................................................................................10 4.2.5 Shale-Sandstone soil transition...................................................................................................................................11 #12;3 1. Purpose This document provides a guideline for specific grounds management procedures

Wang, Yan

162

Alex Benson Cement Plants  

E-Print Network [OSTI]

with steel balls which grind mix into a fine powder -> Final Cement Product Associated Air Pollution: o From health effects Relative News; o "EPA Clamps down on Cement Plant Pollution" http.4 million dollars for violating the Clean Air Act and 2 million dollars for pollution controls #12

Toohey, Darin W.

163

B Plant hazards assessment  

SciTech Connect (OSTI)

This document establishes the technical basis in support of Emergency Planning Activities for B Plant on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE Order 5500.3A. Through this document, the technical basis for the development of facility specific , Emergency Action Levels and the Emergency Planning Zone is demonstrated.

Broz, R.E.

1994-09-23T23:59:59.000Z

164

Steam Plant, 6% Irrigation,  

E-Print Network [OSTI]

of Rainwater Storage Cisterns on Campus 150,000 gallons* Total Acres of Campus (Modeled for Stormwater Analysis% Chilled Water Plant, 26% Academics, 16% Washington Duke Inn, 3% Water & Stormwater Management Sustainability Facts Overview Existing Sustainability Initiatives Stormwater Regulation Duke University obtains

Zhou, Pei

165

Technology Data for Electricity and Heat Generating Plants  

E-Print Network [OSTI]

.................................................................................63 13 Centralised Biogas Plants

166

Ecology of Plants and Light CAM plants have thick,  

E-Print Network [OSTI]

orientation to maximize light exposure. Species Adaptations-Sun Solar tracking by leaves increases light1 Ecology of Plants and Light CAM plants have thick, succulent tissues to allow for organic acid and Light Some CAM plants not obligated to just CAM Can use C3 photosynthesis during day if conditions

Cochran-Stafira, D. Liane

167

The Colorado Rare Plant Technical Committee Rare Plant Symposium  

E-Print Network [OSTI]

The Colorado Rare Plant Technical Committee presents: 4th Annual Rare Plant Symposium Sponsored by: Colorado Native Plant Society University of Colorado Herbarium US Fish and Wildlife Service Colorado: G2G3/S2S3 Global distribution: Colorado (Larimer and Boulder counties). Possibly extending

168

Louisiana Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

169

Belgrade Lot Steam Plant Lot  

E-Print Network [OSTI]

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Chadbourne Merrill Aubert Hannibal Hamlin Steam Plant Crosby Machine Tool Lab Children's Center Rogers N

Thomas, Andrew

170

Belgrade Lot Steam Plant Lot  

E-Print Network [OSTI]

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Hamlin Steam Plant Crosby Machine Tool Lab Children's Center Rogers N S Estabrooke Memorial Gym Stevens

Thomas, Andrew

171

Belgrade Lot Steam Plant Lot  

E-Print Network [OSTI]

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Oceanographic Operations 1 2 8 5 3 4 7 6 AMC Chadbourne Merrill Aubert Hannibal Hamlin Steam Plant Crosby

Thomas, Andrew

172

Gene encoding plant asparagine synthetase  

DOE Patents [OSTI]

The identification and cloning of the gene(s) for plant asparagine synthetase (AS), an important enzyme involved in the formation of asparagine, a major nitrogen transport compound of higher plants is described. Expression vectors constructed with the AS coding sequence may be utilized to produce plant AS; to engineer herbicide resistant plants, salt/drought tolerant plants or pathogen resistant plants; as a dominant selectable marker; or to select for novel herbicides or compounds useful as agents that synchronize plant cells in culture. The promoter for plant AS, which directs high levels of gene expression and is induced in an organ specific manner and by darkness, is also described. The AS promoter may be used to direct the expression of heterologous coding sequences in appropriate hosts.

Coruzzi, Gloria M. (New York, NY); Tsai, Fong-Ying (New York, NY)

1993-10-26T23:59:59.000Z

173

Regulating nutrient allocation in plants  

DOE Patents [OSTI]

The invention provides coding and promoter sequences for a VS-1 and AP-2 gene, which affects the developmental process of senescence in plants. Vectors, transgenic plants, seeds, and host cells comprising heterologous VS-1 and AP-2 genes are also provided. Additionally provided are methods of altering nutrient allocation and composition in a plant using the VS-1 and AP-2 genes.

Udvardi, Michael; Yang, Jiading; Worley, Eric

2014-12-09T23:59:59.000Z

174

CONSTRUCTION OF NUCLEAR POWER PLANTS  

E-Print Network [OSTI]

CONSTRUCTION OF NUCLEAR POWER PLANTS A Workshop on "NUCLEAR ENERGY RENAISSANCE" Addressing WAS DEEPLY INVOLVED IN ALMOST EVERY ASPECT OF BUILDING THE PLANTS THROUGH · Quality Assurance · Nuclear IN CONSTRUCTION OF ST. LUCIE-2 #12;LESSONS LEARNED FROM St. Lucie-2 NUCLEAR POWER PLANTS CAN BE BUILT

175

Integrated turbomachine oxygen plant  

SciTech Connect (OSTI)

An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

2014-06-17T23:59:59.000Z

176

Jennings Demonstration PLant  

SciTech Connect (OSTI)

Verenium operated a demonstration plant with a capacity to produce 1.4 million gallons of cellulosic ethanol from agricultural resiues for about two years. During this time, the plant was able to evaluate the technical issues in producing ethanol from three different cellulosic feedstocks, sugar cane bagasse, energy cane, and sorghum. The project was intended to develop a better understanding of the operating parameters that would inform a commercial sized operation. Issues related to feedstock variability, use of hydrolytic enzymes, and the viability of fermentative organisms were evaluated. Considerable success was achieved with pretreatment processes and use of enzymes but challenges were encountered with feedstock variability and fermentation systems. Limited amounts of cellulosic ethanol were produced.

Russ Heissner

2010-08-31T23:59:59.000Z

177

Pinellas Plant Environmental Baseline Report  

SciTech Connect (OSTI)

The Pinellas Plant has been part of the Department of Energy`s (DOE) nuclear weapons complex since the plant opened in 1957. In March 1995, the DOE sold the Pinellas Plant to the Pinellas County Industry Council (PCIC). DOE has leased back a large portion of the plant site to facilitate transition to alternate use and safe shutdown. The current mission is to achieve a safe transition of the facility from defense production and prepare the site for alternative uses as a community resource for economic development. Toward that effort, the Pinellas Plant Environmental Baseline Report (EBR) discusses the current and past environmental conditions of the plant site. Information for the EBR is obtained from plant records. Historical process and chemical usage information for each area is reviewed during area characterizations.

Not Available

1997-06-01T23:59:59.000Z

178

Texas Plant Diseases Handbook.  

E-Print Network [OSTI]

of the lesion turns brown. With age, 1 es ions en 1 arge and coa 1 esce. The ent i re 1 eaf fi na 11 y drops. Stem lesions appear as long, reddish colored spots. When the plant begins to set fruit, lesions are formed at the nodes \\'Jhich girdle the stem... gi v i ng the 1 eaf a "shot-ho 1 e" appearance, simi 1 ar to those caused by anthracnose. Spots on fruit are usua lly sma 11 er and circul ar in shape. Bacteria overwinter in crop residue and on seed. Hard rains splash the bacteria to stems...

Horne, C. Wendell; Amador, Jose M.; Johnson, Jerral D.; McCoy, Norman L.; Philley, George L.; Lee, Thomas A. Jr.; Kaufman, Harold W.; Jones, Roger K.; Barnes, Larry W.; Black, Mark C.

1988-01-01T23:59:59.000Z

179

Propagation of Ornamental Plants.  

E-Print Network [OSTI]

is well filled with roots. In the other types of layering, select shooi 1 of young growth that bend easily. It usuall: is advisable to wound the stem where it is covered with soil. This cut limits free movemen: ! of food materials and induces root... cuttings. lecent research findings have taken much of uesswork out of this type of propagation t now can be done for many plants with rlrative ease by the home gardener. Some alants remain difficult to propagate by any ' method, but most...

DeWerth, A. F.

1955-01-01T23:59:59.000Z

180

Plants & Animals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006Photovoltaic Theory and ModelingPinkand Results Plans,Plants &

Note: This page contains sample records for the topic "wv northeastern plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

B Plant - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone byDearTechnicalAwards recognizeStatutes i TableAugustPlant

182

T Plant - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout »LabSustainabilitySynthetic fuelT Plant Projects

183

Nuclear Plant/Hydrogen Plant Safety: Issues and Approaches  

SciTech Connect (OSTI)

The U.S. Department of Energy, through its agents the Next Generation Nuclear Plant Project and the Nuclear Hydrogen Initiative, is working on developing the technologies to enable the large scale production of hydrogen using nuclear power. A very important consideration in the design of a co-located and connected nuclear plant/hydrogen plant facility is safety. This study provides an overview of the safety issues associated with a combined plant and discusses approaches for categorizing, quantifying, and addressing the safety risks.

Steven R. Sherman

2007-06-01T23:59:59.000Z

184

Issues for New Nuclear Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to produce heavy components and nuclear-grade equipment - Transportation of heavy components - Constructionoperation workforce - Cost of new plants Cooling Technology...

185

Pantex Plant Emergency Response Exercise  

Broader source: Energy.gov (indexed) [DOE]

Joint Information Center Emergency Manager Offsite Interface Coordinator DOE Technical Advisor Emergency Press Center Radiation Safety Figure 1. Pantex Plant Emergency Response...

186

Owners of nuclear power plants  

SciTech Connect (OSTI)

Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

Hudson, C.R.; White, V.S.

1996-11-01T23:59:59.000Z

187

Power Plant Modeling and Simulation  

ScienceCinema (OSTI)

The National Energy Technology Laboratory's Office of Research and Development provides open source tools and expetise for modeling and simulating power plants and carbon sequestration technologies.

None

2010-01-08T23:59:59.000Z

188

United States Government  

Office of Legacy Management (LM)

Milling Machine, Cihc Fenwal, Ashland, HA Food Machining Corp., Nitro, WV General Electric Plant, Shelbyvi Gleason Works, Rochester, NV C.I. Haynes, Cranston, RI Heald Machine...

189

Reply to N. C. Higgins' comment on origin of alkali-feldspar granites: An example from the Poimena Granite, northeastern Tasmania, Australia  

SciTech Connect (OSTI)

This paper acts as a rebuttal to comments made by other scientists regarding the origin of the Poimena Granite as discussed in an earlier paper by these authors. The Lottah Granite and the enclosing Poimena Granite of northeastern Tasmania represent one of the best documented and most intensely Li-F-rich alkali-feldspar granite and its much more voluminous biotite granite host. The issue under debate is which of the two most generally supported models for the origin of Li-F-Sn granites-magmatic or metasomatic-hydrothermal-best explains the data obtained from the Lottah and Poimena Granites It is not the authors intent to imply that alkali-feldspar granites cannot be generated from granites similar to the Poimena Granite by fractional crystallization: the St. Austell Granite is an excellent example of such a relationship. Nor do the authors intend to imply that metasomatic and hydrothermal processes have not operated at all in the Lottah Granite. They seek rather to demonstrate that magmatic processes alone are capable of generating alkali-feldspar granites enriched in Sn, Li, Rb, F etc. and that such granites need not be genetically linked to spatially associated normal granites. Some of the arguments and data are subsequently presented in this paper.

MacKenzie, D.E.; Sun, S.S.; Black, L.P. (Bureau of Mineral Resources, Canberra (Australia))

1990-08-01T23:59:59.000Z

190

Recognition and delineation of Paleokarst zones by the use of wireline logs in the bitumen-saturated upper Devonian Grosmont formation of Northeastern Alberta, Canada  

SciTech Connect (OSTI)

The Upper Devonian Grosmont Formation in northeastern Alberta, Canada, is a shallow-marine carbonate platform complex that was subaerially exposed for hundreds of millions of years between the Mississippian(?) and Cretaceous. During this lengthy exposure period, an extensive karst system developed that is characterized by an irregular erosional surface, meter-size (several feet) dissolution cavities, collapse breccias, sinkholes, paleosols, and fractures. The karsted Grosmont Formation, which contains giant reserves of bitumen, sub-crops beneath Cretaceous clastic sediments of the giant Athabasca tar sands deposit. The paleokarst in the Grosmont Formation can be recognized on wireline logs in relatively nonargillaceous carbonate intervals (<30 API units on the gamma-ray log) as excursions of the caliper log, off-scale neutron-density porosity readings, and severe cycle skipping of the acoustic log. The paleokarst is more prevalent in the upper units of the Grosmont Formation, and the effects of karstification decrease toward stratigraphically older and deeper units. The paleokarst usually occurs within 35 m (115 ft) of the erosional surface. The reservoir properties of the Grosmont Formation (e.g., thickness, porosity, permeability, and seal effectiveness) are significantly influenced by karstification. Depending upon the location, karstification has either benefited or degraded the reservoir characteristics. Benefits include porosity values greater than 40% (up to 100% in caverns) and permeability values of 30,000 md in severely fractured intervals. Detrimental reservoir characteristics include erosion, porosity and permeability reduction, and seal ineffectiveness.

Dembicki, E.A.; Machel, H.G. [Univ. of Alberta, Edmonton, Alberta (Canada)

1996-05-01T23:59:59.000Z

191

Relationships among oil density, gross composition, and thermal maturity indicators in northeastern Williston basin oils and their significance for expulsion thresholds and migration pathways  

SciTech Connect (OSTI)

Oil density ({degree}API), gross composition, and biological market thermal maturity variations in northeastern Williston basin have stratigraphic and geographic significance controlled by migration pathways and source rock composition as it affects hydrocarbon generation and expulsion characteristics. When the depth and density of oil pools is compared to relationships predicted using the correlation between source rock thermal maturity and oil density, several different migration pathways can be inferred. Winnipegosis source oils indicate four paths. Most small pinnacle reef pools are sourced locally, but larger coalesced reefs contain oils migrated long distances through the Lower Member Winnipegosis Formation. Among oils that have migrated past Prairie salts, both locally sourced oils, like those on the flank of the Hummingbird Trough, and more mature, longer migrated oils in Saskatchewan Group reservoirs can be identified. Bakken oils have the longest migration pathways, controlled primarily by a lowstand shoreline sandstone on the eastern side of the basin. Lodgepole-sourced oils dominate Madison Group plays. Northwest of Steelman field, oil density increases primarily due to thermal maturity differences but also because of increasing biodegradation and water-washing that affect the western edge of the play trend. Along the margin of the Hummingbird Trough are a number of deep, medium-gravity pools whose oil compositions are entirely attributable to low thermal maturity and local migration pathways.

Osadetz, K.G.; Snowdon, L.R.; Brooks, P.W. (Geological Survey of Canada, Calgary, Alberta (Canada))

1991-06-01T23:59:59.000Z

192

Plant Importation Importing "Plant Material" From Outside Canada  

E-Print Network [OSTI]

Plant Importation Importing "Plant Material" From Outside Canada 1) Determine whether) If a permit is required from the CFIA* (a division of Agriculture Canada), please go to the CFIA website Agency Canada (PHAC) or the Canadian Food Inspection Agency (CFIA). #12;

193

Managing plant symbiosis: fungal endophyte genotype alters plant community composition  

E-Print Network [OSTI]

Managing plant symbiosis: fungal endophyte genotype alters plant community composition Jennifer A hosts the foliar endophytic fungus, Neotypho- dium coenophialum. We quantified vegetation development of the endophyte (KY-31, AR-542) in two tall fescue cultivars (Georgia-5, Jesup). The KY-31 endophyte produces

Rudgers, Jennifer

194

(Photosynthesis in intact plants)  

SciTech Connect (OSTI)

Progress in the two years since the last renewal application has been excellent. We have made substantial contributions on both main fronts of the projects, and are particularly happy with the progress of our research on intact plants. The approach of basing our field work on a sound foundation of laboratory studies has enabled is to use methods which provide unambiguous assays of well characterized reactions. We have also made excellent progress in several laboratory studies which will have direct applications in future field work, and have introduced to the laboratory a range of molecular genetics techniques which will allow us to explore new options in the attempt to understand function at the level of molecular structure.

Not Available

1990-01-01T23:59:59.000Z

195

Next Generation Geothermal Power Plants  

SciTech Connect (OSTI)

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

196

New Markets, Outmoded Manufacturing: The Transition from Manufactured Gas to Natural Gas by Northeastern Utilities after World War II  

E-Print Network [OSTI]

For more than a century, large manufactured gas plants dotted the industrial landscape of the urban Northeast. Using a variety of technologies, these factories applied heat and pressure to coke, coal, and oil to produce a gas suitable for use in space heating and cooking. Yet this well-established, vital industry literally ceased to exist in the two decades after World War II, as natural gas transported from the southwestern United States replaced manufactured gas in all of the major markets in the Northeast. This abrupt victory of a new product was a modem variant of "creative destruction " as described by Joseph Schumpeter in his classic study Capitalism, Socialism and Democracy [10]. While creating a more efficient fuel supply, the coming of natural gas also destroyed the existing system for the production and distribution of manufactured gas. Yet this mid-20th century case of creative destruction differed sharply from Schumpeter's descriptions of the same process during the era of high capitalism in the late 19th century. In that dynamic period, innovations took place in a largely unfettered

Chris Castaneda; Joseph Pratt

197

Refinery, petrochemical plant injuries decline  

SciTech Connect (OSTI)

The National Petroleum Refiners Association (NPRA) reports a 7% reduction in workplace injury and illness incidence rates for refineries in 1993, and a 21% decrease for petrochemical plants. The report summarizes data from 135 of the 162 US member refineries, and 117 of the 172 US member petrochemical plants. This paper summarizes the report findings.

Not Available

1994-07-25T23:59:59.000Z

198

Do Plants Sweat? Core Content  

E-Print Network [OSTI]

in the bright sun and others are grouped together and are regularly sprinkled with water. You begin to wonder plant distribution where you see this principle in action? -Can you predict the effect of seasons data/graph] Three plants are grown in the same greenhouse with the same air temperature, amount

Kessler, Bruce

199

Dramatic change at T Plant  

SciTech Connect (OSTI)

T Plant (221-T) was the first and largest of the early chemical separations plants at the Hanford Engineer Works (HEW), the name for the Hanford Site during World War II. Officially designated as a Cell Building by the Manhattan Engineer District (MED) of the Army Corps of Engineers (agency responsible for HEW), T Plant served as the headquarters of chemical processing operations at Hanford from its construction until the opening of the Reduction-Oxidation (REDOX) Plant in January 1952. T Plant performed the third step in plutonium production operations, following the steps of uranium fuel manufacture and then irradiation in defense production reactors. The fissionable core (plutonium) used in the world`s first atomic explosion, the Trinity bomb test held at Alamogordo, New Mexico, on July 16, 1945, was processed in T Plant. Likewise, the fissionable core of the weapon dropped over Nagasaki, Japan, on August 9, 1945, was processed in T Plant. Because it formed a crucial link in the first full-scale plutonium production operations in world history, T Plant meets criteria established in the National Historic Preservation Act of 19661 as a Historic Place.

Gerber, M.S.

1994-04-01T23:59:59.000Z

200

Plant maintenance and plant life extension issue, 2007  

SciTech Connect (OSTI)

The focus of the March-April issue is on plant maintenance and plant life extension. Major articles/reports in this issue include: Three proposed COLs expected in 2007, by Dale E. Klein, U.S. Nuclear Regulatory Commission; Delivering behaviors that our customers value, by Jack Allen, Westinghouse Electric Company; Facilitating high-level and fuel waste disposal technologies, by Malcolm Gray, IAEA, Austria; Plant life management and long-term operation, by Pal Kovacs, OECD-NEA, France; Measuring control rod position, by R. Taymanov, K. Sapozhnikova, I. Druzhinin, D.I. Mendeleyev, Institue for Metrology, Russia; and, 'Modernization' means higher safety, by Svetlana Genova, Kozluduy NPP plc, Bulgaria.

Agnihotri, Newal (ed.)

2007-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "wv northeastern plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Early Entrance Coproduction Plant  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objectives of Phase I were to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan for implementation in Phase II; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The work performed under Phase II will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation.

Mushtaq Ahmed; John H. Anderson; Earl R. Berry; Troy Raybold; Lalit S. Shah; Kenneth A. Yackly

2004-01-26T23:59:59.000Z

202

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objectives of Phase I were to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan for implementation in Phase II; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The work performed under Phase II will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation.

Mushtaq Ahmed; John H. Anderson; Earl R. Berry; Troy Raybold; Lalit S. Shah; Kenneth A. Yackly

2003-12-16T23:59:59.000Z

203

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstock. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing Plan (RD and T) for implementation in Phase II. The objective of Phase II is to implement the RD and T as outlined in the Phase I RD and T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and other feedstocks. The objective of Phase III is to develop an engineering design package and a financing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; Jimmy O. Ong; Sarah J. Patel; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Phil J. Shires; Rae Song

2000-10-26T23:59:59.000Z

204

Aquatic plant control research  

SciTech Connect (OSTI)

The Northwest region of the United States contains extensive canal systems that transport water for hydropower generation. Nuisance plants, including algae, that grow in these systems reduce their hydraulic capacity through water displacement and increased surface friction. Most control methods are applied in an ad hoc fashion. The goal of this work is to develop cost-effective, environmentally sound, long-term management strategies to prevent and control nuisance algal growth. This paper reports on a multi-year study, performed in collaboration with the Pacific Gas & Electric Company, to investigate algal growth in their canal systems, and to evaluate various control methodologies. Three types of controls, including mechanical, biological and chemical treatment, were selected for testing and evaluation. As part of this study, water quality data were collected and algal communities were sampled from numerous stations throughout the distribution system at regular intervals. This study resulted in a more comprehensive understanding of conditions leading to the development of nuisance algal growth, a better informed selection of treatment plans, and improved evaluation of the effectiveness for the control strategies selected for testing.

Pryfogle, P.A.; Rinehart, B.N. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Ghio, E.G. [Pacific Gas & Electric Company, San Francisco, CA (United States). Hydro Generation Engineering

1997-05-01T23:59:59.000Z

205

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing Plan (RD and T) for implementation in Phase II. The objective of Phase II is to implement the RD and T as outlined in the Phase I RD and T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; Jimmy O. Ong; Sarah J. Patel; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Phil J. Shires; Rae Song

2001-02-15T23:59:59.000Z

206

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three-phase development of an Early Entrance Coproduction Plant (EECP) that produces at least one product from at least two of the following three categories: Electric power (or heat); Fuels; and Chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or some other carbonaceous feedstock, such as petroleum coke. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing (RD and T) Plan for implementation in Phase II. This objective has now been accomplished. A specific site, Motiva Refinery in Port Arthur, Texas, has been selected as the location best suited for the EECP. The accomplishments of Phase I are discussed in detail in this Phase I Concept Report. A RD and T Plan and a preliminary project financing plan have been developed and are submitted separately from this report.

John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; David Mintner; Wendy Moore; Jimmy O. Ong; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Kalapi D. Sheth; Phil J. Shires; Rae Song

2001-05-17T23:59:59.000Z

207

RESEARCH ARTICLES DothideomycetePlant Interactions Illuminated by Genome  

E-Print Network [OSTI]

to foliar pathogens in Western Australia and north central and northeastern North America (Solomon et al a Australian Centre for Necrotrophic Fungal Pathogens, Murdoch University, WA 6150, Australia b Department the carbon skeletons and energy for the synthesis of proteins and other components destined

McDonald, Bruce

208

Plant Energy Cost Optimization Program (PECOP)  

E-Print Network [OSTI]

The Plant Energy Cost Optimization Program (PECOP) is a Management System designed to reduce operating cost in a continuous operating multi product plant by reviewing all cost factors and selecting plant wide production schedules which are most...

Robinson, A. M.

1980-01-01T23:59:59.000Z

209

Fate of Radionuclides in Wastewater Treatment Plants  

E-Print Network [OSTI]

due to the Fukushima nuclear plant accident. Journal of21 3. NUCLEAR POWER PLANTS……………………………………………….. 23 3.1-25 3.2- WASTES FROM NUCLEAR POWER PLANTS………………………… 28 4.

Shabani Samgh Abadi, Farzaneh

2013-01-01T23:59:59.000Z

210

ASSESSING PLANTING STOCK QUALITY Comprehensive assessments of planting stock  

E-Print Network [OSTI]

for cold storage, and to evaluate effects of traditional and proposed nursery cultural practices on field and Jenkinson 1970, 1971) just after lifting and after cold storage to spring planting time · Field survival

Standiford, Richard B.

211

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

As part of the Department of Energy's (DOE) Gasification Technologies and Transportation Fuels and Chemicals programs, DOE and Texaco are partners through Cooperative Agreement DE-FC26-99FT40658 to determine the feasibility of developing, constructing and operating an Early Entrance Coproduction Plant (EECP). The overall objective of the project is the three-phase development of an EECP that produces at least one product from at least two of the following three categories: Electric power (or heat); Fuels; and Chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or some other carbonaceous feedstock, such as petroleum coke. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing (RD and T) Plan for implementation in Phase II. This objective has now been accomplished. A specific site, Motiva Refinery in Port Arthur, Texas, has been selected as the location best suited for the EECP. The specific work requirements of Phase I included: Prepare an EECP Preliminary Concept Report covering Tasks 2-8 specified in the Cooperative Agreement; Develop a Research, Development, and Testing (RD and T) Plan as specified in Task 9 of the Cooperative Agreement for implementation in Phase II; and Develop a Preliminary Project Financing Plan for the EECP Project as specified in Task 10 of the Cooperative Agreement. This document is the Preliminary Project Financing Plan for the design, construction, and operation of the EECP at the Motiva Port Arthur Refinery.

John H. Anderson; William K. Davis; Thomas W. Sloop

2001-03-21T23:59:59.000Z

212

North Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

213

New Jersey Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

214

South Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

215

New York Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

216

GEOTHERMAL POWER GENERATION PLANT | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

POWER GENERATION PLANT GEOTHERMAL POWER GENERATION PLANT Project objectives: Drilling a deep geothermal well on the Oregon Institute of Technology campus, Klamath Falls,...

217

Independent Oversight Inspection, Waste Isolation Pilot Plant...  

Energy Savers [EERE]

Independent Oversight Inspection, Waste Isolation Pilot Plant, Summary Report - August 2002 Independent Oversight Inspection, Waste Isolation Pilot Plant, Summary Report - August...

218

Natural Gas Processing Plant- Sulfur (New Mexico)  

Broader source: Energy.gov [DOE]

This regulation establishes sulfur emission standards for natural gas processing plants. Standards are stated for both existing and new plants. There are also rules for stack height requirements,...

219

Oversight Reports - Pantex Plant | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2012 Independent Oversight Assessment, Pantex Plant - November 2012 Assessment of Nuclear Safety Culture at the Pantex Plant August 8, 2012 Independent Activity Report, Pantex...

220

Oversight Reports - Waste Isolation Pilot Plant | Department...  

Broader source: Energy.gov (indexed) [DOE]

Waste Isolation Pilot Plant - December 2007 Inspection of Emergency Management at the Carlsbad Field Office and Waste Isolation Pilot Plant October 2, 2002 Independent Oversight...

Note: This page contains sample records for the topic "wv northeastern plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Independent Activity Report, Hanford Plutonium Finishing Plant...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plutonium Finishing Plant - May 2012 Independent Activity Report, Hanford Plutonium Finishing Plant - May 2012 May 2012 Criticality Safety Information Meeting for the Hanford...

222

Kansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear net generation (percent)","Owner" "Wolf Creek Generating Station Unit 1","1,160","9,556",100.0,"Wolf Creek Nuclear Optg Corp" "1 Plant 1 Reactor","1,160","9,556",100.0...

223

Vermont Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

mwh)","Share of State nuclear net generation (percent)","Owner" "Vermont Yankee Unit 1",620,"4,782",100.0,"Entergy Nuclear Vermont Yankee" "1 Plant 1 Reactor",620,"4,782",100.0...

224

Massachusetts Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

(percent)","Owner" "Pilgrim Nuclear Power Station Unit 1",685,"5,918",100.0,"Entergy Nuclear Generation Co" "1 Plant 1 Reactor",685,"5,918",100.0 "Note: Totals may not equal...

225

Plant salt-tolerance mechanisms  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.

Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

2014-06-01T23:59:59.000Z

226

Fiberglass plastics in power plants  

SciTech Connect (OSTI)

Fiberglass reinforced plastics (FRPs) are replacing metal in FGDs, stacks, tanks, cooling towers, piping and other plant components. The article documents the use of FRP in power plants since the 1970s. The largest volume of FRP in North American power plants is for stack liners and ductwork. Absorber vessel shells and internal components comprise the third largest use. The most common FRP absorber vessels are known as jet bubbling reactors (JBRs). One of the largest JBRs at a plant on the Ohio River removes 99% of sulphur dioxide from high sulphur coal flue gas. FRPs last twice as long as wood structures when used for cooling towers and require less maintenance. 1 tab., 2 photos.

Kelley, D. [Ashland Performance Materials (United States)

2007-08-15T23:59:59.000Z

227

Description Plants ESIS ESD FSGD  

E-Print Network [OSTI]

Ecological Site Description Plants ESIS ESD FSGD ESI Forestland ESI Rangeland Data Access > Return CHARACTERISTICS Site Type: Rangeland Site Name: Red Sandy Loam 25-32" PZ Site ID: R082AY369TX Major Land Resource

228

Issues for New Nuclear Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Explore * Idaho's energy picture * Nuclear power in the U.S. * Potential for a nuclear power plant in Idaho 0 5 10 15 20 25 1960 1970 1980 1990 2000 Million Megawatt-Hours Total...

229

Foote Hydroelectric Plant spillway rehabilitation  

SciTech Connect (OSTI)

In 1993 the spillway of the 9 MW Foote Hydroelectric Plant located on the AuSable River, near Oscoda, Michigan was rehabilitated. The Foote Plant, built in 1917, is owned and operated by Consumers Power Company. In the 76 years of continuous operation the spillway had deteriorated such that much of the concrete and associated structure needed to be replaced to assure safety of the structure. The hydro station includes an earth embankment with concrete corewall, a concrete spillway with three tainter gates and a log chute, a penstock structure and a steel and masonry powerhouse. The electric generation is by three vertical shaft units of 3,000 KW each. A plan of the plant with spillway and an elevation of the spillway section is shown. This paper describes the evaluation and repair of the plant spillway and associated structure.

Sowers, D.L. [Consumers Power Co., Jackson, MI (United States); Hasan, N.; Gertler, L.R. [Raytheon Infrastructures Services, New York, NY (United States)

1996-10-01T23:59:59.000Z

230

Next Generation Nuclear Plant Phenomena  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the U.S. Department of Energy (DOE) to develop jointly a licensing strategy for the Next Generation Nuclear plant (NGNP), a very high temperature gas-cooled reactor (VHTR) for...

231

Next Generation Nuclear Plant Phenomena  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Should that prove to be impractical (e.g. due to excessive heat loss in the intermediate heat transfer loop), an earthen berm separating the two plants may be a suitable...

232

Water Filtration Using Plant Xylem  

E-Print Network [OSTI]

Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees – a readily available, ...

Boutilier, Michael Stephen Ha

233

Mixtec plant nomenclature and classification  

E-Print Network [OSTI]

Capsicum pubescens L. , SOLANACEAE yutu tuya’a kuán: la matade chile amarillo (PIN) tuya’a: chili plants (JAM) chá’a:nika’ndi ya’a: chilar (CAB) tuya’a (COI) Clethra mexicana

de Avila, Alejandro

2010-01-01T23:59:59.000Z

234

AQUATIC PLANT CONTROL RESEARCH PROGRAM  

E-Print Network [OSTI]

of these organisms to environmental factors (e .g. , temperature and solar radiation). Actual field data have been compared with simulation output with encouraging results. Starting biomass of the plants and numbers

US Army Corps of Engineers

235

A neighborhood alternative energy plant  

E-Print Network [OSTI]

A design that proposes the redefinition of the role of a power plant facility within a community by creating a humane environment for recreation, education, community gathering, living, and energy production; rather than ...

Brooks, Douglas James

1982-01-01T23:59:59.000Z

236

Belgrade Lot Steam Plant Lot  

E-Print Network [OSTI]

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Gym Lot Corbett Lot Greenhouse Patch Oceanographic Operations 1 2 8 5 3 4 7 6 AMC Chadbourne Merrill Aubert Hannibal Hamlin Steam

Thomas, Andrew

237

COKEMASTER: Coke plant management system  

SciTech Connect (OSTI)

To keep coke utilization in ironmaking as competitive as possible, the potential to improve the economics of coke production has to be utilized. As one measure to meet this need of its customers, Krupp Koppers has expanded its existing ECOTROL computer system for battery heating control to a comprehensive Coke Plant Management System. Increased capacity utilization, lower energy consumption, stabilization of plant operation and ease of operation are the main targets.

Johanning, J.; Reinke, M. [Krupp Koppers GmbH, Essen (Germany)

1996-12-31T23:59:59.000Z

238

Computer Control of Unattended Plants  

E-Print Network [OSTI]

COMPUTER CONTROL OF UNATTENDED PLANTS David R. Vinson, Nirma1 Chatterjee ? Ai r Products and Chemi ca 1s, Inc. Allentown, Pennsylvania Providing a cost-effective and reliable computer monitori ng, control, and optimization package is a greater... the last decade, energy costs in some air separation plants are now more than half the total product cost. Starting in 1975, Air Products and Chemicals, Inc. began implementing a program to retrofit existing major energy consuming facili ties...

Vinson, D. R.; Chatterjee, N.

1984-01-01T23:59:59.000Z

239

Researching power plant water recovery  

SciTech Connect (OSTI)

A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

NONE

2008-04-01T23:59:59.000Z

240

SYMPOSIUM ON PLANT PROTEIN PHOSPHORYLATION  

SciTech Connect (OSTI)

Protein phosphorylation and dephosphorylation play key roles in many aspects of plant biology, including control of cell division, pathways of carbon and nitrogen metabolism, pattern formation, hormonal responses, and abiotic and biotic responses to environmental signals. A Symposium on Plant Protein Phosphorylation was hosted on the Columbia campus of the University of Missouri from May 26-28, 2010. The symposium provided an interdisciplinary venue at which scholars studying protein modification, as it relates to a broad range of biological questions and using a variety of plant species, presented their research. It also provided a forum where current international challenges in studies related to protein phosphorylation could be examined. The symposium also stimulated research collaborations through interactions and networking among those in the research community and engaged students and early career investigators in studying issues in plant biology from an interdisciplinary perspective. The proposed symposium, which drew 165 researchers from 13 countries and 21 States, facilitated a rapid dissemination of acquired knowledge and technical expertise regarding protein phosphorylation in plants to a broad range of plant biologists worldwide.

JOHN C WALKER

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "wv northeastern plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). The potential technical and economic risks to the EECP from Task 2.5 can be mitigated by demonstrating that the end-use products derived from the upgrading of the F-T synthesis total liquid product can meet or exceed current specifications for the manufacture of ethylene and propylene chemicals from F-T naphtha, for the generation of hydrogen from F-T naphtha to power fuel cells, for direct blending of F-T diesels into transportation fuels, for the conversion of F-T heavy product wax to transportation fuels, and the conversion of F-T Heavy product wax to a valuable high melting point food-grade specialty wax product. Product evaluations conducted under Task 2.5 of Phase II successfully mitigated the above technical and economic risks to the EECP with the development of product yields and product qualities for the production of chemicals, transportation fuels, and specialty food-grade waxes from the F-T synthesis products.

Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; Ming He; James F. Stevens; Centha A. Davis; Michael Henley; Jerome Mayer; Harry Tsang; Jimell Erwin; Jennifer Adams; Michael Tillman; Chris Taylor; Marjan J. Roos; Robert F. Earhart

2004-01-27T23:59:59.000Z

242

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc., GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I, a design basis for the Fischer-Tropsch Synthesis section was developed based on limited experience with the specified feed gas and operating conditions. The objective of this Task in Phase II RD&T work was to confirm the performance of the F-T reactor at the set design conditions. Although much of the research, development, and testing work were done by TES outside of this project, several important issues were addressed in this phase of the project. They included Rejuvenation/Regeneration of the Fischer-Tropsch Catalyst, online Catalyst Withdrawal and Addition from the synthesis reactor, and the Fischer-Tropsch Design Basis Confirmation. In Phase III the results from these RD&T work will be incorporated in developing the engineering design package. This Topical Report documents the Phase II RD&T work that was completed for this task.

David Storm; Govanon Nongbri; Steve Decanio; Ming He; Lalit Shah; Charles Schrader; Earl Berry; Peter Ricci; Belma Demirel; Charles Benham; Mark Bohn

2004-01-12T23:59:59.000Z

243

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

In 1999, the U. S. Department of Energy (DOE) awarded a Cooperative Agreement to Texaco Energy Systems Inc. to provide a preliminary engineering design of an Early Entrance Coproduction Plant (EECP). Since the award, continuous and diligent work has been undertaken to achieve the design of an economical facility that makes strides toward attaining the goal of DOE's Vision 21 Program. The objective of the EECP is to convert coal and/or petroleum coke to power while coproducing transportation fuels, chemicals, and useful utilities such as steam. This objective is being pursued in a three-phase effort through the partnership of the DOE with prime contractor Texaco Energy Systems, LLC. (TES), the successor to Texaco Energy Systems, Inc. The key subcontractors to TES include General Electric (GE), Praxair, and Kellogg Brown and Root. ChevronTexaco provided gasification technology and Rentech Inc.'s Fischer-Tropsch (F-T) technology that has been developed for non-natural gas sources. GE provided gas turbine technology for the combustion of low energy content gas. Praxair provided air separation technology and KBR provided engineering to integrate the facility. A conceptual design was completed in Phase I and the report was accepted by the DOE in May 2001. The Phase I work identified risks and critical research, development, and testing that would improve the probability of technical success of the EECP. The objective of Phase II was to mitigate the risks by executing research, development, and testing. Results from the Phase II work are the subject of this report. As the work of Phase II concluded, it became evident that sufficient, but not necessarily complete, technical information and data would be available to begin Phase III - Preliminary Engineering Design. Work in Phase II requires additional technical development work to correctly apply technology at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The decision to proceed with Phase III centers on locating a new site and favorable commercial and economic factors.

John Anderson; Charles Schrader

2004-01-26T23:59:59.000Z

244

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). Phase II RD&T Task 2.6 identified as potential technical risks to the EECP the fuel/engine performance and emissions of the F-T diesel fuel products. Hydrotreating the neat F-T diesel product reduces potentially reactive olefins, oxygenates, and acids levels and alleviates corrosion and fuel stability concerns. Future coproduction plants can maximize valuable transportation diesel by hydrocracking the F-T Synthesis wax product to diesel and naphtha. The upgraded neat F-T diesel, hydrotreater F-T diesel, and hydrocracker F-T diesel products would be final blending components in transportation diesel fuel. Phase II RD&T Task 2.6 successfully carried out fuel lubricity property testing, fuel response to lubricity additives, and hot-start transient emission tests on a neat F-T diesel product, a hydrocracker F-T diesel product, a blend of hydrotreater and hydrocracker F-T diesel products, and a Tier II California Air Resources Board (CARB)-like diesel reference fuel. Only the neat F-T diesel passed lubricity inspection without additive while the remaining three fuel candidates passed with conventional additive treatment. Hot-start transient emission tests were conducted on the four fuels in accordance with the U.S. Environmental Protection Agency (EPA) Federal Test Procedure (FTP) specified in Code of Federal Regulations, Title 40, Part 86, and Subpart N on a rebuilt 1991 Detroit Diesel Corporation Series 60 heavy-duty diesel engine. Neat F-T diesel fuel reduced oxides of nitrogen (NO{sub x}), total particulate (PM), hydrocarbons (HC), carbon monoxide (CO), and the Soluble Organic Fraction (SOF) by 4.5%, 31%, 50%, 29%, and 35%, respectively, compared to the Tier II CARB-like diesel. The hydrocracker F-T diesel product and a blend of hydrocracker and hydrotreater F-T diesel products also reduced NO{sub x}, PM, HC, CO and SOF by 13%, 16% to 17%, 38% to 63%, 17% to 21% and 21% to 39% compared to the Tier II CARB-like diesel. The fuel/engine performance and emissions of the three F-T diesel fuels exceed the performance of a Tier II CARB-like diesel. Phase II RD&T Task 2.6 successfully met the lubricity property testing and F-T diesel fuel hot-start transient emissions test objectives. The results of the testing help mitigate potential economic risks on obtaining a premium price for the F-T diesel fuel

Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; J. Erwin; Matthew G. Banks; Terry L. Ullman

2004-01-12T23:59:59.000Z

245

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I the team identified several potential methods to reduce or minimize the environmental impact of the proposed EECP. The EECP Project Team identified F-T catalyst disposal, beneficial gasifier slag usage (other than landfill), and carbon dioxide recovery for the gas turbine exhaust for study under this task. Successfully completing the Task 2.10 RD&T provides additional opportunities for the EECP to meet the goals of DOE's Vision 21 Program. The gasification section offers several opportunities to maximize the environmental benefits of an EECP. The spent F-T catalyst can be sent to landfills or to the gasification section. Testing in Phase II shows that the spent F-T catalyst with a small wax coating can safely meet federal landfill requirements. As an alternative to landfilling, it has been proposed to mix the spent F-T catalyst with the petroleum coke and feed this mixture to the gasification unit. Based on ChevronTexaco's experience with gasification and the characteristics of the spent F-T catalyst this appears to be an excellent opportunity to reduce one potential waste stream. The slag from the gasification unit can be commercially marketed for construction or fuel (such as cement kiln fuel) uses. The technical and economic benefits of these options must be reviewed for the final EECP before incorporating a specific alternative into the design basis. Reducing greenhouse gas emissions, particularly carbon dioxide, is an important goal of the EECP. The Texaco gasification process provides opportunities to capture high purity streams of carbon dioxide. For Phase II, a carbon fiber composite molecular sieve (CFCMS) was tested to determine its potential to remove high purity carbon dioxide from the exhaust of a gas turbine. Testing on with a simulated gas turbine exhaust shows that the CFCMS is able to remove high purity carbon dioxide from the exhaust. However, more development is required to optimize the system.

John H. Anderson; Charles Benham; Earl R. Berry; Ming He; Charles H. Schrader; Lalit S. Shah; O.O. Omatete; T.D. Burchell

2004-01-12T23:59:59.000Z

246

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC (TES), a subsidiary of ChevronTexaco, General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc. GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified catalyst/wax separation as a potential technical and economic risk. To mitigate risks to the proposed EECP, Phase II RD&T included tests of an alternative (to Rentech's Dynamic Settler) primary catalyst/wax separation device and secondary catalyst/wax separation systems. The team evaluated multiple technologies for both primary and secondary catalyst/wax separation. Based on successful testing at Rentech (outside of DOE funding) and difficulties in finalizing a contract to demonstrate alternative primary catalyst/wax separation technology (using magnetic separation technology), ChevronTexaco has selected the Rentech Dynamic Settler for primary catalyst/wax separation. Testing has shown the Dynamic Settler is capable of producing filtrate exceeding the proposed EECP primary catalyst/wax separation goal of less than 0.1 wt%. The LCI Scepter{reg_sign} Microfiltration system appeared to be best suited for producing a filtrate that met the EECP secondary catalyst/wax separation standards of 10 parts per million (weight) [ppmw]. The other technologies, magnetic separation and electrostatic separation, were promising and able to reduce the solids concentrations in the filtrate. Additional RD&T will be needed for magnetic separation and electrostatic separation technologies to obtain 10 ppmw filtrate required for the proposed EECP. The Phase II testing reduces the technical and economic risks and provides the information necessary to proceed with the development of an engineering design for the EECP Fischer-Tropsch catalyst/wax separation system.

John Anderson; Mark Anselmo; Earl Berry; Mark Bohn; Roko Bujas; Ming He; Ken Kwik; Charles H. Schrader; Lalit Shah; Dennis Slater; Donald Todd; Don Wall

2003-08-21T23:59:59.000Z

247

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to its detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC (TES) (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR). The work was under cooperative agreements with the U.S. Department of Energy (DOE). TES is providing the gasification technology and the Fischer-Tropsch (F-T) technology developed by Rentech Inc., GE is providing the combustion turbine technology, Praxair is providing the air separation technology, and KBR is providing overall engineering. Each of the EECP's subsystems was assessed for technical risks and barriers in Phase I. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified catalyst/wax separation as a potential technical and economic risk. To mitigate risks to the proposed EECP concept, Phase II RD&T included tests for secondary catalyst/wax separation systems as part of Task 2.3--Catalyst/Wax Separation. The LCI Scepter{reg_sign} Microfiltration system was determined to be best suited for producing a filtrate that met the EECP secondary catalyst/wax separation standards of producing F-T wax containing less than10 ppmw solids. As part of task 2.3, micro-filtration removal efficiencies and production rates for two FT feeds, Rentech Inc. bubble column reactor (BCR) product and LaPorte Alternative Fuels Development Unit (AFDU) product, were evaluated. Based on comparisons between the performances of these two materials, the more readily available LaPorte AFDU material was judged an acceptable analog to the BCR material that would be produced in a larger-scale F-T synthesis. The present test was initiated to obtain data in an extended range of concentration for use in the scale-up design of the secondary catalyst/wax separation system that would be operating at the EECP capacity.

John Anderson; Mark Anselmo; Earl Berry; Mark Bohn; Ming He; Charles H. Schrader; Lalit Shah; Donald Todd; Robert Schavey

2004-01-12T23:59:59.000Z

248

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using petroleum coke and ChevronTexaco's proprietary gasification technology. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC. (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). ChevronTexaco is providing gasification technology and Fischer-Tropsch technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified F-T reactor scale-up as a potential technical risk. The objective of Task 2.3 was to confirm engineering models that allow scale-up to commercial slurry phase bubble column (SPBC) reactors operating in the churn-turbulent flow regime. In developmental work outside the scope of this project, historical data, literature references, and a scale-up from a 1 1/2-in. (3.8 cm) to 6-ft (1.8 m) SPBC reactor have been reviewed. This review formed the background for developing scale-up models for a SPBC reactor operating in the churn-turbulent flow regime. The necessary fundamental physical parameters have been measured and incorporated into the mathematical catalyst/kinetic model developed from the SPBC and CSTR work outside the scope of this EECP project. The mathematical catalyst/kinetic model was used to compare to experimental data obtained at Rentech during the EECP Fischer-Tropsch Confirmation Run (Task 2.1; reported separately). The prediction of carbon monoxide (CO) conversion as a function of days on stream compares quite closely to the experimental data.

Randy Roberts

2003-04-25T23:59:59.000Z

249

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I the team identified the integration of the water produced in the F-T synthesis section with the gasification section as an area of potential synergy. By utilizing the F-T water in the petroleum coke slurry for the gasifier, the EECP can eliminate a potential waste stream and reduce capital costs. There is a low technical risk for this synergy, however, the economic risk, particularly in regards to the water, can be high. The economic costs include the costs of treating the water to meet the locally applicable environmental standards. This option may require expensive chemicals and treatment facilities. EECP Phase II included tests conducted to confirm the viability of integrating F-T water in the slurry feed for the gasifier. Testing conducted at ChevronTexaco's Montebello Technology Center (MTC) included preparing slurries made using petroleum coke with F-T water collected at the LaPorte Alternative Fuels Development Unit (AFDU). The work included bench scale tests to determine the slurry ability of the petroleum coke and F-T water. The results of the tests show that F-T water does not adversely affect slurries for the gasifier. There are a few cases where in fact the addition of F-T water caused favorable changes in viscosity of the slurries. This RD&T task was executed in Phase II and results are reported herein.

Abdalla H. Ali; Raj Kamarthi; John H. Anderson; Earl R. Berry; Charles H. Schrader; Lalit S. Shah

2003-04-16T23:59:59.000Z

250

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The 1999 U. S. Department of Energy (DOE) award to Texaco Energy Systems Inc. (presently Texaco Energy Systems LLC, a subsidiary of ChevronTexaco) was made to provide a Preliminary Engineering Design of an Early Entrance Coproduction Plant (EECP). Since the award presentation, work has been undertaken to achieve an economical concept design that makes strides toward the DOE Vision 21 goal. The objective of the EECP is to convert coal and/or petroleum coke to electric power plus transportation fuels, chemicals and useful utilities such as steam. The use of petroleum coke was added as a fuel to reduce the cost of feedstock and also to increase the probability of commercial implementation of the EECP concept. This objective has been pursued in a three phase effort through the partnership of the DOE with prime contractor Texaco Energy Systems LLC and subcontractors General Electric (GE), Praxair, and Kellogg Brown and Root (KBR). ChevronTexaco is providing gasification technology and Rentech's Fischer-Tropsch technology that has been developed for non-natural gas feed sources. GE is providing gas turbine technology for the combustion of low energy content gas. Praxair is providing air separation technology, and KBR is providing engineering to integrate the facility. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. Phase I Preliminary Concept Report was completed in 2000. The Phase I Preliminary Concept Report was prepared based on making assumptions for the basis of design for various technologies that are part of the EECP concept. The Phase I Preliminary Concept Report was approved by the DOE in May 2001. The Phase I work identified technical and economic risks and critical research, development, and testing that would improve the probability of the technical and economic success of the EECP. The Project Management Plan (Task 1) for Phase II was approved by the DOE in 2001. The results of RD&T efforts for Phase II are expected to improve the quality of assumptions made in Phase I for basis of design for the EECP concept. The RD&T work plan (Task 2 and 3) for Phase II has been completed. As the RD&T work conducted during Phase II concluded, it became evident that sufficient, but not necessarily complete, technical information and data would be available to begin Phase III - Basic Engineering Design. Also due to the merger of Chevron and Texaco, the proposed refinery site for the EECP was not available. It became apparent that some additional technical development work would be needed to correctly apply the technology at a specific site. The objective of Task 4 of Phase II is to update the concept basis of design produced during Phase I. As part of this task, items that will require design basis changes and are not site dependent have been identified. The team has qualitatively identified the efforts to incorporate the impacts of changes on EECP concept. The design basis has been modified to incorporate those changes. The design basis changes for those components of EECP that are site and feedstock dependent will be done as part of Phase III, once the site has been selected.

Charles Benham; Mark Bohn; John Anderson; Earl Berry; Fred Brent; Ming He; Randy Roberts; Lalit Shah; Marjan Roos

2003-09-15T23:59:59.000Z

251

Waste Treatment Plant - 12508  

SciTech Connect (OSTI)

The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium-ion exchange columns, evaporator boilers and recirculation pumps, and various mechanical process pumps for transferring process fluids. During the first phase of pretreatment, the waste will be concentrated using an evaporation process. Solids will be filtered out, and the remaining soluble, highly radioactive isotopes will be removed using an ion-exchange process. The high-level solids will be sent to the High-Level Waste (HLW) Vitrification Facility, and the low activity liquids will be sent to the Low-Activity Waste (LAW) Vitrification Facility for further processing. The high-level waste will be transferred via underground pipes to the HLW Facility from the Pretreatment Facility. The waste first arrives at the wet cell, which rests inside a black-cell area. The pretreated waste is transferred through shielded pipes into a series of melter preparation and feed vessels before reaching the melters. Liquids from various facility processes also return to the wet cell for interim storage before recycling back to the Pretreatment Facility. (authors)

Harp, Benton; Olds, Erik [US DOE (United States)

2012-07-01T23:59:59.000Z

252

Method of identifying plant pathogen tolerance  

DOE Patents [OSTI]

A process for identifying a plant having disease tolerance comprising administering to a plant an inhibitory amount of ethylene and screening for ethylene insensitivity, thereby identifying a disease tolerant plant, is described. Plants identified by the foregoing process are also described. 7 figs.

Ecker, J.R.; Staskawicz, B.J.; Bent, A.F.; Innes, R.W.

1997-10-07T23:59:59.000Z

253

Biochemical Conversion Pilot Plant (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides information about Biochemical Conversion Pilot Plant capabilities and resources at NREL.

Not Available

2012-06-01T23:59:59.000Z

254

Pilot Plant Options for the MFE Roadmap  

E-Print Network [OSTI]

Pilot Plant Options for the MFE Roadmap Hutch Neilson Princeton Plasma Physics Laboratory International Workshop MFE Roadmapping for the ITER Era Princeton, NJ 10 September 2011 #12;Outline 2 · Pilot plant ­ mission, motivation, and description. · Role of pilot plants on the Roadmap to Demo. Pilot Plant

255

PHYSICAL PLANT OPERATING POLICY AND PROCEDURE  

E-Print Network [OSTI]

in this technology. REVIEW This Physical Plant Operating Policy/Procedure (PP/OP) will be reviewed in March of each Plant. Physical Plant's intention is to provide each employee reasonable access to the technology Plant technology will be a prime consideration. Requests for non-standard products will not be approved

Gelfond, Michael

256

HYDROCARBONS FROM PLANTS: ANALYTICAL METHODS AND OBSERVATIONS  

E-Print Network [OSTI]

petrochemical industry,· The methanol residue is substantially all fermentable to ethanol. There are other plants

Calvin, Melvin

2013-01-01T23:59:59.000Z

257

The Water Circuit of the Plants - Do Plants have Hearts ?  

E-Print Network [OSTI]

There is a correspondence between the circulation of blood in all higher animals and the circulation of sap in all higher plants - up to heights h of 140 m - through the xylem and phloem vessels. Plants suck in water from the soil, osmotically through the roothair zone, and subsequently lift it osmotically again, and by capillary suction (via their buds, leaves, and fruits) into their crowns. In between happens a reverse osmosis - the endodermis jump - realized by two layers of subcellular mechanical pumps in the endodermis walls which are powered by ATP, or in addition by two analogous layers of such pumps in the exodermis. The thus established root pressure helps forcing the absorbed ground water upward, through the whole plant, and often out again, in the form of guttation, or exudation.

Wolfgang Kundt; Eva Gruber

2006-03-17T23:59:59.000Z

258

Expression of multiple proteins in transgenic plants  

DOE Patents [OSTI]

A method is disclosed for the production of multiple proteins in transgenic plants. A DNA construct for introduction into plants includes a provision to express a fusion protein of two proteins of interest joined by a linking domain including plant ubiquitin. When the fusion protein is produced in the cells of a transgenic plant transformed with the DNA construction, native enzymes present in plant cells cleave the fusion protein to release both proteins of interest into the cells of the transgenic plant. Since the proteins are produced from the same fusion protein, the initial quantities of the proteins in the cells of the plant are approximately equal.

Vierstra, Richard D. (Madison, WI); Walker, Joseph M. (Madison, WI)

2002-01-01T23:59:59.000Z

259

Plants having modified response to ethylene  

DOE Patents [OSTI]

The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype. 67 figs.

Meyerowitz, E.M.; Chang, C.; Bleecker, A.B.

1998-10-20T23:59:59.000Z

260

State power plant productivity programs  

SciTech Connect (OSTI)

The findings of a working group formed to review the status of efforts by utilities and utility regulators to increase the availability and reliability of generating units are presented. Representatives from nine state regulatory agencies, NRRI, and DOE, participated on the Working Group. The Federal government has been working cooperatively with utilities, utility organizations, and with regulators to encourage and facilitate improvements in power plant productivity. Cooperative projects undertaken with regulatory and energy commissions in California, Illinois, New York, Ohio, Texas, North Carolina and Mighigan are described. Following initiation of these cooperative projects, DOE funded a survey to determine which states were explicitly addressing power plant productivity through the regulatory process. The Working Group was formed following completion of this survey. The Working Group emphasized the need for those power plant productivity improvements which are cost effective. The cost effectiveness of proposed availability improvement projects should be determined within the context of opportunities for operating and capital improvements available to an entire utility. The Working Group also identified the need for: allowing for plant designs that have a higher construction cost, but are also more reliable; allowing for recovery and reducing recovery lags for productivity-related capital expenditures; identifying and reducing disincentives in the regulatory process; ascertaining that utilities have sufficient money available to undertake timely maintenance; and support of EPRI and NERC to develop a relevant and accurate national data base. The DOE views these as extremely important aspects of any regulatory program to improve power plant productivity.

Not Available

1981-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "wv northeastern plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Plant Science Graduates Spring 2011 Bachelor of Science in Plant Sciences  

E-Print Network [OSTI]

Plant Science Graduates Spring 2011 Bachelor of Science in Plant Sciences Joshua Paul Baker, Old Dale Wallace, Centerville Master of Science Reginald Jason Millwood, Plant Sciences Kara Lee Warwick, Plant Sciences Undergraduate Degrees, Summer Term 2011 Henry Joseph Cope, III, Plant Sciences David

Tennessee, University of

262

The Colorado Rare Plant Technical Committee presents: Colorado Rare Plant Symposium  

E-Print Network [OSTI]

The Colorado Rare Plant Technical Committee presents: 5th Annual Colorado Rare Plant Symposium September 5, 2008 Montrose, Colorado Sponsored by: Colorado Rare Plant Technical CommitteeColorado Rare Plant Technical Committee Colorado Native Plant Society University of Colorado Herbarium US Fish

263

The Colorado Rare Plant Technical Committee presents: 2nd Annual Rare Plant  

E-Print Network [OSTI]

The Colorado Rare Plant Technical Committee presents: 2nd Annual Rare Plant Symposium Friday, September 16th, 2005 8am-noon: 2nd Annual Colorado Rare Plant Symposium (Discuss G1 species) 6:30-7:30pm with the Colorado Native Plant Society's Annual Meeting Sponsored by: #12;The Second Annual Colorado Rare Plant

264

Detection of long-term trends in carbon accumulation by forests in Northeastern U. S. and determination of causal factors: Final report  

SciTech Connect (OSTI)

The overall project goal was to quantify the trends and variability for Net ecosystem exchange of CO{sub 2}, H{sub 2}O, and energy by northeastern forests, with particular attention to the role of succession, differences in species composition, legacies of past land use, and disturbances. Measurements included flux measurements and observations of biomass accumulation using ecosystem modeling as a framework for data interpretation. Continuation of the long-term record at the Environmental Measurement Site (EMS) Tower was a priority. The final quality-assured CO{sub 2}-flux data now extend through 2010. Data through 2011 are collected but not yet finalized. Biomass observations on the plot array centered on the tower are extended to 2011. Two additional towers in a hemlock stand (HEM) and a younger deciduous stand (LPH) complement the EMS tower by focusing on stands with different species composition or age distribution and disturbance history, but comparable climate and soil type. Over the period since 1993 the forest has added 24.4 Mg-C ha{sup -1} in the living trees. Annual net carbon uptake had been increasing from about 2 Mg-C ha{sup -1}y{sup -1} in the early 1990s to nearly 6 Mg-C ha{sup -1}y{sup -1} by 2008, but declined in 2009-2010. We attribute the increasing carbon uptake to a combination of warmer temperatures, increased photosynthetic efficiency, and increased influence by subcanopy hemlocks that are active in the early spring and late autumn when temperatures are above freezing but the deciduous canopy is bare. Not all of the increased carbon accumulation was found in woody biomass. Results from a study using data to optimize parameters in an ecosystem process model indicate that significant changes in model parameters for photosynthetic capacity and shifts in allocation to slow cycling soil organic matter are necessary for the model to match the observed trends. The emerging working hypothesis is that the pattern of increasing carbon uptake over the early 2000's represents a transient pulse that will eventually end as decomposition of the accumulated carbon catches up.

J. William Munger; Steven C. Wofsy; David R. Foster

2012-01-31T23:59:59.000Z

265

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified petroleum coke characteristics as a potential technical risk. The composition of petroleum coke varies from one refinery to another. Petroleum coke characteristics are a function of the crude oil slate available at the refinery and the coker operating parameters. The specific petroleum coke characteristics at a refinery affect the design of the Gasification and Acid Gas Removal (AGR) subsystems. Knowing the petroleum coke composition provides the necessary data to proceed to the EECP Phase III engineering design of the gasification process. Based on ChevronTexaco's experience, the EECP team ranked the technical, economic, and overall risks of the petroleum coke composition related to the gasification subsystem as low. In Phase I of the EECP Project, the Motiva Port Arthur Refinery had been identified as the potential EECP site. As a result of the merger between Texaco and Chevron in October 2001, Texaco was required to sell its interest in the Motiva Enterprises LLC joint venture to Shell Oil Company and Saudi Refining Inc. To assess the possible impact of moving the proposed EECP host site to a ChevronTexaco refinery, samples of petroleum coke from two ChevronTexaco refineries were sent to MTC for bench-scale testing. The results of the analysis of these samples were compared to the Phase I EECP Gasification Design Basis developed for Motiva's Port Arthur Refinery. The analysis confirms that if the proposed EECP is moved to a new refinery site, the Phase I EECP Gasification Design Basis would have to be updated. The lower sulfur content of the two samples from the ChevronTexaco refineries indicates that if one of these sites were selected, the Sulfur Recovery Unit (SRU) might be sized smaller than the current EECP design. This would reduce the capital expense of the SRU. Additionally, both ChevronTexaco samples have a higher hydrogen to carbon monoxide ratio than the Motiva Port Arthur petroleum coke. The higher hydrogen to carbon monoxide ratio could give a slightly higher F-T products yield from the F-T Synthesis Reactor. However, the EECP Gasification Design Basis can not be updated until the site for the proposed EECP site is finalized. Until the site is finalized, the feedstock (petroleum coke) characteristics are a low risk to the EECP project.

Abdalla H. Ali; John H. Anderson; Earl R. Berry; Charles H. Schrader; Lalit S. Shah

2003-04-16T23:59:59.000Z

266

Power plants development in Romania  

SciTech Connect (OSTI)

The Romanian PV research program initiated in 1980 has as its aim the development of the Romanian own PV network from solar cells production to demonstration projects and commercial applications. Concerning the PV grid connected systems the Romanian research program is financed by the Romanian Ministry for Research and Technology. Setting out the main objectives and the related stages of this project, in the paper are presented aspects concerning the plant configuration, its component characteristics and preliminary achieved results. The aspects which are going to be developed in the following stages of the grid-connected PV plant implementation in Romania are also underlined.

Tanasescu, F.T. [Ministry of Research and Technology, Bucharest (Romania); Olariu, N. [Univ. Targoviste (Romania). Energy and Environment Research Dept.

1994-12-31T23:59:59.000Z

267

Plant and Soil An International Journal on Plant-Soil  

E-Print Network [OSTI]

on growth responses, membrane transport, stomatal function, and paradigms of ion accumulation toxicity. Ion transport . Potassium Introduction Sodium is the sixth most abundant element in earth's crust+ ) is one of the most intensely researched ions in plant biology and has attained a repu- tation for its

Kronzucker, Herbert J.

268

Balance of Plant Requirements for a Nuclear Hydrogen Plant  

SciTech Connect (OSTI)

This document describes the requirements for the components and systems that support the hydrogen production portion of a 600 megawatt thermal (MWt) Next Generation Nuclear Plant (NGNP). These systems, defined as the "balance-of-plant" (BOP), are essential to operate an effective hydrogen production plant. Examples of BOP items are: heat recovery and heat rejection equipment, process material transport systems (pumps, valves, piping, etc.), control systems, safety systems, waste collection and disposal systems, maintenance and repair equipment, heating, ventilation, and air conditioning (HVAC), electrical supply and distribution, and others. The requirements in this document are applicable to the two hydrogen production processes currently under consideration in the DOE Nuclear Hydrogen Initiative. These processes are the sulfur iodide (S-I) process and the high temperature electrolysis (HTE) process. At present, the other two hydrogen production process - the hybrid sulfur-iodide electrolytic process (SE) and the calcium-bromide process (Ca-Br) -are under flow sheet development and not included in this report. While some features of the balance-of-plant requirements are common to all hydrogen production processes, some details will apply only to the specific needs of individual processes.

Bradley Ward

2006-04-01T23:59:59.000Z

269

Plant Population Viability and Restoration Potential for Rare Plants  

E-Print Network [OSTI]

solar developments in the Mojave and Sonoran deserts of California will significantly impact plants to be affected by utilityscale solar energy Mojave Desert wildflowers in California's Mojave National the biological impacts of solar projects within the Mojave and Colorado deserts of California. Population

270

Thermodynamics -2 A cogeneration plant (plant which provides both electricity and thermal energy) executes a cycle  

E-Print Network [OSTI]

Thermodynamics - 2 A cogeneration plant (plant which provides both electricity and thermal energy] Determine the rate of heat addition in the steam generator. Now consider an ideal, reversible cogeneration 1 2 3 45 6 Cogeneration Plant Boundary #12;

Virginia Tech

271

Integrated Toxic Plant Management Handbook: Livestock Poisoning Plants of the Trans-Pecos Region of Texas  

E-Print Network [OSTI]

Photographs, plant descriptions, and symptoms of poisoning help ranchers identify toxic plants that may be harmful to their livestock in West Texas. There is also information on grazing, livestock management, and toxic plant control....

Hart, Charles R.; McGinty, Allan; Carpenter, Bruce B.

2001-01-11T23:59:59.000Z

272

Methodology for Scaling Fusion Power Plant Availability  

SciTech Connect (OSTI)

Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated "mature" subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

Lester M. Waganer

2011-01-04T23:59:59.000Z

273

Design and simulation of a plant control system for a GCFR demonstration plant  

SciTech Connect (OSTI)

A plant control system is being designed for a 300 MW(e) Gas Cooled Fast Breeder Reactor (GCFR) demonstration plant. Control analysis is being performed as an integral part of the plant design process to ensure that control requirements are satisfied as the plant design evolves. Plant models and simulations are being developed to generate information necessary to further define control system requirements for subsequent plant design iterations.

Estrine, E.A.; Greiner, H.G.

1980-02-01T23:59:59.000Z

274

Successful restoration of plant communities  

E-Print Network [OSTI]

of restoration failure if seed source is incorrect #12;Unexpected results... Penstemon deustus (hot rock miles NEVADA UTAH IDAHOOREGON #12;Plant-focused restoration efforts Disturbed Site Cheatgrass (49%) Rock/Bare Ground (50%) Shrub (0.8%) Native Grass (0.7%) Cattle Dung (0.2%) Undisturbed Site Cheatgrass (0.7%) Rock

Fant, Jeremie

275

Plant Level Energy Performance Benchmarking  

E-Print Network [OSTI]

(# of Employees) + C3 x Ln(Degree Days) + C 4 x (Ice Cream) + Csx (Packaged) Ln(E$/HR) = Co + C 1 x Ln(Effective Shipment Value) + C 2 x Ln(Degree Days) + C 3 x Ln(Plant Hours} + C 4 x (Ice Cream) + C s x (Packaged) Table-S. E$OR and E$/HR Regression...

Hicks, T. W.

276

Systemic Signalling in Plant Development  

E-Print Network [OSTI]

develop continuously throughout their life cycle, constantly initiating new or- gans. They doSystemic Signalling in Plant Development David Jackson, Cold Spring Harbor Laboratory, Cold Spring to the production of systemic signals that control the development of distant organs and tissues. Introduction

Jackson, David

277

Ram Village South Chiller Plant  

E-Print Network [OSTI]

Winston Ram Village South Chiller Plant Dental Craige Campus Alumni Swain Stacy Thermal Student Planetarium Ackland Art Museum Research Chiller D 114 Chase Ave. APCF- Grounds Medical Morehead Stalling- Evans Sports Medicine Center Cobb Hall Ernie School Old Hospital Chiller Hanes Art Coker Wilson Battle

North Carolina at Chapel Hill, University of

278

Power Transmission, Distribution and Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Transmission, Distribution and Plants A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abdel-Aal, Radwan E. - Computer Engineering Department, King Fahd University of...

279

Selecting Landscape Plants: Shade Trees  

E-Print Network [OSTI]

Selecting Landscape Plants: Shade Trees Diane Relf, Extension Specialist, Horticulture, Virginia for any landscape plan. They set the stage for the entire home grounds design. The type used. Many will live and enhance the landscape for 100 or more years if they are given a chance. Because

Liskiewicz, Maciej

280

Magnetic Fusion Pilot Plant Studies  

E-Print Network [OSTI]

FNSF = Fusion Nuclear Science Facility CTF = Component Test Facility · Powerplantlike maintenance. · Targeted ultimate capabilities: ­ Fusion nuclear S&T development, component testing · Steady applicable to power plant · Demonstrate methods for fast replacement of in-vessel components ­ Net

Note: This page contains sample records for the topic "wv northeastern plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Advanced nuclear plant control complex  

DOE Patents [OSTI]

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1993-01-01T23:59:59.000Z

282

Glutathione-S-conjugate transport in plants  

DOE Patents [OSTI]

The invention includes an isolated DNA encoding a plant GS-X pump polypeptide and an isolated preparation of a plant GS-X pump polypeptide. Also included is an isolated preparation of a nucleic acid which is antisense in orientation to a portion or all of a plant GS-X pump gene. The invention also includes a cells, vectors and transgenic plants having an isolated DNA encoding a plant GS-X pump and methods of use thereof. In addition, the invention relates to plant GS-X pump promoter sequences and the uses thereof.

Rea, Philip A. (Ardmore, PA); Lu, Yu-Ping (Havertown, PA); Li, Ze-Sheng (Prospect Park, PA)

2000-01-01T23:59:59.000Z

283

Plant Physiology: Manipulating Plant Growth with Solar Radiation Dennis Decoteau, Ph.D.  

E-Print Network [OSTI]

Plant Physiology: Manipulating Plant Growth with Solar Radiation Dennis Decoteau, Ph.D. Department. Greenhouse Glazing & Solar Radiation Transmission Workshop, October 1998 © CCEA, Center for Controlled

Decoteau, Dennis R.

284

northeastern Washington's Okanogan County. The  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7.31 acre habitat acquisition in Washington's Okanogan River Watershed for fish habitat mitigation (see map). The Okanogan River Watershed was selected as a focus for restoration...

285

northeastern Washington's Okanogan County. The  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULE J.nbarbee Ames3,nordica.maccarty 27.31

286

Plant maintenance and plant life extension issue, 2008  

SciTech Connect (OSTI)

The focus of the March-April issue is on plant maintenance and plant life extension. Major articles include the following: Exciting time to be at the U.S. NRC, by Dale Klein, Nuclear Regulatory Commission; Extraordinary steps to ensure a minimal environmental impact, by George Vanderheyden, UniStar Nuclear Energy, LLC.; Focused on consistent reduction of outages, by Kevin Walsh, GE Hitachi Nuclear Energy; On the path towards operational excellence, by Ricardo Perez, Westinghouse Electric Company; Ability to be refuelled on-line, by Ian Trotman, CANDU Services, Atomic Energy of Canada, Ltd.; ASCA Application for maintenance of SG secondary side, by Patrick Wagner, Wolf Creek Nuclear Operating Corporation, Phillip Battaglia and David Selfridge, Westinghouse Electric Company; and, An integral part of the landscape and lives, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovation article is titled Steam generator bowl drain repairs, by John Makar and Richard Gimple, Wolf Creek Nuclear Operating Corporation.

Agnihotri, Newal (ed.)

2008-03-15T23:59:59.000Z

287

Paleophysiology of Permian and Triassic Seed Plants  

E-Print Network [OSTI]

This study utilized both anatomically and morphologically preserved fossil plants to investigate plant paleophysiology using known form/function relationships. The fossils examined in this project come from fossil localities ...

Schwendemann, Andrew Benjamin

2012-08-31T23:59:59.000Z

288

Grazing and Browsing: How Plants are Affected  

E-Print Network [OSTI]

Grazing and browsing can have a neutral, positive or negative effect on rangeland plants. This publication explains the effects of grazing and browsing on plants, details the indicators of overuse of the range, and lists grazing management practices...

Lyons, Robert K.; Hanselka, C. Wayne

2001-12-13T23:59:59.000Z

289

Reducing Livestock Losses To Toxic Plants  

E-Print Network [OSTI]

gait alkaliweed Jatropha Berlandier Purgative oil Vomiting, diarrhea, abdominal This plant is poisonous only to cathartic mettlespurge and phytotoxin pain sheep and goats. Jatropha dioica Leatherstem Purgative oil Severe gastroenteritis, This plant...

McGinty, Allan; Machen, Richard V.

2000-04-25T23:59:59.000Z

290

Nuclear power plants: structure and function  

SciTech Connect (OSTI)

Topics discussed include: steam electric plants; BWR type reactors; PWR type reactors; thermal efficiency of light water reactors; other types of nuclear power plants; the fission process and nuclear fuel; fission products and reactor afterheat; and reactor safety.

Hendrie, J.M.

1983-01-01T23:59:59.000Z

291

Modeling water use at thermoelectric power plants  

E-Print Network [OSTI]

The withdrawal and consumption of water at thermoelectric power plants affects regional ecology and supply security of both water and electricity. The existing field data on US power plant water use, however, is of limited ...

Rutberg, Michael J. (Michael Jacob)

2012-01-01T23:59:59.000Z

292

Steam Conservation and Boiler Plant Efficiency Advancements  

E-Print Network [OSTI]

This paper examines several cost-effective steam conservation and boiler plant efficiency advancements that were implemented during a recently completed central steam boiler plant replacement project at a very large semiconductor manufacturing...

Fiorino, D. P.

293

Power Plant Research and Siting Program (Maryland)  

Broader source: Energy.gov [DOE]

The Power Plant Research and Siting Act of 1971 established the Power Plant Research Program (PPRP) to evaluate electric generation issues in the state and recommend responsible, long-term...

294

Minnesota Power Plant Siting Act (Minnesota)  

Broader source: Energy.gov [DOE]

This Act regulates the siting of large electric power generating plants, which are defined as plants designed for or capable of operating with a capacity of 50,000 kW or more. The policy of the...

295

Florida Electrical Power Plant Siting Act (Florida)  

Broader source: Energy.gov [DOE]

The Power Plant Siting Act (PPSA) is the state’s centralized process for licensing large power plants. One license—a certification— replaces local and state permits. Local governments and state...

296

Integrated Coal Gasification Power Plant Credit (Kansas)  

Broader source: Energy.gov [DOE]

Integrated Coal Gasification Power Plant Credit states that an income taxpayer that makes a qualified investment in a new integrated coal gasification power plant or in the expansion of an existing...

297

INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO  

SciTech Connect (OSTI)

The University of Alabama, in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company, has undertaken an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary goal of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. Geoscientific reservoir property, geophysical seismic attribute, petrophysical property, and engineering property characterization has shown that reef (thrombolite) and shoal reservoir lithofacies developed on the flanks of high-relief crystalline basement paleohighs (Vocation Field example) and on the crest and flanks of low-relief crystalline basement paleohighs (Appleton Field example). The reef thrombolite lithofacies have higher reservoir quality than the shoal lithofacies due to overall higher permeabilities and greater interconnectivity. Thrombolite dolostone flow units, which are dominated by dolomite intercrystalline and vuggy pores, are characterized by a pore system comprised of a higher percentage of large-sized pores and larger pore throats. Rock-fluid interactions (diagenesis) studies have shown that although the primary control on reservoir architecture and geographic distribution of Smackover reservoirs is the fabric and texture of the depositional lithofacies, diagenesis (chiefly dolomitization) is a significant factor that preserves and enhances reservoir quality. The evaporative pumping mechanism is favored to explain the dolomitization of the thrombolite doloboundstone and dolostone reservoir flow units at Appleton and Vocation Fields. Geologic modeling, reservoir simulation, and the testing and applying the resulting integrated geologic-engineering models have shown that little oil remains to be recovered at Appleton Field and a significant amount of oil remains to be recovered at Vocation Field through a strategic infill drilling program. The drive mechanisms for primary production in Appleton and Vocation Fields remain effective; therefore, the initiation of a pressure maintenance program or enhanced recovery project is not required at this time. The integrated geologic-engineering model developed for a low-relief paleohigh (Appleton Field) was tested for three scenarios involving the variables of present-day structural elevation and the presence/absence of potential reef thrombolite lithofacies. In each case, the predictions based upon the model were correct. From this modeling, the characteristics of the ideal prospect in the basement ridge play include a low-relief paleohigh associated with dendroidal/chaotic thrombolite doloboundstone and dolostone that has sufficient present-day structural relief so that these carbonates rest above the oil-water contact. Such a prospect was identified from the modeling, and it is located northwest of well Permit No. 3854B (Appleton Field) and south of well No. Permit No.11030B (Northwest Appleton Field).

Ernest A. Mancini

2004-02-25T23:59:59.000Z

298

NREL: Wind Research - Boosting Wind Plant Power Output by 4%...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Boosting Wind Plant Power Output by 4%-5% through Coordinated Turbine Controls July 30, 2014 Wind plant underperformance has plagued wind plant developers for years. To address...

299

alters plant development: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

which plant communities Minnesota, University of 8 Signal compounds involved with plant perception and response to microbes alter plant physiological activities and growth of...

300

abortion plants: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at planting time in 2009. Aboveground biomass production, coarse and fine roots, SOC Norton, Jay B. 247 THE PLANT BIOLOGY SEMINAR Molecular Plant Biology, Department of...

Note: This page contains sample records for the topic "wv northeastern plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

aposematic spiny plants: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at planting time in 2009. Aboveground biomass production, coarse and fine roots, SOC Norton, Jay B. 239 THE PLANT BIOLOGY SEMINAR Molecular Plant Biology, Department of...

302

ammunition plant baraboo: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at planting time in 2009. Aboveground biomass production, coarse and fine roots, SOC Norton, Jay B. 184 THE PLANT BIOLOGY SEMINAR Molecular Plant Biology, Department of...

303

aube plant: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at planting time in 2009. Aboveground biomass production, coarse and fine roots, SOC Norton, Jay B. 262 THE PLANT BIOLOGY SEMINAR Molecular Plant Biology, Department of...

304

antifungal plant defensins: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at planting time in 2009. Aboveground biomass production, coarse and fine roots, SOC Norton, Jay B. 220 THE PLANT BIOLOGY SEMINAR Molecular Plant Biology, Department of...

305

ammunition plant milan: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at planting time in 2009. Aboveground biomass production, coarse and fine roots, SOC Norton, Jay B. 248 THE PLANT BIOLOGY SEMINAR Molecular Plant Biology, Department of...

306

Conservation Screening Curves to Compare Efficiency Investments to Power Plants  

E-Print Network [OSTI]

Efficiency Investments to Power Plants J. Koorney, A.H.Efficiency Investments to Power Plants Jonathan Koorney,Pollution, and Avoid Power Plant Construction. Testimony

Koomey, J.G.

2008-01-01T23:59:59.000Z

307

Interdisciplinary Research and Training Program in the Plant Sciences  

SciTech Connect (OSTI)

Research on plants continued. Topics include: Molecular basis of symbiotic plant-microbe interations; enzymatic mechanisms and regulation of plant cell wall biosynthesis; molecular mechanisms that regulate the expression of genes in plants; resistance of plants to environmental stress; studies on hormone biosynthesis and action; plant cell wall proteins; interaction of nuclear and organelle genomes; sensor transduction in plants; molecular mechanisms of trafficking in the plant cell; regulation of lipid metabolism; molecular bases of plant disease resistance mechanisms; biochemical and molecular aspects of plant pathogenesis; developmental biology of nitrogen-fixing cyanobacteria; environmental control of plant development and its relation to plant hormones.

Wolk, C.P.

1992-01-01T23:59:59.000Z

308

Goodyear Tire Plant Gains Traction on Energy Savings After Completing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Tire Plant saved approximately 93,000 MMBtu and 875,000 annually after increasing steam system energy efficiency in their Union City, Tennessee, plant. Goodyear Tire Plant...

309

Maintenance implementation plan for B Plant  

SciTech Connect (OSTI)

The B Plant facility, is located in the 200 East Area at the Hanford Site in south-central Washington State. It consists of two major operating areas: the B Plant Canyon Building, and the Waste Encapsulation and Storage Facility (WESF). The B Plant was originally designed to chemically process spent nuclear fuels. After this initial mission was completed, the plant was modified to provide for the separation of strontium and cesium, individually, from the fission productwaste stream following plutonium and uranium recovery from irradiated reactor fuels in the Plutonium-Uranium Extraction Plant (PUREX). The recovered, purified, and concentrated strontium and cesium solutions were then transferred to the WESF for conversion to solid compounds, encapsulation, and interim storage. After strontium and cesium removal, the remaining waste was transferred from B Plant to tank farms. B Plantis an operating facility that is required to ensure safe storage And management of the WESF cesium and strontium capsules, as well as a substantial radiological inventory remaining in the plant from previous campaigns. There are currently no production activities at B Plant, but several operating systems are required to accomplish the current B Plant mission.B Plant receives and stores various chemicals from commercial suppliers for treatment of low-level waste generated at WESF and B Plant, generation of demineralized water, and conditioning of water used in heating, ventilation, and air conditioning units. This report describes the maintenance of B Plant, including personnel training and schedules.

Tritt, S.E.

1992-06-01T23:59:59.000Z

310

Rare Plant Conservation Planning Workshop Results  

E-Print Network [OSTI]

­ one of the most imperiled species in Colorado. The species is at risk of extinction due to its narrowRare Plant Conservation Planning Workshop Results PAGOSA SPRINGS Plant Species of Focus Pagosa............................................................................................................................. 12 Attachment 1. Additional key species and plant communities in the Pagosa Springs area 13

311

ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM  

E-Print Network [OSTI]

ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM ENTRAINMENT IMPACTS Prepared For: California be obvious that large studies like these require the coordinated work of many people. We would first like from the Duke Energy South Bay and Morro Bay power plants and the PG&E Diablo Canyon Power Plant

312

SPECIAL FEATURE FACILITATION IN PLANT COMMUNITIES  

E-Print Network [OSTI]

. Horton2 1 Ecological Farming Systems, Agroscope Reckenholz-Ta¨nikon, Research Station ART, Zurich on seedling species identity, mycorrhizal identity, plant species combinations and study system. We present plant­plant interactions and by supplying and recycling nutrients. Key-words: arbuscular mycorrhizal

Horton, Tom

313

FUSION POWER PLANTS GOALS AND TECHNOLOGICAL CHALLENGES  

E-Print Network [OSTI]

FUSION POWER PLANTS ­ GOALS AND TECHNOLOGICAL CHALLENGES Farrokh Najmabadi Dept. of Electrical for fusion power plants is given and their economic, safety, and environmental features are explored. Concep- tual design studies predict that fusion power plants will be capital intensive and will be used

Najmabadi, Farrokh

314

The Colorado Rare Plant Technical Committee presents  

E-Print Network [OSTI]

The Colorado Rare Plant Technical Committee presents: 3rd Annual Rare Plant Symposium Sponsored by: Colorado Native Plant Society University of Colorado Herbarium US Fish and Wildlife Service Colorado and Eastern Colorado (Las Animas, Weld, Kit Carson, Huerfano, Pueblo, Otero, Prowers, Fremont, and El Paso

315

Plant nuclear bodies Peter J Shaw1  

E-Print Network [OSTI]

Plant nuclear bodies Peter J Shaw1 and John WS Brown2 Knowledge of the organization bodies have been examined in plants, and recently, various other sub-nuclear domains that are involved. Until recently, the only plant nuclear bodies to be in any way characterized were the nucleolus [11

Shaw, Peter

316

Transgenic plants with altered senescence characteristics  

DOE Patents [OSTI]

The identification of senescence-specific promoters from plants is described. Using information from the first senescence-specific promoter, SAG12 from Arabidopsis, other homologous promoters from another plant have been identified. Such promoters may be used to delay senescence in commercially important plants.

Amasino, Richard M. (Madison, WI); Gan, Susheng (Lexington, KY); Noh, Yoo-Sun (Madison, WI)

2002-03-19T23:59:59.000Z

317

Steam Plant Conversion Eliminating Campus Coal Use  

E-Print Network [OSTI]

Steam Plant Conversion Eliminating Campus Coal Use at the Steam Plant #12;· Flagship campus region produce 14% of US coal (TN only 0.2%) Knoxville and the TN Valley #12;· UT is one of about 70 U.S. colleges and universities w/ steam plant that burns coal · Constructed in 1964, provides steam for

Dai, Pengcheng

318

Canaigre, The New Tanning Plant.  

E-Print Network [OSTI]

........................................ Winkler County... 40 miles west of Houston. Florida.................... 12.0 70 71 Ten months old; grown on black, heavy soil........ Seven^months old; cultivated-................................... 16.5 22.5 72 Twelve months old; cultivated... important con? sideration; the first car load of the root having been shipped in 188? from Tucson, Arizona, by Mr. E. J. Kerr, who has, since that time; be? come largely interested in the commercial development of the cultivated plant. But the Mexicans...

Harrington, H. H.; Adriance, Duncan

1896-01-01T23:59:59.000Z

319

World electric power plants database  

SciTech Connect (OSTI)

This global database provides records for 104,000 generating units in over 220 countries. These units include installed and projected facilities, central stations and distributed plants operated by utilities, independent power companies and commercial and self-generators. Each record includes information on: geographic location and operating company; technology, fuel and boiler; generator manufacturers; steam conditions; unit capacity and age; turbine/engine; architect/engineer and constructor; and pollution control equipment. The database is issued quarterly.

NONE

2006-06-15T23:59:59.000Z

320

Solar thermionic power plant (II)  

SciTech Connect (OSTI)

It has been shown that the geometric configuration of a central receiver solar electric power plant (SEPP) can be optimized for the high power density and concentration required for the operation of a thermionic converter. The working period of a Thermionic Diode Converter constructed on the top of a SEPP in Riyadh area is found to be 5 to 6 hours per day in winter and 6 to 8 hours in summer. 17 refs.

Abou-Elfotouh, F.; Almassary, M.; Fatmi, H.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wv northeastern plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

B PLANT DOCUMENTED SAFETY ANALYSIS  

SciTech Connect (OSTI)

This document provides the documented safety analysis (DSA) and Central Plateau Remediation Project (CP) requirements that apply to surveillance and maintenance (S&M) activities at the 221-B Canyon Building and ancillary support structures (B Plant). The document replaces BHI-010582, Documented Safety Analysis for the B-Plant Facility. The B Plant is non-operational, deactivated and undergoing long term S&M prior to decontamination and decommissioning (D&D). This DSA is compliant with 10 CFR 830, Nuclear Safety Management, Subpart B, ''Safety Basis Requirements.'' The DSA was developed in accordance with U.S. Department of Energy (DOE) standard DOE-STD-1120-98, Integration of Environment, Safety, and Health into Facility Disposition Activities (DOE 1998) per Table 2 of 10 CFR 830 Appendix A, DOE Richland Operation Office (RL) direction (02-ABD-0053, Fluor Hanford Nuclear Safety Basis Strategy and Criteria) for facilities in long term S&M, and RL Direction (02-ABD-0091, ''FHI Nuclear Safety Expectations for Nuclear Facilities in Surveillance and Maintenance''). A crosswalk was prepared to identify potential inconsistencies between the previous B Plant safety analysis and DOE-STD-1120-98 guidance. In general, the safety analysis met the criteria of DOE-STD-1120-98. Some format and content changes have been made, including incorporating recent facility modifications and updating the evaluation guidelines and control selection criteria in accordance with RL direction (02-ABD-0053). The facility fire hazard analysis (FHA) and Technical Safety Requirements (TSR) are appended to this DSA as an aid to the users, to minimize editorial redundancy, and to provide an efficient basis for update.

DODD, E.N.; KERR, N.R.

2003-08-01T23:59:59.000Z

322

Morris Plant Energy Efficiency Program  

E-Print Network [OSTI]

. These valves affected the steam balance by leaking steam to lower pressure systems or to the atmosphere. Repairs to these valves enabled improved control of the medium pressure steam systems facility-wide. Since the Morris plant is energy integrated across..., the steam demand of each turbine has decreased, while minimizing deposit formation in the turbines. A facility-wide steam trap testing program was established in 2001. Numerous steam traps were found to be leaking or plugged. Replacement of these traps...

Betczynski, M. T.

2004-01-01T23:59:59.000Z

323

Nuclear plant irradiated steel handbook  

SciTech Connect (OSTI)

This reference handbook presents selected information extracted from the EPRI reactor surveillance program database, which contains the results from surveillance program reports on 57 plants and 116 capsules. Tabulated data includes radiation induced temperature shifts, capsule irradiation conditions and statistical features of the Charpy V-notch curves. General information on the surveillance materials is provided and the Charpy V-notch energy results are presented graphically.

Oldfield, W.; Oldfield, F.M.; Lombrozo, P.M.; McConnell, P.

1986-09-01T23:59:59.000Z

324

Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation Plants  

E-Print Network [OSTI]

Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation generating plants. Between 1998 and 2001, over 300 electric generating plants in the US, accounting Plants James B. Bushnell and Catherine Wolfram March 2005 Abstract Electric industry restructuring

Sadoulet, Elisabeth

325

Engineered plant biomass feedstock particles  

DOE Patents [OSTI]

A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

2012-04-17T23:59:59.000Z

326

Evaluation of fossil plants versus hydro plants for load frequency control  

SciTech Connect (OSTI)

The economics of using hydroplants with Francis turbines or fossil plants for load frequency control are evaluated. Using data from the TVA Gallatin steam plant and the TVA Cherokee, Wilson, and Fontana hydroplants, a cost comparison of different modes of operation for load frequency control was performed considering two plants at a time. The results showed that when the fossil plant was used for load frequency control instead of a hydro plant a lower system generation cost was incurred. Dynamic responses of fossil and hydro units, improved controls for fossil plants, and maneuvering costs of the Gallatin plant are also considered.

Broadwater, R.P.; Johnson, R.L.; Duckett, F.E.; Boston, W.T.

1985-01-01T23:59:59.000Z

327

If you reside in WASHINGTON, DC - MD -VA - WV your salary will...  

National Nuclear Security Administration (NNSA)

165,300 05 EKEJEN 148,510 165,300 If you are employed in OAKLANDLIVERMORE, CA your salary will range from: Pay Band Pay Plan(s) Minimum Maximum Developmental EN...

328

3610 Collins Ferry Road, P.O. Box 880, Morgantown, WV 26507  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated Worker2014Department of Energy 3Keene - Cummins610

329

3610 Collins Ferry Road, P.O. Box 880, Morgantown, WV 26507  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value4 3.P D AT E S0 t

330

If you reside in WASHINGTON, DC - MD -VA - WV your salary will range from:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. |Endecaheme c-Type| EMSLemployed in the

331

DOE - Office of Legacy Management -- Food Machinery and Chemical Co - WV 04  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home »HillNYEra ToolFennFood Machinery and

332

DOE - Office of Legacy Management -- The Carborundum Co Inc - WV 02  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site - MO 02SuttonTennessee

333

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A 3DAlaska NativeAlastair

334

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A 3DAlaska NativeAlastairMethane

335

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A 3DAlaska NativeAlastairMethaneS

336

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A 3DAlaska

337

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A 3DAlaskaSensors and Control

338

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A 3DAlaskaSensors and

339

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A 3DAlaskaSensors andNon-Thermal

340

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A 3DAlaskaSensors

Note: This page contains sample records for the topic "wv northeastern plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A 3DAlaskaSensorsGeomechanical

342

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A

343

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombining Space Geodesy,

344

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombining Space Geodesy,GEOSEQ:

345

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombining Space

346

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombining SpaceQuantification of

347

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombining SpaceQuantification

348

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombining

349

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningThe Coal-Seq III

350

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningThe Coal-Seq

351

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningThe Coal-Seqfor CO2

352

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningThe Coal-Seqfor

353

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningThe Coal-SeqforGulf of

354

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningThe Coal-SeqforGulf

355

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningThe

356

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningTheGSRA CONTACTS Traci

357

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningTheGSRA CONTACTS

358

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningTheGSRA

359

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningTheGSRAMeasurements of

360

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningTheGSRAMeasurements

Note: This page contains sample records for the topic "wv northeastern plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningTheGSRAMeasurementsof

362

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz -

363

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz -Actualistic and Geomechanical

364

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz -Actualistic and

365

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz -Actualistic andGSRA CONTACTS Traci

366

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz -Actualistic andGSRA CONTACTS

367

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz -Actualistic andGSRA

368

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz -Actualistic andGSRABeneficial Use

369

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz -Actualistic andGSRABeneficial

370

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz -Actualistic

371

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz -ActualisticReducing Uncertainties

372

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz -ActualisticReducing

373

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz -ActualisticReducingExperimental

374

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz -ActualisticReducingExperimentaland

375

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz

376

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototyping and Testing a New

377

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototyping and Testing a

378

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototyping and Testing

379

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototyping and TestingCO2 at the

380

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototyping and TestingCO2 at

Note: This page contains sample records for the topic "wv northeastern plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototyping and TestingCO2

382

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototyping and

383

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototyping andSimplified Predictive

384

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototyping andSimplified

385

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototyping andSimplifiedof Improved

386

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototyping andSimplifiedof

387

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototyping andSimplifiedofAdvanced

388

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototyping

389

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototypingSystematic Assessment of

390

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototypingSystematic Assessment

391

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototypingSystematic

392

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototypingSystematicField Test and

393

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototypingSystematicField Test

394

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototypingSystematicField

395

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototypingSystematicFieldReactive

396

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport

397

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne National Laboratory - Management

398

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne National Laboratory -

399

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne National Laboratory -Technology

400

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne National LaboratoryR&D Fac

Note: This page contains sample records for the topic "wv northeastern plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne National LaboratoryR&D

402

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne National LaboratoryR&DMost

403

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne National

404

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne NationalFutureGen 2.0 Background

405

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne NationalFutureGen 2.0

406

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne NationalFutureGen 2.0CONTACTS

407

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne NationalFutureGen 2.0CONTACTSand

408

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne NationalFutureGen

409

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne NationalFutureGenCONTACTS J.

410

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne NationalFutureGenCONTACTS

411

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne

412

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTS George Guthrie Focus

413

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTS George Guthrie

414

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTS George GuthrieCONTACTS

415

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTS George

416

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTS GeorgeHybrid Performance

417

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTS GeorgeHybrid

418

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTS GeorgeHybrid NFflow

419

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTS GeorgeHybrid NFflow

420

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTS GeorgeHybrid

Note: This page contains sample records for the topic "wv northeastern plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTS GeorgeHybridScience

422

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTS

423

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTSCynthia Powell Director

424

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTSCynthia Powell

425

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTSCynthia PowellIntegrated

426

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTSCynthia

427

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTSCynthiaCONTACTS Bryan

428

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTSCynthiaCONTACTS

429

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the

430

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENT Cynthia Powell Director

431

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENT Cynthia Powell DirectorOFFICE

432

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENT Cynthia Powell DirectorOFFICE

433

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENT Cynthia Powell DirectorOFFICE

434

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENT Cynthia Powell

435

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENT Cynthia PowellDeepwater

436

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENT Cynthia

437

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENT CynthiaUnconventional Resources

438

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENT CynthiaUnconventional

439

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENT CynthiaUnconventional Sciences

440

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENT CynthiaUnconventional

Note: This page contains sample records for the topic "wv northeastern plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENT CynthiaUnconventionalSystems

442

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENT

443

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergy Science OFFICE OF

444

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergy Science OFFICE

445

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergy Science OFFICEOFFICE OF

446

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergy Science OFFICEOFFICE

447

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergy Science OFFICEOFFICEFuel

448

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergy Science

449

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergy ScienceEvaluation of

450

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergy ScienceEvaluation

451

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergy

452

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergyStrategic Growth Area

453

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergyStrategic Growth

454

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergyStrategic GrowthOFFICE OF

455

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergyStrategic GrowthOFFICE

456

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergyStrategic

457

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergyStrategicSolvents for

458

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergyStrategicSolvents

459

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergyStrategicSolventsMembranes

460

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergyStrategicSolventsMembranes

Note: This page contains sample records for the topic "wv northeastern plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND

462

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Guthrie Focus Area Lead

463

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Guthrie Focus Area

464

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Guthrie Focus AreaCO 2

465

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Guthrie Focus AreaCO

466

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Guthrie Focus AreaCOCONTACTS

467

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Guthrie Focus AreaCOCONTACTS

468

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Guthrie Focus

469

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Guthrie FocusStatistical

470

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Guthrie

471

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George GuthrieSouthwest Regional

472

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George GuthrieSouthwest

473

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George GuthrieSouthwestJoshua Hull

474

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George GuthrieSouthwestJoshua

475

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George

476

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Morgantown, WVRegional

477

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Morgantown, WVRegional

478

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Morgantown, WVRegionalPO Box

479

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Morgantown, WVRegionalPO

480

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Morgantown,

Note: This page contains sample records for the topic "wv northeastern plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Morgantown,CONTACTS George

482

Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Morgantown,CONTACTS GeorgeS

483

Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Morgantown,CONTACTS

484

U.S. Department of Energy 2012 Annual Inspection - Parkersburg, WV  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO: FILE FROM:DEC.lpx- .3Parkersburg,

485

Methods of saccharification of polysaccharides in plants  

DOE Patents [OSTI]

Saccharification of polysaccharides of plants is provided, where release of fermentable sugars from cellulose is obtained by adding plant tissue composition. Production of glucose is obtained without the need to add additional .beta.-glucosidase. Adding plant tissue composition to a process using a cellulose degrading composition to degrade cellulose results in an increase in the production of fermentable sugars compared to a process in which plant tissue composition is not added. Using plant tissue composition in a process using a cellulose degrading enzyme composition to degrade cellulose results in decrease in the amount of cellulose degrading enzyme composition or exogenously applied cellulase required to produce fermentable sugars.

Howard, John; Fake, Gina

2014-04-29T23:59:59.000Z

486

MSU-DOE Plant Research Laboratory  

SciTech Connect (OSTI)

This document is the compiled progress reports of research funded through the Michigan State University/Department of Energy Plant Research Laboratory. Fourteen reports are included, covering the molecular basis of plant/microbe symbiosis, cell wall biosynthesis and proteins, gene expression, stress responses, plant hormone biosynthesis, interactions between the nuclear and organelle genomes, sensory transduction and tropisms, intracellular sorting and trafficking, regulation of lipid metabolism, molecular basis of disease resistance and plant pathogenesis, developmental biology of Cyanobacteria, and hormonal involvement in environmental control of plant growth. 320 refs., 26 figs., 3 tabs. (MHB)

Not Available

1991-01-01T23:59:59.000Z

487

Kansas City Plant Celebrates Safety Milestone  

ScienceCinema (OSTI)

A gang of motorcycle riders arrived at the NNSA's Kansas City Plant on July 1 to help celebrate a significant safety achievement - working nearly five million hours, covering a one-year period without a lost-time injury. The bikers -- some of whom are plant employees -- represent Bikers Against Child Abuse, the local nonprofit selected to receive a $5,000 donation as part of the plant's safety achievement celebration. The organization was selected because it aligns with the plant's community outreach focus on Family Safety & Security and partnership with the plant's union members.

None

2010-09-01T23:59:59.000Z

488

Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects  

SciTech Connect (OSTI)

These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

None

1986-02-12T23:59:59.000Z

489

Genomic Aspects of Research Involving Polyploid Plants  

SciTech Connect (OSTI)

Almost all extant plant species have spontaneously doubled their genomes at least once in their evolutionary histories, resulting in polyploidy which provided a rich genomic resource for evolutionary processes. Moreover, superior polyploid clones have been created during the process of crop domestication. Polyploid plants generated by evolutionary processes and/or crop domestication have been the intentional or serendipitous focus of research dealing with the dynamics and consequences of genome evolution. One of the new trends in genomics research is to create synthetic polyploid plants which provide materials for studying the initial genomic changes/responses immediately after polyploid formation. Polyploid plants are also used in functional genomics research to study gene expression in a complex genomic background. In this review, we summarize the recent progress in genomics research involving ancient, young, and synthetic polyploid plants, with a focus on genome size evolution, genomics diversity, genomic rearrangement, genetic and epigenetic changes in duplicated genes, gene discovery, and comparative genomics. Implications on plant sciences including evolution, functional genomics, and plant breeding are presented. It is anticipated that polyploids will be a regular subject of genomics research in the foreseeable future as the rapid advances in DNA sequencing technology create unprecedented opportunities for discovering and monitoring genomic and transcriptomic changes in polyploid plants. The fast accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement.

Yang, Xiaohan [ORNL; Ye, Chuyu [ORNL; Tschaplinski, Timothy J [ORNL; Wullschleger, Stan D [ORNL; Tuskan, Gerald A [ORNL

2011-01-01T23:59:59.000Z

490

Small Power Plant Exemption (06-SPPE-1) Imperial County  

E-Print Network [OSTI]

Small Power Plant Exemption (06-SPPE-1) Imperial County NILAND GAS TURBINE PLANT COMMISSIONDECISION ENERGY COMMISSION Small Power Plant Exemption (06-SPPE-1) Imperial County NILAND GAS TURBINE PLANT GAS TURBINE PLANT SMALL POWER PLANT EXEMPTION DOCKET NO. 06-SPPE-1 The California Energy Commission

491

PEATGAS pilot plant operating results  

SciTech Connect (OSTI)

The Institute of Gas Technology has been developing the PEATGAS process for the conversion of peat to synthetic fuels. A program has recently been completed for the pilot-plant-scale testing of the process. In this scheme, peat is gasified in a two-stage reactor system, which operates at temperatures up to 1750/sup 0/F and pressures up to 500 psig. The process can be controlled to maximize the production of either substitute natural gas (SNG) or liquid hydrocarbons. The technical feasibility of the process was demonstrated in a series of five gasification tests. Highlights of this operating program are presented in this paper.

Biljetina, R.; Punwani, D.

1982-08-01T23:59:59.000Z

492

PEATGAS pilot plant operating results  

SciTech Connect (OSTI)

The Institute of Gas Technology has been developing the PEATGAS process for the conversion of peat to synthetic fuels. A program has recently been completed for the pilot-plant-scale testing of the process. In this scheme, peat is gasified in a two-stage reactor system, which operates at temperatures up to 1750/sup 0/F and pressures up to 500 psig. The process can be controlled to maximize the production of either substitute natural gas (SNG) or liquid hydrocarbons. The technical feasibility of the process was demonstrated in a series of five gasification tests. Highlights of this operating program are presented in this paper.

Biljetina, R.; Punwani, D.

1982-01-01T23:59:59.000Z

493

Geismar TDI Plant Steam Optimization  

E-Print Network [OSTI]

BASF North America 7 ESL-IE-13-05-19 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 BASF?s strategic principles A conscientious commitment to our investors, customers, employees...Geismar TDI Plant Steam Optimization May 23rd, 2013 IET Conference Meredith Bailey, PDP Engineer BASF Corporation (734) 324-5047 meredith.bailey@basf.com ESL-IE-13-05-19 Proceedings of the Thrity-Fifth Industrial Energy Technology...

Baily, M.

2013-01-01T23:59:59.000Z

494

The Propagation of Ornamental Plants.  

E-Print Network [OSTI]

of the 8-inch pot and pack the rooting medium in between the two pots. Note: If vermiculite is used, fill this space, but do not pack it. Water the medium in well with water containing a few drops of a wetting agent. Then stick cuttings in concentric... ready for planting in permanent location. Materials required for self-watering propagator. Make the cutting. Preparation of self-watering propagator. Insert cutting into rooting medium. :?-de+d self-watering -.:sqgotor filled with cuttings...

DeWerth, A. F.

1970-01-01T23:59:59.000Z

495

Pantex Plant | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652 Srivastava,Pacific1of PageHYDROGENPantex Plant

496

Getting Inside Plants | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky LearningGet Assistance Get AssistanceGetting Inside Plants

497

Sabotage at Nuclear Power Plants  

SciTech Connect (OSTI)

Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

Purvis, James W.

1999-07-21T23:59:59.000Z

498

Dose reduction at nuclear power plants  

SciTech Connect (OSTI)

The collective dose equivalent at nuclear power plants increased from 1250 rem in 1969 to nearly 54,000 rem in 1980. This rise is attributable primarily to an increase in nuclear generated power from 1289 MW-y to 29,155 MW-y; and secondly, to increased average plant age. However, considerable variation in exposure occurs from plant to plant depending on plant type, refueling, maintenance, etc. In order to understand the factors influencing these differences, an investigation was initiated to study dose-reduction techniques and effectiveness of as low as reasonably achievable (ALARA) planning at light water plants. Objectives are to: identify high-dose maintenance tasks and related dose-reduction techniques; investigate utilization of high-reliability, low-maintenance equipment; recommend improved radioactive waste handling equipment and procedures; examine incentives for dose reduction; and compile an ALARA handbook.

Baum, J.W.; Dionne, B.J.

1983-01-01T23:59:59.000Z

499

Plant nitrogen regulatory P-PII genes  

DOE Patents [OSTI]

The present invention generally relates to plant nitrogen regulatory PII gene (hereinafter P-PII gene), a gene involved in regulating plant nitrogen metabolism. The invention provides P-PII nucleotide sequences, expression constructs comprising said nucleotide sequences, and host cells and plants having said constructs and, optionally expressing the P-PII gene from said constructs. The invention also provides substantially pure P-PII proteins. The P-PII nucleotide sequences and constructs of the

Coruzzi, Gloria M. (New York, NY); Lam, Hon-Ming (Hong Kong, HK); Hsieh, Ming-Hsiun (Woodside, NY)

2001-01-01T23:59:59.000Z

500

On Line Power Plant Performance Monitoring  

E-Print Network [OSTI]

in achieving the best operation of the plant 3. To evaluate component performance and deterioration for use in a maintenance program 4. To develop cost data and incremental cost characteristics for the economic operation or dispatch of the unit... ? Analyze current plant?eQuipment status and diagnostics for preventive maintenance and equipment damage ? Provide current energy management and system dispatch operation information ? Capability for plant and equipment acceptance and periodic...

Ahner, D. J.; Priestley, R. R.