Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wtp analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB),  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Immobilization Plant (WTP) Analytical Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Full Document and Summary Versions are available for download Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Summary - WTP Analytical Lab, BOF and LAW Waste Vitrification Facilities More Documents & Publications Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility Waste Treatment and Immobilation Plant Pretreatment Facility Compilation of TRA Summaries

2

Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plasma Atomic Emission Spectrometry (LA-ICP-MSLA-ICP-AES) subsystems of the Analytical Hot Cell Laboratory System (AHL), which provide the analytical equipment systems for the...

3

Summary - WTP Analytical Lab, BOF and LAW Waste Vitrification Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wa Wa Schem DOE is Immob site's t facilitie Balanc Activity of this techno facilitie are su WTP d Readin The as along w Level ( * Tw 1. 2. The Ele Site: H roject: W Report Date: M ited States aste Trea Labo Why DOE matic of Laser Ab s constructing bilization Plant tank wastes. T es including an ces of Facilities y Waste (LAW assessment w ology elements es (LAB, BOF, fficiently matur design, which n ness Level of 6 What th ssessment team with each elem (TRL) for the L wo LAB system . Autosamplin Laser ablati AES/LA-ICP To view the full T http://www.em.doe. objective of a Tech ements (CTEs), usin Hanford/ORP Waste Treatme March 2007 Departmen atment a oratory, B E-EM Did This blation Analytical a Waste Treat (WTP) at Hanf The WTP is com n Analytical Lab s (BOF) operat ) Vitrification F was to identify t s (CTEs) in the

4

Mound Laboratory: Analytical Capability  

SciTech Connect

The Monsanto Research Corporation, Mound Laboratory Analytical Capability report is intended to fulfill a customer need for basic information concerning Mound Laboratory's analytical instrumentation and techniques.

Hendrickson, E. L.

1955-03-01T23:59:59.000Z

5

Analytical laboratory quality audits  

SciTech Connect

Analytical Laboratory Quality Audits are designed to improve laboratory performance. The success of the audit, as for many activities, is based on adequate preparation, precise performance, well documented and insightful reporting, and productive follow-up. Adequate preparation starts with definition of the purpose, scope, and authority for the audit and the primary standards against which the laboratory quality program will be tested. The scope and technical processes involved lead to determining the needed audit team resources. Contact is made with the auditee and a formal audit plan is developed, approved and sent to the auditee laboratory management. Review of the auditee's quality manual, key procedures and historical information during preparation leads to better checklist development and more efficient and effective use of the limited time for data gathering during the audit itself. The audit begins with the opening meeting that sets the stage for the interactions between the audit team and the laboratory staff. Arrangements are worked out for the necessary interviews and examination of processes and records. The information developed during the audit is recorded on the checklists. Laboratory management is kept informed of issues during the audit so there are no surprises at the closing meeting. The audit report documents whether the management control systems are effective. In addition to findings of nonconformance, positive reinforcement of exemplary practices provides balance and fairness. Audit closure begins with receipt and evaluation of proposed corrective actions from the nonconformances identified in the audit report. After corrective actions are accepted, their implementation is verified. Upon closure of the corrective actions, the audit is officially closed.

Kelley, William D.

2001-06-11T23:59:59.000Z

6

SRNL PHASE 1 ASSESSMENT OF THE WAC/DQO AND UNIT OPERATIONS FOR THE WTP WASTE QUALIFICATION PROGRAM  

SciTech Connect

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is currently transitioning its emphasis from a design and construction phase toward start-up and commissioning. With this transition, the WTP Project has initiated more detailed assessments of the requirements related to actual processing of the Hanford Site tank waste. One particular area of interest is the waste qualification program to be implemented to support the WTP. Given the successful implementation of similar waste qualification efforts at the Savannah River Site (SRS), based on critical technical support and guidance from the Savannah River National Laboratory (SRNL), WTP requested the utilization of subject matter experts from SRNL to support a technology exchange to perform a review of the WTP waste qualification program, discuss the general qualification approach at SRS, and to identify critical lessons learned through the support of DWPF's sludge batch qualification efforts. As part of Phase 1, SRNL subject matter experts in critical technical and/or process areas reviewed specific WTP waste qualification information. The Phase 1 review was a collaborative, interactive, and iterative process between the two organizations. WTP provided specific analytical procedures, descriptions of equipment, and general documentation as baseline review material. SRNL subject matter experts reviewed the information and, as appropriate, requested follow-up information or clarification to specific areas of interest. This process resulted in multiple teleconferences with key technical contacts from both organizations resolving technical issues that lead to the results presented in this report. This report provides the results of SRNL's Phase 1 review of the WAC-DQO waste acceptance criteria and processability parameters, and the specific unit operations which are required to support WTP waste qualification efforts. The review resulted in SRNL providing concurrence, alternative methods, or gap identification for the proposed WTP analytical methods or approaches. For the unit operations, the SRNL subject matter experts reviewed WTP concepts compared to what is used at SRS and provided thoughts on the outlined tasks with respect to waste qualification. Also documented in this report are recommendations and an outline on what would be required for the next phase to further mature the WTP waste qualification program.

Peeler, D.; Adamson, D.; Bannochie, C.; Cozzi, A.; Eibling, R.; Hay, M.; Hansen, E.; Herman, D.; Martino, C.; Nash, C.; Pennebaker, F.; Poirier, M.; Reboul, S.; Stone, M.; Taylor-Pashow, K.; White, T.; Wilmarth, B.

2012-05-16T23:59:59.000Z

7

Summary - WTP Pretreatment Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Block Block D DOE is Immob site's t facilitie purpos techno Facility to be i The as CTEs, Readin * C * C * W * Tr * U * Pu * W * H * Pl The as require The Ele Site: H roject: W Report Date: M ited States Wast Why DOE Diagram of Cesiu s constructing bilization Plant tank wastes. T es including a P se of this asses ology elements y and determin ncorporated in What th ssessment team along with eac ness Level (TR s Nitric Acid Re s Ion Exchang Waste Feed Eva reated LAW Ev ltrafiltration Pro ulse Jet Mixer Waste Feed Rec LW Lag Storag lant Wash and ssessment team ed maturity prio To view the full T http://www.em.doe. objective of a Tech ements (CTEs), usin Hanford/ORP Waste Treatme March 2007 Departmen te Treatm E-EM Did This um Nitric Acid R a Waste Treat (WTP) at Hanf The WTP is com Pretreatment F ssment was to s (CTEs) in the

8

Report on Inspection of Analytical Laboratories Oversight at...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Analytical Laboratories Oversight at the Strategic Petroleum Reserve, INS-9502 Report on Inspection of Analytical Laboratories Oversight at the Strategic Petroleum Reserve,...

9

EA-0970: Environmental Safety and Health Analytical Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

70: Environmental Safety and Health Analytical Laboratory Project No. 94-AA-01 Pantex Plant, Amarillo, Texas EA-0970: Environmental Safety and Health Analytical Laboratory Project...

10

SRNL PHASE 1 ASSESSMENT OF THE WTP WASTE QUALIFICATION PROGRAM  

SciTech Connect

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) Project is currently transitioning its emphasis from an engineering design and construction phase toward facility completion, start-up and commissioning. With this transition, the WTP Project has initiated more detailed assessments of the requirements that must be met during the actual processing of the Hanford Site tank waste. One particular area of interest is the waste qualification program. In general, the waste qualification program involves testing and analysis to demonstrate compliance with waste acceptance criteria, determine waste processability, and demonstrate laboratory-scale unit operations to support WTP operations. The testing and analysis are driven by data quality objectives (DQO) requirements necessary for meeting waste acceptance criteria for transfer of high-level wastes from the tank farms to the WTP, and for ensuring waste processability including proper glass formulations during processing within the WTP complex. Given the successful implementation of similar waste qualification efforts at the Savannah River Site (SRS) which were based on critical technical support and guidance from the Savannah River National Laboratory (SRNL), WTP requested subject matter experts (SMEs) from SRNL to support a technology exchange with respect to waste qualification programs in which a critical review of the WTP program could be initiated and lessons learned could be shared. The technology exchange was held on July 18-20, 2011 in Richland, Washington, and was the initial step in a multi-phased approach to support development and implementation of a successful waste qualification program at the WTP. The 3-day workshop was hosted by WTP with representatives from the Tank Operations Contractor (TOC) and SRNL in attendance as well as representatives from the US DOE Office of River Protection (ORP) and the Defense Nuclear Facility Safety Board (DNFSB) Site Representative office. The purpose of the workshop was to share lessons learned and provide a technology exchange to support development of a technically defensible waste qualification program. The objective of this report is to provide a review, from SRNL's perspective, of the WTP waste qualification program as presented during the workshop. In addition to SRNL's perspective on the general approach to the waste qualification program, more detailed insight into the specific unit operations presented by WTP during the workshop is provided. This report also provides a general overview of the SRS qualification program which serves as a basis for a comparison between the two programs. Recommendations regarding specific steps are made based on the review and SRNL's lessons learned from qualification of SRS low-activity waste (LAW) and high-level waste (HLW) to support maturation of the waste qualification program leading to WTP implementation.

Peeler, D.; Hansen, E.; Herman, C.; Marra, S.; Wilmarth, B.

2012-03-06T23:59:59.000Z

11

HIGH ALUMINUM HLW GLASSES FOR HANFORDS WTP  

Science Conference Proceedings (OSTI)

The world's largest radioactive waste vitrification facility is now under construction at the United State Department of Energy's (DOE's) Hanford site. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is designed to treat nearly 53 million gallons of mixed hazardous and radioactive waste now residing in 177 underground storage tanks. This multi-decade processing campaign will be one of the most complex ever undertaken because of the wide chemical and physical variability of the waste compositions generated during the cold war era that are stored at Hanford. The DOE Office of River Protection (ORP) has initiated a program to improve the long-term operating efficiency of the WTP vitrification plants with the objective of reducing the overall cost of tank waste treatment and disposal and shortening the duration of plant operations. Due to the size, complexity and duration of the WTP mission, the lifecycle operating and waste disposal costs are substantial. As a result, gains in High Level Waste (HLW) and Low Activity Waste (LAW) waste loadings, as well as increases in glass production rate, which can reduce mission duration and glass volumes for disposal, can yield substantial overall cost savings. EnergySolutions and its long-term research partner, the Vitreous State Laboratory (VSL) of the Catholic University of America, have been involved in a multi-year ORP program directed at optimizing various aspects of the HLW and LAW vitrification flow sheets. A number of Hanford HLW streams contain high concentrations of aluminum, which is challenging with respect to both waste loading and processing rate. Therefore, a key focus area of the ORP vitrification process optimization program at EnergySolutions and VSL has been development of HLW glass compositions that can accommodate high Al{sub 2}O{sub 3} concentrations while maintaining high processing rates in the Joule Heated Ceramic Melters (JHCMs) used for waste vitrification at the WTP. This paper, reviews the achievements of this program with emphasis on the recent enhancements in Al{sub 2}O{sub 3} loadings in HLW glass and its processing characteristics. Glass formulation development included crucible-scale preparation and characterization of glass samples to assess compliance with all melt processing and product quality requirements, followed by small-scale screening tests to estimate processing rates. These results were used to down-select formulations for subsequent engineering-scale melter testing. Finally, further testing was performed on the DM1200 vitrification system installed at VSL, which is a one-third scale (1.20 m{sup 2}) pilot melter for the WTP HLW melters and which is fitted with a fully prototypical off-gas treatment system. These tests employed glass formulations with high waste loadings and Al{sub 2}O{sub 3} contents of {approx}25 wt%, which represents a near-doubling of the present WTP baseline maximum Al{sub 2}O{sub 3} loading. In addition, these formulations were processed successfully at glass production rates that exceeded the present requirements for WTP HLW vitrification by up to 88%. The higher aluminum loading in the HLW glass has an added benefit in that the aluminum leaching requirements in pretreatment are reduced, thus allowing less sodium addition in pretreatment, which in turn reduces the amount of LAW glass to be produced at the WTP. The impact of the results from this ORP program in reducing the overall cost and schedule for the Hanford waste treatment mission will be discussed.

KRUGER AA; JOSEPH I; BOWMAN BW; GAN H; KOT W; MATLACK KS; PEGG IL

2009-08-19T23:59:59.000Z

12

Road Transportable Analytical Laboratory system. Phase 1  

SciTech Connect

This developmental effort clearly shows that a Road Transportable Analytical Laboratory System is a worthwhile and achievable goal. The RTAL is designed to fully analyze (radioanalytes, and organic and inorganic chemical analytes) 20 samples per day at the highest levels of quality assurance and quality control. It dramatically reduces the turnaround time for environmental sample analysis from 45 days (at a central commercial laboratory) to 1 day. At the same time each RTAL system will save the DOE over $12 million per year in sample analysis costs compared to the costs at a central commercial laboratory. If RTAL systems were used at the eight largest DOE facilities (at Hanford, Savannah River, Fernald, Oak Ridge, Idaho, Rocky Flats, Los Alamos, and the Nevada Test Site), the annual savings would be $96,589,000. The DOE`s internal study of sample analysis needs projects 130,000 environmental samples requiring analysis in FY 1994, clearly supporting the need for the RTAL system. The cost and time savings achievable with the RTAL system will accelerate and improve the efficiency of cleanup and remediation operations throughout the DOE complex.

Finger, S.M.; Keith, V.F.; Spertzel, R.O.; De Avila, J.C.; O`Donnell, M.; Vann, R.L.

1993-09-01T23:59:59.000Z

13

EA-0970: Environmental Safety and Health Analytical Laboratory Project No.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

70: Environmental Safety and Health Analytical Laboratory 70: Environmental Safety and Health Analytical Laboratory Project No. 94-AA-01 Pantex Plant, Amarillo, Texas EA-0970: Environmental Safety and Health Analytical Laboratory Project No. 94-AA-01 Pantex Plant, Amarillo, Texas SUMMARY This EA evaluates the environmental impacts of the proposal to construct and operate an Environmental Safety and Health Analytical Laboratory and subsequent demolition of the existing Analytical Chemistry Laboratory building at the U.S. Department of Energy's Pantex Plant near Amarillo, Texas. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 6, 1995 EA-0970: Finding of No Significant Impact Environmental Safety and Health Analytical Laboratory Project No. 94-AA-01 Pantex Plant Amarillo, TX

14

Analytical Chemistry Laboratory: Progress report for FY 1988  

Science Conference Proceedings (OSTI)

The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for fiscal year 1988 (October 1987 through September 1988). The Analytical Chemistry Laboratory is a full-cost recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Erickson, M.D.

1988-12-01T23:59:59.000Z

15

Road Transportable Analytical Laboratory (RTAL) system: Volume I. Final report  

Science Conference Proceedings (OSTI)

This report describes a portable laboratory system for the analysis of soils, ground water, and surface waters for the detection and quantification of hazardous materials, organics, and radioactive contaminants. The goal of the Road Transportable Analytical Laboratory (RTAL) is a sample throughput of 20 samples per day, providing a full range of analysis on each sample within 16 hours of preparation with high accuracy.

Finger, S.M.; De Avila, J.C.; Keith, V.F.

1996-08-01T23:59:59.000Z

16

Analytical Chemistry Laboratory. Progress report for FY 1996  

DOE Green Energy (OSTI)

The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1996. This annual report is the thirteenth for the ACL. It describes effort on continuing and new projects and contributions of the ACL staff to various programs at ANL. The ACL operates in the ANL system as a full-cost-recovery service center, but has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support to solve research problems of our clients -- Argonne National Laboratory, the Department of Energy, and others -- and will conduct world-class research and development in analytical chemistry and its applications. Because of the diversity of research and development work at ANL, the ACL handles a wide range of analytical chemistry problems. Some routine or standard analyses are done, but the ACL usually works with commercial laboratories if our clients require high-volume, production-type analyses. It is common for ANL programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. Thus, much of the support work done by the ACL is very similar to our applied analytical chemistry research.

Green, D.W.; Boparai, A.S.; Bowers, D.L.

1996-12-01T23:59:59.000Z

17

Analytical Chemistry Laboratory, progress report for FY 1993  

Science Conference Proceedings (OSTI)

The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1993 (October 1992 through September 1993). This annual report is the tenth for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has research programs in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require development or modification of methods and adaption of techniques to obtain useful analytical data. The ACL is administratively within the Chemical Technology Division (CMT), its principal ANL client, but provides technical support for many of the technical divisions and programs at ANL. The ACL has four technical groups--Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis--which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL.

Not Available

1993-12-01T23:59:59.000Z

18

Analytical Chemistry Laboratory Progress Report for FY 1994  

Science Conference Proceedings (OSTI)

The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1994 (October 1993 through September 1994). This annual report is the eleventh for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has a research program in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis -- which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL. The Chemical Analysis Group uses wet- chemical and instrumental methods for elemental, compositional, and isotopic determinations in solid, liquid, and gaseous samples and provides specialized analytical services. Major instruments in this group include an ion chromatograph (IC), an inductively coupled plasma/atomic emission spectrometer (ICP/AES), spectrophotometers, mass spectrometers (including gas-analysis and thermal-ionization mass spectrometers), emission spectrographs, autotitrators, sulfur and carbon determinators, and a kinetic phosphorescence uranium analyzer.

Green, D.W.; Boparai, A.S.; Bowers, D.L. [and others

1994-12-01T23:59:59.000Z

19

Analytical Chemistry Laboratory progress report for FY 1984  

DOE Green Energy (OSTI)

Technical and administrative activities of the Analytical Chemistry Laboratory (ACL) are reported for fiscal year 1984. The ACL is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL is administratively within the Chemical Technology Division, the principal user, but provides technical support for all of the technical divisions and programs at ANL. The ACL has three technical groups - Chemical Analysis, Instrumental Analysis, and Organic Analysis. Under technical activities 26 projects are briefly described. Under professional activities, a list is presented for publications and reports, oral presentations, awards and meetings attended. 6 figs., 2 tabs.

Green, D.W.; Heinrich, R.R.; Jensen, K.J.; Stetter, J.R.

1985-03-01T23:59:59.000Z

20

Automating the analytical laboratory via the Chemical Analysis Automation paradigm  

Science Conference Proceedings (OSTI)

To address the need for standardization within the analytical chemistry laboratories of the nation, the Chemical Analysis Automation (CAA) program within the US Department of Energy, Office of Science and Technology`s Robotic Technology Development Program is developing laboratory sample analysis systems that will automate the environmental chemical laboratories. The current laboratory automation paradigm consists of islands-of-automation that do not integrate into a system architecture. Thus, today the chemist must perform most aspects of environmental analysis manually using instrumentation that generally cannot communicate with other devices in the laboratory. CAA is working towards a standardized and modular approach to laboratory automation based upon the Standard Analysis Method (SAM) architecture. Each SAM system automates a complete chemical method. The building block of a SAM is known as the Standard Laboratory Module (SLM). The SLM, either hardware or software, automates a subprotocol of an analysis method and can operate as a standalone or as a unit within a SAM. The CAA concept allows the chemist to easily assemble an automated analysis system, from sample extraction through data interpretation, using standardized SLMs without the worry of hardware or software incompatibility or the necessity of generating complicated control programs. A Task Sequence Controller (TSC) software program schedules and monitors the individual tasks to be performed by each SLM configured within a SAM. The chemist interfaces with the operation of the TSC through the Human Computer Interface (HCI), a logical, icon-driven graphical user interface. The CAA paradigm has successfully been applied in automating EPA SW-846 Methods 3541/3620/8081 for the analysis of PCBs in a soil matrix utilizing commercially available equipment in tandem with SLMs constructed by CAA.

Hollen, R.; Rzeszutko, C.

1997-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "wtp analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Foaming/antifoaming in WTP Tanks Equipped with Pulse Jet Mixer and Air Spargers  

DOE Green Energy (OSTI)

The River Protection Project-Waste Treatment Plant (RPP-WTP) requested Savannah River National Laboratory (SRNL) to conduct small-scale foaming and antifoam testing using actual Hanford waste and simulants subjected to air sparging. The foaminess of Hanford tank waste solutions was previously demonstrated in SRNL during WTP evaporator foaming and ultrafiltration studies and commercial antifoam DOW Q2-3183A was recommended to mitigate the foam in the evaporators. Currently, WTP is planning to use air spargers in the HLW Lag Storage Vessels, HLW Concentrate Receipt Vessel, and the Ultrafiltration Vessels to assist the performance of the Jet Pulse Mixers (JPM). Sparging of air into WTP tanks will induce a foam layer within the process vessels. The air dispersion in the waste slurries and generated foams could present problems during plant operation. Foam in the tanks could also adversely impact hydrogen removal and mitigation. Antifoam (DOW Q2-3183A) will be used to control foaming in Hanford sparged waste processing tanks. These tanks will be mixed by a combination of pulse-jet mixers and air spargers. The percent allowable foaminess or freeboard in WTP tanks are shown in tables.

HASSAN, NEGUIB

2004-06-29T23:59:59.000Z

22

Summary - WTP HLW Waste Vitrification Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

W W HLW W DOE is Immob site's t facilitie Facility to iden the HL to be i norma The as along w Level ( * H * H * H Sy * Pu D The Ele Site: H roject: W Report Date: M ited States Waste T Why DOE Waste Vitrificatio s constructing bilization Plant tank wastes. T es including a H y (HLW). The ntify the critical LW and determ ncorporated in ally requires a T What th ssessment team with each elem (TRL) for the H LW Melter Fee LW Melter Pro LW Melter Offg ystem/Process ulse Jet Mixer isposal System To view the full T http://www.em.doe. objective of a Tech ements (CTEs), usin Hanford/ORP Waste Treatme March 2007 Departmen Treatmen W E-EM Did This n Facility a Waste Treat (WTP) at Hanf The WTP is com High-Level Wa purpose of this technology ele mine if these are to the final WT Technology Re he TRA Team m identified the

23

TRUEX processing of plutonium analytical solutions at Argonne National Laboratory  

SciTech Connect

The TRUEX (TRansUranic EXtraction) solvent extraction process was developed at Argonne National Laboratory (ANL) for the Department of Energy. A TRUEX demonstration completed at ANL involved the processing of analytical and experimental waste generated there and at the New Brunswick Laboratory. A 20-stage centrifugal contactor was used to recover plutonium, americium, and uranium from the waste. Approximately 84 g of plutonium, 18 g of uranium, and 0.2 g of americium were recovered from about 118 liters of solution during four process runs. Alpha decontamination factors as high as 65,000 were attained, which was especially important because it allowed the disposal of the process raffinate as a low-level waste. The recovered plutonium and uranium were converted to oxide; the recovered americium solution was concentrated by evaporation to approximately 100 ml. The flowsheet and operational procedures were modified to overcome process difficulties. These difficulties included the presence of complexants in the feed, solvent degradation, plutonium precipitation, and inadequate decontamination factors during startup. This paper will discuss details of the experimental effort.

Chamberlain, D.B.; Conner, C.; Hutter, J.C.; Leonard, R.A.; Wygmans, D.G.; Vandegrift, G.F. [Argonne National Lab., IL (United States). Chemical Technology Div.

1995-12-31T23:59:59.000Z

24

Evaluation of Foaming and Antifoam Effectiveness During the WTP Oxidative Leaching Process  

Science Conference Proceedings (OSTI)

The River Protection Project-Waste Treatment Plant (RPP-WTP) requested Savannah River National Laboratory (SRNL) to conduct small-scale foaming and antifoam testing using a Hanford waste simulant subjected to air sparging during oxidative leaching. The foaminess of Hanford tank waste solutions was previously demonstrated by SRNL during WTP evaporator foaming studies and in small scale air sparger studies. The commercial antifoam, Dow Corning Q2-3183A was recommended to mitigate the foam in the evaporators and in vessel equipped with pulse jet mixers and air spargers. Currently, WTP is planning to use air spargers in the HLW Lag Storage Vessels (HLP-VSL-00027A/B), the Ultrafiltration Vessels (UFP-VSL-00002A&B), and the HLW Feed Blend Vessel (HLPVSL-00028) to assist the performance of the Pulse Jet Mixers (PJM). The previous air sparger antifoam studies conducted by SRNL researchers did not evaluate the hydrogen generation rate expected from antifoam additions or the effectiveness of the antifoam during caustic leaching or oxidative leaching. The fate of the various antifoam components and breakdown products in the WTP process under prototypic process conditions (temperature & radiation) was also not investigated. The effectiveness of the antifoam during caustic leaching, expected hydrogen generation rate associated with antifoam addition, and the fate of various antifoam components are being conducted under separate SRNL research tasks.

Burket, P. R.; Jones, T. M.; White, T. L.; Crawford, C. L.; Calloway, T. B

2005-10-11T23:59:59.000Z

25

Summary - WTP Analytical Lab, BOF and LAW Waste Vitrification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

an acilities No BOF syst Five LAW sy 1. LAW Me 2. LAW Me 3. LAW Of (TRL6) 4. LAW Co and 5. LAW De e team conclud ature to continu What the e assessment Testing the L Emission Sp...

26

Final Report: RPP-WTP Semi-Integrated Pilot Plant  

Science Conference Proceedings (OSTI)

In August 2004 the last of the SIPP task testing ended--a task that formally began with the issuance of the RPP-WTP Test Specification in June 2003. The planning for the task was a major effort in itself and culminated with the input of all stakeholders, DOE, Bechtel National, Inc., Washington Group International, in October 2003 at Hanford, WA (Appendix A). This report documents the activities carried out as a result of that planning. Campaign IV, the fourth and final step towards the Semi-Integrated Pilot Plant (SIPP) task, conducted by the Savannah River National Laboratory (SRNL) at the Savannah River Site, was to take the several recycle streams produced in Campaign III, the third step of the task, and combine them with other simulated recycle and chosen waste streams. (Campaign III was fed recycles from Campaign II, as Campaign II was fed by Campaign I.) The combined stream was processed in a fashion that mimicked the pretreatment operations of the DOE River Protection Project--Waste Treatment and Immobilization Plant (RPP-WTP) with the exception of the Ion Exchange Process. The SIPP task is considered semi-integrated because it only deals with the pretreatment operations of the RPP-WTP. That is, the pilot plant starts by receiving waste from the tank farm and ends when waste is processed to the point of being sent for vitrification. The resulting pretreated LAW and HLW simulants produced by the SIPP were shipped to VSL (Vitreous State Laboratory) and successfully vitrified in pilot WTP melters. Within the SIPP task these steps are referred to as Campaigns and there were four Campaigns in all. Campaign I, which is completely different than other campaigns, subjected a simulant of Hanford Tank 241-AY-102/C-106 (AY102) waste to cross-flow ultrafiltration only and in that process several important recycle streams were produced as a result of washing the simulant and cleaning the cross-flow filter. These streams were fed to subsequent campaigns and that work was the subject of the issued Campaign I interim report (Duignan et al., 2004a or Appendix I-1). The streams created in Campaign I were used for Campaign II, and during Campaign II more of the same recycle streams were produced, with the addition of recycle streams created during the pilot-scale ion exchange unit operation (Duignan et al., 2004b or Appendix I-2). Campaign III used the recycles from Campaign II and was the first campaign to use all the recycle streams (Duignan et al., 2004c or Appendix I-3). The operation of each of the subsequent campaigns, i.e., II, III, and IV, while different from Campaign I, are very similar to each other, and can be best understood as the process of operating a series of Pretreatment Unit Operations in a somewhat prototypic manner. That is, while Campaign I studied the operation of a single, albeit important, Pretreatment Unit Operation, i.e., Ultrafiltration, subsequent campaigns were to study the four major unit operations that make-up the RPP-WTP Pretreatment Facility. They are: Waste Feed Evaporation Process (FEP), Ultrafiltration Process (UFP), Cesium Ion Exchange Process (CIX), and the Treated LAW Evaporation Process (TLP). Each of the campaigns operated basically as a separate subtask, but as with Campaign I, the recycle streams produced in one campaign were fed into the subsequent campaign. Therefore, all four campaigns were chemically connected through these recycle streams, which carry over effects of the preceding campaign. The results of Campaign IV operations are the subject of this fourth and final report. Separate reports were issued after each of the previous campaigns, but they were treated as interim because of being limited to the results obtained from a single campaign (or past campaigns) and further limited to only highlights of that single campaign. This final report not only discusses the Campaign IV results but compares those with the previous campaigns. Also included is a more comprehensive discussion of the overall task activities, as well as abridged versions of the full databases of the accumulated

Duignan, M. R.; Adamson, D. J.; Calloway, T. B.; Fowley, M. D.; Qureshi, Z. H.; Steimke, J. L.; Williams, M. R.; Zamecnik, J. R.

2005-06-01T23:59:59.000Z

27

Final Report: RPP-WTP Semi-Integrated Pilot Plant  

SciTech Connect

In August 2004 the last of the SIPP task testing ended--a task that formally began with the issuance of the RPP-WTP Test Specification in June 2003. The planning for the task was a major effort in itself and culminated with the input of all stakeholders, DOE, Bechtel National, Inc., Washington Group International, in October 2003 at Hanford, WA (Appendix A). This report documents the activities carried out as a result of that planning. Campaign IV, the fourth and final step towards the Semi-Integrated Pilot Plant (SIPP) task, conducted by the Savannah River National Laboratory (SRNL) at the Savannah River Site, was to take the several recycle streams produced in Campaign III, the third step of the task, and combine them with other simulated recycle and chosen waste streams. (Campaign III was fed recycles from Campaign II, as Campaign II was fed by Campaign I.) The combined stream was processed in a fashion that mimicked the pretreatment operations of the DOE River Protection Project--Waste Treatment and Immobilization Plant (RPP-WTP) with the exception of the Ion Exchange Process. The SIPP task is considered semi-integrated because it only deals with the pretreatment operations of the RPP-WTP. That is, the pilot plant starts by receiving waste from the tank farm and ends when waste is processed to the point of being sent for vitrification. The resulting pretreated LAW and HLW simulants produced by the SIPP were shipped to VSL (Vitreous State Laboratory) and successfully vitrified in pilot WTP melters. Within the SIPP task these steps are referred to as Campaigns and there were four Campaigns in all. Campaign I, which is completely different than other campaigns, subjected a simulant of Hanford Tank 241-AY-102/C-106 (AY102) waste to cross-flow ultrafiltration only and in that process several important recycle streams were produced as a result of washing the simulant and cleaning the cross-flow filter. These streams were fed to subsequent campaigns and that work was the subject of the issued Campaign I interim report (Duignan et al., 2004a or Appendix I-1). The streams created in Campaign I were used for Campaign II, and during Campaign II more of the same recycle streams were produced, with the addition of recycle streams created during the pilot-scale ion exchange unit operation (Duignan et al., 2004b or Appendix I-2). Campaign III used the recycles from Campaign II and was the first campaign to use all the recycle streams (Duignan et al., 2004c or Appendix I-3). The operation of each of the subsequent campaigns, i.e., II, III, and IV, while different from Campaign I, are very similar to each other, and can be best understood as the process of operating a series of Pretreatment Unit Operations in a somewhat prototypic manner. That is, while Campaign I studied the operation of a single, albeit important, Pretreatment Unit Operation, i.e., Ultrafiltration, subsequent campaigns were to study the four major unit operations that make-up the RPP-WTP Pretreatment Facility. They are: Waste Feed Evaporation Process (FEP), Ultrafiltration Process (UFP), Cesium Ion Exchange Process (CIX), and the Treated LAW Evaporation Process (TLP). Each of the campaigns operated basically as a separate subtask, but as with Campaign I, the recycle streams produced in one campaign were fed into the subsequent campaign. Therefore, all four campaigns were chemically connected through these recycle streams, which carry over effects of the preceding campaign. The results of Campaign IV operations are the subject of this fourth and final report. Separate reports were issued after each of the previous campaigns, but they were treated as interim because of being limited to the results obtained from a single campaign (or past campaigns) and further limited to only highlights of that single campaign. This final report not only discusses the Campaign IV results but compares those with the previous campaigns. Also included is a more comprehensive discussion of the overall task activities, as well as abridged versions of the full databases of the accumulated

Duignan, M. R.; Adamson, D. J.; Calloway, T. B.; Fowley, M. D.; Qureshi, Z. H.; Steimke, J. L.; Williams, M. R.; Zamecnik, J. R.

2005-06-01T23:59:59.000Z

28

PROPERTIES IMPORTANT TO MIXING FOR WTP LARGE SCALE INTEGRATED TESTING  

Science Conference Proceedings (OSTI)

Large Scale Integrated Testing (LSIT) is being planned by Bechtel National, Inc. to address uncertainties in the full scale mixing performance of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. External review boards have raised questions regarding the overall representativeness of simulants used in previous mixing tests. Accordingly, WTP requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in LSIT. Among the first tasks assigned to SRNL was to develop a list of waste properties that matter to pulse-jet mixer (PJM) mixing of WTP tanks. This report satisfies Commitment 5.2.3.1 of the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2010-2: physical properties important to mixing and scaling. In support of waste simulant development, the following two objectives are the focus of this report: (1) Assess physical and chemical properties important to the testing and development of mixing scaling relationships; (2) Identify the governing properties and associated ranges for LSIT to achieve the Newtonian and non-Newtonian test objectives. This includes the properties to support testing of sampling and heel management systems. The test objectives for LSIT relate to transfer and pump out of solid particles, prototypic integrated operations, sparger operation, PJM controllability, vessel level/density measurement accuracy, sampling, heel management, PJM restart, design and safety margin, Computational Fluid Dynamics (CFD) Verification and Validation (V and V) and comparison, performance testing and scaling, and high temperature operation. The slurry properties that are most important to Performance Testing and Scaling depend on the test objective and rheological classification of the slurry (i.e., Newtonian or non-Newtonian). The most important properties for testing with Newtonian slurries are the Archimedes number distribution and the particle concentration. For some test objectives, the shear strength is important. In the testing to collect data for CFD V and V and CFD comparison, the liquid density and liquid viscosity are important. In the high temperature testing, the liquid density and liquid viscosity are important. The Archimedes number distribution combines effects of particle size distribution, solid-liquid density difference, and kinematic viscosity. The most important properties for testing with non-Newtonian slurries are the slurry yield stress, the slurry consistency, and the shear strength. The solid-liquid density difference and the particle size are also important. It is also important to match multiple properties within the same simulant to achieve behavior representative of the waste. Other properties such as particle shape, concentration, surface charge, and size distribution breadth, as well as slurry cohesiveness and adhesiveness, liquid pH and ionic strength also influence the simulant properties either directly or through other physical properties such as yield stress.

Koopman, D.; Martino, C.; Poirier, M.

2012-04-26T23:59:59.000Z

29

Road Transportable Analytical Laboratory (RTAL) system. Quarterly technical report, December 1992--February 1993  

SciTech Connect

The goal of this contractual effort is the development and demonstration of a Road Transportable Analytical Laboratory (RTAL) system to meet the unique needs of the Department of Energy (DOE) for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soil, groundwater, and surface waters. This laboratory system will be designed to provide the field and laboratory analytical equipment necessary to detect and quantify radionuclides, organics, heavy metals and other inorganics, and explosive materials. The planned laboratory system will consist of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site`s specific needs.

1993-03-22T23:59:59.000Z

30

Laboratory and Analytical Model Studies of the Faroe Bank Channel Deep-Water Outflow  

Science Conference Proceedings (OSTI)

Results are described from a combined laboratory and analytical study of the dense, deep-water flow through the Faroe Bank Channel. Archival field data have been used to specify the velocity and density field conditions in an idealized, distorted ...

P. A. Davies; A. K. Whlin; Y. Guo

2006-07-01T23:59:59.000Z

31

Microsoft PowerPoint - 10-04 Sundar Technology Needs for WTP Simulants - PSSundar.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Needs for WTP Simulants Needs for WTP Simulants P. S. Sundar Process Technology - Plant Operations Div Waste Treatment Plant Project November 17, 2010 Bechtel National, Inc. Print Close Technology Needs for WTP Simulants 2 Agenda * Major simulant requirements of WTP Project and the associated challenges Bechtel National, Inc. Close Print Technology Needs for WTP Simulants 3 Simplified Process Flowsheet IHLW ILAW LAW Feed HLW Feed HLW Recycles LAW Recycles Bechtel National, Inc. Close Print Technology Needs for WTP Simulants 4 Simulant Needs * Commissioning Simulants - As received and pretreated LAW supernatants - As received HLW sludge - Pretreated HLW sludge - Vitrification recycle streams

32

Environmental Safety and Health Analytical Laboratory, Pantex Plant, Amarillo, Texas. Final Environmental Assessment  

SciTech Connect

The US Department of Energy (DOE) has prepared an Environmental Assessment (EA) of the construction and operation of an Environmental Safety and Health (ES&H) Analytical Laboratory and subsequent demolition of the existing Analytical Chemistry Laboratory building at Pantex Plant near Amarillo, Texas. In accordance with the Council on Environmental Quality requirements contained in 40 CFR 1500--1508.9, the Environmental Assessment examined the environmental impacts of the Proposed Action and discussed potential alternatives. Based on the analysis of impacts in the EA, conducting the proposed action, construction of an analytical laboratory and demolition of the existing facility, would not significantly effect the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA) and the Council on Environmental Quality regulations in 40 CFR 1508.18 and 1508.27.

NONE

1995-06-01T23:59:59.000Z

33

Report on DOE analytical laboratory capacity available to meet EM environmental sampling and analysis needs for FY 93-99  

SciTech Connect

The DOE Analytical Laboratory Capacity Study was conducted to give EM-263 current information about existing and future analytical capacities and capabilities of site laboratories within the DOE Complex. Each DOE site may have one or more analytical laboratories in operation. These facilities were established to support site missions such as production, research and development, and personnel and environmental monitoring. With changing site missions and the DOE directives for environmental monitoring and cleanup, these laboratories are either devoting or planning to devote resources to support EM activities. The DOE site laboratories represent a considerable amount of capital investment and analytical capability, capacity, and expertise that can be applied to support the EM mission. They not only provide cost-effective high-volume analytical laboratory services, but are also highly recognized analytical research and development centers. Several sites have already transferred their analytical capability from traditional production support to environmental monitoring and waste management support. A model was developed to determine the analytical capacity of all laboratories in the DOE Complex. The model was applied at nearly all the major laboratories and the results collected from these studies are summarized in this report.

Not Available

1994-11-30T23:59:59.000Z

34

Report on Inspection of Analytical Laboratories Oversight at the Strategic Petroleum Reserve, INS-9502  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REPORT ON INSPECTION OF ANALYTICAL LABORATORIES OVERSIGHT AT THE STRATEGIC PETROLEUM RESERVE The Office of Inspector General wants to make the distribution of its reports as customer friendly and cost effective as possible. Therefore, this report will be avaiable electronically through the Internet five to seven days after publication at the following alternative addresses: Department of Energy Headquarters Gopher gopher.hr.doe.gov Department of Energy Headquarters Anonymous FTP vm1.hqadmin.doe.gov Department of Energy Human Resources and Administration Home Page http://www.hr.doe.gov/refshelf.html

35

SRC-I demonstration plant analytical laboratory methods manual. Final technical report  

Science Conference Proceedings (OSTI)

This manual is a compilation of analytical procedures required for operation of a Solvent-Refined Coal (SRC-I) demonstration or commercial plant. Each method reproduced in full includes a detailed procedure, a list of equipment and reagents, safety precautions, and, where possible, a precision statement. Procedures for the laboratory's environmental and industrial hygiene modules are not included. Required American Society for Testing and Materials (ASTM) methods are cited, and ICRC's suggested modifications to these methods for handling coal-derived products are provided.

Klusaritz, M.L.; Tewari, K.C.; Tiedge, W.F.; Skinner, R.W.; Znaimer, S.

1983-03-01T23:59:59.000Z

36

Fate of Tc99 at WTP and Current Work on Capture  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fate of Tc Fate of Tc 99 at WTP and Current Work on Capture DOE EM High-Level Waste Corporate Board and as seen at the DOE EM Construction Project Review November 2010 Bechtel National, Inc. Albert A. Kruger, DOE-WED Glass Scientist John Olson, BNI Manager, Process Engineering Design 2 Fate of Tc 99 During Waste Processing A.Technical Basis for planned retention of Tc 99 in LAW and HLW glass B.Overall process mass balance C.Role of recycle, secondary waste and other disposition pathways D.Distribution of Tc 99 amongst tanks and tank waste fractions 3 Overview WTP effluents meet all waste and emissions requirements † Of all Tc 99 sent to WTP ‡ , approximately: - 77% goes to Supplemental LAW (no recycle to WTP)  Treatment technology not specified - 23% goes to WTP effluents (HLW/LAW glass, secondary effluents). On

37

Applicaiton of the Computer Program SASSI for Seismic SSI Analysis of WTP Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Computer Program SASSI for Seismic SSI Analysis of WTP Facilities Farhang Ostadan (BNI) & Raman Venkata (DOE-WTP-WED) Presented by Lisa Anderson (BNI) US DOE NPH Workshop October 25, 2011 Application of the Computer Program SASSI for Seismic SSI Analysis for WTP Facilities, Farhang Ostadan & Raman Venkata, October 25, 2011, Page-2 Background *SASSI computer code was developed in the early 1980's to solve Soil-Structure-Interaction (SSI) problems * Original version of SASSI was based on the direct solution method for embedded structures * Requires that each soil node in the excavated soil volume be an interaction node * Subtraction solution method was introduced in 1998

38

TECHNETIUM RETENTION IN WTP LAW GLASS WITH RECYCLE FLOW-SHEET DM10 MELTER TESTING VSL-12R2640-1 REV 0  

SciTech Connect

Melter tests were conducted to determine the retention of technetium and other volatiles in glass while processing simulated Low Activity Waste (LAW) streams through a DM10 melter equipped with a prototypical off-gas system that concentrates and recycles fluid effiuents back to the melter feed. To support these tests, an existing DM10 system installed at Vitreous State Laboratory (VSL) was modified to add the required recycle loop. Based on the Hanford Tank Waste Treatment and Immobilization Plant (WTP) LAW off-gas system design, suitably scaled versions of the Submerged Bed Scrubber (SBS), Wet Electrostatic Precipitator (WESP), and TLP vacuum evaporator were designed, built, and installed into the DM10 system. Process modeling was used to support this design effort and to ensure that issues associated with the short half life of the {sup 99m}Tc radioisotope that was used in this work were properly addressed and that the system would be capable of meeting the test objectives. In particular, this required that the overall time constant for the system was sufficiently short that a reasonable approach to steady state could be achieved before the {sup 99m}Tc activity dropped below the analytical limits of detection. The conceptual design, detailed design, flow sheet development, process model development, Piping and Instrumentation Diagram (P&ID) development, control system design, software design and development, system fabrication, installation, procedure development, operator training, and Test Plan development for the new system were all conducted during this project. The new system was commissioned and subjected to a series of shake-down tests before embarking on the planned test program. Various system performance issues that arose during testing were addressed through a series of modifications in order to improve the performance and reliability of the system. The resulting system provided a robust and reliable platform to address the test objectives.

Abramowitz, Howard [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Brandys, Marek [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Cecil, Richard [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; D'Angelo, Nicholas [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Matlack, Keith S. [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Muller, Isabelle S. [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Pegg, Ian L. [Energy Solutions, Federal EPC, Inc., Columbia, MD (United States); Callow, Richard A. [Energy Solutions, Federal EPC, Inc., Columbia, MD (United States); Joseph, Innocent

2012-12-11T23:59:59.000Z

39

LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM  

SciTech Connect

This report describes the installation, testing, and acceptance of the Waste Treatment and Immobilization Plant (WTP) procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste (HLW) samples in a hot cell environment. The work was completed by the Analytical Process Development (APD) group in accordance with Task Order 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S Laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

SEIDEL CM; JAIN J; OWENS JW

2009-02-23T23:59:59.000Z

40

Fire protection of railroad tank cars carrying hazardous materials - analytical calculations and laboratory screening of thermal insulation candidates  

SciTech Connect

In recent years there have been a number of incidents in which railroad tank cars carrying liquefied petroleum gas (LPG) have been engulfed in fires. The LPG cars have ruptured from the fires, causing extensive property damage and loss of life. This report describes a laboratory screening program to select two thermal insulation candidates for use in future fire tests of fifth-scale and full scale LPG tank cars. Also included are analytical calculations to predict pressures and liquid levels in LPG tank cars being heated by fires.

Levine, D.; Dancer, D.M.

1972-07-21T23:59:59.000Z

Note: This page contains sample records for the topic "wtp analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Audit of construction of an environmental, safety, and health analytical laboratory at the Pantex Plant  

Science Conference Proceedings (OSTI)

This document is a report from the Office of the Inspector General, US DOE. The report evaluates the need for the construction of an Environmental, Safety, and Health Laboratory at the Pantex Plant and if this project is the most cost effective manner in which to meet mission needs. It was found that: (1) mission needs were being met with existing facilities, (2) required evaluations of alternatives were not performed, (3) decisions were made based on out-dated justifications, and (4) the expenditure of $8.4M was unnecessary. As a result, it was recommended that funded be suspended until the need is clearly established.

NONE

1995-10-01T23:59:59.000Z

42

Microsoft PowerPoint - 6- 02 final - Next generation melter deploymet at WTP - Nov10.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

Ron Calmus, WRPS Ron Calmus, WRPS Ron Calmus, WRPS Terry Sams, WRPS Terry Sams, WRPS Deployment Plan Overview for Next Deployment Plan Overview for Next Generation Melter at WTP Generation Melter at WTP November 17, 2010 November 17, 2010 Print Close Tank Operations Contract 2 Presentation Outline  Introduction and Background  Project Goals and Objectives  Key Programmatic Decisions  New Generation Melters (NGM) Development and Deployment Planning (AJHCM & CCIM)  NGM Development and Deployment Activities and Interfaces  Near-Term NGM Development Costs  Summary - Focus Areas Next Generation Melters 2 Print Close Tank Operations Contract 3 Introduction and Background  National Academy of Sciences (NAS) Recommendations - In 2009 the NAS stated in it's report that:

43

Activity Report for Hanford WTP LAW Melter HA Development, July 31 - August 5, 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

HSS Independent Activity Report HSS Independent Activity Report Report Number: HIAR-WTP-2013-07-31 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Operational Awareness of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Dates of Activity : 07/31/13 - 08/05/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff observed a limited portion of the hazards analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) system. The primary purpose of this HSS field activity, conducted from July 31 to August 5, 2013, was to observe and

44

Activity Report for Hanford WTP LAW Melter HA Development, July 31 - August 5, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HSS Independent Activity Report HSS Independent Activity Report Report Number: HIAR-WTP-2013-07-31 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Operational Awareness of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Dates of Activity : 07/31/13 - 08/05/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff observed a limited portion of the hazards analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) system. The primary purpose of this HSS field activity, conducted from July 31 to August 5, 2013, was to observe and

45

A comparison of the costs of treating wastes from a radio analytical laboratory  

SciTech Connect

The Radiological and Environmental Sciences Laboratory (RESL) is a government-owned, government-operated facility at the Idaho National Engineering Laboratory (INEL). RESL`s traditional strengths are in precise radionuclide analysis and dosimetry measurements. RESL generates small quantities of various types of waste. This study identified potential waste management options for a solvent extraction process waste stream and the cost differences resulting from either process changes, improved technology usage, or material substitutions or changes at RESL. Where possible, this report identifies changes that have resulted or may result in waste reduction and cost savings. DOE P2 directs the lab to review processes, evaluate waste practices, and estimate potential reductions in waste volumes and waste management costs. This study focused on selected processes, but the processes are illustrative of potential waste volume reductions and cost minimizations that may be achieved elsewhere at the INEL and throughout the DOE complex. In analyzing a waste disposal process, the authors allocated component costs to functional categories. These categories included the following: (1) operational costs, included waste generation and collection into a storage area; (2) administrative costs, including worker training, routine inspections, and reporting; and (3) disposal costs, including preparing the waste for shipment and disposing of it.

Moore, R. [Dept. of Energy, Idaho Falls, ID (United States). Idaho Field Office; Pole, S.B. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1996-04-01T23:59:59.000Z

46

Mound Laboratory Plutonium-238 Study Off-Site Analytical Data May-December 1974  

SciTech Connect

Preliminary samples collected from off-site sediment in the Miami-Erie Canal Area near Mound Laboratory indicated that plutonium-238 concentrations are substantially above baseline levels. As a result an extensive sampling and analysis program was performed to determine the plutonium-238 concentrations as a function of depth and location in a drainage ditch, the canal, two ponds, a run-off hollow, a canal overflow creek and the Great Miami River. The plutonium-238 concentration data was used to estimate the total inventory of 238Pu deposited in these waterways, to determine the extent of the contamination, and to evaluate the potential health hazards to the general population of the area. The scope of this report is to present the data collected during this study. Detailed interpretation of the data will be presented in subsequent reports.

Robinson, Bob; Rogers, D. R.; Westendorf, W. H.; Black, H. A.

1975-03-01T23:59:59.000Z

47

ANALYTICAL PLANS SUPPORTING THE SLUDGE BATCH 8 GLASS VARIABILITY STUDY BEING CONDUCTED BY ENERGYSOLUTIONS AND CUA'S VITREOUS STATE LABORATORY  

SciTech Connect

EnergySolutions (ES) and its partner, the Vitreous State Laboratory (VSL) of The Catholic University of America (CUA), are to provide engineering and technical services support to Savannah River Remediation, LLC (SRR) for ongoing operation of the Defense Waste Processing Facility (DWPF) flowsheet as well as for modifications to improve overall plant performance. SRR has requested via a statement of work that ES/VSL conduct a glass variability study (VS) for Sludge Batch 8. SRR issued a technical task request (TTR) asking that the Savannah River National Laboratory (SRNL) provide planning and data reduction support for the ES/VSL effort. This document provides two analytical plans for use by ES/VSL: one plan is to guide the measurement of the chemical composition of the study glasses while the second is to guide the measurement of the durability of the study glasses. The measurements generated by ES/VSL are to be provided to SRNL for data reduction and evaluation. SRNL is to review the results of its evaluation with ES/VSL and SRR. The results will subsequently be incorporated into a joint report with ES/VSL as a deliverable to SRR to support the processing of SB8 at DWPF.

Edwards, T.; Peeler, D.

2012-11-26T23:59:59.000Z

48

Analytical Plans Supporting The Sludge Batch 8 Glass Variability Study Being Conducted By Energysolutions And Cua's Vitreous State Laboratory  

Science Conference Proceedings (OSTI)

EnergySolutions (ES) and its partner, the Vitreous State Laboratory (VSL) of The Catholic University of America (CUA), are to provide engineering and technical services support to Savannah River Remediation, LLC (SRR) for ongoing operation of the Defense Waste Processing Facility (DWPF) flowsheet as well as for modifications to improve overall plant performance. SRR has requested via a statement of work that ES/VSL conduct a glass variability study (VS) for Sludge Batch 8. SRR issued a technical task request (TTR) asking that the Savannah River National Laboratory (SRNL) provide planning and data reduction support for the ES/VSL effort. This document provides two analytical plans for use by ES/VSL: one plan is to guide the measurement of the chemical composition of the study glasses while the second is to guide the measurement of the durability of the study glasses. The measurements generated by ES/VSL are to be provided to SRNL for data reduction and evaluation. SRNL is to review the results of its evaluation with ES/VSL and SRR. The results will subsequently be incorporated into a joint report with ES/VSL as a deliverable to SRR to support the processing of SB8 at DWPF.

Edwards, T. B.; Peeler, D. K.

2012-11-26T23:59:59.000Z

49

Report for Treating Hanford LAW and WTP SW Simulants: Pilot Plant Mineralizing Flowsheet  

SciTech Connect

The US Department of Energy is responsible for managing the disposal of radioactive liquid waste in underground storage tanks at the Hanford site in Washington State. The Hanford waste treatment and immobilization plant (WPT) will separate the waste into a small volume of high level waste (HLW), containing most of the radioactive constituents, and a larger volume of low activity waste (LAW), containing most of the non-radioactive chemical and hazardous constituents. The HLW and LAW will be converted into immobilized waste forms for disposal. Currently there is inadequate LAW vitrification capacity planned at the WTP to complete the mission within the required timeframe. Therefore additional LAW capacity is required. One candidate supplemental treatment technology is the fluidized bed steam reformer process (FBSR). This report describes the demonstration testing of the FBSR process using a mineralizing flowsheet for treating simulated Hanford LAW and secondary waste from the WTP (WTP SW). The FBSR testing project produced leach-resistant solid products and environmentally compliant gaseous effluents. The solid products incorporated normally soluble ions into an alkali alumino-silicate (NaS) mineral matrix. Gaseous emissions were found to be within regulatory limits. Cesium and rhenium were captured in the mineralized products with system removal efficiencies of 99.999% and 99.998 respectively. The durability and leach performance of the FBSR granular solid were superior to the low activity reference material (LMR) glass standards. Normalized product consistency test (PCT) release rates for constituents of concern were approximately 2 orders of magnitude less than that of sodium in the Hanford glass [standard].

Arlin Olson

2012-02-28T23:59:59.000Z

50

Analytical Chemistry Laboratory  

Science Conference Proceedings (OSTI)

... CRC Handbook of Basic Tables for Chemical Analysis, now in its third edition, and the CRC Handbook of Fundamental Spectroscopic Correlation ...

2013-08-21T23:59:59.000Z

51

U.S. Department of Energy Office of Inspector General report on inspection of analytical laboratories oversight at the Strategic Petroleum Reserve  

SciTech Connect

The Department of Energy`s (DOE) Assistant Secretary for Fossil Energy has overall programmatic responsibility for the Strategic Petroleum Reserve (SPR). The SPR Project Management Office (SPRPMO), located in New Orleans, Louisiana, and under the direction of the Project Manager, manages day-to-day project activities. The SPR currently has five underground crude oil storage facilities, and one marine terminal, on or near the Gulf Coasts of Texas and Louisiana. The purpose of this inspection was to review oversight of M and O and subcontractor laboratories performing analyses on samples taken for SPR environmental compliance and oil quality purposes. During this inspection, the M and O contractor operated on-site environmental laboratories at four of the SPR storage facilities, and oil quality laboratories at two of the facilities. The number of subcontractor laboratories varies depending on the need for analytical support. The objective of this inspection was to determine if the SPRPMO had implemented management systems to provide adequate oversight of M and O contractor analytical laboratory activities, as well as to ensure effective oversight of subcontractor analytical laboratories.

NONE

1995-07-26T23:59:59.000Z

52

Dynamic (G2) Model Design Document, 24590-WTP-MDD-PR-01-002, Rev. 12  

SciTech Connect

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) Statement of Work (Department of Energy Contract DE-AC27-01RV14136, Section C) requires the contractor to develop and use process models for flowsheet analyses and pre-operational planning assessments. The Dynamic (G2) Flowsheet is a discrete-time process model that enables the project to evaluate impacts to throughput from eventdriven activities such as pumping, sampling, storage, recycle, separation, and chemical reactions. The model is developed by the Process Engineering (PE) department, and is based on the Flowsheet Bases, Assumptions, and Requirements Document (24590-WTP-RPT-PT-02-005), commonly called the BARD. The terminologies of Dynamic (G2) Flowsheet and Dynamic (G2) Model are interchangeable in this document. The foundation of this model is a dynamic material balance governed by prescribed initial conditions, boundary conditions, and operating logic. The dynamic material balance is achieved by tracking the storage and material flows within the plant as time increments. The initial conditions include a feed vector that represents the waste compositions and delivery sequence of the Tank Farm batches, and volumes and concentrations of solutions in process equipment before startup. The boundary conditions are the physical limits of the flowsheet design, such as piping, volumes, flowrates, operation efficiencies, and physical and chemical environments that impact separations, phase equilibriums, and reaction extents. The operating logic represents the rules and strategies of running the plant.

Deng, Yueying; Kruger, Albert A.

2013-12-16T23:59:59.000Z

53

DNFSB Recommendation 2010-2, Pulse Jet Mixing at the Waste Treatment and Immobilization Plant WTP  

NLE Websites -- All DOE Office Websites (Extended Search)

DNFSB Rec. 2010-2, Rev.0, Nov.10, 2011 DNFSB Rec. 2010-2, Rev.0, Nov.10, 2011 i Department of Energy Plan to Address Waste Treatment and Immobilization Plant Vessel Mixing Issues Revision 0 Implementation Plan for Defense Nuclear Safety Board Recommendation 2010-2 November 10, 2011 DNFSB Rec. 2010-2, Rev.0, Nov.10, 2011 ii EXECUTIVE SUMMARY On December 17, 2010, the Defense Nuclear Facilities Safety Board (DNFSB) issued Recommendation 2010-2, Pulse Jet Mixing at the Waste Treatment and Immobilization Plant. The recommendation addressed the need for the U.S. Department of Energy (DOE) to ensure that the Hanford Waste Treatment and Immobilization Plant (WTP), in conjunction with the Hanford tank farm waste feed delivery system, will operate safely and effectively during a

54

Production rates associated with WTP Britney Hebert, Bijeta Prasai and Henry Foust* Nicholls State University, Thibodaux, LA  

NLE Websites -- All DOE Office Websites (Extended Search)

As As known, the U.S. Department of Energy contracted Betchel National, Inc. to build the world's largest waste treatment plant (WTP). See [1] for more details. The performance of this facility in terms of solids and sodium production is still in question and a pinch-point of the WTP is an ultrafiltration process where the intended goal of this study was to determine if treating with smaller batch volumes can improve the production rates of both sodium and solids. This study included considerations of the effects of changing viscosity due to changing concentrations of sodium and an appropriate model for permeate rates. The findings of this study are that smaller batch sizes do increase production of both sodium and solids irregardless of end point concentration of solids or sodium. But there is a trade-off condition between solids and sodium production. Problem Statement The benefit of this research was to increase the mass rates of solids and

55

Analytical Division  

Science Conference Proceedings (OSTI)

Analytical Division Common (non-systematic) Names for Fatty Acids Analytical Division Analytical Chemistry Divisions Analytical Division Common (non-

56

Nuclear Magnetic Resonance Laboratory  

Science Conference Proceedings (OSTI)

Nuclear Magnetic Resonance Laboratory. ... A 600 MHz Nuclear Magnetic Resonance Spectrometer. Analytical Data Compilation Reference Materials. ...

2012-10-01T23:59:59.000Z

57

HIGH ALUMINUM HLW (HIGH LEVEL WASTE ) GLASSES FOR HANFORDS WTP (WASTE TREATMENT PROJECT)  

Science Conference Proceedings (OSTI)

This paper presents the results of glass formulation development and melter testing to identify high waste loading glasses to treat high-Al high level waste (HLW) at Hanford. Previous glass formulations developed for this HLW had high waste loadings but their processing rates were lower that desired. The present work was aimed at improving the glass processing rate while maintaining high waste loadings. Glass formulations were designed, prepared at crucible-scale and characterized to determine their properties relevant to processing and product quality. Glass formulations that met these requirements were screened for melt rates using small-scale tests. The small-scale melt rate screening included vertical gradient furnace (VGF) and direct feed consumption (DFC) melter tests. Based on the results of these tests, modified glass formulations were developed and selected for larger scale melter tests to determine their processing rate. Melter tests were conducted on the DuraMelter 100 (DMIOO) with a melt surface area of 0.11 m{sup 2} and the DuraMelter 1200 (DMI200) HLW Pilot Melter with a melt surface area of 1.2 m{sup 2}. The newly developed glass formulations had waste loadings as high as 50 wt%, with corresponding Al{sub 2}O{sub 3} concentration in the glass of 26.63 wt%. The new glass formulations showed glass production rates as high as 1900 kg/(m{sup 2}.day) under nominal melter operating conditions. The demonstrated glass production rates are much higher than the current requirement of 800 kg/(m{sup 2}.day) and anticipated future enhanced Hanford Tank Waste Treatment and Immobilization Plant (WTP) requirement of 1000 kg/(m{sup 2}.day).

KRUGER AA; BOWAN BW; JOSEPH I; GAN H; KOT WK; MATLACK KS; PEGG IL

2010-01-04T23:59:59.000Z

58

FINAL REPORT DETERMINATION OF THE PROCESSING RATE OF RPP WTP HLW SIMULANTS USING A DURAMELTER J 1000 VITRIFICATION SYSTEM VSL-00R2590-2 REV 0 8/21/00  

Science Conference Proceedings (OSTI)

This report provides data, analysis, and conclusions from a series of tests that were conducted at the Vitreous State Laboratory of The Catholic University of America (VSL) to determine the melter processing rates that are achievable with RPP-WTP HLW simulants. The principal findings were presented earlier in a summary report (VSL-00R2S90-l) but the present report provides additional details. One of the most critical pieces of information in determining the required size of the RPP-WTP HLW melter is the specific glass production rate in terms of the mass of glass that can be produced per unit area of melt surface per unit time. The specific glass production rate together with the waste loading (essentially, the ratio of waste-in to glass-out, which is determined from glass formulation activities) determines the melt area that is needed to achieve a given waste processing rate with due allowance for system availability. As a consequence of the limited amount of relevant information, there exists, for good reasons, a significant disparity between design-base specific glass production rates for the RPP-WTP LAW and HLW conceptual designs (1.0 MT/m{sup 2}/d and 0.4 MT/m{sup 2}/d, respectively); furthermore, small-scale melter tests with HLW simulants that were conducted during Part A indicated typical processing rates with bubbling of around 2.0 MT/m{sup 2}/d. This range translates into more than a factor of five variation in the resultant surface area of the HLW melter, which is clearly not without significant consequence. It is clear that an undersized melter is undesirable in that it will not be able to support the required waste processing rates. It is less obvious that there are potential disadvantages associated with an oversized melter, over and above the increased capital costs. A melt surface that is consistently underutilized will have poor cold cap coverage, which will result in increased volatilization from the melt (which is generally undesirable) and increased plenum temperatures due to increased thermal radiation from the melt surface (which mayor may not be desirable but the flexibility to choose may be lost). Increased volatilization is an issue both in terms of the increased challenge to the off-gas system as well as for the ability to effectively close the recycle loops for volatile species that must be immobilized in the glass product, most notably technetium and cesium. For these reasons, improved information is needed on the specific glass production rates of RPP-WTP HLW streams in DuraMelterJ systems over a range of operating conditions. Unlike the RPP-WTP LAW program, for which a pilot melter system to provide large-scale throughout information is already in operation, there is no comparable HLW activity; the results of the present study are therefore especially important. This information will reduce project risk by reducing the uncertainty associated with the amount of conservatism that mayor may not be associated with the baseline RPP-WTP HLW melter sizing decision. After the submission of the first Test Plan for this work, the RPP-WTP requested revisions to include tests to determine the processing rates that are achievable without bubbling, which was driven by the potential advantages of omitting bubblers from the HLW melter design in terms of reduced maintenance. A further objective of this effort became the determination of whether the basis of design processing rate could be achieved without bubbling. Ideally, processing rate tests would be conducted on a full-scale RPP-WTP melter system with actual HLW materials, but that is clearly unrealistic during Part B1. As a practical compromise the processing rate determinations were made with HL W simulants on a DuraMelter J system at as close to full scale as possible and the DM 1000 system at VSL was selected for that purpose. That system has a melt surface area of 1.2 m{sup 2}, which corresponds to about one-third scale based on the specific glass processing rate of 0.4 MT/m{sup 2}/d assumed in the RPP-WTP HLW conceptual design, but would correspon

KRUGER AA; MATLACK KS; KOT WK; PEREZ-CARDENAS F; PEGG IL

2011-12-29T23:59:59.000Z

59

Audit of Construction of an Environmental, Safety, and Health Analytical Laboratory at the Pantex Plant, WR-B-96-02  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENERGY ENERGY OFFICE OF INSPECTOR GENERAL AUDIT OF CONSTRUCTION OF AN ENVIRONMENTAL, SAFETY, AND HEALTH ANALYTICAL LABORATORY AT THE PANTEX PLANT The Office of Inspector General wants to make the distribution of its reports as customer friendly and cost effective as possible. Therefore, this report will be available electronically through the Internet five to seven days after publication at the following alternative addresses: Department of Energy Headquarters Gopher gopher.hr.doe.gov Department of Energy Headquarters Anonymous FTP vml.hqadmin.doe.gov U.S. Department of Energy Human Resources and Administration Home Page http://www.hr.doe.gov/refshelf.html Your comments would be appreciated and can be provided on the Customer Response Form attached to the report.

60

Microsoft PowerPoint - 2-03 PEGG-1 - Tc Incorporation in WTP...  

NLE Websites -- All DOE Office Websites (Extended Search)

S. Muller Vitreous State Laboratory The Catholic University of America Washington, DC DOE EM Waste Processing Technical Exchange 2010 Print Close Technetium Retention During LAW...

Note: This page contains sample records for the topic "wtp analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Review of the Hanford Site Waste Treatment and Immobilization...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy DOE-WTP ORP WTP Project Office HLW High-Level Waste Facility HVAC Heating, Ventilation, and Air Conditioning LAB Analytical Laboratory LAW Low-Activity...

62

Final deactivation project report on the High Radiation Level Analytical Facility, Building 3019B at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

The purpose of this report is to document the condition of the High Radiation Level Analytical Facility (Building 3019B) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities. This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the Environmental Restoration EM-40 Program. This document provides a history and description of the facility prior to the commencement of deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S&M) Plan, remaining hazardous materials inventory, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided in the Nuclear Material and Facility Stabilization (EM-60) Turnover package are discussed. Building 3019B will require access to perform required S&M activities to maintain the building safety envelope. Building 3019B was stabilized during deactivation so that when transferred to the EM-40 Program, only a minimal S&M effort would be required to maintain the building safety envelope. Other than the minimal S&M activities the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required S&M until decommissioning activities begin.

NONE

1997-09-01T23:59:59.000Z

63

NATIONAL ,LEAD COMPANY OF OHIO HEALTH AND SAFETY DIVISION - ANALYTICAL...  

Office of Legacy Management (LM)

OF OHIO HEALTH AND SAFETY DIVISION - ANALYTICAL DEPT. ANALYTICAL DATA SHEET NO. DISTRIBUTION OF COPIES 1 Analytical Laboratory (RECORD COPP) 2 Industrial Hygiene 8 Radiotion...

64

Welcome to Analytical Labs  

NLE Websites -- All DOE Office Websites (Extended Search)

We've been part of the SRS family for over 50 years. Mission To safely operate nuclear and environmental laboratories in providing the highest quality analytical services to all of...

65

SRL online Analytical Development  

DOE Green Energy (OSTI)

The Savannah River Site is operated by the Westinghouse Savannah River Co. for the Department of Energy to produce special nuclear materials for defense. R&D support for site programs is provided by the Savannah River Laboratory, which I represent. The site is known primarily for its nuclear reactors, but actually three fourths of the efforts at the site are devoted to fuel/target fabrication, fuel/target reprocessing, and waste management. All of these operations rely heavily on chemical processes. The site is therefore a large chemical plant. There are then many potential applications for process analytical chemistry at SRS. The Savannah River Laboratory (SRL) has an Analytical Development Section of roughly 65 personnel that perform analyses for R&D efforts at the lab, act as backup to the site Analytical Laboratories Department and develop analytical methods and instruments. I manage a subgroup of the Analytical Development Section called the Process Control & Analyzer Development Group. The Prime mission of this group is to develop online/at-line analytical systems for site applications.

Jenkins, C.W.

1991-12-31T23:59:59.000Z

66

SRL online Analytical Development  

DOE Green Energy (OSTI)

The Savannah River Site is operated by the Westinghouse Savannah River Co. for the Department of Energy to produce special nuclear materials for defense. R D support for site programs is provided by the Savannah River Laboratory, which I represent. The site is known primarily for its nuclear reactors, but actually three fourths of the efforts at the site are devoted to fuel/target fabrication, fuel/target reprocessing, and waste management. All of these operations rely heavily on chemical processes. The site is therefore a large chemical plant. There are then many potential applications for process analytical chemistry at SRS. The Savannah River Laboratory (SRL) has an Analytical Development Section of roughly 65 personnel that perform analyses for R D efforts at the lab, act as backup to the site Analytical Laboratories Department and develop analytical methods and instruments. I manage a subgroup of the Analytical Development Section called the Process Control Analyzer Development Group. The Prime mission of this group is to develop online/at-line analytical systems for site applications.

Jenkins, C.W.

1991-01-01T23:59:59.000Z

67

About Analytical Labs  

NLE Websites -- All DOE Office Websites (Extended Search)

LOOKING FOR THE RIGHT MIX IN ANALYTICAL SERVICES? LOOKING FOR THE RIGHT MIX IN ANALYTICAL SERVICES? Let's break it down. Analytical Laboratories at the SRS offers a wide-range of analytical capabilities; extensive and highly-specialized facilities; in-depth talent; and an unsurpassed record for providing our customers with the highest quality of service. We've served our nation for more than 50 years. Now, we're ready to provide those same services to you. Call us when you are looking for the right proportion of capabilities, facilities, talent and commitment to excellence. Our Facilities Analytical Laboratories at the SRS offers a wide-range of analytical capabilities; extensive and highly-specialized facilities; in-depth talent; and an unsurpassed record for providing our customers with the highest quality of service. We've served our nation for more than 50 years. Now, we're ready to provide those same services to you. Call us when you are looking for the right proportion of capabilities, facilities, talent and commitment to excellence.

68

Nuclear Analytical Chemistry Portal  

Science Conference Proceedings (OSTI)

NIST Home > Nuclear Analytical Chemistry Portal. Nuclear Analytical Chemistry Portal. ... see all Nuclear Analytical Chemistry news ... ...

2010-08-02T23:59:59.000Z

69

SASSI Analytical Methods Compared with SHAKE Free-Field Results  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Analytical Methods Analytical Methods Compared with SHAKE Results Structural Mechanics - SRS October 4, 2011 1 Objective This study presents a methodology for validating SASSI for use with a particular site profile, foundation size, and embedment depth. Two case studies are presented: 1) a deep soil site at the Savannah River Site (SRS) 2) a shallow stiff soil site at the Hanford Waste Treatment Plant (WTP). Embedded box in SASSI is evaluated with Direct Method and (Modified) Subtraction method. 2 * Ground motion at the surface is deconvolved in SHAKE to the bottom of the soil column and then brought back to the surface in a SASSI embedded box model. * SASSI response spectra at the ground and foundation levels are

70

Analytical Division  

Science Conference Proceedings (OSTI)

The Analytical Division is comprised of members with a variety of interests, including: chromatography (liquid, gas-liquid, high-performance liquid column, thin-layer, and supercritical-fluid), electrophoresis, spectroscopy (UV, IR, NMR, light-scattering)

71

Analytical Microscopy  

DOE Green Energy (OSTI)

In the Analytical Microscopy group, within the National Center for Photovoltaic's Measurements and Characterization Division, we combine two complementary areas of analytical microscopy--electron microscopy and proximal-probe techniques--and use a variety of state-of-the-art imaging and analytical tools. We also design and build custom instrumentation and develop novel techniques that provide unique capabilities for studying materials and devices. In our work, we collaborate with you to solve materials- and device-related R&D problems. This sheet summarizes the uses and features of four major tools: transmission electron microscopy, scanning electron microscopy, the dual-beam focused-ion-beam workstation, and scanning probe microscopy.

Not Available

2006-06-01T23:59:59.000Z

72

INCONEL 690 CORROSION IN WTP (WASTE TREATMENT PLANT) HLW (HIGH LEVEL WASTE) GLASS MELTS RICH IN ALUMINUM & BISMUTH & CHROMIUM OR ALUMINUM/SODIUM  

SciTech Connect

Metal corrosion tests were conducted with four high waste loading non-Fe-limited HLW glass compositions. The results at 1150 C (the WTP nominal melter operating temperature) show corrosion performance for all four glasses that is comparable to that of other typical borosilicate waste glasses, including HLW glass compositions that have been developed for iron-limited WTP streams. Of the four glasses tested, the Bi-limited composition shows the greatest extent of corrosion, which may be related to its higher phosphorus content. Tests at higher suggest that a moderate elevation of the melter operating temperature (up to 1200 C) should not result in any significant increase in Inconel corrosion. However, corrosion rates did increase significantly at yet higher temperatures (1230 C). Very little difference was observed with and without the presence of an electric current density of 6 A/inch{sup 2}, which is the typical upper design limit for Inconel electrodes. The data show a roughly linear relationship between the thickness of the oxide scale on the coupon and the Cr-depletion depth, which is consistent with the chromium depletion providing the material source for scale growth. Analysis of the time dependence of the Cr depletion profiles measured at 1200 C suggests that diffusion of Cr in the Ni-based Inconel alloy controls the depletion depth of Cr inside the alloy. The diffusion coefficient derived from the experimental data agrees within one order of magnitude with the published diffusion coefficient data for Cr in Ni matrices; the difference is likely due to the contribution from faster grain boundary diffusion in the tested Inconel alloy. A simple diffusion model based on these data predicts that Inconel 690 alloy will suffer Cr depletion damage to a depth of about 1 cm over a five year service life at 1200 C in these glasses.

KRUGER AA; FENG Z; GAN H; PEGG IL

2009-11-05T23:59:59.000Z

73

Analytical Dashboards  

Energy.gov (U.S. Department of Energy (DOE))

Analytical Dashboards facilitates easy access to essential high-level corporate-wide safety performance information through key metrics, charts, graphs, and text bullets to provide both managers and operations personnel with a current perspective on safety performance within the Department.

74

Analytical Dashboards  

NLE Websites -- All DOE Office Websites (Extended Search)

Analytical Dashboards Analytical Dashboards Public Final Occurrence Reports: Searchable information on DOE's Final Occurrence Reports since 2009, available to the public and updated daily. Computerized Accident Incident Reporting System (CAIRS) - Injury and Illness Dashboard: The Injury and Illness Dashboard is a tool that allows users to easily explore DOE occupational safety and health injury and illness information. Its features include: Graphical and tabular depictions of injury and illness information Calendar year and fiscal year incidence rates for DOE and DOE contractor total recordable cases (TRC) of injuries and illnesses and cases involving days away from work or on job transfer or restriction (DART) due to injury or illness Incidence rates of injuries and illnesses by DOE program

75

Laboratory Equipment & Supplies | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Equipment & Supplies Equipment & Supplies John Bargar, SSRL Scientist Equipment is available to serve disciplines from biology to material science. All laboratories contain the following standard laboratory equipment: pH meters with standard buffers, analytical balances, microcentrifuges, vortex mixers, ultrasonic cleaning baths, magnetic stirrers, hot plates, and glassware. Most laboratories offer ice machines and cold rooms. Specialty storage areas for samples include a -80 freezer, argon and nitrogen glove boxes, radiation contamination areas, inert atmosphere chambers, and cold rooms. For specific information please see: Equipment Inventory Checkout Equipment & Supplies To view equipment inventory by laboratory, refer to the following pages: Biology Chemistry & Material Science Laboratory 1 Inventory

76

Precision Data -Laboratory Proficiency Program  

Science Conference Proceedings (OSTI)

Precision Data Series is a valuable reference tool that can be used for determining the expected variability in the methods used in your lab. Precision Data -Laboratory Proficiency Program Laboratory Services analysis analytical methods aocs certi

77

PEP Support Laboratory Leaching and Permeate Stability Tests  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, "Undemonstrated Leaching Processes," of the External Flowsheet Review Team (EFRT) issue response plan.( ) The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. A simplified flow diagram of the PEP system is shown in Figure 1.1. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP and vessels UFP-VSL-00001A and B in the WTP PTF). In both scenarios, 19-M sodium hydroxide solution (NaOH, caustic) is added to the waste slurry in the vessels to leach solid aluminum compounds (e.g., gibbsite, boehmite). Caustic addition is followed by a heating step that uses direct injection of steam to accelerate the leach process. Following the caustic leach, the vessel contents are cooled using vessel cooling jackets and/or external heat exchangers. The main difference between the two scenarios is that for leaching in UFP-VSL-T01A and B, the 19-M NaOH is added to un-concentrated waste slurry (3 to 8 wt% solids), while for leaching in UFP-VSL-T02A, the slurry is concentrated to nominally 20 wt% solids using cross-flow ultrafiltration before adding caustic.

Russell, Renee L.; Peterson, Reid A.; Rinehart, Donald E.; Buchmiller, William C.

2009-09-25T23:59:59.000Z

78

Enterprise analytics.  

Science Conference Proceedings (OSTI)

Ranking search results is a thorny issue for enterprise search. Search engines rank results using a variety of sophisticated algorithms, but users still complain that search can't ever seem to find anything useful or relevant! The challenge is to provide results that are ranked according to the users definition of relevancy. Sandia National Laboratories has enhanced its commercial search engine to discover user preferences, re-ranking results accordingly. Immediate positive impact was achieved by modeling historical data consisting of user queries and subsequent result clicks. New data is incorporated into the model daily. An important benefit is that results improve naturally and automatically over time as a function of user actions. This session presents the method employed, how it was integrated with the search engine,metrics illustrating the subsequent improvement to the users search experience, and plans for implementation with Sandia's FAST for SharePoint 2010 search engine.

Spomer, Judith E.

2010-09-01T23:59:59.000Z

79

Welcome to Analytical Labs  

NLE Websites -- All DOE Office Websites (Extended Search)

Services Services Our Capabilities Analytical Laboratories at the SRS performs analyses on a wide range of materials, including soil, water, gases, foodstuffs, decommissioning debris, waste, urine, fecal matter and process control samples. The laboratories maintain certifications and qualifications through a variety of governing bodies, which allows multiple applications of our services. Each year, we process over 200,000 samples and over half a million determinations, with an error-free rate better than 99.99%. Our Services We offer a full complement of nuclear counting and chemical processing methods, including microwave/hot block digestion of solids; alpha pulse height analyzer (PHA), gamma PHA and liquid scintillation counter, diode array spectrophotometer, ICP emission spectrometer, ICP mass spectrometer, thermal ionization mass spectrometer, chemical titrators, and IR analyzer. In addition, we offer unique environmental and industrial hygiene analytical services, including rapid analysis of radiological contaminants in water, soil, and human matrices; Radiological American Industrial Hygiene Association-accredited beryllium, lead, other metals, hexavalent chromium, and asbestos analyses.

80

Nuclear Analytical Methods  

Science Conference Proceedings (OSTI)

... Nuclear Analytical Methods. Research activities in the Nuclear Analytical Methods Group are focused on the science that ...

Note: This page contains sample records for the topic "wtp analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Vehicle Research Laboratory - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Research Laboratory Vehicle Research Laboratory Expertise The overall FEERC team has been developed to encompass the many disciplines necessary for world-class fuels, engines, and emissions-related research, with experimental, analytical, and modeling capabilities. Staff members specialize in areas including combustion and thermodynamics, emissions measurements, analytical chemistry, catalysis, sensors and diagnostics, dynamometer cell operations, engine controls and control theory. FEERC engineers have many years of experience in vehicle research, chassis laboratory development and operation, and have developed specialized systems and methods for vehicle R&D. Selected Vehicle Research Topics In-use investigation of Lean NOx Traps (LNTs). Vehicle fuel economy features such as lean operation GDI engines,

82

Budget allocation and the analytic hierarchy process  

SciTech Connect

This report demonstrates that the priorities calculated by the Analytic Hierarchy Process can be used as measures of benefit for budget allocation. A procedure is described that optimally allocates a budget among competing DOE waste minimization projects. The projects are compared using an analytic hierarchy already developed by Sandia National Laboratories. 2 refs., 3 tabs.

Hulme, B.L. (Hulme Mathematics (USA))

1990-10-01T23:59:59.000Z

83

Technology Needs for WTP Simulants  

Hanford waste feed chemistry. Developed for leaching and filtration process demonstration in the Pretreatment Engineering Platform (PEP).

84

WTP R&D Plans  

EFRT M-12 Testing Program Simulant Development Develop and test gibbsite, boehmite, and filtration component simulants Blend and test component simulants

85

Welcome to Analytical Labs  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Material Dissolution from Destructive Analysis Measurements Nuclear Material Dissolution from Destructive Analysis Measurements Overview The Savannah River Site F/H Laboratories perform nuclear material dissolution of Pu/U oxides and metals plus Np oxide to support site productions/remediation projects. Nuclear material dissolutions are performed in glovebox containment via microwaves, hot blocks and hot plates. Resulting solutions are aliquotted for a variety of elemental and compound analyses. Features Varying sample size (100 mg - 30 g) High temperature digestions up to 200°C computer-controlled temperature and pressure dissolutions Excellent analyte recovery in destructive analysis Commercially-available electronic equipment with trained operators capable of handling high alpha activity levels (facility source term limit of 310 Alpha Curies)

86

Compositional Analysis Laboratory (Poster), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Compositional Analysis Laboratory Compositional Analysis Laboratory * Provide customized analytical method development for a wide variety of feedstocks and process intermediates * Derive comprehensive biomass analysis results backed by 20 years of experience supporting the biomass conversion industry * Write publicly available Laboratory Analytical Procedures, several of which have been adapted by ASTM International and used and referenced worldwide * Provide training classes on biomass analysis and method development to help companies and institutions rapidly improve their analytical results * For analyzing solid samples to measure structural carbohydrates (glucose, xylose, galactose, arabinose, and mannose), lignin, extractable materials, protein, and ash * For analyzing liquid samples to measure oligomeric and monomeric

87

Analytical Division Student Award  

Science Conference Proceedings (OSTI)

Awarded to graduate student(s) in the field of lipid analytical chemistry. Analytical Division Student Award Divisions achievement agricultural analytical application award awards biotechnology detergents distinguished division Divisions edible fa

88

DOE National Analytical Management Program Draws Global Interest |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Analytical Management Program Draws Global Interest National Analytical Management Program Draws Global Interest DOE National Analytical Management Program Draws Global Interest February 27, 2013 - 12:00pm Addthis Hnin Khaing focuses on her work at WIPP Laboratories near Carlsbad, New Mexico Hnin Khaing focuses on her work at WIPP Laboratories near Carlsbad, New Mexico Corey White works at WIPP Laboratories near Carlsbad, New Mexico Corey White works at WIPP Laboratories near Carlsbad, New Mexico Hnin Khaing focuses on her work at WIPP Laboratories near Carlsbad, New Mexico Corey White works at WIPP Laboratories near Carlsbad, New Mexico CARLSBAD, N.M. - The National Analytical Management Program (NAMP), which coordinates analytical services and capabilities throughout DOE, has garnered global interest. "NAMP is addressing a vital need to attain the most effective use of

89

National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratories Los Alamos National Laboratory (the Laboratory) is one of 17 National Laboratories in the United States and is one of the two located in New Mexico. The Laboratory has...

90

2.672 Projects Laboratory, Spring 2004  

E-Print Network (OSTI)

Engineering laboratory subject for mechanical engineering juniors and seniors. Major emphasis on interplay between analytical and experimental methods in solution of research and development problems. Communication (written ...

Cheng, Wai Kong

91

Argonne Chemical Sciences & Engineering - Facilities - Analytical Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Analytical Chemistry Laboratory Analytical Chemistry Laboratory sullivan ACL manager Vivian Sullivan places a plate for alpha spectrometry into the Alpha Analyst instrument. naik Seema Naik prepares an inorganic sample for analysis on the ICP-Optical Emission Spectrometer. lopykinski Susan Lopykinski prepares a sample for mercury analysis on the cold vapor Atomic Absorption instrument. ICP-Mass Spectrometer Analytical Chemist Yifen Tsai prepares a sample for analysis on the high-resolution ICP-Mass Spectrometer. The Analytical Chemistry Laboratory (ACL) provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory and specialized analysis for government, academic, and industrial organizations, including other national laboratories and QA/QC programs and audits.

92

Refinery analytical techniques optimize unit performance  

Science Conference Proceedings (OSTI)

Refinery process engineers need to consider benefits of laboratory analytical techniques when evaluating unit performance. Refinery heavy-oil laboratory analytical techniques use both old and new technologies. Knowing how to use available laboratory analytical techniques within their limitations are critical to obtain correct refinery optimization decisions. Better refinery stream distillation and contaminant data ultimately improves the accuracy of various refinery decision-making tools. These laboratory analytical techniques are covered: high-temperature simulated distillation (HTSD); true boiling point (TBP) distillation--ASTM D2892; vacuum distillation--ASTM D5236; continuous-flash vaporizers; wiped-film evaporators; inductively coupled plasma atomic-emission spectroscopy (ICP-AES); Conradson--ASTM D189/Microcarbon residue--ASTM D4530; and asphaltene IP-143, ASTM D3279, ASTM D4124. Analysis of atmospheric crude, vacuum crude and delayed coker units highlight these laboratory techniques to identify potential yield and product quality benefits. Physical distillation or wiped-film evaporation in conjunction with HTSD, ICP-AES, microcarbon residue and asphaltened data will better characterize a feedstock as well as determine the source of contaminants. Economics are refinery specific, therefore, these examples focus on applying laboratory techniques as opposed to discussing specifics of unit improvement. These are discussed qualitatively.

Golden, S.W. [Process Consulting Services Inc., Grapevine, TX (United States); Craft, S. [Chempro, Inc., LaPorte, TX (United States); Villalanti, D.C. [Triton Analytics Corp., Houston, TX (United States)

1995-11-01T23:59:59.000Z

93

FGD Chemistry and Analytical Methods Handbook  

Science Conference Proceedings (OSTI)

The purpose of this handbook is to provide a comprehensive guide to sampling, analytical, and physical test methods essential to the operation, maintenance, and understanding of flue gas desulfurization (FGD) system chemistry. EPRI sponsored the preparation of the first version of this multi-volume report in the mid-1980s in response to the needs of electric utility personnel responsible for establishing and operating FGD analytical laboratories. Prompted by the results of research into various nonstanda...

2007-03-29T23:59:59.000Z

94

ANALYTICAL CHEMISTRY AND MEASUREMENT SCIENCE (What Has DOE Done For Analytical Chemistry?) CONF-8904181--1  

NLE Websites -- All DOE Office Websites (Extended Search)

, . - - ANALYTICAL CHEMISTRY AND MEASUREMENT SCIENCE (What Has DOE Done For Analytical Chemistry?) CONF-8904181--1 DE89 009559 W. D. Shults Analytical Chemistry Division Oak Ridge National Laboratory* Oak Ridge, Tennessee 37831-6129 ABSTRACT Over the past forty years, analytical scientists within the DOE complex have had a tremendous impact on the field of analytical chemistry. This paper suggests six "high impact" research/development areas that either originated within or wcce brought to maturity within the DOE laboratories. "High impact" means they lead to new subdisciplines or to new ways of doing business. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

95

Analytical Microscopy Group Homepage  

Science Conference Proceedings (OSTI)

... research on autoradiography and nuclear track methods ... and standards that address critical challenges in ... Public Safety and Security in Analytical ...

2012-10-15T23:59:59.000Z

96

PRELIMINARY SURVEY OF WINCHESTER ENGINEERING AND ANALYTICAL CENTER  

Office of Legacy Management (LM)

WINCHESTER ENGINEERING AND ANALYTICAL CENTER WINCHESTER ENGINEERING AND ANALYTICAL CENTER Winchester, Massachusetts Work performed by the Health and Safety Research Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 March 1980 . .- _ 2. / f OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPOdATIOt'i for the DEPARTMENT OF ENERGY as part of the Formerly Utilized Sites-- Remedial Action PL;ogram .-__ - - .--..--_ ~. _.. -. THE FORMER WINCHESTER ENGINEERING AND ANALYTICAL CENTER Winchester, Massachusetts At the request of the Department of Energy (DOE, then ERDA), a preliminary survey was performed at the former Winchester Engineering and Analytical Center, Winchester, Massachusetts (see Fig. 1), on January 25, 1977, to assess the radiological status of this facility

97

Enhancing Law Enforcement Using Data & Visual Analytics  

E-Print Network (OSTI)

Authority of New York and New Jersey (PA NY/NJ), Pacific Northwest National Labs (PNNL), Intuidex will integrate visual analytics methods developed at PNNL to mine valuable links between entities in order Authority of New York and New Jersey (PA NY/NJ) · Pacific Northwest National Laboratory (PNNL) · Intuidex

98

Laboratory Reagents  

SciTech Connect

Replaced by WMH-310, Section 4.17. This document outlined the basic methodology for preparing laboratory reagents used in the 222-S Standards Laboratory. Included were general guidelines for drying, weighing, transferring, dissolving, and diluting techniques common when preparing laboratory reagents and standards. Appendix A contained some of the reagents prepared by the laboratory.

CARLSON, D.D.

1999-10-08T23:59:59.000Z

99

Analytical Chemistry Databases and Links  

Science Conference Proceedings (OSTI)

Analytical chemistry websites, humor, Material Safety Data Sheets,Patent Information, and references. Analytical Chemistry Databases and Links Analytical Chemistry acid analysis Analytical Chemistry aocs applicants april articles atomic)FluorometryDiffer

100

Extreme Scale Visual Analytics  

Science Conference Proceedings (OSTI)

Extreme-scale visual analytics (VA) is about applying VA to extreme-scale data. The articles in this special issue examine advances related to extreme-scale VA problems, their analytical and computational challenges, and their real-world applications.

Wong, Pak C.; Shen, Han-Wei; Pascucci, Valerio

2012-05-08T23:59:59.000Z

Note: This page contains sample records for the topic "wtp analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Information Management, Analytics & Optimization Services IMS System Maintenance Service Offering  

E-Print Network (OSTI)

Information Management, Analytics & Optimization Services IMS System Maintenance Service Offering The IMS System Maintenance Review offering is a special service offering from the IMS laboratory Technical Specialist group. Complex IMS systems require periodic maintenance, coupled with a specific testing process

102

GCMS Analytical Information  

Science Conference Proceedings (OSTI)

... Page 2. DEA Special Testing and Research Laboratory Emerging Trends Program Goals GCMS Fragmentation Nitrogen Rule Isotope ratios ...

2013-04-29T23:59:59.000Z

103

OCIO Technology Summit: Data Analytics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

OCIO Technology Summit: Data Analytics OCIO Technology Summit: Data Analytics OCIO Technology Summit: Data Analytics May 13, 2013 - 1:51pm Addthis OCIO Technology Summit: Data Analytics The Energy Department's Office of the Chief Information Officer hosted a Data Analytics Technology Summit to showcase how the agency is using data analytics to make better data-driven decisions, provide value, and ultimately create mission impact. Data scientists and practitioners from Lawrence Livermore National Laboratory are using data analytics to secure information, and as a result have real-time detection capabilities for cyber attacks and intrusions giving the Department the ability to protect its data. Our partners at the Energy Information Administration demonstrated the Electricity Data Browser influence on creating the visualization of data,

104

Welcome to Analytical Labs  

NLE Websites -- All DOE Office Websites (Extended Search)

analyses on a wide range of matrices, such as soil, water, gases, foodstuffs, decommissioning debris, waste, and process control samples. The laboratories maintain...

105

Deep Sludge Gas Release Event Analytical Evaluation  

SciTech Connect

The purpose of the Deep Sludge Gas Release Event Analytical Evaluation (DSGRE-AE) is to evaluate the postulated hypothesis that a hydrogen GRE may occur in Hanford tanks containing waste sludges at levels greater than previously experienced. There is a need to understand gas retention and release hazards in sludge beds which are 200 -300 inches deep. These sludge beds are deeper than historical Hanford sludge waste beds, and are created when waste is retrieved from older single-shell tanks (SST) and transferred to newer double-shell tanks (DST).Retrieval of waste from SSTs reduces the risk to the environment from leakage or potential leakage of waste into the ground from these tanks. However, the possibility of an energetic event (flammable gas accident) in the retrieval receiver DST is worse than slow leakage. Lines of inquiry, therefore, are (1) can sludge waste be stored safely in deep beds; (2) can gas release events (GRE) be prevented by periodically degassing the sludge (e.g., mixer pump); or (3) does the retrieval strategy need to be altered to limit sludge bed height by retrieving into additional DSTs? The scope of this effort is to provide expert advice on whether or not to move forward with the generation of deep beds of sludge through retrieval of C-Farm tanks. Evaluation of possible mitigation methods (e.g., using mixer pumps to release gas, retrieving into an additional DST) are being evaluated by a second team and are not discussed in this report. While available data and engineering judgment indicate that increased gas retention (retained gas fraction) in DST sludge at depths resulting from the completion of SST 241-C Tank Farm retrievals is not expected and, even if gas releases were to occur, they would be small and local, a positive USQ was declared (Occurrence Report EM-RP--WRPS-TANKFARM-2012-0014, "Potential Exists for a Large Spontaneous Gas Release Event in Deep Settled Waste Sludge"). The purpose of this technical report is to (1) present and discuss current understandings of gas retention and release mechanisms for deep sludge in U.S. Department of Energy (DOE) complex waste storage tanks; and (2) to identify viable methods/criteria for demonstrating safety relative to deep sludge gas release events (DSGRE) in the near term to support the Hanford C-Farm retrieval mission. A secondary purpose is to identify viable methods/criteria for demonstrating safety relative to DSGREs in the longer term to support the mission to retrieve waste from the Hanford Tank Farms and deliver it to the Waste Treatment and Immobilization Plant (WTP). The potential DSGRE issue resulted in the declaration of a positive Unreviewed Safety Question (USQ). C-Farm retrievals are currently proceeding under a Justification for Continued Operation (JCO) that only allows tanks 241-AN-101 and 241-AN-106 sludge levels of 192 inches and 195 inches, respectively. C-Farm retrievals need deeper sludge levels (approximately 310 inches in 241-AN-101 and approximately 250 inches in 241-AN-106). This effort is to provide analytical data and justification to continue retrievals in a safe and efficient manner.

Sams, Terry L.

2013-08-15T23:59:59.000Z

106

Renewable Analytics | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Renewable Analytics Jump to: navigation, search Name Renewable Analytics Place San Francisco,...

107

The Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

existing programs in climate change science and infrastructure. The Laboratory has a 15- year history in climate change science. The Climate, Ocean and Sea Ice Modeling (COSIM)...

108

NREL: Wind Research - Structural Testing Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Structural Testing Laboratory Structural Testing Laboratory Photo of NREL's Wind Research User Facility. Shown in front are several test bays that protect proprietary information while companies disassemble turbines to analyze, test, and modify individual components. NREL's Structural Testing Laboratory includes office space for industry researchers, houses experimental laboratories, computer facilities, space for assembling turbines, components, and blades for testing. Credit: Patrick Corkery. NREL's Structural Testing Laboratory at the National Wind Technology Center (NWTC) provides office space for industry researchers, experimental laboratories, computer facilities for analytical work, and space for assembling components and turbines for atmospheric testing. The facility also houses two blade stands equipped with overhead cranes and

109

Computerized Analytical Data Management System and Automated Analytical Sample Transfer System at the COGEMA Reprocessing Plants in La Hague  

SciTech Connect

Managing the operation of large commercial spent nuclear fuel reprocessing plants, such as UP3 and UP2-800 in La Hague, France, requires an extensive analytical program and the shortest possible analysis response times. COGEMA, together with its engineering subsidiary SGN, decided to build high-performance laboratories to support operations in its plants. These laboratories feature automated equipment, safe environments for operators, and short response times, all in centralized installations. Implementation of a computerized analytical data management system and a fully automated pneumatic system for the transfer of radioactive samples was a key factor contributing to the successful operation of the laboratories and plants.

Flament, T.; Goasmat, F.; Poilane, F.

2002-02-25T23:59:59.000Z

110

Analytical Division List  

Science Conference Proceedings (OSTI)

Name AffiliationCity, State, CountryAnalytical Division2013 Members391 Members as of October 1, 2013Abdurahman, SadegWashington State UniversityPullman, WA, USAAbuzaytoun, ReemDalhousie UniversityHalifax, NS, CanadaAdcock, JacquiDeakin Universityaurn Ponds

111

Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 4, Organic methods  

Science Conference Proceedings (OSTI)

This interim notice covers the following: extractable organic halides in solids, total organic halides, analysis by gas chromatography/Fourier transform-infrared spectroscopy, hexadecane extracts for volatile organic compounds, GC/MS analysis of VOCs, GC/MS analysis of methanol extracts of cryogenic vapor samples, screening of semivolatile organic extracts, GPC cleanup for semivolatiles, sample preparation for GC/MS for semi-VOCs, analysis for pesticides/PCBs by GC with electron capture detection, sample preparation for pesticides/PCBs in water and soil sediment, report preparation, Florisil column cleanup for pesticide/PCBs, silica gel and acid-base partition cleanup of samples for semi-VOCs, concentrate acid wash cleanup, carbon determination in solids using Coulometrics` CO{sub 2} coulometer, determination of total carbon/total organic carbon/total inorganic carbon in radioactive liquids/soils/sludges by hot persulfate method, analysis of solids for carbonates using Coulometrics` Model 5011 coulometer, and soxhlet extraction.

Not Available

1993-08-01T23:59:59.000Z

112

Analytical Chemistry Laboratory progress report for FY 1992  

Science Conference Proceedings (OSTI)

The ACL activities covered IFR fuel reprocessing, corium-concrete interactions, environmental samples, wastes, WIPP support, Advanced Photon Source, H-Tc superconductors, EBWR vessel, soils, illegal drug detection, quality control, etc.

Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Boparai, A.S.; Bass, D.A.

1992-12-01T23:59:59.000Z

113

ALUMINUM REMOVAL FROM HANFORD WASTE BY LITHIUM HYDROTALCITE PRECIPITATION - LABORATORY SCALE VALIDATION ON WASTE SIMULANTS TEST REPORT  

SciTech Connect

To reduce the additional sodium hydroxide and ease processing of aluminum bearing sludge, the lithium hydrotalcite (LiHT) process has been invented by AREV A and demonstrated on a laboratory scale to remove alumina and regenerate/recycle sodium hydroxide prior to processing in the WTP. The method uses lithium hydroxide (LiOH) to precipitate sodium aluminate (NaAI(OH){sub 4}) as lithium hydrotalcite (Li{sub 2}CO{sub 3}.4Al(OH){sub 3}.3H{sub 2}O) while generating sodium hydroxide (NaOH). In addition, phosphate substitutes in the reaction to a high degree, also as a filterable solid. The sodium hydroxide enriched leachate is depleted in aluminum and phosphate, and is recycled to double-shell tanks (DSTs) to leach aluminum bearing sludges. This method eliminates importing sodium hydroxide to leach alumina sludge and eliminates a large fraction of the total sludge mass to be treated by the WTP. Plugging of process equipment is reduced by removal of both aluminum and phosphate in the tank wastes. Laboratory tests were conducted to verify the efficacy of the process and confirm the results of previous tests. These tests used both single-shell tank (SST) and DST simulants.

SAMS T; HAGERTY K

2011-01-27T23:59:59.000Z

114

Requirements for Predictive Analytics  

Science Conference Proceedings (OSTI)

It is important to have a clear understanding of how traditional Business Intelligence (BI) and analytics are different and how they fit together in optimizing organizational decision making. With tradition BI, activities are focused primarily on providing context to enhance a known set of information through aggregation, data cleansing and delivery mechanisms. As these organizations mature their BI ecosystems, they achieve a clearer picture of the key performance indicators signaling the relative health of their operations. Organizations that embark on activities surrounding predictive analytics and data mining go beyond simply presenting the data in a manner that will allow decisions makers to have a complete context around the information. These organizations generate models based on known information and then apply other organizational data against these models to reveal unknown information.

Troy Hiltbrand

2012-03-01T23:59:59.000Z

115

Hanford analytical sample projections FY 1998--FY 2002  

SciTech Connect

Analytical Services projections are compiled for the Hanford site based on inputs from the major programs for the years 1998 through 2002. Projections are categorized by radiation level, protocol, sample matrix and program. Analyses requirements are also presented. This document summarizes the Hanford sample projections for fiscal years 1998 to 2002. Sample projections are based on inputs submitted to Analytical Services covering Environmental Restoration, Tank Waste Remediation Systems (TWRS), Solid Waste, Liquid Effluents, Spent Nuclear Fuels, Transition Projects, Site Monitoring, Industrial Hygiene, Analytical Services and miscellaneous Hanford support activities. In addition, details on laboratory scale technology (development) work, Sample Management, and Data Management activities are included. This information will be used by Hanford Analytical Services (HAS) and the Sample Management Working Group (SMWG) to assure that laboratories and resources are available and effectively utilized to meet these documented needs.

Joyce, S.M.

1998-02-12T23:59:59.000Z

116

ANALYTIC EXPRESSIONS FOR THE LIGHT-SCATTERING CROSS SECTION  

NLE Websites -- All DOE Office Websites (Extended Search)

ANALYTIC ANALYTIC EXPRESSIONS FOR THE LIGHT-SCATTERING CROSS SECTION AND ÅNGSTRÖM EXPONENT OF AN AEROSOL Ernie R. Lewis Brookhaven National Laboratory, Upton, NY 11933 elewis@bnl.gov BACKGROUND For an aerosol consisting of spherical particles with size distribution of number concentration dN(r)/dr and real index of refraction m (thus no absorption), the light-scattering coefficient σ sp

117

Quality assurance management plan (QAPP) special analytical support (SAS)  

Science Conference Proceedings (OSTI)

It is the policy of Special Analytical Support (SAS) that the analytical aspects of all environmental data generated and processed in the laboratory, subject to the Environmental Protection Agency (EPA), U.S. Department of Energy or other project specific requirements, be of known and acceptable quality. It is the intention of this QAPP to establish and assure that an effective quality controlled management system is maintained in order to meet the quality requirements of the intended use(s) of the data.

LOCKREM, L.L.

1999-05-20T23:59:59.000Z

118

Analytical Division Newsletter April 2013  

Science Conference Proceedings (OSTI)

Read the March newsletter from the Analytical Division. Analytical Division Newsletter April 2013 Membership Information achievement application award Awards distinguished division Divisions fats job Join lipid lipids Member member get a member Me

119

Materials Characterization Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Materials Characterization Laboratory at the Energy Systems Integration Facility. The Materials Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) research focus is the physical and photoelectrochemical characterization of novel materials. In this laboratory unknown samples are characterized by identifying and quantifying molecular species present through the implementation of a suite of analytical instrumentation and techniques. This leads to the ability to deconvolute decomposition routes and elucidate reaction mechanisms of materials through thermal and evolved gas analysis. This aids in the synthesis of next generation materials that are tailored to optimize stability and performance. These techniques and next generation materials will have many applications. One particular focus is the stable and conductive tetherable cations for use as membrane materials in anion exchange membrane fuel cells. Another is to understand the leachant contaminants derived from balance of plant materials used in proton exchange membrane fuel cell vehicles. Once identified and quantified, these organic and ionic species are dosed as contaminants into ex/in-situ fuel cell tests, to determine the effect on durability and performance. This laboratory also acts in support of fuel cell catalysis, manufacturing, and other related projects. The Materials Characterization Laboratory will cover multiple analytical operations, with the overall goal of troubleshooting synthetic materials or process streams to improve performance. Having novel evolved gas analysis and other analytical capabilities; this laboratory provides a viable location to analyze small batch samples, whereas setting up these types of capabilities and expertise would be cost and time prohibitive for most institutions. Experiments that can be performed include: (1) Evolved gas analysis; (2) Heterogeneous catalysis; (3) Trace level contaminants analysis; (4) Catalyst characterization; (5) Kinetics and stability; (6) Hyphenated techniques; and (7) Isotopic analysis for elucidating reaction mechanisms and decoupling chemical reactions.

Not Available

2011-10-01T23:59:59.000Z

120

Laboratory Access | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Access Access Planning Ahead Planning Ahead Please complete the Beam Time Request (BTR) and Support Request forms thourgh the User Portal. Thorough chemical and sample information must be included in your BTR. Support Request forms include a list of collaborators that require laboratory access and your group's laboratory equipment requests. Researcher safety is taken seriously at SLAC. Please remember that radioactive materials, nanomaterials, and biohazardous materials have additional safety requirements. Refer to the SSRL or LCLS Safety Offices for further guidance. Upon Arrival Upon Arrival Once you arrive you must complete training and access forms before accessing the Sample Preparation Laboratories (SPL). All Sample Prep Lab doors are locked with access key codes. Once your SPL

Note: This page contains sample records for the topic "wtp analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Analytical Modeling | Open Energy Information  

Open Energy Info (EERE)

Analytical Modeling Analytical Modeling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Analytical Modeling Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Modeling Techniques Parent Exploration Technique: Modeling Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Analytical Modeling: A mathematical modeling technique used for simulating, explaining, and making predictions about the mechanisms involved in complex physical processes. Other definitions:Wikipedia Reegle Introduction Analytical models are mathematical models that have a closed form solution. Or in other words the solution to the equations used to describe changes in

122

ANALYTIC MODELING OF STARSHADES  

SciTech Connect

External occulters, otherwise known as starshades, have been proposed as a solution to one of the highest priority yet technically vexing problems facing astrophysics-the direct imaging and characterization of terrestrial planets around other stars. New apodization functions, developed over the past few years, now enable starshades of just a few tens of meters diameter to occult central stars so efficiently that the orbiting exoplanets can be revealed and other high-contrast imaging challenges addressed. In this paper, an analytic approach to the analysis of these apodization functions is presented. It is used to develop a tolerance analysis suitable for use in designing practical starshades. The results provide a mathematical basis for understanding starshades and a quantitative approach to setting tolerances.

Cash, Webster [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States)

2011-09-01T23:59:59.000Z

123

National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Homesteading on the Pajarito Plateau Homesteading on the Pajarito Plateau topic of inaugural lecture at Los Alamos National Laboratory January 4, 2013 Lecture series begins yearlong commemoration of 70th anniversary LOS ALAMOS, NEW MEXICO, Jan. 3, 2013-In commemoration of its 70th anniversary, Los Alamos National Laboratory kicks off a yearlong lecture series on Wednesday, Jan. 9, at 5:30 p.m. with a presentation about homesteading on the Pajarito Plateau at the Bradbury Science Museum, 1350 Central Avenue, Los Alamos. - 2 - The inaugural lecture is based on a book by local writers Dorothy Hoard, Judy Machen and Ellen McGehee about the area's settlement between 1887 and 1942. On hikes across the Pajarito Plateau, Hoard envisioned the Los Alamos area before modern roads and bridges made transportation much easier. The trails she walked

124

Department of Energy National Laboratories  

Idaho National Laboratory SLAC National Accelerator Laboratory Department of Energy National Laboratories. Laboratory or Facility Website ...

125

Appendix C, Analytical Data | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

C, Analytical Data Appendix C, Analytical Data Docket No. EO-05-01: Appendix C, Analytical Data from Final Report: Particulate Emissions Testing, Unit 1, Potomac River Generating...

126

Nuclear Forensics at Los Alamos National Laboratory  

SciTech Connect

The overview of this presentation is: (1) Introduction to nonproliferation efforts; (2) Scope of activities at Los Alamos National Laboratory; (3) Facilities for radioanalytical work at LANL; (4) Radiochemical characterization capabilities; and (5) Bulk chemical and materials analysis capabilities. Some conclusions are: (1) Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous defense and non-defense programs including safeguards accountancy verification measurements; (2) Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material forensic characterization; (3) Actinide analytical chemistry uses numerous means to validate and independently verify that measurement data quality objectives are met; and (4) Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

Podlesak, David W [Los Alamos National Laboratory; Steiner, Robert E. [Los Alamos National Laboratory; Burns, Carol J. [Los Alamos National Laboratory; LaMont, Stephen P. [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory

2012-08-09T23:59:59.000Z

127

Analysis Activities at Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Laboratory Operated by The University of Chicago Center for Transportation Research Argonne National Laboratory Argonne National Laboratory Marianne M. Mintz Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. 2 ANL's Charter ANL's Charter ANL's Charter Systems analysis in Energy Systems (CTR), Decision and Information Sciences History of working in partnership with industry Analytical work has spanned the range of: Energy Supply - globally and by region Demand for transportation fuels - globally and region Assessment of vehicle technologies and fuels Economic analysis and interaction between energy prices and macro activity Life-cycle analyses of energy use and environmental impacts associated with

128

Aerosol Laboratory - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities > Engineering Capabilities > Engineering Experimentation > Aerosol Laboratory Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Aerosol Laboratory The Aerosol Laboratory (AL) houses equipment to measure and record the physical parameters necessary to characterize the formation and transport of aerosols. Bookmark and Share The Aerosol Laboratory (AL) has extensive analytic and experimental capabilities to characterize the formation and transport of aerosols formed from the condensation of vapors. Computer codes have been developed to

129

An integrated analytic approach for Six Sigma project selection  

Science Conference Proceedings (OSTI)

Six Sigma is regarded as a well-structured methodology for improving the quality of processes and products. It helps achieve the company's strategic goal through the effective use of project-driven approach. As Six Sigma is a project-driven methodology, ... Keywords: Analytic network process (ANP), Decision Making Trial And Evaluation Laboratory (DEMATEL), Logistics company, Six Sigma project selection

Glin Bykzkan; Demet ztrkcan

2010-08-01T23:59:59.000Z

130

Welcome to Analytical Labs  

NLE Websites -- All DOE Office Websites (Extended Search)

Methods Methods Unique Capabilities Thermal Ion Thermal Ionization Mass Spectrometry The distribution of isotopes within uranium and plutonium materials, are precisely and accurately measured using Thermal Ionization Mass Spectrometers (TIMS). In addition to isotopic abundance measurements, isotope dilution techniques are applied to measure uranium and plutonium concentration on a wide variety of materials processed at the SRS. Rad Nuclear Nuclear Material Dissolution from Destructive Analysis Measurements The Savannah River Site F/H Laboratories perform nuclear material dissolution of Pu/U oxides and metals plus Np oxide to support site productions/remediation projects. Nuclear material dissolutions are performed in glovebox containment via microwaves, hot blocks and hot plates. Resulting solutions are aliquotted for a variety of elemental and compound analyses.

131

ICTASDiscoveryAnalyticsCenter Sustainable  

E-Print Network (OSTI)

IDAC ICTASDiscoveryAnalyticsCenter Nanoscale Science Nano-Bio Interface Sustainable Energy on the basis of race, gender, disability, age, veteran status, national origin, religion, sexual orientation

Beex, A. A. "Louis"

132

NERSC Job Logs and Analytics  

NLE Websites -- All DOE Office Websites (Extended Search)

& Allocations Policies Data Analytics & Visualization Science Gateways User Surveys NERSC Users Group User Announcements Help Operations for: Passwords & Off-Hours Status...

133

Virtual Laboratories  

E-Print Network (OSTI)

At the frontier of most areas in science, computer simulations play a central role. The traditional division of natural science into experimental and theoretical investigations is now completely outdated. Instead, theory, simulation, and experimentation form three equally essential aspects, each with its own unique flavor and challenges. Yet, education in computational science is still lagging far behind, and the number of text books in this area is minuscule compared to the many text books on theoretical and experimental science. As a result, many researchers still carry out simulations in a haphazard way, without properly setting up the computational equivalent of a well equipped laboratory. The art of creating such a virtual laboratory, while providing proper extensibility and documentation, is still in its infancy. A new approach is described here, Open Knowledge, as an extension of the notion of Open Source software. Besides open source code, manuals, and primers, an open knowledge project provides simulated dialogues between code developers, thus sharing not only the code, but also the motivations behind the code.

Piet Hut

2006-10-07T23:59:59.000Z

134

Improved steamflood analytical model  

E-Print Network (OSTI)

The Jeff Jones steamflood model incorporates oil displacement by steam as described by Myhill and Stegemeier, and a three-component capture factor based on empirical correlations. The main drawback of the model however is the unsatisfactory prediction of the oil production peak: usually significantly lower than the actual. Our study focuses on improving this aspect of the Jeff Jones model. In our study, we simulated the production performance of a 5-spot steamflood pattern unit and compared the results against those based on the Jeff Jones model. Three reservoir types were simulated using 3-D Cartesian black oil models: Hamaca (9?°API), San Ardo (12?°API) and that based on the SPE fourth comparative solution project (14?°API). In the first two field cases, a 45x23x8 model was used that represented 1/8 of a 10-acre 5-spot pattern unit, using typical rock and reservoir fluid properties. In the SPE project case, three models were used: 23x12x12 (2.5 ac), 31x16x12 (5 ac) and 45x23x8 (10 ac), that represented 1/8 of a 5-spot pattern unit. To obtain a satisfactory match between simulation and Jeff Jones analytical model results of the start and height of the production peak, the following refinements to the Jeff Jones model were necessary. First, the dimensionless steam zone size AcD was modified to account for decrease in oil viscosity during steamflood and its dependence on the steam injection rate. Second, the dimensionless volume of displaced oil produced VoD was modified from its square-root format to an exponential form. The modified model gave very satisfactory results for production performance up to 20 years of simulated steamflood, compared to the original Jeff Jones model. Engineers will find the modified model an improved and useful tool for prediction of steamflood production performance.

Chandra, Suandy

2005-08-01T23:59:59.000Z

135

Laboratory Activities  

Science Conference Proceedings (OSTI)

This chapter summarizes the laboratory activities performed by PNNLs Vadose Zone Characterization Project in support of the Tank Farm Vadose Zone Program, led by CH2M HILL Hanford Group, Inc. The results of these studies are contained in numerous reports (Lindenmeier et al. 2002; Serne et al. 2002a, 2002b, 2002c, 2002d, 2002e; Lindenmeier et al. 2003; Serne et al. 2004a, 2004b; Brown et al. 2005, 2006a, 2007; Serne et al. 2007) and have generated much of the data reported in Chapter 22 (Geochemistry-Contaminant Movement), Appendix G (Geochemistry-Contaminant Movement), and Cantrell et al. (2007, SST WMA Geochemistry Data Package in preparation). Sediment samples and characterization results from PNNLs Vadose Zone Characterization Project are also shared with other science and technology (S&T) research projects, such as those summarized in Chapter 12 (Associated Science Activities).

Brown, Christopher F.; Serne, R. Jeffrey

2008-01-17T23:59:59.000Z

136

Explanatory Business Analytics in OLAP  

Science Conference Proceedings (OSTI)

In this paper the authors describe a method to integrate explanatory business analytics in OLAP information systems. This method supports the discovery of exceptional values in OLAP data and the explanation of such values by giving their underlying causes. ... Keywords: Business Analytics, Exception Reporting, Explanation, OLAP, Variance Analysis

Emiel Caron, Hennie Daniels

2013-07-01T23:59:59.000Z

137

12.119 Analytical Techniques for Studying Environmental and Geologic Samples, Spring 2006  

E-Print Network (OSTI)

This is a laboratory course supplemented by lectures that focus on selected analytical facilities that are commonly used to determine the mineralogy, elemental abundance and isotopic ratios of Sr and Pb in rocks, soils, ...

Boyle, Edward

138

Strategic Laboratory Leadership Program | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Erik Gottschalk (F); Devin Hodge (A); Jeff Chamberlain (A); Brad Ullrick (A); Bill Rainey (J). Image courtesy of Argonne National Laboratory. Strategic Laboratory Leadership...

139

ANALYTICAL DATA SHEET hlul ANALYTICAL DEPT. - HEALTH ANI SAFETY...  

Office of Legacy Management (LM)

hlul ANALYTICAL DEPT. - HEALTH ANI SAFETY DlVlSlON Industrial Hygiene or Medical Dept. 1956 I. H. 1093 Sample Nos. 9 -Date Collected- 812 by-LLP Route to I"? Lo,--tionrOGERS...

140

ARGONNE NATIONAL LABORATORY is....  

NLE Websites -- All DOE Office Websites (Extended Search)

Scattering June 12-18, 2010 - Argonne National Laboratory June 19-26, 2010 - Oak Ridge National Laboratory Argonne National Laboratory is a U.S. Department of Energy laboratory...

Note: This page contains sample records for the topic "wtp analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Stirling engine research at Argonne National Laboratory  

SciTech Connect

Stirling engine research at Argonne National Laboratory has been focused at (1) development of mathematical models and analytical tools for predicting component and engine performance, and (2) experimental research into fundamental heat transfer and fluid flow phenomena occurring in Stirling cycle devices. A result of the analytical effort has been the formation of a computer library specifically for Stirling engine researchers and developers. The library contains properties of structural materials commonly used, thermophysical properties of several working fluids, correlations for heat transfer calculations and general specifications of mechanical arrangements (including various drive mechanisms) that can be utilized to model a particular engine. The library also contains alternative modules to perform analysis at different levels of sophistication, including design optimization. A reversing flow heat transfer facility is operating at Argonne to provide data at prototypic Stirling engine operating conditions under controlled laboratory conditions. This information is needed to validate analytical models.

Holtz, R.E.; Daley, J.G.; Roach, P.D.

1986-06-01T23:59:59.000Z

142

State Laboratory Contacts IL  

Science Conference Proceedings (OSTI)

State Laboratory Contact Information IL. Idaho. ... State of Iowa Metrology Laboratory Ellsworth Community College 1100 College Ave. ...

2013-11-07T23:59:59.000Z

143

Bearing Analytics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bearing Analytics Bearing Analytics National Clean Energy Business Plan Competition 2013 355 likes Bearing Analytics Purdue University Avoidable bearing failures cost the US industrial economy $50B in damage and downtime every year. Current bearing health monitoring systems do not adequately detect failure until it is too late. Bearing Analytics offers a patent-pending micro-sensor technology that monitors temperature and vibration directly on the bearing cage helping predict performance degradation and impending failure while improving operating, performance, and energy efficiencies. Our technology does all of that with a better accuracy, faster response time, and increased reliability over any other competing solution today. We intend to target the wind turbine industry as our initial target point

144

Video Analytics for Business Intelligence  

Science Conference Proceedings (OSTI)

Closed Circuit TeleVision (CCTV) cameras have been increasingly deployed pervasively in public spaces including retail centres and shopping malls. Intelligent video analytics aims to automatically analyze content of massive amount of public space video ...

Caifeng Shan; Fatih Porikli; Tao Xiang; Shaogang Gong

2012-04-01T23:59:59.000Z

145

Computing $\\pi(x)$ Analytically  

E-Print Network (OSTI)

We describe a rigorous implementation of the Lagarias and Odlyzko Analytic Method to evaluate the prime counting function and its use to compute unconditionally the number of primes less than $10^{24}$.

Platt, David J

2012-01-01T23:59:59.000Z

146

Bearing Analytics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bearing Analytics Bearing Analytics National Clean Energy Business Plan Competition 2013 355 likes Bearing Analytics Purdue University Avoidable bearing failures cost the US industrial economy $50B in damage and downtime every year. Current bearing health monitoring systems do not adequately detect failure until it is too late. Bearing Analytics offers a patent-pending micro-sensor technology that monitors temperature and vibration directly on the bearing cage helping predict performance degradation and impending failure while improving operating, performance, and energy efficiencies. Our technology does all of that with a better accuracy, faster response time, and increased reliability over any other competing solution today. We intend to target the wind turbine industry as our initial target point

147

Bearing Analytics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bearing Analytics Bearing Analytics National Clean Energy Business Plan Competition 2013 355 likes Bearing Analytics Purdue University Avoidable bearing failures cost the US industrial economy $50B in damage and downtime every year. Current bearing health monitoring systems do not adequately detect failure until it is too late. Bearing Analytics offers a patent-pending micro-sensor technology that monitors temperature and vibration directly on the bearing cage helping predict performance degradation and impending failure while improving operating, performance, and energy efficiencies. Our technology does all of that with a better accuracy, faster response time, and increased reliability over any other competing solution today. We intend to target the wind turbine industry as our initial target point

148

Analysis Activities at Oak Ridge National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge National Laboratory Oak Ridge National Laboratory David L. Greene Engineering Science and Technology Division Paul N. Leiby Environmental Sciences Division Juan Ferrada Nuclear Science and Technology Division DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Charter * The Engineering Science and Technology Division, National Transportation Research Center conducts engineering and analytical R&D for DOE, other federal sponsors and the private sector. * The Environmental Sciences Division conducts interdisciplinary research, develops technology, and performs analyses to understand and assess responses to global and regional change, environmental stress, and resource use.

149

Analytical Division Seed Oil Translation Table  

Science Conference Proceedings (OSTI)

seed oil translation table nomencalture Analytical Division Seed Oil Translation Table Analytical Chemistry Analytical Chemistry aocs articles atomic)FluorometryDifferential scanning calorimetry chemistry Chromatography (liquid detergents esters fats fo

150

Information Management, Analytics & Optimization Services IMS Security Health Check Service Offering  

E-Print Network (OSTI)

Offering The IMS Security Health Check is a special service offering from the IMS Laboratory TechnicalInformation Management, Analytics & Optimization Services IMS Security Health Check Service two to three weeks after the conclusion of the on-site visit. · Service from the IMS Laboratory

151

Information Management, Analytics & Optimization Services IMS Application Health Check Service Offering  

E-Print Network (OSTI)

Offering The IMS Application Health Check is a special service offering from the IMS laboratory TechnicalInformation Management, Analytics & Optimization Services IMS Application Health Check Service, and possible enhancements to · Service from the IMS Laboratory Technical Specialist group · Get to know

152

Opportunities with Laboratories under the Chicago Office  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Opportunities with Opportunities with Laboratories under the Chicago Office 1 Princeton Plasma Physics Laboratory 1. Mechanical Engineering Services; Larry Dudek; $188,000 2. Phone system; William Bryan; $300,000 3. Engineering Support Services; Charles Neumyer; $1,417,116 4. Conceptual design of New PS&T Building; Shawn Connolly; $500,000 Lawrence Berkeley National Laboratory (LBL) 1. Software Maintenance and support for ALS software; 9/30/2011; $556,000 (Biointuition) 2. Consulting services to conduct a hazard survey; 9/30/11; $549,000 (Alphatrac, Inc.) 3. Analytical Laboratory services; 7/31/11; $465,000 (BC Laboratories, Inc.) LBL Continued.... 4. Blanket Order to provide photo artwork; 9/30/2011; $460,000 (CMP) 5. Pick-up and delivery courier servicces for as- needed services; 5/31/2011; $250,000 (IDS

153

Ecologic Analytics | Open Energy Information  

Open Energy Info (EERE)

Ecologic Analytics Ecologic Analytics Jump to: navigation, search Name Ecologic Analytics Place Bloomington, Minnesota Zip 55425 Product Minnesota-based meter data management company. Coordinates 42.883574°, -90.926122° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.883574,"lon":-90.926122,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

154

Analytical Dashboards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reporting » Analytical Dashboards Reporting » Analytical Dashboards Analytical Dashboards Public Final Occurrence Reports: Searchable information on DOE's Final Occurrence Reports since 2009, available to the public and updated daily. Computerized Accident Incident Reporting System (CAIRS) - Injury and Illness Dashboard: The Injury and Illness Dashboard is a tool that allows users to easily explore DOE occupational safety and health injury and illness information. Its features include: Graphical and tabular depictions of injury and illness information Calendar year and fiscal year incidence rates for DOE and DOE contractor total recordable cases (TRC) of injuries and illnesses and cases involving days away from work or on job transfer or restriction (DART) due to injury or illness Incidence rates of injuries and illnesses by DOE program

155

Appendix C Analytical Chemistry Data  

Office of Legacy Management (LM)

Analytical Chemistry Data This page intentionally left blank Contents Section Analytical Data for Deleted Contaminants of Concern ............................................................. C1.O Mol~tezuma Creek Hardness Dat Surface Water Copper Data Summa ................ CI-9 Surface Water Radium-228 Dat Surface Water Radon-222 Data Summary ....................... ....................................... . . . . . . . . . . . C l - I 2 Alluvial Ground Water Aln~noniuu~ as Nitrogen Data Summary ....................... . . . ................................ Cl-15 Alluvial Ground Water Cobalt Data Summary ........... Alluvial Ground Water Copper Data Sumrl Alluvial Ground Water Lead Data Su~nmary ................................. C1-19 Alluvial Ground Water Lead-210 Data Sutl~rnary

156

Analytic properties of transition amplitudes  

E-Print Network (OSTI)

are vectors in Lorent z s pace . 10. Dirac y-mat r ' ces. It i s sually supposed that i ts precise f orm has no effe ct on the analytic pro~ rties of the integr , so t ha t i t suff i ces to t ake V = 1, al though under certain condit ions t his...

Landshoff, Peter Vincent

1962-12-07T23:59:59.000Z

157

PARABOLIC EXHAUSTIONS AND ANALYTIC COVERINGS  

E-Print Network (OSTI)

PARABOLIC EXHAUSTIONS AND ANALYTIC COVERINGS Finnur L´arusson January 31, 1993 Abstract. Let be a parabolic exhaustion on a Stein manifold X such that is strictly plurisubharmonic at its zeros. The metric to be parabolic because its logarithm is plurisubharmonic and satisfies the so-called Monge-Amp`ere equation

Lárusson, Finnur

158

The Sea-Breeze Front Analytical Model  

Science Conference Proceedings (OSTI)

Analytical solutions to the nonlinear equations of motion are used to describe the sea breeze front.

Yizhak Feliks

1988-03-01T23:59:59.000Z

159

ARM - Laboratory Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Archive Data Management Facility Data Quality Program Engineering Support External Data Center Laboratory Partners Nine DOE national laboratories share the responsibility of...

160

BROOKHAVEN NATIONAL LABORATORY - Energy  

Laboratory Plan FY 2010-2019 June2,2010 BROOKHAVEN NATIONAL LABORATORY Accelerating Innovation Alane for Hydrogen Storage and Delivery June 2012

Note: This page contains sample records for the topic "wtp analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

EML: Environmental Measurements Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Security and Privacy Notices History of the Environmental Measurements Laboratory The Manhattan ProjectAtomic Energy Commission (1942 1975) Our Laboratory traces its roots...

162

BATT Fabrication Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientist working in battery lab BATT Fabrication Laboratory The BATT Fab Lab (Batteries for Advanced Transportation Technologies Fabrication Laboratory) conducts battery cell...

163

Lawrence Livermore National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratorys (LLNL) primary mission is research and development in support of national security. As a...

164

Sandia National Laboratories: Locations  

NLE Websites -- All DOE Office Websites (Extended Search)

around the world. Sandia's executive management offices and larger laboratory complex are located in Albuquerque, New Mexico. Our second principal laboratory is located...

165

New Brunswick Laboratory - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports New Brunswick Laboratory Activity Reports 2012 Operational Awareness Oversight of the New Brunswick Laboratory, July 2012 Activity Reports 2011 Orientation Visit to the New...

166

Unique QA/QC requirements for analytical chemistry at LANL  

Science Conference Proceedings (OSTI)

One of the missions of group NMT-1 (Nuclear Materials Technology Division/Analytical Chemistry) at Los Alamos National Laboratory (LANL) is to provide analysis of both radioactive and nonradioactive materials to address the stockpile stewardship needs of the US Department of Energy (DOE). Trace to high levels of various constituents are measured using traditional analytical methods and state-of-the-art instrumental methods. The capabilities include Pu and U assay, wet chemistry, plasma spectroscopy, mass spectrometry radiochemistry, X-ray fluorescence, anion and cation analysis, special standards preparation, surface analysis, and gas analysis. The authors are currently developing and implementing a plan to independently assess the quality of the analytical data produced by NMT-1. Nuclear materials of a matrix similar to the client`s samples but having different concentration levels of analytes that are representative of the client`s samples will be used. Well-characterized, stable, homogeneous materials have been identified as possible candidates for single-blind quality control (QC) samples. These materials include Pu metal, Pu oxide, U metal, U oxide, and U-Pu mixed oxide (MOX) with varying degrees of purity. These single-blind samples will be periodically distributed along with regular client samples to be analyzed by the aforementioned analytical methods.

Tandon, L.; Gautier, M.A.; Hammond, C.F.; Porterfield, D.R. [Los Alamos National Lab., NM (United States)

1998-12-31T23:59:59.000Z

167

Unique QA/QC requirements for analytical chemistry at LANL  

Science Conference Proceedings (OSTI)

One of the missions of group NMT-1 (Nuclear Materials Technology Division/Analytical Chemistry) at Los Alamos National Laboratory (LANL) is to provide analysis of both radioactive and nonradioactive materials to address the stockpile stewardship needs of the US Department of Energy (DOE). Trace to high levels of various constituents are measured using traditional analytical methods and state-of-the-art instrumental methods. Capabilities include Pu and U assay, wet chemistry, plasma spectroscopy, mass spectrometry radiochemistry, x-ray fluorescence, anion and cation analysis, special standards preparation, surface analysis, and gas analysis. The authors are currently developing and implementing a plan to independently assess the quality of the analytical data produced by NMT-1. Nuclear materials of a matrix similar to the client`s samples but having different concentration levels of analytes that are representative of the client`s samples will be used. Well-characterized, stable, homogeneous materials have been identified as possible candidates for single-blind quality control (QC) samples. These materials include Pu metal, Pu oxide, uranium metal, uranium oxide, and uranium-plutonium mixed oxide with varying degrees of purity. These single-blind samples will be periodically distributed along with regular client samples to be analyzed by the above mentioned analytical methods.

Tandon, L.; Gautier, M.A.; Hammond, C.F.; Porterfield, D.R.

1998-12-31T23:59:59.000Z

168

LANL Analytical and Radiochemistry Capabilities  

Science Conference Proceedings (OSTI)

The overview of this presentation is: (1) Introduction to nonproliferation efforts; (2) Scope of activities Los Alamos National Laboratory; (3) Facilities for radioanalytical work at LANL; (4) Radiochemical characterization capabilities; and (5) Bulk chemical and materials analysis capabilities.

Steiner, Robert E. [Los Alamos National Laboratory; Burns, Carol J. [Los Alamos National Laboratory; Lamont, Stephen P. [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory

2012-07-27T23:59:59.000Z

169

Oak Ridge National Laboratory - Laboratory Directed Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Seed Money Fund Overview The Seed Money Fund of the ORNL LDRD program supports innovative ideas that have the potential of enhancing the Laboratory's core scientific and technical...

170

About Berkeley Lab: Laboratory Director, Associate Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

2009, replacing former laboratory Director Steve Chu, who was sworn in as U.S. Energy Secretary. Before becoming interim director, Alivisatos was the deputy director of Berkeley...

171

Sandia National Laboratories: Research: Laboratory Directed Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Encouraging creative research to innovate solutions for our nation's greatest challenges. National laboratories have been entrusted with the role of serving as incubators for...

172

Annual Report Alfvn Laboratory  

E-Print Network (OSTI)

is plasma research using small-scale laboratory experiments, where low-density plasmas are generated

Haviland, David

173

Laboratory Management (Quality) Systems  

Science Conference Proceedings (OSTI)

Laboratory Management (Quality) Systems. NISTIR 7028 Type Evaluation Quality Manual Template. This NISTIR has been ...

2012-05-02T23:59:59.000Z

174

National Renewable Energy Laboratory  

E-Print Network (OSTI)

National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

175

State Laboratory Contacts AC  

Science Conference Proceedings (OSTI)

State Laboratory Contact Information AC. Alabama. Mailing Address, ... PDF. Alaska. Mailing Address, Contact Information. Alaska ...

2013-08-01T23:59:59.000Z

176

Energy Analytics | Open Energy Information  

Open Energy Info (EERE)

Energy Analytics Energy Analytics Place Brewster, New York Product New York-based energy management and curtailment company. Coordinates 48.099675°, -119.78091° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.099675,"lon":-119.78091,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

177

Department of Energy National Laboratories  

Office of Science laboratory National Nuclear Security Administration laboratory Office of Fossil Energy laboratory Office of Energy Efficiency and ...

178

National Laboratories - Energy Innovation Portal  

Name Address City, State; Ames Laboratory: Ames Laboratory: Ames, IA: Argonne National Laboratory: 9700 S. Cass Avenue: Argonne, IL: Brookhaven ...

179

Independent Oversight Activity Report for Catholic University of America Vitreous State Laboratory Tour and Discussion of Experiments Conducted in Support of Hanford Site Waste Treatment and Immobilization Plant Select Systems Design, November 18, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Number: HIAR-VSL-2013-11-18 Site: Catholic University of America - Vitreous State Laboratory (VSL) Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Catholic University of America Vitreous State Laboratory Tour and Discussion of Experiments Conducted in Support of Hanford Site Waste Treatment and Immobilization Plant Select Systems Design Date of Activity : 11/18/13 Report Preparer: James O. Low Activity Description/Purpose: Bechtel National, Inc. (BNI) is the contractor responsible for the design and construction of the Hanford Site Waste Treatment and Immobilization Plant (WTP) for the U.S. Department of Energy (DOE) Office of River Protection. BNI is

180

National Laboratories - Energy Innovation Portal  

Name Address City, State; Ames Laboratory: Ames Laboratory: Ames, IA: Argonne National Laboratory: 9700 S. Cass Avenue: Argonne, IL: Brookhaven National Laboratory

Note: This page contains sample records for the topic "wtp analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

COMPUTER SYSTEMS LABORATORY STANFORD ELECTRONICS LABORATORIES  

E-Print Network (OSTI)

of Data 2.1 Performance and Utilization Data 2.2 Failure Data 5 5 6 3. Preliminary Analysis 3.1 Load Profiles 3.2 Failure Profiles 7 3.3 Analysis and Discussion of Preliminary Results Some ReliabilityCOMPUTER SYSTEMS LABORATORY I I STANFORD ELECTRONICS LABORATORIES DEPARTMENT OF ElECTRiCAl

Stanford University

182

CERTS Microgrid Laboratory Test Bed  

NLE Websites -- All DOE Office Websites (Extended Search)

CERTS Microgrid Laboratory Test Bed CERTS Microgrid Laboratory Test Bed Title CERTS Microgrid Laboratory Test Bed Publication Type Journal Article LBNL Report Number LBNL-3553E Year of Publication 2011 Authors Lasseter, Robert H., Joseph H. Eto, Ben Schenkman, John Stevens, Harry T. Volkommer, David Klapp, Ed Linton, Hector Hurtado, and Joyashree Roy Journal IEEE Transactions on Power Delivery Volume 26 Start Page 325 Issue 1 Date Published 01/2011 Keywords distributed energy resources (der) Abstract CERTS Microgrid concept captures the emerging potential of distributed generation using a system approach. CERTS views generation and associated loads as a subsystem or a "microgrid". The sources can operate in parallel to the grid or can operate in island, providing UPS services. The system can disconnect from the utility during large events (i.e. faults, voltage collapses), but may also intentionally disconnect when the quality of power from the grid falls below certain standards. CERTS Microgrid concepts were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resynchronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults. Keywords: CHP, UPS, distributed generation, intentional islanding, inverters, microgrid, CERTS, power vs. frequency droop, voltage droop.

183

AOCS Analytical Guidelines Am 1a-09  

Science Conference Proceedings (OSTI)

Near Infrared Spectroscopy Instrument Management and Prediction Model Development. Am 1a-09. AOCS Analytical Guidelines Am 1a-09 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads AOCS ...

184

Google Analytics | OpenEI Community  

Open Energy Info (EERE)

Google Analytics Home Rmckeel's picture Submitted by Rmckeel(287) Contributor 8 November, 2012 - 13:58 OpenEI dashboard Google Analytics mediawiki OpenEI statistics wiki OpenEI web...

185

Analytical Division Newsletter September 201/span>3  

Science Conference Proceedings (OSTI)

Read the September newsletter from the Analytical Division. Analytical Division Newsletter September 201/span>3 Membership Information achievement application award Awards distinguished division Divisions fats job Join lipid lipids Member member get a

186

Analytical Requirements for Petroleum Contaminated Soils  

E-Print Network (OSTI)

Analytical Requirements for Petroleum Contaminated Soils According to 20 NMAC 9.1.704 704. REQUIRED), or other applicable statutes. Page 1 of 1Analytical Requirements for Petroleum Contaminated Soils 4

187

Definition: Analytical Modeling | Open Energy Information  

Open Energy Info (EERE)

Analytical Modeling Jump to: navigation, search Dictionary.png Analytical Modeling 1. A simple version: A model is a simplified representation of some aspect of the real world. 2....

188

Data, information and analytics as services  

Science Conference Proceedings (OSTI)

While organizations are trying to become more agile to better respond to market changes in the midst of rapidly globalizing competition by adopting service orientation-commoditization of business processes, architectures, software, infrastructures and ... Keywords: Agile analytics, Analytics-as-a-service, Business analytics, Cloud computing, Data-as-a-service, Information-as-a-service, Service-orientation

Dursun Delen, Haluk Demirkan

2013-04-01T23:59:59.000Z

189

Using google analytics to explore ETDs use  

Science Conference Proceedings (OSTI)

This poster presents preliminary Google Analytics usage data for a collection of electronic theses and dissertations (ETDs). Correlation of page views with page type, user location, and source (referring link) shows that, during the study period, most ... Keywords: ETDs, evaluation, google analytics, usage, web analytics, web metrics

Midge Coates

2013-07-01T23:59:59.000Z

190

Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

AOCS provides a Laboratory Proficiency Program (LPP). Formerly the Smalley Check Sample Program LPP is a collaborative proficiency testing service for oil and fat related commodities, oilseeds, oilseed meals, and edible fats. Laboratory Proficiency Testing

191

Leading Testing Laboratories  

Science Conference Proceedings (OSTI)

... Fax: 86-20-6196-8925 E-Mail: york.li@ledtestlab.com Send E-Mail to Laboratory: Leading Testing Laboratories ... [22/S14] EPA Integral LED Lamps v ...

2013-09-06T23:59:59.000Z

192

State Laboratory Contacts DH  

Science Conference Proceedings (OSTI)

State Laboratory Contact Information DH. District of Columbia. ... Lab Closed See State Director's List. No Certificate. Delaware. ...

2013-10-24T23:59:59.000Z

193

Lisheng Safety Laboratory  

Science Conference Proceedings (OSTI)

Lisheng Safety Laboratory. NVLAP Lab Code: 200882-0. Address and Contact Information: Electronic & Lighting (Xiamen) Co. Ltd. No. ...

2013-09-27T23:59:59.000Z

194

Savannah River National Laboratory  

At a glance Remote Electrical Throw Device Engineers at the Savannah River National Laboratory ... sufficient manufacturing capacity, established dist ...

195

Engineering Laboratory Homepage  

Science Conference Proceedings (OSTI)

... and InfrastructureDisaster-Resilient Buildings, Infrastructure, and ... of the Manufacturing Engineering Laboratory. ... Net-Zero Energy Residential Test ...

2013-08-12T23:59:59.000Z

196

National Renewable Energy Laboratory  

National Renewable Energy Laboratory Technology Transfer Marine Corps Taps NREL to Help Replace Aging Steam Plant with Efficient Biomass Cogeneration

197

State Laboratory Contacts M  

Science Conference Proceedings (OSTI)

... Maine Department of Agriculture Metrology Laboratory Div. QA&R 28 Station House Road Augusta, ME 04333, 333 Cony Rd. ...

2013-09-25T23:59:59.000Z

198

Price Sound Laboratory  

Science Conference Proceedings (OSTI)

Price Sound Laboratory. NVLAP Lab Code: 200874-0. Address and Contact Information: 638 RALEIGH STREET WINNIPEG ...

2013-10-31T23:59:59.000Z

199

Laboratory Coordinating Council  

Science Conference Proceedings (OSTI)

The nation's network of DOE Laboratories and Facilities hold an extensive store of research and development expertise and unique equipment developed for their various missions. The Laboratory Coordinating Council (LCC) gives US industry access to a ``virtual'' laboratory that can be tailored to meet the specific requirements of almost any research project. Established in 1995, the LCC responds to the major process industries' R and D needs with the capabilities of 16 DOE Laboratories and Facilities.

Chum, H.

1998-12-21T23:59:59.000Z

200

Cytogenetic Biodosimetry Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Cytogenetic Biodosimetry Laboratory Cytogenetic Biodosimetry Laboratory Blood samples are shipped at room temperature to the laboratory. White blood cells, lymphocytes, are cultured under sterile conditions in an incubator for 48 hours using a standard growth medium. Culture tubes are centrifuged, and cells are re-suspended in a weak salt solution, which allows the chromosomes to separate and spread evenly on slides.

Note: This page contains sample records for the topic "wtp analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Division of Laboratory Sciences  

E-Print Network (OSTI)

#12;#12;Division of Laboratory Sciences U.S. Department of Health and Human Services Centers and Prevention National Center for Environmental Health Division of Laboratory Sciences Atlanta, Georgia 30341're also working in concert with state public health laboratories, providing training, proficiency testing

202

MAR flow mapping of Analytical Chemistry Operations (Preliminary Report)  

Science Conference Proceedings (OSTI)

The recently released Supplemental Directive, NA-1 SD 1027, updates the radionuclide threshold values in DOE-STD-1027-92 CN1 to reflect the use of modern parameters for dose conversion factors and breathing rates. The directive also corrects several arithmetic errors within the original standard. The result is a roughly four-fold increase in the amount of weapons-grade nuclear material allowed within a designated radiological facility. Radiological laboratory space within the recently constructed Radiological Laboratory Office and Utility Building (RLUOB) is slated to house selected analytical chemistry support activities in addition to small-scale actinide R&D activities. RLUOB is within the same facility operations envelope as TA-55. Consolidation of analytical chemistry activities to RLUOB and PF-4 offers operational efficiency improvements relative to the current pre-CMRR plans of dividing these activities between RLUOB, PF-4, and CMR. RLUOB is considered a Radiological Facility under STD-1027 - 'Facilities that do not meet or exceed Category 3 threshold criteria but still possess some amount of radioactive material may be considered Radiological Facilities.' The supplemental directive essentially increases the allowable material-at-risk (MAR) within radiological facilities from 8.4 g to 38.6 g for {sup 239}Pu. This increase in allowable MAR provides a unique opportunity to establish additional analytical chemistry support functions in RLUOB without negatively impacting either R&D activities or facility operations. Individual radiological facilities are tasked to determine MAR limits (up to the Category 3 thresholds) appropriate to their operational conditions. This study presents parameters that impact establishing MAR limits for RLUOB and an assessment of how various analytical chemistry support functions could operate within the established MAR limits.

Barr, Mary E. [Los Alamos National Laboratory; Farish, Thomas J. [Los Alamos National Laboratory

2012-06-13T23:59:59.000Z

203

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21, 2013 21, 2013 CX-010780: Categorical Exclusion Determination Advanced Analytical Methods for Air and Stray Gas Emissions and Produced Brine Characterization CX(s) Applied: A9, A11, B3.6 Date: 08/21/2013 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory August 21, 2013 CX-010782: Categorical Exclusion Determination A Geomechanical Model for Gas Shales Based on Integration of Stress CX(s) Applied: A9 Date: 08/21/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory August 20, 2013 CX-010783: Categorical Exclusion Determination Isothermal Compressed Air Energy Storage (ICAES) to Support Renewable Energy Integration - Phase Three CX(s) Applied: B3.6, B5.1 Date: 08/20/2013 Location(s): New Hampshire Offices(s): National Energy Technology Laboratory

204

Argonne Tribology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Tribology Laboratory Tribology Laboratory CemeCon coating chamber CemeCon coating chamber Engineers in Argonne's Tribology Laboratory conduct research on advanced tribological systems (surface engineered materials, lubricants, fuels, and fuel/lubricant additives) for use in aggressive environments (for example, where two surfaces are rubbing together). The Laboratory is equipped with a full range of coating development, friction and wear testing, and characterization facilities. Evaluation of Coatings and Systems The Tribology Laboratory evaluates high performance coatings primarily intended to protect engine-component surfaces that undergo sliding and rolling contact in advanced transportation systems. Also tested are systems powered by diesel and gasoline engines, as well as

205

Leadership | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Message from the Director Board of Governors Organization Chart Argonne Distinguished Fellows Emeritus Scientists & Engineers History Discoveries Prime Contract Contact Us Leadership Argonne integrates world-class science, engineering, and user facilities to deliver innovative research and technologies. We create new knowledge that addresses the scientific and societal needs of our nation. Eric D. Isaacs Eric D. Isaacs, Director, Argonne National Laboratory Director, Argonne National Laboratory Argonne National Laboratory Eric D. Isaacs, a prominent University of Chicago physicist, is President of UChicago Argonne, LLC, and Director of Argonne National Laboratory. Mark Peters Mark Peters, Deputy Lab Director for Programs Deputy Laboratory Director for Programs

206

Analytical Chemistry Division annual progress report for period ending December 31, 1985  

SciTech Connect

Progress reports are presented for the four major sections of the division: analytical spectroscopy, radioactive materials laboratories, inorganic chemistry, and organic chemistry. A brief discussion of the division's role in the Laboratory's Environmental Restoration and Facilities Upgrade is given. Information about quality assurance and safety programs is presented, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited.

Shultz, W.D.

1986-05-01T23:59:59.000Z

207

Argonne National Laboratory - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Reports Argonne National Laboratory Activity Reports 2012 Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility, July 2012 Review Reports 2011 Review of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility Readiness Assessment (Implementation Verification Review Sections), November 2011 Nuclear Safety Enforcement Regulatory Assistance Review of UChicago Argonne, LLC at the Argonne National Laboratory, October 3, 2011 Activity Reports 2011 Orientation Visit to the Argonne National Laboratory, August 2011 Review Reports 2005 Independent Oversight Inspection of Environment, Safety and Health Programs at Argonne National Laboratory, Summary Report, Vol. 1, May, 2005 Independent Oversight Inspection of Environment, Safety, and Health Programs at the Argonne National Laboratory, Technical Appendices, Volume II, May 2005

208

Laboratory Computing Resource Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Computing DOE Logo Computing DOE Logo Search BIO ... Search Argonne Home > BIO home > Laboratory Computing Resource Center BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne Argonne National Laboratory Logo Laboratory Computing Resource Center In 2002 Argonne National Laboratory established the Laboratory Computing Project to enable and promote the use of high-performance computing (HPC) across the Laboratory in support of its varied research missions. The Laboratory Computing Resource Center (LCRC) was established, and in April 2003 LCRC began full operations with Argonne’s first teraflops computing cluster, Jazz. In 2010 Jazz was replaced by Fusion, with a peak performance of 30 teraflops (and still growing). We just acquired Blues which will a performance of 100 teraflops.

209

Preparative ultracentrifugation and analytic ultracentrifugation of plasma lipoproteins  

Science Conference Proceedings (OSTI)

There are several chapters and a book dealing with both preparative and analytical ultracentrifugation (AnUC) of plasma lipoproteins. However, what we would like to present are the procedures as currently done here at Donner Laboratory. They have been modified and improved since the earliest lipoprotein flotation was demonstrated in 1949, and this will present a combined, practical up-date of our chapter on AnUC in Blood Lipids and Lipoproteins (1972) and our chapter on preparative procedures in the American Oil Chemists' Society (AOCS) book, Analysis of Lipids and Lipoproteins (1975). This information is intended as a practical laboratory guide to anyone who wishes to do preparative and AnUC of plasma lipoproteins. 10 refs., 6 figs., 1 tab.

Orr, J.R.; Adamson, G.L.; Lindgren, F.T.

1990-03-01T23:59:59.000Z

210

Single media thermocline TES studies at Sandia National Laboratories  

SciTech Connect

The status of thermocline thermal energy storage (TES) development at Sandia National Laboratories is summarized. The work centers around testing in the 1200 gal engineering prototype thermocline test facility. The results of heat loss, charge, discharge and static tests in the prototype tank are described. Also described are analytical work and a supportive laboratory-scale program which is investigating diffusers to inhibit mixing in the tank.

Gross, R.J.

1981-01-01T23:59:59.000Z

211

The target laboratory of the Pelletron Accelerator's facilities  

SciTech Connect

A short report on the activities developed in the Target Laboratory, since 1970, will be presented. Basic target laboratory facilities were provided to produce the necessary nuclear targets as well as the ion beam stripper foils. Vacuum evaporation units, a roller, a press and an analytical balance were installed in the Oscar Sala building. A brief historical report will be presented in commemoration of the 40{sup th} year of the Pelletron Accelerator.

Ueta, Nobuko; Pereira Engel, Wanda Gabriel [Nuclear Physics Department - University of Sao Paulo (Brazil)

2013-05-06T23:59:59.000Z

212

NATIONAL LEAD COMPANY OF OHIO HEALTH AND SAFETY DIVISION - ANALYTICAL...  

Office of Legacy Management (LM)

HEALTH AND SAFETY DIVISION - ANALYTICAL DEPT. ANALYTICAL DATA SHEET NLO NO. DISTRIBUTION OF COPIES 1 Analytical Loboratory (RECORD COPY) 2 Industrial Hygiene & Radiation Dept. 3...

213

OCIO Technology Summit: Data Analytics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OCIO Technology Summit: Data Analytics OCIO Technology Summit: Data Analytics May 13, 2013 - 1:51pm Addthis OCIO Technology Summit: Data Analytics The Energy Department's Office of...

214

Going green earns Laboratory gold  

NLE Websites -- All DOE Office Websites (Extended Search)

Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design...

215

Vehicle Technologies Office: National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories to someone by E-mail Share Vehicle Technologies Office: National Laboratories on Facebook Tweet about Vehicle Technologies Office: National Laboratories on...

216

Laboratory program helps small businesses  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab helps small businesses Laboratory program helps small businesses The free program, run jointly by Los Alamos and Sandia National Laboratories, leverages the laboratories'...

217

Widget:AnalyticsSummary | Open Energy Information  

Open Energy Info (EERE)

AnalyticsSummary AnalyticsSummary Jump to: navigation, search Google Analytics widget that returns an HTML summary of site-wide analytics. Use any arbitrary number of days; for instance, 30-31 days will say "a month", 7 days will say "a week", 1 day will say "a day", 365 days will say "a year", and all other day rates will say "n days". How to call it: {{#Widget:AnalyticsSummary|days=30}} Example Output Loading... Statistics summary for the last 1 7 30 365 days Retrieved from "http://en.openei.org/w/index.php?title=Widget:AnalyticsSummary&oldid=535712" Category: Widgets What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

218

Compilation of TRA Summaries  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 2011 September 2011 Technology Readiness Assessment Summary Number Title Report Date TRA-1 Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory, Balance of Facilities and LAW Waste Vitrification Facilities at Hanford March 2007 TRA-2 Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility at Hanford March 2007 TRA-3 Waste Treatment and Immobilization Plant (WTP) Pretreatment Facility at Hanford March 2007 TRA-4 K Basins Sludge Treatment Process at Hanford August 2007 TRA-5 Savannah River Site Tank 48H Waste Treatment Project at SRS July 2007 TRA-6 233Uranium Downblending and Disposition Project at Oak Ridge/ORNL September 2008 TRA-7 SRS Salt Waste Processing Facility at SRS July 2009

219

Thirty-seventh ORNL/DOE conference on analytical chemistry in energy technology: Abstracts of papers  

Science Conference Proceedings (OSTI)

Abstracts only are given for papers presented during the following topical sessions: Opportunities for collaboration: Industry, academic, national laboratories; Developments in sensor technology; Analysis in containment facilities; Improving the quality of environmental data; Process analysis; Field analysis; Radiological separations; Interactive analytical seminars; Measurements and chemical industry initiatives; and Isotopic measurements and mass spectroscopy.

NONE

1997-12-31T23:59:59.000Z

220

Information Management, Analytics & Optimization Services IMS System High Availability Health Check Service Offering  

E-Print Network (OSTI)

Information Management, Analytics & Optimization Services IMS System High Availability Health Check Service Offering The IMS System High Availability Health Check is a special service offering from the IMS Laboratory Technical Specialist Group will be happy to help. Visit our website at: ibm.com/software/data/services

Note: This page contains sample records for the topic "wtp analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

FY 2005 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Congressional Budget Congressional Budget Request Laboratory Tables Preliminary Department of Energy FY 2005 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Laboratory Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. include both the discretionary and mandatory funding in the budget. balances, deferrals, rescissions, or other adjustments appropria ted as offsets to the DOE appropriations by the Congress.

222

News | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

News Argo exascale architecture Click on image to enlarge. Designing a new operating system for exascale architectures Full Story Argonne National Laboratory has been awarded a...

223

ARGONNE NATIONAL LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory wild@mcs.anl.gov ABSTRACT Code optimization in the high-performance computing realm has traditionally focused on reducing execution time. The problem, in...

224

Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

checking the document effective date on the PS Training website. Brookhaven National Laboratory Photon Sciences Directorate Subject: Photon Sciences TECH PROC LN2 Manual Fill...

225

Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

reminder to persons whose area will be inspected (i.e. Cognizant Space Managers) Brookhaven National Laboratory Photon Sciences Directorate Subject: ENVIRONMENTAL, SAFETY AND...

226

Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

current version by checking the document effective date on the PS Training website. Brookhaven National Laboratory Photon Sciences Directorate Subject: Photon Sciences ELEC PPE -...

227

Pacific Northwest National Laboratory  

NLE Websites -- All DOE Office Websites

Pacific Northwest National Laboratory Skip to Main Content U.S. Department of Energy Search PNNL Search PNNL Home About Research Publications Jobs News Contacts Featured Research...

228

NATIONAL ENERGY TECHNOLOGY LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

NATIONAL ENERGY TECHNOLOGY LABORATORY In 2011, the Office of Fossil Energy evaluated the realized and estimated benefits provided by its programs. Implemented by NETL, these...

229

Oak Ridge National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge National Laboratory Search Go Find People Contact Site Index Comments Home News News Releases Story Tips Features Contacts ORNL Review Magazine ORNL in the News...

230

Shared Intellect * Shared Laboratories...  

NLE Websites -- All DOE Office Websites (Extended Search)

VOLUME 3, ISSUE 3 NETL-RUA 2013 SPRING MEETING: Growth Through Collaboration National Energy Technology Laboratory - Regional University Alliance (NETL-RUA) members joined...

231

Hollings Marine Laboratory Homepage  

Science Conference Proceedings (OSTI)

... The Hollings Marine Laboratory (HML) is a ... the Nation's coastal environmental- and health-related problems ... s National Ocean Service, the National ...

2013-08-19T23:59:59.000Z

232

Sandia National Laboratories - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Sandia National Laboratories Review Reports 2013 Review of the Sandia Site Office Quality Assurance Assessment of the Manzano Nuclear Operations, January 2013 Activity...

233

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

participants to respond to simulated hazardous materials emergencies involving a rail car, a clandestine laboratory, various modes of transportation, industrial piping...

234

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 - Hours after a disaster declaration by Los Alamos County, Los Alamos National Laboratory officials on Friday described "millions" of dollars in damage to environmental...

235

Contained radiological analytical chemistry module  

DOE Patents (OSTI)

A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

Barney, David M. (Scotia, NY)

1989-01-01T23:59:59.000Z

236

Contained radiological analytical chemistry module  

DOE Patents (OSTI)

A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

Barney, David M. (Scotia, NY)

1990-01-01T23:59:59.000Z

237

AOCS Analytical Guidelines S 3-64  

Science Conference Proceedings (OSTI)

Methods for the Testing of Epoxidized Oils AOCS Analytical Guidelines S 3-64 Methods Downloads Methods Downloads AOCS DEFINITION Not applicable SCOPE

238

Nanomechanical Sensor Detects and Identifies Chemical Analytes  

ORNL 2010-G00612/jcn UT-B ID 200802066 Nanomechanical Sensor Detects and Identifies Chemical Analytes Technology Summary ORNL researchers developed a ...

239

Radiological Laboratory, Utility, Office Building LEED Strategy & Achievement  

SciTech Connect

Missions that the Radiological Laboratory, utility, Office Building (RLUOB) supports are: (1) Nuclear Materials Handling, Processing, and Fabrication; (2) Stockpile Management; (3) Materials and Manufacturing Technologies; (4) Nonproliferation Programs; (5) Waste Management Activities - Environmental Programs; and (6) Materials Disposition. The key capabilities are actinide analytical chemistry and material characterization.

Seguin, Nicole R. [Los Alamos National Laboratory

2012-07-18T23:59:59.000Z

240

Fumonisin Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for B1, B2, B3,and total Fumonisin in corn meal samples. Fumonisin Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laboratories Laboratory methods

Note: This page contains sample records for the topic "wtp analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Material Measurement Laboratory Professional Research ...  

Science Conference Proceedings (OSTI)

... at the NIST, Gaithersburg Laboratories in Gaithersburg ... NIST Hollings Marine Laboratory (HML) in ... sponsoring institution of higher education and be ...

2013-05-26T23:59:59.000Z

242

Balance Calibration and Use in an Analytical Environment ...  

Science Conference Proceedings (OSTI)

... the sources of weighing errors in analytical environments, methodologies for ... to use of balances in an analytical environment where compliance ...

2013-02-19T23:59:59.000Z

243

LANL: Facility Focus, MST-6 Materials Surface Science Investigations Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

07-018 Spring 2007 07-018 Spring 2007 T he MST-6 Materials Surface Science Investigations Laboratory is home to a one-of-a-kind integrated instrument for surface science and materials research, allowing scientists at Los Alamos National Laboratory the unique opportunity to perform coordinated research using ultra-high vacuum surface measurements, in situ reactions, and materials synthesis tools. Housed in the Materials Science Laboratory, the surface science instrument features an ultra-clean integrated system for surface analysis and in situ surface modification, thin film deposition, and surface gas reactions. This integrated system is used for analytical surface science; materials electronic

244

SANDIA NATIONAL LABORATORIES  

NLE Websites -- All DOE Office Websites (Extended Search)

Impacts on Sandia and the Nation Impacts on Sandia and the Nation 2 SANDIA NATIONAL LABORATORIES 3 LDRD Impacts on Sandia and the Nation For further information, contact: Wendy R. Cieslak Senior Manager, Science, Technology, and Engineering Strategic Initiatives wrciesl@sandia.gov (505) 844-8633 or Henry R. Westrich LDRD Program Manager hrwestr@sandia.gov 505-844-9092 LDRD Impacts on Sandia and the Nation ABOUT THE COVER: Images from some of the case studies in this brochure: a near-UV light- emitting diode (LED), a cell membrane, a NISAC model, synthetic aperture radar (SAR) image of Washington, D.C. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT 4 SANDIA NATIONAL LABORATORIES 5 LDRD Impacts on Sandia and the Nation Sandia National Laboratories' Laboratory Directed Research and Development (LDRD) Program:

245

FY 2010 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary May 2009 Office of Chief Financial Officer FY 2010 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper Laboratory / Facility Index FY 2010 Congressional Budget Page 1 of 3 (Dollars In Thousands) 2:08:56PM Department Of Energy 5/4/2009 Page Number FY 2008 Appropriation FY 2009 Appropriation FY 2010 Request Laboratory Table 1 1 $1,200

246

Laboratory Protection Division, Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Points of Contact Points of Contact Organization Chart (pdf) Groups Emergency Services Emergency Management Security Operations BNL Site Access Main Gate Access Forms Welcome to the... Laboratory Protection Division (LP) Mission Statement: To serve and protect Brookhaven National Laboratory's staff, guests, and interests from the undesirable consequences of unwanted events by providing preparedness, assessment, engineering, and immediate response services for all types of security and non-security related emergencies. Protect DOE special nuclear materials, classified matter, sensitive information, and property against theft, diversion, or destruction; prevent the sabotage of programs that could result in significant scientific or financial impact; prevent the malevolent release of hazardous materials including radiological, chemical, and infectious agents or other criminal acts protecting people, property, and national security, providing a safe and secure environment for employees, the public, and the environment.

247

Microsoft Word - Satchwell Analytical Frameworks to Incorporate DR FINAL for RCO.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Analytical Frameworks to Analytical Frameworks to Incorporate Demand Response in Long-term Resource Planning Andrew Satchwell 1 and Ryan Hledik 2 1 Lawrence Berkeley National Laboratory, 2 The Brattle Group Environmental Energy Technologies Division September 2013 Preprint of article submitted to Utilities Policy Journal. The work described in this report was funded by the National Electricity Delivery Division of the U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability under Lawrence Berkeley National Laboratory Contract No. DE-AC02- 05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither

248

Letter of Intent for RPP Characterization Program Process Engineering and Hanford Analytical Services and Characterization Project  

Science Conference Proceedings (OSTI)

The Characterization Project level of success achieved by the River Protection Project (RPP) is determined by the effectiveness of several organizations across RPP working together. The requirements, expectations, interrelationships, and performance criteria for each of these organizations were examined in order to understand the performances necessary to achieve characterization objectives. This Letter of Intent documents the results of the above examination. It formalizes the details of interfaces, working agreements, and requirements for obtaining and transferring tank waste samples from the Tank Farm System (RPP Process Engineering, Characterization Project Operations, and RPP Quality Assurance) to the characterization laboratory complex (222-S Laboratory, Waste Sampling and Characterization Facility, and the Hanford Analytical Service Program) and for the laboratory complex analysis and reporting of analytical results.

ADAMS, M.R.

2000-02-25T23:59:59.000Z

249

The Evolving Leadership Path of Visual Analytics  

Science Conference Proceedings (OSTI)

This is a requested book chapter for an internationally authored book on visual analytics and related fields, coordianted by a UK university and to be published by Springer in 2012. This chapter is an overview of the leadship strategies that PNNL's Jim Thomas and other stakeholders used to establish visual analytics as a field, and how those strategies may evolve in the future.

Kluse, Michael; Peurrung, Anthony J.; Gracio, Deborah K.

2012-01-02T23:59:59.000Z

250

Technosocial predictive analytics for illicit nuclear trafficking  

Science Conference Proceedings (OSTI)

Illicit nuclear trafficking networks are a national security threat. These networks can directly lead to nuclear proliferation, as state or nonstate actors attempt to identify and acquire nuclear weapons-related expertise, technologies, components, and ... Keywords: analytical gaming, decision making, illicit trafficking, knowledge management, modeling, nuclear proliferation, predictive analytics

Antonio Sanfilippo; Scott Butner; Andrew Cowell; Angela Dalton; Jereme Haack; Sean Kreyling; Rick Riensche; Amanda White; Paul Whitney

2011-03-01T23:59:59.000Z

251

Nanochannel and its application in analytical chemistry  

Science Conference Proceedings (OSTI)

The nanochannels method for the separation and detection of analytes plays an important role in the analytical chemistry and is exhibiting the great potential advantages and promising future. In this review we bring together and discuss a number of nanochannels ... Keywords: applications, nanochannels, preparation, separation

Zenglian Yue; Guoqing Zhao; Bin Peng; Shasheng Huang

2009-12-01T23:59:59.000Z

252

Strong Analytic Controllability for Hydrogen Control Systems  

E-Print Network (OSTI)

The realization and representation of so(4,2) associated with the hydrogen atom Hamiltonian are derived. By choosing operators from the realization of so(4,2) as interacting Hamiltonians, a hydrogen atom control system is constructed, and it is proved that this control system is strongly analytically controllable based on a time-dependent strong analytic controllability theorem.

Chunhua Lan; Tzyh-Jong Tarn; Quo-Shin Chi; John W. Clark

2004-09-22T23:59:59.000Z

253

eoretical Terms without Analytic Truths Michael Strevens  

E-Print Network (OSTI)

eoretical Terms without Analytic Truths Michael Strevens To appear in Philosophical Studies A When new theoretical terms are introduced into scienti c discourse, pre- vailing accounts imply, analytic a new account of the intro- duction of theoretical terms that avoids both de nition and reference- xing

Strevens, Michael

254

Visual Analytics at the Pacific Northwest  

E-Print Network (OSTI)

customers. The success of PNNL's information visualization software, such as IN-SPIRETM and StarlightTM, and publications in top visualization journals and conference proceedings are the results of PNNL researchers with a focus on analytical reasoning facilitated by interactive visual interfaces. PNNL's visual analytics team

255

Business Intelligence and Analytics: Research Directions  

Science Conference Proceedings (OSTI)

Business intelligence and analytics (BIA) is about the development of technologies, systems, practices, and applications to analyze critical business data so as to gain new insights about business and markets. The new insights can be used for improving ... Keywords: Business intelligence, business analytics

Ee-Peng Lim; Hsinchun Chen; Guoqing Chen

2013-01-01T23:59:59.000Z

256

Scale and complexity in visual analytics  

Science Conference Proceedings (OSTI)

The fundamental problem that we face is that a variety of large-scale problems in security, public safety, energy, ecology, health care and basic science all require that we process and understand increasingly vast amounts and variety of data. There ... Keywords: analytics, scalability, visual analytics, visualization

George Robertson; David Ebert; Stephen Eick; Daniel Keim; Ken Joy

2009-12-01T23:59:59.000Z

257

Safeguards Laboratory (SL) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Safeguards Laboratory Safeguards Laboratory May 30, 2013 The Safeguards Laboratory is a Department of Energy user facility equipped with a comprehensive set of field-deployable instrumentation for safeguards system development and personnel training. Mock-ups using industrial equipment and reference nuclear materials simulate real-world conditions for training, testing, and evaluations. The lab's openness and availability to the private sector enable development of new technologies that combat the proliferation of weapons of mass destruction. Applications Training and International Outreach Nondestructive Analysis Measurements Instrument Evaluations Integrated Safeguards Methodologies Measurement Technique Development Specifications Gamma and X-ray detection systems Handheld survey instruments

258

Sonication standard laboratory module  

DOE Patents (OSTI)

A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

Beugelsdijk, Tony (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM); Erkkila, Tracy H. (Los Alamos, NM); Bronisz, Lawrence E. (Los Alamos, NM); Roybal, Jeffrey E. (Santa Fe, NM); Clark, Michael Leon (Menan, ID)

1999-01-01T23:59:59.000Z

259

Microsoft Word - WTP Report 4-27-07.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Audit Report Audit Report Quality Assurance Standards for the Integrated Control Network at the Hanford Site's Waste Treatment Plant DOE/IG-0764 May 2007 Departmsrrt of Energy Washington, DC 20585 M a y 4, 2007 MEMORANDUM FOR THE SECRETARY FROM: & * Greg ry H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "Quality Assurance Standards for the Integrated Coiltrol Network at the Hanford Site's Waste Treatment Plant" Ii1 one of Ihe lai-gcst and illost impoi-krit of its environmental remediation projects, the Department of Energy is constructing a Waste Treatment Plant at its Hanford, Washington site. The $12.2 billion Plant is designed to treat and prepare for disposal 53 million gallons of radioactive and chemically hazardous waste. In December 2000, the

260

Production rates associated with WTP Britney Hebert, Bijeta ...  

Fluid Mechanics mu 0.005 [kg/m-s] dP 158,027 [Pa] rho(l) 1,000 [Kg/m^3] rho(s) 1,190 [Kg/m^3] nu 5.E-06 [m^2/s] u 4.93 [m/s] Re 12522.2 f 0.045 PSD ...

Note: This page contains sample records for the topic "wtp analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Willingness to Pay Data Potential problems with WTP method  

E-Print Network (OSTI)

enterprise vs. government project? #12;Cost Benefit Analysis · Easy right? · Project definition · Time Scale of project ­ How long will benefits last? ­ How long with costs last? ­ Discounting · Working out all of the costs and benefits in today's terms #12;Cost Benefit Analysis · Easy right? · Project definition · Time

Gottgens, Hans

262

Activity Report for Hanford WTP LAW Melter HA Development, July...  

NLE Websites -- All DOE Office Websites (Extended Search)

(LMP) system. The primary purpose of this HSS field activity, conducted from July 31 to August 5, 2013, was to observe and understand the evolving approach used by Bechtel...

263

WTP: Challenges and Major Breakthroughs in High Level Waste ...  

Science Conference Proceedings (OSTI)

Abstract Scope, The US DOE has developed glass property-composition models to control glass compositions for HLW vitrification at Hanford Waste Treatment...

264

Tank Deployment Plan Overview for Next Generation Melter at WTP  

Primary NGM Decisions (DOE-EM R&D Plan) Time Frame Select NGM Test Platforms for R&D 2011 Down-Select NGM Melter Technologies 2013/14 Select HLW and LAW NGM

265

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

remembers former director Harold remembers former director Harold Agnew September 30, 2013 Manhattan Project pioneer was LANL director from 1970-1979 LOS ALAMOS, N.M., Sept. 30, 2013-Los Alamos National Laboratory Director Charlie McMillan today remembered Harold Agnew as a national treasure who transformed the Laboratory into what it is in the 21st century. "His contributions to the Laboratory made us the institution we are today," McMillan said. "It was his vision - decades ago - that recognized that national security science - 2 - brings value to a broad spectrum of breakthroughs. Los Alamos and the nation will be forever in Harold's debt." Agnew died at home on Sunday, Sept. 29, his family announced. He was the third director of Los Alamos National Laboratory, succeeding Robert

266

FY 2007 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory tables Laboratory tables preliminary Department of Energy FY 2007 Congressional Budget Request February 2006 Printed with soy ink on recycled paper Office of Chief Financial Officer Laboratory tables preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2007 Congressional Budget Page 1 of 3 (Dollars In Thousands) 12:10:40PM Department Of Energy 1/31/2006 Page Number FY 2005 Appropriation FY 2006 Appropriation FY 2007

267

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

employees receive Pollution Prevention employees receive Pollution Prevention Awards April 23, 2013 Protecting environment, saving taxpayer dollars LOS ALAMOS, N.M., April 23, 2013-Nearly 400 Los Alamos National Laboratory employees on 47 teams received Pollution Prevention awards for protecting the environment and saving taxpayers more than $8 million. The employees were recognized at the Laboratory's annual Pollution Prevention Awards ceremony on Monday (April 22), Earth Day. "The Pollution Prevention Awards are the result of people taking the initiative to improve their own operations," said Pat Gallagher of the Laboratory's Environmental - 2 - Stewardship group. "These are clever, innovative, homegrown and home-owned ideas that save the Laboratory and taxpayers millions of dollars each year while reducing

268

FY 2011 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Department of Energy FY 2011 Congressional Budget Request DOE/CF-0055 March 2010 Office of Chief Financial Officer Laboratory Tables Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Department of Energy FY 2011 Congressional Budget Request DOE/CF-0055 Laboratory / Facility Index FY 2011 Congressional Budget Page 1 of 3 (Dollars In Thousands) 6:24:57AM Department Of Energy 1/29/2010 Page

269

FY 2008 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Table Laboratory Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer Laboratory Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2008 Congressional Budget Page 1 of 3 (Dollars In Thousands) 6:51:02AM Department Of Energy 2/1/2007 Page Number FY 2006 Appropriation FY 2007 Request FY 2008 Request

270

FY 2006 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 Laboratory Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2006 Congressional Budget Page 1 of 3 (Dollars In Thousands) 3:43:16PM Department Of Energy 1/27/2005 Page Number FY 2004 Comp/Approp FY 2005 Comp/Approp

271

Fy 2009 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary February 2008 Office of Chief Financial Officer Department of Energy FY 2009 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper Laboratory / Facility Index FY 2009 Congressional Budget Page 1 of 3 (Dollars In Thousands) 8:59:25AM Department Of Energy 1/30/2008 Page Number FY 2007 Appropriation FY 2008 Appropriation FY 2009

272

Savannah River National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Savannah River National Laboratory Savannah River National Laboratory srnl.doe.gov SRNL is a DOE National Laboratory operated by Savannah River Nuclear Solutions. At a glance Additive Manufacturing (3D Printing): Selectively Printed Conductive Pathways Researchers at the Savannah River National Laboratory (SRNL) have developed a rapid prototype conductive material that can be used for electrical shielding or circuit fabrication. Background Several rapid prototype technologies currently exist. A few of the technologies produce metallic parts, but the majority produce nonconductive parts made from various grades of plastic. In all of these technologies however, only conductive material or nonconductive material can be used within one part created. There is no known option for 3D printing conductive material for

273

Brookhaven National Laboratory, Office  

NLE Websites -- All DOE Office Websites (Extended Search)

of 2006 the Office of Educational Programs (OEP) at the U.S. Department of Energy's Brookhaven National Laboratory launched the Open Space Stewardship Program as part of its Green...

274

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

to 150 million over five years LOS ALAMOS, N.M., May 14, 2013-Los Alamos National Laboratory has awarded a master task order agreement in which three small businesses will...

275

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

to 400 million over five years LOS ALAMOS, N.M., Sept. 23, 2013-Los Alamos National Laboratory has awarded master task order agreements to three small businesses for environmental...

276

Laboratory announces 2008 Fellows  

NLE Websites -- All DOE Office Websites (Extended Search)

Kurt E. Sickafus recognized for contributions. December 4, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as...

277

Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Economic development in Northern New Mexico focus of new podcast from Los Alamos National Laboratory November 25, 2013 Podcast part of Lab's new multi-channel effort to better...

278

ASHRAE's Living Laboratory  

SciTech Connect

ASHRAE recently remodeled its headquarters building in Atlanta with the intention of making the building a LEED Gold building. As part of that renovation the building was enhanced with additional sensors and monitoring equipment to allow it to serve as a Living Laboratory for use by members and the general public to study the detailed energy use and performance of buildings. This article provides an overview of the Living Laboratory and its capabilities.

Jarnagin, Ronald E.; Brambley, Michael R.

2008-10-01T23:59:59.000Z

279

Licenses Available in Analytical Instrumentation | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Analytical Instrumentation Analytical Instrumentation SHARE Analytical Instrumentation 199700361 Neutron Detection Using an Embedded Sol-Gel Neutron Absorber 199700370 Bioluminescent Bioreporter Integrated Circuits 199900683 Microscale Ion Trap Mass Spectrometer 200101009 Automated Sampling for Microarray Readout Using Electrospray Mass Spectrometry 200201069 Planar Flow-By Electrode Capacitive Electrospray Ion Source 200201145 Fluorescent Nanoparticles for Radiation Detection 200301290 Pulse Thermal Processing of Functional Materials Using a Directed Plasma Arc 200401367 Composite Solid-State Scintillators for Neutron Detection 200501505 Resistive-Glass Drift Tube for Use as a Controlled Kinetic Energy Ion Source 200601675 Functionalized Gold Nanoparticles for Rapid,

280

H. W. Laboratory manual: 100 Area section  

SciTech Connect

The purpose of this manual is to present a Hazard Breakdown of all jobs normally encountered in the laboratory work of the three sections comprising the Analytic Section, Metallurgy and Control Division of the Technical Department. A Hazard Breakdown is a careful analysis of any job in which the source of possible dangers is clearly indicated for each particular step. The analysis is prepared by individuals who are thoroughly familiar with the specific job or procedure. It is felt that if the hazards herein outlined are recognized by the Laboratory personnel and the suggested safety cautions followed, the chance for injury will be minimized and the worker will become generally more safety conscious. The manual, which is prefaced by the general safety rules applying to all the laboratories, is divided into three main sections, one for each of the three sections into which the Laboratories Division is divided. These sections are as follows: Section 1 -- 200 Area Control; Section 2 -- 100 Area Control; Section 3 -- 300 Area Control, Essential Materials, and Methods Improvement.

1950-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "wtp analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Tank 241-S-102, Core 232 analytical results for the final report  

SciTech Connect

This document is the analytical laboratory report for tank 241-S-102 push mode core segments collected between March 5, 1998 and April 2, 1998. The segments were subsampled and analyzed in accordance with the Tank 241-S-102 Retained Gas Sampler System Sampling and Analysis Plan (TSAP) (McCain, 1998), Letter of Instruction for Compatibility Analysis of Samples from Tank 241-S-102 (LOI) (Thompson, 1998) and the Data Quality Objectives for Tank Farms Waste Compatibility Program (DQO) (Mulkey and Miller, 1998). The analytical results are included in the data summary table (Table 1).

STEEN, F.H.

1998-11-04T23:59:59.000Z

282

B Plant canyon sample TK-21-1 analytical results for the final report  

Science Conference Proceedings (OSTI)

This document is the analytical laboratory report for the TK-21-1 sample collected from the B Plant Canyon on February 18, 1998. The sample was analyzed in accordance with the Sampling and Analysis Plan for B Plant Solutions (SAP) (Simmons, 1997) in support of the B Plant decommissioning project. Samples were analyzed to provide data both to describe the material which would remain in the tanks after the B Plant transition is complete and to determine Tank Farm compatibility. The analytical results are included in the data summary table (Table 1).

Steen, F.H.

1998-04-10T23:59:59.000Z

283

Novel Battery Testing Procedures and Analytical Methodologies for Hybrid Electric Vehicles  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory has developed novel testing procedures and analytical methodologies to assess the performance of batteries for use in hybrid electric vehicles. Tests include both characterization and cycle life and/or calendar life. Tests have been designed for both Power Assist and Dual Mode applications. Analytical procedures include a battery scaling methodology, the calculation of pulse resistance, pulse power, available energy, and differential capacitance, and the modeling of calendar and cycle life data. At periodic intervals during life testing, a series of Reference Performance Tests are executed to determine changes in the baseline performance of the batteries.

Motloch, Chester George; Batt, J. R.; Christophersen, Jon Petter; Wright, Randy Ben; Hunt, Gary Lynn

2001-06-01T23:59:59.000Z

284

MEDICAL LABORATORY SCIENCES The role of the medical laboratory  

E-Print Network (OSTI)

in Medical Laboratory Sciences and are eligible to sit for national certification examinations. Admission website, wichita.edu/chp under Medical Laboratory Sciences. The application requires a completed

285

Visualization and Analytics Software at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Analytics Analytics Visualization and Analytics AVS/Express AVS/Express includes functionality for data visualization and analysis, image processing and data display. It uses a graphical application development environment. Read More » VisIt - 3D Scientific Visualization VisIt is a point-and-click 3D scientific visualization application that supports most common visualization techniques (e.g., isocontouring and volume rendering) on structured and unstructured grids. Due to its distributed and parallel architecture, VisIt is able to handle very large datasets interactively. In addition, VisIt is extensible, allowing users to add data loaders or additional analysis tools to VisIt. The NERSC Analytics Group has developed extensions to VisIt to support NERSC user applications,

286

Software and Analytical Tools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information Resources » Software and Analytical Tools Information Resources » Software and Analytical Tools Software and Analytical Tools October 8, 2013 - 2:12pm Addthis Software and analytical tools are available to help Federal agencies implement energy- and water-efficiency projects. Building Energy Software Tools Directory: This U.S. Department of Energy's Building Technology Office website lists more than 400 software tools for evaluating energy efficiency in facilities. Building Life Cycle Cost (BLCC) Programs: The following National Institute of Standards and Technology programs help compute and analyze capital investments in buildings: BLCC5 Program: Analyze capital investments in buildings. Energy Escalation Rate Calculator: Compute an average annual escalation rate. Distributed Generation Energy Technology Capital Costs: This National

287

Analytical Solutions for Cloud-Drop Concentration  

Science Conference Proceedings (OSTI)

This note compares and evaluates the analytical solutions of Squires and Twomey for cloud droplet concentration. Either solution is likely to be fairly accurate (30%) when the slope parameter (?) of the cloud condensation nuclei distribution is ...

David B. Johnson

1981-01-01T23:59:59.000Z

288

AOCS Analytical Guidelines Ja 12-89  

Science Conference Proceedings (OSTI)

Analysis of Lecithin Co-Products AOCS Analytical Guidelines Ja 12-89 Methods Downloads Methods Downloads AOCS DEFINITION These guidelines identify standard methods that are recommended for th

289

Lee Cyclogenesis. Part I: Analytic Studies  

Science Conference Proceedings (OSTI)

The growth of synoptic scale cyclones imbedded in a baroclinically unstable zonal flow over a long straight mountain range is investigated. Two different analytical models of the phenomenon are used.

J. L. Hayes; R. T. Williams; M. A. Rennick

1987-01-01T23:59:59.000Z

290

Analytical LandAtmosphere Radiometer Model  

Science Conference Proceedings (OSTI)

Conversion of radiometric land surface temperature (?r) to an equivalent isothermal (aerodynamic) surface temperature (?i) is important in balancing the land surface energy budget with satellite-based ?r measurements. An analytical land...

Ayman Suleiman; Richard Crago

2002-02-01T23:59:59.000Z

291

Analytic Representations of Standard Atmosphere Temperature Profiles  

Science Conference Proceedings (OSTI)

Analytic functions which approximate six commonly used standard temperature profiles (the AFGL set, and the 1976 U.S. Standard) are described. These provide a uniform way of rounding off the sharp corners of the original models, and have been ...

Stephen B. Fels

1986-01-01T23:59:59.000Z

292

Analytic Power LLC | Open Energy Information  

Open Energy Info (EERE)

Analytic Power LLC Analytic Power LLC Jump to: navigation, search Name Analytic Power LLC Place Woburn, Massachusetts Zip 01801 Sector Hydrogen Product Fuel cell developer Website http://www.analytic-power.com/ Coordinates 42.4884618°, -71.1329685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4884618,"lon":-71.1329685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

Bruhat-Tits buildings and analytic geometry  

E-Print Network (OSTI)

This paper provides an overview of the theory of Bruhat-Tits buildings. Besides, we explain how Bruhat-Tits buildings can be realized inside Berkovich spaces. In this way, Berkovich analytic geometry canbe used to compactify buildings. We discuss in detail the example of the special linear group. Moreover, we give an intrinsic description of Bruhat-Tits buildings in the framework of non-Archimedean analytic geometry.

Remy, Bertrand; Werner, Annette

2011-01-01T23:59:59.000Z

294

Building Adoption of Visual Analytics Software  

Science Conference Proceedings (OSTI)

Adoption of technology is always difficult. Issues such as having the infrastructure necessary to support the technology, training for users, integrating the technology into current processes and tools, and having the time, managerial support, and necessary funds need to be addressed. In addition to these issues, the adoption of visual analytics tools presents specific challenges that need to be addressed. This paper discusses technology adoption challenges and approaches for visual analytics technologies.

Chinchor, Nancy; Cook, Kristin A.; Scholtz, Jean

2012-01-05T23:59:59.000Z

295

Idaho's Radiological and Environmental Sciences Laboratory , OAS-L-12-02  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho's Radiological and Idaho's Radiological and Environmental Sciences Laboratory OAS-L-12-02 February 2012 Department of Energy Washington, DC 20585 February 21, 2012 MEMORANDUM FOR THE MANAGER, IDAHO OPERATIONS OFFICE FROM: Daniel M. Weeber, Director Eastern Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Idaho's Radiological and Environmental Sciences Laboratory" BACKGROUND The Department of Energy owns and operates the Radiological and Environmental Sciences Laboratory (RESL) through the Idaho Operations Office (Idaho). RESL is a reference measurements laboratory specializing in analytical chemistry, radiation measurements and calibrations, and quality assurance. RESL had been located at the Idaho National Laboratory

296

Sandia National Laboratories: Sandia National Laboratories: Missions:  

NLE Websites -- All DOE Office Websites (Extended Search)

About Nuclear Weapons at Sandia About Nuclear Weapons at Sandia Weapons Researcher World-class scientists and engineers come to Sandia to conduct breakthrough research in nuclear weapons. Sandia designs more than 6,300 parts of a modern nuclear weapon's 6,500 components. Our state-of-the-art laboratories facilitate large-scale testing and computer simulation. Sandia's work is of the highest consequence and those doing the work face awesome responsibilities. Unlike other national labs, which focus on the physics package, Sandia's work is to weaponize the physics package. Sandia must ensure that the other 95% of the weapon's parts work perfectly at every point of contact with the delivery systems. This requires the broadest competencies in engineering, with a deep science foundation. At the core of Sandia's nuclear weapons program is warhead systems

297

Developing Guidelines for Assessing Visual Analytics Environments  

SciTech Connect

Visual analytic systems can be evaluated from a user perspective with quantitative metrics (i.e., time to complete the analysis or the accuracy of the solution found). However, qualitative measures are also useful in a user assessment. These include such measures as the utility of the interactive visualizations in the analysis process and the user's assessment of the efficiency of the analytic process. Quantitative measures can be found if data sets with embedded ground truth are used for analysis. Qualitative measures are more elusive. In this paper we report on an experiment with professional analysts who ranked five of submissions to the VAST 2009 Challenge and provided the rationale for their rankings. Their comments were used in conjunction with a meta-analysis of the 2009 VAST Challenge reviews to produce a set of guidelines for visual analytic systems. As visual analytic software is expected to eventually help in all aspects of analysis, we expect to see future systems provide more help with generating the final report. Hence, researchers also need to have an understanding of what makes a good analytic product. Therefore we asked the analysts to rank the situational assessments of four grand challenge entries and to provide comments on those assessments. We used these comments to produce guidelines for researchers to use in evaluating their analytic reports.

Scholtz, Jean

2011-09-22T23:59:59.000Z

298

Sandia Laboratories energy programs  

DOE Green Energy (OSTI)

As one of the multiprogram laboratories of the Energy Research and Development Administration, Sandia Laboratories applies its resources to a number of nationally important programs. About 75 percent of these resources are applied to research and development for national security programs having to do primarily with nuclear weapons--the principal responsibility of the Laboratories. The remaining 25 percent are applied to energy programs and energy-related activities, particularly those requiring resources that are also used in nuclear weapon and other national security programs. Examples of such energy programs and activities are research into nuclear fusion, protection of nuclear materials from theft or diversion, and the disposal of radioactive waste. A number of technologies and disciplines developed for the weapon program are immediately applicable for the development of various energy sources. Instruments developed to detect, measure, and record the detonation of nuclear devices underground, now being used to support the development of in-situ processing of coal and oil shale, are examples. The purpose of this report is to provide an overview of these and other energy programs being conducted by these laboratories in the development of economical and environmentally acceptable alternative energy sources. Energy programs are undertaken when they require capabilities used at the Laboratories for the weapon program, and when they have no adverse effect upon that primary mission. The parallel operation of weapon and energy activities allows optimum use of facilities and other resources.

Lundergan, C.D.; Mead, P.L.; Gillespie, R.S. (eds.)

1977-03-01T23:59:59.000Z

299

Reducing waste generation and radiation exposure by analytical method modification  

SciTech Connect

The primary goal of an analytical support laboratory has traditionally been to provide accurate data in a timely and cost effective fashion. Added to this goal is now the need to provide the same high quality data while generating as little waste as possible. At the Savannah River Technology Center (SRTC), we have modified and reengineered several methods to decrease generated waste and hence reduce radiation exposure. These method changes involved improving detection limits (which decreased the amount of sample required for analysis), decreasing reaction and analysis time, decreasing the size of experimental set-ups, recycling spent solvent and reagents, and replacing some methods. These changes had the additional benefits of reducing employee radiation exposure and exposure to hazardous chemicals. In all cases, the precision, accuracy, and detection limits were equal to or better than the replaced method. Most of the changes required little or no expenditure of funds. This paper describes these changes and discusses some of their applications.

Ekechukwu, A.A.

1996-10-01T23:59:59.000Z

300

Analytical Chemistry Division annual progress report for period ending December 31, 1988  

SciTech Connect

The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: (1) Analytical Research, Development, and Implementation. The division maintains a program to conceptualize, investigate, develop, assess, improve, and implement advanced technology for chemical and physicochemical measurements. Emphasis is on problems and needs identified with ORNL and Department of Energy (DOE) programs; however, attention is also given to advancing the analytical sciences themselves. (2) Programmatic Research, Development, and Utilization. The division carries out a wide variety of chemical work that typically involves analytical research and/or development plus the utilization of analytical capabilities to expedite programmatic interests. (3) Technical Support. The division performs chemical and physicochemical analyses of virtually all types. The Analytical Chemistry Division is organized into four major sections, each of which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1988. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8.

Not Available

1988-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "wtp analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Analytical Chemistry Division annual progress report for period ending December 31, 1988  

SciTech Connect

The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: (1) Analytical Research, Development, and Implementation. The division maintains a program to conceptualize, investigate, develop, assess, improve, and implement advanced technology for chemical and physicochemical measurements. Emphasis is on problems and needs identified with ORNL and Department of Energy (DOE) programs; however, attention is also given to advancing the analytical sciences themselves. (2) Programmatic Research, Development, and Utilization. The division carries out a wide variety of chemical work that typically involves analytical research and/or development plus the utilization of analytical capabilities to expedite programmatic interests. (3) Technical Support. The division performs chemical and physicochemical analyses of virtually all types. The Analytical Chemistry Division is organized into four major sections, each of which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1988. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8.

1988-05-01T23:59:59.000Z

302

FY 2013 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 Department of Energy FY 2013 Congressional Budget Request Laboratory Tables y Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0078 Department of Energy FY 2013 Congressional Budget Request Laboratory Tables P li i Preliminary h b d i d i hi d h l l f b d h i f h The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. February 2012 Office of Chief Financial Officer Printed with soy ink on recycled paper Laboratory / Facility Index FY 2013 Congressional Budget

303

Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

record neutron beam at Los record neutron beam at Los Alamos National Laboratory July 10, 2012 New method has potential to advance materials measurement LOS ALAMOS, New Mexico, July 10, 2012-Using a one-of-a-kind laser system at Los Alamos National Laboratory, scientists have created the largest neutron beam ever made by a short-pulse laser, breaking a world record. Neutron beams are usually made with particle accelerators or nuclear reactors and are commonly used in a wide variety of scientific research, particularly in advanced materials science. Using the TRIDENT laser, a unique and powerful 200 trillion-watt short-pulse laser, scientists from Los Alamos, the Technical University of Darmstadt, Germany, and Sandia National Laboratories focus high-intensity light on an ultra-thin plastic sheet

304

IDAHO NATIONAL LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

History of the Idaho National Laboratory (INL) History of the Idaho National Laboratory (INL) You are here: DOE-ID Home > Inside ID > Brief History Site History The Idaho National Laboratory (INL), an 890-square-mile section of desert in southeast Idaho, was established in 1949 as the National Reactor Testing Station. Initially, the missions at the INL were the development of civilian and defense nuclear reactor technologies and management of spent nuclear fuel. Fifty-two reactors—most of them first-of-a-kind—were built, including the Navy’s first prototype nuclear propulsion plant. Of the 52 reactors, three remain in operation at the site. In 1951, the INL achieved one of the most significant scientific accomplishments of the century—the first use of nuclear fission to produce a usable quantity of electricity at the Experimental Breeder Reactor No.

305

National Energy Technology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Design Standards for the NETL Logo Design Standards for the NETL Logo May 2013 The Logo Display of the NETL logo is critical because this symbol represents who we are - it's our signature. Consistent application of the logo is crucial to the success of our identity. As the primary identifier of the National Energy Technology Laboratory, it is essential that the logo's appearance is consistent throughout all of the Laboratory's communications. Over time, consistent and repeated use of the logo will establish a strengthened visual identity for the laboratory. To ensure consistency it is critical for every user of the logo, regardless of personal preference, to use it in accordance with the guidelines that follow. The height of the NETL logo is .75 times the length, a 3 by 4 ratio. This relationship is always the same, regardless of

306

Idaho National Laboratory - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Reports Idaho National Laboratory Review Reports 2013 Review of Radiation Protection Program Implementation at the Advanced Mixed Waste Treatment Project of the Idaho Site, April 2013 Review of the Facility Representative Program at the Idaho Site, March 2013 Activity Reports 2013 Accident Investigation at the Idaho National Laboratory Engineering Demonstration Facility, February 2013 Review Reports 2012 Review of Radiation Protection Program Implementation at the Idaho Site, November 2012 Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project, November 2012 Review of Site Preparedness for Severe Natural Phenomena Events at the Idaho National Laboratory, July 2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Federal Operational Readiness Review, June 2012

307

FY 2012 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 Department of Energy FY 2012 Congressional Budget Request Laboratory Tables y Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0065 Department of Energy FY 2012 Congressional Budget Request Laboratory Tables P li i Preliminary h b d i d i hi d h l l f b d h i f h The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. February 2012 Office of Chief Financial Officer Printed with soy ink on recycled paper Laboratory / Facility Index FY 2012 Congressional Budget

308

Laboratory disputes citizens' lawsuit  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab disputes ctizens' lawsuit Lab disputes ctizens' lawsuit Laboratory disputes citizens' lawsuit Lab officials expressed surprise to a lawsuit alleging noncompliance with the federal Clean Water Act filed today by citizens groups. February 7, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact James E. Rickman

309

LANL: Materials Science Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Laboratory (MSL) is Materials Science Laboratory (MSL) is an interdisciplinary facility dedicated to research on current materials and those of future interest. It is a 56,000 square-foot modern facility that can be easily reconfigured to accom- modate new processes and operations. It compris- es 27 laboratories, 15 support rooms, and 60 offices. The MSL supports many distinct materi- als research topics, grouped into four focus areas: mechanical behavior, materials processing, syn- thesis, and characterization. Research within the MSL supports programs of national interest in defense, energy, and the basic sciences. The MSL is a non-classified area in the Materials Science Complex in close proximity to classified and other non-classified materials research facilities. The Materials Science

310

SANDIA NATIONAL LABORATORIES  

NLE Websites -- All DOE Office Websites (Extended Search)

NATIONAL LABORATORIES NATIONAL LABORATORIES SF 6432-CS (10-98) SECTION II STANDARD TERMS & CONDITIONS FOR COMMERCIAL SERVICES PROCURED ON A FIRM FIXED PRICE OR FIXED RATE BASIS THE FOLLOWING CLAUSES APPLY TO THIS CONTRACT AS INDICATED UNLESS SPECIFICALLY DELETED, OR EXCEPT TO THE EXTENT THEY ARE SPECIFICALLY SUPPLEMENTED OR AMENDED IN WRITING IN THE SIGNATURE PAGE OR SECTION I. CS10 - DEFINITIONS The following terms shall have the meanings set forth below for all purposes of this contract. (a) GOVERNMENT means the United States of America and includes the U.S. Department of Energy (DOE) or any duly authorized representative thereof. (b) SANDIA means Sandia National Laboratories, operated by Sandia Corporation under Contract No. DE-ACO4-94AL-85000 with the U.S. Department of Energy.

311

Advanced Hydride Laboratory  

DOE Green Energy (OSTI)

Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, cold,'' process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility's metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

Motyka, T.

1989-01-01T23:59:59.000Z

312

Boulder Laboratories Building 1 Renovation  

Science Conference Proceedings (OSTI)

... fresh air for modern laboratory work, electrical ... of Building 1 at the NIST Boulder laboratories. ... conservation of water, energy, and construction ...

2012-02-13T23:59:59.000Z

313

Leadership Development | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

include work-life balance, stress management and innovative solutions to career and gender issues. Photo Gallery: Strategic Laboratory Leadership Program Strategic Laboratory...

314

DOE Laboratory Accreditation Program - Library  

NLE Websites -- All DOE Office Websites (Extended Search)

Library DOE Laboratory Accreditation Program DOELAP Regulatory Basis 10 CFR 835.402, Individual Monitoring, as amended DOELAP Program Administration DOE-STD 1111-98, DOE Laboratory...

315

Community Relations, Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Tour group Tour Program Meet the scientists who make the research at Brookhaven National Laboratory happen Brookhaven National Laboratory offers the unique opportunity for...

316

Historical Photographs: Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven National Laboratory 1. Positron emitter detector (circa 1962) used to detect brain tumors at Brookhaven National Laboratory (252Kbytes) 2. Medical activities at...

317

National Laboratories - EERE Commercialization Office  

National Laboratories. The U.S. Department of Energy's (DOE) national laboratories play an important role in the development and commercialization of ...

318

Vehicle Technologies Office: National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories Several of the U.S. Department of Energy (DOE) national laboratories host multidisciplinary transportation research centers. A wide-range of cutting-edge...

319

Biology Department - Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Deborah Stoner-Ma Brookhaven National Laboratory From: -5132011 Currently at: Stony Brook University Director of Chemical Laboratories Department of Chemistry Stony Brook...

320

National Laboratories - EERE Commercialization Office  

National Laboratories. The U.S. Department of Energy's (DOE) national laboratories play an important role in the development and commercialization of new energy ...

Note: This page contains sample records for the topic "wtp analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

CERTS Microgrid Laboratory Test Bed  

NLE Websites -- All DOE Office Websites (Extended Search)

CERTS Microgrid Laboratory Test Bed Title CERTS Microgrid Laboratory Test Bed Publication Type Report Year of Publication 2010 Authors Lasseter, Robert H., Joseph H. Eto, Ben...

322

Lawrence Livermore National Laboratory (LLNL):  

NLE Websites -- All DOE Office Websites (Extended Search)

IPO Fact Sheet Strategic Diversity Program Lawrence Livermore National Laboratory (LLNL) works with other national laboratories to coordinate and integrate programmatic...

323

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

and John Stevens are with Sandia National Laboratories,of the Technical Staff at Sandia National Labs in the Energybefore taking a job with Sandia National Laboratories and

Lasseter, R. H.

2010-01-01T23:59:59.000Z

324

Lawrence Wos | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Emeritus Lawrence Wos Larry Wos is an emeritus scientist in the Mathematics and Computer Science Division at Argonne National Laboratory; he joined the laboratory in February 1957....

325

Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 3, Inorganic instrumental methods  

Science Conference Proceedings (OSTI)

The methods cover: C in solutions, F (electrode), elements by atomic emission spectrometry, inorganic anions by ion chromatography, Hg in water/solids/sludges, As, Se, Bi, Pb, data calculations for SST (single shell tank?) samples, Sb, Tl, Ag, Pu, O/M ratio, ignition weight loss, pH value, ammonia (N), Cr(VI), alkalinity, U, C sepn. from soil/sediment/sludge, Pu purif., total N, water, C and S, surface Cl/F, leachable Cl/F, outgassing of Ge detector dewars, gas mixing, gas isotopic analysis, XRF of metals/alloys/compounds, H in Zircaloy, H/O in metals, inpurity extraction, reduced/total Fe in glass, free acid in U/Pu solns, density of solns, Kr/Xe isotopes in FFTF cover gas, H by combustion, MS of Li and Cs isotopes, MS of lanthanide isotopes, GC operation, total Na on filters, XRF spectroscopy QC, multichannel analyzer operation, total cyanide in water/solid/sludge, free cyanide in water/leachate, hydrazine conc., ICP-MS, {sup 99}Tc, U conc./isotopes, microprobe analysis of solids, gas analysis, total cyanide, H/N{sub 2}O in air, and pH in soil.

Not Available

1993-08-01T23:59:59.000Z

326

Science @WIPP: Underground Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

WIPP WIPP Underground Laboratory Double Beta Decay Dark Matter Biology Repository Science Renewable Energy Underground Laboratory The deep geologic repository at WIPP provides an ideal environment for experiments in many scientific disciplines, including particle astrophysics, waste repository science, mining technology, low radiation dose physics, fissile materials accountability and transparency, and deep geophysics. The designation of the Carlsbad Department of Energy office as a "field" office has allowed WIPP to offer its mine operations infrastructure and space in the underground to researchers requiring a deep underground setting with dry conditions and very low levels of naturally occurring radioactive materials. Please contact Roger Nelson, chief scientist of the Department of

327

Sandia National Laboratories (SNL)  

National Nuclear Security Administration (NNSA)

Sandia National Laboratories (SNL) Sandia National Laboratories (SNL) Current Projects with the Russian Federation Project Title: Development of Models of Energy Transfer in Nanostructured Materials. Russian Institute: Institute for Problems in Mechanical Engineering, Russian Academy of Sciences (IPME RAS), St. Petersburg. Brief Description: To develop modeling approaches and simulations to examine energy transport and transfer in materials with structural features at the nanoscale. Tasks include developing such a model for thin crystal structures subjected to short duration laser excitation, and using atomic-scale simulations to evaluate microscopic expressions for stress and heat flux in crystals containing defects such as vacancies, dislocations and bi-material interfaces.

328

National Energy Technology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

CRTD-80 CRTD-80 National Energy Technology Laboratory Final Report Carbon Sequestration Project Review Meeting Greater Pittsburgh International Airport Hyatt Hotel September 26-29, 2005 Volume I: Meeting Summary and Recommendations José D. Figueroa NETL Project Manager and Meeting Coordinator D:\Project Files\EPD\RDS Sequestration Project Review Task\Volume 1\ASME Final Version Nov 28 2005\2005 Carbon Sequestration Project Review Meeting Final 11292005.doc National Energy Technology Laboratory Final Report Carbon Sequestration Project Review Meeting Greater Pittsburgh International Airport Hyatt Hotel September 26-29, 2005 Volume I: Meeting Summary and Recommendations José D. Figueroa NETL Project Manager and Meeting Coordinator

329

Human performance modeling for system of systems analytics.  

Science Conference Proceedings (OSTI)

A Laboratory-Directed Research and Development project was initiated in 2005 to investigate Human Performance Modeling in a System of Systems analytic environment. SAND2006-6569 and SAND2006-7911 document interim results from this effort; this report documents the final results. The problem is difficult because of the number of humans involved in a System of Systems environment and the generally poorly defined nature of the tasks that each human must perform. A two-pronged strategy was followed: one prong was to develop human models using a probability-based method similar to that first developed for relatively well-understood probability based performance modeling; another prong was to investigate more state-of-art human cognition models. The probability-based modeling resulted in a comprehensive addition of human-modeling capability to the existing SoSAT computer program. The cognitive modeling resulted in an increased understanding of what is necessary to incorporate cognition-based models to a System of Systems analytic environment.

Dixon, Kevin R.; Lawton, Craig R.; Basilico, Justin Derrick; Longsine, Dennis E. (INTERA, Inc., Austin, TX); Forsythe, James Chris; Gauthier, John Henry; Le, Hai D.

2008-10-01T23:59:59.000Z

330

Validation examples of the Analytic Hierarchy Process and Analytic Network Process  

Science Conference Proceedings (OSTI)

One way to validate a scientific theory is to show that the results predicted by the theory give correct answers; that is, that they match known results. In the Analytic Hierarchy Process (AHP) this usually means finding examples with measures in an ... Keywords: Compatibility index for the AHP, Validating the Analytic Hierarchy Process, Validating the Analytic Network Process, Validation examples for the AHP, Validation examples for the ANP

Rozann Whitaker

2007-10-01T23:59:59.000Z

331

Accelerator Laboratory AGN-201M Nuclear Reactor Laboratory  

E-Print Network (OSTI)

Laboratory Nuclear Power Institute (NPI) Nuclear Science Center (1MW Triga Reactor) (NSC) Nuclear SecurityAccelerator Laboratory AGN-201M Nuclear Reactor Laboratory Center for Large-scale Scientific Simulations (CLASS) Fuel Cycle and Materials Laboratory (FCML) Institute for National Security, Education

332

Infrared Thermography Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Thermography Laboratory Infrared Thermography Laboratory The Infrared Thermography Laboratory (IRLab) conducts detailed laboratory experiments on the thermal performance of windows and other insulated systems. During a typical experiment, a specimen is placed between two environmental chambers that simulate a long, cold night during winter. Besides generating informative thermal images, the experiments collect several types of quantitative data with high spatial resolution that are useful for understanding subtle details in the thermal performance and for validating computer simulations of heat and fluid flows. Thermography experiments in the IRLab use an infrared imager to produce qualitative thermal images, or thermograms, that help provide a visual interpretation of how heat is flowing through the specimen. The infrared thermograms are also taken and postprocessed to extract numerical data to perform quantitative thermography that produces a database of the distribution of surface temperatures on the warm side of various specimen. A traversing system is also used to measure the distribution of air temperatures and velocities near the specimen. Research results are presented at various technical conferences -- see our schedule of upcoming conferences. Technical papers on infrared thermography are available for downloading. The IRLab contains a machine tool shop area that supports fabrication efforts in the Building Technologies Department. Other types of research, such as Non-Destructive Evaluation, are also conducted in the IRLab.

333

Pacific Northwest National Laboratory  

E-Print Network (OSTI)

Science. Technology. Innovation. PNNL-SA-34741 Pacific Northwest National Laboratory (PNNL) is addressing cognition and learning to the development of student- centered, scenario-based training. PNNL's Pachelbel (PNNL) has developed a cognitive-based, student-centered approach to training that is being applied

334

ARGONNE NATIONAL LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

L e m o n t , I l l i n o i s ENVIRONMENTAL RADIOACTIVITY AT ARGONNE NATIONAL LABORATORY R e p o r t f o r t h e Y e a r 1954 W r i t t e n by J. Sedlet E x p e r i m e n t a l w...

335

Developing a Web-based Benchmarking Tool for Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Developing a Web-based Benchmarking Tool for Laboratories Developing a Web-based Benchmarking Tool for Laboratories Speaker(s): Mayank Singh Date: November 22, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Dale Sartor (The EETD Applications Team includes: Satish Kumar, Paul Mathew, Dale Sartor, and Mayank Singh.) Developers of benchmarking tools are confronted with some common issues and some unique challenges. This presentation will describe the challenges faced by us while developing a web-based benchmarking tool for laboratories. Attributes such as the i) analytical and data visualization capability, and ii) flexibility and usability of the tool are common to any benchmarking effort. The various classification scheme and categories of laboratories, each with its own energy signature, posed a design challenge both for the database as well as data input forms,

336

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

01 - 6610 of 31,917 results. 01 - 6610 of 31,917 results. Download Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Full Document and Summary Versions are available for download http://energy.gov/em/downloads/waste-treatment-and-immobilization-plant-wtp-analytical-laboratory Download Audit Report: IG-0607 Plutonium-238 Production http://energy.gov/ig/downloads/audit-report-ig-0607 Download Inquiry Report: I01IG001 Review of Alleged Conflicts of Interest Involving a Legal Services Contract for the Yucca Mountain Project http://energy.gov/ig/downloads/inquiry-report-i01ig001-0 Page Publications on Hawaii Find publications on deploying energy efficiency and renewable energy in Hawaii.

337

An Assessment of Analytical Capabilities, Services and Tools...  

NLE Websites -- All DOE Office Websites (Extended Search)

An Assessment of Analytical Capabilities, Services and Tools for Demand Response Title An Assessment of Analytical Capabilities, Services and Tools for Demand Response Publication...

338

Analysis and Selection of Analytical Tools to Assess National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Selection of Analytical Tools to Assess National-Interest Transmission Bottlenecks Final Report Analysis and Selection of Analytical Tools to Assess National-Interest...

339

from Savannah River National Laboratory  

Issue: Depleted uranium present in shallow soils and sediments at Lawrence Livermore National Laboratory Site 300.

340

Safety Environmental Laboratories & Consulting Inc.  

Science Conference Proceedings (OSTI)

Safety Environmental Laboratories & Consulting Inc. NVLAP Lab Code: 200873-0. Address and Contact Information: 989 ...

2013-09-27T23:59:59.000Z

Note: This page contains sample records for the topic "wtp analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Biometrics Identity Management Agency Laboratory  

Science Conference Proceedings (OSTI)

Biometrics Identity Management Agency Laboratory. NVLAP Lab Code: 200933-0. Address and Contact Information: 1000 ...

2013-08-09T23:59:59.000Z

342

NIST: Physical Measurement Laboratory - Research ...  

Science Conference Proceedings (OSTI)

... Fellowships: SURFing the Physical Measurement Laboratory ... Optical, Radiation, and Chemical Physics. ... involves PML's Quantum Physics Division. ...

2010-10-05T23:59:59.000Z

343

Brookhaven National Laboratory - Long Island Regional Science...  

Office of Science (SC) Website

Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and...

344

Lawrence Berkeley National Laboratory Regional Science Bowl ...  

Office of Science (SC) Website

Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and...

345

Sandia National Laboratories Albuquerque | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Laboratories, the laboratories responsible for the development, testing, and production of specialized nonnuclear components. Laboratories: The NNSA Sandia National...

346

Lawrence Livermore National Laboratory - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Review Reports 2013 Independent Oversight Review of the Fire Protection Program at Lawrence Livermore National Laboratory, September 2013 Independent Oversight Review of Preparedness for Severe Natural Phenomena Events at the Lawrence Livermore National Laboratory, July 2013 Activity Reports 2013 Lawrence Livermore National Laboratory Operational Drill at the B332 Plutonium Facility, February 2013 Activity Reports 2012 Lawrence Livermore National Laboratory Site Lead Planning Activities, October 2012 Review Reports 2011 Review of Integrated Safety Management System Effectiveness at the Livermore Site Office, October 2011 Review of Integrated Safety Management System Effectiveness at Lawrence Livermore National Laboratory, September 2011

347

Thermal Storage Materials Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Thermal Storage Materials Laboratory at the Energy Systems Integration Facility. The Thermal Storage Materials Laboratory at NREL's Energy Systems Integration Facility (ESIF) investigates materials that can be used as high-temperature heat transfer fluids or thermal energy storage media in concentrating solar power (CSP) plants. Research objectives include the discovery and evaluation of candidate fluids and phase-change materials (PCM) to serve as thermal energy storage media in the temperature range of 300 C to 800 C. Knowledge of thermophysical properties such as melting point, heat of fusion, density, viscosity, thermal stability are essential for understanding how candidate materials could be deployed in CSP plants. The laboratory runs high-temperature instruments for the analysis of thermophysical properties. Small samples of candidate materials are prepared and characterized using differential scanning calorimetry, thermogravimetric analysis, and other specialized analytical methods. Instrumentation capabilities are being expanded to allow for analysis of samples up to 1,200 C. Higher temperature operation is one method to increase the efficiency and lower the cost of CSP systems.

Not Available

2011-10-01T23:59:59.000Z

348

Quality assurance plan for the Close Support Laboratory for the remedial investigation at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

The primary purpose of the Close Support Laboratory (CSL) is to provide rapid radiological screening of investigation-derived samples before they are shipped to off-site laboratories for more detailed analyses. Analyses for volatile organic compounds and miscellaneous water quality parameters are also performed at the CSL. CSL data are also used to select samples for off-site laboratory analysis, for rapid qualitative and quantitative determinations, and for other processes when off-site analysis is not needed and/or is impractical. This plan specifies methods of implementing analytical and radiological protocols and procedures for the documentation, handling, control, and analysis of samples and describes the levels of authority and responsibility for laboratory operation. Specific quality control methods used by the CSL for individual analyses are described in project procedures.

Not Available

1993-08-01T23:59:59.000Z

349

Evans Analytical Group EAG | Open Energy Information  

Open Energy Info (EERE)

Analytical Group EAG Analytical Group EAG Jump to: navigation, search Name Evans Analytical Group (EAG) Place Sunnyvale, California Zip 94086 Sector Solar Product California-based firm involved in materials characterization. The company provides testing and performance measurements for solar PV energy systems. Coordinates 32.780338°, -96.547405° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.780338,"lon":-96.547405,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

350

Hanford environmental analytical methods: Methods as of March 1990. Volume 3, Appendix A2-I  

Science Conference Proceedings (OSTI)

This paper from the analytical laboratories at Hanford describes the method used to measure pH of single-shell tank core samples. Sludge or solid samples are mixed with deionized water. The pH electrode used combines both a sensor and reference electrode in one unit. The meter amplifies the input signal from the electrode and displays the pH visually.

Goheen, S.C.; McCulloch, M.; Daniel, J.L.

1993-05-01T23:59:59.000Z

351

Analytical Chemistry Core Capability Assessment - Preliminary Report  

Science Conference Proceedings (OSTI)

The concept of 'core capability' can be nebulous one. Even at a fairly specific level, where core capability equals maintaining essential services, it is highly dependent upon the perspective of the requestor. Samples are submitted to analytical services because the requesters do not have the capability to conduct adequate analyses themselves. Some requests are for general chemical information in support of R and D, process control, or process improvement. Many analyses, however, are part of a product certification package and must comply with higher-level customer quality assurance requirements. So which services are essential to that customer - just those for product certification? Does the customer also (indirectly) need services that support process control and improvement? And what is the timeframe? Capability is often expressed in terms of the currently utilized procedures, and most programmatic customers can only plan a few years out, at best. But should core capability consider the long term where new technologies, aging facilities, and personnel replacements must be considered? These questions, and a multitude of others, explain why attempts to gain long-term consensus on the definition of core capability have consistently failed. This preliminary report will not try to define core capability for any specific program or set of programs. Instead, it will try to address the underlying concerns that drive the desire to determine core capability. Essentially, programmatic customers want to be able to call upon analytical chemistry services to provide all the assays they need, and they don't want to pay for analytical chemistry services they don't currently use (or use infrequently). This report will focus on explaining how the current analytical capabilities and methods evolved to serve a variety of needs with a focus on why some analytes have multiple analytical techniques, and what determines the infrastructure for these analyses. This information will be useful in defining a roadmap for what future capability needs to look like.

Barr, Mary E. [Los Alamos National Laboratory; Farish, Thomas J. [Los Alamos National Laboratory

2012-05-16T23:59:59.000Z

352

Model and Analytic Processes for Export License Assessments  

SciTech Connect

This paper represents the Department of Energy Office of Nonproliferation Research and Development (NA-22) Simulations, Algorithms and Modeling (SAM) Program's first effort to identify and frame analytical methods and tools to aid export control professionals in effectively predicting proliferation intent; a complex, multi-step and multi-agency process. The report focuses on analytical modeling methodologies that alone, or combined, may improve the proliferation export control license approval process. It is a follow-up to an earlier paper describing information sources and environments related to international nuclear technology transfer. This report describes the decision criteria used to evaluate modeling techniques and tools to determine which approaches will be investigated during the final 2 years of the project. The report also details the motivation for why new modeling techniques and tools are needed. The analytical modeling methodologies will enable analysts to evaluate the information environment for relevance to detecting proliferation intent, with specific focus on assessing risks associated with transferring dual-use technologies. Dual-use technologies can be used in both weapons and commercial enterprises. A decision-framework was developed to evaluate which of the different analytical modeling methodologies would be most appropriate conditional on the uniqueness of the approach, data availability, laboratory capabilities, relevance to NA-22 and Office of Arms Control and Nonproliferation (NA-24) research needs and the impact if successful. Modeling methodologies were divided into whether they could help micro-level assessments (e.g., help improve individual license assessments) or macro-level assessment. Macro-level assessment focuses on suppliers, technology, consumers, economies, and proliferation context. Macro-level assessment technologies scored higher in the area of uniqueness because less work has been done at the macro level. An approach to developing testable hypotheses for the macro-level assessment methodologies is provided. The outcome of this works suggests that we should develop a Bayes Net for micro-level analysis and continue to focus on Bayes Net, System Dynamics and Economic Input/Output models for assessing macro-level problems. Simultaneously, we need to develop metrics for assessing intent in export control, including the risks and consequences associated with all aspects of export control.

Thompson, Sandra E.; Whitney, Paul D.; Weimar, Mark R.; Wood, Thomas W.; Daly, Don S.; Brothers, Alan J.; Sanfilippo, Antonio P.; Cook, Diane; Holder, Larry

2011-09-29T23:59:59.000Z

353

Target Database | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Science & Engineering Applications Target Database The Target database and analytical pipeline provides bioinformatics support and selection of protein targets of biomedical...

354

Hans Kaper | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Hans Kaper Emeritus Hans Kaper is an applied mathematician interested in the mathematics of physical systems. His research focuses on the development of analytical and numerical...

355

Transportation | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Transportation From modeling and simulation programs to advanced electric powertrains, engines, biofuels, lubricants, and batteries, Argonne's transportation research is vital to the development of next-generation vehicles. Revolutionary advances in transportation are critical to reducing our nation's petroleum consumption and the environmental impact of our vehicles. Some of the most exciting new vehicle technologies are being ushered along by research conducted at Argonne National Laboratory. Our Transportation Technology R&D Center (TTRDC) brings together scientists and engineers from many disciplines across the laboratory to work with the U.S. Department of Energy (DOE), automakers and other industrial partners. Our goal is to put new transportation technologies on the road that improve

356

National Renewable Energy Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

RENEWABLE ENERGY RENEWABLE ENERGY AND ENERGY EFFICIENCY SCIENCE PROJECTS 1 SCIENCE PROECTS IN RENEWABLE ENERGY AND ENERGY EFFICIENCY A guide for Secondary School Teachers Authors and Acknowledgements: This second edition was produced at the National Renewable Energy Laboratory (NREL), through the laboratory's Office of Education Programs, under the leadership of the Manager, Dr. Cynthia Howell and guidance of the Program Coordinators, Matt Kuhn and Linda Lung. The contents are the result of contributions by a select group of teacher researchers that were invited to NREL as part of the Department of Energy's Teacher Research Programs. During the summers between 2003 and 2007, fifty four secondary pre-service and experienced teachers came to NREL to do real research in

357

Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory National Laboratory Standard Procurement Forms An Acrobat Reader is needed to display these documents How to get an Acrobat Reader Date Form (Link to PDF) Title GSA Library of Standard Government Forms ANL Forms Repository PARIS Enrollment/Change Status Forms Argonne Terms & Conditions (headmark list) Suspect/Counterfeit Parts December 9, 2010 Poster PD-154 Appendix A - ARRA Supplement Previous Revisions: August 17,2010 August 7, 2009 Whistleblower Protection Poster Under Recovery Act January 24, 2013 ANL-71-COM Argonne Terms and Conditions for Commercial Items Previous Revisions: May 10, 2012 January 5, 2012 July 11, 2011 April 14, 2011 March 1, 2011 December 7, 2010 August 13, 2010 June 15, 2010 January 18, 2010 December 22, 2009 April 2, 2009

358

Laboratory Shuttle Bus Routes  

NLE Websites -- All DOE Office Websites (Extended Search)

Rear bike rack image Rear bike rack image The Laboratory provides shuttle bus services, contracted through MV Transportation Services. Routes run throughout its 200-acre facility, downtown Berkeley, local off-site facilities, UC Campus, Downtown Berkeley BART, and Rockridge BART stations. Shuttles offer free wifi onboard. Riders are asked to adhere to riding instructions. Active shuttle stops are marked with this sign: Bus sign image Shuttles run Monday through Friday, except Laboratory holidays. There is no weekend service. Special service for tours, group travel, etc. is available for a fee. All shuttles are equipped with Nextbus which uses GPS technology to enable riders to obtain real-time information on bus arrivals. Contact Bus Services at busservices@lbl.gov or 510-486-4165 to provide

359

S ARGONNE NATIONAL LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

ARGONNE NATIONAL LABORATORY ARGONNE NATIONAL LABORATORY 19 ON CLOSED SHEIIS IN NUCLEI. II Maria G. Mayer April., 1949 Feenberg (1) ' (2) and Nordlkeim (3) have used the spins and magnetic moments of the even-odd nuclei to determine the angular momentum of the eigenfunction of the odd particle. The tabulations given by them indi- cate that spin orbit coupling favors the state of higher total angular momentum, If - strong spin.orbit coupling' increasing with angular mom- entum is assumed, a level assignment encounters a very few contradictions. with experimental facts and requires no major crossing of the levels from those of a square well potential. The magic numbers O, 82, and 126 occur at the' place of the spin-orbit splitting of levels of high angular momen- tum, Table 1 contains in column two in order

360

Safety | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Safety Biosafety Safety Safety is integral to Argonne's scientific research and engineering technology mission. As a leading U.S. Department of Energy multi-program research laboratory, our obligation to the American people demands that we conduct our research and operations safely and responsibly. As a recognized leader in safety, we are committed to making ethical decisions that provide a safe and healthful workplace and a positive presence within the larger Chicagoland community. Argonne's Integrated Safety Management program is the foundation of the laboratory's ongoing effort to provide a safe and productive environment for employees, users, other site personnel, visitors and the public. Related Sites U.S. Department of Energy Lessons Learned Featured Media

Note: This page contains sample records for the topic "wtp analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

ARGONNE NATIONAL LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

Empirical Empirical performance modeling of GPU kernels using active learning 1 Prasanna Balaprakash 2 , Karl Rupp 2 , Azamat Mametjanov 2 , Robert B. Gramacy 3 , Paul D. Hovland 2 , Stefan M. Wild 2 Mathematics and Computer Science Division Preprint ANL/MCS-P4097-0713 July 2013 1 Support for this work was provided through the SciDAC program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research, under Contract No. DE-AC02-06CH11357. 2 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA 3 Booth School of Business, University of Chicago Empirical performance modeling of GPU kernels using active learning Prasanna Balaprakash 1 , Karl Rupp 1 , Azamat Mametjanov 1 Robert B. Gramacy 2 , Paul D. Hovland 1 , Stefan M. Wild 1 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439

362

Infrared Thermography Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists measuring sample at IR Thermography lab Scientists measuring sample at IR Thermography lab Infrared Thermography Laboratory In the Infrared Thermography Laboratory (IRLab), researchers test the thermal performance of windows and other insulated systems. Test specimens are placed between chambers that simulate different climate conditions, including household room temperature versus extreme winter cold with high exterior wind speed. Using an infrared imaging system, the IRLab produces calibrated quantitative thermal images, or surface temperature maps, of the specimens in heat transfer experiments. This high resolution non-contact surface temperature data help researchers understand details of thermal performance and validate computer simulations of heat and fluid flow, as well as provide a powerful visualization of detailed thermal features in

363

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

May 14, 2013 May 14, 2013 Value of up to $150 million over five years LOS ALAMOS, N.M., May 14, 2013-Los Alamos National Laboratory has awarded a master task order agreement in which three small businesses will compete for environmental work worth up to $150 million over five years. The businesses each have offices in northern New Mexico. The agreement is for technical services for the Laboratory's Environmental Programs directorate and includes work such as environmental engineering design, regulatory support, risk assessment and reporting. - 2 - The companies chosen are Terranear PMC, Navarro Research and Engineering, Inc., and Adelante Consulting, Inc. The agreement is for three years with two additional one- year options. Task orders under this agreement will be competitively bid among the

364

Laboratory Corrosion Tests  

Science Conference Proceedings (OSTI)

Table 2   Laboratory corrosion tests...Salt spray test NaCl solution Ocean climate Acetic acid salt spray test NaCl + CH 3 COOH Salted roads Copper-accelerated acetic acid salt spray test As in acetic acid salt spray test As in acetic acid salt spray test, but more aggressive Immersion tests Artificial sweat test ? Wearing of decorative...

365

Princeton Plasma Physics Laboratory:  

SciTech Connect

This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

Phillips, C.A. (ed.)

1986-01-01T23:59:59.000Z

366

Retrofit of waste-to-energy facilities equipped with electrostatic precipitators. Volume II: Field and laboratory reports, Part 2 of 2  

DOE Green Energy (OSTI)

Volume II (part 2 of 2) of ''Retrofit of Waste-to-energy Facilities Equipped with Electrostatic Precipitators'' contains the field and laboratory reports, including: (1) field reports, (2) analytic laboratory reports, (3) chain of custody forms, and (4) TCLP laboratory reports.

Rigo, H.G. [Rigo & Rigo Associates, Inc., Berea, OH (US); Chandler, A.J. [A.J. Chandler & Associates, Ltd., Toronto, Ontario (Canada)

1996-04-01T23:59:59.000Z

367

Smart Grid Integration Laboratory  

Science Conference Proceedings (OSTI)

The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation ?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

Wade Troxell

2011-09-30T23:59:59.000Z

368

Analytical modeling of SRAM dynamic stability  

Science Conference Proceedings (OSTI)

In this paper, for the first time, a theory for evaluating dynamic noise margins of SRAM cells is developed analytically. The results allow predicting the transient error susceptibility of an SRAM cell using a closed-form expression. The key innovation ...

Bin Zhang; Ari Arapostathis; Sani Nassif; Michael Orshansky

2006-11-01T23:59:59.000Z

369

Analytical theory of intensity fluctuations in SASE  

SciTech Connect

Recent advances in SASE experiments stimulate interest in quantitative comparison of measurements with theory. Extending the previous analysis of the SASE intensity in guided modes, the authors provide an analytical description of the intensity fluctuations by calculating intensity correlation functions in the frequency domain. Comparison of the results with experiment yields new insight into the SASE process.

Yu, L.H.; Krinsky, S. [Brookhaven National Lab., Upton, NY (United States). National Synchrotron Light Source

1997-07-01T23:59:59.000Z

370

Biodiesel Analytical Methods: August 2002--January 2004  

DOE Green Energy (OSTI)

Biodiesel is an alternative fuel for diesel engines that is receiving great attention worldwide. The material contained in this book is intended to provide the reader with information about biodiesel engines and fuels, analytical methods used to measure fuel properties, and specifications for biodiesel quality control.

Van Gerpen, J.; Shanks, B.; Pruszko, R.; Clements, D.; Knothe, G.

2004-07-01T23:59:59.000Z

371

Analytic theory of ICRF minority heating  

SciTech Connect

We present a one-dimensional analytic theory of the ICRF gyroresonant absorption and mode-conversion, for the problem of minority fundamental resonance. Using the wave phase-space method, and the theory of linear mode conversion therein, we obtain explicit expressions for the coefficients of transmission (T), reflection (R), conversion (C), absorption (A). 7 refs., 2 figs.

Ye, H.; Kaufman, A.N.

1989-04-01T23:59:59.000Z

372

Large scale data analytics on clouds  

Science Conference Proceedings (OSTI)

We summarize important overall issues affecting use of clouds to support Data Science. We describe the mapping of different applications to HPCC and Cloud systems and the architecture that support data analytics that is interoperable between these architectures. Keywords: clouds, data science, exascale, hpcc, iterative mapreduce, mapreduce, mpi, programming paradigms

Geoffrey C. Fox

2012-10-01T23:59:59.000Z

373

Exploring the analytical processes of intelligence analysts  

Science Conference Proceedings (OSTI)

We present an observational case study in which we investigate and analyze the analytical processes of intelligence analysts. Participating analysts in the study carry out two scenarios where they organize and triage information, conduct intelligence ... Keywords: artifact analysis, collaboration, homeland security, intelligence analysis, national security, participant observation, participatory design, work practices, work-oriented design

George Chin, Jr.; Olga A. Kuchar; Katherine E. Wolf

2009-04-01T23:59:59.000Z

374

Analytical Theory of Graphene Nanoribbon Transistors  

Science Conference Proceedings (OSTI)

Graphene has emerged as one of the most promising materials to address scaling challenges in the post silicon era. A simple model for graphene nanoribbon field-effect transistors (GNRFETs) is developed for treating the effects of edge bond relaxation, ... Keywords: Graphene nanoribbons, analytical model, edge bond relaxation, third nearest neighbor interaction, edge scattering

Pei Zhao; Mihir Choudhury; Kartik Mohanram; Jing Guo

2008-09-01T23:59:59.000Z

375

Some analytical models of radiating collapsing spheres  

Science Conference Proceedings (OSTI)

We present some analytical solutions to the Einstein equations, describing radiating collapsing spheres in the diffusion approximation. Solutions allow for modeling physical reasonable situations. The temperature is calculated for each solution, using a hyperbolic transport equation, which permits to exhibit the influence of relaxational effects on the dynamics of the system.

Herrera, L.; Di Prisco, A [Escuela de Fisica, Facultad de Ciencias, Universidad Central de Venezuela, Caracas (Venezuela); Ospino, J. [Area de Fisica Teorica. Facultad de Ciencias, Universidad de Salamanca Salamanca (Spain)

2006-08-15T23:59:59.000Z

376

NERSC Analytics Program Status and Update  

E-Print Network (OSTI)

spanning all aspects of analytics, high performance computing, and many science domains. · SGI Altix ­ 32, application, and deployment of a diverse array of technologies spanning the domains of high performance computing, data management, data analysis and visualization, and workflow management. #12;DOE CGF April 29

Geddes, Cameron Guy Robinson

377

100-B/C Target Analyte List Development for Soil  

Science Conference Proceedings (OSTI)

This report documents the process used to identify source area target analytes in support of the 100-B/C remedial investigation/feasibility study addendum to DOE/RL-2008-46. This report also establishes the analyte exclusion criteria applicable for 100-B/C use and the analytical methods needed to analyze the target analytes.

R.W. Ovink

2010-03-18T23:59:59.000Z

378

INTRA Programme B.Sc. Analytical Science  

E-Print Network (OSTI)

Unit, Student Support & Development, Dublin City University, Glasnevin, Dublin 9, Ireland. Phone: 00 of Laboratory Data with Spreadsheets PHYSICS Fundamentals of Mechanics, Optics, Sound, Electricity & Atomic Computers Peripherals, Interfacing PHYSICS Mechanics, Optics, Sound, Electricity, Atomic Physics CHEMISTRY

Humphrys, Mark

379

Sandia National Laboratories: News: Publications: Lab News  

NLE Websites -- All DOE Office Websites (Extended Search)

June 1, 2012 June 1, 2012 Small worlds come into focus with new Sandia instrument PRINCIPAL INVESTIGATORS Paul Kotula, left, and Ping Lu (both 1822) show off Sandia's new aberration-corrected scanning transmission electron microscope, which has a unique combination of X-ray detectors and very high resolution and is capable of doing analyses in far less time than the Labs' older analytic microscope. (Photo by Randy Montoya) View large image. by Sue Major Holmes Paul Kotula recently told a colleague at another laboratory that Sandia's new aberration-corrected scanning transmission electron microscope (AC-STEM) was like a Lamborghini with James Bond features. The $3.2 million FEI Titan G2 8200 Sandia accepted in February is 50 to 100 times better than what went before in terms of resolution and the time it

380

Manufacturing Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

Not Available

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "wtp analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Purdue Hydrogen Systems Laboratory  

DOE Green Energy (OSTI)

The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

2011-12-28T23:59:59.000Z

382

Fermi National Acceleratory Laboratory, Former Production Workers...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory, Former Production Workers Screening Projects Fermi National Acceleratory Laboratory, Former Production Workers Screening Projects...

383

Ames Laboratory, Former Production Workers Screening Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory, Former Production Workers Screening Projects Ames Laboratory, Former Production Workers...

384

NATIONAL ENERGY TECHNOLOGY LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Cover image: NETL researcher Corinne Disenhof examines a basalt thin section under a geoscience laboratory petrographic microscope. NETL is investigating the effects of microbes on basalt during carbon sequestration, and petrography is one of several analysis methods being used. Others include scanning electron microscopy and x-ray diffraction. Mission Advancing energy options to fuel our economy, strengthen our security, and improve our environment. 2 Contents 2011 Letter from the Director ___________________________ 4 Advanced Power Systems __________________________ 6 Clean Energy ____________________________________ 24 Oil & Natural Gas ________________________________ 40 A Legacy of Benefit: The Return on Federal Research at NETL ______________

385

Lawrence Livermore National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

March/April 2008 March/April 2008 4 Lawrence Livermore National Laboratory Extending the Search for Extending the Search for A new imager will allow astrophysicists to study the atmospheres of distant planets. T HE discovery of other solar systems beyond ours has been the stuff of science fiction for decades. Great excitement greeted the positive identification of the first planet outside our solar system in 1995. Since then, scientists have identified approximately 250 extrasolar planets (exoplanets), but they have had no way to study the majority of these planets or their

386

Laboratory.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Pharmaceutical Industry's Approach Pharmaceutical Industry's Approach to Safe Handling of New Molecular Entities Donna S. Heidel, CIH The findings and conclusions in this presentation have not been formally disseminated by the National Institute for Occupational Safety and Health and should not be construed to represent any agency determination or policy 2 Pharma IH Process Overview Focus on R&D laboratories * Occupational Health Hazard Characterization - "Default" Health Hazard Band for Discovery labs - Health Hazard Banding for Development labs - Occupational Exposure Limits * Control Selection - Graded approach for engineering controls * Exposure Verification - Applicability to Engineered Nanoparticles 3 Pharma's Philosophy and Rationale for Health Hazard/Control Banding * Possible to group together

387

Microelectronics at Sandia Laboratories  

SciTech Connect

The microelectronics capability at Sandia Laboratories spans the complete range of component activity from initial design to final assembly into subsystems and systems. Highly reliable, radiation-tolerant devices and integrated circuits can be designed, fabricated, and incorporated into printed circuit assemblies or into thick- or thin-film hybrid microcircuits. Sandia has an experienced staff, exceptional facilities and aggressive on-going programs in all these areas. The authors can marshall a broad range of skills and capabilities to attack and solve problems in design, fabrication, assembly, or production. Key facilities, programs, and capabilities in the Sandia microelectronics effort are discussed in more detail in this booklet.

Spencer, W.J.; Gregory, B.L.; Franzak, E.G.; Hood, J.A.

1975-12-31T23:59:59.000Z

388

Sandia Laboratories radiation facilities  

SciTech Connect

This brochure is designed as a basic source of information for prospective users of Sandia Laboratories Radiation Facilities. It contains a brief description of the various major radiation sources, a summary of their output characteristics, and additional information useful to experimenters. Radiation source development and source upgrading is an ongoing program, with new source configurations and modes of operation continually being devised to satisfy the ever-changing radiation requirements of the users. For most cases, the information here should allow a potential user to assess the applicability of a particular radiation facility to a proposed experiment and to permit some preirradiation calculations and planning.

Choate, L.M.; Schmidt, T.R.; Schuch, R.L.

1977-07-01T23:59:59.000Z

389

Destructive analysis capabilities for plutonium and uranium characterization at Los Alamos National Laboratory  

Science Conference Proceedings (OSTI)

Los Alamos National Laboratory's (LANL) Actinide Analytical Chemistry (AAC) group has been in existence since the Manhattan Project. It maintains a complete set of analytical capabilities for performing complete characterization (elemental assay, isotopic, metallic and non metallic trace impurities) of uranium and plutonium samples in different forms. For a majority of the customers there are strong quality assurance (QA) and quality control (QC) objectives including highest accuracy and precision with well defined uncertainties associated with the analytical results. Los Alamos participates in various international and national programs such as the Plutonium Metal Exchange Program, New Brunswick Laboratory's (NBL' s) Safeguards Measurement Evaluation Program (SME) and several other inter-laboratory round robin exercises to monitor and evaluate the data quality generated by AAC. These programs also provide independent verification of analytical measurement capabilities, and allow any technical problems with analytical measurements to be identified and corrected. This presentation will focus on key analytical capabilities for destructive analysis in AAC and also comparative data between LANL and peer groups for Pu assay and isotopic analysis.

Tandon, Lav [Los Alamos National Laboratory; Kuhn, Kevin J [Los Alamos National Laboratory; Drake, Lawrence R [Los Alamos National Laboratory; Decker, Diana L [Los Alamos National Laboratory; Walker, Laurie F [Los Alamos National Laboratory; Colletti, Lisa M [Los Alamos National Laboratory; Spencer, Khalil J [Los Alamos National Laboratory; Peterson, Dominic S [Los Alamos National Laboratory; Herrera, Jaclyn A [Los Alamos National Laboratory; Wong, Amy S [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

390

NREL: Energy Storage - Laboratory Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Capabilities Laboratory Capabilities Photo of NREL's Energy Storage Laboratory. NREL's Energy Storage Laboratory. Welcome to our Energy Storage Laboratory at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Much of our testing is conducted at this state-of-the-art laboratory, where researchers use cutting-edge modeling and analysis tools to focus on thermal management systems-from the cell level to the battery pack or ultracapacitor stack-for electric, hybrid electric, and fuel cell vehicles (EVs, HEVs, and FCVs). In 2010, we received $2 million in funding from the U.S. Department of Energy under the American Recovery and Reinvestment Act of 2009 (ARRA) to enhance and upgrade the NREL Battery Thermal and Life Test Facility. The Energy Storage Laboratory houses two unique calorimeters, along with

391

Cottonseed Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab proficiency testing for Cottonseed. Determinations include Free Fatty Acids, Foreign Matter, Moisture,Nitrogen,Oil. Cottonseed Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab

392

Aflatoxin Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing for Aflatoxin. Samples include Peanut Butter, Peanut Paste, Cottonseed Meal, Corn Meal, Milk, Pistachio and Almond, Aflatoxins B1, B2, G1, and G2 Aflatoxin Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP)

393

Cholesterol Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing for Cholesterol. Samples Dried Meats, Dried Egg, and Cheese Powder. Method AOAC 994.10 Cholesterol Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laborato

394

Peanut Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for Peanuts to determine Free Fatty Acids, Foreign Matter, Moisture, Oil, Nitrogen. Peanut Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laborat

395

Soybeans Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for determining Free Fatty Acids, Moisture, Nitrogen, Oil, and Crude Fiber in Soybeans. Soybeans Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab la

396

Phosphorus in Oil Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Laboratory Proficiency Testing service for Phosphorus in soybean oil Phosphorus in Oil Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laboratories Laboratory methods oils profici

397

Laboratory Proficiency Testing Program Award Winners  

Science Conference Proceedings (OSTI)

Proficiency testing labs or laboratories awarded by AOCS. Laboratory Proficiency Testing Program Award Winners Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laboratories Laboratory methods oils proficiency reference

398

Brookhaven National Laboratory Technology Marketing ...  

Brookhaven National Laboratory Technology Marketing ... a critical reaction in a number of growing energy generation and utilization ... Energy Analys ...

399

Organization Chart | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Download Organization Charts Argonne National Laboratory Computing, Environment, and Life Sciences Energy Engineering and Systems Analysis Physical Science and Engineering...

400

Hollings Marine Laboratory Staff Directory  

Science Conference Proceedings (OSTI)

Hollings Marine Laboratory Staff Directory. ... The Search box will accept a name, phone number, organization name, email address, etc. Contact. ...

2013-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "wtp analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

RFI Comments - Idaho National Laboratory  

Science Conference Proceedings (OSTI)

... These vulnerabilities are analyzed the common vulnerability reports produced the by National SCADA Test Bed at the Idaho National Laboratory ...

2013-04-12T23:59:59.000Z

402

Brookhaven National Laboratory: Technology Commercialization ...  

Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies.

403

PNNL: About PNNL - Laboratory History  

NLE Websites -- All DOE Office Websites (Extended Search)

chemical imaging, chemistry and geochemistry, materials sciences, advanced computing, nuclear and particle physics, and the Environmental Molecular Sciences Laboratory (EMSL)....

404

User Facilities | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

instrumentation and infrastructure for interdisciplinary nanoscience and nanotechnology research. The Electron Microscopy Center (EMC) at Argonne National Laboratory...

405

Building and Fire Research Laboratory  

Science Conference Proceedings (OSTI)

Page 1. NISTIR 4827 Building and Fire Research Laboratory Publications, 1991 Nora H. Jason N lsr United States Department ...

2004-05-25T23:59:59.000Z

406

South Texas Project Dosimetry Laboratory  

Science Conference Proceedings (OSTI)

South Texas Project Dosimetry Laboratory. NVLAP Lab Code: 100519-0. Address and Contact Information: PO Box 289 ...

2013-08-23T23:59:59.000Z

407

Laboratory Science Highlights  

NLE Websites -- All DOE Office Websites (Extended Search)

laboratories/highlights/ The Office of Science is laboratories/highlights/ The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, providing more than 40 percent of total funding for this vital area of national importance. It oversees - and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en {B0DFBA1D-D6A0-4920-8E73-4779F8F5ACEA}http://science.energy.gov/np/highlights/2013/np-2013-12-a/ Modeling Cosmic Nucleosynthesis First measurements of isotopes produced by Argonne's new CARIBU facility provide insight into the creation of the elements in the universe. Thu, 09

408

Mobile Energy Laboratory Procedures  

SciTech Connect

Pacific Northwest Laboratory (PNL) has been tasked to plan and implement a framework for measuring and analyzing the efficiency of on-site energy conversion, distribution, and end-use application on federal facilities as part of its overall technical support to the US Department of Energy (DOE) Federal Energy Management Program (FEMP). The Mobile Energy Laboratory (MEL) Procedures establish guidelines for specific activities performed by PNL staff. PNL provided sophisticated energy monitoring, auditing, and analysis equipment for on-site evaluation of energy use efficiency. Specially trained engineers and technicians were provided to conduct tests in a safe and efficient manner with the assistance of host facility staff and contractors. Reports were produced to describe test procedures, results, and suggested courses of action. These reports may be used to justify changes in operating procedures, maintenance efforts, system designs, or energy-using equipment. The MEL capabilities can subsequently be used to assess the results of energy conservation projects. These procedures recognize the need for centralized NM administration, test procedure development, operator training, and technical oversight. This need is evidenced by increasing requests fbr MEL use and the economies available by having trained, full-time MEL operators and near continuous MEL operation. DOE will assign new equipment and upgrade existing equipment as new capabilities are developed. The equipment and trained technicians will be made available to federal agencies that provide funding for the direct costs associated with MEL use.

Armstrong, P.R.; Batishko, C.R.; Dittmer, A.L.; Hadley, D.L.; Stoops, J.L.

1993-09-01T23:59:59.000Z

409

Humidity requirements in WSCF Laboratories  

SciTech Connect

The purpose of this paper is to develop and document a position on Relative Humidity (RH) requirements in the WSCF Laboratories. A current survey of equipment vendors for Organic, Inorganic and Radiochemical laboratories indicate that 25% - 80% relative humidity may meet the environmental requirements for safe operation and protection of all the laboratory equipment.

Evans, R.A.

1994-10-01T23:59:59.000Z

410

Technosocial Predictive Analytics for Illicit Nuclear Trafficking  

Science Conference Proceedings (OSTI)

Illicit nuclear trafficking networks are a national security threat. These networks can directly lead to nuclear proliferation, as state or non-state actors attempt to identify and acquire nuclear weapons-related expertise, technologies, components, and materials. The ability to characterize and anticipate the key nodes, transit routes, and exchange mechanisms associated with these networks is essential to influence, disrupt, interdict or destroy the function of the networks and their processes. The complexities inherent to the characterization and anticipation of illicit nuclear trafficking networks requires that a variety of modeling and knowledge technologies be jointly harnessed to construct an effective analytical and decision making workflow in which specific case studies can be built in reasonable time and with realistic effort. In this paper, we explore a solution to this challenge that integrates evidentiary and dynamic modeling with knowledge management and analytical gaming, and demonstrate its application to a geopolitical region at risk.

Sanfilippo, Antonio P.; Butner, R. Scott; Cowell, Andrew J.; Dalton, Angela C.; Haack, Jereme N.; Kreyling, Sean J.; Riensche, Roderick M.; White, Amanda M.; Whitney, Paul D.

2011-03-29T23:59:59.000Z

411

Electrospray ion source with reduced analyte electrochemistry  

SciTech Connect

An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

Kertesz, Vilmos (Knoxville, TN); Van Berkel, Gary (Clinton, TN)

2011-08-23T23:59:59.000Z

412

Electrospray ion source with reduced analyte electrochemistry  

DOE Patents (OSTI)

An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

Kertesz, Vilmos; Van Berkel, Gary J

2013-07-30T23:59:59.000Z

413

Analytical model for Stirling cycle machine design  

E-Print Network (OSTI)

In order to study further the promising free piston Stirling engine architecture, there is a need of an analytical thermodynamic model which could be used in a dynamical analysis for preliminary design. To aim at more realistic values, the models have to take into account the heat losses and irreversibilities on the engine. An analytical model which encompasses the critical flaws of the regenerator and furthermore the heat exchangers effectivenesses has been developed. This model has been validated using the whole range of the experimental data available from the General Motor GPU-3 Stirling engine prototype. The effects of the technological and operating parameters on Stirling engine performance have been investigated. In addition to the regenerator influence, the effect of the cooler effectiveness is underlined.

Formosa, Fabien; 10.1016/j.enconman.2010.02.010

2013-01-01T23:59:59.000Z

414

PLEAEERUSH ANALYTICAL DA-~-A SHEET  

Office of Legacy Management (LM)

' ' PLEAEERUSH ANALYTICAL DA-~-A SHEET ' ANALYTICAL DEPT. - HEALTH AhD SAFETY DlVlSlON 1956 Industrial Hygiene or Medical Dept. 1. H.#~~Sample Nos. 3 --Date Collected~~by-CESS-.Route to CBS LocationTITANIUM Type of Sample airnalyzed for F Alpham Remarks NIAGARA pALI+S* N.Y. U Beta Bldg. 103 - furnace room - -NO, Ra Oil PH Be Th Sample No. Hour Sample Description I I I--- R ) T 1 Q I I I 7392 1100 GA Induction furnace area duri-nn ----l----- mDeriod;.02; 151 .3 while furnace was charged with UOT_- and carbon, and under heat. 7393 / GA Continuation of 7392 I I 7394 GA Continuation of 7393 -I- ----J -___-_-- - ___(_-- I- -~----~ -- ~- __ __ ___ -----.A ri --- - ----_' ---p. ----- __- -. -~-- -~ - 1 - .- -__ -___ -_--__ -___-- I -__-- -- --' II--T---

415

CERTS Microgrid Laboratory Test Bed  

Science Conference Proceedings (OSTI)

The objective of the CERTS Microgrid Test Bed project was to enhance the ease of integrating energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of generating sources less than 100kW. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation, islanding the microgrid's load from a disturbance, thereby maintaining a higher level of service, without impacting the integrity of the utility's electrical power grid; 2) an approach to electrical protection within a limited source microgrid that does not depend on high fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications between sources. These techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations,and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults. The results from these tests are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field demonstrations involving microgrids that involve one or more of the CERTS Microgrid concepts. Future planned microgrid work involves unattended continuous operation of the microgrid for 30 to 60 days to determine how utility faults impact the operation of the microgrid and to gage the power quality and reliability improvements offered by microgrids.

Eto, Joe; Lasseter, Robert; Schenkman, Ben; Stevens, John; Klapp, Dave; Volkommer, Harry; Linton, Ed; Hurtado, Hector; Roy, Jean

2009-06-18T23:59:59.000Z

416

Visual Analytics and Storytelling through Video  

SciTech Connect

This paper supplements a video clip submitted to the Video Track of IEEE Symposium on Information Visualization 2005. The original video submission applies a two-way storytelling approach to demonstrate the visual analytics capabilities of a new visualization technique. The paper presents our video production philosophy, describes the plot of the video, explains the rationale behind the plot, and finally, shares our production experiences with our readers.

Wong, Pak C.; Perrine, Kenneth A.; Mackey, Patrick S.; Foote, Harlan P.; Thomas, Jim

2005-10-31T23:59:59.000Z

417

Analytic solutions of an unclassified artifact /  

SciTech Connect

This report provides the technical detail for analytic solutions for the inner and outer profiles of the unclassified CMM Test Artifact (LANL Part Number 157Y-700373, 5/03/2001) in terms of radius and polar angle. Furthermore, analytic solutions are derived for the legacy Sheffield measurement hardware, also in terms of radius and polar angle, using part coordinates, i.e., relative to the analytic profile solutions obtained. The purpose of this work is to determine the exact solution for the cosine correction term inherent to measurement with the Sheffield hardware. The cosine correction is required in order to interpret the actual measurements taken by the hardware in terms of an actual part definition, or knot-point spline definition, that typically accompanies a component drawing. Specifically, there are two portions of the problem: first an analytic solution must be obtained for any point on the part, e.g., given the radii and the straight lines that define the part, it is required to find an exact solution for the inner and outer profile for any arbitrary polar angle. Next, the problem of the inspection of this part must be solved, i.e., given an arbitrary sphere (representing the inspection hardware) that comes in contact with the part (inner and outer profiles) at any arbitrary polar angle, it is required to determine the exact location of that intersection. This is trivial for the case of concentric circles. In the present case, however, the spherical portion of the profiles is offset from the defined center of the part, making the analysis nontrivial. Here, a simultaneous solution of the part profiles and the sphere was obtained.

Trent, Bruce C.

2012-03-01T23:59:59.000Z

418

Analytical steam injection model for layered systems  

SciTech Connect

Screening, evaluation and optimization of the steam flooding process in homogeneous reservoirs can be performed by using simple analytical predictive models. In the absence of any analytical model for layered reservoirs, at present, only numerical simulators can be used. And these are expensive. In this study, an analytical model has been developed considering two isolated layers of differing permeabilities. The principle of equal flow potential is applied across the two layers. Gajdica`s (1990) single layer linear steam drive model is extended for the layered system. The formulation accounts for variation of heat loss area in the higher permeability layer, and the development of a hot liquid zone in the lower permeability layer. These calculations also account for effects of viscosity, density, fractional flow curves and pressure drops in the hot liquid zone. Steam injection rate variations in the layers are represented by time weighted average rates. For steam zone calculations, Yortsos and Gavalas`s (1981) upper bound method is used with a correction factor. The results of the model are compared with a numerical simulator. Comparable oil and water flow rates, and breakthrough times were achieved for 100 cp oil. Results with 10 cp and 1000 cp oils indicate the need to improve the formulation to properly handle differing oil viscosities.

Abdual-Razzaq; Brigham, W.E.; Castanier, L.M.

1993-08-01T23:59:59.000Z

419

Renewable and Appropriate Energy Laboratory (RAEL) Green Jobs Calculator |  

Open Energy Info (EERE)

Renewable and Appropriate Energy Laboratory (RAEL) Green Jobs Calculator Renewable and Appropriate Energy Laboratory (RAEL) Green Jobs Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable and Appropriate Energy Laboratory (RAEL) Green Jobs Calculator Focus Area: Renewable Energy Topics: Policy Impacts Website: rael.berkeley.edu/greenjobs Equivalent URI: cleanenergysolutions.org/content/renewable-and-appropriate-energy-labo Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This tool is an analytical job calculator for the U.S. power sector. It can be used to estimate how many jobs energy efficiency, renewable energy, and other low-carbon energy options, such as nuclear power and carbon capture and sequestration (CCS), will generate depending on proposed energy

420

Laboratory Partnering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Partnering Laboratory Partnering Laboratory Partnering The Department of Energy operates multiple laboratories and facilities that conduct Technology Transfer through partnerships with industry, universities and non-profit organizations. Technology transfer involves deployment of newly generated technology intended for commercial deployment, and making unique resources in the form of collaborations with laboratory staff and unique equipment available for use by third parties. Technology transfer is done through a variety of legal instruments from technical assistance agreements to solve a specific problem, user agreements, licensing of patents and software, exchange of personnel, work for others agreements and cooperative research and development agreements. The most appropriate mechanism will depend on the objective of each

Note: This page contains sample records for the topic "wtp analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Mark Peters | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Core Capabilities Leadership Message from the Director Board of Governors Organization Chart Argonne Distinguished Fellows Emeritus Scientists & Engineers History Discoveries Prime Contract Contact Us Mark Peters, Deputy Lab Director for Programs Mark Peters Deputy Laboratory Director for Programs Dr. Mark Peters is the Deputy Laboratory Director for Programs at Argonne National Laboratory. He is responsible for the management and integration of the Laboratory's science and technology portfolio, strategic planning, Laboratory Directed Research and Development (LDRD) program and technology transfer. Dr. Peters also serves as a senior advisor to the Department of Energy on nuclear energy technologies and research and development programs, and nuclear waste policy.

422

The Department of Energy's National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

THE THE DEPARTMENT OF ENERGY'S National Laboratories All National Laboratories Achievements History Argonne National Laboratory (ANL) Achievements History Brookhaven National Laboratory (BNL) Achievements History Fermi National Accelerator Laboratory (FNAL) Achievements History Idaho National Laboratory (INL) Achievements History Lawrence Berkeley National Laboratory (LBNL) Achievements History Lawrence Livermore National Laboratory (LLNL) Achievements History Los Alamos National Laboratory (LANL) Achievements History National Energy Technology Laboratory (NETL) Achievements History National Renewable Energy Laboratory (NREL) Achievements History Oak Ridge National Laboratory (ORNL) Achievements History Pacific Northwest National Laboratory (PNNL) Achievements History

423

BCM 1 Equipment Inventory | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Equipment Inventory 1 Equipment Inventory « Biology Chemistry & Material Science Laboratory 1 Title Equipment Type Description Agilent 8453 UV-Vis Spectrophotometer Analytical Agilent 8453 UV-VIS diode-array spectrophotometer. Wavelength range 190-1100 nm with a 1 nm optical slit width. Disposable plastic cuvettes are available in the lab, and quartz cuvettes and microcuvettes are available on a check-out basis. Beckman GPKR Centrifuge Centrifuge Beckman GPKR refrigerated centrifuge with fixed angle rotor, 8000 rpm max speed, temperature range -10°C to 40°C, fits 50mL tubes. Corning 430 pH Meter pH Meter The Corning 430 pH meter is designed to handle laboratory applications from the most routine to the highly complex. Encased in spill-resistant housings and feature chemical-resistant, sealed keypad. Model 430 (pH range 0.00 to 14.00) is a basic, yet reliable meter providing accurate, efficient digital measurements. Offers simplified, four-button operation, automatic calibration and temperature compensation, % slope readout, self-diagnostics test on powerup and analog recorder output. Unique LCD shows pH, mV

424

ARGONNE NATIONAL LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Performance modeling for exascale autotuning: An integrated approach ∗ Prasanna Balaprakash, Stefan M. Wild, and Paul D. Hovland Mathematics and Computer Science Division Preprint ANL/MCS-P5000-0813 July 2013 ∗ Support for this work was provided through the SciDAC program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research, under Contract No. DE-AC02-06CH11357. 1 Performance modeling for exascale autotuning: An integrated approach Prasanna Balaprakash ∗ , Stefan M. Wild, and Paul D. Hovland Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439 The usual suspects-shrinking integrated circuit feature sizes, heterogeneous nodes with many- core processors, deep memory hierarchies, an ever-present power wall, energy efficiency demands, and resiliency concerns-make exascale

425

Renewable Energy Laboratory  

Open Energy Info (EERE)

success of any solar energy success of any solar energy installation depends largely on the site's solar resource. Therefore, detailed knowledge of an area's solar resource is critical to installation planning and siting. To help with these efforts, the National Renewable Energy Laboratory (NREL) and the National Climatic Data Center (NCDC) have updated the National Solar Radiation Database (NSRDB). Since 1992, the database has provided solar planners and designers, building architects and engineers, renewable energy analysts, and countless others with extensive solar radiation information. The 1991-2005 NSRDB contains hourly solar radiation (including global, direct, and diffuse) and meteorological data for 1,454 stations. This update builds on the 1961-1990 NSRDB, which contains

426

Infrared Thermography Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Hollow vs. Foam-Filled Vinyl Windows Hollow vs. Foam-Filled Vinyl Windows Hollow vs. Foam-filled Vinyl Windows (100K) These two windows are the same except for what is inside the vinyl frames. The frame on the left is hollow, while the frame on the right is filled with insulating foam. The units have the same insulated glazing unit, a superwindow with R-8 center of glass. The hollow window frame allows air to circulate inside the frame; this convective effect is observed by noticing the frame temperatures are cooler at the bottom than at the top. The foam-filled window doesnÌt show this effect. These windows are being cooled on the back side with wind at -15°C (5°F). For more information contact: Howdy Goudey Building Technologies Program 510-486-6046 (fax) Return to the IRlab page Building Technologies | Energy & Environment Division | Lawrence Berkeley National Laboratory

427

OAK RIDGE NATIONAL LABORATORY  

Office of Legacy Management (LM)

Results of the Independent Results of the Independent Radiological Verification Survey L O C K W R R D M A R T I N of the Remedial Action Performed at the Former Alba Craft Laboratory Site Oxford, Ohio (0x0001) K. R. Kleinhans M. E. Murray R. F. Camer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Rcfer- ence herein to any specific commercial product, process, or service by trade name, trademark,

428

Science | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

The Argonne Research Library supports the scientific and technical research The Argonne Research Library supports the scientific and technical research of the employees of Argonne National Laboratory. While the library is not open to the public, we do make our catalog available for searching. The Institute for Molecular Engineering explores innovative technologies that address fundamental societal problems through advances in nanoscale manipulation and design at a molecular scale. Women in Science and Technology (WIST) aims to promote the success of women in scientific and technical positions at Argonne. Science The best and brightest minds come to Argonne to make scientific discoveries and technological innovations that improve the quality of life throughout the nation and the world. The best and brightest minds come to Argonne.

429

ARGONNE NATIONAL LABORATORY May  

NLE Websites -- All DOE Office Websites (Extended Search)

May 9, 1994 Light Source Note: LS{234 Comparison of the APS and UGIMAG Helmholtz Coil Systems David W. Carnegie Accelerator Systems Division Advanced Photon Source Argonne National Laboratory 9700 S. Cass Ave., Argonne, IL 60439-4815 Telephone: (708) 252-6660 FAX: (708) 252-6607 ABSTRACT UGIMAG [1] is manufacturing the NdFeB permanent magnet blocks to be used in undulator A now being assembled by STI Optronics. We would like to be able to compare measurements made at the plant with those made at ANL and potentially with those made at the STI facility. Since there are no permanent magnet standard samples, measurement systems are compared by trading sets of magnets set aside as standards. APS has ten NdFeB permanent magnet blocks supplied by Sumitomo [2] that we use to make these comparisons. These magnet samples have been exten- sively measured on the APS system. The data include the

430

Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

ICE SLURRY PHASE-CHANGE COOLANTS FOR ICE SLURRY PHASE-CHANGE COOLANTS FOR INDUSTRIAL AND MEDICAL APPLICATIONS K. Kasza*, Y. Wu, J. Heine, D. Sheradon, and Steve Lake * Argonne National Laboratory, 9700 South Cass Avenue, Argonne Illinois, 60439, USA kasza@anl.gov Abstract Over the last 15 years, interest in using phase-change ice slurry coolants has grown significantly. Because of the high energy content of ice slurry, which is due to the phase change (melting) of the ice particles under a cooling load, the cooling capacity of ice slurry is many times greater than that of single phase fluids. Research is focused on understanding ice slurry behavior and developing highly-loaded, storable, and pumpable ice slurry coolants. Research has shown that the ice slurry must be engineered to have the correct

431

Contract | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne's Prime Contract is the contract between the U.S. Department of Argonne's Prime Contract is the contract between the U.S. Department of Energy and UChicago Argonne, LLC that sets out the terms and conditions for the operation of Argonne National Laboratory. Please direct general comments and questions about the Argonne Prime Contract to William Luck. Navigation Tips Listed below are tips on navigating through the Argonne Prime Contract. The navigation menu contains the currently available options. Select the main Argonne Prime Contract at any time to return to the main menu. When searching the text of the Argonne Prime Contract, the previous/next hit buttons will take you to the previous/next occurrence of your search term(s) in the current section. Search Table of Contents Advanced Search List of Modifications List of Appendices

432

ARGONNE NATIONAL LABORATORY  

Office of Legacy Management (LM)

7/ 7/ ARGONNE NATIONAL LABORATORY 9700 Sod CASS AVENUE, A~o~NE, llhois 60439 oh/, lb w- /7 T-E 312/972-3322 e-,/f pa, / =i ' 4 /2 August 21, 1984 MI-. 3' (it+ ipj Aerospace Corporation Suite 4000 955 L'Enfant Plaza S. W. Washington, D.C. 20024 Dear Mr. Wallo: Subject: Aerospace Records Search Reference: 1. Letter, H. J. Rauch to A. Schriesheim, dated July 30, 1984, subject same as above. 2. Letter, J. E. Baublitz to R. M. Moser, dated July 19, 1984, subject same as above. In accordance with the above referenced letters, please find enclosed copies of information from our files relating to the following sites. ~ 1. Revere Copper and Brass Company, Detroit, Michigan. 2. Parker Rust Proof and Meistermatic, formerly McKinney Tool and Manufacturing Company, Cleveland, Ohio.

433

Los Alamos National Laboratory  

SciTech Connect

The purpose of the briefing is to describe general laboratory technical capabilities to be used for various groups such as military cadets or university faculty/students and post docs to recruit into a variety of Los Alamos programs. Discussed are: (1) development and application of high leverage science to enable effeictive, predictable and reliability outcomes; (2) deter, detect, characterize, reverse and prevent the proliferation of weapons of mass destruction and their use by adversaries and terrorists; (3) modeling and simulation to define complex processes, predict outcomes, and develop effective prevention, response, and remediation strategies; (4) energetic materials and hydrodynamic testing to develop materials for precise delivery of focused energy; (5) materials cience focused on fundamental understanding of materials behaviors, their quantum-molecular properties, and their dynamic responses, and (6) bio-science to rapidly detect and characterize pathogens, to develop vaccines and prophylactic remedies, and to develop attribution forensics.

Dogliani, Harold O [Los Alamos National Laboratory

2011-01-19T23:59:59.000Z

434

OAK RIDGE NATIONAL LABORATORY  

Office of Legacy Management (LM)

POST OFFICE 80X 2008 POST OFFICE 80X 2008 OAK RIDGE, TENNESSEE 37831 MANAGED BY MARTIN MARlElTA ENERGY SYSTEMS. INC. FOR THE U.S. DEPARTMENT OF ENERGY July 15, 1992 Dr. W. A Williams Department of Energy Trevion II Building EM-421 Washington, D. C. 20585 Dear Dr. Williams: Trip Report of ORNL Health Physics Support at the Uniroyal Chemical Company Painesvik, Ohio, on June 25,1992 As per agreement between DOE-HQ and Uniroyal of Painesville, on June 25, 1992, a member, the undersigned, from the Health and Safety Research Division of the Oak Rtdge Nattonal Laboratory (ORNL) provided health physics support for the Uniroyal Chemical Company. The job encompassed a contractor excavating around a fire hydrant and finding an underground water leak. The leak was in an area where no contamination was detected in an earlier survey.

435

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

announces Express Licensing program announces Express Licensing program August 1, 2013 Streamlined procedure speeds business access to new technology LOS ALAMOS, N.M., August 1, 2013-With the launch of a new "Express Licensing" program, access to innovative technology invented at Los Alamos National Laboratory (LANL) has gotten easier. The new licensing alternative was announced today by David Pesiri, director of LANL's Technology Transfer Division. "The Express License program offers an additional licensing resource for local entrepreneurs as well as national collaborators," Pesiri said. "Our licensing and software teams have worked very hard to offer this specialized model for those wanting to quickly license Los Alamos technology." - 2 - The Express Licensing program at LANL is the first of several new initiatives under

436

Home | Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

ABOUT | NEED A MATERIAL | NEWS CENTER | RESEARCH | TECH ABOUT | NEED A MATERIAL | NEWS CENTER | RESEARCH | TECH TRANSFER | CONTACT search LOG IN | RARE EARTH METALS | CRITICAL MATERIALS INSTITUTE | STAFF/ASSOCIATES | VISITORS | BE A PART OF AMES LAB | STUDENTS | EDUCATORS | FUNDING AGENCIES | INDUSTRY | RESEARCHERS | COMMUNITY RARE EARTH METALS Current Market Prices About Rare Earth Metals Materials Preparation STAFF/ASSOCIATES Operations Forms & Documents Find People VISITORS How To Get Here Tours of Ames Laboratory Local Events Calendar BE A PART OF AMES LAB Job News Human Resources Ames Lab At A Glance STUDENTS K-12 Resources Undergraduates Graduates and Others EDUCATORS Science Bowl SULI Program VFP Program FUNDING AGENCIES DOE/Contractor Research Highlights Contract INDUSTRY Technology Transfer Unique Capabilities

437

Los Alamos: MST-MTM: EML: Electron Microscopy Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Microscopy Laboratory, MST-6 Electron Microscopy Laboratory, MST-6 MST-6 Home Home In the MSL FEI Tecnai F30 Analytical TEM/STEM JEOL 6300FXV High Resolution SEM JEOL 3000F High Resolution Transmission Electron Microscope Philips XL30 F Scanning Electron Microscope & Orientation Imaging System Phillips CM30 Transmission Electron Microscope In the Sigma Building JEOL 840 EPMA with Wavelength Dispersive Spectroscopy FEI Strata DB235 FIB/SEM FEI XL30 Environmental Scanning Electron Microscope & Orientation Imaging System CONTACTS Bob Field 665.3938 Pat Dickerson 665.3036 Rob Dickerson 667.6337 Rod McCabe 606.1649 The Electron Microscopy Laboratory's Capabilities The Electron Microscopy Laboratory's Capabilities The Electron Microscopy Laboratory (EML) is part of MST-6, the Materials Technology - Metallurgy Group within the Materials Science and Technology Division at Los Alamos National Laboratory. It is a facility dedicated to the characterization of materials primarily through imaging, chemical, and crystallographic analyses of material microstructures with several electron and ion beam instruments. Accessory characterization techniques and equipment include energy dispersive x-ray analysis (EDS), wavelength dispersive x-ray analysis (WDS), electron backscatter diffraction (EBSD) and orientation imaging microscopy (OIM), and electron energy loss spectroscopy (EELS).

438

Historical Photographs: Lawrence Berkeley Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Berkeley Laboratory Lawrence Berkeley Laboratory [Small Image] 1. A whole body counter (circa 1964) at the Berkeley Donner Laboratory. Such counters were used in human radiation tracer studies and for measuring AEC worker radiation exposure. (294Kbytes) [Small Image] 2. Early treatment for Parkinson's disease at the Berkeley Donner Laboratory (134Kbytes) [Small Image] 3. Donner Laboratory carbon-14 metabolic study apparatus (146Kbytes) [Small Image] 4. Respiration analysis using injected radioactive tracers at Donner Laboratory (circa 1968). (217Kbytes) [Small Image] 5. A patient under a positron camera. The camera was a diagnostic tool developed at Donner Laboratory, Berkeley, to photograph radioactive tracer concentrations. Unlike a whole body scanner, this device photographs a single, specific area of the body. (146Kbytes)

439

Los Alamos National Laboratory - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Nuclear Safety Home Nuclear Sites Map Nuclear Sites List › Argonne National Laboratory › East Tennessee Technology Park › Hanford › Idaho Site › Los Alamos National Laboratory › Lawrence Livermore National Laboratory › Nevada National Security Site › New Brunswick Laboratory › Oak Ridge National Laboratory › Paducah › Pantex › Pacific Northwest National Laboratory › Portsmouth Gaseous Diffusion Plant › Sandia National Laboratories › Savannah River Site › Waste Isolation Pilot Plant › West Valley Demonstration Project › Y-12 National Security Complex HSS Reports - Enforcement - Corporate Safety Analysis Fire Protection DOELAP - Safety and Emergency Management Evaluations Safety Basis Information System Office of Corporate Safety Analysis

440

Argonne National Laboratory - Enforcement Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Enforcement Documents Enforcement Documents Argonne National Laboratory Preliminary Notice of Violation issued to the University of Chicago related to Nuclear Safety Program Deficiencies at Argonne National Laboratory, March 7, 2006 (EA-2006-02) - University of Chicago/Argonne National Laboratory - Press Release, March 7, 2006 Preliminary Notice of Violation issued to the University of Chicago related to the Uncontrolled Release of Radioactive Material at Argonne National Laboratory-East, August 14, 2001 (EA-2001-05) - Argonne National Laboratory - Press Release, August 17, 2001 Preliminary Notice of Violation issued to the University of Chicago related to Programmatic Management Failures at Argonne National Laboratory-West, February 28, 2001 (EA-2001-01) - Argonne National Laboratory-West - Press Release, March 2, 2001

Note: This page contains sample records for the topic "wtp analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

California's Public Health Laboratories: Inter-organizational cooperation models to bolster laboratory capacity  

E-Print Network (OSTI)

Department of Health Services, Laboratory Field Services,delivering health services, including laboratories. Duringof Health Services, Environmental Laboratory Certification (

Hsieh, Kristina

2011-01-01T23:59:59.000Z

442

Print - Lawrence Livermore National Laboratory  

UltraSpec is a new analytical tool for examining nuclear materials non-destructively. UltraSpec is a high-energy resolution spectrometer that can be used to ...

443

California's Public Health Laboratories: Inter-organizational cooperation models to bolster laboratory capacity  

E-Print Network (OSTI)

Laboratory (2009). Laboratory Capacity. Available: http://Public Health Laboratory Capacity. Retrieved August 5, 2009,enhancing laboratory capacity in California. References: (

Hsieh, Kristina

2011-01-01T23:59:59.000Z

444

Development of analytical cell support for vitrification at the West Valley Demonstration Project. Topical report  

SciTech Connect

Analytical and Process Chemistry (A&PC) support is essential to the high-level waste vitrification campaign at the West Valley Demonstration Project (WVDP). A&PC characterizes the waste, providing information necessary to formulate the recipe for the target radioactive glass product. High-level waste (HLW) samples are prepared and analyzed in the analytical cells (ACs) and Sample Storage Cell (SSC) on the third floor of the main plant. The high levels of radioactivity in the samples require handling them in the shielded cells with remote manipulators. The analytical hot cells and third floor laboratories were refurbished to ensure optimal uninterrupted operation during the vitrification campaign. New and modified instrumentation, tools, sample preparation and analysis techniques, and equipment and training were required for A&PC to support vitrification. Analytical Cell Mockup Units (ACMUs) were designed to facilitate method development, scientist and technician training, and planning for analytical process flow. The ACMUs were fabricated and installed to simulate the analytical cell environment and dimensions. New techniques, equipment, and tools could be evaluated m in the ACMUs without the consequences of generating or handling radioactive waste. Tools were fabricated, handling and disposal of wastes was addressed, and spatial arrangements for equipment were refined. As a result of the work at the ACMUs the remote preparation and analysis methods and the equipment and tools were ready for installation into the ACs and SSC m in July 1995. Before use m in the hot cells, all remote methods had been validated and four to eight technicians were trained on each. Fine tuning of the procedures has been ongoing at the ACs based on input from A&PC technicians. Working at the ACs presents greater challenges than had development at the ACMUs. The ACMU work and further refinements m in the ACs have resulted m in a reduction m in analysis turnaround time (TAT).

Barber, F.H.; Borek, T.T.; Christopher, J.Z. [and others

1997-12-01T23:59:59.000Z

445

Creating the laboratory`s future; A strategy for Lawrence Livermore National Laboratory  

SciTech Connect

``Creating The Laboratory`s Future`` describes Livermore`s roles and responsibilities as a Department of Energy (DOE) national laboratory and sets the foundation for decisions about the Laboratory`s programs and operations. It summarizes Livermore`s near-term strategy, which builds on recent Lab achievements and world events affecting their future. It also discusses their programmatic and operational emphases and highlights program areas that the authors believe can grow through application of Lab science and technology. Creating the Laboratory`s Future reflects their very strong focus on national security, important changes in the character of their national security work, major efforts are under way to overhaul their administrative and operational systems, and the continuing challenge of achieving national consensus on the role of the government in energy, environment, and the biosciences.

NONE

1997-09-01T23:59:59.000Z

446

Data Intensive Architecture for Scalable Cyber Analytics  

SciTech Connect

Cyber analysts are tasked with the identification and mitigation of network exploits and threats. These compromises are difficult to identify due to the characteristics of cyber communication, the volume of traffic, and the duration of possible attack. It is necessary to have analytical tools to help analysts identify anomalies that span seconds, days, and weeks. Unfortunately, providing analytical tools effective access to the volumes of underlying data requires novel architectures, which is often overlooked in operational deployments. Our work is focused on a summary record of communication, called a flow. Flow records are intended to summarize a communication session between a source and a destination, providing a level of aggregation from the base data. Despite this aggregation, many enterprise network perimeter sensors store millions of network flow records per day. The volume of data makes analytics difficult, requiring the development of new techniques to efficiently identify temporal patterns and potential threats. The massive volume makes analytics difficult, but there are other characteristics in the data which compound the problem. Within the billions of records of communication that transact, there are millions of distinct IP addresses involved. Characterizing patterns of entity behavior is very difficult with the vast number of entities that exist in the data. Research has struggled to validate a model for typical network behavior with hopes it will enable the identification of atypical behavior. Complicating matters more, typically analysts are only able to visualize and interact with fractions of data and have the potential to miss long term trends and behaviors. Our analysis approach focuses on aggregate views and visualization techniques to enable flexible and efficient data exploration as well as the capability to view trends over long periods of time. Realizing that interactively exploring summary data allowed analysts to effectively identify events, we utilized multidimensional OLAP data cubes. The data cube structure supports interactive analysis of summary data across multiple dimensions, such as location, time, and protocol. Cube technology also allows the analyst to drill-down into the underlying data set, when events of interest are identified and detailed analysis is required. Unfortunately, when creating these cubes, we ran into significant performance issues with our initial architecture, caused by a combination of the data volume and attribute characteristics. Overcoming, these issues required us to develop a novel, data intensive computing infrastructure. In particular, we ended up combining a Netezza Twin Fin data warehouse appliance, a solid state Fusion IO ioDrive, and the Tableau Desktop business intelligence analytic software. Using this architecture, we were able to analyze a month's worth of flow records comprising 4.9B records, totaling approximately 600GB of data. This paper describes our architecture, the challenges that we encountered, and the work that remains to deploy a fully generalized cyber analytical infrastructure.

Olsen, Bryan K.; Johnson, John R.; Critchlow, Terence J.

2011-11-15T23:59:59.000Z

447

PIA - Environmental Molecular Sciences Laboratory (EMSL) User...  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular Sciences Laboratory (EMSL) User System (ESU) PIA - Environmental Molecular Sciences Laboratory (EMSL) User System (ESU) PIA - Environmental Molecular Sciences Laboratory...

448

Sandia National Laboratories Solar Reflection Panels  

Sandia National Laboratories Solar Reflection Panels HTTPS://IP.SANDIA.GOV Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia ...

449

Sandia National Laboratories Overview- small business program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sandia National Laboratories Overview- small business program Sandia National Laboratories Overview- small business program NMSU, MBA program Sandia National Laboratories Overview-...

450

Widget:AnalyticsVisitByLatLon | Open Energy Information  

Open Energy Info (EERE)

AnalyticsVisitByLatLon Jump to: navigation, search Google Analytics widget that shows visits by latlon for OpenEI. Example Output Change timeframe to... Last day Last 7 days...

451

On the analytic solutions of the nonhomogeneous Blasius problem  

Science Conference Proceedings (OSTI)

In this article a totally analytic solution of the nonhomogeneous Blasius problem is obtained using the homotopy analysis method (HAM). This solution converges for 0= Keywords: 65-xx, Analytic solution, Blasius problem, Homotopy analysis method

Fathi M. Allan; Muhammed I. Syam

2005-10-01T23:59:59.000Z

452

Analytical Performance Models for Geologic Repositories  

SciTech Connect

This report presents analytical solutions of the dissolution and hydrogeologic transport of radionuclides in geologic repositories. Numerical examples are presented to demonstrate the equations resulting from these analyses. The subjects treated in the present report are: (a) Solubility-limited transport with transverse dispersion (Chapter 2); (b) Transport of a radionuclide chain with nonequilibrium chemical reactions (Chapter 3); (c) Advective transport in a two-dimensional flow field (Chapter 4); (d) Radionuclide.transport in fractured media (Chapter 5); (e) A mathematical model for EPA's analysis of generic repositories (Chapter 6); and (f) Dissolution of radionuclides from solid waste (Chapter 7).

Chambre, P.L.; Pigford, T.H.; Fujita, A.; Kanki, T.; Kobayashi,A.; Lung, H.; Ting, D.; Sato, Y.; Savoshy, S.J.

1982-10-01T23:59:59.000Z

453

Photovoltaic Degradation Rates -- An Analytical Review  

DOE Green Energy (OSTI)

As photovoltaic penetration of the power grid increases, accurate predictions of return on investment require accurate prediction of decreased power output over time. Degradation rates must be known in order to predict power delivery. This article reviews degradation rates of flat-plate terrestrial modules and systems reported in published literature from field testing throughout the last 40 years. Nearly 2000 degradation rates, measured on individual modules or entire systems, have been assembled from the literature, showing a median value of 0.5%/year. The review consists of three parts: a brief historical outline, an analytical summary of degradation rates, and a detailed bibliography partitioned by technology.

Jordan, D. C.; Kurtz, S. R.

2012-06-01T23:59:59.000Z

454

Five-Laboratory  

National Nuclear Security Administration (NNSA)

Refer to LA-UR-05-3594 Refer to LA-UR-05-3594 Agenda for the Five-Laboratory Conference on Computational Mathematics 19-23 June 2005 Повестка дня конференции пяти лабораторий по вычислительной математике 19-23 июня 2005 г. Agenda for the 5LC 2005 Refer to LA-UR-05-3594 1 Monday 20 June 2005 08:15 J. Kamm, LANL Welcome to the Five-Lab Conference Session 1A Deterministic Transport Chairman: N. Gentile, LLNL 08:30 R. Shagaliev, VNIIEF VNIIEF Methods for Numerical Simulations of Multi- dimensional Problems of Radiation and Particle Transport 09:30 Deterministic Transport: Labs' Perspectives J. Chang H. Scott S. Pautz A. Shestakov LANL LLNL SNL VNIITF 10:30 Break Session 1B Deterministic Transport

455

YetallurgIaal Laboratory.  

Office of Legacy Management (LM)

rhlah rhlah Mahlgan, rhlah expI&s 4mll 10th. be outlined am f f the work~hiab baa beea performulthennay a reaelver hi of ths slug In YetallurgIaal Laboratory. a mpereonlo apparatus rhlab ultraround tbrougb a W slug and dote& and locate flaws between z-a with the proper funatIonIng or this work hvc been * a slu6 In tbe Inepeation II in the rbopr of tbo 6. A lruporaonio mflrotoeoope, whi rntarls~ of Prof*aaor mrmltotle, has been ueed to hov 8 aotdl slug may by dotooted, tbnt slugs out from extxud 00 a lnrga number of flanr wbiab Intorfares 8Ith the 8 that alugr out fma rolled bartranlrait oound rell and hraoe do not-as flaws,. and that the thonasl and mabanfoal himtory of tbo metal does not IntWfer, with the temtlng for flaws. 4. A eupersonlo rofleataosope for uw at tbo Yotdll~r~~l hbamt0~

456

Beyond Laboratories, Beyond Being Green  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Beyond Laboratories Beyond Laboratories Beyond Being Green The International Institute for Sustainable Laboratories Laboratories for the 21 st Century (Labs21 ® ) A U.S. Environmental Protection Agency and U.S. Department of Energy Co-Sponsored Program Promoting the Design, Engineering and Construction of High Performance, Low Energy Laboratories What is Labs21? * Genesis: Ann Arbor, Michigan ESPC * A joint EPA/DOE partnership program to improve the energy and environmental performance of U.S. laboratories. * Encourages the design, construction, and operation of sustainable, high- performance, high-tech facilities that will: - Minimize overall environmental impacts. - Protect occupant safety. - Optimize whole building efficiency on a lifecycle basis. Purpose of I 2 SL I 2 SL's Role in Labs21

457

Laboratory program helps small businesses  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory program helps small businesses Laboratory program helps small businesses Laboratory program helps small businesses The NMSBA allows for-profit small businesses to request technical assistance that capitalizes on the unique expertise and capabilities of Los Alamos and Sandia national laboratories. June 23, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

458

Going green earns Laboratory gold  

NLE Websites -- All DOE Office Websites (Extended Search)

Going green earns Laboratory gold Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design status and Gold certification from the U.S. Green Building Council. June 18, 2012 LANL Green Building Radiological Laboratory Utility Office Building Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email "RLUOB's LEED certification demonstrates tremendous leadership in green building...serves as a prime example of just how much we can accomplish." High performance sustainable building attains LEED Gold certification From its robust design to its advanced scientific equipment, the Radiological Laboratory Utility Office Building (RLUOB) is essential to the

459

Public Safety and Security in Analytical Microscopy Group  

Science Conference Proceedings (OSTI)

Public Safety and Security in Analytical Microscopy Group. Summary: Reliable standards are needed to test, maintain, and ...

2012-10-02T23:59:59.000Z

460

Nonperturbative and analytical approach to Yang-Mills thermodynamics  

E-Print Network (OSTI)

An analytical, macroscopic approach to SU(N) Yang-Mills thermodynamics is developed, tested,and applied.

Ralf Hofmann

2004-04-29T23:59:59.000Z

Note: This page contains sample records for the topic "wtp analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

ANALYTICAL DATA SHEET ANALYTICAL DEPT. - HEALTH Al\rD SAFETY DlVlSlON  

Office of Legacy Management (LM)

em IVIL, u-3 em IVIL, u-3 1' 1L, I -' I ANALYTICAL DATA SHEET ANALYTICAL DEPT. - HEALTH Al\rD SAFETY DlVlSlON 1956 1. H.# fL22 Industrial Hygiene or Medical Dept. Sample Nor& 3 Date Collected- 5117 by --Route to CES CES r Location IQJKER-PEMJNS Co- Type of Sample-waternalyzed for F Alpha Remarks -&I GG -- u - Beta Samples of water discharged to river during Steam clean- No, Ra ing of equipment. Oil PH Be Th Sample No. Hour Sample Description (RT Please analyze for gm/U/gal. BP-1 P- RO-Kneader BP-2 K- N-Kneader BP-3 Omera Feeder - __-- .___ -- i ___- ------I - 1 I . ----.--- - ------ .-___ _- I I - 3" - 1 ' : i ' Nt! w-d Analytical Chemistry Section: - Date Received 5-21-56 bY %b. Date Reported 5-2 Z-56 by&b. Method of Analysis Fluorimeter

462

Analytical methods for fissionable materials in the nuclear fuel cycle. Covering June 1974--June 1975  

SciTech Connect

Research progress is reported on method development for the dissolution of difficult-to-dissolve materials, the automated analysis of plutonium and uranium, the preparation of plutonium materials for the Safeguard Analytical Laboratory Evaluation (SALE) Program, and the analysis of HTGR fuel and SALE uranium materials. The previously developed Teflon-container, metal-shell apparatus was applied to the dissolution of various nuclear materials. Gas-- solid reactions, mainly using chlorine at elevated temperatures, are promising for separating uranium from refractory compounds. An automated spectrophotometer designed for determining plutonium and uranium was tested successfully. Procedures were developed for this instrument to analyze uranium--plutonium mixtures and the effects of diverse ions upon the analysis of plutonium and uranium were further established. A versatile apparatus was assembled to develop electrotitrimetric methods that will serve as the basis for precise automated determinations of plutonium. Plutonium materials prepared for the Safeguard Analytical Laboratory Evaluation (SALE) Program were plutonium oxide, uranium-- plutonium mixed oxide, and plutonium metal. Improvements were made in the methods used for determining uranium in HTGR fuel materials and SALE uranium materials. Plutonium metal samples were prepared, characterized, and distributed, and half-life measurements were in progress as part of an inter-ERDA- laboratory program to measure accurately the half-lives of long-lived plutonium isotopes. (auth)

Waterbury, G.R.

1975-10-01T23:59:59.000Z

463

Recycling policy making of organic waste using analytical network process  

Science Conference Proceedings (OSTI)

The Analytic Hierarchy Process (AHP) has been used widely in multicriteria selection problems. However, AHP can deal with only a simple hierarchy of elements. On the other hand, the Analytical Network Process (ANP) can deal with more complex structures ... Keywords: analytical network process (ANP), group discussion, multicriteria selection, organic waste recycling policy making

Kazuei Ishii; Toru Furuichi

2008-11-01T23:59:59.000Z

464

CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH AND ANALYTICAL STUDIES  

E-Print Network (OSTI)

CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH AND ANALYTICAL STUDIES PERCENT STUDENTS 1,643 4.4% #12;CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH AND ANALYTICAL.0% INTERNATIONAL STUDENTS 82 1.7% #12;CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH AND ANALYTICAL

de Lijser, Peter

465

Emerging trends around big data analytics and security: panel  

Science Conference Proceedings (OSTI)

This panel will discuss the interplay between key emerging security trends centered around big data analytics and security. With the explosion of big data and advent of cloud computing, data analytics has not only become prevalent but also a critical ... Keywords: analytics, big data, privacy, security

Rafae Bhatti; Ryan LaSalle; Rob Bird; Tim Grance; Elisa Bertino

2012-06-01T23:59:59.000Z

466

Analyte sensing mediated by adapter/carrier molecules  

DOE Patents (OSTI)

This invention relates to an improved method and system for sensing of one or more analytes. A host molecule, which serves as an adapter/carrier, is used to facilitate interaction between the analyte and the sensor element. A detectable signal is produced reflecting the identity and concentration of analyte present.

Bayley, Hagan (College Station, TX); Braha, Orit (College Station, TX); Gu, LiQun (Bryan, TX)

2002-07-30T23:59:59.000Z

467

Thomas Wallner | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne National Laboratory's Omnivorous Engine Argonne National Laboratory's Omnivorous Engine Argonne National Laboratory's Omnivorous Engine Argonne National Laboratory's Omnivorous Engine Browse by Topic Energy Energy efficiency Vehicles Alternative fuels Automotive engineering Biofuels Diesel Fuel economy Fuel injection Heavy-duty vehicles Hybrid & electric vehicles Hydrogen & fuel cells Internal combustion Powertrain research Vehicle testing Building design Manufacturing Energy sources Renewable energy Bioenergy Solar energy Wind energy Fossil fuels Oil Nuclear energy Nuclear energy modeling & simulation Nuclear fuel cycle Geology & disposal Reactors Nuclear reactor safety Nuclear reactor materials Energy usage Energy life-cycle analysis Energy storage Batteries Lithium-ion batteries Lithium-air batteries Smart Grid

468

Solar Control Thin Films Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Sputtering equipment Solar Control Thin Films Laboratory The Solar Control Thin Films lab develops novel thin film coatings, deposition technologies, and device systems for...

469

Mamta Naidu - Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory - Past Employee Currently at: Department of Pharmacology Basic Science Tower Level 8, Room 140 Stony Brook University Stony Brook, NY 11794-8651 Phone: (631)...

470

Savannah River National Laboratory - Home  

... the Department of Energys applied science laboratory ... New Projects Advance Nation's ... SRNL is the DOE Office of Environmental Management's ...

471

about Savannah River National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

(SRNL) have developed the expertise necessary to be the premier laboratory for tritium processing and its relation to new reservoir design. SRNL is the bridge between the...

472

Procurement .:. Lawrence Berkeley National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Doing Business with LBNL Helpful Hints for Vendors Download it HERE (pdf). ...A guide for suppliers The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is a...

473

National Voluntary Laboratory Accreditation Program  

Science Conference Proceedings (OSTI)

... 2011-08-16) SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 Florida Department of Agriculture Metrology Laboratory 3125 Conner Blvd. ...

2013-07-11T23:59:59.000Z

474

Emil Constantinescu | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Emil Constantinescu is an assistant computational mathematician in the Laboratory for Advanced Numerical Simulations (LANS) at Argonne. He obtained his Ph.D. from Virginia Tech and...

475

Community Relations, Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

environmental, energy, and basic research. Speakers Bureau Contact: Robyn McKay Brookhaven National Laboratory Community Relations Office Bldg. 400C - P.O. Box 5000 Upton, NY...

476

Wildlife at Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Wildlife at Brookhaven Wildlife Protection The Laboratory has precautions in place to protect on-site habitats and natural resources. Activities to eliminate or minimize negative...

477

Ray Bair | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

science, computational and laboratory research Large scale applications of high performance computing and communications Telephone (630) 252-5751 E-mail rbair@anl.gov Website...

478

National Voluntary Laboratory Accreditation Program  

Science Conference Proceedings (OSTI)

... NVLAP-02S (REV. 2011-08-16) SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 Idaho National Laboratory - Calibration Services Dept. ...

2013-01-04T23:59:59.000Z

479

Environmental Protection | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

electricity use, water consumption and environmental emissions. Environment and Sustainability Argonne National Laboratory is helping our nation build an economy based on...

480

Sandia National Laboratories: News: Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Magazine Search Sandia Publications News Publications Reports authored by Sandia National Laboratories can be obtained through the following sources: Office of Scientific...

Note: This page contains sample records for the topic "wtp analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

CERTS Microgrid Laboratory Test Bed R. H. Lasseter, Fellow,play functionality. The tests demonstrated stable behaviorin an autonomous manner. All tests performed as expected and

Lasseter, R. H.

2010-01-01T23:59:59.000Z

482

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Diagram of CERTS Microgrid Test Bed Figure 3. Tecogen PrimeCERTS Microgrid Laboratory Test Bed. (California EnergyFigure 1. CERTS Microgrid Test Bed at American Electric

ETO, J.

2010-01-01T23:59:59.000Z

483

about Savannah River National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Tritium Effects on Materials In an effort to ensure the safety of the nation's nuclear weapons stockpile, the Savannah River National Laboratory (SRNL) maintains an active role in...

484

with Oak Ridge National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Mechanisms for Partnering with Oak Ridge National Laboratory Partnerships-It's our name, but it also represents our driving philosophy and commitment. Oak Ridge National...

485

Oak Ridge National Laboratory - Legal  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge National Laboratory Search Go Find People Contact Site Index Comments Home News News Releases Story Tips Features Contacts ORNL Review Magazine ORNL in the News...

486

Oak Ridge National Laboratory - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge National Laboratory Search Go Find People Contact Site Index Comments Home News News Releases Story Tips Features Contacts ORNL Review Magazine ORNL in the News...

487

National Fire Research Laboratory Group  

Science Conference Proceedings (OSTI)

... scale fire experiments is essential to understanding ... there is no research facility in the ... Facilities. National Fire Research Laboratory. staff_directory. ...

2013-05-06T23:59:59.000Z

488

SLAC National Accelerator Laboratory - Organization  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization PHOTO: Aerial view of SLAC Campus SLAC National Accelerator Laboratory is operated by Stanford University for the U.S. Department of Energy's Office of Science. The...

489

Biology Department - Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Burr Brookhaven National Laboratory From: Frances 4676- 93005, Ben 10176-32905 Past BNL Research Interests We have developed two recombinant inbred families to facilitate...

490

Biology Department - Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Van't Hof Brookhaven National Laboratory From: 1962-1999 Research Interests The cell biology and cytogenetics of higher plants; specifically the development of commercial fiber in...

491

NIST Boulder's Precision Measurement Laboratory  

Science Conference Proceedings (OSTI)

... Design and construction of the $118.6 million advanced laboratory was funded in part through NIST appropriations, with $84.9 million of that total ...

2012-04-10T23:59:59.000Z

492

Lab Spotlight: Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven National Laboratory Pet Scans Show Brain Responses to Light, Electrical Stimulation A study measuring metabolic changes in the brains of sighted people is showing...

493

SSRL- Stanford Synchrotron Radiation Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

light shines brilliantly these days at the Stanford Synchrotron Radiation Laboratory (SSRL)". The Secretary of Energy sent these words to be conveyed at the formal opening of...

494

Oak Ridge National Laboratory - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports 2011 Operational Awareness Tour of Building 3525 Irradiated Fuels Examination Hot Cell Laboratory, October 2011 Review Reports 2011 Review of Selected Elements of...

495

Idaho National Laboratory - Enforcement Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

associated with Replacement of Exhaust Ventilation Filters at the Test Reactor Area Hot Cell Facility at the Idaho National Engineering and Environmental Laboratory, May 19,...

496

Mihai Anitescu | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Mathematician Mihai Anitescu has been a computational mathematician in the Mathematics and Computer Science Division at Argonne National Laboratory since 2002 and a...

497

Rajeev Thakur | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Thakur Deputy Division Director Rajeev Thakur is the Deputy Director of the Mathematics and Computer Science Division at Argonne National Laboratory, where he is also a Senior...

498

Salman Habib | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

& Computational Scientist Salman Habib is a member of the High Energy Physics and Mathematics and Computer Science Divisions at Argonne National Laboratory, a Senior Member of...

499

Sunaree Hamilton | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Sunaree Hamilton Senior Program Leader and Manager of International Programs Section - Nuclear Engineering Sunaree Hamilton has managed international programs at the laboratory...

500

PLJ3ASE RUSH ANALYTICAL DATA SHEET  

Office of Legacy Management (LM)

+-L3-+. I +-L3-+. I PLJ3ASE RUSH -- ANALYTICAL DATA SHEET ANALYTICAL DEPT. - HULTH AND SAFETY DIVISIDN 1956 lnd&rial Hyglono or Mediul Dept. I. H.# 929 Sample Nor-ato Colloctod-6/14byARouto to- ' a Location @kUEN WWH CO- 1~ : Jypo Alphau Rama& NUWOOD. WI0 "' of Samplo_nirduslf__Analyzed for F U Beta Stamping wrahor8.fm jqtip6 of U heated in 900° P salt No Ro 5 bath. ' :,.a r ' .. ? ' ). ;..- *fhv 11 $- n _... .I < Oil 3 PH kmph No. . . , r, . Hour *- SImplr Description Be Th jR(T(Q 6375 1144 GA Pre66 area durinn stamina of 14 I a .16 I I I wa8her8. I I I 1 fl&ed off very rapidly. One waahcr mug& fir I + 1.: $. (! ., I I I~NJA~WICAL UBORATORY MPAII' IMENT (RCCOaD COW) 3.MEDICAL DEPARTMENT Z.INDUSTRIAL HYGIENE DEPARTMENT 4-DIRECTOR OF WEALTH b