Sample records for wri pilot test

  1. Kentucky WRI Pilot Test Universal ID

    E-Print Network [OSTI]

    screening deployment experience · Significant cost savings to FMCSA ·Enabling technology already deployedKentucky WRI Pilot Test ­ Universal ID Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 #12;·Utilizes existing automated screening system ·Uses assorted

  2. Wireless Roadside Inspection Phase II Tennessee Commercial Mobile Radio Services Pilot Test Final Report

    SciTech Connect (OSTI)

    Franzese, Oscar [ORNL; Lascurain, Mary Beth [ORNL; Capps, Gary J [ORNL; Siekmann, Adam [ORNL

    2011-05-01T23:59:59.000Z

    The Federal Motor Carrier Safety Administration (FMCSA) Wireless Roadside Inspection (WRI) Program is researching the feasibility and value of electronically assessing truck and bus driver and vehicle safety at least 25 times more often than is possible using only roadside physical inspections. The WRI program is evaluating the potential benefits to both the motor carrier industry and to government. These potential benefits include reduction in accidents, fatalities and injuries on our highways and keeping safe and legal drivers and vehicles moving on the highways. WRI Pilot tests were conducted to prototype, test and demonstrate the feasibility and benefits of electronically collecting safety data message sets from in-service commercial vehicles and performing wireless roadside inspections using three different communication methods. This report summarizes the design, conduct and results of the Tennessee CMRS WRI Pilot Test. The purpose of this Pilot test was to demonstrate the implementation of commercial mobile radio services to electronically request and collect safety data message sets from a limited number of commercial vehicles operating in Tennessee. The results of this test have been used in conjunction with the results of the complimentary pilot tests to support an overall assessment of the feasibility and benefits of WRI in enhancing motor carrier safety (reduction in accidents) due to increased compliance (change in motor carrier and driver behavior) caused by conducting frequent safety inspections electronically, at highway speeds, without delay or need to divert into a weigh station

  3. National Dioxin Study Tier 4 - combustion sources: final test report - Site 6, wire reclamation incinerator WRI-A

    SciTech Connect (OSTI)

    Keller, L.E.; McReynolds, J.R.; Benson, D.J.

    1987-04-01T23:59:59.000Z

    This report summarizes the results of a dioxin/furan emissions test of a wire-reclamation incinerator equipped with an afterburner for hydrocarbon emissions control. The wire reclamation incinerator is used for recovery of copper from coated copper wire and drained transformer cores. The test was the sixth in a series of several dioxin/furan emissions tests conducted under Tier 4 of the National Dioxin Study. The primary objective of Tier 4 is to determine if various combustion sources are sources of dioxin and/or furan emissions. If any of the combustion sources are found to emit dioxin or furan, the secondary objective of Tier 4 is to quantify these emissions. Wire reclamation incinerators are one of 8 combustion-source categories that have been tested in the Tier 4 program. The tested incinerator WRI-A was selected for the test after an initial information screening and a one-day pretest survey visit. Incinerator WRI-A is considered representative of the wire-reclamation incinerator population in the United States. Data presented in the report include dioxin (tetra through octa homologue + 2378 TCDD) and furan (tetra through octa homologue + 2378 TCDF) results for both stack samples and ash samples. In addition, process data collected during sampling are also presented.

  4. Commercial Mobile Radio Service (WRI CMRS)

    E-Print Network [OSTI]

    Commercial Mobile Radio Service (WRI ­ CMRS) Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor #12 caused by higher frequency of roadside safety inspections using wireless technologies. · Benefits

  5. Waste Isolation Pilot Plant Salt Decontamination Testing

    SciTech Connect (OSTI)

    Rick Demmer; Stephen Reese

    2014-09-01T23:59:59.000Z

    On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. At the request of WIPP’s operations contractor, Idaho National Laboratory (INL) personnel developed several methods of decontaminating WIPP salt, using surrogate contaminants and also americium (241Am). The effectiveness of the methods is evaluated qualitatively, and to the extent possible, quantitatively. One of the requirements of this effort was delivering initial results and recommendations within a few weeks. That requirement, in combination with the limited scope of the project, made in-depth analysis impractical in some instances. Of the methods tested (dry brushing, vacuum cleaning, water washing, strippable coatings, and mechanical grinding), the most practical seems to be water washing. Effectiveness is very high, and it is very easy and rapid to deploy. The amount of wastewater produced (2 L/m2) would be substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from the strippable coating and water washing coupons found no residual removable contamination. Thus, whatever is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.’s Polymeric Barrier System (PBS) proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.

  6. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Soil Desiccation Pilot Test Results

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Strickland, Christopher E.; Johnson, Timothy C.; Freedman, Vicky L.; Johnson, Christian D.; Greenwood, William J.; Ward, Anderson L.; Clayton, Ray E.; Lindberg, Michael J.; Peterson, John E.; Hubbard, Susan; Chronister, Glen B.; Benecke, Mark W.

    2012-05-01T23:59:59.000Z

    This report describes results of a pilot test of soil desiccation conducted as part of the Deep Vadose Zone Treatability Test program. The report is written in CERCLA treatabilty test report format.

  7. Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

    SciTech Connect (OSTI)

    J. Francfort (INEEL)

    2005-03-01T23:59:59.000Z

    The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

  8. 500-kW DCHX pilot-plant evaluation testing

    SciTech Connect (OSTI)

    Hlinak, A.; Lee, T.; Loback, J.; Nichols, K.; Olander, R.; Oshmyansky, S.; Roberts, G.; Werner, D.

    1981-10-01T23:59:59.000Z

    Field tests with the 500 kW Direct Contact Pilot Plant were conducted utilizing brine from well Mesa 6-2. The tests were intended to develop comprehensive performance data, design criteria, and economic factors for the direct contact power plant. The tests were conducted in two phases. The first test phase was to determine specific component performance of the DCHX, turbine, condensers and pumps, and to evaluate chemical mass balances of non-condensible gases in the IC/sub 4/ loop and IC/sub 4/ in the brine stream. The second test phase was to provide a longer term run at nearly fixed operating conditions in order to evaluate plant performance and identify operating cost data for the pilot plant. During these tests the total accumulated run time on major system components exceeded 1180 hours with 777 hours on the turbine prime mover. Direct contact heat exchanger performance exceeded the design prediction.

  9. Penn State University Pilot-scale Tests of Fixed Bed

    E-Print Network [OSTI]

    Penn State University Pilot-scale Tests of Fixed Bed Reactors for Perchlorate Degradation: Plastic for inoculation #12;Penn State University PSU-O4 Process Patent: Perchlorate degradation in a fixed bed bioreactor in a packed bed reactor · Reactor performance compared with other studies · Stability of the bacterium used

  10. Results from a pilot cell test of cermet anodes

    SciTech Connect (OSTI)

    Windisch, Jr, C F; Strachan, D M; Henager, Jr, C H; Greenwell, E N [Pacific Northwest Lab., Richland, WA (United States); Alcorn, T R [Reynolds Metals Co., Muscle Shoals, AL (United States). Mfg. Technology Lab.

    1992-08-01T23:59:59.000Z

    Goal was to develop long-lasting, energy-efficient anodes for Hall-Heroult cells used to produce Al metal. The anodes were made from a ceramic/metal composite consisting of NiO and NiFe{sub 2}O{sub 4} and a Cu/Ni metal phase. Thirteen cermet anodes were tested at Reynolds Metals Co., Muscle Shoals, AL. All anodes corroded severely during the pilot test. Electrolyte components were found deep within the anodes. However, there were many deficiencies in the pilot cell test, mainly the failure to maintain optimal operating conditions. It is concluded that there is a variety of fabrication and operational considerations that need to be addressed carefully in any future testing. 118 figs, 16 tabs, 17 refs.(DLC)

  11. The Rosetta Resources CO2 Storage Project - A WESTCARB Geologic Pilot Test

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    abandoned gas field located near Rio Vista will be used for the Rosetta pilot tests. STACKED RESERVOIR

  12. Industrial Gas Turbine Engine Catalytic Pilot Combustor-Prototype Testing

    SciTech Connect (OSTI)

    Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

    2009-09-30T23:59:59.000Z

    PCI has developed and demonstrated its Rich Catalytic Lean-burn (RCL®) technology for industrial and utility gas turbines to meet DOEâ??s goals of low single digit emissions. The technology offers stable combustion with extended turndown allowing ultra-low emissions without the cost of exhaust after-treatment and further increasing overall efficiency (avoidance of after-treatment losses). The objective of the work was to develop and demonstrate emission benefits of the catalytic technology to meet strict emissions regulations. Two different applications of the RCL® concept were demonstrated: RCL® catalytic pilot and Full RCL®. The RCL® catalytic pilot was designed to replace the existing pilot (a typical source of high NOx production) in the existing Dry Low NOx (DLN) injector, providing benefit of catalytic combustion while minimizing engine modification. This report discusses the development and single injector and engine testing of a set of T70 injectors equipped with RCL® pilots for natural gas applications. The overall (catalytic pilot plus main injector) program NOx target of less than 5 ppm (corrected to 15% oxygen) was achieved in the T70 engine for the complete set of conditions with engine CO emissions less than 10 ppm. Combustor acoustics were low (at or below 0.1 psi RMS) during testing. The RCL® catalytic pilot supported engine startup and shutdown process without major modification of existing engine controls. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over a wide range of flame temperatures. In applications where lower NOx production is required (i.e. less than 3 ppm), in parallel, a Full RCL® combustor was developed that replaces the existing DLN injector providing potential for maximum emissions reduction. This concept was tested at industrial gas turbine conditions in a Solar Turbines, Incorporated high-pressure (17 atm.) combustion rig and in a modified Solar Turbines, Incorporated Saturn engine rig. High pressure single-injector rig and modified engine rig tests demonstrated NOx less than 2 ppm and CO less than 10 ppm over a wide flame temperature operating regime with low combustion noise (<0.15% peak-to-peak). Minimum NOx for the optimized engine retrofit Full RCL® designs was less than 1 ppm with CO emissions less than 10 ppm. Durability testing of the substrate and catalyst material was successfully demonstrated at pressure and temperature showing long term stable performance of the catalytic reactor element. Stable performance of the reactor element was achieved when subjected to durability tests (>5000 hours) at simulated engine conditions (P=15 atm, Tin=400C/750F.). Cyclic tests simulating engine trips was also demonstrated for catalyst reliability. In addition to catalyst tests, substrate oxidation testing was also performed for downselected substrate candidates for over 25,000 hours. At the end of the program, an RCL® catalytic pilot system has been developed and demonstrated to produce NOx emissions of less than 3 ppm (corrected to 15% O2) for 100% and 50% load operation in a production engine operating on natural gas. In addition, a Full RCL® combustor has been designed and demonstrated less than 2 ppm NOx (with potential to achieve 1 ppm) in single injector and modified engine testing. The catalyst/substrate combination has been shown to be stable up to 5500 hrs in simulated engine conditions.

  13. High Temperature Calcination - MACT Upgrade Equipment Pilot Plant Test

    SciTech Connect (OSTI)

    Richard D. Boardman; B. H. O'Brien; N. R. Soelberg; S. O. Bates; R. A. Wood; C. St. Michel

    2004-02-01T23:59:59.000Z

    About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste are stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Calcination at high-temperature conditions (600 C, with alumina nitrate and calcium nitrate chemical addition to the feed) is one of four options currently being considered by the Department of Energy for treatment of the remaining tank wastes. If calcination is selected for future processing of the sodium-bearing waste, it will be necessary to install new off-gas control equipment in the New Waste Calcining Facility (NWCF) to comply with the Maximum Achievable Control Technology (MACT) standards for hazardous waste combustors and incinerators. This will require, as a minimum, installing a carbon bed to reduce mercury emissions from their current level of up to 7,500 to <45 {micro}g/dscm, and a staged combustor to reduce unburned kerosene fuel in the off-gas discharge to <100 ppm CO and <10 ppm hydrocarbons. The staged combustor will also reduce NOx concentrations of about 35,000 ppm by 90-95%. A pilot-plant calcination test was completed in a newly constructed 15-cm diameter calciner vessel. The pilot-plant facility was equipped with a prototype MACT off-gas control system, including a highly efficient cyclone separator and off-gas quench/venturi scrubber for particulate removal, a staged combustor for unburned hydrocarbon and NOx destruction, and a packed activated carbon bed for mercury removal and residual chloride capture. Pilot-plant testing was performed during a 50-hour system operability test January 14-16, followed by a 100-hour high-temperature calcination pilot-plant calcination run January 19-23. Two flowsheet blends were tested: a 50-hour test with an aluminum-to-alkali metal molar ratio (AAR) of 2.25, and a 50-hour test with an AAR of 1.75. Results of the testing indicate that sodium-bearing waste can be successfully calcined at 600 C with an AAR of 1.75. Unburned hydrocarbons are reduced to less than 10 ppm (7% O2, dry basis), with >90% reduction of NOx emissions. Mercury removal by the carbon bed reached 99.99%, surpassing the control efficiency needed to meet MACT emissions standards. No deleterious impacts on the carbon bed were observed during the tests. The test results imply that upgrading the NWCF calciner with a more efficient cyclone separator and the proposed MACT equipment can process the remaining tanks wastes in 3 years or less, and comply with the MACT standards.

  14. Completing Pre-Pilot Tasks To Scale Up Biomass Fractionation Pretreatment Apparatus From Batch To Continuous

    SciTech Connect (OSTI)

    Dick Wingerson

    2004-12-15T23:59:59.000Z

    PureVision Technology, Inc. (PureVision) was the recipient of a $200,000 Invention and Innovations (I&I) grant from the U. S. Department of Energy (DOE) to complete prepilot tasks in order to scale up its patented biomass fractionation pretreatment apparatus from batch to continuous processing. The initial goal of the I&I program, as detailed in PureVision's original application to the DOE, was to develop the design criteria to build a small continuous biomass fractionation pilot apparatus utilizing a retrofitted extruder with a novel screw configuration to create multiple reaction zones, separated by dynamic plugs within the reaction chamber that support the continuous counter-flow of liquids and solids at elevated temperature and pressure. Although the ultimate results of this 27-month I&I program exceeded the initial expectations, some of the originally planned tasks were not completed due to a modification of direction in the program. PureVision achieved its primary milestone by establishing the design criteria for a continuous process development unit (PDU). In addition, PureVision was able to complete the procurement, assembly, and initiate shake down of the PDU at Western Research Institute (WRI) in Laramie, WY during August 2003 to February 2004. During the month of March 2004, PureVision and WRI performed initial testing of the continuous PDU at WRI.

  15. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Pilot-Scale Test Results

    SciTech Connect (OSTI)

    Gary M. Blythe

    2006-03-01T23:59:59.000Z

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, ''Field Testing of a Wet FGD Additive.'' The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemissions of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate that the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project will conduct pilot and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosage requirements to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB co-fired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot and full-scale jet bubbling reactor (JBR) FGD systems to be tested. A third utility, to be named later, will provide the high-sulfur Eastern bituminous coal full-scale FGD test site. Degussa Corporation is providing the TMT-15 additive and technical support to the test program. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High Sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. This topical report presents the results from the Task 2 and Task 4 pilot-scale additive tests. The Task 3 and Task 5 full-scale additive tests will be conducted later in calendar year 2006.

  16. RESIDUA UPGRADING EFFICIENCY IMPROVEMENT MODELS: WRI COKING INDEXES

    SciTech Connect (OSTI)

    John F. Schabron; Joseph F. Rovani, Jr.; Francis P. Miknis; Thomas F. Turner

    2003-06-01T23:59:59.000Z

    Pyrolysis experiments were conducted with three residua at 400 C (752 F) at various residence times. The wt % coke and gaseous products were measured for the product oils. The Western Research Institute (WRI) Coking Indexes were determined for the product oils. Measurements were made using techniques that might correlate with the Coking Indexes. These included spin-echo proton nuclear magnetic resonance spectroscopy, heat capacity measurements at 280 C (536 F), and ultrasonic attenuation. The two immiscible liquid phases that form once coke formation begins were isolated and characterized for a Boscan residuum pyrolyzed at 400 C (752 F) for 55 minutes. These materials were analyzed for elemental composition (CHNS), porphyrins, and metals (Ni,V) content.

  17. The Scaleup of Structured Packing from Distillation Pilot Plant Testing to Commercial Application

    E-Print Network [OSTI]

    Berven, O. J.; Ulowetz, M. A.

    The Scaleup of Structured Packing From Distillation Pilot Plant Testing to Commercial Application O. Jeffrey'Berven and Michael A. Ulowetz Koch Engineering Company, Inc. Wichita, Kansas Structured packing is being utilized more and more... in the process industry for increased efficiency, greater capacity, and energy savings in distillation columns. Pilot plant testing of the actual chemical system using commercially available structured packing is invaluable, but years of experience in pilot...

  18. The Minnesota Wri.ng Project's Collabora.on with Teacher Educators in Norway Na.onal Center for Wri.ng Educa.on and Research (Skrivesenteret)

    E-Print Network [OSTI]

    Amin, S. Massoud

    The Minnesota Wri.ng Project's Collabora.on with Teacher Educators in Norway (HiST) · Located in Trondheim, Norway It funcIons as a naIonal resource center their work with teachers throughout all of Norway. In order to obtain more first

  19. HANFORD MEDIUM-LOW CURIE WASTE PRETREATMENT ALTERNATIVES PROJECT FRACTIONAL CRYSTALLIZATION PILOT SCALE TESTING FINAL REPORT

    SciTech Connect (OSTI)

    HERTING DL

    2008-09-16T23:59:59.000Z

    The Fractional Crystallization Pilot Plant was designed and constructed to demonstrate that fractional crystallization is a viable way to separate the high-level and low-activity radioactive waste streams from retrieved Hanford single-shell tank saltcake. The focus of this report is to review the design, construction, and testing details of the fractional crystallization pilot plant not previously disseminated.

  20. Preliminary results from In-Duct Scrubbing Pilot Study testing

    SciTech Connect (OSTI)

    Samuel, E.A.; Murphy, K.R.; Pennline, H.W.

    1987-01-01T23:59:59.000Z

    A low-cost, moderate-removal-efficiency, flue gas desulfurization (FGD) technology was selected by the Department of Energy for demonstration in its Acid Rain Precursor Control Technology Initiative. The process, identified as In-Duct Scrubbing (IDS), applied rotary atomizer techniques developed for lime-based spray dryer FGD while utilizing existing flue gas ductwork and particulate collectors. In-Duct Scrubbing technology is anticipated to result in a dry desulfurization process with a moderate removal efficiency (50% or greater) for high-sulfur coal-fired boilers. The critical elements for successful application are (i) adequate mixing of sorbent with the flue gas for efficient reactant contact, (ii) sufficient residence time to produce a non-wetting product, and (iii) appropriate ductwork cross-sectional area to prevent deposition of wet reaction products before particle drying is complete. This paper presents the IDS technology and the status of a jointly sponsored In-Duct Scrubbing Pilot Study that is being tested at the Muskingum River Plant of the American Electric Power System.

  1. Novel Carbon Capture Solvent Begins Pilot-Scale Testing for Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    Pilot-scale testing of an advanced technology for economically capturing carbon dioxide (CO2) from flue gas has begun at the National Carbon Capture Center (NCCC) in Wilsonville,...

  2. Pilot-scale treatability test plan for the 100-HR-3 operable unit

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This document presents the treatability test plan for pilot-scale pump-and-treat testing at the 100-HR-3 Operable Unit. The test will be conducted in fulfillment of interim Milestone M-15-06E to begin pilot-scale pump-and-treat operations by August 1994. The scope of the test was determined based on the results of lab/bench-scale tests (WHC 1993a) conducted in fulfillment of Milestone M-15-06B. These milestones were established per agreement between the U.S. Department of Energy (DOE), the Washington State Department of Ecology and the U.S. Environmental Protection Agency (EPA), and documented on Hanford Federal of Ecology Facility Agreement and Consent Order Change Control Form M-15-93-02. This test plan discusses a pilot-scale pump-and-treat test for the chromium plume associated with the D Reactor portion of the 100-HR-3 Operable Unit. Data will be collected during the pilot test to assess the effectiveness, operating parameters, and resource needs of the ion exchange (IX) pump-and-treat system. The test will provide information to assess the ability to remove contaminants by extracting groundwater from wells and treating extracted groundwater using IX. Bench-scale tests were conducted previously in which chromium VI was identified as the primary contaminant of concern in the 100-D reactor plume. The DOWEX 21K{trademark} resin was recommended for pilot-scale testing of an IX pump-and-treat system. The bench-scale test demonstrated that the system could remove chromium VI from groundwater to concentrations less than 50 ppb. The test also identified process parameters to monitor during pilot-scale testing. Water will be re-injected into the plume using wells outside the zone of influence and upgradient of the extraction well.

  3. Water Rock Interaction [WRI 14] Chemical weathering of granitic rocks: experimental approach and Pb-Li

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of water/rock interactions both in terms of source and extent of weathering, by measuring major and traceWater Rock Interaction [WRI 14] Chemical weathering of granitic rocks: experimental approach and Pb, France Abstract In order to characterize water/rock interactions of granite, we performed laboratory

  4. Hydraulic testing of Salado Formation evaporites at the Waste Isolation Pilot Plant site: Second interpretive report

    SciTech Connect (OSTI)

    Beauheim, R.L. [Sandia National Labs., Albuquerque, NM (United States); Roberts, R.M.; Dale, T.F.; Fort, M.D.; Stensrud, W.A. [INTERA, Inc., Austin, TX (United States)

    1993-12-01T23:59:59.000Z

    Pressure-pulse, constant-pressure flow, and pressure-buildup tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Transmissivities have been interpreted from six sequences of tests conducted on five stratigraphic intervals within 15 m of the WIPP underground excavations.

  5. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-05-01T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,'' during the time period January 1, 2003 through March 31, 2003. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project cofunders. URS Group is the prime contractor. The mercury control process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The current project is testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the sixth full reporting period for the subject Cooperative Agreement. During this period, project efforts included continued operation of the pilot unit with three catalysts, conducting catalyst activity measurements, and procuring the fourth catalyst, all for the GRE Coal Creek pilot unit site. Laboratory efforts were also conducted to support catalyst selection for the second pilot unit site, at CPS' Spruce Plant. This technical progress report provides an update on these efforts.

  6. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-07-01T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,'' during the time-period April 1, 2003 through June 30, 2003. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project cofunders. URS Group is the prime contractor. The mercury control process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The current project is testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months at each of two sites to provide longer-term catalyst life data. This is the seventh full reporting period for the subject Cooperative Agreement. During this period, project efforts included continued operation of the first pilot unit, conducting catalyst activity measurements, installing sonic horns for on-line catalyst cleaning, and installing the fourth catalyst, all for the GRE Coal Creek site. CPS began installation of the second mercury oxidation catalyst pilot unit at their Spruce Plant during the quarter. Laboratory efforts were conducted to support catalyst selection for that second pilot unit. This technical progress report provides an update on these efforts.

  7. Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems

    SciTech Connect (OSTI)

    Gary Blythe; Conor Braman; Katherine Dombrowski; Tom Machalek

    2010-12-31T23:59:59.000Z

    This document is the final technical report for Cooperative Agreement DE-FC26-04NT41992, 'Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,' which was conducted over the time-period January 1, 2004 through December 31, 2010. The objective of this project has been to demonstrate at pilot scale the use of solid catalysts and/or fixed-structure mercury sorbents to promote the removal of total mercury and oxidation of elemental mercury in flue gas from coal combustion, followed by wet flue gas desulfurization (FGD) to remove the oxidized mercury at high efficiency. The project was co-funded by the U.S. DOE National Energy Technology Laboratory (DOE-NETL), EPRI, Great River Energy (GRE), TXU Energy (now called Luminant), Southern Company, Salt River Project (SRP) and Duke Energy. URS Group was the prime contractor. The mercury control process under development uses fixed-structure sorbents and/or catalysts to promote the removal of total mercury and/or oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury not adsorbed is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The project has tested candidate materials at pilot scale and in a commercial form, to provide engineering data for future full-scale designs. Pilot-scale catalytic oxidation tests have been completed for periods of approximately 14 to19 months at three sites, with an additional round of pilot-scale fixed-structure sorbent tests being conducted at one of those sites. Additionally, pilot-scale wet FGD tests have been conducted downstream of mercury oxidation catalysts at a total of four sites. The sites include the two of three sites from this project and two sites where catalytic oxidation pilot testing was conducted as part of a previous DOE-NETL project. Pilot-scale wet FGD tests were also conducted at a fifth site, but with no catalyst or fixed-structure mercury sorbent upstream. This final report presents and discusses detailed results from all of these efforts, and makes a number of conclusions about what was learned through these efforts.

  8. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2002-10-04T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period July 1, 2002 through September 30, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The coprecipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the fourth full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to completing, installing and starting up the pilot unit, completing laboratory runs to size catalysts, and procuring catalysts for the pilot unit. This technical progress report provides an update on these efforts.

  9. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2002-07-17T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period April 1, 2002 through June 30, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the third full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to constructing the pilot unit and conducting laboratory runs to help size catalysts for the pilot unit. This technical progress report provides an update on these two efforts.

  10. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-01-21T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period October 1, 2002 through December 31, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future fullscale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the fifth full reporting period for the subject Cooperative Agreement. During this period, project efforts included starting up the pilot unit with three catalysts at the first site, conducting catalyst activity measurements, completing comprehensive flue gas sampling and analyses, and procuring additional catalysts for the pilot unit. This technical progress report provides an update on these efforts.

  11. A PILOT HEATER TEST IN THE STRIPA GRANITE

    E-Print Network [OSTI]

    Carlsson, H.

    2011-01-01T23:59:59.000Z

    Per- meability Test of the Granite in the Stripa Mine andMechanical Properties of Granite, Stripa, Sweden. Terra Tek,TEST IN THE STRIPA GRANITE : Hans Carlsson .. , Division of

  12. Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems

    SciTech Connect (OSTI)

    Gary M. Blythe

    2006-03-31T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-04NT41992, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems'', during the time-period January 1 through March 31, 2006. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in flue gas from coal combustion, and the use of a wet flue gas desulfurization (FGD) system downstream to remove the oxidized mercury at high efficiency. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory, EPRI, Great River Energy (GRE), TXU Generation Company LP, the Southern Company, and Duke Energy. URS Group is the prime contractor. The mercury control process under development uses honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The current project is testing previously identified catalyst materials at pilot scale and in a commercial form to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months or longer at each of two sites to provide longer-term catalyst life data. Pilot-scale wet FGD tests are being conducted periodically at each site to confirm the ability to scrub the catalytically oxidized mercury at high efficiency. This is the ninth reporting period for the subject Cooperative Agreement. During this period, project efforts primarily consisted of operating the catalyst pilot units at the TXU Generation Company LP's Monticello Steam Electric Station and at Georgia Power's Plant Yates. Two catalyst activity measurement trips were made to Plant Yates during the quarter. This Technical Progress Report presents catalyst activity results from the oxidation catalyst pilot unit at Plant Yates and discusses the status of the pilot unit at Monticello.

  13. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-10-01T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,'' during the time-period July 1, 2003 through September 30, 2003. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project cofunders. URS Group is the prime contractor. The mercury control process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The current project is testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months at each of two sites to provide longer-term catalyst life data. This is the eighth full reporting period for the subject Cooperative Agreement. During this period, project efforts included continued operation of the first pilot unit at the GRE Coal Creek site with all four catalysts in service and sonic horns installed for on-line catalyst cleaning. During the quarter, a catalyst activity measurement trip and mercury SCEM relative accuracy tests were completed, and catalyst pressure drop was closely monitored with the sonic horns in operation. CPS completed the installation of the second mercury oxidation catalyst pilot unit at their Spruce Plant during the quarter, and the four catalysts to be tested in that unit were ordered. The pilot unit was started up with two of the four catalysts in service late in August, and initial catalyst activity results were measured in late September. The other two catalysts will not become available for testing until sometime in October. This technical progress report details these efforts at both sites.

  14. Site characterization and monitoring data from Area 5 Pilot Wells, Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    NONE

    1994-02-01T23:59:59.000Z

    The Special Projects Section (SPS) of Reynolds Electrical & Engineering Co., Inc. (REECO) is responsible for characterizing the subsurface geology and hydrology of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) for the US Department of Energy, Nevada Operations Office (DOE/NV), Environmental Restoration and Waste Management Division, Waste Operations Branch. The three Pilot Wells that comprise the Pilot Well Project are an important part of the Area 5 Site Characterization Program designed to determine the suitability of the Area 5 RWMS for disposal of low-level waste (LLW), mixed waste (MW), and transuranic waste (TRU). The primary purpose of the Pilot Well Project is two-fold: first, to characterize important water quality and hydrologic properties of the uppermost aquifer; and second, to characterize the lithologic, stratigraphic, and hydrologic conditions which influence infiltration, redistribution, and percolation, and chemical transport through the thick vadose zone in the vicinity of the Area 5 RWMS. This report describes Pilot Well drilling and coring, geophysical logging, instrumentation and stemming, laboratory testing, and in situ testing and monitoring activities.

  15. Removal of Waterborne Particles by Electrofiltration: Pilot-Scale Testing

    E-Print Network [OSTI]

    Li, Ying

    , Missouri. 2 Center for Disease Control and Prevention, National Institute for Occupational Safety velocity that increases their deposition on the surface of collectors (e.g., sand filter). Although placed stainless steel mesh electrodes embedded in a sand filter was tested at a local drinking water

  16. Pilot-scale treatability test plan for the 200-UP-1 groundwater Operable Unit

    SciTech Connect (OSTI)

    Wittreich, C.D.

    1994-05-01T23:59:59.000Z

    This document presents the treatability test plan for pilot-scale pump and treat testing at the 200-UP-1 Operable Unit. This treatability test plan has been prepared in response to an agreement between the US Department of Energy, the US Environmental Protection Agency, and the Washington State Department of Ecology, as documented in Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1989a) Change Control Form M-13-93-03 (Ecology et al. 1994). The agreement also requires that, following completion of the activities described in this test plan, a 200-UP-1 Operable Unit interim remedial measure (IRM) proposed plan be developed for use in preparing an interim action record of decision (ROD). The IRM Proposed Plan will be supported by the results of the testing described in this treatability test plan, as well as by other 200-UP-1 Operable Unit activities (e.g., limited field investigation, development of a qualitative risk assessment). Once issued, the interim action ROD will specify the interim action for groundwater contamination at the 200-UP-1 Operable Unit. The approach discussed in this treatability test plan is to conduct a pilot-scale pump and treat test for the contaminant plume associated with the 200-UP-1 Operable Unit. Primary contaminants of concern are uranium and technetium-99; the secondary contaminant of concern is nitrate. The pilot-scale treatability testing presented in this test plan has as its primary purpose to assess the performance of aboveground treatment systems with respect to the ability to remove the primary contaminants in groundwater withdrawn from the contaminant plume.

  17. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2002-04-26T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period January 1, 2002 through March 31, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE) and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the second full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to pilot unit design and conducting laboratory runs to help select candidate catalysts. This technical progress report provides an update on these two efforts. A Test Plan for the upcoming pilot-scale evaluations was also prepared and submitted to NETL for review and comment. Since this document was already submitted under separate cover, this information is not repeated here.

  18. Horizontal-well pilot waterflood tests shallow, abandoned field

    SciTech Connect (OSTI)

    McAlpine, J.L. (White Buffalo Petroleum Co., Tulsa, OK (US)); Joshi, S.D. (Joshi Technologies International Inc., Tulsa, OK (US))

    1991-08-05T23:59:59.000Z

    This paper reports on the suitability of using horizontal wells in a waterflood of shallow, partially depleted sands which will be tested in the Jennings field in Oklahoma. The vertical wells drilled in the Jennings field intersect several well-known formations such as Red Fork, Misner, and Bartlesville sand. Most of these formations have been produced over a number of years, and presently no wells are producing in the field. In the 1940s, 1950s, and 1960s, wells were drilled on 10-acre spacing, and the last well was plugged in 1961. The field was produced only on primary production and produced approximately 1 million bbl of oil. Because the field was not waterflooded, a large potential exists to produce from the field using secondary methods. To improve the economics for the secondary process, a combination of horizontal and vertical wells was considered.

  19. 106-AN grout pilot-scale test HGTP-93-0501-02

    SciTech Connect (OSTI)

    Bagaasen, L M

    1993-05-01T23:59:59.000Z

    The Grout Treatment Facility (GTF) at Hanford, Washington will process the low-level fraction of selected double-shell tank (DST) wastes into a cementitious waste form. This facility, which is operated by Westinghouse Hanford Company (WHC), mixes liquid waste with cementitious materials to produce a waste form that immobilizes hazardous constituents through chemical reactions and/or microencapsulation. Over 1,000,000 gal of Phosphate/Sulfate Waste were solidified in the first production campaign with this facility. The next tank scheduled for treatment is 106-AN. After conducting laboratory studies to select the grout formulation, part of the normal formulation verification process is to conduct tests using the 1/4-scale pilot facilities at the Pacific Northwest Laboratory (PNL). The major objectives of these pilot-scale tests were to determine if the proposed grout formulation could be processed in the pilot-scale equipment and to collect thermal information to help determine the best way to manage the grout hydration heat.

  20. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2002-02-22T23:59:59.000Z

    The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the first full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to project initiation and planning. There is no significant technical progress to report for the current period.

  1. PILOT SCALE TESTING OF MONOSODIUM TITANATE MIXING FOR THE SRS SMALL COLUMN ION EXCHANGE PROCESS - 11224

    SciTech Connect (OSTI)

    Poirier, M.; Restivo, M.; Williams, M.; Herman, D.; Steeper, T.

    2011-01-25T23:59:59.000Z

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and select actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending monosodium titanate (MST), crystalline silicotitanate (CST), and simulated sludge. The purpose of this pilot scale testing is to determine the requirements for the pumps to suspend the MST particles so that they can contact the strontium and actinides in the liquid and be removed from the tank. The pilot-scale tank is a 1/10.85 linear scaled model of SRS Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX program (Risers B5 and B2 for two pump configurations and Risers B5, B3, and B1 for three pump configurations). The conclusions from this work follow: (i) Neither two standard slurry pumps nor two quad volute slurry pumps will provide sufficient power to initially suspend MST in an SRS waste tank. (ii) Two Submersible Mixer Pumps (SMPs) will provide sufficient power to initially suspend MST in an SRS waste tank. However, the testing shows the required pump discharge velocity is close to the maximum discharge velocity of the pump (within 12%). (iii) Three SMPs will provide sufficient power to initially suspend MST in an SRS waste tank. The testing shows the required pump discharge velocity is 66% of the maximum discharge velocity of the pump. (iv) Three SMPs are needed to resuspend MST that has settled in a waste tank at nominal 45 C for four weeks. The testing shows the required pump discharge velocity is 77% of the maximum discharge velocity of the pump. Two SMPs are not sufficient to resuspend MST that settled under these conditions.

  2. Light-oil steamdrive pilot test at NPR-1, Elk Hills, California

    SciTech Connect (OSTI)

    Garner, T.A. (Bechtel Petroleum Operations Inc. (United States))

    1992-08-01T23:59:59.000Z

    This paper reports that a steamdrive pilot was run on a light-oil reservoir at the Naval Petroleum Reserve No. 1 (NPR-1) in the Elk Hills oil field, Kern County, CA. From a reservoir perspective, the steamdrive process behaved much as expected. The first event to occur was the appearance of freshened water production accompanied by CO[sub 2] gas 3 months from startup of steam injection. The second event, an increase in crude gravity, appeared 3 months later, or 6 months into the project. Finally, the third event was the arrival of the heat front at the producing wells 13 months after startup. From a production perspective, CO[sub 2] in the freshened produced water caused wellbore scale damage and loss of well productivity. The steamdrive, however, mobilized residual oil, which mostly was captured outside the pilot pattern area. Acid stimulations to restore well productivity were done by injecting inhibitor in the steam feedwater and by designing acid cleanup treatments on the basis of results from laboratory tests.

  3. Hanford Waste Vitrification program pilot-scale ceramic melter Test 23

    SciTech Connect (OSTI)

    Goles, R.W.; Nakaoka, R.K.

    1990-02-01T23:59:59.000Z

    The pilot-scale ceramic melter test, was conducted to determine the vitrification processing characteristics of simulated Hanford Waste Vitrification Plant process slurries and the integrated performance of the melter off-gas treatment system. Simulated melter feed was prepared and processed to produce glass. The vitrification system, achieved an on-stream efficiency of greater than 98%. The melter off-gas treatment system included a film cooler, submerged bed scrubber, demister, high-efficiency mist eliminator, preheater, and high-efficiency particulate air filter (HEPA). Evaluation of the off-gas system included the generation, nature, and capture efficiency of gross particulate, semivolatile, and noncondensible melter products. 17 refs., 48 figs., 61 tabs.

  4. Interpretations of Tracer Tests Performed in the Culebra Dolomite at the Waste Isolation Pilot Plant Site

    SciTech Connect (OSTI)

    MEIGS,LUCY C.; BEAUHEIM,RICHARD L.; JONES,TOYA L.

    2000-08-01T23:59:59.000Z

    This report provides (1) an overview of all tracer testing conducted in the Culebra Dolomite Member of the Rustler Formation at the Waste Isolation Pilot Plant (WPP) site, (2) a detailed description of the important information about the 1995-96 tracer tests and the current interpretations of the data, and (3) a summary of the knowledge gained to date through tracer testing in the Culebra. Tracer tests have been used to identify transport processes occurring within the Culebra and quantify relevant parameters for use in performance assessment of the WIPP. The data, especially those from the tests performed in 1995-96, provide valuable insight into transport processes within the Culebra. Interpretations of the tracer tests in combination with geologic information, hydraulic-test information, and laboratory studies have resulted in a greatly improved conceptual model of transport processes within the Culebra. At locations where the transmissivity of the Culebra is low (< 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a single-porosity medium in which advection occurs largely through the primary porosity of the dolomite matrix. At locations where the transmissivity of the Culebra is high (> 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a heterogeneous, layered, fractured medium in which advection occurs largely through fractures and solutes diffuse between fractures and matrix at multiple rates. The variations in diffusion rate can be attributed to both variations in fracture spacing (or the spacing of advective pathways) and matrix heterogeneity. Flow and transport appear to be concentrated in the lower Culebra. At all locations, diffusion is the dominant transport process in the portions of the matrix that tracer does not access by flow.

  5. Underground tank vitrification: A pilot-scale in situ vitrification test of a tank containing a simulated mixed waste sludge

    SciTech Connect (OSTI)

    Thompson, L.E.; Powell, T.D.; Tixier, J.S.; Miller, M.C. [Pacific Northwest Lab., Richland, WA (United States); Owczarski, P.C. [Science Applications International Corp., Richland, WA (United States)

    1993-09-01T23:59:59.000Z

    This report documents research on sludge vitrification. The first pilot scale in-situ vitrification test of a simulated underground tank was successfully completed by researchers at Pacific Northwest Laboratory. The vitrification process effectively immobilized the vast majority of radionuclides simulants and toxic metals were retained in the melt and uniformly distributed throughout the monolith.

  6. Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems

    SciTech Connect (OSTI)

    Richard Rhudy

    2006-06-30T23:59:59.000Z

    This final report presents and discusses results from a mercury control process development project entitled ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems''. The objective of this project was to demonstrate at pilot scale a mercury control technology that uses solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. Oxidized mercury is removed in downstream wet flue gas desulfurization (FGD) absorbers and leaves with the FGD byproducts. The goal of the project was to achieve 90% oxidation of elemental mercury in the flue gas and 90% overall mercury capture with the downstream wet FGD system. The project was co-funded by EPRI and the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) under Cooperative Agreement DE-FC26-01NT41185. Great River Energy (GRE) and City Public Service (now CPS Energy) of San Antonio were also project co-funders and provided host sites. URS Group, Inc. was the prime contractor. Longer-term pilot-scale tests were conducted at two sites to provide catalyst life data. GRE provided the first site, at their Coal Creek Station (CCS), which fires North Dakota lignite, and CPS Energy provided the second site, at their Spruce Plant, which fires Powder River Basin (PRB) coal. Mercury oxidation catalyst testing began at CCS in October 2002 and continued through the end of June 2004, representing nearly 21 months of catalyst operation. An important finding was that, even though the mercury oxidation catalyst pilot unit was installed downstream of a high-efficiency ESP, fly ash buildup began to plug flue gas flow through the horizontal catalyst cells. Sonic horns were installed in each catalyst compartment and appeared to limit fly ash buildup. A palladium-based catalyst showed initial elemental mercury oxidation percentages of 95% across the catalyst, declining to 67% after 21 months in service. A carbon-based catalyst began with almost 98% elemental mercury oxidation across the catalyst, but declined to 79% oxidation after nearly 13 months in service. The other two catalysts, an SCR-type catalyst (titanium/vanadium) and an experimental fly-ash-based catalyst, were significantly less active. The palladium-based and SCR-type catalysts were effectively regenerated at the end of the long-term test by flowing heated air through the catalyst overnight. The carbon-based catalyst was not observed to regenerate, and no regeneration tests were conducted on the fourth, fly-ash-based catalyst. Preliminary process economics were developed for the palladium and carbon-based catalysts for a scrubbed, North Dakota lignite application. As described above, the pilot-scale results showed the catalysts could not sustain 90% or greater oxidation of elemental mercury in the flue gas for a period of two years. Consequently, the economics were based on performance criteria in a later DOE NETL solicitation, which required candidate mercury control technologies to achieve at least a 55% increase in mercury capture for plants that fire lignite. These economics show that if the catalysts must be replaced every two years, the catalytic oxidation process can be 30 to 40% less costly than conventional (not chemically treated) activated carbon injection if the plant currently sells their fly ash and would lose those sales with carbon injection. If the plant does not sell their fly ash, activated carbon injection was estimated to be slightly less costly. There was little difference in the estimated cost for palladium versus the carbon-based catalysts. If the palladium-based catalyst can be regenerated to double its life to four years, catalytic oxidation process economics are greatly improved. With regeneration, the catalytic oxidation process shows over a 50% reduction in mercury control cost compared to conventional activated carbon injection for a case where the plant sells its fly ash. At Spruce Plant, mercury oxidation catalyst testing began in September 2003 and continued through the end of April 2005, interrupted only by a

  7. SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING/FEASIBILTY SUDIES FINAL REPORT

    SciTech Connect (OSTI)

    SPRITZER.M; HONG,G

    2005-01-01T23:59:59.000Z

    General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The key potential advantage of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reacting and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carried out at the University of Hawaii at Manoa (UHM), as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an activated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low-value, dirty feed materials. The Phase I results indicate that a practical means to overcome limitations on biomass slurry feed concentration and preheat temperature is to coprocess an auxiliary high heating value material. SWPO coprocessing of two high-water content wastes, partially dewatered sewage sludge and trap grease, yields a scenario for the production of hydrogen at highly competitive prices. It is estimated that there are hundreds if not thousands of potential sites for this technology across the US and worldwide. The economics for plants processing 40 tpd sewage sludge solids augmented with grease trap waste are favorable over a significant range of cost parameters such as sludge disposal credit and capital financing. Hydrogen production costs for SWPO plants of this size are projected to be about $3/GJ or less. Economics may be further improved by future developments such as pumping of higher solids content sludges and improved gasifier nozzle designs to reduce char and improve hydrogen yields. The easiest market entry for SWPO is expected to be direct sales to municipal wastewater treatment plants for use with sewage sludge in conjunction with trap grease, as both of these wastes are ubiquitous and have reasonably well-defined negative value (i.e., the process can take credit for reduction of well-defined disposal costs for these streams). Additionally, waste grease is frequently recovered at municipal wastewater treatment plants where it is already contaminated with sewage. SWPO should also be favorable to other market applications in which low or negative value, high water content biomass is available in conjunction with a low or negative value fuel material. For biomass slurries primary candidates are sewage sludge, manure sludge, and shredded and/or composted organic municipal solid waste (MSW) slurries. For the high heating value stream primary candidates are trap grease, waste plastic or rubber slurries, and coal or coke slurries. Phase II of the SWPO program will be focused on verifying process improvements identified during Phase I, and then performing extended duration testing with the GA pilot plant. Tests of at least 1

  8. SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING / FEASIBILITY STUDIES FINAL REPORT

    SciTech Connect (OSTI)

    SPRITZER,M; HONG,G

    2005-01-01T23:59:59.000Z

    Under Cooperative Agreement No. DE-FC36-00GO10529 for the Department of Energy, General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The Key potential advantages of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reaching and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carreid out at the University of Hawaii at Manoa (UHM) as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an acitvated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low-value, dirty feed materials. The Phase I results indicate that a practical means to overcome limitations on biomass slurry feed concentration and preheat temperatuare is to coprocess an auxiliary high heating value material. SWPO coprocessing of tow hgih-water content wastes, partially dewatered sewage sludge and trap grease, yields a scenario for the production of hydrogen at highly competitive prices. It is estimated that there are hundreds if not thousands of potential sites for this technology across the US and worldwide.

  9. Wireless Roadside Inspection Proof of Concept Test Final Report

    SciTech Connect (OSTI)

    Capps, Gary J [ORNL; Franzese, Oscar [ORNL; Knee, Helmut E [ORNL; Plate, Randall S [ORNL; Lascurain, Mary Beth [ORNL

    2009-03-01T23:59:59.000Z

    The U.S. Department of Transportation (DOT) FMCSA commissioned the Wireless Roadside Inspection (WRI) Program to validate technologies and methodologies that can improve safety through inspections using wireless technologies that convey real-time identification of commercial vehicles, drivers, and carriers, as well as information about the condition of the vehicles and their drivers. It is hypothesized that these inspections will: -- Increase safety -- Decrease the number of unsafe commercial vehicles on the road; -- Increase efficiency -- Speed up the inspection process, enabling more inspections to occur, at least on par with the number of weight inspections; -- Improve effectiveness -- Reduce the probability of drivers bypassing CMV inspection stations and increase the likelihood that fleets will attempt to meet the safety regulations; and -- Benefit industry -- Reduce fleet costs, provide good return-on-investment, minimize wait times, and level the playing field. The WRI Program is defined in three phases which are: Phase 1: Proof of Concept Test (POC) Testing of commercially available off-the-shelf (COTS) or near-COTS technology to validate the wireless inspection concept. Phase 2: Pilot Test Safety technology maturation and back office system integration Phase 3: Field Operational Test Multi-vehicle testing over a multi-state instrumented corridor This report focuses on Phase 1 efforts that were initiated in March, 2006. Technical efforts dealt with the ability of a Universal Wireless Inspection System (UWIS) to collect driver, vehicle, and carrier information; format a Safety Data Message Set from this information; and wirelessly transmit a Safety Data Message Set to a roadside receiver unit or mobile enforcement vehicle.

  10. No corrosion caused by coal chlorine found in AFBC pilot scale tests

    SciTech Connect (OSTI)

    Ho, K.; Pan, W.P.; Riley, J.T.; Liu, K.; Smith, S.

    2000-07-01T23:59:59.000Z

    Measurements of deposition and corrosion were made in the freeboard of a 3 m inner diameter pilot scale atmospheric fluidized-bed combustor (AFBC) during seven 1,000-hours tests using coals with chlorine (Cl) contents ranging from 0.026% up to 0.47% and sulfur contents ranging from 0.897{approximately}4.4%. Uncooled coupons of alloys 304, 309, 347 and a cooled tube of A210C medium carbon steel were exposed to the hot flue gases to investigate the effects of different coal compositions on deposition and corrosion behavior, if any. The uncooled coupons were installed at the tope of the freeboard to simulate the superheater tube conditions (1,020--1,100 F surface temperature), while the temperature of the cooled A210C test tube was controlled to match the conditions of the evaporator tubes. Specimens were removed for examination after 250, 500, 750, 1,000 hours of exposure and analyzed for deposit formation and corrosion. No chlorine was found in the corrosion scale or on the metal surfaces after any of the tests. High sulfur contents were found in the outer parts of the deposits, and appeared to be associated with calcium and magnesium suggesting that the fly ash may react further after being deposited on the surface of the metal. It was concluded that the limestone bed in the AFBC not only can capture the sulfur but also can effectively capture chlorine. This effect helps being the Cl in the AFBC flue gas down to a level of <50 ppm which is significantly lower than the 300{approximately}400 ppm expected from combustion of the coal in the absence of limestone. This reduction in chlorine species in the gas phase has possible implications for decreased corrosion problems not only in the freeboard, but also in the cold end of the boiler. No evidence was found in these tests that metal wastage or corrosion was accelerated, either directly or indirectly, by chlorine in the coal.

  11. WRI-14-R002r CONVERSION OF LOW-RANK WYOMING COALS INTO GASOLINE BY DIRECT LIQUEFACTION

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not FoundInformation DOEInformation Summary Big*Theea Dynamic WRI-14-R002r

  12. PILOT-SCALE TESTING OF THE SUSPENSION OF MST, CST, AND SIMULATED SLUDGE SLURRIES IN A SLUDGE TANK

    SciTech Connect (OSTI)

    Poirier, M.; Qureshi, Z.; Restivo, M.; Steeper, T.; Williams, M.; Herman, D.

    2011-08-02T23:59:59.000Z

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Following strontium, actinide, and cesium removal, the concentrated solids will be transported to a sludge tank (i.e., monosodium titanate (MST)/sludge solids to Tank 42H or Tank 51H and crystalline silicotitanate (CST) to Tank 40H) for eventual transfer to the Defense Waste Processing Facility (DWPF). Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for mixing MST, CST, and simulated sludge. The purpose of this pilot scale testing is to determine the pump requirements for mixing MST and CST with sludge in a sludge tank and to determine whether segregation of particles occurs during settling. Tank 40H and Tank 51H have four Quad Volute pumps; Tank 42H has four standard pumps. The pilot-scale tank is a 1/10.85 linear scaled model of Tank 40H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 40H. The pump locations correspond to the current locations in Tank 40H (Risers B2, H, B6, and G). The pumps are pilot-scale Quad Volute pumps. Additional settling tests were conducted in a 30 foot tall, 4 inch inner diameter clear column to investigate segregation of MST, CST, and simulated sludge particles during settling.

  13. Test plan for the pilot cell test of inert anodes: Report on the June 1991 meeting at the Reynolds Metals Company facility

    SciTech Connect (OSTI)

    Windisch, C.F. Jr. (Pacific Northwest Lab., Richland, WA (United States)); Alcorn, T.R.; Tabereaux, A.T. (Reynolds Metals Co., Muscle Shoals, AL (United States). Mfg. Technology Lab.)

    1991-09-01T23:59:59.000Z

    The Inert Electrodes Program at the Pacific Northwest Laboratory (PNL) is supported by the Office of Industrial Processes (OIP) of the US Department of Energy (DOE) and is aimed at improving the energy efficiency of Hall-Heroult cells through the development of inert anodes. The inert anodes currently under study are composed of a cermet material of the general composition NiO-NiFe{sub 2}O{sub 4}-Cu. The program has three primary objectives: (1) evaluate the anode material in a pilot cell facility, (2) investigate the mechanisms of the electrochemical reactions at the anodes surface, and (3) develop sensors for monitoring various anode and/or electrolyte conditions. This report discusses a test plan that has been developed for the pilot cell test of the inert anodes. 6 refs., 7 figs., 4 tabs.

  14. Construction of the thermal/structural interactions in situ tests at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    Munson, D.E.; Matalucci, R.V. [Sandia National Lab., Albuquerque, NM (United States)] [Sandia National Lab., Albuquerque, NM (United States); Hoag, D.L.; Blankenship D.A. [RE/SPEC Inc., Albuquerque, NM (United States)] [and others] [RE/SPEC Inc., Albuquerque, NM (United States); and others

    1997-02-01T23:59:59.000Z

    The Department of Energy has constructed the Waste Isolation Pilot Plant (WIPP) to develop the technology for the disposal of radioactive waste from defense programs. Sandia National Laboratories has the responsibility for experimental activities at the WIPP and has emplaced several large-scale Thermal/Structural Interactions (TSI) in situ tests to validate techniques used to predict repository performance. The construction of the tests relied heavily on earlier excavations at the WIPP site to provide a basis for selecting excavation, surveying, and instrumentation methods, and achievable construction tolerances. The tests were constructed within close tolerances to provide consistent room dimensions and accurate placement of gages. This accuracy has contributed to the high quality of data generated which in turn has facilitated the comparison of test results to numerical predictions. The purpose of this report is to detail the construction activities of the TSI tests.

  15. Pilot scale test of a produced water-treatment system for initial removal of organic compounds

    SciTech Connect (OSTI)

    Sullivan, Enid J [Los Alamos National Laboratory; Kwon, Soondong [UT-AUSTIN; Katz, Lynn [UT-AUSTIN; Kinney, Kerry [UT-AUSTIN

    2008-01-01T23:59:59.000Z

    A pilot-scale test to remove polar and non-polar organics from produced water was performed at a disposal facility in Farmington NM. We used surfactant-modified zeolite (SMZ) adsorbent beds and a membrane bioreactor (MBR) in combination to reduce the organic carbon content of produced water prior to reverse osmosis (RO). Reduction of total influent organic carbon (TOC) to 5 mg/L or less is desirable for efficient RO system operation. Most water disposed at the facility is from coal-bed gas production, with oil production waters intermixed. Up to 20 gal/d of produced water was cycled through two SMZ adsorbent units to remove volatile organic compounds (BTEX, acetone) and semivolatile organic compounds (e.g., napthalene). Output water from the SMZ units was sent to the MBR for removal of the organic acid component of TOC. Removal of inorganic (Mn and Fe oxide) particulates by the SMZ system was observed. The SMZ columns removed up to 40% of the influent TOC (600 mg/L). BTEX concentrations were reduced from the initial input of 70 mg/L to 5 mg/L by the SMZ and to an average of 2 mg/L after the MBR. Removal rates of acetate (input 120-170 mg/L) and TOC (input up to 45 mg/L) were up to 100% and 92%, respectively. The water pH rose from 8.5 to 8.8 following organic acid removal in the MBR; this relatively high pH was likely responsible for observed scaling of the MBR internal membrane. Additional laboratory studies showed the scaling can be reduced by metered addition of acid to reduce the pH. Significantly, organic removal in the MBR was accomplished with a very low biomass concentration of 1 g/L throughout the field trial. An earlier engineering evaluation shows produced water treatment by the SMZ/MBR/RO system would cost from $0.13 to $0.20 per bbl at up to 40 gpm. Current estimated disposal costs for produced water are $1.75 to $4.91 per bbl when transportation costs are included, with even higher rates in some regions. Our results suggest that treatment by an SMZ/MBR/RO system may be a feasible alternative to current methods for produced water treatment and disposal.

  16. Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program

    SciTech Connect (OSTI)

    Connolly, M.J.; Sayer, D.L.

    1993-11-01T23:59:59.000Z

    EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements for WETP.

  17. Hanford Waste Vitrification Program process development: Melt testing subtask, pilot-scale ceramic melter experiment, run summary

    SciTech Connect (OSTI)

    Nakaoka, R.K.; Bates, S.O.; Elmore, M.R.; Goles, R.W.; Perez, J.M.; Scott, P.A.; Westsik, J.H.

    1996-03-01T23:59:59.000Z

    Hanford Waste Vitrification Program (HWVP) activities for FY 1985 have included engineering and pilot-scale melter experiments HWVP-11/HBCM-85-1 and HWVP-12/PSCM-22. Major objectives designated by HWVP fo these tests were to evaluate the processing characteristics of the current HWVP melter feed during actual melter operation and establish the product quality of HW-39 borosilicate glass. The current melter feed, defined during FY 85, consists of reference feed (HWVP-RF) and glass-forming chemicals added as frit.

  18. Energy Efficient Aluminum Production - Pilot-Scale Cell Tests - Final Report for Phase I and Phase II

    SciTech Connect (OSTI)

    R. A. Christini

    1999-12-30T23:59:59.000Z

    A cermet anode that produces oxygen and a cathode material that is wetted by aluminum can provide a dimensionally stable inter-electrode distance in the Hall-Heroult cell. This can be used to greatly improve the energy and/or productivity efficiencies. The concept, which was developed and tested, uses a system of vertically interleaved anodes and cathodes. The major advantage of this concept is the significant increase in electrochemical surface area compared to a horizontal orientation of anode and cathode that is presently used in the Hall-Heroult process. This creates an additional advantage for energy reduction of 1.3 kWh/lb or a 20% productivity improvement. The voltages obtained in an optimized cell test met the energy objectives of the project for at least two weeks. An acceptable current efficiency was never proven, however, during either pilot scale or bench scale tests with the vertical plate configuration. This must be done before a vertical cell can be considered viab le. Anode corrosion rate must be reduced by at least a factor of three in order to produce commercial purity aluminum. It is recommended that extensive theoretical and bench scale investigations be done to improve anode materials and to demonstrate acceptable current efficiencies in a vertical plate cell before pilot scale work is continued.

  19. Tung FDG Test Facility. Phase 2, Pilot plant demonstration. Final report

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    The Tung FGD Process is a regenerative process which extracts SO{sub 2} from a scrubbing liquor into an organic medium using mixer-settlers followed by steam-stripping the SO{sub 2} off from the organic medium. For the process to operate satisfactorily, (1) the organic must be stable, (2) phase separation must be relatively fast, (3) crud (i.e. solids in-between two phases) must not form and (4) SO{sub 2} must be able to be stripped off from the organic medium readily. The demonstration confirmed that the first three conditions can be met satisfactorily. Much lower stripping efficiency was attained in the pilot plant demonstration than what was previously attained in a bench-scale demonstration. Engineering analysis showed that the pilot plant stripping column was scaled up from the bench-scale column incorrectly. A new scale-up criterion for stripping a relatively viscous liquid medium is proposed based upon pilot plant data.

  20. HIGH-TEMPERATURE HEAT EXCHANGER TESTING IN A PILOT-SCALE SLAGGING FURNACE SYSTEM

    SciTech Connect (OSTI)

    Michael E. Collings; Bruce A. Dockter; Douglas R. Hajicek; Ann K. Henderson; John P. Hurley; Patty L. Kleven; Greg F. Weber

    1999-12-01T23:59:59.000Z

    The University of North Dakota Energy & Environmental Research Center (EERC), in partnership with United Technologies Research Center (UTRC) under a U.S. Department of Energy (DOE) contract, has designed, constructed, and operated a 3.0-million Btu/hr (3.2 x 10{sup 6} kJ/hr) slagging furnace system (SFS). Successful operation has demonstrated that the SFS meets design objectives and is well suited for testing very high-temperature heat exchanger concepts. Test results have shown that a high-temperature radiant air heater (RAH) panel designed and constructed by UTRC and used in the SFS can produce a 2000 F (1094 C) process air stream. To support the pilot-scale work, the EERC has also constructed laboratory- and bench-scale equipment which was used to determine the corrosion resistance of refractory and structural materials and develop methods to improve corrosion resistance. DOE projects that from 1995 to 2015, worldwide use of electricity will double to approach 20 trillion kilowatt hours. This growth comes during a time of concern over global warming, thought by many policy makers to be caused primarily by increases from coal-fired boilers in carbon dioxide (CO{sub 2}) emissions through the use of fossil fuels. Assuming limits on CO{sub 2} emissions from coal-fired boilers are imposed in the future, the most economical CO{sub 2} mitigation option may be efficiency improvements. Unless efficiency improvements are made in coal-fired power plants, utilities may be forced to turn to more expensive fuels or buy CO{sub 2} credits. One way to improve the efficiency of a coal-fired power plant is to use a combined cycle involving a typical steam cycle along with an indirectly fired turbine cycle using very high-temperature but low-pressure air as the working fluid. At the heart of an indirectly fired turbine combined-cycle power system are very high-temperature heat exchangers that can produce clean air at up to 2600 F (1427 C) and 250 psi (17 bar) to turn an aeroderivative turbine. The overall system design can be very similar to that of a typical pulverized coal-fired boiler system, except that ceramics and alloys are used to carry the very high-temperature air rather than steam. This design makes the combined-cycle system especially suitable as a boiler-repowering technology. With the use of a gas-fired duct heater, efficiencies of 55% can be achieved, leading to reductions in CO{sub 2} emissions of 40% as compared to today's coal-fired systems. On the basis of work completed to date, the high-temperature advanced furnace (HITAF) concept appears to offer a higher-efficiency technology option for coal-fired power generation systems than conventional pulverized coal firing. Concept analyses have demonstrated the ability to achieve program objectives for emissions (10% of New Source Performance Standards, i.e., 0.003 lb/MMBtu of particulate), efficiency (47%-55%), and cost of electricity (10%-25% below today's cost). Higher-efficiency technology options for new plants as well as repowering are important to the power generation industry in order to conserve valuable fossil fuel resources, reduce the quantity of pollutants (air and water) and solid wastes generated per MW, and reduce the cost of power production in a deregulated industry. Possibly more important than their potential application in a new high-temperature power system, the RAH panel and convective air heater tube bank are potential retrofit technology options for existing coal-fired boilers to improve plant efficiencies. Therefore, further development of these process air-based high-temperature heat exchangers and their potential for commercial application is directly applicable to the development of enabling technologies in support of the Vision 21 program objectives. The objective of the work documented in this report was to improve the performance of the UTRC high-temperature heat exchanger, demonstrate the fuel flexibility of the slagging combustor, and test methods for reducing corrosion of brick and castable refractory in such combustion environments. Specif

  1. Final Report: Pilot-scale Cross-flow Filtration Test - Envelope A + Entrained Solids

    SciTech Connect (OSTI)

    Duignan, M.R.

    2000-06-27T23:59:59.000Z

    This report discusses the results of the operation of a cross-flow filter in a pilot-scale experimental facility that was designed, built, and run by the Experimental Thermal Fluids Laboratory of the Savannah River Technology Center of the Westinghouse Savannah River Company.This filter technology was evaluated for its inclusion in the pretreatment section of the nuclear waste stabilization plant being designed by BNFL, Inc. This plant will be built at the U.S. Department of Energy's Hanford Site as part of the River Protection Project.

  2. Sampling and Analysis Instruction for Installation of UPR-100-N-17 Bioremediation Wells and Performance of Bioventing Pilot Tests

    SciTech Connect (OSTI)

    W. S. Thompson

    2008-12-30T23:59:59.000Z

    Sampling and analytical requirements for in situ bioremediation pilot study for remediation of vadose zone petroleum hydrocarbon contamination.

  3. Pilot plant testing of Illinois coal for blast furnace injection. Technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

    1994-12-31T23:59:59.000Z

    The purpose of this study is to evaluate the combustion of Illinois coal in the blast furnace injection process in a new and unique pilot plant test facility. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it is the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. It is intended to complete the study already underway with the Armco and Inland steel companies and to demonstrate quantitatively the suitability of both the Herrin No. 6 and Springfield No. 5 coals for blast furnace injection. The main feature of the current work is the testing of Illinois coals at CANMET`s (Canadian Centre for Mineral and Energy Technology) pilot plant coal combustion facility. This facility simulates blowpipe-tuyere conditions in an operating blast furnace, including blast temperature (900 C), flow pattern (hot velocity 200 m/s), geometry, gas composition, coal injection velocity (34 m/s) and residence time (20 ms). The facility is fully instrumented to measure air flow rate, air temperature, temperature in the reactor, wall temperature, preheater coil temperature and flue gas analysis. During this quarter a sample of the Herrin No. 6 coal (IBCSP 112) was delivered to the CANMET facility and testing is scheduled for the week of 11 December 1994. Also at this time, all of the IBCSP samples are being evaluated for blast furnace injection using the CANMET computer model.

  4. Pilot Scale Water Gas Shift - Membrane Device for Hydrogen from Coal

    SciTech Connect (OSTI)

    Barton, Tom

    2013-06-30T23:59:59.000Z

    The objectives of the project were to build pilot scale hydrogen separation systems for use in a gasification product stream. This device would demonstrate fabrication and manufacturing techniques for producing commercially ready facilities. The design was a 2 lb/day hydrogen device which included composite hydrogen separation membranes, a water gas shift monolith catalyst, and stainless steel structural components. Synkera Technologies was to prepare hydrogen separation membranes with metallic rims, and to adjust the alloy composition in their membranes to a palladium-gold composition which is sulfur resistant. Chart was to confirm their brazing technology for bonding the metallic rims of the composite membranes to their structural components and design and build the 2 lbs/day device incorporating membranes and catalysts. WRI prepared the catalysts and completed the testing of the membranes and devices on coal derived syngas. The reactor incorporated eighteen 2'' by 7'' composite palladium alloy membranes. These membranes were assembled with three stacks of three paired membranes. Initial vacuum testing and visual inspection indicated that some membranes were cracked, either in transportation or in testing. During replacement of the failed membranes, while pulling a vacuum on the back side of the membranes, folds were formed in the flexible composite membranes. In some instances these folds led to cracks, primarily at the interface between the alumina and the aluminum rim. The design of the 2 lb/day device was compromised by the lack of any membrane isolation. A leak in any membrane failed the entire device. A large number of tests were undertaken to bring the full 2 lb per day hydrogen capacity on line, but no single test lasted more than 48 hours. Subsequent tests to replace the mechanical seals with brazing have been promising, but the technology remains promising but not proven.

  5. Radionuclides in the terrestrial ecosystem near a Canadian uranium mill -- Part 3: Atmospheric deposition rates (pilot test)

    SciTech Connect (OSTI)

    Thomas, P.A.

    2000-06-01T23:59:59.000Z

    Atmospheric deposition rates of uranium series radionuclides were directly measured at three sites near the operating Key Lake uranium mill in northern Saskatchewan. Sites impacted by windblown tailings and mill dusts had elevated rates of uranium deposition near the mill and elevated {sup 226}Ra deposition near the tailings compared to a control site. Rainwater collectors, dust jars, and passive vinyl collectors previously used at the Ranger Mine in Australia were pilot-tested. Adhesive vinyl surfaces (1 m{sup 2}) were oriented horizontally, vertically, and facing the ground as a means of measuring gravitational settling, wind impaction, and soil resuspension, respectively. Although the adhesive glue on the vinyls proved difficult to digest, relative differences in deposition mode were found among radionuclides and among sites. Dry deposition was a more important transport mechanism for uranium, {sup 226}Ra, and {sup 210}Pb than rainfall, while more {sup 210}Po was deposited with rainfall.

  6. Development of a pilot-scale kinetic extruder feeder system and test program. Phase I report

    SciTech Connect (OSTI)

    None

    1982-03-01T23:59:59.000Z

    This report describes the work done under Phase I, the moisture tolerance testing of the Kinetic Extruder. The following coals were used in the test program: Western Bituminous (Utah), Eastern Bituminous (Pennsylvania), North Dakota Lignite, Sub-Bituminous (Montana), and Eastern Bituminous coal mixed with 20-percent Limestone. The coals were initially tested at the as-received moisture level and subsequently tested after surface moisture was added by water spray. Test results and recommendations for future research and development work are presented.

  7. PILOT TESTING: PRETREATMENT OPTIONS TO ALLOW RE-USE OF FRAC FLOWBACK AND PRODUCED BRINE FOR GAS SHALE RESOURCE DEVELOPMENT

    SciTech Connect (OSTI)

    Burnett, David

    2012-12-31T23:59:59.000Z

    The goal of the A&M DOE NETL Project No. DE-FE0000847 was to develop a mobile, multifunctional water treatment capability designed specifically for “pre-treatment” of field waste brine. The project consisted of constructing s mobile “field laboratory” incorporating new technology for treating high salinity produced water and using the lab to conduct a side-by-side comparison between this new technology and that already existing in field operations. A series of four field trials were performed utilizing the mobile unit to demonstrate the effectiveness of different technology suitable for use with high salinity flow back brines and produced water. The design of the mobile unit was based on previous and current work at the Texas A&M Separation Sciences Pilot Plant. The several treatment techniques which have been found to be successful in both pilot plant and field tests had been tested to incorporate into a single multifunctional process train. Eight different components were evaluated during the trials, two types of oil and grease removal, one BTEX removal step, three micro-filters, and two different nanofilters. The performance of each technique was measured by its separation efficiency, power consumption, and ability to withstand fouling. The field trials were a success. Four different field brines were evaluated in the first trial in New York. Over 16,000 gallons of brine were processed. Using a power cost of $.10 per kWh, media pretreatment power use averaged $0.004 per barrel, solids removal $.04 per barrel and brine “softening” $.84 per barrel. Total power cost was approximately $1.00 per barrel of fluid treated. In Pennsylvania, brines collected from frac ponds were tested in two additional trials. Each of the brines was converted to an oil-free, solids-free brine with no biological activity. Brines were stable over time and would be good candidates for use as a make-up fluid in a subsequent fracturing fluid design. Reports on all of the field trials and subcontractor research have been summarized in this Final Report. Individual field trial reports and research reports are contained in the companion volume titled “Appendices”

  8. Gridley Ethanol Demonstration Project Utilizing Biomass Gasification Technology: Pilot Plant Gasifier and Syngas Conversion Testing; August 2002 -- June 2004

    SciTech Connect (OSTI)

    Not Available

    2005-02-01T23:59:59.000Z

    This report is part of an overall evaluation of using a modified Pearson Pilot Plant for processing rice straw into syngas and ethanol and the application of the Pearson technology for building a Demonstration Plant at Gridley. This report also includes information on the feedstock preparation, feedstock handling, feedstock performance, catalyst performance, ethanol yields and potential problems identified from the pilot scale experiments.

  9. Energy Efficiency Pilot Projects in Jaipur: Testing the Energy Conservation Building Code

    SciTech Connect (OSTI)

    Evans, Meredydd; Mathur, Jyotirmay; Yu, Sha

    2014-03-26T23:59:59.000Z

    The Malaviya National Institute of Technology (MNIT) in Jaipur, India is constructing two new buildings on its campus that allow it to test implementation of the Energy Conservation Building Code (ECBC), which Rajasthan made mandatory in 2011. PNNL has been working with MNIT to document progress on ECBC implementation in these buildings.

  10. Pilot study risk assessment for selected problems at the Nevada Test Site (NTS)

    SciTech Connect (OSTI)

    Daniels, J.I. (ed.)

    1993-06-01T23:59:59.000Z

    The Nevada Test Site (NTS) is located in southwestern Nevada, about 105 km (65 mi) northwest of the city of Las Vegas. A series of tests was conducted in the late 1950s and early 1960s at or near the NTS to study issues involving plutonium-bearing devices. These tests resulted in the dispersal of about 5 TBq of [sup 239,24O]Pu on the surficial soils at the test locations. Additionally, underground tests of nuclear weapons devices have been conducted at the NTS since late 1962; ground water beneath the NTS has been contaminated with radionuclides produced by these tests. These two important problems have been selected for assessment. Regarding the plutonium contamination, because the residual [sup 239]Pu decays slowly (half-life of 24,110 y), these sites could represent a long-term hazard if they are not remediated and if institutional controls are lost. To investigate the magnitude of the potential health risks for this no-remediation case, three basic exposure scenarios were defined that could bring individuals in contact with [sup 239,24O]Pu at the sites: (1) a resident living in a subdivision, (2) a resident farmer, and (3) a worker at a commercial facility -- all located at a test site. The predicted cancer risks for the resident farmer were more than a factor of three times higher than the suburban resident at the median risk level, and about a factor of ten greater than the reference worker at a commercial facility. At 100 y from the present, the 5, 50, and 95th percentile risks for the resident farmer at the most contaminated site were 4 x 10[sup [minus]6], 6 x 10[sup [minus]5], and 5 x 10[sup [minus]4], respectively. For the assessment of Pu in surface soil, the principal sources of uncertainty in the estimated risks were population mobility, the relationship between indoor and outdoor contaminant levels, and the dose and risk factors for bone, liver, and lung.

  11. Pilot study risk assessment for selected problems at the Nevada Test Site (NTS)

    SciTech Connect (OSTI)

    Daniels, J.I. [ed.; Anspaugh, L.R.; Bogen, K.T.; Daniels, J.I.; Layton, D.W.; Straume, T. [Lawrence Livermore National Lab., CA (United States); Andricevic, R.; Jacobson, R.L. [Nevada Univ., Las Vegas, NV (United States). Water Resources Center; Meinhold, A.F.; Holtzman, S.; Morris, S.C.; Hamilton, L.D. [Brookhaven National Lab., Upton, NY (United States)

    1993-06-01T23:59:59.000Z

    The Nevada Test Site (NTS) is located in southwestern Nevada, about 105 km (65 mi) northwest of the city of Las Vegas. A series of tests was conducted in the late 1950s and early 1960s at or near the NTS to study issues involving plutonium-bearing devices. These tests resulted in the dispersal of about 5 TBq of {sup 239,24O}Pu on the surficial soils at the test locations. Additionally, underground tests of nuclear weapons devices have been conducted at the NTS since late 1962; ground water beneath the NTS has been contaminated with radionuclides produced by these tests. These two important problems have been selected for assessment. Regarding the plutonium contamination, because the residual {sup 239}Pu decays slowly (half-life of 24,110 y), these sites could represent a long-term hazard if they are not remediated and if institutional controls are lost. To investigate the magnitude of the potential health risks for this no-remediation case, three basic exposure scenarios were defined that could bring individuals in contact with {sup 239,24O}Pu at the sites: (1) a resident living in a subdivision, (2) a resident farmer, and (3) a worker at a commercial facility -- all located at a test site. The predicted cancer risks for the resident farmer were more than a factor of three times higher than the suburban resident at the median risk level, and about a factor of ten greater than the reference worker at a commercial facility. At 100 y from the present, the 5, 50, and 95th percentile risks for the resident farmer at the most contaminated site were 4 x 10{sup {minus}6}, 6 x 10{sup {minus}5}, and 5 x 10{sup {minus}4}, respectively. For the assessment of Pu in surface soil, the principal sources of uncertainty in the estimated risks were population mobility, the relationship between indoor and outdoor contaminant levels, and the dose and risk factors for bone, liver, and lung.

  12. Pilot plant UF/sub 6/ to UF/sub 4/ test operations report

    SciTech Connect (OSTI)

    Bicha, W.J.; Fallings, M.; Gilbert, D.D.; Koch, G.E.; Levine, P.J.; McLaughlin, D.F.; Nuhfer, K.R.; Reese, J.C.

    1987-02-01T23:59:59.000Z

    The FMPC site includes a plant designed for the reduction of uranium hexafluoride (UF/sub 6/) to uranium tetrafluoride (UF/sub 4/). Limited operation of the upgraded reduction facility began in August 1984 and continued through January 19, 1986. A reaction vessel ruptured on that date causing the plant operation to be shut down. The DOE conducted a Class B investigation with the findings of the investigation board issued in preliminary form in May 1986 and as a final recommendation in July 1986. A two-phase restart of the plant was planned and implemented. Phase I included implementing safety system modifications, changing reaction vessel temperature control strategy, and operating the reduction plant under an 8-week controlled test. The results of the test period are the subject of this report. 41 figs., 11 tabs.

  13. EERC pilot-scale CFBC evaluation facility Project CFB test results

    SciTech Connect (OSTI)

    Mann, M.D.; Hajicek, D.R.; Henderson, A.K.; Moe, T.A.

    1992-09-01T23:59:59.000Z

    Project CFB was initiated at the University of North Dakota Energy and Environmental Research Center (EERC) in May 1988. Specific goals of the project were to (1) construct a circulating fluidized-bed combustor (CFBC) facility representative of the major boiler vendors' designs with the capability of producing scalable data, (2) develop a database for use in making future evaluations of CFBC technology, and (3) provide a facility for evaluating fuels, free of vendor bias for use in the - energy industry. Five coals were test-burned in the 1-MWth unit: North Dakota and Asian lignites, a Wyoming subbituminous, and Colorado and Pennsylvania bituminous coats. A total of 54 steady-state test periods were conducted, with the key test parameters being the average combustor temperature, excess air, superficial gas velocity, calcium-to-sulfur molar ratio, and the primary air-to-secondary air split. The capture for a coal fired in a CFBC is primarily dependent upon the total alkali-to-sulfur ratio. The required alkali-to ratio for 90% sulfur retention ranged from 1.4 to 4.9, depending upon coal type. While an alkali-to-ratio of 4.9 was required to meet 90% sulfur retention for the Salt Creek coal versus 1.4 for the Asian lignite, the total amount of sorbent addition required is much less for the Salt Creek coal, 4.2 pound sorbent per million Btu coal input, versus 62 pound/million Btu for the Asian lignite. The bituminous coals tested show optimal capture at combustor temperatures of approximately 1550[degree]F, with low-rank coals having optimal sulfur capture approximately 100[degree]F lower.

  14. SUMMARY CONCLUSIONS FOR THE PILOT IN-SITU CHROMIUM REDUCTION TEST AT RIVERBANK ARMY AMMUNITIONS PLANT

    SciTech Connect (OSTI)

    Ridley, M

    2007-04-25T23:59:59.000Z

    A treatability study was conducted at Riverbank Army Ammunition Plant's (RBAAP) Site 17, to evaluate the effectiveness of a permeable reactive barrier (PRB) for the treatment of hexavalent chromium (Cr{sup 6+}). The chromium contamination at Site 17 is hydrologically isolated and unsuitable for standard extraction and treatment (pump and treat). The majority of the chromium contamination at Site 17 is trapped within the fine grain sediments of a clay/slit zone (45 to 63). The PRB was established above and adjacent to the contaminated zone at Site 17 to reduce the hexavalent chromium as it leaches out of the contaminated clay/silt zone separating the A zone from the A zone. Site 17 and the monitoring network are described in the In-Situ Chromium Reduction Treatability Study Work Plan (CH2MHILL, January 2004). The PRB was created by reducing naturally occurring Fe{sup 3+} to Fe{sup 2+} with the injection of a buffered sodium dithionite solution into subsurface chromium source area. The Cr{sup 6+} leaching out of the contaminated clay/silt zone and migrating through the PRB is reduced by Fe{sup 2+} to Cr{sup 3+} and immobilized (Amonette, et al., 1994). The sodium dithionite will also reduce accessible Cr{sup 6+}, however the long-term reductant is the Fe{sup 2+}. Bench scale tests (Appendix A) were conducted to assess the quantity and availability of the naturally occurring iron at Site 17, the ability of the sodium dithionite to reduce the hexavalent chromium and Fe within the sediments, and the by-products produced during the treatment. Appendix A, provides a detailed description of the laboratory treatability tests, and provides background information on the technologies considered as possible treatment options for Site 17. Following the sodium dithionite treatment, groundwater/treatment solution was extracted to remove treatment by-products (sulfate, manganese, and iron). The following sections briefly discuss the current treatment status, future recommendations for Site 17, and future recommendations for the application of sodium dithionite at additional sites. At the completion of the treatability test, none of the wells at Site 17 had detectable hexavalent chromium, but the sulfate, iron, and manganese concentrations were detected and exceeded the CA secondary drinking water standards. The extraction done after the injection of the sodium dithionite solution to remove the sulfate, manganese, and iron has to a large extent negated the effectiveness of the iron reduction. Riverbank's local groundwater is naturally high in dissolved oxygen (concentration range at Site 17: 1.8 to 6.0 mg/l) and moving this type of groundwater through the reduced zone caused oxidation of the Fe2+ within the treatment zone, followed by a new release of hexavalent chromium detected in one of the treatment wells. Additional extraction at Site 17 will continue to degrade the PRB, threatening to release additional Cr{sup 6+} into the groundwater. Sulfate and manganese only exceed the CA secondary drinking water standards in the area immediately surrounding the PRB. It is unlikely that these contaminants will threaten any water supply wells in the area. The chromium concentrations are increasing in IW-17. The current concentration is still only a third of the original concentration. It might be worth investigating some of the new zero valent iron treatments, such as nanoscale zero-valent iron (NZVI) to replace the in-situ naturally occurring iron, which may no longer be available for reduction. The NZVI has been successfully tested at NASA in Florida (O'Hara, 2006), and demonstrated no release of metals from the natural sediments. This might also be a viable option for other sites at RBAAP.

  15. West Pearl Queen CO2 sequestration pilot test and modeling project 2006-2008.

    SciTech Connect (OSTI)

    Engler, Bruce Phillip; Cooper, Scott Patrick; Symons, Neill Phillip; Bartel, Lewis Clark; Byrer, Charles (National Energy Laboratory, Morgantown, WV); Elbring, Gregory Jay; McNemar, Andrea (National Energy Laboratory, Morgantown, WV); Aldridge, David Franklin; Lorenz, John Clay

    2008-08-01T23:59:59.000Z

    The West Pearl Queen is a depleted oil reservoir that has produced approximately 250,000 bbl of oil since 1984. Production had slowed prior to CO{sub 2} injection, but no previous secondary or tertiary recovery methods had been applied. The initial project involved reservoir characterization and field response to injection of CO{sub 2}; the field experiment consisted of injection, soak, and venting. For fifty days (December 20, 2002, to February 11, 2003) 2090 tons of CO{sub 2} were injected into the Shattuck Sandstone Member of the Queen Formation at the West Pearl Queen site. This technical report highlights the test results of the numerous research participants and technical areas from 2006-2008. This work included determination of lateral extents of the permeability units using outcrop observations, core results, and well logs. Pre- and post-injection 3D seismic data were acquired. To aid in interpreting seismic data, we performed numerical simulations of the effects of CO{sub 2} replacement of brine where the reservoir model was based upon correlation lengths established by the permeability studies. These numerical simulations are not intended to replicate field data, but to provide insight of the effects of CO{sub 2}.

  16. Static renewal tests using Pimephales promelas (fathead minnows) and Ceriodaphnia dubia (daphnids). Clinch River-Environmental Restoration Program (CR-ERP) pilot study, ambient water toxicity

    SciTech Connect (OSTI)

    Simbeck, D.J.

    1993-12-31T23:59:59.000Z

    Clinch River-Environmental Restoration Program (CR-ERP) personnel and Tennessee Valley Authority (TVA) personnel conducted a pilot study during the week of April 22--29, 1993, prior to initiation of CR-ERP Phase 2 Sampling and Analysis activities. The organisms specified for testing were larval fathead minnows, Pimephales promelas, and the daphnid, Ceriodaphnia dubia. Surface water samples were collected by TVA Field Engineering personnel from Clinch River Mile 9.0 and Poplar Creek Kilometer 1.6 on April 21, 23, and 26. Samples were split and provided to the CR-ERP and TVA toxicology laboratories for testing. Exposure of test organisms to these samples resulted in no toxicity (survival, growth, or reproduction) to either species in testing conducted by TVA. Attachments to this report include: Chain of custody forms -- originals; Toxicity test bench sheets and statistical analyses; Reference toxicant test information; and Personnel training documentation.

  17. Commercial Building Energy Asset Score 2013 Pilot

    Broader source: Energy.gov [DOE]

    DOE conducted its first pilot test of the Asset Score in 2012. Findings from that pilot led to improvements in the overall program and the Asset Scoring Tool. The tool was updated to include the...

  18. Iron oxide aerosol experiments in steam-air atmospheres: NSPP (Nuclear Safety Pilot Plant) tests 501-505 and 511: Data record report

    SciTech Connect (OSTI)

    Adams, R.E.; Tobias, M.L.

    1987-02-01T23:59:59.000Z

    This data record report summarizes the results from five tests involving Fe/sub 2/O/sub 3/ test aerosol in a steam-air environment and one test in a dry air environment. This research sponsored by the US Nuclear Regulatory Commission was conducted in the Nuclear Safety Pilot Plant at the Oak Ridge National Laboratory. The purpose of this project is to provide a data base on the behavior of aerosols in containment under conditions assumed to occur in postulated LWR accident sequences; this data base will provide experimental validation of aerosol behavioral codes under development. In the report a brief description is given of each test together with the results in the form of tables and graphs. Included are data on aerosol mass concentration, aerosol fallout and plateout rates, total mass fallout and plateout, aerosol particle size, vessel atmosphere pressure, vessel atmosphere temperatures, temperature gradients near the vessel wall, and steam condensation rates on the vessel wall.

  19. Limestone concrete aerosol experiments in steam-air atmospheres: NSPP (Nuclear Safety Pilot Plant) Tests 521, 522, and 531: Data record report

    SciTech Connect (OSTI)

    Tobias, M.L.; Adams, R.E.

    1987-10-01T23:59:59.000Z

    This data record report summarizes the results from two tests involving limestone concrete test aerosol in a steam-air environment and one test in a dry air environment. This research sponsored by the US Nuclear Regulatory Commission was conducted in the Nuclear Safety Pilot Plant at the Oak Ridge National Laboratory. The purpose of this project is to provide a data base on the behavior of aerosols in containment under conditions assumed to occur in postulated LWR accident sequences; this data base will provide experimental validation of aerosol behavioral codes under development. In the report a brief description is given of each test together with the results in the form of tables and graphs. Included are data on aerosol mass concentration, aerosol fallout and plateout rates, total mass fallout and plateout, aerosol particle size, vessel atmosphere pressure, vessel atmosphere temperatures, temperature gradients near the vessel wall, and steam condensation rates on the vessel wall.

  20. Microbial field pilot study

    SciTech Connect (OSTI)

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Coates, J.D.; Chisholm, J.L.

    1993-05-01T23:59:59.000Z

    A multi-well microbially enhanced oil recovery field pilot has been performed in the Southeast Vassar Vertz Sand Unit in Payne County, Oklahoma. The primary emphasis of the experiment was preferential plugging of high permeability zones for the purpose of improving waterflood sweep efficiency. Studies were performed to determine reservoir chemistry, ecology, and indigenous bacteria populations. Growth experiments were used to select a nutrient system compatible with the reservoir that encouraged growth of a group of indigenous nitrate-using bacteria and inhibit growth of sulfate-reducing bacteria. A specific field pilot area behind an active line drive waterflood was selected. Surface facilities were designed and installed. Injection protocols of bulk nutrient materials were prepared to facilitate uniform distribution of nutrients within the pilot area. By the end of December, 1991, 82.5 tons (75.0 tonnes) of nutrients had been injected in the field. A tracer test identified significant heterogeneity in the SEVVSU and made it necessary to monitor additional production wells in the field. The tracer tests and changes in production behavior indicate the additional production wells monitored during the field trial were also affected. Eighty two and one half barrels (13.1 m[sup 3]) of tertiary oil have been recovered. Microbial activity has increased CO[sub 2] content as indicated by increased alkalinity. A temporary rise in sulfide concentration was experienced. These indicate an active microbial community was generated in the field by the nutrient injection. Pilot area interwell pressure interference test results showed that significant permeability reduction occurred. The interwell permeabilities in the pilot area between the injector and the three pilot production wells were made more uniform which indicates a successful preferential plugging enhanced oil recovery project.

  1. Microbial field pilot study

    SciTech Connect (OSTI)

    Chisholm, J.L.

    1992-01-01T23:59:59.000Z

    Studies were performed enhanced oil recovery field pilot was performed in Southeast Vassar Vertz Sand Unit (SEVVSU) in Payne County, Oklahoma. The primary emphasis of the experiment was preferential plugging of high permeability zones for the purpose of improving waterflood sweep efficiency. Studies were performed to determine reservoir chemistry, ecology, and indigenous bacteria populations. Studies were performed to determine a nutrient system to encourage growth of a group of indigenous nitrate-using bacteria an inhibit growth of sulfate-reducing bacteria. A specific field pilot area behind an active line drive waterflood was selected. Surface facilities were designed and installed. Injection protocols of bulk nutrient material were prepared to facilitate uniform distribution of nutrients within the pilot area. By the end of December, 1991, 82.5 tons of nutrients had been injected in the field. A tracer test identified significant heterogeneity in the SEVVSU and made it necessary to monitor an additional production well in the field. The tracer tests and changes in production behavior indicated the additional production well monitored during the field trial was also affected. Eighty two and one half barrels of tertiary oil was recovered. Microbial activity increased CO[sub 2] content as indicated by increased alkalinity. A temporary rise in sulphide concentration was experienced. These observations indicate that an active microbial community was generated in the field by the nutrient injection. The three production wells monitored in the pilot area demonstrated significant permeability reduction indicated by interwell pressure interference tests. The interwell permeabilities in the pilot area between the injector and the three pilot production wells were made more uniform (15 md maximum difference between post-treatment permeability values) indicating that preferential plugging had occurred.

  2. FINAL REPORT TESTS ON THE DURAMELTER 1200 HLW PILOT MELTER SYSTEM USING AZ-101 HLW SIMULANTS VSL-02R0100-2 REV 1 2/17/03

    SciTech Connect (OSTI)

    KRUGER AA; MATLACK KS; KOT WK; BARDAKCI T; GONG W; D'ANGELO NA; SCHATZ TR; PEGG IL

    2011-12-29T23:59:59.000Z

    This document provides the final report on data and results obtained from a series of nine tests performed on the one-third scale DuraMelter{trademark} 1200 (DM1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part B1 [1]. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plans. The nine tests reported here were preceded by an initial series of short-duration tests conducted to support the start-up and commissioning of this system. This report is a followup to the previously issued Preliminary Data Summary Reports. The DM1200 system was deployed for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. These tests include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The primary objective of the present series of tests was to determine the effects of a variety of parameters on the glass production rate in comparison to the RPP-WTP HL W design basis of 400 kg/m{sup 2}/d. Previous testing on the DMIOOO system [1] concluded that achievement of that rate with simulants of projected WTP melter feeds (AZ-101 and C-106/AY-102) was unlikely without the use of bubblers. As part of those tests, the same feed that was used during the cold-commissioning of the West Valley Demonstration Project (WVDP) HLW vitrification system was run on the DM1000 system. The DM1000 tests reproduced the rates that were obtained at the larger WVDP facility, lending confidence to the tests results [1]. Since the inclusion or exclusion of a bubbler has significant design implications, the Project commissioned further tests to address this issue. In an effort to identify factors that might increase the glass production rate for projected WTP melter feeds, a subsequent series of tests was performed on the DM100 system. Several tests variables led to glass production rate increases to values significantly above the 400 kg/m2/d requirement. However, while small-scale melter tests are useful for screening relative effects, they tend to overestimate absolute glass production rates, particularly for un-bubbled tests. Consequently, when scale-up effects were taken into account, it was not clear that any of the variables investigated would conclusively meet the 400 kg/m{sup 2}/d requirement without bubbling. The present series of tests was therefore performed on the DM1200 one-third scale HLW pilot melter system to provide the required basis for a final decision on whether bubblers would be included in the HLW melter. The present tests employed the same AZ-101 waste simulant and glass composition that was used for previous testing for consistency and comparability with the results from the earlier tests.

  3. Final Report: Pilot-Scale X-Flow Filtration Test - Env C Plus Entrained Solids Plus Sr/TRU

    SciTech Connect (OSTI)

    Duignan, M.R.

    2000-07-27T23:59:59.000Z

    This report discusses the results of the operation of a cross-flow filter in a pilot-scale experimental facility that was designed, built, and run by the Experimental Thermal Fluids Laboratory of the Savannah River Technology Center of the Westinghouse Savannah River Company. This filtration technology was evaluated for its inclusion in the pretreatment section of the nuclear waste stabilization plant being designed by BNFL, Inc. The plant will be built at the U.S. Department of Energy's Hanford Site as part of the River Protection Project.

  4. A comparison of geostatistically based inverse techniques for use in performance assessment analysis at the Waste Isolation Pilot Plant Site: Results from Test Case No. 1

    SciTech Connect (OSTI)

    Zimmerman, D.A. [GRAM, Inc., Albuquerque, NM (United States); Gallegos, D.P. [Sandia National Labs., Albuquerque, NM (United States)

    1993-10-01T23:59:59.000Z

    The groundwater flow pathway in the Culebra Dolomite aquifer at the Waste Isolation Pilot Plant (WIPP) has been identified as a potentially important pathway for radionuclide migration to the accessible environment. Consequently, uncertainties in the models used to describe flow and transport in the Culebra need to be addressed. A ``Geostatistics Test Problem`` is being developed to evaluate a number of inverse techniques that may be used for flow calculations in the WIPP performance assessment (PA). The Test Problem is actually a series of test cases, each being developed as a highly complex synthetic data set; the intent is for the ensemble of these data sets to span the range of possible conceptual models of groundwater flow at the WIPP site. The Test Problem analysis approach is to use a comparison of the probabilistic groundwater travel time (GWTT) estimates produced by each technique as the basis for the evaluation. Participants are given observations of head and transmissivity (possibly including measurement error) or other information such as drawdowns from pumping wells, and are asked to develop stochastic models of groundwater flow for the synthetic system. Cumulative distribution functions (CDFs) of groundwater flow (computed via particle tracking) are constructed using the head and transmissivity data generated through the application of each technique; one semi-analytical method generates the CDFs of groundwater flow directly. This paper describes the results from Test Case No. 1.

  5. Interim measure conceptual design for remediation at the former CCC/USDA grain storage facility at Centralia, Kansas : pilot test and remedy implementation.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2007-11-09T23:59:59.000Z

    This document presents an Interim Measure Work Plan/Design for the short-term, field-scale pilot testing and subsequent implementation of a non-emergency Interim Measure (IM) at the site of the former grain storage facility operated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in Centralia, Kansas. The IM is recommended to mitigate both (1) localized carbon tetrachloride contamination in the vadose zone soils beneath the former facility and (2) present (and potentially future) carbon tetrachloride contamination identified in the shallow groundwater beneath and in the immediate vicinity of the former CCC/USDA facility. Investigations conducted on behalf of the CCC/USDA by Argonne National Laboratory have demonstrated that groundwater at the Centralia site is contaminated with carbon tetrachloride at levels that exceed the Kansas Tier 2 Risk-Based Screening Level (RBSL) and the U.S. Environmental Protection Agency's maximum contaminant level of 5.0 {micro}g/L for this compound. Groundwater sampling and analyses conducted by Argonne under a monitoring program approved by the Kansas Department of Health and Environment (KDHE) indicated that the carbon tetrachloride levels at several locations in the groundwater plume have increased since twice yearly monitoring of the site began in September 2005. The identified groundwater contamination currently poses no unacceptable health risks, in view of the absence of potential human receptors in the vicinity of the former CCC/USDA facility. Carbon tetrachloride contamination has also been identified at Centralia in subsurface soils at concentrations on the order of the Kansas Tier 2 RBSL of 200 {micro}g/kg in soil for the soil-to-groundwater protection pathway. Soils contaminated at this level might pose some risk as a potential source of carbon tetrachloride contamination to groundwater. To mitigate the existing contaminant levels and decrease the potential future concentrations of carbon tetrachloride in groundwater and soil, the CCC/USDA recommends initial short-term, field-scale pilot testing of a remedial approach that employs in situ chemical reduction (ISCR), in the form of a commercially available material marketed by Adventus Americas, Inc., Freeport, Illinois (http://www.adventusgroup.com). If the pilot test is successful, it will be followed by a request for KDHE authorization of full implementation of the ISCR approach. In the recommended ISCR approach, the Adventus EHC{reg_sign} material--a proprietary mixture of food-grade organic carbon and zero-valent iron--is introduced into the subsurface, where the components are released slowly into the formation. The compounds create highly reducing conditions in the saturated zone and the overlying vadose zone. These conditions foster chemical and biological reductive dechlorination of carbon tetrachloride. The anticipated effective lifetime of the EHC compounds following injection is 1-5 yr. Although ISCR is a relatively innovative remedial approach, the EHC technology has been demonstrated to be effective in the treatment of carbon tetrachloride contamination in groundwater and has been employed at a carbon tetrachloride contamination site elsewhere in Kansas (Cargill Flour Mill and Elevator, Wellington, Kansas; KDHE Project Code C209670158), with the approval of the KDHE. At Centralia, the CCC/USDA recommends use of the ISCR approach initially in a short-term pilot test addressing the elevated carbon tetrachloride levels identified in one of three persistently highly contaminated areas ('hot-spot areas') in the groundwater plume. In this test, a three-dimensional grid pattern of direct-push injection points will be used to distribute the EHC material (in slurry or aqueous form) throughout the volume of the contaminated aquifer and (in selected locations) the vadose zone in the selected hot-spot area. Injection of the EHC material will be conducted by a licensed contractor, under the supervision of Adventus and Argonne technical personnel. The contractor will be identified upon acceptanc

  6. Converting Simulated Sodium-bearing Waste into a Single Solid Waste Form by Evaporation: Laboratory- and Pilot-Scale Test Results on Recycling Evaporator Overheads

    SciTech Connect (OSTI)

    Griffith, D.; D. L. Griffith; R. J. Kirkham; L. G. Olson; S. J. Losinski

    2004-01-01T23:59:59.000Z

    Conversion of Idaho National Engineering and Environmental Laboratory radioactive sodium-bearing waste into a single solid waste form by evaporation was demonstrated in both flask-scale and pilot-scale agitated thin film evaporator tests. A sodium-bearing waste simulant was adjusted to represent an evaporator feed in which the acid from the distillate is concentrated, neutralized, and recycled back through the evaporator. The advantage to this flowsheet is that a single remote-handled transuranic waste form is produced in the evaporator bottoms without the generation of any low-level mixed secondary waste. However, use of a recycle flowsheet in sodium-bearing waste evaporation results in a 50% increase in remote-handled transuranic volume in comparison to a non-recycle flowsheet.

  7. Microbial field pilot study

    SciTech Connect (OSTI)

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.

    1991-01-01T23:59:59.000Z

    The objective of this project is to perform a microbially enhanced oil recovery field pilot test in the Southeast Vassar Vertz Sand Unit in Payne County, Oklahoma. Indigenous, anaerobic, nitrate-reducing bacteria will be stimulated to selectively plug flow paths which have been preferentially swept by a prior waterflood. This will force future flood water to invade bypassed regions of the reservoir and increase sweep efficiency. 1 fig., 2 tabs.

  8. Validation testing of the EERC pilot-scale circulating fluidized-bed combustor using Salt Creek coal

    SciTech Connect (OSTI)

    Mann, M.D.; Hajicek, D.R.; Moe, T.A.; Henderson, A.K.

    1991-09-01T23:59:59.000Z

    The overall goal of the project was to provide a technical basis for assessing the economic and environmental feasibility of circulating fluidized-bed combustion (CFBC) technology, focusing on the effect of system configuration and coal properties on performance. Other underlying goals of the program were to (1) design and construct a CFBC test facility, thereby providing a test facility at an independent laboratory; (2) demonstrate that the test unit is capable of meeting the original design objectives; and (3) assess the ability of the unit to provide scalable data. The purpose of this interim report is to present data from validation testing to establish the scalability of data generated from this unit.

  9. Validation testing of the EERC pilot-scale circulating fluidized-bed combustor using Salt Creek coal. Final report

    SciTech Connect (OSTI)

    Mann, M.D.; Hajicek, D.R.; Moe, T.A.; Henderson, A.K.

    1991-09-01T23:59:59.000Z

    The overall goal of the project was to provide a technical basis for assessing the economic and environmental feasibility of circulating fluidized-bed combustion (CFBC) technology, focusing on the effect of system configuration and coal properties on performance. Other underlying goals of the program were to (1) design and construct a CFBC test facility, thereby providing a test facility at an independent laboratory; (2) demonstrate that the test unit is capable of meeting the original design objectives; and (3) assess the ability of the unit to provide scalable data. The purpose of this interim report is to present data from validation testing to establish the scalability of data generated from this unit.

  10. Pilot-scale testing of a new sorbent for combined SO{sub 2}/NO{sub x} removal. Final report

    SciTech Connect (OSTI)

    Nelson, S. Jr. [Sorbent Technologies Corp., Twinsburg, OH (United States)

    1994-06-01T23:59:59.000Z

    A new regenerable sorbent concept for SO{sub 2} and NOx removal was pilot-tested at Ohio Edison`s Edgewater generating station at a 1.5 to 2-MW(e) level. A radial panel-bed filter of a new dry, granular sorbent was exposed to flue gas and regenerated in an experimental proof-of-concept program. The project was successful in demonstrating the new sorbent`s ability to achieve 90% SO{sub 2} removal, 30% NOx removal, and over 80% removal of residual particulates with realistic approach temperatures and low pressure drops. Based on the results of this project, the retrofit cost of this technology is expected to be on the order of $400 per ton of SO{sub 2} and $900 per ton of NOx removed. This assumes that gas distribution is even and methane regeneration is used for a 30% average utilization. For a 2.5%-sulfur Ohio coal, this translates to a cost of approximately $17 per ton of coal. Two by-product streams were generated in the process that was tested: a solid, spent-sorbent stream and a highly-concentrated SO{sub 2} or elemental-sulfur stream. While not within the scope of the project, it was found possible to process these streams into useful products. The spent sorbent materials were shown to be excellent substrates for soil amendments; the elemental sulfur produced is innocuous and eminently marketable.

  11. Basic data report for drilling and hydrologic testing of drillhole DOE-2 at the Waste Isolation Pilot Plant (WIIP) site

    SciTech Connect (OSTI)

    Mercer, J.W.; Beauheim, R.L.; Snyder, R.P.; Fairer, G.M.

    1987-04-01T23:59:59.000Z

    Drillhole DOE-2 was drilled to investigate a structural depression marked by the downward displacement of stratigraphic markers in the Salado Formation. Contrary to several hypotheses, halite layers were thicker in the lower part of the Salado, not thinner as a result of any removal of halite. The upper Castile anhydrite in Drillhole DOE-2 is anomalously thick and is strongly deformed relative to the anhydrite in adjacent drillholes. In contrast, the halite was <8 ft thick and significantly thinner than usually encountered. The lower Castile anhydrite appears to be normal. The depression within the correlated marker beds in the Salado Formation in Drillhole DOE-2 is interpreted as a result of gravity-driven deformation of the underlying Castile Formation. Several stratigraphic units were hydrologically tested in Drillhole DOE-2. Testing of the unsaturated lower portion of the Dewey Lake Red Beds was unsuccessful because of exceptionally small rates of fluid intake. Drill-stem tests were conducted in five intervals in the Rustler Formation, over the Marker Bed 138-139 interval in the Salado formation, and over three sandstone members of the Bell Canyon Formation. A pumping test was conducted in the Culebra Dolomite Member of the Rustler Formation. Pressure-pulse tests were conducted over the entire Salado Formation. Fluid samples were collected from the Culebra Dolomite Member and from the Hays Member of the Bell Canyon Formation. 31 refs., 31 figs., 5 tabs.

  12. 1. RESERVOIR PERFORMANCE ANALYSIS 1.1 Analysis of Step Rate Injection Tests in the O'Daniel Pilot Area

    E-Print Network [OSTI]

    Schechter, David S.

    - 1- 1. RESERVOIR PERFORMANCE ANALYSIS 1.1 Analysis of Step Rate Injection Tests in the O the reservoir rock. This pressure is referred as to formation parting pressure. Determination of formation demonstrates stress-sensitive behavior, one of the phenomena that influences the performance of waterflooding

  13. PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364

    SciTech Connect (OSTI)

    CORBETT JE; TEDESCH AR; WILSON RA; BECK TH; LARKIN J

    2011-02-14T23:59:59.000Z

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

  14. EERC pilot-scale CFBC evaluation facility Project CFB test results. Topical report, Task 7.30

    SciTech Connect (OSTI)

    Mann, M.D.; Hajicek, D.R.; Henderson, A.K.; Moe, T.A.

    1992-09-01T23:59:59.000Z

    Project CFB was initiated at the University of North Dakota Energy and Environmental Research Center (EERC) in May 1988. Specific goals of the project were to (1) construct a circulating fluidized-bed combustor (CFBC) facility representative of the major boiler vendors` designs with the capability of producing scalable data, (2) develop a database for use in making future evaluations of CFBC technology, and (3) provide a facility for evaluating fuels, free of vendor bias for use in the - energy industry. Five coals were test-burned in the 1-MWth unit: North Dakota and Asian lignites, a Wyoming subbituminous, and Colorado and Pennsylvania bituminous coats. A total of 54 steady-state test periods were conducted, with the key test parameters being the average combustor temperature, excess air, superficial gas velocity, calcium-to-sulfur molar ratio, and the primary air-to-secondary air split. The capture for a coal fired in a CFBC is primarily dependent upon the total alkali-to-sulfur ratio. The required alkali-to ratio for 90% sulfur retention ranged from 1.4 to 4.9, depending upon coal type. While an alkali-to-ratio of 4.9 was required to meet 90% sulfur retention for the Salt Creek coal versus 1.4 for the Asian lignite, the total amount of sorbent addition required is much less for the Salt Creek coal, 4.2 pound sorbent per million Btu coal input, versus 62 pound/million Btu for the Asian lignite. The bituminous coals tested show optimal capture at combustor temperatures of approximately 1550{degree}F, with low-rank coals having optimal sulfur capture approximately 100{degree}F lower.

  15. Microbial field pilot study

    SciTech Connect (OSTI)

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Chisholm, J.L.

    1990-05-02T23:59:59.000Z

    The objective of this project is to perform a microbially enhanced oil recovery field pilot test in the Southeast Vassar Vertz Sand Unit (SEVVSU) in Payne County, Oklahoma. Indigenous, anaerobic, nitrate-reducing bacteria will be stimulated to selectively plug flow paths which have been preferentially swept by a prior waterflood. This will force future flood water to invade bypassed regions of the reservoir and increase sweep efficiency. Results are reported on the isolation/characterization of anaerobic bacteria; bacterial mobility and the importance of chemotaxis; careflood experiments; microbial modeling; and surface facilities design. 7 figs., 1 tab.

  16. Microbial field pilot study

    SciTech Connect (OSTI)

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Chisholm, J.L.

    1990-05-01T23:59:59.000Z

    The objective of this project is to perform a microbially enhanced oil recovery field pilot test in the Southeast Vassar Vertz Sand Unit (SEVVSU) in Payne County, Oklahoma. Indigenous, anaerobic, nitrate-reducing bacteria will be stimulated to selectively plug flow paths which have been preferentially swept by a prior waterflood. This will force future flood water to invade bypassed regions of the reservoir and increase sweep efficiency. Progress is reported on growth/activity in porous media; coreflooding; and microbial modeling. 3 refs., 5 figs.

  17. Microbial field pilot study

    SciTech Connect (OSTI)

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.

    1991-12-06T23:59:59.000Z

    The objective of this project is to perform a microbial enhanced oil recovery field pilot test in the Southeast Vassar Vertz Sand Unit (SEVVSU) in Payne County, Oklahoma. Indigenous, anaerobic, nitrate-reducing bacteria will be stimulated to selectively plug flow paths which have been preferentially swept by a prior waterflood. This will force future flood water to invade bypassed regions of the reservoir and increase sweep efficiency. During this quarter an additional tracer study was performed in the field to determine pre-treatment flow paths and the first nutrients were injected. 2 figs.

  18. Modeling Tomorrow's Biorefinery--the NREL Biochemical Pilot Plant

    SciTech Connect (OSTI)

    Not Available

    2008-03-01T23:59:59.000Z

    Brochure describing the capabilities of NREL's Biochemical Pilot Plant. In this facility, researchers test ideas for creating high-value products from cellulosic biomass.

  19. affect pilot plant: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the component testing mission. 12;314 Three 2 DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS University of California eScholarship...

  20. Microsoft Word - NTS Performance Test Rpt - Final.doc

    Broader source: Energy.gov (indexed) [DOE]

    SECURITY AND EMERGENCY MANAGEMENT PILOT INTEGRATED PERFORMANCE TESTS AT THE NEVADA TEST SITE September 21, 2004 i INDEPENDENT OVERSIGHT SECURITY AND EMERGENCY MANAGEMENT PILOT...

  1. http://pubs.usgs.gov/wri/wri034090/

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythemeansI MEDIANCactusCAPP

  2. Pilot Scale Advanced Fogging Demonstration

    SciTech Connect (OSTI)

    Demmer, Rick L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fox, Don T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Archiblad, Kip E. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01T23:59:59.000Z

    Experiments in 2006 developed a useful fog solution using three different chemical constituents. Optimization of the fog recipe and use of commercially available equipment were identified as needs that had not been addressed. During 2012 development work it was noted that low concentrations of the components hampered coverage and drying in the United Kingdom’s National Nuclear Laboratory’s testing much more so than was evident in the 2006 tests. In fiscal year 2014 the Idaho National Laboratory undertook a systematic optimization of the fogging formulation and conducted a non-radioactive, pilot scale demonstration using commercially available fogging equipment. While not as sophisticated as the equipment used in earlier testing, the new approach is much less expensive and readily available for smaller scale operations. Pilot scale testing was important to validate new equipment of an appropriate scale, optimize the chemistry of the fogging solution, and to realize the conceptual approach.

  3. http://cait.wri.org/

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe InteriorWaterhepf

  4. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS: PHASE II--PILOT SCALE TESTING AND UPDATED PERFORMANCE AND ECONOMICS FOR OXYGEN FIRED CFB WITH CO2 CAPTURE

    SciTech Connect (OSTI)

    Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

    2004-10-27T23:59:59.000Z

    Because fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this Phase II study, ALSTOM Power Inc. (ALSTOM) has investigated one promising near-term coal fired power plant configuration designed to capture CO{sub 2} from effluent gas streams for sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}, along with some moisture, nitrogen, oxygen, and trace gases like SO{sub 2} and NO{sub x}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB plants results in significant Boiler Island cost savings resulting from reduced component The overall objective of the Phase II workscope, which is the subject of this report, is to generate a refined technical and economic evaluation of the Oxygen fired CFB case (Case-2 from Phase I) utilizing the information learned from pilot-scale testing of this concept. The objective of the pilot-scale testing was to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in O{sub 2}/CO{sub 2} mixtures. Firing rates in the pilot test facility ranged from 2.2 to 7.9 MM-Btu/hr. Pilot-scale testing was performed at ALSTOM's Multi-use Test Facility (MTF), located in Windsor, Connecticut.

  5. Materials performance in coal gasification pilot plants

    SciTech Connect (OSTI)

    Judkins, R.R.; Bradley, R.A.

    1987-10-15T23:59:59.000Z

    This paper presents the results of several materials testing projects which were conducted in operating coal gasification pilot plants in the United States. These projects were designed to test potential materials of construction for commercial plants under actual operating conditions. Pilot plants included in the overall test program included the Hygas, Conoco Coal, Synthane, Bi-Gas, Peatgas (Hygas operating with peat), Battelle, U-Gas, Westinghouse (now KRW), General Electric (Gegas), and Mountain Fuel Resources plants. Test results for a large variety of alloys are discussed and conclusions regarding applicability of these materials in coal gasification environments are presented. 14 refs., 2 tabs.

  6. The Hanna and Hoe Creek underground coal gasification test sites: Status report, (June 1986-June 1987)

    SciTech Connect (OSTI)

    Berdan, G.L.; Nolan, B.T.; Barteaux, W.L.; Barrash, W.

    1987-06-01T23:59:59.000Z

    To comply with a cooperative agreement with the U.S. Department of Energy (DOE), the Western Research Institute (WRI) is required to submit an annual report summarizing the status of environmentally related work performed by WRI at the Hanna and Hoe Creek underground coal gasification (UCG) sites. The following is a summary of work performed at these two sites from June 1986 to June 1987. Several tasks for restoring the water quailty at Hoe Creek were: (1) groundwater treatment demonstration (1986); (2) bench-scale carbon adsorption experiments (1987); (3) design of the scaled-up treatment system (1987); (4) well-pumping test (1987). A summary of the results of each task is presented. 6 refs., 8 figs., 4 tabs.

  7. Microbial field pilot study

    SciTech Connect (OSTI)

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.

    1991-01-01T23:59:59.000Z

    The objective of this project is to perform a microbially enhanced oil recovery field pilot test in the Southeast Vassar Vertz Sand Unit (SEVVSU) in Payne County, Oklahoma. Indigenous, anaerobic, nitrate-reducing bacteria will be stimulated to selectively plug flow paths which have been preferentially swept by a prior waterflood. This will force future flood water to invade bypassed regions or the reservoir and increase sweep efficiency. Injection of nutrient stimulates the growth and metabolism of reservoir bacteria, which produces beneficial products to enhance oil recovery. Sometimes, chemical treatments are used to clean or condition injection water. Such a chemical treatment has been initiated by Sullivan and Company at the Southeast Vassar Vertz Sand Unit. The unit injection water was treated with a mixture of water, methanol, isopropyl alcohol, and three proprietary chemicals. To determine if the chemicals would have an impact on the pilot, it was important to determine the effects of the chemical additives on the growth and metabolism of the bacteria from wells in this field. Two types of media were used: a mineral salts medium with molasses and nitrate, and this medium with 25 ppm of the treatment chemicals added. Samples were collected anaerobically from each of two wells, 1A-9 and 7-2. A sample from each well was inoculated and cultured in the broth tubes of molasses-nitrate medium with and without the chemicals. Culturing temperature was 35{degrees}C. Absorbance, pressure and cell number were checked to determine if the chemicals affected the growth and metabolism of bacteria in the brine samples. 12 figs.

  8. Thermochemical Conversion Pilot Plant (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01T23:59:59.000Z

    The state-of-the-art thermochemical conversion pilot plant includes several configurable, complementary unit operations for testing and developing various reactors, filters, catalysts, and other unit operations. NREL engineers and scientists as well as clients can test new processes and feedstocks in a timely, cost-effective, and safe manner to obtain extensive performance data on processes or equipment.

  9. FINAL REPORT START-UP AND COMMISSIONING TESTS ON THE DURAMELTER 1200 HLW PILOT MELTER SYSTEM USING AZ-101 HLW SIMULANTS VSL-01R0100-2 REV 0 1/20/03

    SciTech Connect (OSTI)

    KRUGER AA; MATLACK KS; KOT WK; BRANDYS M; WILSON CN; SCHATZ TR; GONG W; PEGG IL

    2011-12-29T23:59:59.000Z

    This document provides the final report on data and results obtained from commissioning tests performed on the one-third scale DuraMelter{trademark} 1200 (DM 1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part BI [1]. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plan. This report is a followup to the previously issued Preliminary Data Summary Report. The DM1200 system will be used for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. This will include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The results presented in this report are from the initial series of short-duration tests that were conducted to support the start-up and commissioning of this system prior to conducting the main body of development tests that have been planned for this system. These tests were directed primarily at system 'debugging,' operator training, and procedure refinement. The AZ-101 waste simulant and glass composition that was used for previous testing was selected for these tests.

  10. PEATGAS pilot plant operating results

    SciTech Connect (OSTI)

    Biljetina, R.; Punwani, D.

    1982-08-01T23:59:59.000Z

    The Institute of Gas Technology has been developing the PEATGAS process for the conversion of peat to synthetic fuels. A program has recently been completed for the pilot-plant-scale testing of the process. In this scheme, peat is gasified in a two-stage reactor system, which operates at temperatures up to 1750/sup 0/F and pressures up to 500 psig. The process can be controlled to maximize the production of either substitute natural gas (SNG) or liquid hydrocarbons. The technical feasibility of the process was demonstrated in a series of five gasification tests. Highlights of this operating program are presented in this paper.

  11. PEATGAS pilot plant operating results

    SciTech Connect (OSTI)

    Biljetina, R.; Punwani, D.

    1982-01-01T23:59:59.000Z

    The Institute of Gas Technology has been developing the PEATGAS process for the conversion of peat to synthetic fuels. A program has recently been completed for the pilot-plant-scale testing of the process. In this scheme, peat is gasified in a two-stage reactor system, which operates at temperatures up to 1750/sup 0/F and pressures up to 500 psig. The process can be controlled to maximize the production of either substitute natural gas (SNG) or liquid hydrocarbons. The technical feasibility of the process was demonstrated in a series of five gasification tests. Highlights of this operating program are presented in this paper.

  12. Model predictive control of a pilot-scale distillation column using a programmable automation controller

    E-Print Network [OSTI]

    Model predictive control of a pilot-scale distillation column using a programmable automation). The controller is tested on a pilot-scale binary distillation column to track reference temperatures. A majorRIO) to control a pilot-scale binary distillation col- umn. Both the PI-controllers and the supervising online MPC

  13. COURSE SYLLABUS SPORT / PRIVATE PILOT

    E-Print Network [OSTI]

    COURSE SYLLABUS SPORT / PRIVATE PILOT #12;#12;Cessna eLearning Web Based Instructional Programs Cessna Sport / Private Pilot Training Course SYLLABUS King Schools, Inc. 3840 Calle Fortunada San Diego States of America. #12;Ver. 1.02 Cessna Sport / Private Pilot Syllabus Your Path to Becoming a Pilot

  14. Renewable Energy Pilot Program

    Broader source: Energy.gov [DOE]

    The pilot program has two major components: the Research Component and the Request for Proposal (RFP) Component. The RFP component has been concluded but companies continue to report in Docket No...

  15. Portland General Electric Company Pilot Evaluation and

    E-Print Network [OSTI]

    . The purposes of this pilot were to measure the load impact of turning off water heaters during peak hours, test customer acceptance of remote control of their water heater, determine the company's capability to control) was installed in each participant's home. Water heaters were shut off remotely (curtailed), using the paging

  16. Microbial field pilot study. Final report

    SciTech Connect (OSTI)

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Coates, J.D.; Chisholm, J.L.

    1993-05-01T23:59:59.000Z

    A multi-well microbially enhanced oil recovery field pilot has been performed in the Southeast Vassar Vertz Sand Unit in Payne County, Oklahoma. The primary emphasis of the experiment was preferential plugging of high permeability zones for the purpose of improving waterflood sweep efficiency. Studies were performed to determine reservoir chemistry, ecology, and indigenous bacteria populations. Growth experiments were used to select a nutrient system compatible with the reservoir that encouraged growth of a group of indigenous nitrate-using bacteria and inhibit growth of sulfate-reducing bacteria. A specific field pilot area behind an active line drive waterflood was selected. Surface facilities were designed and installed. Injection protocols of bulk nutrient materials were prepared to facilitate uniform distribution of nutrients within the pilot area. By the end of December, 1991, 82.5 tons (75.0 tonnes) of nutrients had been injected in the field. A tracer test identified significant heterogeneity in the SEVVSU and made it necessary to monitor additional production wells in the field. The tracer tests and changes in production behavior indicate the additional production wells monitored during the field trial were also affected. Eighty two and one half barrels (13.1 m{sup 3}) of tertiary oil have been recovered. Microbial activity has increased CO{sub 2} content as indicated by increased alkalinity. A temporary rise in sulfide concentration was experienced. These indicate an active microbial community was generated in the field by the nutrient injection. Pilot area interwell pressure interference test results showed that significant permeability reduction occurred. The interwell permeabilities in the pilot area between the injector and the three pilot production wells were made more uniform which indicates a successful preferential plugging enhanced oil recovery project.

  17. Leveraging Resources for the Weatherization Innovation Pilot...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Weatherization Innovation Pilot Program (WIPP) - Webinar Transcript Leveraging Resources for the Weatherization Innovation Pilot Program (WIPP) - Webinar Transcript This...

  18. Leveraging Resources for Weatherization Innovation Pilot Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherization Innovation Pilot Projects (WIPP) Presentation Leveraging Resources for Weatherization Innovation Pilot Projects (WIPP) Presentation As a WIPP agency, reporting...

  19. Pilot-Scale Demonstration of a Novel, Low-Cost Oxygen Supply Process and its Integration with Oxy-Fuel Coal-Fired Boilers

    SciTech Connect (OSTI)

    Krish Krishnamurthy; Divy Acharya; Frank Fitch

    2008-09-30T23:59:59.000Z

    In order to achieve DOE targets for carbon dioxide capture, it is crucial not only to develop process options that will generate and provide oxygen to the power cycle in a cost-effective manner compared to the conventional oxygen supply methods based on cryogenic air separation technology, but also to identify effective integration options for these new technologies into the power cycle with carbon dioxide capture. The Linde/BOC developed Ceramic Autothermal Recovery (CAR) process remains an interesting candidate to address both of these issues by the transfer of oxygen from the air to a recycled CO{sub 2} rich flue-gas stream in a cyclic process utilizing the high temperature sorption properties of perovskites. Good progress was made on this technology in this project, but significant challenges remain to be addressed before CAR oxygen production technology is ready for commercial exploitation. Phase 1 of the project was completed by the end of September 2008. The two-bed 0.7 tons/day O2 CAR process development unit (PDU) was installed adjacent to WRI's pilot scale coal combustion test facility (CTF). Start-up and operating sequences for the PDU were developed and cyclic operation of the CAR process demonstrated. Controlled low concentration methane addition allowed the beds to be heated up to operational temperature (800-900 C) and then held there during cyclic operation of the 2-bed CAR process, in this way overcoming unavoidable heat losses from the beds during steady state operation. The performance of the PDU was optimized as much as possible, but equipment limitations prevented the system from fully achieving its target performance. Design of the flue gas recirculation system to integrate CAR PDU with the CTF and the system was completed and integrated tests successfully performed at the end of the period. A detailed techno-economic analysis was made of the CAR process for supplying the oxygen in oxy-fuel combustion retrofit option using AEP's 450 MW Conesville, Ohio plant and contrasted with the cryogenic air separation option (ASU). Design of a large scale CAR unit was completed to support this techno-economic assessment. Based on the finding that the overall cost potential of the CAR technology compared to cryogenic ASU is nominal at current performance levels and that the risks related to both material and process scale up are still significant, the team recommended not to proceed to Phase 2. CAR process economics continue to look attractive if the original and still 'realistic' target oxygen capacities could be realized in practice. In order to achieve this end, a new fundamental materials development program would be needed. With the effective oxygen capacities of the current CAR materials there is, however, insufficient economic incentive to use this commercially unproven technology in oxy-fuel power plant applications in place of conventional ASUs. In addition, it is now clear that before a larger scale pilot demonstration of the CAR technology is made, a better understanding of the impact of flue-gas impurities on the CAR materials and of thermal transients in the beds is required.

  20. Tracer-level radioactive pilot-scale test of in situ vitrification for the stabilization of contaminated soil sites at ORNL

    SciTech Connect (OSTI)

    Spalding, B.P.; Jacobs, G.K.; Naney, M.T. [Oak Ridge National Lab., TN (United States); Dunbar, N.W. [New Mexico Bureau of Mines and Mineral Resources, Socorro, NM (United States); Tixier, J.S.; Powell, T.D. [Pacific Northwest Lab., Richland, WA (United States)

    1992-11-01T23:59:59.000Z

    A field demonstration of in situ vitrification (ISV) was completed in May 1991, and produced approximately 12 Mg of melted earthen materials containing 12.7 mCi of radioactivity within 500 g of sludge in amodel of an old seepage trench waste disposal unit. Past waste disposal operations at Oak Ridge National Laboratory have left several contaminated seepage sites. In planning for remediation of such sites, ISV technology has been identified as a leading candidate because of the high risks associated with any retrieval option and because of the usual high quality of vitreous waste form. Major isotopes placed in the test trench were {sup 137}Cs and {sup 90}Sr, with lesser amounts of {sup 6O}Co, {sup 241}Am, and {sup 239,240}Pu. A total of 29 MWh of electrical power was delivered to the ground over a 5-day period producing a melt depth of 8.5 ft. During melting, 2.4% of the {sup 137}Cs volatilized from the melt into an off-gas containment hood and was captured quantitatively on a high efficiency particulate air filter. No volatilization of {sup 90}Sr, {sup 241}Am, or {sup 239,240}Pu was detected and > 99.993% retention of these isotopes in the melt was estimated. The use of added rare earth tracers (Ce, La, and Nd), as surrogates for transuranic isotopes, led to estimated melt retentions of >99.9995% during the test. The molten material, composed of the native soil and dolomitic limestone used for filling the test trench, reached a processing temperature of 1500{degrees}C. Standardized leaching procedures using Product Consistency Testing indicated that the ISV product has excellent characteristics relative to other vitreous nuclear waste forms.

  1. Tracer-level radioactive pilot-scale test of in situ vitrification for the stabilization of contaminated soil sites at ORNL

    SciTech Connect (OSTI)

    Spalding, B.P.; Jacobs, G.K.; Naney, M.T. (Oak Ridge National Lab., TN (United States)); Dunbar, N.W. (New Mexico Bureau of Mines and Mineral Resources, Socorro, NM (United States)); Tixier, J.S.; Powell, T.D. (Pacific Northwest Lab., Richland, WA (United States))

    1992-11-01T23:59:59.000Z

    A field demonstration of in situ vitrification (ISV) was completed in May 1991, and produced approximately 12 Mg of melted earthen materials containing 12.7 mCi of radioactivity within 500 g of sludge in amodel of an old seepage trench waste disposal unit. Past waste disposal operations at Oak Ridge National Laboratory have left several contaminated seepage sites. In planning for remediation of such sites, ISV technology has been identified as a leading candidate because of the high risks associated with any retrieval option and because of the usual high quality of vitreous waste form. Major isotopes placed in the test trench were [sup 137]Cs and [sup 90]Sr, with lesser amounts of [sup 6O]Co, [sup 241]Am, and [sup 239,240]Pu. A total of 29 MWh of electrical power was delivered to the ground over a 5-day period producing a melt depth of 8.5 ft. During melting, 2.4% of the [sup 137]Cs volatilized from the melt into an off-gas containment hood and was captured quantitatively on a high efficiency particulate air filter. No volatilization of [sup 90]Sr, [sup 241]Am, or [sup 239,240]Pu was detected and > 99.993% retention of these isotopes in the melt was estimated. The use of added rare earth tracers (Ce, La, and Nd), as surrogates for transuranic isotopes, led to estimated melt retentions of >99.9995% during the test. The molten material, composed of the native soil and dolomitic limestone used for filling the test trench, reached a processing temperature of 1500[degrees]C. Standardized leaching procedures using Product Consistency Testing indicated that the ISV product has excellent characteristics relative to other vitreous nuclear waste forms.

  2. ISOE Pilot Project Update

    SciTech Connect (OSTI)

    D. A. Hagemeyer D. E. Lewis

    2012-05-05T23:59:59.000Z

    This slide show introduces the Pilot Project to increase the value of Information System on Occupational Exposure (ISOE)#11;data by increasing participation and amount of data reported from the U.S., reduce the hurdles and effort in participating, streamline the process of reporting and reduce time delay, and eliminate data entry and redundant effort.

  3. Independent Oversight Inspection, Nevada Test Site - September...

    Broader source: Energy.gov (indexed) [DOE]

    Site - September 2004 Independent Oversight Inspection, Nevada Test Site - September 2004 September 2004 Security and Emergency Management Pilot Integrated Performance Tests at the...

  4. SkyMine Carbon Mineralization Pilot Project

    SciTech Connect (OSTI)

    Christenson, Norm; Walters, Jerel

    2014-12-31T23:59:59.000Z

    This Topical Report addresses accomplishments achieved during Phase 2b of the SkyMine® Carbon Mineralization Pilot Project. The primary objectives of this project are to design, construct, and operate a system to capture CO2 from a slipstream of flue gas from a commercial coal-fired cement kiln, convert that CO2 to products having commercial value (i.e., beneficial use), show the economic viability of the CO2 capture and conversion process, and thereby advance the technology to the point of readiness for commercial scale demonstration and deployment. The overall process is carbon negative, resulting in mineralization of CO2 that would otherwise be released into the atmosphere. The project will also substantiate market opportunities for the technology by sales of chemicals into existing markets, and identify opportunities to improve technology performance and reduce costs at the commercial scale. The project is being conducted in two phases. The primary objectives of Phase 1 were to evaluate proven SkyMine® process chemistry for commercial pilot-scale operation and complete the preliminary design for the pilot plant to be built and operated in Phase 2, complete a NEPA evaluation, and develop a comprehensive carbon life cycle analysis. The objective of Phase 2b was to build the pilot plant to be operated and tested in Phase 2c.

  5. National Spill Test Technology Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sheesley, David [Western Research Institute

    Western Research Institute established, and ACRC continues to maintain, the National Spill Technology database to provide support to the Liquified Gaseous Fuels Spill Test Facility (now called the National HAZMAT Spill Center) as directed by Congress in Section 118(n) of the Superfund Amendments and Reauthorization Act of 1986 (SARA). The Albany County Research Corporation (ACRC) was established to make publicly funded data developed from research projects available to benefit public safety. The founders since 1987 have been investigating the behavior of toxic chemicals that are deliberately or accidentally spilled, educating emergency response organizations, and maintaining funding to conduct the research at the DOEĆs HAZMAT Spill Center (HSC) located on the Nevada Test Site. ACRC also supports DOE in collaborative research and development efforts mandated by Congress in the Clean Air Act Amendments. The data files are results of spill tests conducted at various times by the Silicones Environmental Health and Safety Council (SEHSC) and DOE, ANSUL, Dow Chemical, the Center for Chemical Process Safety (CCPS) and DOE, Lawrence Livermore National Laboratory (LLNL), OSHA, and DOT; DuPont, and the Western Research Institute (WRI), Desert Research Institute (DRI), and EPA. Each test data page contains one executable file for each test in the test series as well as a file named DOC.EXE that contains information documenting the test series. These executable files are actually self-extracting zip files that, when executed, create one or more comma separated value (CSV) text files containing the actual test data or other test information.

  6. Status of the PEATGAS Pilot Plant Development Program

    SciTech Connect (OSTI)

    Biljetina, R.; Punwani, D.V.

    1981-01-01T23:59:59.000Z

    Minnesota peat has been successfully processed in a 2 ton/h, continuous, fully integrated pilot plant since April 1981 at the Institute of Gas Technology (IGT) Energy Development Center in Chicago. The reactor system is based on the PEATGAS process for the production of substitute natural gas (SNG) developed by IGT. Three tests have been conducted in the pilot plant at a 500-psig pressure and gasification temperatures up to 1650/sup 0/F. Peat conversions consistently averaged over 90% at the upper temperature levels. These tests were conducted using a slurry feeding system to inject peat, which contained about 10% moisture, into the gasifier. The facility is currently being modified to accept dry peat feed using a two-stage lockhopper system. When this modification is completed, testing will begin with peat containing 30% to 50% moisture. Results of the successful test series using slurry feed and the progress made on the pilot plant lockhopper modification are summarized.

  7. PILOT and cosmic shear

    E-Print Network [OSTI]

    W. Saunders

    2008-01-29T23:59:59.000Z

    Cosmic shear offers a remarkbly clean way to measure the equation of state of the Universe and its evolution. Resolution over a wide field is paramount, and Antarctica offers unique possibilities in this respect. There is an order of magnitude gain in speed over temperate sites, or a factor three in surface density. This means that PILOT outperforms much larger telescopes elsewhere, and can compete with the proposed DUNE space mission. Keywords: Antarctic astronomy, Surveys, Adaptive optics, Weak lensing

  8. Excavation of the Partial Seam CRIP underground coal gasification test site

    SciTech Connect (OSTI)

    Cena, R.J.; Britten, J.A.; Thorsness, C.B.

    1987-08-14T23:59:59.000Z

    In the fall of 1983, Lawrence Livermore National Laboratory conducted the Partial Seam CRIP (PSC) underground coal gasification (UCG) field experiment at the Washington Irrigation and Development Company mine near Centralia, Washington. The test, in the subbituminous Big Dirty coal seam, lasted 30 days during which time 1400 cubic meters of coal were consumed from two injection/production well combinations. In the spring of 1986, normal mining activity in the vicinity of the PSC test allowed the opportunity to carefully excavate the experiment and examine the post-burn cavities. The mining operation dug out the front and back half of the test area and most of the overburden above the UCG cavities, leaving approximately 23,000 cubic meters of earth containing the main portion of the test area undisturbed. Under direction of the Wyoming Research Institute (WRI), this remaining earth was carefully excavated, in slices perpendicular to the original injection/production line, using small earthmoving equipment to uncover and sample the final burn cavities. Preliminary results of the excavation were presented by WRI at the 12th Underground Coal Conversion Symposium. We present additional results and conclusions based on all of the information obtained. Topics covered include: comparison to material balance and thermal instrumentation data, analysis and composition of samples taken from the cavity and general cavity shape and characteristics in comparison with mechanistic models of cavity growth. 10 refs., 10 figs., 1 tab.

  9. Microbial field pilot study

    SciTech Connect (OSTI)

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Chisholm, J.L.

    1992-03-01T23:59:59.000Z

    The objective of this project is to perform a microbial enhanced oil recovery field pilot in the Southeast Vassar Vertz Sand Unit (SEVVSU) in Payne County, Oklahoma. Indigenous, anaerobic, nitrate reducing bacteria will be stimulated to selectively plug flow paths which have been referentially swept by a prior waterflood. This will force future flood water to invade bypassed regions of the reservoir and increase sweep efficiency. This report covers progress made during the second year, January 1, 1990 to December 31, 1990, of the Microbial Field Pilot Study project. Information on reservoir ecology, surface facilities design, operation of the unit, core experiments, modeling of microbial processes, and reservoir characterization and simulation are presented in the report. To better understand the ecology of the target reservoir, additional analyses of the fluids which support bacteriological growth and the microbiology of the reservoir were performed. The results of the produced and injected water analysis show increasing sulfide concentrations with respect to time. In March of 1990 Mesa Limited Partnership sold their interest in the SEVVSU to Sullivan and Company. In April, Sullivan and Company assumed operation of the field. The facilities for the field operation of the pilot were refined and implementation was begun. Core flood experiments conducted during the last year were used to help define possible mechanisms involved in microbial enhanced oil recovery. The experiments were performed at SEVVSU temperature using fluids and inoculum from the unit. The model described in last year`s report was further validated using results from a core flood experiment. The model was able to simulate the results of one of the core flood experiments with good quality.

  10. Microbial field pilot study

    SciTech Connect (OSTI)

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Chisholm, J.L.

    1992-03-01T23:59:59.000Z

    The objective of this project is to perform a microbial enhanced oil recovery field pilot in the Southeast Vassar Vertz Sand Unit (SEVVSU) in Payne County, Oklahoma. Indigenous, anaerobic, nitrate reducing bacteria will be stimulated to selectively plug flow paths which have been referentially swept by a prior waterflood. This will force future flood water to invade bypassed regions of the reservoir and increase sweep efficiency. This report covers progress made during the second year, January 1, 1990 to December 31, 1990, of the Microbial Field Pilot Study project. Information on reservoir ecology, surface facilities design, operation of the unit, core experiments, modeling of microbial processes, and reservoir characterization and simulation are presented in the report. To better understand the ecology of the target reservoir, additional analyses of the fluids which support bacteriological growth and the microbiology of the reservoir were performed. The results of the produced and injected water analysis show increasing sulfide concentrations with respect to time. In March of 1990 Mesa Limited Partnership sold their interest in the SEVVSU to Sullivan and Company. In April, Sullivan and Company assumed operation of the field. The facilities for the field operation of the pilot were refined and implementation was begun. Core flood experiments conducted during the last year were used to help define possible mechanisms involved in microbial enhanced oil recovery. The experiments were performed at SEVVSU temperature using fluids and inoculum from the unit. The model described in last year's report was further validated using results from a core flood experiment. The model was able to simulate the results of one of the core flood experiments with good quality.

  11. World Resources Institute (WRI) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Project JumpWisconsin:WorldWorld Energy

  12. World Resources Institute (WRI) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy ResourcesWoodsCenters Jump to:

  13. Pilots 2.0: DIRAC pilots for all the skies

    E-Print Network [OSTI]

    Stagni, F; McNab, A; Luzzi, C

    2015-01-01T23:59:59.000Z

    In the last few years, new types of computing infrastructures, such as IAAS (Infrastructure as a Service) and IAAC (Infrastructure as a Client), gained popularity. New resources may come as part of pledged resources, while others are opportunistic. Most of these new infrastructures are based on virtualization techniques. Meanwhile, some concepts, such as distributed queues, lost appeal, while still supporting a vast amount of resources. Virtual Organizations are therefore facing heterogeneity of the available resources and the use of an Interware software like DIRAC to hide the diversity of underlying resources has become essential. The DIRAC WMS is based on the concept of pilot jobs that was introduced back in 2004. A pilot is what creates the possibility to run jobs on a worker node. Within DIRAC, we developed a new generation of pilot jobs, that we dubbed Pilots 2.0. Pilots 2.0 are not tied to a specific infrastructure; rather they are generic, fully configurable and extendible pilots. A Pilot 2.0 can be s...

  14. Advanced Gasifier Pilot Plant Concept Definition

    SciTech Connect (OSTI)

    Steve Fusselman; Alan Darby; Fred Widman

    2005-08-31T23:59:59.000Z

    This report presents results from definition of a preferred commercial-scale advanced gasifier configuration and concept definition for a gasification pilot plant incorporating those preferred technologies. The preferred commercial gasifier configuration was established based on Cost Of Electricity estimates for an IGCC. Based on the gasifier configuration trade study results, a compact plug flow gasifier, with a dry solids pump, rapid-mix injector, CMC liner insert and partial quench system was selected as the preferred configuration. Preliminary systems analysis results indicate that this configuration could provide cost of product savings for electricity and hydrogen ranging from 15%-20% relative to existing gasifier technologies. This cost of product improvement draws upon the efficiency of the dry feed, rapid mix injector technology, low capital cost compact gasifier, and >99% gasifier availability due to long life injector and gasifier liner, with short replacement time. A pilot plant concept incorporating the technologies associated with the preferred configuration was defined, along with cost and schedule estimates for design, installation, and test operations. It was estimated that a 16,300 kg/day (18 TPD) pilot plant gasifier incorporating the advanced gasification technology and demonstrating 1,000 hours of hot-fire operation could be accomplished over a period of 33 months with a budget of $25.6 M.

  15. National Grid Deep Energy Retrofit Pilot

    SciTech Connect (OSTI)

    Neuhauser, K.

    2012-03-01T23:59:59.000Z

    Through discussion of five case studies (test homes), this project evaluates strategies to elevate the performance of existing homes to a level commensurate with best-in-class implementation of high-performance new construction homes. The test homes featured in this research activity participated in Deep Energy Retrofit (DER) Pilot Program sponsored by the electric and gas utility National Grid in Massachusetts and Rhode Island. Building enclosure retrofit strategies are evaluated for impact on durability and indoor air quality in addition to energy performance. Evaluation of strategies is structured around the critical control functions of water, airflow, vapor flow, and thermal control. The aim of the research project is to develop guidance that could serve as a foundation for wider adoption of high performance, 'deep' retrofit work. The project will identify risk factors endemic to advanced retrofit in the context of the general building type, configuration and vintage encountered in the National Grid DER Pilot. Results for the test homes are based on observation and performance testing of recently completed projects. Additional observation would be needed to fully gauge long-term energy performance, durability, and occupant comfort.

  16. Pilot Plant Options for the MFE Roadmap

    E-Print Network [OSTI]

    Pilot Plant Options for the MFE Roadmap Hutch Neilson Princeton Plasma Physics Laboratory International Workshop MFE Roadmapping for the ITER Era Princeton, NJ 10 September 2011 #12;Outline 2 · Pilot plant ­ mission, motivation, and description. · Role of pilot plants on the Roadmap to Demo. Pilot Plant

  17. Biochemical Conversion Pilot Plant (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01T23:59:59.000Z

    This fact sheet provides information about Biochemical Conversion Pilot Plant capabilities and resources at NREL.

  18. An evaluation of the management system verification pilot at Hanford

    SciTech Connect (OSTI)

    BRIGGS, C.R.

    1998-11-12T23:59:59.000Z

    The Chemical Management System (CMS), currently under development at Hanford, was used as the ''test program'' for pilot testing the value added aspects of the Chemical Manufacturers Association's (CMA) Management Systems Verification (MSV) process. The MSV process, which was developed by CMA's member chemical companies specifically as a tool to assist in the continuous improvement of environment, safety and health (ESH) performance, represents a commercial sector ''best practice'' for evaluating ESH management systems. The primary purpose of Hanford's MSV Pilot was to evaluate the applicability and utility of the MSV process in the Department of Energy (DOE) environment. However, because the Integrated Safety Management System (ISMS) is the framework for ESH management at Hanford and at all DOE sites, the pilot specifically considered the MSV process in the context of a possible future adjunct to Integrated Safety Management System Verification (ISMSV) efforts at Hanford and elsewhere within the DOE complex. The pilot involved the conduct of two-hour interviews with four separate panels of individuals with functional responsibilities related to the CMS including the Department of Energy Richland Operations (DOE-RL), Fluor Daniel Hanford (FDH) and FDH's major subcontractors (MSCS). A semi-structured interview process was employed by the team of three ''verifiers'' who directed open-ended questions to the panels regarding the development, integration and effectiveness of management systems necessary to ensure the sustainability of the CMS effort. An ''MSV Pilot Effectiveness Survey'' also was completed by each panel participant immediately following the interview.

  19. Turbine fuels from tar sands bitumen and heavy oil. Volume 1. Phase 3. Pilot plant testing, final design, and economics. Final report, 1 June 1985-31 March 1987

    SciTech Connect (OSTI)

    Talbot, A.F.; Carson, T.C.; Magill, L.G.; Swesey, J.R.

    1987-08-01T23:59:59.000Z

    Pilot-plant-scale demonstration of an upgrading/refining scheme to convert bitumen or heavy crude oil into high yields of specification-quality aviation turbine fuel was performed. An atmospheric residue from San Ardo (California) crude was converted under hydrovisbreaking conditions to synthetic crude for further refining. Naphtha cuts from the straight run and synthetic crude were combined, catalytically hydrotreated, then hydrocracked. Products from these operations were combined to produce two prototype specification fuels (JP-4 and JP-8) as well as two heavier, variable-quality fuels. An engineering design (Volume II) was developed for a 50,000 BPSD grass-roots refinery, from the pilot-plant operations. Capital investment and operating costs were estimated, and fuel manufacturing costs projected. Conclusions and recommendations for further work are included.

  20. Decision support for the general aviation pilot 

    E-Print Network [OSTI]

    Alcorn, W. P.; Lee, K. A.; Ward, D. T.; Trang, J. A.; Krishnamurthy, K.; Crump, J. W.; Branham, P. A.; Woo, D. L. Y.; Ren-Jye Yu; Robbins, A. C.; Painter, John H.; Kelly, W. E. III

    1997-10-12T23:59:59.000Z

    simulator. Pilot participation in all phases of development and evaluation is the norm. Flight tests have begun on an instrumented research light twin owned by the 0-7803-4053-1/97/$10.00 @ 1997 IEEE products A d services.? factor, a component... will depend on how successful the industry is in stimulating the development of new general aviation Authorized licensed use limited to: Texas A M University. Downloaded on February 16,2010 at 15:01:09 EST from IEEE Xplore. Restrictions apply...

  1. VOC Emission Control with the Brayton Cycle Pilot Plant Operations

    E-Print Network [OSTI]

    Enneking, J. C.

    A mobile pilot plant capable of removing VOC emissions from exhaust air streams was cooperatively funded by SCE, EPRI, 3M, and NUCON. Valuable information about the process and the recovery operation has been gained by performing tests at a number...

  2. VOC Emission Control with the Brayton Cycle Pilot Plant Operations 

    E-Print Network [OSTI]

    Enneking, J. C.

    1992-01-01T23:59:59.000Z

    A mobile pilot plant capable of removing VOC emissions from exhaust air streams was cooperatively funded by SCE, EPRI, 3M, and NUCON. Valuable information about the process and the recovery operation has been gained by performing tests at a number...

  3. Fireaxe: The DHS Secure Design Competition Pilot [Extended Abstract

    E-Print Network [OSTI]

    Vorobeychik, Eugene

    discusses the methods at- tempted and lessons learned, as well as future directions and competition for discovering, learning, and testing secure design principles. Fireaxe is the pilot competition that attempts.S. Department of Energy's National Nuclear Secu- rity Administration under contract DE-AC04-94AL85000

  4. Commercial Building Energy Asset Score: 2013 Pilot Overview ...

    Office of Environmental Management (EM)

    Score: 2013 Pilot Overview Commercial Building Energy Asset Score: 2013 Pilot Overview provides an overview of the 2013 pilot for the commercial building energy asset score...

  5. Commercial Building Energy Asset Scoring Tool 2013 Pilot Training...

    Office of Environmental Management (EM)

    Scoring Tool 2013 Pilot Training Session Commercial Building Energy Asset Scoring Tool 2013 Pilot Training Session overview of the June 18, 2013 pilot training session for the...

  6. Waste Isolation Pilot Plant No-migration variance petition. Addendum: Volume 7, Revision 1

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    This report describes various aspects of the Waste Isolation Pilot Plant (WIPP) including design data, waste characterization, dissolution features, ground water hydrology, natural resources, monitoring, general geology, and the gas generation/test program.

  7. Arsenic pilot plant operation and results : Anthony, New Mexico.

    SciTech Connect (OSTI)

    Aragon, Malynda Jo; Everett, Randy L.; Siegel, Malcolm Dean; Aragon, Alicia R.; Kottenstette, Richard Joseph; Holub, William E., Jr.; Wright, Jerome L.; Dwyer, Brian P.

    2007-09-01T23:59:59.000Z

    Sandia National Laboratories (SNL) is conducting pilot scale evaluations of the performance and cost of innovative water treatment technologies aimed at meeting the recently revised arsenic maximum contaminant level (MCL) for drinking water. The standard of 10 {micro}g/L (10 ppb) is effective as of January 2006. The pilot tests have been conducted in New Mexico where over 90 sites that exceed the new MCL have been identified by the New Mexico Environment Department. The pilot test described in this report was conducted in Anthony, New Mexico between August 2005 and December 2006 at Desert Sands Mutual Domestic Water Consumers Association (MDWCA) (Desert Sands) Well No.3. The pilot demonstrations are a part of the Arsenic Water Technology Partnership program, a partnership between the American Water Works Association Research Foundation (AwwaRF), SNL and WERC (A Consortium for Environmental Education and Technology Development). The Sandia National Laboratories pilot demonstration at the Desert Sands site obtained arsenic removal performance data for fourteen different adsorptive media under intermittent flow conditions. Well water at Desert Sands has approximately 20 ppb arsenic in the unoxidized (arsenite-As(III)) redox state with moderately high total dissolved solids (TDS), mainly due to high sulfate, chloride, and varying concentrations of iron. The water is slightly alkaline with a pH near 8. The study provides estimates of the capacity (bed volumes until breakthrough at 10 ppb arsenic) of adsorptive media in the same chlorinated water. Adsorptive media were compared side-by-side in ambient pH water with intermittent flow operation. This pilot is broken down into four phases, which occurred sequentially, however the phases overlapped in most cases.

  8. http://pubs.usgs.gov/wri/wri964109/report.htm

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythemeansI MEDIANCactusCAPPSummary of

  9. HUD PowerSaver Pilot Loan Program

    E-Print Network [OSTI]

    Zimring, Mark

    2011-01-01T23:59:59.000Z

    renewable energy improvements) 10% of each loan 100% at closing HUD PowerSaver Pilot Loan Program Potential

  10. Blind Pilot Decontamination Ralf R. Mller

    E-Print Network [OSTI]

    Müller, Ralf R.

    Blind Pilot Decontamination Ralf R. Müller Institute for Digital Communications Friedrich and interference. Ralf Müller (FAU) 14-Mar-2013 2 / 16 #12;Introduction Pilot (De-)Contamination For T transmit estimation. Ralf Müller (FAU) 14-Mar-2013 3 / 16 #12;Introduction Pilot (De-)Contamination For T transmit

  11. Weeks Island gravity stable CO2 pilot: Final report

    SciTech Connect (OSTI)

    Johnston, J.R.; Perry, G.E.

    1989-01-01T23:59:59.000Z

    The Weeks Island ''S'' sand Reservoir B (''S'' RB) gravity-stable CO2 field test was completed during February 1988. Injection started in October 1978 and production began in January 1981 in this high-permeability, steeply-dipping sandstone reservoir. About 264,000 barrels of oil or 65 percent of the starting volume has been recovered. A 24-percent pore-volume slug of CO2 mixed with about six mole percent of natural gas (mostly methane) was injected at the start of the pilot. Since 1983, produced CO2 plus hydrocarbon gases have been recycled. CO2 usage statistics are 9.34 MCF/BO with recycle and 3.24 MCF/BO based on purchased CO2. Previous annual reports document the pilot design, implementation, and early results for the 1977 to June 1981 time period. This report is a review of early pilot history and a more detailed account of the post June 1981 results and overall interpretation. A reservoir-simulation history match of pilot performance plus core and log data from a 1983 swept-zone evaluation well are described in this report. A brief description of the production facility and an account of the corrosion control program are also included. 11 refs., 34 figs.

  12. Long Island Smart Metering Pilot Project

    SciTech Connect (OSTI)

    None

    2012-03-30T23:59:59.000Z

    The Long Island Power Authority (LIPA) Smart Meter Pilots provided invaluable information and experience for future deployments of Advanced Metering Infrastructure (AMI), including the deployment planned as part of LIPAâ??s Smart Grid Demonstration Project (DE-OE0000220). LIPA will incorporate lessons learned from this pilot in future deployments, including lessons relating to equipment performance specifications and testing, as well as equipment deployment and tracking issues. LIPA ultimately deployed three AMI technologies instead of the two that were originally contemplated. This enabled LIPA to evaluate multiple systems in field conditions with a relatively small number of meter installations. LIPA experienced a number of equipment and software issues that it did not anticipate, including issues relating to equipment integration, ability to upgrade firmware and software â??over the airâ?ť (as opposed to physically interacting with every meter), and logistical challenges associated with tracking inventory and upgrade status of deployed meters. In addition to evaluating the technology, LIPA also piloted new Time-of-Use (TOU) rates to assess customer acceptance of time-differentiated pricing and to evaluate whether customers would respond by adjusting their activities from peak to non-peak periods. LIPA developed a marketing program to educate customers who received AMI in the pilot areas and to seek voluntary participation in TOU pricing. LIPA also guaranteed participating customers that, for their initial year on the rates, their electricity costs under the TOU rate would not exceed the amount they would have paid under the flat rates they would otherwise enjoy. 62 residential customers chose to participate in the TOU rates, and every one of them saved money during the first year. 61 of them also elected to stay on the TOU rate â?? without the cost guarantee â?? at the end of that year. The customer who chose not to continue on the rate was also the one who achieved the greatest savings. However, after the first year, the customer in question installed equipment that would have made TOU rates a more costly option than the residential flat rate. During the second year, all but one customer saved money. That customer increased usage during peak hours, and as a result saw an increase in annual costs (as compared to the flat rate) of $24.17. The results were less clear for commercial customers, which LIPA attributes to rate design issues that it will take into account for future deployments. LIPA views this pilot as a complete success. Not only is LIPA better prepared for a larger deployment of AMI, but it is confident that residential customers will accept AMI and TOU rates and shift their energy consumption from peak to non-peak periods in response to pricing. On a larger scale, this will benefit LIPA and all of its customers by potentially lowering peak demand when energy costs are highest.

  13. Site Characterization Activities with a focus on NETL MMV efforts: Southwest Regional Partnership, San Juan Basin Pilot, New Mexico

    E-Print Network [OSTI]

    Wilson, Thomas H.

    Regional Carbon Sequestration Partnership's San Juan Basin pilot site to aid in the deployment and Verification (MMV) associated with geologic sequestration activities. Our efforts are primarily focused sequestration test in the

  14. Testing of FMI's Coal Upgrading Process

    SciTech Connect (OSTI)

    Vijay Sethi

    2009-03-21T23:59:59.000Z

    WRI and FMI have collaborated to develop and test a novel coal upgrading technology. Proprietary coal upgrading technology is a fluidized bed-based continuous process which allows high through-puts, reducing the coal processing costs. Processing is carried out under controlled oxidizing conditions at mild enough conditions that compared to other coal upgrading technologies; the produced water is not as difficult to treat. All the energy required for coal drying and upgrading is derived from the coal itself. Under the auspices of the Jointly Sponsored Research Program, Cooperative Agreement DE-FC26-98FT40323, a nominal 400 lbs/hour PDU was constructed and operated. Over the course of this project, several low-rank coals were successfully tested in the PDU. In all cases, a higher Btu, low moisture content, stable product was produced and subsequently analyzed. Stack emissions were monitored and produced water samples were analyzed. Product stability was established by performing moisture readsorption testing. Product pyrophobicity was demonstrated by instrumenting a coal pile.

  15. Enterprise Assessments Review, Waste Isolation Pilot Plant -...

    Office of Environmental Management (EM)

    December, 2014 Review of the Waste Isolation Pilot Plant Conduct of Maintenance Recovery Plan The Office of Nuclear Safety and Environmental Assessments, within the U.S. Department...

  16. GI Self-Supply Pilot Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA TRANSMISSION SERVICES Transmission Wind Integration Systems Team GENERATION IMBALANCE SELF SUPPLY PILOT PROJECT OVERVIEW VERSION: 0.1 UPDATED: 7292009 giself-supplypilotov...

  17. Enterprise Assessments Review, Waste Isolation Pilot Plant -...

    Energy Savers [EERE]

    December 2014 Review of the Waste Isolation Pilot Plant Recovery Plan for Operating Diesel Equipment with Available Underground Airflows. The Office of Nuclear Safety and...

  18. Energy Economic Zone Pilot Program (Florida)

    Broader source: Energy.gov [DOE]

    In the 2009 Legislative Session, the Florida Legislature established the Pilot Program to address economic development and the creation of energy efficient land use patterns. The Energy Economic...

  19. Experimental plan for the assessment of air toxic emissions from a pilot-scale combustion unit

    SciTech Connect (OSTI)

    Hargis, R.A.; Pennline, H.W. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center

    1995-12-31T23:59:59.000Z

    The operation of a 500-pound-per-hour pilot-scale combustion unit will be characterized in terms of the formation, distribution, and fate of toxic substances. The coal fired during the air toxics testing will be the same coal batch that had been fired in a full-scale utility boiler during a recent assessment of air toxic emissions. A description of the pilot unit and expected operating conditions during the air toxics testing is provided, along with a summary of the test plan. This test plan is designed to obtain the necessary data on the concentration of trace elements associated with the vapor phase, particulate phase, and particulate size fraction enabling a comparison of these results form the pilot unit and the full-scale utility. Calculation of material balances around the pilot combustion unit, the baghouse, and the overall system as well as baghouse removal efficiencies will be performed. Based on the results of this air toxics characterization effort, an assessment will be made of the value of the pilot unit as a facility for the evaluation of sampling and analytical improvements, development of continuous emissions monitors, and future control systems evaluations.

  20. Commercial Building Energy Asset Score: Pilot Findings and Program...

    Office of Environmental Management (EM)

    Score: Pilot Findings and Program Update Commercial Building Energy Asset Score: Pilot Findings and Program Update The webinar was held on April 16, 2014, to share the findings...

  1. Algenol Biofuels Inc., Integrated Pilot-Scale Biorefinery

    Broader source: Energy.gov (indexed) [DOE]

    Integrated Pilot- Scale Biorefinery for Producing Ethanol from Hybrid Algae Algenol Biofuels Inc., together with its partners, will construct an integrated pilot-scale...

  2. Analysis of Waste Isolation Pilot Plant (WIPP) Samples by the...

    Office of Environmental Management (EM)

    Analysis of Waste Isolation Pilot Plant (WIPP) Samples by the Savannah River National Laboratory (SRNL) Analysis of Waste Isolation Pilot Plant (WIPP) Samples by the Savannah River...

  3. Clean Energy Works Portland Pilot Process Evaluation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Works Portland Pilot Process Evaluation Clean Energy Works Portland Pilot Process Evaluation This is a document from Research Into Action Inc., posted to the website of the...

  4. Federal Technology Deployment Pilot: Exterior Solid State Lighting...

    Energy Savers [EERE]

    Federal Technology Deployment Pilot: Exterior Solid State Lighting Federal Technology Deployment Pilot: Exterior Solid State Lighting Presentation-given at the Fall 2011 Federal...

  5. Waste Isolation Pilot Plant, National Transuranic Program Have...

    Office of Environmental Management (EM)

    Isolation Pilot Plant, National Transuranic Program Have Banner Year in 2013 Waste Isolation Pilot Plant, National Transuranic Program Have Banner Year in 2013 December 24, 2013 -...

  6. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit...

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This...

  7. Oak Ridge National Laboratory Analysis of Waste Isolation Pilot...

    Office of Environmental Management (EM)

    Isolation Pilot Plant Samples: Integrated Summary Report Oak Ridge National Laboratory Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report This document...

  8. Source Term Analysis for the Waste Isolation Pilot Plant (WIPP...

    Office of Environmental Management (EM)

    Term Analysis for the Waste Isolation Pilot Plant (WIPP) Release Quantity Source Term Analysis for the Waste Isolation Pilot Plant (WIPP) Release Quantity This document was...

  9. The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-compound DNAPLs with surfactant solutions: Phase 1 -- Laboratory and pilot field-scale testing and Phase 2 -- Solubilization test and partitioning and interwell tracer tests. Final report

    SciTech Connect (OSTI)

    NONE

    1997-10-24T23:59:59.000Z

    Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). The field test was conducted in the alluvial aquifer which is located 20 to 30 meters beneath a vapor degreasing operation at Paducah Gaseous Diffusion Plant. This aquifer has become contaminated with TCE due to leakage of perhaps 40,000 liters of TCE, which has generated a plume of dissolved TCE extending throughout an area of approximately 3 km{sup 2} in the aquifer. Most of the TCE is believed to be present in the overlying lacustrine deposits and in the aquifer itself as a dense, non-aqueous phase liquid, or DNAPL. The objective of the field test was to assess the efficacy of the surfactant for in situ TCE solubilization. Although the test demonstrated that sorbitan monooleate was unsuitable as a solubilizer in this aquifer, the single-well test was demonstrated to be a viable method for the in situ testing of surfactants or cosolvents prior to proceeding to full-scale remediation.

  10. Advanced engineering environment pilot project.

    SciTech Connect (OSTI)

    Schwegel, Jill; Pomplun, Alan R.; Abernathy, Rusty (Parametric Technology Corporation, Needham, MA)

    2006-10-01T23:59:59.000Z

    The Advanced Engineering Environment (AEE) is a concurrent engineering concept that enables real-time process tooling design and analysis, collaborative process flow development, automated document creation, and full process traceability throughout a product's life cycle. The AEE will enable NNSA's Design and Production Agencies to collaborate through a singular integrated process. Sandia National Laboratories and Parametric Technology Corporation (PTC) are working together on a prototype AEE pilot project to evaluate PTC's product collaboration tools relative to the needs of the NWC. The primary deliverable for the project is a set of validated criteria for defining a complete commercial off-the-shelf (COTS) solution to deploy the AEE across the NWC.

  11. Pilot Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicketGeothermal Project Jump to:Pilot PeakW4 4PH

  12. Portland General Electric Co. Pilot Evaluation and

    E-Print Network [OSTI]

    Portland General Electric Co. Pilot Evaluation and Impact Measurement Revised: October 22, 2004 Portland General Electric Co. 2 Pilot Evaluation and Impact Measurement Forward to Revised Report Space Heat Portland General Electric Co. 3 Executive Summary On August 30, 2002, PGE filed Advice No. 02

  13. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01T23:59:59.000Z

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  14. Peat-Gasification Pilot-Plant Program. Final report, April 9, 1980-March 31, 1983

    SciTech Connect (OSTI)

    Not Available

    1983-03-01T23:59:59.000Z

    The objective of this program was twofold: (1) to modify an existing pilot plant and (2) to operate the pilot plant with peat to produce substitute natural gas (SNG). Activities included the design, procurement, and installation of peat drying, grinding, screening, and lockhopper feed systems. Equipment installed for the program complements the existing pilot plant facility. After shakedown of the new feed preparation equipment (drying, screening, and crushing) was successfully completed, the first integrated pilot plant test was conducted in April 1981 to provide solids flow data and operating experience with the new PEATGAS gasifier configuration. Three gasification tests were subsequently conducted using the existing slurry feed system. The lockhopper feed system, capable of providing a continuous, measured flow of 1 to 4 tons of dry feed at pressures up to 500 psig, was then successfully integrated with the gasifier. Two gasification tests were conducted, expanding the data to more economical operating conditions. The operation of the PEATGAS pilot plant has confirmed that peat is an excellent raw material for SNG production. Peat conversions over 90% were consistently achieved at moderate gasification temperatures and at sinter-free conditions. A large data base was established for Minnesota peat at pressure 1.0. The technical feasibility of the PEATGAS process has been successfully demonstrated. However, an economic assessment of the peat gasification process indicates that the cost of the peat feedstock delivered to a plant site has a significant effect on the cost of the product SNG. 28 figures, 36 tables.

  15. Arsenic pilot plant operation and results - Socorro Springs, New Mexico - phase 1.

    SciTech Connect (OSTI)

    Aragon, Malynda Jo; Everett, Randy L.; Siegel, Malcolm Dean; Kottenstette, Richard Joseph; Holub, William E. Jr; Wright, Jeremy B.; Dwyer, Brian P.

    2007-05-01T23:59:59.000Z

    Sandia National Laboratories (SNL) is conducting pilot scale evaluations of the performance and cost of innovative water treatment technologies aimed at meeting the recently revised arsenic maximum contaminant level (MCL) for drinking water. The standard of 10 {micro}g/L (10 ppb) is effective as of January 2006. The first pilot tests have been conducted in New Mexico where over 90 sites that exceed the new MCL have been identified by the New Mexico Environment Department. The pilot test described in this report was conducted in Socorro New Mexico between January 2005 and July 2005. The pilot demonstration is a project of the Arsenic Water Technology Partnership program, a partnership between the American Water Works Association Research Foundation (AwwaRF), SNL and WERC (A Consortium for Environmental Education and Technology Development). The Sandia National Laboratories pilot demonstration at the Socorro Springs site obtained arsenic removal performance data for five different adsorptive media under constant ambient flow conditions. Well water at Socorro Springs has approximately 42 ppb arsenic in the oxidized (arsenate-As(V)) redox state with moderate amounts of silica, low concentrations of iron and manganese and a slightly alkaline pH (8). The study provides estimates of the capacity (bed volumes until breakthrough at 10 ppb arsenic) of adsorptive media in the same chlorinated water. Near the end of the test the feedwater pH was lowered to assess the affect on bed capacity and as a prelude to a controlled pH study (Socorro Springs Phase 2).

  16. Evaluation of nickel flash smelting through piloting and simulation

    SciTech Connect (OSTI)

    Varnas, S.R.; Koh, P.T.L. [CSIRO, Clayton, Victoria (Australia). Div. of Minerals; Kemori, N. [Sumitomo Metal Mining Co., Ehime (Japan)

    1998-12-01T23:59:59.000Z

    An extensive study of the nickel flash smelting process has been undertaken. It is aimed at the optimization of the burner design to improve the smelting performance and to increase the throughput of the rebuilt furnace. A design-based mathematical model was developed to simulate the operation of the four burners and the reaction shaft of the flash furnace at Western Mining Corporation Ltd.`s Kalgoorlie Nickel Smelter. A modified single burner version of the model was validated against data obtained from the pilot plant at the Pyrometallurgical Research Centre (PRC) of the Sumitomo Metal Mining Co.`s Toyo Smelter. The approach taken involved experimental measurements of key process parameters in the pilot plant and detailed numerical simulation of the fluid flow, heat transfer, and combustion in the entire burner-shaft complex. Several burner designs have been tested experimentally at the pilot plant and theoretically through computer simulation. The main outcome of the study was the development of an experimentally validated mathematical model of the flash smelter providing a new powerful design tool. The insight gained about the process from the application of this tool led to the design of a more efficient nickel flash smelting process.

  17. Preliminary Hydrogeologic Characterization Results from the Wallula Basalt Pilot Study

    SciTech Connect (OSTI)

    B.P. McGrail; E. C. Sullivan; F. A. Spane; D. H. Bacon; G. Hund; P. D. Thorne; C. J. Thompson; S. P. Reidel; F. S. Colwell

    2009-12-01T23:59:59.000Z

    The DOE's Big Sky Regional Carbon Sequestration Partnership has completed drilling the first continental flood basalt sequestration pilot borehole to a total depth (TD) of 4,110 feet on the Boise White Paper Mill property at Wallula, Washington. Site suitability was assessed prior to drilling by the 2007-2008 acquisition, processing and analysis of a four-mile, five-line three component seismic swath, which was processed as a single data-dense line. Analysis of the seismic survey data indicated a composite basalt formation thickness of {approx}8,000 feet and absence of major geologic structures (i.e., faults) along the line imaged by the seismic swath. Drilling of Wallula pilot borehole was initiated on January 13, 2009 and reached TD on April 6, 2009. Based on characterization results obtained during drilling, three basalt breccia zones were identified between the depth interval of 2,716 and 2,910 feet, as being suitable injection reservoir for a subsequent CO2 injection pilot study. The targeted injection reservoir lies stratigraphically below the massive Umtanum Member of the Grande Ronde Basalt, whose flow-interior section possesses regionally recognized low-permeability characteristics. The identified composite injection zone reservoir provides a unique and attractive opportunity to scientifically study the reservoir behavior of three inter-connected reservoir intervals below primary and secondary caprock confining zones. Drill cuttings, wireline geophysical logs, and 31one-inch diameter rotary sidewall cores provided geologic data for characterization of rock properties. XRF analyses of selected rock samples provided geochemical characterizations of the rocks and stratigraphic control for the basalt flows encountered by the Wallula pilot borehole. Based on the geochemical results, the pilot borehole was terminated in the Wapshilla Ridge 1 flow of the Grande Ronde Basalt Formation. Detailed hydrologic test characterizations of 12 basalt interflow reservoir zones and 3 flow-interior/caprock intervals were performed during drilling and immediately following reaching the final borehole drilling depth (i.e., 4,110 ft). In addition, six of the 12 basalt interflow zones were selected for detailed hydrochemical characterization. Results from the detailed hydrologic test characterization program provided the primary information on basalt interflow zone transmissivity/injectivity, and caprock permeability characteristics.

  18. NREL Test-to-Failure Protocol (Presentation)

    SciTech Connect (OSTI)

    Hacke, P.

    2012-03-01T23:59:59.000Z

    The presentation describes the test-to-failure protocol that was developed and piloted at NREL, stressing PV modules with multiple applications of damp heat (with bias) and thermal cycling until they fail.

  19. Costilla County Biodiesel Pilot Project

    SciTech Connect (OSTI)

    Doon, Ben; Quintana, Dan

    2011-08-25T23:59:59.000Z

    The Costilla County Biodiesel Pilot Project has demonstrated the compatibility of biodiesel technology and economics on a local scale. The project has been committed to making homegrown biodiesel a viable form of community economic development. The project has benefited by reducing risks by building the facility gradually and avoiding large initial outlays of money for facilities and technologies. A primary advantage of this type of community-scale biodiesel production is that it allows for a relatively independent, local solution to fuel production. Successfully using locally sourced feedstocks and putting the fuel into local use emphasizes the feasibility of different business models under the biodiesel tent and that there is more than just a one size fits all template for successful biodiesel production.

  20. Murray City Power- Net Metering Pilot Program

    Broader source: Energy.gov [DOE]

    Under a pilot program, Murray City Power offers net metering to customers that generate electricity using photovoltaic (PV), wind-electric or hydroelectric systems with a maximum capacity of 10...

  1. Journey to Leadership Certificate Program (Pilot)

    Broader source: Energy.gov [DOE]

    The Office of Learning and Workforce Development is pleased to announce a pilot training program for DOE entry-level professionals.  The program orientation is scheduled for June 4, 2014.For Entry...

  2. A Pilot Plant: The Fastest Path to

    E-Print Network [OSTI]

    synergy with many IFE concepts. #12;7/14 Pilot Plant PMI Challenges Similar to PMI Challenges Projected collection and tritium clean-up CTF, PP or Demo: All Would Need New PMI Solutions. #12;8/14 · A strong

  3. Pilot plant used to develop load and pressure controller

    SciTech Connect (OSTI)

    Nagata, Kazue; Yamada, Toshihiro; Hiza, Tomoyuki

    1997-02-01T23:59:59.000Z

    Viewed from the perspective of the power-generation mixture in Japan, nuclear power plants will continue to be operated to meet the base load. Meanwhile, integrated coal gasification combined cycle (IGCC) power plants will be required to serve as thermal power plants to cover the middle load, as is the case with conventional thermal power plants. In terms of operational performance, therefore, IGCC power plants will need to have a capability of following a wide range of load demand at high speed. For this purpose, a load and pressure controller was developed and tested during the operational research on a 200 tons/day entrained flow IGCC pilot plant at the Nakoso Power Station by the Engineering Research Association for IGCC Power Systems (IGC Association). This article reports on the development of the load and pressure controller and the results of the control test carried out to check the load follow capability of the pilot plant, while touching upon the simulation study also being conducted.

  4. A pilot-scale continuous-jet hydrate reactor

    SciTech Connect (OSTI)

    Szymcek, Phillip [ORNL; McCallum, Scott [Oak Ridge Associated Universities (ORAU); Taboada Serrano, Patricia L [ORNL; Tsouris, Costas [ORNL

    2008-01-01T23:59:59.000Z

    A three-phase, pilot-scale continuous-jet hydrate reactor (CJHR) has been developed for the production of gas hydrates. The reactor receives water and a hydrate-forming species to produce the solid gas hydrate. The CJHR has been tested for the production of CO{sub 2} hydrate for the purpose of ocean carbon sequestration. Formation of CO{sub 2} hydrate was investigated using various reactor/injector designs in a 72-l high-pressure vessel. Designs of the CJHR varied from single-capillary to multiple-capillary injectors that dispersed (1) liquid CO{sub 2} into water or (2) water into liquid CO{sub 2}. The novel injector is designed to improve the dispersion of one reactant into the other and, thus, eliminate mass transfer barriers that negatively affect conversion. An additional goal was an increase in production rates of two orders of magnitude. The designed injectors were tested in both distilled and saline water. Hydrate production experiments were conducted at different CO{sub 2} and water flow rates and for pressures and temperatures equivalent to intermediate ocean depths (1100-1700 m). The pilot-scale reactor with the novel injection system successfully increased hydrate production rates and efficiency.

  5. Peat gasification pilot plant program. Project 70105 quarterly report No. 1, October 1, 1980-August 31, 1981

    SciTech Connect (OSTI)

    Not Available

    1982-09-01T23:59:59.000Z

    Over 200 peat gasification tests were conducted in laboratory-scale and PDU-scale (process development unit) equipment since 1976. A kinetic model for peat gasification was developed from laboratory and PDU data. The encouraging results of these tests and the model projections show that on the basis of its chemistry and kinetics, peat is an excellent raw material for commercial synthetic natural gas (SNG) production. To further advance peat gasification technology, DOE and GRI initiated a pilot-plant-scale program using an existing coal gasification pilot plant. This facility was adapted to peat processing and can convert 50 tons of peat to about 0.5 million standard cubic feet of SNG daily. The pilot plant is described in Appendix A. Only three major pieces of equipment - a peat dryer, a grinder, and a screener - were required to prepare the pilot plant for peat processing. This modification phase was completed in the winter of 1980-1981. After a number of drying, grinding, and screening tests, peat was first fed to the gasifier in April 1981, initiating the pilot plant studies to develop the PEATGAS process. Since that time, the gasification of Minnesota peat by the PEATGAS process has been successfully demonstrated in a series of gasification tests. This report covers the work done between October 1, 1980, and August 31, 1981, under DOE Contract No. AC01-80ET14688.

  6. Pilot oil atlas for Louisiana

    SciTech Connect (OSTI)

    Bourgoyne, A.T. Jr.; Kimbrell, C.; Gao, Weigang.

    1993-01-01T23:59:59.000Z

    An interdisciplinary research team of engineers, geologists, and computer scientists was assembled at LSU to develop unproved methods for prospecting for bypassed oil and to support oil and gas producers in Louisiana. The overall objective of the project was to develop methods for extending the producing life of several types of reservoirs by reducing the amount of oil being bypassed and abandoned. As part of this work, the team collected information available from public sources for several example reservoirs. One task of the project was to develop a format for the compilation of the extensive but cumbersome Louisiana reservoir data so that it could be used by government and industry to evaluate the resource and plan future activities. The existing information system maintained by Louisiana is a Production Audit Reporting System (PARS). It was designed to allow auditing of oil and gas production and severance taxes associated with this production. It was not intended to be used as a database for determining reservoir recovery efficiency or prospecting for oil and gas. Its use for these purposes, however, has been increasing. The database format suggested in this report would allow production information to be easily displayed by reservoir as well as by lease, unit, or well. The data collected as part of the bypassed-oil study was used to illustrate the proposed new format. This pilot database, or atlas, contains information available for 15 reservoirs. It is recommended that LSU continue to compile and publish database information on the potential for bypassed oil in Louisiana's active reservoirs. This technology-transfer activity should focus each year on those active reservoirs involved in hearings of the Louisiana Office of Conservation. It should also focus on reservoirs being screened by LSU for EOR.

  7. Magnetic Fusion Pilot Plant Studies

    E-Print Network [OSTI]

    FNSF = Fusion Nuclear Science Facility CTF = Component Test Facility · Powerplantlike maintenance. · Targeted ultimate capabilities: ­ Fusion nuclear S&T development, component testing · Steady applicable to power plant · Demonstrate methods for fast replacement of in-vessel components ­ Net

  8. ENERGY STAR Appliance Verification Testing - Pilot Program Summary Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EMEM RecoveryManagement'sJuneAprilEMSdated

  9. FAQ's for: ENERGY STAR Verification Testing Pilot Program dated December

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: Final EnvironmentalCounties,UnitedCommunication,1] Windows212-2012;'

  10. Microsoft Word - Bldg 100 Pilot Test.doc

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF Official Contact List U.S.HN

  11. amphipod pilot species: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of - Research Archive Summary: This report provides an evaluation of the UK LOCKSS pilot project as it reaches the end of its pilot phase. LOCKSS (Lots Of Copies Keep Stuff Safe)...

  12. DOE/WIPP-12-3487 Waste Isolation Pilot Plant

    E-Print Network [OSTI]

    AND RECOVERY ACT AND SOLID WASTE DISPOSAL ACTDraft DOE/WIPP-12-3487 Waste Isolation Pilot Plant Biennial Environmental Compliance Report United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico

  13. Results from the Texas Pilot Project on Superior Energy Performance

    E-Print Network [OSTI]

    Ferland, K.

    This presentation will address the outcomes to date from the Texas Pilot Project on Superior Energy Performance. Five plants in Texas are participating in this national pilot project, which began July 2008....

  14. HUD PowerSaver Pilot Loan Program

    SciTech Connect (OSTI)

    Zimring, Mark; Hoffman, Ian

    2010-12-10T23:59:59.000Z

    The U.S. Department of Housing and Urban Development (HUD) recently announced the creation of a pilot loan program for home energy improvements. The PowerSaver loan program is a new, energy-focused variant of the Title I Property Improvement Loan Insurance Program (Title I Program) and is planned for introduction in early 2011. The PowerSaver pilot will provide lender insurance for secured and unsecured loans up to $25,000 to single family homeowners. These loans will specifically target residential energy efficiency and renewable energy improvements. HUD estimates the two-year pilot will fund approximately 24,000 loans worth up to $300 million; the program is not capped. The Federal Housing Administration (FHA), HUD's mortgage insurance unit, will provide up to $25 million in grants as incentives to participating lenders. FHA is seeking lenders in communities with existing programs for promoting residential energy upgrades.

  15. WRI-Earth Trends Data | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility RateVirginia/WindCounty,WINDPLAN Bosse

  16. WRI-The Governance of Forests Toolkit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillageGraph Home Wzeng'sVortex EnergyWDPWPA

  17. Operating Experience of the 20-MW AFBC Pilot Plant

    E-Print Network [OSTI]

    Stephens, E. A. Jr.

    -scale demonstration of atmospheric fluidized bed combustion (AFBC) with the construction and operation of the 20-MW AFBC Pilot Plant. The pilot plant was built to bridge the gap between the small process development units and utility-scale demonstration plants... the operation of the pilot plant has encouraged TVA and others to move forward with utility-scale demonstration of fluidized bed combustion. TVA's operating experience at the 20-MW AFBC Pilot Plant is discussed. [NTRODUCT ION The Tennessee Valley Authority...

  18. Summary of pilot-scale activities with resorcinol ion exchange resin

    SciTech Connect (OSTI)

    Cicero, C.A. [Westinghouse Savannah River Company, AIKEN, SC (United States); Bickford, D.F.; Sargent, T.N.; Andrews, M.K.; Bibler, J.P.; Bibler, N.E.; Jantzen, C.M.

    1995-10-02T23:59:59.000Z

    The Mixed Waste Focus Area (MWFA) of the Department of Energy (DOE) is currently investigating vitrification technology for treatment of low level mixed wastes (LLMW). They have chartered the Savannah River Technology Center (SRTC) to study vitrification of the wastes through an Office of Technology Development (OTD) Technical Task Plan (TTP). SRTC`s efforts have included crucible-scale studies and pilot scale testing on simulated LLMW sludges, resins, soils, and other solid wastes. Results from the crucible-scale studies have been used as the basis for the pilot-scale demonstrations. As part of the fiscal year (FY) 1995 activities, SRTC performed crucible-scale studies with organic resins. This waste stream was selected because of the large number of DOE sites, as well as commercial industries, that use resins for treatment of liquid wastes. Pilot-scale studies were to be completed in FY 1995, but could not be due to a reduction in funding. Instead, a compilation of pilot-scale tests with organic resins performed under the guidance of SRTC was provided in this report. The studies which will be discussed used a resorcinol- formaldehyde resin loaded with non-radioactive cesium, which was fed with simulated wastewater treatment sludge feed. The first study was performed at the SRTC in the mini-melter, 1/100th scale of the Defense Waste Processing Facility (DWPF) melter, and also involved limited crucible-scale studies to determine the resin loading obtainable. The other study was performed at the DOE/Industrial Center for Vitrification Research (Center) and involved both crucible and pilot-scale testing in the Stir-Melter stirred-melter. Both studies were successful in vitrifying the resin in simulated radioactive sludge and glass additive feeds.

  19. Cleveland EnergySaver Pilot Program (From Pilot to Permanent Program)

    Broader source: Energy.gov [DOE]

    Provides an overview of the Cleveland EnergySaver Pilot Program aimed at reducing barriers to widespread adoption of residential energy efficient retrofits. From the Residential Energy Efficiency Solutions Conference 2012.

  20. 46th Street Pilot Street Lighting Project

    E-Print Network [OSTI]

    Minnesota, University of

    Street to 48th Street) as standard high-pressure sodium (HPS) lighting comparison corridor #12;The over time #12;Initial Lighting Comparison #12;Lighting Project Location #12;Street Light Layout 3046th Street Pilot Street Lighting Project A Joint Venture: Hennepin County & City of Minneapolis

  1. Intro to NREL's Thermochemical Pilot Plant

    SciTech Connect (OSTI)

    Magrini, Kim

    2013-09-27T23:59:59.000Z

    NREL's Thermochemical Pilot Plant converts biomass into higher hydrocarbon fuels and chemicals.NREL is researching biomass pyrolysis. The lab is examining how to upgrade bio-oils via stabilization. Along with this, NREL is developing the engineering system requirements for producing these fuels and chemicals at larger scales.

  2. Argonne National Laboratory's Recycling Pilot Plant

    SciTech Connect (OSTI)

    Spangenberger, Jeff; Jody, Sam

    2009-01-01T23:59:59.000Z

    Argonne has a Recycling Pilot Plant designed to save the non-metal portions of junked cars. Here, program managers demonstrate how plastic shredder residue can be recycled. (Currently these automotive leftovers are sent to landfills.) For more information, visit Argonne's Transportation Technology R&D Center Web site at http://www.transportation.anl.gov.

  3. Decision Support System for Fighter Pilots

    E-Print Network [OSTI]

    parts of the electronic warfare domain. A brief description of this domain is given. It contains is detected the pilot may choose to deploy electronic countermeasures to avoid the impact of the missile, and the availability of countermeasures. Radar systems, guidance of missiles, and electronic countermeasures are all

  4. Argonne National Laboratory's Recycling Pilot Plant

    ScienceCinema (OSTI)

    Spangenberger, Jeff; Jody, Sam;

    2013-04-19T23:59:59.000Z

    Argonne has a Recycling Pilot Plant designed to save the non-metal portions of junked cars. Here, program managers demonstrate how plastic shredder residue can be recycled. (Currently these automotive leftovers are sent to landfills.) For more information, visit Argonne's Transportation Technology R&D Center Web site at http://www.transportation.anl.gov.

  5. Intro to NREL's Thermochemical Pilot Plant

    ScienceCinema (OSTI)

    Magrini, Kim

    2014-06-10T23:59:59.000Z

    NREL's Thermochemical Pilot Plant converts biomass into higher hydrocarbon fuels and chemicals.NREL is researching biomass pyrolysis. The lab is examining how to upgrade bio-oils via stabilization. Along with this, NREL is developing the engineering system requirements for producing these fuels and chemicals at larger scales.

  6. Hydrometallurgical recovery of germanium from coal gasification fly ash: pilot plant scale evaluation

    SciTech Connect (OSTI)

    Arroyo, F.; Fernandez-Pereira, C.; Olivares, J.; Coca, P. [University of Seville, Seville (Spain)

    2009-04-15T23:59:59.000Z

    In this article, a hydrometallurgical method for the selective recovery of germanium from fly ash (FA) has been tested at pilot plant scale. The pilot plant flowsheet comprised a first stage of water leaching of FA, and a subsequent selective recovery of the germanium from the leachate by solvent extraction method. The solvent extraction method was based on Ge complexation with catechol in an aqueous solution followed by the extraction of the Ge-catechol complex (Ge(C{sub 6}H{sub 4}O{sub 2}){sub 3}{sup 2-}) with an extracting organic reagent (trioctylamine) diluted in an organic solvent (kerosene), followed by the subsequent stripping of the organic extract. The process has been tested on a FA generated in an integrated gasification with combined cycle (IGCC) process. The paper describes the designed 5 kg/h pilot plant and the tests performed on it. Under the operational conditions tested, approximately 50% of germanium could be recovered from FA after a water extraction at room temperature. Regarding the solvent extraction method, the best operational conditions for obtaining a concentrated germanium-bearing solution practically free of impurities were as follows: extraction time equal to 20 min; aqueous phase/organic phase volumetric ratio equal to 5; stripping with 1 M NaOH, stripping time equal to 30 min, and stripping phase/organic phase volumetric ratio equal to 5. 95% of germanium were recovered from water leachates using those conditions.

  7. Peat gasification pilot plant program. Project 70105 quarterly report No. 2, September 1-November 30, 1981

    SciTech Connect (OSTI)

    Not Available

    1982-09-01T23:59:59.000Z

    The objective of this program is twofold: (1) to modify an existing pilot plant; and (2) to operate the pilot plant with peat to produce substitute natural gas (SNG). Activities include the design, procurement, and installation of peat drying, grinding, screening, and lockhopper feed systems. Equipment installed for the program complements the existing pilot plant facility. Drying, grinding, and screening equipment for peat was installed and operated during the previous reporting periods. Three gasification tests (PT-1 through PT-3) had also been conducted using the toluene slurry feed system. Installation of the lockhopper dry feed system was completed on schedule. Shakedown of the system has begun. Operation of the modified 400-ton storage and transport system was successfully demonstrated with peat containing 10% moisture. Preparations for Test PT-4 are currently underway. Data analyses for Test PT-2 were completed and are presented. The low-pressure Plexiglas unit was modified to investigate the use of a downflowing pneumatic feed system for the dryer bed. Initial testing was begun.

  8. Pilot dredging study, New Bedford Harbor, Massachusetts, Superfund project

    SciTech Connect (OSTI)

    Andreliunas, V.L.

    1992-04-01T23:59:59.000Z

    Testing of sediment from the northern portion of New Bedford Harbor, Massachusetts, has revealed that most of the area is contaminated by polychlorinated. biphenyls (PCBs). In August 1984, the US Environmental Protection Agency (USEPA) published a Feasibility Study of Remedial Action Alternatives for this area, which proposed five cleanup alternatives. Four of these dealt specifically with dredging the area to remove the contaminated sediments. In response to comments received, the USEPA asked the US Army Corps of Engineers (USACE) to perform additional studies to better evaluate the engineering feasibility of dredging as a cleanup alternative. This study is a joint effort of the US Army Engineer Division, New England, Waltham, Mass., and the US Army Engineer Waterways Experiment Station (WES), Vicksburg, Miss. This paper describes a proposed pilot study of dredging and dredged material disposal alternatives to support the engineering feasibility study.

  9. Energy Evaluation of a New Construction Pilot Community: Fresno, California

    SciTech Connect (OSTI)

    Burdick, A.; Poerschke, A.; Rapport, A.; Wayne, M.

    2014-06-01T23:59:59.000Z

    A new construction pilot community was constructed by builder-partner Wathen-Castanos Hybrid Homes (WCHH) based on a single occupied test house that was designed to achieve greater than 30% energy savings with respect to the House Simulation Protocols (Hendron, Robert; Engebrecht, Cheryn (2010). Building America House Simulation Protocols. Golden, CO: National Renewable Energy Laboratory). Builders face several key problems when implementing a whole-house systems integrated measures package (SIMP) from a single test house into multiple houses. Although a technical solution already may have been evaluated and validated in an individual test house, the potential exists for constructability failures at the community scale. This report addresses factors of implementation and scalability at the community scale and proposes methodologies by which community-scale energy evaluations can be performed based on results at the occupied test house level. Research focused on the builder and trade implementation of a SIMP and the actual utility usage in the houses at the community scale of production. Five occupants participated in this community-scale research by providing utility bills and information on occupancy and miscellaneous gas and electric appliance use for their houses. IBACOS used these utility data and background information to analyze the actual energy performance of the houses. Verification with measured data is an important component in predictive energy modeling. The actual utility bill readings were compared to projected energy consumption using BEopt with actual weather and thermostat set points for normalization.

  10. Energy Efficiency Investments in Public Facilities - Developing a Pilot Mechanism for Russia and Chelyabinsk Region

    SciTech Connect (OSTI)

    Evans, Meredydd; Roshchanka, Volha; Parker, Steven A.; Baranovskiy, Aleksandr

    2012-01-01T23:59:59.000Z

    Russian public sector buildings tend to be very inefficient, which creates vast opportunities for savings. This paper reviews opportunities to implement energy efficiency projects in Russian public buildings, created by new Russian legislation and regulations. Given Russia's limited experience with energy performance contracts (EPCs), a pilot project can help test an implementation mechanism. The authors use Chelyabinsk Region as an example to discuss opportunities, challenges and solutions to financing and implementing an EPC in Russia, navigating through federal requirements and specific local conditions.

  11. Trace element distribution and mercury speciation in a pilot-scale coal combustor burning Blacksville coal

    SciTech Connect (OSTI)

    Hargis, R.A.; Pennline, H.W. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technical Center

    1997-12-31T23:59:59.000Z

    A series of tests have been conducted on a nominal 500-pound-per-hour, pilot-scale combustion unit to characterize trace element emissions and mercury speciation. The coal fired during the testing was a Blacksville {number_sign}2, medium-sulfur coal, similar to that used by other researchers investigating mercury speciation. A description of the pilot unit operating conditions during the testing is provided. A summary of the gas/solid distribution of trace elements at various locations within the system, material balances, and baghouse removal efficiencies is also supplied. EPA Method 29 was used to determine trace element and speciated mercury concentrations before and after the baghouse. A comparison of these results with past trace element results from this unit and with the findings of other researchers who have used Blacksville coal is also presented. The pilot-scale combustion unit has been characterized in terms of trace element distribution during two tests while burning a medium-sulfur bituminous Blacksville coal. EPA sampling methodology at the inlet to the baghouse and at the stack was used. Results indicate that most of the elements are removed across the baghouse with the exception of mercury and selenium. Both of these elements were found predominantly in the vapor phase. The average mercury speciation revealed that the vapor-phase mercury was primarily in the oxidized form, which is consistent with the findings of other research with Blacksville coal. Material recoveries for most of the elements were very good. The average recovery for mercury further validates that this pilot unit will be a viable system for mercury sampling and control methods.

  12. Electric Power Research Institute, High-Sulfur Test Center report to the Steering Committee, July 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    Operation and testing continued this month at the High Sulfur Test Center on the Pilot Wet Scrubber, Mini-Pilot Wet Scrubber and the Spray Dryer Systems. The Pilot continued testing under the High Performance test block program and the Mini-Pilot continued testing under the Formate Forced Oxidation test block. The HSSD testing to investigate the effects that ambient temperature and humidity have on SO{sub 2} removal was completed. Dry alkaline injection testing was started to remove SO{sub 3} and HCl from flue gas which removes visible plumes. Construction upgrades and system shakedown continued on the Cold-Side Selective Catalytic Reduction (SCR) system in preparation for start-up. (VC)

  13. Electric Power Research Institute, High-Sulfur Test Center report to the Steering Committee, July 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    Operation and testing continued this month at the High Sulfur Test Center on the Pilot Wet Scrubber, Mini-Pilot Wet Scrubber and the Spray Dryer Systems. The Pilot continued testing under the High Performance test block program and the Mini-Pilot continued testing under the Formate Forced Oxidation test block. The HSSD testing to investigate the effects that ambient temperature and humidity have on SO{sub 2} removal was completed. Dry alkaline injection testing was started to remove SO{sub 3} and HCl from flue gas which removes visible plumes. Construction upgrades and system shakedown continued on the Cold-Side Selective Catalytic Reduction (SCR) system in preparation for start-up. (VC)

  14. Test Automation Test Automation

    E-Print Network [OSTI]

    Mousavi, Mohammad

    Test Automation Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2013 Mousavi: Test Automation #12;Test Automation Outline Test Automation Mousavi: Test Automation #12;Test Automation Why? Challenges of Manual Testing Test-case design: Choosing inputs

  15. Modelling piloted ignition of wood and plastics

    SciTech Connect (OSTI)

    Blijderveen, Maarten van [TNO, Schoemakerstraat 97, 2628 VK Delft (Netherlands); University of Twente, Department of Thermal Engineering, Drienerlolaan 5, 7522 NB Enschede (Netherlands); Bramer, Eddy A. [University of Twente, Department of Thermal Engineering, Drienerlolaan 5, 7522 NB Enschede (Netherlands); Brem, Gerrit, E-mail: g.brem@utwente.nl [University of Twente, Department of Thermal Engineering, Drienerlolaan 5, 7522 NB Enschede (Netherlands)

    2012-09-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer We model piloted ignition times of wood and plastics. Black-Right-Pointing-Pointer The model is applied on a packed bed. Black-Right-Pointing-Pointer When the air flow is above a critical level, no ignition can take place. - Abstract: To gain insight in the startup of an incinerator, this article deals with piloted ignition. A newly developed model is described to predict the piloted ignition times of wood, PMMA and PVC. The model is based on the lower flammability limit and the adiabatic flame temperature at this limit. The incoming radiative heat flux, sample thickness and moisture content are some of the used variables. Not only the ignition time can be calculated with the model, but also the mass flux and surface temperature at ignition. The ignition times for softwoods and PMMA are mainly under-predicted. For hardwoods and PVC the predicted ignition times agree well with experimental results. Due to a significant scatter in the experimental data the mass flux and surface temperature calculated with the model are hard to validate. The model is applied on the startup of a municipal waste incineration plant. For this process a maximum allowable primary air flow is derived. When the primary air flow is above this maximum air flow, no ignition can be obtained.

  16. SkyMine Carbon Mineralization Pilot Project

    SciTech Connect (OSTI)

    Joe Jones; Clive Barton; Mark Clayton; Al Yablonsky; David Legere

    2010-09-30T23:59:59.000Z

    This Topical Report addresses accomplishments achieved during Phase 1 of the SkyMine{reg_sign} Carbon Mineralization Pilot Project. The primary objectives of this project are to design, construct, and operate a system to capture CO{sub 2} from a slipstream of flue gas from a commercial coal-fired cement kiln, convert that CO{sub 2} to products having commercial value (i.e., beneficial use), show the economic viability of the CO{sub 2} capture and conversion process, and thereby advance the technology to a point of readiness for commercial scale demonstration and proliferation. The project will also substantiate market opportunities for the technology by sales of chemicals into existing markets, and identify opportunities to improve technology performance and reduce costs at commercial scale. The primary objectives of Phase 1 of the project were to elaborate proven SkyMine{reg_sign} process chemistry to commercial pilot-scale operation and complete the preliminary design ('Reference Plant Design') for the pilot plant to be built and operated in Phase 2. Additionally, during Phase 1, information necessary to inform a DOE determination regarding NEPA requirements for the project was developed, and a comprehensive carbon lifecycle analysis was completed. These items were included in the formal application for funding under Phase 2. All Phase 1 objectives were successfully met on schedule and within budget.

  17. Resource Conservation and Recovery Act, Part B permit application [of the Waste Isolation Pilot Plant (WIPP)]. Volume 11, Chapter D, Appendix D4--Chapter D, Appendix D17: Revision 3

    SciTech Connect (OSTI)

    Not Available

    1993-03-01T23:59:59.000Z

    This volume contains appendices D4 through D17 which cover the following: Waste Isolation Pilot Plant site environmental report; ecological monitoring program at the Waste Isolation Pilot Plant; site characterization; regional and site geology and hydrology; general geology; dissolution features; ground water hydrology; typical carbon sorption bed efficiency; VOC monitoring plan for bin-room tests; chemical compatibility analysis of waste forms and container materials; probable maximum precipitation; WHIP supplementary roof support system room 1, panel 1; and corrosion risk assessment of the Waste Isolation Pilot Plant ``humid`` test bins.

  18. Microbial enhanced waterflooding Mink Unit and Phoenix field pilots. Final report

    SciTech Connect (OSTI)

    Bryant, R.S.; Steep, A.K.; Bertus, K.M.; Burchfield, T.E. [National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States); Dennis, M. [Microbial Systems Corp., OK (United States)

    1993-07-01T23:59:59.000Z

    To determine the feasibility of improving oil recovery and the economics of microbial enhanced waterflooding in mature oil wells in the United States, two field pilots have been conducted. Candidate fields were screened to determine whether they have any potential for a microbial system developed at the National Institute for Petroleum and Energy Research (NIPER), and microbial compatibility tests were conducted in the laboratory to select the target field. A specific microbial formulation was selected that was compatible with the chosen reservoir environment and had been shown to recover oil after waterflooding in Berea sandstone and field core. The microbial formulation was designed to improve microscopic oil displacement efficiency by surfactant, gas and acid production from fermentation of molasses. A 20-acre pilot test was initiated in October 1986, and completed in December 1989. Results from this pilot demonstrated that microorganisms could be injected into an ongoing waterflood and that such injection could increase oil production by at least 13%. A larger test (520 acres) was completed in the same formation to evaluate the feasibility of commercial application of the technology. This field pilot was injected with microorganisms and molasses from a centralized injection station in June 1990. Although microorganisms were injected only once per site, nutrient injection continued throughout the project life. All 19 injection wells were treated, and oil production was monitored from the 47 production wells. Injection pressures and volumes were monitored throughout the project. No operational problems were encountered. At the end of May 1993, oil production was improved by 19.6 %. Results from both projects are presented and the potential for microbial-enhanced waterflooding technology is evaluated.

  19. Key Geomechanics Issues at the Waste Isolation Pilot Plant Geomechanics

    SciTech Connect (OSTI)

    HANSEN,FRANCIS D.

    1999-09-01T23:59:59.000Z

    Mechanical and hydrological properties of rock salt provide excellent bases for geological isolation of hazardous materials. Regulatory compliance determinations for the Waste Isolation Pilot Plant (WIPP) stand as testament to the widely held conclusion that salt provides excellent isolation properties. The WIPP saga began in the 1950s when the U.S. National Academy of Sciences (NAS) recommended a salt vault as a promising solution to the national problem of nuclear waste disposal. For over 20 years, the Scientific basis for the NAS recommendation has been fortified by Sandia National Laboratories through a series of large scale field tests and laboratory investigations of salt properties. These scientific investigations helped develop a comprehensive understanding of salt's 4 reformational behavior over an applicable range of stresses and temperatures. Sophisticated constitutive modeling, validated through underground testing, provides the computational ability to model long-term behavior of repository configurations. In concert with advancement of the mechanical models, fluid flow measurements showed not only that the evaporite lithology was essentially impermeable but that the WIPP setting was hydrologically inactive. Favorable mechanical properties ensure isolation of materials placed in a salt geological setting. Key areas of the geomechanics investigations leading to the certification of WIPP are in situ experiments, laboratory tests, and shaft seal design.

  20. Waste Isolation Pilot Plant Typifies Optimizing Resources to...

    Office of Environmental Management (EM)

    Plant Typifies Optimizing Resources to Maximize Results Waste Isolation Pilot Plant Typifies Optimizing Resources to Maximize Results March 5, 2013 - 12:00pm Addthis EM Carlsbad...

  1. New Mexico Environmental Department (NMED) Waste Isolation Pilot...

    Office of Environmental Management (EM)

    Mexico Environmental Department (NMED) Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit The documents included in this listing are additional references not...

  2. artificial wetlands pilot: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A process-based pilot-scale (more) Beebe, Donald 2013-01-01 6 National Wetlands Inventory Wetlands of the Environmental Sciences and Ecology Websites Summary: National...

  3. Federal Highway Administration - Pilot Car Escort - Best Practices...

    Open Energy Info (EERE)

    Federal Highway Administration - Pilot Car Escort - Best Practices Guidelines Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance -...

  4. Listening to Your Workforce: Lessons From Pilot Programs and...

    Energy Savers [EERE]

    Other Approaches For Workforce Feedback Better Buildings Workforce Peer Exchange and Green for All High Road Affinity Group "Listening to Your Workforce": Lessons from Pilot...

  5. Alternative Fuel and Advanced Technology Vehicles Pilot Program...

    Open Energy Info (EERE)

    Program Emissions Benefit Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool...

  6. Weatherization Innovation Pilot Program Fact Sheet - Ohio Success...

    Broader source: Energy.gov (indexed) [DOE]

    documenting the success of the People Working CooperativelyWIPP partnership. ohiosuccessstory.pdf More Documents & Publications Weatherization Innovation Pilot Program Fact...

  7. New National Labs Pilot Opens Doors to Small Businesses | Department...

    Office of Environmental Management (EM)

    Business Vouchers Pilot will connect clean energy innovators across the country with the top-notch scientists, engineers, and world-class facilities at National Laboratories. Goal...

  8. Controlled pilot oxidizer for a gas turbine combustor

    DOE Patents [OSTI]

    Laster, Walter R. (Oviedo, FL); Bandaru, Ramarao V. (Greer, SC)

    2010-07-13T23:59:59.000Z

    A combustor (22) for a gas turbine (10) includes a main burner oxidizer flow path (34) delivering a first portion (32) of an oxidizer flow (e.g., 16) to a main burner (28) of the combustor and a pilot oxidizer flow path (38) delivering a second portion (36) of the oxidizer flow to a pilot (30) of the combustor. The combustor also includes a flow controller (42) disposed in the pilot oxidizer flow path for controlling an amount of the second portion delivered to the pilot.

  9. Radiological Release Event at the Waste Isolation Pilot Plant...

    Energy Savers [EERE]

    at the Department of Energy Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Because access to the underground was restricted following the event, the...

  10. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    Sands. 1980. Ocean thermal energy conversion (OTEC) pilotCommercial ocean thermal energy conversion (OTEC) plants byof the Fifth Ocean Thermal Energy Conversion Conference,

  11. On the Piloted Ignition of Solid Fuels in Spacecraft Environments

    E-Print Network [OSTI]

    Fereres-Rapoport, Sonya M.

    2011-01-01T23:59:59.000Z

    Describing the Steady-State Gasification of Bubble-FormingEffects on the Endothermic Gasification and Piloted Ignitionon Nonflaming Transient Gasification of PMMA and PE During

  12. ClearFuels-Rentech Pilot-Scale Biorefinery

    Broader source: Energy.gov [DOE]

    The ClearFuels-Rentech pilot-scale biorefinery will use Fisher-Tropsch gas-to-liquids technology to create diesel and jet fuel.

  13. airline pilots: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    owners: an Oxfordshire pilot 208 ORIGINAL PAPER Eric J. Hall Basil V. Worgul Lubomir Smilenov Biology and Medicine Websites Summary: of ocular cataracts at younger ages has been...

  14. Microsoft Word - Outdoor Small- and Pilot-Scale Research and...

    Broader source: Energy.gov (indexed) [DOE]

    regulations); conventional laboratory operations (such as preparation of chemical standards and sample analysis); and small-scale pilot projects (generally less than 2...

  15. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    Commercial ocean thermal energy conversion (OTEC) plants byof the Fifth Ocean Thermal Energy Conversion Conference,Sands. 1980. Ocean thermal energy conversion (OTEC) pilot

  16. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    Commercial ocean thermal energy conversion ( OTEC) plants bySands. Ocean thermal energy conversion (OTEC) pilot plantof the Ocean Thermal Energy Conversion (OTEC) Biofouling,

  17. Distance Learning Pilots in Trinity College Summer 2010

    E-Print Network [OSTI]

    Dolbow, John

    Distance Learning Pilots in Trinity College Summer 2010 Kristen Stephens than other Trinity summer courses according to comparisons made by the Office

  18. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    1979. Commercial ocean thermal energy conversion (OTEC)of the Fifth Ocean Thermal Energy Conversion Conference,Sands. 1980. Ocean thermal energy conversion (OTEC) pilot

  19. Wind-To-Hydrogen Energy Pilot Project

    SciTech Connect (OSTI)

    Ron Rebenitsch; Randall Bush; Allen Boushee; Brad G. Stevens; Kirk D. Williams; Jeremy Woeste; Ronda Peters; Keith Bennett

    2009-04-24T23:59:59.000Z

    WIND-TO-HYDROGEN ENERGY PILOT PROJECT: BASIN ELECTRIC POWER COOPERATIVE In an effort to address the hurdles of wind-generated electricity (specifically wind's intermittency and transmission capacity limitations) and support development of electrolysis technology, Basin Electric Power Cooperative (BEPC) conducted a research project involving a wind-to-hydrogen system. Through this effort, BEPC, with the support of the Energy & Environmental Research Center at the University of North Dakota, evaluated the feasibility of dynamically scheduling wind energy to power an electrolysis-based hydrogen production system. The goal of this project was to research the application of hydrogen production from wind energy, allowing for continued wind energy development in remote wind-rich areas and mitigating the necessity for electrical transmission expansion. Prior to expending significant funding on equipment and site development, a feasibility study was performed. The primary objective of the feasibility study was to provide BEPC and The U.S. Department of Energy (DOE) with sufficient information to make a determination whether or not to proceed with Phase II of the project, which was equipment procurement, installation, and operation. Four modes of operation were considered in the feasibility report to evaluate technical and economic merits. Mode 1 - scaled wind, Mode 2 - scaled wind with off-peak, Mode 3 - full wind, and Mode 4 - full wind with off-peak In summary, the feasibility report, completed on August 11, 2005, found that the proposed hydrogen production system would produce between 8000 and 20,000 kg of hydrogen annually depending on the mode of operation. This estimate was based on actual wind energy production from one of the North Dakota (ND) wind farms of which BEPC is the electrical off-taker. The cost of the hydrogen produced ranged from $20 to $10 per kg (depending on the mode of operation). The economic sensitivity analysis performed as part of the feasibility study showed that several factors can greatly affect, both positively and negatively, the "per kg" cost of hydrogen. After a September 15, 2005, meeting to evaluate the advisability of funding Phase II of the project DOE concurred with BEPC that Phase I results did warrant a "go" recommendation to proceed with Phase II activities. The hydrogen production system was built by Hydrogenics and consisted of several main components: hydrogen production system, gas control panel, hydrogen storage assembly and hydrogen-fueling dispenser The hydrogen production system utilizes a bipolar alkaline electrolyzer nominally capable of producing 30 Nm3/h (2.7 kg/h). The hydrogen is compressed to 6000 psi and delivered to an on-site three-bank cascading storage assembly with 80 kg of storage capacity. Vehicle fueling is made possible through a Hydrogenics-provided gas control panel and dispenser able to fuel vehicles to 5000 psi. A key component of this project was the development of a dynamic scheduling system to control the wind energy's variable output to the electrolyzer cell stacks. The dynamic scheduling system received an output signal from the wind farm, processed this signal based on the operational mode, and dispatched the appropriate signal to the electrolyzer cell stacks. For the study BEPC chose to utilize output from the Wilton wind farm located in central ND. Site design was performed from May 2006 through August 2006. Site construction activities were from August to November 2006 which involved earthwork, infrastructure installation, and concrete slab construction. From April - October 2007, the system components were installed and connected. Beginning in November 2007, the system was operated in a start-up/shakedown mode. Because of numerous issues, the start-up/shakedown period essentially lasted until the end of January 2008, at which time a site acceptance test was performed. Official system operation began on February 14, 2008, and continued through the end of December 2008. Several issues continued to prevent consistent operation, resulting in operation o

  20. Application to Export Electric Energy OE Docket No. EA-383 Pilot...

    Energy Savers [EERE]

    Power Group, Inc Application from Pilot Power Group, Inc. to export electric energy to Mexico. EA-383 Pilot Power Group.pdf More Documents & Publications EA-383 Pilot Power Group...

  1. Microbial enhanced waterflooding pilot project, Mink Unit, Delaware-Childers (OK) field

    SciTech Connect (OSTI)

    Bryant, R.S.; Burchfield, T.E.; Dennis, D.M.; Hitzman, D.O.

    1991-08-01T23:59:59.000Z

    The first microbial-enhanced waterflood field project was initiated in October of 1986. The site selected for the project is in the Mink Unit of Delaware-Childers field in Nowata County, Oklahoma. The pilot area consists of four adjacent inverted five-spot patterns drilled on 5-acre spacing. There are 21 injection and 15 production wells on this pilot. Four of the 21 injection wells were treated with microbial formulation. Laboratory screening criteria were developed to evaluate microorganisms for this project. Several different microbial formulations were tested. Injectivity and microbial field survivability tests were conducted during the baseline period on two off-pattern wells, and a chemical tracer, fluorescein, was injected into the four injection wells during the baseline period. Methodologies for field applications of microorganisms in ongoing waterfloods were developed as a result of this project. Results from the field pilot showed that microorganisms could be injected into an ongoing waterflood without causing any problems in injectivity. Microbial treatment did improve oil production rate, and water/oil ratios for producing wells nearest the microbially treated injection wells continue to be more favorable than baseline values. 23 refs., 30 figs., 28 tabs.

  2. Characterization of trace element emissions from a pilot-scale coal combustion unit

    SciTech Connect (OSTI)

    Hargis, R.A.; Pennline, H.W. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center

    1996-12-31T23:59:59.000Z

    The flue gas cleanup projects in the in-house research program at the Pittsburgh Energy Technology Center range from laboratory-scale work to testing with the combustion products of coal at a scale equivalent to about 0.75 MW of electric power generation. The largest unit is a 500-pound-per-hour coal combustor, complete with ductwork, spray dryer, baghouse, and ancillary equipment. Over the past year, tests to investigate the distribution and fate of trace elements have been conducted with this pilot unit. These investigations are an integral component of the Air Toxics and Fine Particulate Control subprogrammatic area of the AR and ET Power Systems Program. The overall effort of this area focuses on the improvement of existing technologies and the development of new technologies for the control of hazardous air pollutants and fine particulates associated with coal combustion. A major endeavor within the subprogram is the characterization of trace elements in flue gas from coal combustion, including a special emphasis on mercury speciation. The study described in this paper examined the results from an investigation on the pilot unit; the distribution of trace elements in the ash streams and flue gas stream, material recoveries for the system, baghouse removal efficiencies, and enrichment of ash particulate. Also, a preliminary comparison between the results from the pilot unit and a full-scale utility that burned coal from the same coal batch is provided.

  3. Application of fractal theory in refined reservoir description for EOR pilot area

    SciTech Connect (OSTI)

    Yue Li; Yonggang Duan; Yun Li; Yuan Lu

    1997-08-01T23:59:59.000Z

    A reliable reservoir description is essential to investigate scenarios for successful EOR pilot test. Reservoir characterization includes formation composition, permeability, porosity, reservoir fluids and other petrophysical parameters. In this study, various new tools have been applied to characterize Kilamayi conglomerate formation. This paper examines the merits of various statistical methods for recognizing rock property correlation in vertical columns and gives out methods to determine fractal dimension including R/S analysis and power spectral analysis. The paper also demonstrates that there is obvious fractal characteristics in conglomerate reservoirs of Kilamayi oil fields. Well log data in EOR pilot area are used to get distribution profile of parameters including permeability, porosity, water saturation and shale content.

  4. Microbial field pilot study: Quarterly technical progress report: November 22, 1988--February 28, 1989

    SciTech Connect (OSTI)

    Knapp, R.M.; Mcinerney, M.J.; Menzie, D.E.; Chisholm, J.L.

    1989-04-05T23:59:59.000Z

    The objective of this project is to perform a microbially enhanced oil recovery field test pilot test in the Southeast Vassar Vertz Sand Unit (SEVVSU) in Payne County, Oklahoma. Indigenous, anaerobic, nitrate-reducing bacteria will be stimulated to selectively plug the flow paths which have been preferentially swept by a prior waterflood. This will force future flood water to encounter regions of the reservoir bypassed by the first flood, thereby increasing sweep efficiency. During this quarter studies were made to characterize the in situ bacteria in brine samples recovered from various locations in the SEVVSU. The characteristics of five anaerobic nitrate-using bacteria have been investigated. 2 refs., 4 figs.

  5. Process performance of Ahlstrom Pyroflow PCFB pilot plant

    SciTech Connect (OSTI)

    Sellakumar, K.M. [R& D Center, Ahlstrom Pyropower, Inc., San Diego, CA (United States); Isaksson, J.; Tiensuu, J. [Ahlstroem Pyropower, Inc., Karhula (Finland). Hans Ahlstroem Lab.

    1993-05-01T23:59:59.000Z

    Ahlstrom Pyropower has designed and built a 10 MW{sub th} (34 MMBtu) pressurized circulating fluidized bed (PCFB) pilot plant in Karhula, Finland. The unit is now operating. Data from this unit supports the design of a nominal 80 MW, Des Moines Energy Center 1 (DMEC-1) PCFB Repowering Project. The pilot plant PCFB combustor is of square cross-section. It is housed in a 3.6 m (11.8 ft) diameter pressure vessel. A high pressure high temperature gas cleaning unit downstream of the PCFB exhaust is installed in a separate 2.6 m (8.5 ft) diameter pressure vessel. The maximum plant operating pressure is 16 bar (232 psia). The fuel is fed in slurry form; sorbent is also fed along with the fuel. The net heat input per unit cross section of the combustor is the highest of any known combustion mode. The heat release can go up to 40 MW/m{sup 2} (12.6 MMBtu/ft{sup 2} hr). Many types of coals including high sulfur, bituminous Illinois No. 6 coal and Western sub bituminous, low sulfur Powder River Basin coal were tested. Combustion efficiencies in the range of 99.5 to 99.9% have been consistently observed. Emissions of various gases such as NO{sub x} SO{sub 2} and CO at different operating pressures and loads were monitored. The gas emissions have been lower than expected based on atmospheric circulating fluidized bed boiler experience. The sulfur retention is over 95 % with a Ca/S molar ratio of 1 to 2 for high sulfur Illinois No.6 coal. A GAVS molar ratio of 2.5 to 3.5 was observed to retain 95 % of sulfur with low sulfur Powder River Basin coal. All gaseous emissions during testing with Illinois No. 6 coal and Powder River Basin coal are well within the projected limits for the DMEC1 project. Emission data from tests with Illinois No. 6 coal and Powder River Basin coal are presented in the paper.

  6. Process performance of Ahlstrom Pyroflow PCFB pilot plant

    SciTech Connect (OSTI)

    Sellakumar, K.M. (R D Center, Ahlstrom Pyropower, Inc., San Diego, CA (United States)); Isaksson, J.; Tiensuu, J. (Ahlstroem Pyropower, Inc., Karhula (Finland). Hans Ahlstroem Lab.)

    1993-05-01T23:59:59.000Z

    Ahlstrom Pyropower has designed and built a 10 MW[sub th] (34 MMBtu) pressurized circulating fluidized bed (PCFB) pilot plant in Karhula, Finland. The unit is now operating. Data from this unit supports the design of a nominal 80 MW, Des Moines Energy Center 1 (DMEC-1) PCFB Repowering Project. The pilot plant PCFB combustor is of square cross-section. It is housed in a 3.6 m (11.8 ft) diameter pressure vessel. A high pressure high temperature gas cleaning unit downstream of the PCFB exhaust is installed in a separate 2.6 m (8.5 ft) diameter pressure vessel. The maximum plant operating pressure is 16 bar (232 psia). The fuel is fed in slurry form; sorbent is also fed along with the fuel. The net heat input per unit cross section of the combustor is the highest of any known combustion mode. The heat release can go up to 40 MW/m[sup 2] (12.6 MMBtu/ft[sup 2] hr). Many types of coals including high sulfur, bituminous Illinois No. 6 coal and Western sub bituminous, low sulfur Powder River Basin coal were tested. Combustion efficiencies in the range of 99.5 to 99.9% have been consistently observed. Emissions of various gases such as NO[sub x] SO[sub 2] and CO at different operating pressures and loads were monitored. The gas emissions have been lower than expected based on atmospheric circulating fluidized bed boiler experience. The sulfur retention is over 95 % with a Ca/S molar ratio of 1 to 2 for high sulfur Illinois No.6 coal. A GAVS molar ratio of 2.5 to 3.5 was observed to retain 95 % of sulfur with low sulfur Powder River Basin coal. All gaseous emissions during testing with Illinois No. 6 coal and Powder River Basin coal are well within the projected limits for the DMEC1 project. Emission data from tests with Illinois No. 6 coal and Powder River Basin coal are presented in the paper.

  7. ERCOT's Weather Sensitive Demand Response Pilot

    E-Print Network [OSTI]

    Carter, T.

    2013-01-01T23:59:59.000Z

    ERCOT’s Weather Sensitive Demand Response Pilot CATEE 12-17-13 ESL-KT-13-12-21 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Disclaimer The information contained in this report has been obtained from... services along with other information about our business is available online at constellation.com. ESL-KT-13-12-21 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Demand Response in ERCOT CATEE 121313 - Tim Carter...

  8. Waste Isolation Pilot Plant | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell Director ofDepartmentDRAFT -Waste Isolation Pilot

  9. Pilot summer program supports science teachers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum ReservesThrust Areas Physics161Picture ofPilot

  10. WINDExchange: Wind for Schools Pilot Project Results

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment Activities Printable80 mPilot Project Results The

  11. Pilot Peak Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicketGeothermal Project Jump to:Pilot Peak

  12. Pilot Project on Fibrous Debris Effects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoidLabPhysics Physics Our sciencePhysics532 1 Pilot

  13. Pilot Plant Study of Carbon Dioxide Capture by Aqueous Monoethanolamine

    E-Print Network [OSTI]

    Rochelle, Gary T.

    i Pilot Plant Study of Carbon Dioxide Capture by Aqueous Monoethanolamine Topical Report Prepared Pilot Plant Study of Carbon Dioxide Capture by Aqueous Monoethanolamine Ross Edward Dugas, M capture using monoethanolamine (MEA). MEA is an appropriate choice for a baseline study since

  14. End User Impacts of Automated Electrochromic Windows in a Pilot

    E-Print Network [OSTI]

    LBNL-6027E End User Impacts of Automated Electrochromic Windows in a Pilot Retrofit Application E Electrochromic Windows in a Pilot Retrofit Application Eleanor S. Lee1 Abstract , Erin S. Claybaugh Building Independence Avenue, S.W., Washington, DC 20585 USA Automated electrochromic (EC) windows, advanced thermally

  15. Peat gasification pilot plant program. Project 70105 quarterly report No. 3, December 1, 1981-February 28, 1982

    SciTech Connect (OSTI)

    Not Available

    1982-09-01T23:59:59.000Z

    The objective of this program is twofold: (1) to modify an existing pilot plant; and (2) to operate the pilot plant with peat to produce substitute natural gas (SNG). Activities include the design, procurement, and installation of peat drying, grinding, screening, and lockhopper feed systems. Equipment installed for the program complements the existing pilot plant facility. The lockhopper system was successfully integrated with the gasifier, and shakedown of the newly installed unit was completed. Test PT-4, the first test using this system, was completed during January. Results far exceeded the objectives set for this test. One hundred fifty tons of Minnesota peat containing up to 25-weight-percent moisture were fed to the gasifier at a pressure of 300 psig. Peat conversions averaged more than 90%. Over 57 hours of steady operating time were selected for data analysis. Post-run inspection following Test PT-4 was completed. Peat dried to 10 and 20-weight-percent moisture is currently being stored in preparation for Test PT-5, scheduled to begin in March.

  16. Waste Isolation Pilot Plant, Land Management Plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    To reflect the requirement of section 4 of the Wastes Isolation Pilot Plant Land Withdrawal Act (the Act) (Public Law 102-579), this land management plan has been written for the withdrawal area consistent with the Federal Land Policy and Management Act of 1976. The objective of this document, per the Act, is to describe the plan for the use of the withdrawn land until the end of the decommissioning phase. The plan identifies resource values within the withdrawal area and promotes the concept of multiple-use management. The plan also provides opportunity for participation in the land use planning process by the public and local, State, and Federal agencies. Chapter 1, Introduction, provides the reader with the purpose of this land management plan as well as an overview of the Waste Isolation Pilot Plant. Chapter 2, Affected Environment, is a brief description of the existing resources within the withdrawal area. Chapter 3, Management Objectives and Planned Actions, describes the land management objectives and actions taken to accomplish these objectives.

  17. Production of Biodiesel from Jatropha Oil (Jatropha curcas) in Pilot Plant

    E-Print Network [OSTI]

    Tint Tint Kywe; Mya Mya Oo

    Abstract—In this research, among the chemical properties, free fatty acid value of jatropha oil was determined to be 22.6%, 5.23% and 8.8 % respectively. Total, free and combined glycerol percent of raw jatropha oil were 8.27 %, 0.58 % and 7.69 % respectively. Yield of biodiesel from jatropha oil at optimal sodium hydroxide catalyst concentration 1%, reaction temperature 65°C, reaction time one hour and molar ratio of methanol to oil 6:1 was 92 % from lab scale. Yield of biodiesel from jatropha oil at optimal potassium hydroxide catalyst concentration 1%, reaction temperature – room temperature, reaction time 5 hours and molar ratio of ethanol to oil 8:1 was 90% from the lab scale. Biodiesel was also produced from pilot plant at optimum transesterification process condition as stated above. The yield of biodiesel (methyl ester) and ethyl ester were 92 % and 90% on the basis of refined jatropha oil in the pilot plant scale. The capacity of biodiesel pilot plant is 30 gal / day. The fuel properties of biodiesel, namely cetane index, flash point, pour point, kinematic viscosity, specific gravity, color, copper strip corrosion, acid value, water and sediment and distillation at 90 % recovery, were found to be within the limits of American Society for Testing and Materials (ASTM) specifications for biodiesel and diesel fuel. The fuel consumption of the engine which used biodiesel produced from free fatty acid content 5.23 % in raw jatropha oil is more than the fuel consumption of the engine which used biodiesel produced from free fatty acid content 1 % in refined raw jatropha oil. Keywords—renewable energy, biodiesel, transesterification, methyl ester, ethyl ester, pilot plant. I.

  18. Application of the HWVP measurement error model and feed test algorithms to pilot scale feed testing

    SciTech Connect (OSTI)

    Adams, T.L.

    1996-03-01T23:59:59.000Z

    The purpose of the feed preparation subsystem in the Hanford Waste Vitrification Plant (HWVP) is to provide, for control of the properties of the slurry that are sent to the melter. The slurry properties are adjusted so that two classes of constraints are satisfied. Processability constraints guarantee that the process conditions required by the melter can be obtained. For example, there are processability constraints associated with electrical conductivity and viscosity. Acceptability constraints guarantee that the processed glass can be safely stored in a repository. An example of an acceptability constraint is the durability of the product glass. The primary control focus for satisfying both processability and acceptability constraints is the composition of the slurry. The primary mechanism for adjusting the composition of the slurry is mixing the waste slurry with frit of known composition. Spent frit from canister decontamination is also recycled by adding it to the melter feed. A number of processes in addition to mixing are used to condition the waste slurry prior to melting, including evaporation and the addition of formic acid. These processes also have an effect on the feed composition.

  19. Clinch River - Environmental Restoration Program (CR-ERP) pilot study, ambient water toxicity

    SciTech Connect (OSTI)

    Simbeck, D.J.

    1997-06-01T23:59:59.000Z

    Clinch River - Environmental Restoration Program (CR-ERP) personnel and Tennessee Valley Authority (TVA) personnel conducted a pilot study during the week of April 22-29, 1993, prior to initiation of CR-ERP Phase II Sampling and Analysis activities as described in the Statement of Work (SOW) document. The organisms specified for testing were larval fathead minnows, Pimephales promelas, and the daphnid, Ceriodaphnia dubia. Surface water samples were collected by TVA Field Engineering personnel from Clinch River Mile 9.0 and Poplar Creek Kilometer 1.6 on April 21, 23, and 26. Samples were split and provided to the CR-ERP and TVA toxicology laboratories for testing. Exposure of test organisms to these samples resulted in no toxicity (survival, growth, or reproduction) to either species in testing conducted by TVA.

  20. Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants

    SciTech Connect (OSTI)

    Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

    1981-02-01T23:59:59.000Z

    This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

  1. Independent Oversight Inspection, Waste Isolation Pilot Plant, Summary Report- August 2002

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health and Emergency Management at the Waste Isolation Pilot Plant

  2. ENVIRONMENTAL ASSESSMENT FOR OTEC PILOT PLANTS

    E-Print Network [OSTI]

    Wilde, P.

    2011-01-01T23:59:59.000Z

    mal Energy Conversion (OTEC). Preoperational Test Platform,Thermal EnergyConversion (OTEC), Preoperational Ocean Test1979. Sands, M.D. , Draft OTEC Programmatic Environmental

  3. DU-AGG pilot plant design study

    SciTech Connect (OSTI)

    Lessing, P.A.; Gillman, H.

    1996-07-01T23:59:59.000Z

    The Idaho National Engineering Laboratory (INEL) is developing new methods to produce high-density aggregate (artificial rock) primarily consisting of depleted uranium oxide. The objective is to develop a low-cost method whereby uranium oxide powder (UO[sub 2], U[sub 3]O[sub ]8, or UO[sub 3]) can be processed to produce high-density aggregate pieces (DU-AGG) having physical properties suitable for disposal in low-level radioactive disposal facilities or for use as a component of high-density concrete used as shielding for radioactive materials. A commercial company, G-M Systems, conducted a design study for a manufacturing pilot plant to process DU-AGG. The results of that study are included and summarized in this report. Also explained are design considerations, equipment capacities, the equipment list, system operation, layout of equipment in the plant, cost estimates, and the proposed plan and schedule.

  4. EIS-0207: Newberry Geothermal Pilot Project

    Broader source: Energy.gov [DOE]

    The U.S. Forest Service prepared this statement to analyze three alternatives and associated environmental impacts for it to enable the CEE Exploration Company of Portland, Oregon to build and operate a geothermal pilot project and supporting facilities capable of generating 33 megawatts of electric power in the Deschutes National Forest in central Oregon. The Department of Energy’s Bonneville Power Administration (BPA) served as a cooperating agency in preparing this statement in order to fulfill its National Environmental Policy Act obligations ahead of its statutory obligations to purchase and transmit power to customers in the Pacific Northwest, if it is decided that the project will proceed. BPA adopted this statement by October 1994.

  5. Location Independent Professional Project: A Pilot Study

    SciTech Connect (OSTI)

    Hudson, J.A.; Long, J.P.; Miller, M.M.

    1999-02-01T23:59:59.000Z

    This pilot study project explored the problem of providing access to the nomadic worker who desires to connect a computer through network access points at a number of different locations within the SNL/NM campus as well as outside the campus. The design and prototype development gathered knowledge that may allow a design to be developed that could be extended to a larger number of SNL/NM network drop boxes. The focus was to provide a capability for a worker to access the SNL IRN from a network drop box (e.g. in a conference room) as easily as when accessing the computer network from the office normally used by the worker. Additional study was done on new methods to authenticate the off campus worker, and protect and control access to data.

  6. A historical review of Waste Isolation Pilot Plant backfill development

    SciTech Connect (OSTI)

    KRUMHANSL,JAMES L.; MOLECKE,MARTIN A.; PAPENGUTH,HANS W.; BRUSH,LAURENCE H.

    2000-06-05T23:59:59.000Z

    Backfills have been part of Sandia National Laboratories' [Sandia's] Waste Isolation Pilot Plant [WIPP] designs for over twenty years. Historically, backfill research at Sandia has depended heavily on the changing mission of the WIPP facility. Early testing considered heat producing, high level, wastes. Bentonite/sand/salt mixtures were evaluated and studies focused on developing materials that would retard brine ingress, sorb radionuclides, and withstand elevated temperatures. The present-day backfill consists of pure MgO [magnesium oxide] in a pelletized form and is directed at treating the relatively low contamination level, non-heat producing, wastes actually being disposed of in the WIPP. Its introduction was motivated by the need to scavenging CO{sub 2} [carbon dioxide] from decaying organic components in the waste. However, other benefits, such as a substantial desiccating capacity, are also being evaluated. The MgO backfill also fulfills a statutory requirement for assurance measures beyond those needed to demonstrate compliance with the US Environmental Protection Agency [EPA] regulatory release limits. However, even without a backfill, the WIPP repository design still operates within EPA regulatory release limits.

  7. Advanced Engineering Environment FY09/10 pilot project.

    SciTech Connect (OSTI)

    Lamph, Jane Ann; Kiba, Grant W.; Pomplun, Alan R.; Dutra, Edward G.; Sego, Abraham L.

    2010-06-01T23:59:59.000Z

    The Advanced Engineering Environment (AEE) project identifies emerging engineering environment tools and assesses their value to Sandia National Laboratories and our partners in the Nuclear Security Enterprise (NSE) by testing them in our design environment. This project accomplished several pilot activities, including: the preliminary definition of an engineering bill of materials (BOM) based product structure in the Windchill PDMLink 9.0 application; an evaluation of Mentor Graphics Data Management System (DMS) application for electrical computer-aided design (ECAD) library administration; and implementation and documentation of a Windchill 9.1 application upgrade. The project also supported the migration of legacy data from existing corporate product lifecycle management systems into new classified and unclassified Windchill PDMLink 9.0 systems. The project included two infrastructure modernization efforts: the replacement of two aging AEE development servers for reliable platforms for ongoing AEE project work; and the replacement of four critical application and license servers that support design and engineering work at the Sandia National Laboratories/California site.

  8. Groundwater monitoring at the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Kehrman, R.; Broberg, K.; Tatro, G.; Richardson, R.; Dasczcyszak, W.

    1990-01-01T23:59:59.000Z

    This paper discusses the Groundwater Monitoring Program (GPM) being conducted at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The Regulatory and Environmental Programs (REP) section of the Environment, Safety and Health department (ES H) is responsible for conducting environmental monitoring at the WIPP. Groundwater monitoring is one of the ongoing environmental activities currently taking place. The REP section includes water quality sampling and water level monitoring. The WIPP Project is a research and develop facility designed to demonstrate the safe disposal of defense-generated waste in a geologic repository. Water quality sampling for physical, chemical, and radiological parameters has been an ongoing activity at the WIPP site for the past six years, and will continue through the life of the project. The water quality of a well is sampled while the well is continuously pumped. Serial samples of the pumped water are collected and tested for pH, Eh, temperature, specific gravity, specific conductivity, alkalinity, chlorides, divalent cations, ferrous iron, and total iron. Stabilization of serial sampling parameters determined if a representative sample is being obtained, Representative samples are sent to contract laboratories and analyzed for general chemistry, major cations and anions, and radionuclides. 13 refs., 4 figs., 1 tab.

  9. Waste Isolation Pilot Plant Safety Analysis Report

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  10. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 3 Full-scale Test Results

    SciTech Connect (OSTI)

    Gary Blythe

    2007-05-01T23:59:59.000Z

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB cofired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems to be tested. IPL, an AES company, provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Degussa Corporation is providing the TMT-15 additive and technical support to the test program as cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and have been previously reported. This topical report presents the results from the Task 3 full-scale additive tests, conducted at IPL's Petersburg Station Unit 2. The Task 5 full-scale additive tests will be conducted later in calendar year 2007.

  11. Microbial field pilot study. [Quarterly report], July 1, 1992--September 30, 1992

    SciTech Connect (OSTI)

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.

    1991-12-06T23:59:59.000Z

    The objective of this project is to perform a microbial enhanced oil recovery field pilot test in the Southeast Vassar Vertz Sand Unit (SEVVSU) in Payne County, Oklahoma. Indigenous, anaerobic, nitrate-reducing bacteria will be stimulated to selectively plug flow paths which have been preferentially swept by a prior waterflood. This will force future flood water to invade bypassed regions of the reservoir and increase sweep efficiency. During this quarter an additional tracer study was performed in the field to determine pre-treatment flow paths and the first nutrients were injected. 2 figs.

  12. Interagency Pilot of Greenhouse Gas Accounting Tools: Lessons Learned

    SciTech Connect (OSTI)

    Carpenter, A.; Hotchkiss, E.; Kandt, A.

    2013-02-01T23:59:59.000Z

    The Greater Yellowstone Area (GYA) and Tongass National Forest (Tongass) partnered with the National Renewable Energy Laboratory (NREL) to conduct a pilot study of three greenhouse gas (GHG) inventorying tools.

  13. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    the external fluid mechanics of OTEC plants: report coveringocean thermal energy conversion (OTEC) plants by mid-1980's.1980. A baseline design of a 40-MW OTEC Pilot Johns Hopkins

  14. Summary of the 2006 Automated Demand Response Pilot

    E-Print Network [OSTI]

    Piette, M.; Kiliccote, S.

    2007-01-01T23:59:59.000Z

    This paper discusses the specific concept for, design of, and results from a pilot program to automate demand response with critical peak pricing. California utilities have been exploring the use of critical peak pricing (CPP) to help reduce peak...

  15. au site pilote: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    incidents that fit 39 Pilot Feedback for an Automated Planning Aid System in the Cockpit Engineering Websites Summary: plan and safely land the airplane. This task can become very...

  16. Situation Awareness Information Requirements For Commercial Airline Pilots

    E-Print Network [OSTI]

    Endsley, Mica R.

    Situation awareness is presented as a fundamental requirement for good airmanship, forming the basis for pilot decision making and performance. To develop a better understanding of the role of situation awareness in flying, ...

  17. EAST TEXAS FOREST INVENTORY (ETFI) PILOT PROJECT REMOTE SENSING PHASE

    E-Print Network [OSTI]

    Hung, I-Kuai

    EAST TEXAS FOREST INVENTORY (ETFI) PILOT PROJECT REMOTE SENSING PHASE Dr. Daniel R. Unger, Remote) or the United States Forest Service (USFS) via the Southern Forest Inventory and Analysis Program (SFIA

  18. Community Based Renewable Energy Production Incentive (Pilot Program)

    Broader source: Energy.gov [DOE]

    In June 2009, Maine established the Community-based Renewable Energy Pilot Program. As the name suggests, this program is intended to encourage the development of locally owned, in-state renewable...

  19. Cathy Zoi on the new Home Energy Score pilot program

    Broader source: Energy.gov [DOE]

    The new Home Energy Score pilot program provides consumers with a home energy score between 1 and 10, and shows them how their home compares to others in their region. The program also offers...

  20. EIS-0026; Waste Isolation Pilot Plant Disposal Phase Final Supplementa...

    Office of Environmental Management (EM)

    by calling 1 (800) 336-9477 COVER SHEET Lead Agency: U.S. Department of Energy Title: Waste Isolation Pilot Plant Disposal Phase Final Supplemental Environmental Impact Statement...

  1. Public Sector Combined Heat and Power Pilot Program

    Broader source: Energy.gov [DOE]

    Project applications under this pilot program must be submitted by 4:30pm Central Time on Friday, November 21, 2014. The intent of this RFA is to have contracts awarded by the DCEO to the success...

  2. The H-Coal pilot plant and the Breckinridge Project

    SciTech Connect (OSTI)

    Wigglesworth, T.H.

    1982-05-01T23:59:59.000Z

    A large coal-liquefaction pilot plant is in operation at Catlettsburg, Kentucky, expanding on the H-Coal technology. The pilot plant operated very successfully during 1981, confirming research yield data on eastern bituminous coal, demonstrating operability of the process, and resulting in a significant accumulation of engineering data. Ashland Synthetic Fuels, Inc., and Bechtel Petroleum, Inc., are developing the Breckinridge Project, a commercial coal-liquefaction plant proposed for Breckinridge County, Kentucky, based on the H-Coal technology.

  3. Final Report: RPP-WTP Semi-Integrated Pilot Plant

    SciTech Connect (OSTI)

    Duignan, M. R.; Adamson, D. J.; Calloway, T. B.; Fowley, M. D.; Qureshi, Z. H.; Steimke, J. L.; Williams, M. R.; Zamecnik, J. R.

    2005-06-01T23:59:59.000Z

    In August 2004 the last of the SIPP task testing ended--a task that formally began with the issuance of the RPP-WTP Test Specification in June 2003. The planning for the task was a major effort in itself and culminated with the input of all stakeholders, DOE, Bechtel National, Inc., Washington Group International, in October 2003 at Hanford, WA (Appendix A). This report documents the activities carried out as a result of that planning. Campaign IV, the fourth and final step towards the Semi-Integrated Pilot Plant (SIPP) task, conducted by the Savannah River National Laboratory (SRNL) at the Savannah River Site, was to take the several recycle streams produced in Campaign III, the third step of the task, and combine them with other simulated recycle and chosen waste streams. (Campaign III was fed recycles from Campaign II, as Campaign II was fed by Campaign I.) The combined stream was processed in a fashion that mimicked the pretreatment operations of the DOE River Protection Project--Waste Treatment and Immobilization Plant (RPP-WTP) with the exception of the Ion Exchange Process. The SIPP task is considered semi-integrated because it only deals with the pretreatment operations of the RPP-WTP. That is, the pilot plant starts by receiving waste from the tank farm and ends when waste is processed to the point of being sent for vitrification. The resulting pretreated LAW and HLW simulants produced by the SIPP were shipped to VSL (Vitreous State Laboratory) and successfully vitrified in pilot WTP melters. Within the SIPP task these steps are referred to as Campaigns and there were four Campaigns in all. Campaign I, which is completely different than other campaigns, subjected a simulant of Hanford Tank 241-AY-102/C-106 (AY102) waste to cross-flow ultrafiltration only and in that process several important recycle streams were produced as a result of washing the simulant and cleaning the cross-flow filter. These streams were fed to subsequent campaigns and that work was the subject of the issued Campaign I interim report (Duignan et al., 2004a or Appendix I-1). The streams created in Campaign I were used for Campaign II, and during Campaign II more of the same recycle streams were produced, with the addition of recycle streams created during the pilot-scale ion exchange unit operation (Duignan et al., 2004b or Appendix I-2). Campaign III used the recycles from Campaign II and was the first campaign to use all the recycle streams (Duignan et al., 2004c or Appendix I-3). The operation of each of the subsequent campaigns, i.e., II, III, and IV, while different from Campaign I, are very similar to each other, and can be best understood as the process of operating a series of Pretreatment Unit Operations in a somewhat prototypic manner. That is, while Campaign I studied the operation of a single, albeit important, Pretreatment Unit Operation, i.e., Ultrafiltration, subsequent campaigns were to study the four major unit operations that make-up the RPP-WTP Pretreatment Facility. They are: Waste Feed Evaporation Process (FEP), Ultrafiltration Process (UFP), Cesium Ion Exchange Process (CIX), and the Treated LAW Evaporation Process (TLP). Each of the campaigns operated basically as a separate subtask, but as with Campaign I, the recycle streams produced in one campaign were fed into the subsequent campaign. Therefore, all four campaigns were chemically connected through these recycle streams, which carry over effects of the preceding campaign. The results of Campaign IV operations are the subject of this fourth and final report. Separate reports were issued after each of the previous campaigns, but they were treated as interim because of being limited to the results obtained from a single campaign (or past campaigns) and further limited to only highlights of that single campaign. This final report not only discusses the Campaign IV results but compares those with the previous campaigns. Also included is a more comprehensive discussion of the overall task activities, as well as abridged versions of the full databases of the accumulated

  4. Pilot Residential Deep Energy Retrofits and the PNNL Lab Homes

    SciTech Connect (OSTI)

    Widder, Sarah H.; Chandra, Subrato; Parker, Graham B.; Sande, Susan; Blanchard, Jeremy; Stroer, Dennis; McIlvaine, Janet; Chasar, David; Beal, David; Sutherland, Karen

    2012-01-01T23:59:59.000Z

    This report summarizes research investigating the technical and economic feasibility of several pilot deep energy retrofits, or retrofits that save 30% to 50% or more on a whole-house basis while increasing comfort, durability, combustion safety, and indoor air quality. The work is being conducted for the U.S. Department of Energy Building Technologies Program as part of the Building America Program. As part of the overall program, Pacific Northwest National Laboratory (PNNL) researchers are collecting and analyzing a comprehensive dataset that describes pre- and post-retrofit energy consumption, retrofit measure cost, health and comfort impacts, and other pertinent information for each home participating in the study. The research and data collection protocol includes recruitment of candidate residences, a thorough test-in audit, home energy modeling, and generation of retrofit measure recommendations, implementation of the measures, test-out, and continued evaluation. On some homes, more detailed data will be collected to disaggregate energy-consumption information. This multi-year effort began in October 2010. To date, the PNNL team has performed test-in audits on 51 homes in the marine, cold, and hot-humid climate zones, and completed 3 retrofits in Texas, 10 in Florida, and 2 in the Pacific Northwest. Two of the retrofits are anticipated to save 50% or more in energy bills and the others - savings are in the 30% to 40% range. Fourteen other retrofits are under way in the three climate zones. Metering equipment has been installed in seven of these retrofits - three in Texas, three in Florida, and one in the Pacific Northwest. This report is an interim update, providing information on the research protocol and status of the PNNL deep energy retrofit project as of December, 2011. The report also presents key findings and lessons learned, based on the body of work to date. In addition, the report summarizes the status of the PNNL Lab Homes that are new manufactured homes procured with minimal energy-efficiency specifications typical of existing homes in the region, and sited on the PNNL campus. The Lab Homes serve as a flexible test facility (the first of its kind in the Pacific Northwest) to rapidly evaluate energy-efficient and grid-smart technologies that are applicable to residential construction.

  5. Waste Isolation Pilot Plant Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2008-03-12T23:59:59.000Z

    U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problems; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) explains the rationale and design criteria for the environmental monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document changes in the environmental monitoring program. Guidance for preparation of EMPs is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance.

  6. The DOE Water Cycle Pilot Study

    SciTech Connect (OSTI)

    Miller, N.L.; King, A.W.; Miller, M.A.; Springer, E.P.; Wesely, M.L.; Bashford, K.E.; Conrad, M.E.; Costigan, K.; Foster, P.N.; Gibbs, H.K.; Jin, J.; Klazura, J.; Lesht, B.M.; Machavaram, M.V.; Pan, F.; Song, J.; Troyan, D.; Washington-Allen, R.A.

    2003-09-20T23:59:59.000Z

    A Department of Energy (DOE) multi-laboratory Water Cycle Pilot Study (WCPS) investigated components of the local water budget at the Walnut River Watershed in Kansas to study the relative importance of various processes and to determine the feasibility of observational water budget closure. An extensive database of local meteorological time series and land surface characteristics was compiled. Numerical simulations of water budget components were generated and, to the extent possible, validated for three nested domains within the Southern Great Plains; the DOE Atmospheric Radiation Measurement/Cloud Atmospheric Radiation Testbed (ARM/CART), the Walnut River Watershed (WRW), and the Whitewater Watershed (WW), Kansas A 2-month Intensive Observation Period (IOP) was conducted to gather detailed observations relevant to specific details of the water budget, including fine-scale precipitation, streamflow, and soil moisture measurements not made routinely by other programs. Event and season al water isotope (delta 18O, delta D) sampling in rainwater, streams, soils, lakes, and wells provided a means of tracing sources and sinks within and external to the WW, WRW, and the ARM/CART domains. The WCPS measured changes in leaf area index for several vegetation types, deep groundwater variations at two wells, and meteorological variables at a number of sites in the WRW. Additional activities of the WCPS include code development toward a regional climate model with water isotope processes, soil moisture transect measurements, and water level measurements in ground water wells.

  7. INVESTIGATING SUSPENSION OF MST, CST, AND SIMULATED SLUDGE SLURRIES IN A PILOT-SCALE WASTE TANK

    SciTech Connect (OSTI)

    Poirier, M.; Qureshi, Z.; Restivo, M.; Steeper, T.; Williams, M.

    2011-05-24T23:59:59.000Z

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending and resuspending monosodium titanate (MST), crystalline silicotitanate (CST), and simulated sludge. The purpose of this pilot scale testing is for the pumps to resuspend the MST, CST, and simulated sludge particles so that they can be removed from the tank, and to suspend the MST so it can contact strontium and actinides. The pilot-scale tank is a 1/10.85 linear scaled model of Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX program (Risers B5, B3, and B1). Previous testing showed that three Submersible Mixer Pumps (SMPs) will provide sufficient power to initially suspend MST in an SRS waste tank, and to resuspend MST that has settled in a waste tank at nominal 45 C for four weeks. The conclusions from this analysis are: (1) Three SMPs will be able to resuspend more than 99.9% of the MST and CST that has settled for four weeks at nominal 45 C. The testing shows the required pump discharge velocity is 84% of the maximum discharge velocity of the pump. (2) Three SMPs will be able to resuspend more than 99.9% of the MST, CST, and simulated sludge that has settled for four weeks at nominal 45 C. The testing shows the required pump discharge velocity is 82% of the maximum discharge velocity of the pump. (3) A contact time of 6-12 hours is needed for strontium sorption by MST in a jet mixed tank with cooling coils, which is consistent with bench-scale testing and actinide removal process (ARP) operation.

  8. A PILOT FOR A VERY LARGE ARRAY H I DEEP FIELD

    SciTech Connect (OSTI)

    Fernandez, Ximena; Van Gorkom, J. H.; Schiminovich, David [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Hess, Kelley M. [Department of Astronomy, Astrophysics, Cosmology and Gravity Centre, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Pisano, D. J. [Department of Physics, West Virginia University, P.O. Box 6315, Morgantown, WV 26506 (United States); Kreckel, Kathryn [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Momjian, Emmanuel [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Popping, Attila [International Centre for Radio Astronomy Research (ICRAR), The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 (Australia); Oosterloo, Tom [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, NL-7990 AA Dwingeloo (Netherlands); Chomiuk, Laura [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Verheijen, M. A. W. [Kapteyn Astronomical Institute, University of Groningen, Postbus 800, NL-9700 AV Groningen (Netherlands); Henning, Patricia A. [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Bershady, Matthew A.; Wilcots, Eric M. [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States); Scoville, Nick, E-mail: ximena@astro.columbia.edu [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States)

    2013-06-20T23:59:59.000Z

    High-resolution 21 cm H I deep fields provide spatially and kinematically resolved images of neutral hydrogen at different redshifts, which are key to understanding galaxy evolution across cosmic time and testing predictions of cosmological simulations. Here we present results from a pilot for an H I deep field done with the Karl G. Jansky Very Large Array (VLA). We take advantage of the newly expanded capabilities of the telescope to probe the redshift interval 0 < z < 0.193 in one observation. We observe the COSMOS field for 50 hr, which contains 413 galaxies with optical spectroscopic redshifts in the imaged field of 34' Multiplication-Sign 34' and the observed redshift interval. We have detected neutral hydrogen gas in 33 galaxies in different environments spanning the probed redshift range, including three without a previously known spectroscopic redshift. The detections have a range of H I and stellar masses, indicating the diversity of galaxies we are probing. We discuss the observations, data reduction, results, and highlight interesting detections. We find that the VLA's B-array is the ideal configuration for H I deep fields since its long spacings mitigate radio frequency interference. This pilot shows that the VLA is ready to carry out such a survey, and serves as a test for future H I deep fields planned with other Square Kilometer Array pathfinders.

  9. International Safeguards Technology and Policy Education and Training Pilot Programs

    SciTech Connect (OSTI)

    Dreicer, M; Anzelon, G A; Essner, J T; Dougan, A D; Doyle, J; Boyer, B; Hypes, P; Sokava, E; Wehling, F; Martin, J; Charlton, W

    2009-06-16T23:59:59.000Z

    A major focus of the National Nuclear Security Administration-led Next Generation Safeguards Initiative (NGSI) is the development of human capital to meet present and future challenges to the safeguards regime. An effective university-level education in safeguards and related disciplines is an essential element in a layered strategy to rebuild the safeguards human resource capacity. NNSA launched two pilot programs in 2008 to develop university level courses and internships in association with James, Martin Center for Nonproliferation Studies (CNS) at the Monterey Institute of International Studies (MIIS) and Texas A&M University (TAMU). These pilot efforts involved 44 students in total and were closely linked to hands-on internships at Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL). The Safeguards and Nuclear Material Management pilot program was a collaboration between TAMU, LANL, and LLNL. The LANL-based coursework was shared with the students undertaking internships at LLNL via video teleconferencing. A weeklong hands-on exercise was also conducted at LANL. A second pilot effort, the International Nuclear Safeguards Policy and Information Analysis pilot program was implemented at MIIS in cooperation with LLNL. Speakers from MIIS, LLNL, and other U.S. national laboratories (LANL, BNL) delivered lectures for the audience of 16 students. The majority of students were senior classmen or new master's degree graduates from MIIS specializing in nonproliferation policy studies. The two pilots programs concluded with an NGSI Summer Student Symposium, held at LLNL, where 20 students participated in LLNL facility tours and poster sessions. The value of bringing together the students from the technical and policy pilots was notable and will factor into the planning for the continued refinement of the two programs in the coming years.

  10. Pilot-scale evaluation of chemical oxidation for MTBE-contaminated soil

    SciTech Connect (OSTI)

    Rahman, M.; Schupp, D.A.; Krishnan, E.R.; Tafuri, A.N.; Chen, C.T.

    1999-07-01T23:59:59.000Z

    The US Environmental Protection Agency (USEPA) has tentatively classified MTBE as a possible human carcinogen, thus further emphasizing the importance for study of fate, transport, and environmental effects of MTBE. The treatment of subsurface contaminants (e.g., MTBE) from leaking underground storage tank (LUST) sites presents many complex challenges. Many techniques have been employed for the remediation of contaminants in soil and groundwater at LUST sites. Under sponsorship of US EPA's National Risk Management Research Laboratory, IT Corporation has conducted evaluations of chemical oxidation of MTBE contaminated soil using Fenton's Reagent (hydrogen peroxide catalyzed by ferrous sulfate), simulating both ex-situ and in-situ soil remediation. Bench-scale ex-situ tests have shown up to 90% degradation of MTBE within 12 hours. Pilot-scale MTBE oxidation tests were conducted in a stainless paddle-type mixer with a 10 cubic foot mixing volume. The reactor was designed with a heavy duty mixer shaft assembly to homogenize soil and included provisions for contaminant and reagent addition, mixing, and sample acquisition. The tests were performed by placing 400 pounds of a synthetic soil matrix (consisting of a mixture of top soil, sand, gravel and clay) in the reactor, spiking with 20 ppm of MTBE, and mixing thoroughly. The variables evaluated in the pilot-scale tests included reaction time, amount of hydrogen peroxide, and amount of ferrous sulfate. After 8 hours of reaction, using 4 times the stoichiometric quantity of hydrogen peroxide and a 10:1 hydrogen peroxide: ferrous iron weight ratio, approximately 60% MTBE degradation was observed. When 10 times the stoichiometric quantity of hydrogen peroxide was used (with the same ratio of hydrogen peroxide to ferrous iron), 90% MTBE degradation was observed. When the same test was performed without any ferrous iron addition, 75% MTBE degradation was observed.

  11. Electric Power Research Institute, High Sulfur Test Center report to the Steering Committee, March 1994. [Monthly report

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    Operations and maintenance continued this month at the Electric Power Research Institute`s High Sulfur Test Center. The Suncor Limestone Reagent and Dewatering tests were completed on the Pilot unit this month. As this test block ended, the Pilot unit was modified for the High Velocity Scrubbing tests. This testing began on March 28, 1994 with test PHV-AN. As Phase II of the Mini-Pilot Clear Liquor Scrubbing test block was completed this month, the unit was taken off-line. Testing on the Cold-Side Selective Catalytic Reduction (SCR) unit continued this month as ammonia slip measurements were conducted. Catalyst material from the reactor was inspected and sampled during a scheduled outage this month in preparation for a low temperature test block.

  12. Waste Isolation Pilot Plant Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2004-02-19T23:59:59.000Z

    U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problem; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) has been written to contain the rationale and design criteria for the monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document any proposed changes in the environmental monitoring program. Guidance for preparation of Environmental Monitoring Plans is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance. The plan will be effective when it is approved by the appropriate Head of Field Organization or their designee. The plan discusses major environmental monitoring and hydrology activities at the WIPP and describes the programs established to ensure that WIPP operations do not have detrimental effects on the environment. This EMP is to be reviewed annually and updated every three years unless otherwise requested by the DOE or contractor.

  13. A 12-MW-scale pilot study of in-duct scrubbing (IDS) using a rotary atomizer

    SciTech Connect (OSTI)

    Samuel, E.A.; Murphy, K.R.; Demian, A.

    1989-11-01T23:59:59.000Z

    A low-cost, moderate-removal efficiency, flue gas desulfurization (FGD) technology was selected by the US Department of Energy for pilot demonstration in its Acid Rain Precursor Control Technology Initiative. The process, identified as In-Duct Scrubbing (IDS), applies rotary atomizer techniques developed for lime-based spray dryer FGD while utilizing existing flue gas ductwork and particulate collectors. IDS technology is anticipated to result in a dry desulfurization process with a moderate removal efficiency (50% or greater) for high-sulfur coal-fired boilers. The critical elements for successful application are: (1) adequate mixing of sorbent droplets with flue gas for efficient reaction contact, (2) sufficient residence time to produce a non-wetting product, and (3) appropriate ductwork cross-sectional area to prevent deposition of wet reaction products before particle drying is comple. The ductwork in many older plants, previously modified to meet 1970 Clean Air Act requirements for particulate control, usually meet these criteria. A 12 MW-scale IDS pilot plant was constructed at the Muskingum River Plant of the American Electric Power System. The pilot plant, which operates from a slipstrem attached to the air-preheater outlet duct from the Unit 5 boiler at the Muskingum River Plant (which burns about 4% sulfur coal), is equipped with three atomizer stations to test the IDS concept in vertical and horizontal configurations. In addition, the pilot plant is equipped to test the effect of injecting IDS off- product upstream of the atomizer, on SO{sub 2}and NO{sub x} removals.

  14. ZeaChem Pilot Project: High-Yield Hybrid Cellulosic Ethanol Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ZeaChem Pilot Project: High-Yield Hybrid Cellulosic Ethanol Process Using High-Impact Feedstock for Commercialization ZeaChem Pilot Project: High-Yield Hybrid Cellulosic Ethanol...

  15. Experiments and a model of pilot system failure detection during simulated Lunar landing

    E-Print Network [OSTI]

    Kaderka, Justin David

    2014-01-01T23:59:59.000Z

    Future complex systems, such as those found in piloted aircraft and spacecraft, will undoubtedly utilize significant automation to enhance pilot capabilities and enable novel mission scenarios. Off-nominal conditions may ...

  16. Pilot-Scale Demonstration of ALTA for NOx Control in Pulverized Coal-Fired Boilers

    SciTech Connect (OSTI)

    Andrew Fry; Devin Davis; Marc Cremer; Bradley Adams

    2008-04-30T23:59:59.000Z

    This report describes computational fluid dynamics (CFD) modeling and pilot-scale testing conducted to demonstrate the ability of the Advanced Layered Technology Approach (ALTA) to reduce NO{sub x} emissions in a pulverized coal (PC) boiler. Testing specifically focused on characterizing NO{sub x} behavior with deep burner staging combined with Rich Reagent Injection (RRI). Tests were performed in a 4 MBtu/hr pilot-scale furnace at the University of Utah. Reaction Engineering International (REI) led the project team which included the University of Utah and Combustion Components Associates (CCA). Deep burner staging and RRI, combined with selective non-catalytic reduction (SNCR), make up the Advanced Layered Technology Approach (ALTA) for NO{sub x} reduction. The application of ALTA in a PC environment requires homogenization and rapid reaction of post-burner combustion gases and has not been successfully demonstrated in the past. Operation of the existing low-NO{sub x} burner and design and operation of an application specific ALTA burner was guided by CFD modeling conducted by REI. Parametric pilot-scale testing proved the chemistry of RRI in a PC environment with a NOx reduction of 79% at long residence times and high baseline NOx rate. At representative particle residence times, typical operation of the dual-register low-NO{sub x} burner provided an environment that was unsuitable for NO{sub x} reduction by RRI, showing no NOx reduction. With RRI, the ALTA burner was able to produce NO{sub x} emissions 20% lower than the low-NO{sub x} burner, 76 ppmv vs. 94 ppmv, at a burner stoichiometric ratio (BSR) of 0.7 and a normalized stoichiometric ratio (NSR) of 2.0. CFD modeling was used to investigate the application of RRI for NO{sub x} control on a 180 MW{sub e} wall-fired, PC boiler. A NO{sub x} reduction of 37% from baseline (normal operation) was predicted using ALTA burners with RRI to produce a NO{sub x} emission rate of 0.185 lb/MBtu at the horizontal nose of the boiler. When combined with SNCR, a NO{sub x} emission rate of 0.12-0.14 lb/MBtu can be expected when implementing a full ALTA system on this unit. Cost effectiveness of the full ALTA system was estimated at $2,152/ton NO{sub x} removed; this was less than 75% of the cost estimated for an SCR system on a unit of this size.

  17. Model Test Setup and Program for Experimental Estimation of Surface Loads of the SSG Kvitsy

    E-Print Network [OSTI]

    Model Test Setup and Program for Experimental Estimation of Surface Loads of the SSG Kvitsřy Pilot Engineering No. 32 ISSN: 1603-9874 Model Test Setup and Program for Experimental Estimation of Surface Loads University October, 2005 #12;#12;Preface This report presents the preparations done prior to model tests

  18. Basic data report for drillholes at the H-11 complex (Waste Isolation Pilot Plant-WIPP)

    SciTech Connect (OSTI)

    Mercer, J.W. (Sandia National Labs., Albuquerque, NM (USA)); Snyder, R.P. (Geological Survey, Denver, CO (USA))

    1990-05-01T23:59:59.000Z

    Drillholes H-11b1, H-11b2, and H-11b3 were drilled from August to December 1983 for site characterization and hydrologic studies of the Culebra Dolomite Member of the Upper Permian Rustler Formation at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico. In October 1984, the three wells were subjected to a series of pumping tests designed to develop the wells, provide information on hydraulic communication between the wells, provide hydraulic properties information, and to obtain water samples for quality of water measurements. Based on these tests, it was determined that this location would provide an excellent pad to conduct a convergent-flow non-sorbing tracer test in the Culebra dolomite. In 1988, a fourth hole (H-11b4) was drilled at this complex to provide a tracer-injection hole for the H-11 convergent-flow tracer test and to provide an additional point at which the hydraulic response of the Culebra H-11 multipad pumping test could be monitored. A suite of geophysical logs was run on the drillholes and was used to identify different lithologies and aided in interpretation of the hydraulic tests. 4 refs., 6 figs., 6 tabs.

  19. Einstein/MMC CFAR Awarded Pilot Projects for 2006 Dr. Matthew Anderson, Department of

    E-Print Network [OSTI]

    Yates, Andrew

    Einstein/MMC CFAR Awarded Pilot Projects for 2006 PI Title Dr. Matthew Anderson, Department retention of gp160 Einstein/MMC CFAR Awarded Pilot Projects for 2005 PI Title Dr. Carol Harris, Department Einstein/MMC CFAR Awarded Pilot Projects for 2004 PI Title Dr. Laura Santambrogio, Department of Pathology

  20. Asset-building Initiatives in Peru and Colombia: Pilot Study and Directions

    E-Print Network [OSTI]

    Subramanian, Venkat

    Asset-building Initiatives in Peru and Colombia: Pilot Study and Directions By Yves Moury 2006-building pilot initiatives have begun in Southern Peru and one is soon to be approved in Colombia. In rural Peru in Peru and Colombia. The first, a six-year asset-building pilot program, is now underway in southern Peru

  1. Pilot-scale study of the solar detoxification of VOC-contaminated groundwater

    SciTech Connect (OSTI)

    Mehos, M.; Turchi, C. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Pacheco, J. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Boegel, A.J.; Merrill, T.; Stanley, R. [Lawrence Livermore National Lab., CA (United States)] [Lawrence Livermore National Lab., CA (United States)

    1992-08-01T23:59:59.000Z

    The Solar Detoxification Field Experiment was designed to investigate the photocatalytic decomposition of organic contaminants in groundwater at a Superfund site at Lawrence Livermore National Laboratory (LLNL). The process uses ultraviolet (UV) energy, available in sunlight, in conjunction with the photocatalyst, titanium dioxide, to decompose organic chemicals into nontoxic compounds. The field experiment was developed by three federal laboratories: the National Renewable Energy Laboratory (NREL), Sandia National Laboratory (SNLA), and LLNL. The US Department of Energy funded the experiment. The objectives of the pilot-scale study included the advancement of the solar technology into a nonlaboratory waste-remediation environment the compilation of test data to help guide laboratory research and future demonstrations and the development of safe operational procedures. Results of the pilot study are discussed, emphasizing the effect of several process variables on the system performance. These variables include alkalinity, catalyst loading, flow velocity through the reactor, and incident solar UV radiation. The performance of the solar detoxification process are discussed as it relates to concentrating and nonconcentrating collectors.

  2. Developing a monitoring and verification plan with reference to the Australian Otway CO2 pilot project

    SciTech Connect (OSTI)

    Dodds, K.; Daley, T.; Freifeld, B.; Urosevic, M.; Kepic, A.; Sharma, S.

    2009-05-01T23:59:59.000Z

    The Australian Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) is currently injecting 100,000 tons of CO{sub 2} in a large-scale test of storage technology in a pilot project in southeastern Australia called the CO2CRC Otway Project. The Otway Basin, with its natural CO{sub 2} accumulations and many depleted gas fields, offers an appropriate site for such a pilot project. An 80% CO{sub 2} stream is produced from a well (Buttress) near the depleted gas reservoir (Naylor) used for storage (Figure 1). The goal of this project is to demonstrate that CO{sub 2} can be safely transported, stored underground, and its behavior tracked and monitored. The monitoring and verification framework has been developed to monitor for the presence and behavior of CO{sub 2} in the subsurface reservoir, near surface, and atmosphere. This monitoring framework addresses areas, identified by a rigorous risk assessment, to verify conformance to clearly identifiable performance criteria. These criteria have been agreed with the regulatory authorities to manage the project through all phases addressing responsibilities, liabilities, and to assure the public of safe storage.

  3. Field tests of a small instrumented pile

    E-Print Network [OSTI]

    Korb, Kenneth Wayne

    1969-01-01T23:59:59.000Z

    The Pilot. Hole Installation of tbe Smail Pile Dynamic Test Procedure Static Test Procedure 23 24 2S 28 29 30 30 V ANALYSIS OF TIP DAKPING DATA Fine-Grained Soils Coarse-Grained Soils 34 40 VI ANAI YSIS OF FRICTION DAIiPING DATA Fine... Friction Damping Data for. Fine-Grained Soils 41 Friction Damping Constants from Modified Smith Model 48 VT Friction Damping Data for Coarse-Grained Soils 51 VII /nake Data from Field Test Program VIII Load Distribution Data 57 62 viii LISi...

  4. Childhood Lead Poisoning Prevention Program Community Awareness Pilot

    E-Print Network [OSTI]

    Childhood Lead Poisoning Prevention Program Community Awareness Pilot #12;1 THE GOOD NEWS- Exposure to Lead is Preventable Lead Poisoning Is a REAL Problem; Did You Know? Lead is a highly toxic substance the effects of lead poisoning, but lead poisoning is much more frequent in children than in adults. For many

  5. Grid Computing Workloads: Bags of Tasks, Workflows, Pilots, and Others

    E-Print Network [OSTI]

    Iosup, Alexandru

    1 Grid Computing Workloads: Bags of Tasks, Workflows, Pilots, and Others Alexandru Iosup and Dick, the Netherlands Contact info: A.Iosup@tudelft.nl, D.H.J.Epema@tudelft.nl Abstract--In the mid 1990s, the grid computing com- munity promised the "compute power grid," a utility com- puting infrastructure for scientists

  6. Residential Load Management Program and Pilot

    E-Print Network [OSTI]

    Haverlah, D.; Riordon, K.

    1994-01-01T23:59:59.000Z

    was suspended in 1989 because of defects with the cycling switch printed circuit boards. While these problems were corrected in 1989 and 1990, it was decided to leave the program on hold and conduct engineering tests to determine program impacts. In addition...

  7. MINNESOTA ROAD FEE TEST MILEAGE BASED USER FEE RATE

    E-Print Network [OSTI]

    Minnesota, University of

    Policy Center Oregon Road User Fee Pilot Program Other Interest: Nevada, Texas, Ohio, Idaho, etc. May Cellular Tower Data Warehouse May 24, 2012 6 #12;Determination of Mileage Fees · MBUF Rate StructureMINNESOTA ROAD FEE TEST MILEAGE BASED USER FEE RATE STRUCTURE CONCEPT 23rd Annual Transportation

  8. Novel Clinical and Translational Methodologies Pilot Projects The objective of the Novel Clinical and Translational Methodologies Pilot Projects is to

    E-Print Network [OSTI]

    Krovi, Venkat

    Novel Clinical and Translational Methodologies Pilot Projects The objective of the Novel Clinical to perform clinical and translational research. The scope of projects could include new measurement cost-effectiveness, new approaches to clinical trial design and analysis of clinical research, clinical

  9. Software/firmware design specification for 10-MWe solar-thermal central-receiver pilot plant

    SciTech Connect (OSTI)

    Ladewig, T.D.

    1981-03-01T23:59:59.000Z

    The software and firmware employed for the operation of the Barstow Solar Pilot Plant are completely described. The systems allow operator control of up to 2048 heliostats, and include the capability of operator-commanded control, graphic displays, status displays, alarm generation, system redundancy, and interfaces to the Operational Control System, the Data Acquisition System, and the Beam Characterization System. The requirements are decomposed into eleven software modules for execution in the Heliostat Array Controller computer, one firmware module for execution in the Heliostat Field Controller microprocessor, and one firmware module for execution in the Heliostat Controller microprocessor. The design of the modules to satisfy requirements, the interfaces between the computers, the software system structure, and the computers in which the software and firmware will execute are detailed. The testing sequence for validation of the software/firmware is described. (LEW)

  10. Energy Efficiency Investments in Public Facilities - Developing a Pilot Mechanism for Energy Performance Contracts (EPCs) in Russia

    SciTech Connect (OSTI)

    Evans, Meredydd; Roshchanka, Volha; Parker, Steven A.; Baranovskiy, Aleksandr

    2012-02-01T23:59:59.000Z

    : Russian public sector buildings tend to be very inefficient, which creates vast opportunities for savings. This report overviews the latest developments in the Russian legislation related to energy efficiency in the public sector, describes the major challenges the regulations pose, and proposes ways to overcome these challenges. Given Russia’s limited experience with energy performance contracts (EPCs), a pilot project can help test an implementation mechanism. This paper discusses how EPCs and other mechanisms can help harness energy savings opportunities in Russia in general, and thus, can be applicable to any Russian region.

  11. Decision support for the general aviation pilot

    E-Print Network [OSTI]

    Alcorn, W. P.; Lee, K. A.; Ward, D. T.; Trang, J. A.; Krishnamurthy, K.; Crump, J. W.; Branham, P. A.; Woo, D. L. Y.; Ren-Jye Yu; Robbins, A. C.; Painter, John H.; Kelly, W. E. III

    1997-10-12T23:59:59.000Z

    years, encouraging the FAA to predict a growth in the active aircraft fleet of over 15,000 units between 1996 and 2008 [3]. But this rosy growth pattern is based on a number of assumptions, and the report warns, ?...the actual rate of growth... is necessary for flight certification. The flight test evaluation to be flown this Fall is the final step in system evolution before it goes into the FAA certification, the last step in transforming this prototype software into a commercial product...

  12. Advanced Instrumentation, Information and Control (II&C) Research and Development Facility Buildout and Project Execution of LWRS II&C Pilot Projects 1 and 3

    SciTech Connect (OSTI)

    Ronald Farris; Johanna Oxstrand; Gregory Weatherby

    2011-09-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) is sponsoring research, development, and deployment on light water reactor sustainability (LWRS), in which the Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe operational life extension of current reactors. As technologies are introduced that change the operation of the plant, the LWRS pilot projects can help identify their best-advanced uses and help demonstrate the safety of these technologies. In early testing of operator performance given these emerging technologies will ensure the safety and usability of systems prior to large-scale deployment and costly verification and validation at the plant. The aim of these collaborations, demonstrations, and approaches are intended to lessen the inertia that sustains the current status quo of today's II&C systems technology, and to motivate transformational change and a shift in strategy to a long-term approach to II&C modernization that is more sustainable. Research being conducted under Pilot Project 1 regards understanding the conditions and behaviors that can be modified, either through process improvements and/or technology deployment, to improve the overall safety and efficiency of outage control at nuclear facilities. The key component of the research in this pilot project is accessing the delivery of information that will allow researchers to simulate the control room, outage control center (OCC) information, and plant status data. The simulation also allows researchers to identify areas of opportunity where plant operating status and outage activities can be analyzed to increase overall plant efficiency. For Pilot Project 3 the desire is to demonstrate the ability of technology deployment and the subsequent impact on maximizing the 'Collective Situational Awareness' of the various stakeholders in a commercial nuclear power plant. Specifically, the desire is to show positive results in plant status control, information management, knowledge management, and 'Real-Time-Truth' as it relates to the current plant conditions. The following report includes two attachments; each attachment represents Pilot Project 1 and 3. The two attachments also provide a report on two distinct milestones that were completed and are described below: M3L11IN06030307 - Complete initiation of two pilot projects Complete initiation of pilot projects on real-time configuration management and control to overcome limitations with existing permanent instrumentation and real-time awareness of plant configurations; two candidate projects that consider low-cost wireless technology for in situ configuration monitoring and candidate technologies and an information architecture for outage management and control will be initiated with utilities. M3L11IN06030309 - Complete data collection, R&D plans, and agreements needed to conduct the two pilot projects Complete data collection conducted at pilot project utilities to support real-time configuration management and outage control center pilot studies conducted; R&D plan for pilot projects produced and needed agreements established to support R&D activities.

  13. The pilot way to Grid resources using glideinWMS

    SciTech Connect (OSTI)

    Sfiligoi, Igor; /Fermilab; Bradley, Daniel C.; /Wisconsin U., Madison; Holzman, Burt; Mhashilkar, Parag; /Fermilab; Padhi, Sanjay; Wurthwrin, Frank; /UC, San Diego

    2010-09-01T23:59:59.000Z

    Grid computing has become very popular in big and widespread scientific communities with high computing demands, like high energy physics. Computing resources are being distributed over many independent sites with only a thin layer of Grid middleware shared between them. This deployment model has proven to be very convenient for computing resource providers, but has introduced several problems for the users of the system, the three major being the complexity of job scheduling, the nonuniformity of computer resources, and the lack of good job monitoring. Pilot jobs address all the above problems by creating a virtual private computing pool on top of Grid resources. This paper presents both the general pilot concept, as well as a concrete implementation, called glideinWMS, deployed in the Open Science Grid.

  14. Conceptual design of a black liquor gasification pilot plant

    SciTech Connect (OSTI)

    Kelleher, E. G.

    1987-08-01T23:59:59.000Z

    In July 1985, Champion International completed a study of kraft black liquor gasification and use of the product gases in a combined cycle cogeneration system based on gas turbines. That study indicated that gasification had high potential as an alternative to recovery boiler technology and offered many advantages. This paper describes the design of the plant, the construction of the pilot plant, and finally presents data from operation of the plant.

  15. myPower Pricing Pilot Final Findings myPower Pricing Pilot Segments

    E-Print Network [OSTI]

    Understand how price signals can influence customers' energy usage patterns. Test customers' reaction that transferred energy pricing and interval consumption data to and from the customer's meter. To try multiple-way communications to transfer energy pricing and interval consumption data and allowed PSE&G to test customer

  16. Fuel control for gas turbine with continuous pilot flame

    DOE Patents [OSTI]

    Swick, Robert M. (Indianapolis, IN)

    1983-01-01T23:59:59.000Z

    An improved fuel control for a gas turbine engine having a continuous pilot flame and a fuel distribution system including a pump drawing fuel from a source and supplying a line to the main fuel nozzle of the engine, the improvement being a control loop between the pump outlet and the pump inlet to bypass fuel, an electronically controlled throttle valve to restrict flow in the control loop when main nozzle demand exists and to permit substantially unrestricted flow without main nozzle demand, a minimum flow valve in the control loop downstream of the throttle valve to maintain a minimum pressure in the loop ahead of the flow valve, a branch tube from the pilot flame nozzle to the control loop between the throttle valve and the minimum flow valve, an orifice in the branch tube, and a feedback tube from the branch tube downstream of the orifice to the minimum flow valve, the minimum flow valve being operative to maintain a substantially constant pressure differential across the orifice to maintain constant fuel flow to the pilot flame nozzle.

  17. Arsenic pilot plant operation and results:Weatherford, Oklahoma.

    SciTech Connect (OSTI)

    Aragon, Malynda Jo; Arora, H. (Narasimhan Consulting Services Inc., Phoenix, Arizona); Karori, Saqib (Narasimhan Consulting Services Inc., Phoenix, Arizona); Pathan, Sakib (Narasimhan Consulting Services Inc., Phoenix, Arizona)

    2007-05-01T23:59:59.000Z

    Narasimhan Consulting Services, Inc. (NCS), under a contract with the Sandia National Laboratories (SNL), designed and operated pilot scale evaluations of the adsorption and coagulation/filtration treatment technologies aimed at meeting the recently revised arsenic maximum contaminant level (MCL) for drinking water. The standard of 10 {micro}g/L (10 ppb) is effective as of January 2006. The pilot demonstration is a project of the Arsenic Water Technology Partnership program, a partnership between the American Water Works Association Research Foundation (AwwaRF), SNL and WERC (A Consortium for Environmental Education and Technology Development). The pilot evaluation was conducted at Well 30 of the City of Weatherford, OK, which supplies drinking water to a population of more than 10,400. Well water contained arsenic in the range of 16 to 29 ppb during the study. Four commercially available adsorption media were evaluated side by side for a period of three months. Both adsorption and coagulation/filtration effectively reduced arsenic from Well No.30. A preliminary economic analysis indicated that adsorption using an iron oxide media was more cost effective than the coagulation/ filtration technology.

  18. The Science Case for PILOT I: Summary and Overview

    E-Print Network [OSTI]

    Lawrence, J S; Bailey, J; Navascues, D Barrado y; Bedding, T; Bland-Hawthorn, J; Bond, I; Boulanger, F; Bouwens, R; Bruntt, H; Bunker, A; Burgarella, D; Burton, M G; Busso, M; Coward, D; Cioni, M -R; Durand, G; Eiroa, C; Epchtein, N; Gehrels, N; Gillingham, P; Glazebrook, K; Haynes, R; Kiss, L; Lagage, P O; Bertre, T Le; MacKay, C; Maillard, J P; McGrath, A; Minier, V; Mora, A; Olsen, K; Persi, P; Pimbblet, K; Quimby, R; Saunders, W; Schmidt, B; Stello, D; Storey, J W V; Tinney, C; Tremblin, P; Wheeler, J C; Yoc, P

    2009-01-01T23:59:59.000Z

    PILOT (the Pathfinder for an International Large Optical Telescope) is a proposed 2.5 m optical/infrared telescope to be located at Dome C on the Antarctic plateau. Conditions at Dome C are known to be exceptional for astronomy. The seeing (above ~30 m height), coherence time, and isoplanatic angle are all twice s good as at typical mid-latitude sites, while the water-vapour column, and the atmosphere and telescope thermal emission are all an order of magnitude better. These conditions enable a unique scientific capability for PILOT, which is addressed in this series of papers. The current paper presents an overview of the optical and instrumentation suite for PILO and its expected performance, a summary of the key science goals and observational approach for the facility, a discussion of the synergies between the science goals for PILOT and other telescopes, and a discussion of the future of Antarctic astronomy. Paper II and Paper III present details of the science projects divided, respectively, between the...

  19. IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM-PHASE I

    SciTech Connect (OSTI)

    Ted Bestor

    2003-03-04T23:59:59.000Z

    This report documents the first year's effort towards a 3-year program to develop micropilot ignition systems for existing pipeline compressor engines. In essence, all Phase I goals and objectives were met. We intend to proceed with the Phase II research plan, as set forth by the applicable Research Management Plan. The objective for Phase I was to demonstrate the feasibility of micropilot ignition for large bore, slow speed engines operating at low compression ratios. The primary elements of Micropilot Phase I were to develop a single-cylinder test chamber to study the injection of pilot fuel into a combustion cylinder and to develop, install and test a multi-cylinder micropilot ignition system for a 4-cylinder, natural gas test engine. In all, there were twelve (12) tasks defined and executed to support these two (2) primarily elements in a stepwise fashion. Task-specific approaches and results are documented in this report. Research activities for Micropilot Phase I were conducted with the understanding that the efforts are expected to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. An extensive state-of-art review was conducted to leverage the existing body of knowledge of micropilot ignition with respect to retrofit applications. Additionally, commercially-available fuel injection products were identified and applied to the program where appropriate. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. The four-cylinder prototype data was encouraging for the micro-pilot ignition technology when compared to spark ignition. Initial testing results showed: (1) Brake specific fuel consumption of natural gas was improved from standard spark ignition across the map, 1% at full load and 5% at 70% load. (2) 0% misfires for all points on micropilot ignition. Fuel savings were most likely due to this percent misfire improvement. (3) THC (Total Hydrocarbon) emissions were improved significantly at light load, 38% at 70% load. (4) VOC (Volatile Organic Compounds) emissions were improved above 80% load. (5) Coefficient of Variance for the IMEP (Indicated Mean Effective Pressure) was significantly less at lower loads, 76% less at 70%. These preliminary results will be substantiated and enhanced during Phase II of the Micropilot Ignition program.

  20. Waste Isolation Pilot Plant (WIPP) fact sheet

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    Pursuant to the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (RCRA), as amended (42 USC 6901, et seq.), and the New Mexico Hazardous Waste Act (Section 74-4-1 et seq., NMSA 1978), Permit is issued to the owner and operator of the US DOE, WIPP site (hereafter called the Permittee(s)) to operate a hazardous waste storage facility consisting of a container storage unit (Waste Handling Building) and two Subpart X miscellaneous below-ground storage units (Bin Scale Test Rooms 1 and 3), all are located at the above location. The Permittee must comply with all terms and conditions of this Permit. This Permit consists of the conditions contained herein, including the attachments. Applicable regulations cited are the New Mexico Hazardous Waste Management Regulations, as amended 1992 (HWMR-7), the regulations that are in effect on the date of permit issuance. This Permit shall become effective upon issuance by the Secretary of the New Mexico Environment Department and shall be in effect for a period of ten (10) years from issuance. This Permit is also based on the assumption that all information contained in the Permit application and the administrative record is accurate and that the activity will be conducted as specified in the application and the administrative record. The Permit application consists of Revision 3, as well as associated attachments and clarifying information submitted on January 25, 1993, and May 17, 1993.

  1. Aerogel commercialization pilot project. Final program report

    SciTech Connect (OSTI)

    NONE

    1996-02-13T23:59:59.000Z

    Aerogels are extremely light weight, high surface area, very insulative materials that offer many potential improvements to commercial products. Aerogels have been the subject of extensive research at Department of Energy Laboratories and have been considered one of the technology most ready for commercialization. However, commercialization of the technology had been difficult for the National Laboratories since end users were not interested in the high temperature and high pressure chemical processes involved in manufacturing the raw material. Whereas, Aerojet as a supplier of rocket fuels, specialty chemicals and materials had the manufacturing facilities and experience to commercially produce aerogel-type products. Hence the TRP provided a link between the technology source (National Laboratories), the manufacturing (Aerojet) and the potential end users (other TRP partners). The program successfully produced approximately 500 ft{sup 2} of organic aerogel but failed to make significant quantities of silica aerogel. It is significant that this production represents both the largest volume and biggest pieces of organic aerogel ever produced. Aerogels, available from this program, when tested in several prototype commercial products were expected to improve the products performance, but higher than expected projected production costs for large scale manufacture of aerogels has limited continued commercial interest from these partners. Aerogels do, however, offer potential as a specialty material for some high value technology and defense products.

  2. Five megawatt pilot-scale demonstration of the NOXSO Process at Ohio Edison`s Toronto Power Plant

    SciTech Connect (OSTI)

    Haslbeck, J.L.; Woods, M.C.; Ma, W.T.; Harkins, S.M.; Black, J.B.; Browning, J.P.; Leonard, C.A.; Friedrich, J.J. [NOXSO Corp., Bethel Park, PA (United States)

    1995-12-31T23:59:59.000Z

    The NOXSO Process is a dry, regenerable flue gas treatment system that simultaneously removes sulfur oxides (SO{sub 2}, SO{sub 3}) and nitrogen oxides (NO{sub x}) from flue gas. Removal efficiencies of 95+% SO{sub 2}, 99% SO{sub 3}, and 80--90% NO{sub x} have been achieved. The process generates no waste. Sulfur oxides are converted to a marketable byproduct, either sulfuric acid, liquid SO{sub 2}, or elemental sulfur. Nitrogen oxides are converted to nitrogen and oxygen which are released to the atmosphere. The process is easily retrofit and is particularly applicable to high sulfur coals. Most importantly, the NOXSO Process capital and operating costs are less than conventional technology, i.e., a selective catalytic reduction unit followed by a wet scrubber. This paper covers the results of a 5 MW pilot test of the NOXSO Process at Ohio Edison`s Toronto Power Plant. The paper focuses on process design improvements that were verified in pilot plant testing. These improvements are in the area of increased pollutant removal efficiency and decreased capital and operating costs. The paper concludes with an analysis of the cost and performance of a NOXSO plant treating all of the flue gas from a 500 MW power plant burning 2.8% sulfur coal.

  3. BIOENERGY AND BIOFUELS Performance of a pilot-scale continuous flow microbial

    E-Print Network [OSTI]

    BIOENERGY AND BIOFUELS Performance of a pilot-scale continuous flow microbial electrolysis cell fed performance. Keywords Biohydrogen . Biomethane . Bioelectricity. Microbial electrolysis cell . Bioenergy

  4. Voluntary Protection Program Onsite Review, Waste Isolation Pilot Plant- February 2009

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Waste Isolation Pilot Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

  5. From Hydrogen Fuel Cells to High-Altitude-Pilot Protection Suits...

    Energy Savers [EERE]

    From Hydrogen Fuel Cells to High-Altitude-Pilot Protection Suits- Mound Science and Energy Museum Programs Cover a Wide Range of Topics From Hydrogen Fuel Cells to...

  6. Voluntary Protection Program Onsite Review, Waste Isolation Pilot Plant- March 2010

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Waste Isolation Pilot Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

  7. Voluntary Protection Program Onsite Review, Waste Isolation Pilot Plant- March 2009

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Waste Isolation Pilot Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

  8. TVA Partner Utilities- In-Home Energy Evaluation Pilot Program (Georgia)

    Broader source: Energy.gov [DOE]

    The Tennessee Valley Authority (TVA) energy right In-Home Energy Evaluation Pilot Program encourages the installation of energy-efficiency improvements in existing single family dwellings. The...

  9. Voluntary Protection Program Onsite Review, Waste Isolation Pilot Plant- January 2013

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Waste Isolation Pilot Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

  10. Microsoft Word - Indoor Small- and Pilot-Scale Research and Developmen...

    Broader source: Energy.gov (indexed) [DOE]

    regulations); conventional laboratory operations (such as preparation of chemical standards and sample analysis); and small-scale pilot projects (generally less than 2...

  11. Novel Intergrated Process to Process to Produce Fuels from Coal and Other Carbonaceous Feedstocks

    SciTech Connect (OSTI)

    Andrew Lucero

    2009-03-25T23:59:59.000Z

    BioConversion Technology, LLC has developed a novel gasifier design that produces a clean, medium to high BTU synthesis gas that can be utilized for a variety of applications. The staged, indirectly heated design produces high quality synthesis gas without the need for costly pure oxygen. This design also allows for extreme flexibility with respect to feedstocks (including those with high moisture contents) in addition to high throughputs in a small gasifier footprint. A pilot scale testing project was proposed to assist BCT with commercializing the process. A prototype gasifier constructed by BCT was transported to WRI for installation and testing. After troubleshooting, the gasifier was successfully operated with both coal and biomass feedstocks. Instrument upgrades are recommended for further testing.

  12. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 5 Full-Scale Test Results

    SciTech Connect (OSTI)

    Gary Blythe; MariJon Owens

    2007-12-01T23:59:59.000Z

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the additives in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power has provided the Texas lignite/PRB co-fired test site for pilot FGD tests and cost sharing. Southern Company has provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation is providing the TMT-15 additive, and the Nalco Company is providing the Nalco 8034 additive. Both companies are also supplying technical support to the test program as in-kind cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests and the full-scale test using high-sulfur coal were completed in 2005 and 2006 and have been previously reported. This topical report presents the results from the Task 5 full-scale additive tests, conducted at Southern Company's Plant Yates Unit 1. Both additives were tested there.

  13. RMOTC - Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sale of Equipment and Materials DOE to Sell NPR-3 Testing Tomorrow's Technology Today RMOTC - Testing - From Lab to Industry, Moving Your Ideas Forward RMOTC provides a neutral,...

  14. Summary of Testing of SuperLig 639 at the TFL Ion Exchange Facility

    SciTech Connect (OSTI)

    Steimke, J.L.

    2000-12-19T23:59:59.000Z

    A pilot scale facility was designed and built in the Thermal Fluids Laboratory at the Savannah River Technology Center to test ion exchange resins for removing technetium and cesium from simulated Hanford Low Activity Waste (LAW). The facility supports the design of the Hanford River Protection Project for BNFL, Inc. The pilot scale system mimics the full-length of the columns and the operational scenario of the planned ion exchange system. Purposes of the testing include confirmation of the design, evaluation of methods for process optimization and developing methods for waste volume minimization. This report documents the performance of the technetium removal resin.

  15. Waste Isolation Pilot Plant 2001 Site Environmental Report

    SciTech Connect (OSTI)

    Westinghouse TRU Solutions, Inc.

    2002-09-20T23:59:59.000Z

    The United States (U.S.) Department of Energy's (DOE) Carlsbad Field Office (CBFO) and Westinghouse TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2001 Site Environmental Report summarizes environmental data from calendar year (CY) 2001 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above Orders and guidance documents require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED). The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2001. WIPP received its first shipment of waste on March 26, 1999. In 2001, no evidence was found of any adverse effects from WIPP on the surrounding environment.

  16. Pilot Demonstration of Phased Retrofits in Florida Homes (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01T23:59:59.000Z

    The Florida Solar Energy Center (FSEC) and Florida Power and Light are pursuing a collaborative energy research/utility partnership to retrofit a large number of homes using a phased approach. The project is creating detailed data on the energy and economic performance of two levels of home retrofit - simple and deep. Acting as a pilot, this project is expected to provide the information necessary to significantly reduce energy use through much larger community-scale projects in collaboration with utilities, program administrators and other market leader stakeholders.

  17. Decontamination and decommissioning of a fuel reprocessing pilot plant

    SciTech Connect (OSTI)

    Heine, W.F.; Speer, D.R.

    1988-01-01T23:59:59.000Z

    SYNOPSIS The strontium Semiworks Pilot Fuel Reprocessing Plant at the Hanford Site in Washington State was decommissioned by a combination of dismantlement and entombment. The facility contained 9600 Ci of Sr-90 and 10 Ci of plutonium. Process cells were entombed in place. The above-grade portion of one cell with 1.5-m- (5-ft-) thick walls and ceilings was demolished by means of expanding grout. A contaminated stack was remotely sandblasted and felled by explosives. The entombed structures were covered with a 4.6-m- (15-ft-) thick engineered earthen barrier. 5 figs., 2 tabs.

  18. Cathy Zoi on the new Home Energy Score pilot program

    ScienceCinema (OSTI)

    Zoi, Cathy

    2013-05-29T23:59:59.000Z

    Acting Under Secretary Cathy Zoi talks about the new Home Energy Score pilot program that was announced today by Vice President Biden and U.S. Department of Energy Secretary Steven Chu. The Home Energy Score will offer homeowners straightforward, reliable information about their homes' energy efficiency. A report provides consumers with a home energy score between 1 and 10, and shows them how their home compares to others in their region. The report also includes customized, cost-effective recommendations that will help to reduce their energy costs and improve the comfort of their homes.

  19. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services (WRES)

    2004-10-25T23:59:59.000Z

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed and authorized for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2002, to March 31, 2004. As required by the WIPP Land Withdrawal Act (LWA) (Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico.

  20. Better Plants Water Pilot - Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand Sustained CoordinationWater Pilot - Overview

  1. Beyond Design Basis Event Pilot Evaluations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand Sustained CoordinationWater PilotBeverlyBeyond

  2. Waste Isolation Pilot Plant Annual Site Environmental Report for 2012

    SciTech Connect (OSTI)

    None

    2013-09-01T23:59:59.000Z

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2012 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year; Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS).

  3. ARM - Field Campaign - Water Cycle Pilot Study Intensive Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single ColumngovCampaignsWater Cycle Pilot Study

  4. Pilot Project: Nuclear Safety Information Dashboard | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO Overview OCHCO OCHCOControlGuide to aEnergy LivingSystemPilot Project:

  5. MHK Technologies/European Pico Pilot Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects JumpPlaneElectric Buoy.jpgEnCurrentPico Pilot

  6. NREL: Biomass Research - Thermochemical Pilot and Users Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NRELChemical and CatalystNewResearchConversionPilot

  7. Pilot Integrated Cellulosic Biorefinery Operations to Fuel Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of Energy Photovoltaics at DOE's2 DOEUraniumPilot

  8. DOE - Office of Legacy Management -- Reduction Pilot Plant - WV 01

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -K Le Blond Machine Tool CoReduction Pilot

  9. Carbon Fiber Pilot Plant and Research Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Change RequestFirst Report to the PrimePilot Plant and Research

  10. PILOT-SCALE REMOVAL OF FLUORIDE FROM LEGACY PLUTONIUM MATERIALS USING VACUUM SALT DISTILLATION

    SciTech Connect (OSTI)

    Pierce, R. A.; Pak, D. J.

    2012-09-11T23:59:59.000Z

    Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. In 2011, SRNL adapted the technology for the removal of fluoride from fluoride-bearing salts. The method involved an in situ reaction between potassium hydroxide (KOH) and the fluoride salt to yield potassium fluoride (KF) and the corresponding oxide. The KF and excess KOH can be distilled below 1000{deg}C using vacuum salt distillation (VSD). The apparatus for vacuum distillation contains a zone heated by a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attaned, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile material in the feed boat. Studies discussed in this report were performed involving the use of non-radioactive simulants in small-scale and pilot-scale systems as well as radioactive testing of a small-scale system with plutonium-bearing materials. Aspects of interest include removable liner design considerations, boat materials, in-line moisture absorption, and salt deposition.

  11. A Field Critique of the 3-Year Pilot Test for the CUSTOMER Recreation Visitor Survey1

    E-Print Network [OSTI]

    Standiford, Richard B.

    Assessment, and by others including the Office of Technology Assessment (1992), further effort is needed of the Forest and Rangeland Renewable Resources Planning Act (RPA) in 1974 and the National Forest Management

  12. SHRP 2 Project L38 Pilot Testing of Reliability Data and Analytical Products

    E-Print Network [OSTI]

    Minnesota, University of

    to address some of the most pressing needs related to the nation's highway system Safety: fielding/22/2014 2 #12;SHRP 2 Project L38 · Series of reliability analysis tools developed in previous research = 19.5 min #12;Reliability ­ CDF Curves 5/22/2014 9 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 10 20

  13. Automated Critical Peak Pricing Field Tests: 2006 Pilot Program Description and Results

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    contact your network system administrator. iii) Setup fori) Contact your network system administrator and obtain a

  14. Automated Critical Peak Pricing Field Tests: 2006 Pilot Program Description and Results

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    °F. Heating Plant Heating lockout when OAT is over 80 °F.side economizer Cooling lockout Control system type _ Inwith EMCS (backup): (backup): Lockout outside air temp (°F):

  15. A pilot test to measure attitudes toward recreational uses of National Wildlife Refuges

    E-Print Network [OSTI]

    Sontag, William Harold

    1970-01-01T23:59:59.000Z

    . -addressed envelope in which to return it. Identical procedure and the same num'ocr of addresses were used to sample local busine smen in these two cities, except that the names and addresses were selected from classified business directories oi each... directories. Therefore, only one representative was chosen from eacn selected business category by this method. The classified business directories are divided into categories such as "cement, cemeteries, ceramic products, chemical manufacturers", etc. Two...

  16. Automated Critical Peak Pricing Field Tests: 2006 Pilot Program Description and Results

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    and industrial facilities), further developing the DR Automation of industrial process control systems for  automation.  of  industrial process control  systems for automation.  

  17. The Rosetta Resources CO2 Storage Project - A WESTCARB Geologic Pilot Test

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Inc. is an oil and gas exploration and production companymobilize oil from the reservoir toward a production well isor sweep oil from the reservoir toward a production well is

  18. The Rosetta Resources CO2 Storage Project - A WESTCARB Geologic Pilot Test

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    The benefit of enhanced oil recovery (EOR) using injected COThe benefit of enhanced oil recovery (EOR) using injected CO

  19. Performance of a high efficiency advanced coal combustor. Task 2, Pilot scale combustion tests: Final report

    SciTech Connect (OSTI)

    Toqan, M.A.; Paloposki, T.; Yu, T.; Teare, J.D.; Beer, J.M. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1989-12-01T23:59:59.000Z

    Under contract from DOE-PETC, Combustion Engineering, Inc. undertook the lead-role in a multi-task R&D program aimed at development of a new burner system for coal-based fuels; the goal was that this burner system should be capable of being retrofitted in oil- or gas-fired industrial boilers, or usable in new units. In the first phase of this program a high efficiency advanced coal combustor was designed jointly by CE and MIT. Its burner is of the multiannular design with a fixed shrouded swirler in the center immediately surrounding the atomizer gun to provide the ``primary act,`` and three further annuli for the supply of the ``secondary air.`` The degree of rotation (swirl) in the secondary air is variable. The split of the combustion air into primary and secondary air flows serves the purpose of flame stabilization and combustion staging, the latter to reduce NO{sub x} formation.

  20. Cyclone reburn using coal-water fuel: Pilot-scale development and testing. Final report

    SciTech Connect (OSTI)

    Eckhart, C.F.; DeVault, R.F.

    1991-10-01T23:59:59.000Z

    There is an ongoing effort to develop retrofit technologies capable of converting oil- and/or gas-fired boilers to coal combustion. The objective of this project is to demonstrate the technical feasibility of an improved portion of a previously developed retrofit system designed for the purpose of converting oil/gas boilers. This improvement would almost entirely eliminate the use of premium fuels, thereby significantly increasing the economical attractiveness of the system. Specifically, the goals in this program were to replace natural gas as a reburning fuel with coal-water fuel (CWF). The advantages of such a system include: (1) increased return on investment (ROI) for conversions; (2) nearly complete elimination of premium oil or gas fuel; (3) a more integrated approach to the conversion of oil- or gas-designed boilers to CWF.

  1. Cyclone reburn using coal-water fuel: Pilot-scale development and testing

    SciTech Connect (OSTI)

    Eckhart, C.F.; DeVault, R.F.

    1991-10-01T23:59:59.000Z

    There is an ongoing effort to develop retrofit technologies capable of converting oil- and/or gas-fired boilers to coal combustion. The objective of this project is to demonstrate the technical feasibility of an improved portion of a previously developed retrofit system designed for the purpose of converting oil/gas boilers. This improvement would almost entirely eliminate the use of premium fuels, thereby significantly increasing the economical attractiveness of the system. Specifically, the goals in this program were to replace natural gas as a reburning fuel with coal-water fuel (CWF). The advantages of such a system include: (1) increased return on investment (ROI) for conversions; (2) nearly complete elimination of premium oil or gas fuel; (3) a more integrated approach to the conversion of oil- or gas-designed boilers to CWF.

  2. Automated Critical Peak Pricing Field Tests: 2006 Pilot Program Description and Results

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    manual  demand  response,  when  building  staff  receives Demand Response and Energy Efficiency in Commercial Buildings.    Building  Strategies  and  Techniques  for  Demand  Response.  

  3. Automated Critical Peak Pricing Field Tests: 2006 Pilot Program Description and Results

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    demand side management (DSM) framework as  FINAL REPORT   shown in Figure 12.   DR capabilities in buildings 

  4. Novel Carbon Capture Solvent Begins Pilot-Scale Testing for Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O N N789266ViolationsControl |

  5. MHK Projects/Neptune Renewable Energy 1 10 Scale Prototype Pilot Test |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <| OpenMarisolNJBPU 1Nenana Rivgen

  6. CMI Unique Facility: Pilot-Scale Separations Test Bed Facility | Critical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r k CCLEAN ENERGY JOBSCriticalMaterials

  7. Report Title: PILOT TESTING: PRETREATMENT OPTIONS TO ALLOW RE-USE OF FRAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2 7 7 2 x> - SupplementReport

  8. Effects of Modes of Cockpit Automation on Pilot Performance and Workload in a Next Generation

    E-Print Network [OSTI]

    Kaber, David B.

    Effects of Modes of Cockpit Automation on Pilot Performance and Workload in a Next Generation of advanced cockpit automation for flight planning on pilot performance and workload under a futuristic arrivals to an airport using three modes of automation (MOAs), including a control-display unit (CDU

  9. Pilot plant for CO2 capture with aqueous piperazine/potassium carbonate , Gary T. Rochelle1

    E-Print Network [OSTI]

    Rochelle, Gary T.

    GHGT-8 1 Pilot plant for CO2 capture with aqueous piperazine/potassium carbonate Eric Chen1 , Gary pilot for CO2 capture was successfully operated using potassium carbonate promoted with piperazine, potassium carbonate, piperazine Introduction Several amine-promoted potassium carbonate solvents have been

  10. What is the Value of Joint Processing of Pilots and Data in Block-Fading Channels?

    E-Print Network [OSTI]

    Lozano, Angel

    What is the Value of Joint Processing of Pilots and Data in Block-Fading Channels? Nihar Jindal with joint processing of pilot and data symbol observations is com- pared with that achievable through, and subsequently detecting the data symbols. Studied on the basis of a mutual information lower bound, joint

  11. A pilot study of children's exposure to CCA-treated wood from playground equipment

    E-Print Network [OSTI]

    Florida, University of

    A pilot study of children's exposure to CCA-treated wood from playground equipment S.L. Shalat Arsenic from chromated copper arsenate (CCA)-treated wood, widely used in playgrounds and other outdoor associated with children playing on CCA- treated playgrounds. In a Pilot Study, 11 children (13­71 months

  12. A pilot study of children's exposure to CCA-treated wood from playground equipment

    E-Print Network [OSTI]

    Florida, University of

    A pilot study of children's exposure to CCA-treated wood from playground equipment S.L. Shalat online 17 February 2006 Abstract Arsenic from chromated copper arsenate (CCA)-treated wood, widely used possible health risks associated with children playing on CCA- treated playgrounds. In a Pilot Study, 11

  13. Self-Optimization of Antenna Tilt and Pilot Power for Dedicated Channels

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Self-Optimization of Antenna Tilt and Pilot Power for Dedicated Channels Abstract-- In Radio Access Networks (RAN), fixed configurations result in poor network efficiency. This sub- optimal performance present a framework for a self-optimizing RAN, which adapts Antenna Tilt and Pilot Power according

  14. NIEHS CENTER FOR ENVIRONMENTAL HEALTH IN NORTHERN MANHATTAN ANNOUNCEMENT for PILOT PROJECT GRANTS

    E-Print Network [OSTI]

    Grishok, Alla

    NIEHS CENTER FOR ENVIRONMENTAL HEALTH IN NORTHERN MANHATTAN ANNOUNCEMENT for PILOT PROJECT GRANTS for Environmental Health is seeking innovative and promising pilot projects in all areas of environmental health on the thematic goals of the Center, namely, air pollution, oxidative damage, epigenetics and genetic

  15. NIEHS CENTER FOR ENVIRONMENTAL HEALTH IN NORTHERN MANHATTAN ANNOUNCEMENT for PILOT PROJECT GRANTS

    E-Print Network [OSTI]

    Qian, Ning

    NIEHS CENTER FOR ENVIRONMENTAL HEALTH IN NORTHERN MANHATTAN ANNOUNCEMENT for PILOT PROJECT GRANTS for Environmental Health is seeking innovative and promising pilot projects in all areas of environmental health on the thematic goals of the Center, namely, air pollution, oxidative damage, epigenetics, genetic susceptibility

  16. Projet Autoroutier Pilote Aubonne -Belmont pour une Initiative Lausannoise d'Evaluation par Simulation

    E-Print Network [OSTI]

    Bierlaire, Michel

    par Simulation Simulation-based evaluation of the impact of telematics in the Lausanne area: a pilot, either on the efficiency of the road network or the security of its users. The PAPABILES pilot of the network, using a state- of-the-art simulation tool (MITSIM), developed at the Massachusetts Institute

  17. WRI 50: Strategies for Cooling Electric Generating Facilities Utilizing Mine Water

    SciTech Connect (OSTI)

    Joseph J. Donovan; Brenden Duffy; Bruce R. Leavitt; James Stiles; Tamara Vandivort; Paul Ziemkiewicz

    2004-11-01T23:59:59.000Z

    Power generation and water consumption are inextricably linked. Because of this relationship DOE/NETL has funded a competitive research and development initiative to address this relationship. This report is part of that initiative and is in response to DOE/NETL solicitation DE-PS26-03NT41719-0. Thermal electric power generation requires large volumes of water to cool spent steam at the end of the turbine cycle. The required volumes are such that new plant siting is increasingly dependent on the availability of cooling circuit water. Even in the eastern U.S., large rivers such as the Monongahela may no longer be able to support additional, large power stations due to subscription of flow to existing plants, industrial, municipal and navigational requirements. Earlier studies conducted by West Virginia University (WV 132, WV 173 phase I, WV 173 Phase II, WV 173 Phase III, and WV 173 Phase IV in review) have identified that a large potential water resource resides in flooded, abandoned coal mines in the Pittsburgh Coal Basin, and likely elsewhere in the region and nation. This study evaluates the technical and economic potential of the Pittsburgh Coal Basin water source to supply new power plants with cooling water. Two approaches for supplying new power plants were evaluated. Type A employs mine water in conventional, evaporative cooling towers. Type B utilizes earth-coupled cooling with flooded underground mines as the principal heat sink for the power plant reject heat load. Existing mine discharges in the Pittsburgh Coal Basin were evaluated for flow and water quality. Based on this analysis, eight sites were identified where mine water could supply cooling water to a power plant. Three of these sites were employed for pre-engineering design and cost analysis of a Type A water supply system, including mine water collection, treatment, and delivery. This method was also applied to a ''base case'' river-source power plant, for comparison. Mine-water system cost estimates were then compared to the base-case river source estimate. We found that the use of net-alkaline mine water would under current economic conditions be competitive with a river-source in a comparable-size water cooling system. On the other hand, utilization of net acidic water would be higher in operating cost than the river system by 12 percent. This does not account for any environmental benefits that would accrue due to the treatment of acid mine drainage, in many locations an existing public liability. We also found it likely that widespread adoption of mine-water utilization for power plant cooling will require resolution of potential liability and mine-water ownership issues. In summary, Type A mine-water utilization for power plant cooling is considered a strong option for meeting water needs of new plant in selected areas. Analysis of the thermal and water handling requirements for a 600 megawatt power plant indicated that Type B earth coupled cooling would not be feasible for a power plant of this size. It was determined that Type B cooling would be possible, under the right conditions, for power plants of 200 megawatts or less. Based on this finding the feasibility of a 200 megawatt facility was evaluated. A series of mines were identified where a Type B earth-coupled 200 megawatt power plant cooling system might be feasible. Two water handling scenarios were designed to distribute heated power-plant water throughout the mines. Costs were developed for two different pumping scenarios employing a once-through power-plant cooling circuit. Thermal and groundwater flow simulation models were used to simulate the effect of hot water injection into the mine under both pumping strategies and to calculate the return-water temperature over the design life of a plant. Based on these models, staged increases in required mine-water pumping rates are projected to be part of the design, due to gradual heating and loss of heat-sink efficiency of the rock sequence above the mines. Utilizing pumping strategy No.1 (two mines) capital costs were 25 percent lower a

  18. Wireless Roadside Inspection (WRI) Every year the number of trucks on the road, and the

    E-Print Network [OSTI]

    Commercial Mobile Radio Service (CMRS) Two-way Communications via Commercial Mobile Radio Services (CMRS) Example includes the various existing Fleet Management systems Universal Identification (UID onboard technology Also can support NORPASS, PrePass, Oregon Green Light, etc. Phases 1.Proof of concept

  19. Test quality

    SciTech Connect (OSTI)

    Hartley, R.S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Keller, A.E. [Nuclear Regulatory Commission, Washington, DC (United States)

    1992-09-01T23:59:59.000Z

    This document discusses inservice testing of safety-related components at nuclear power plants which is performed under the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (the Code). Subsections IWP and IWV of Section XI of the Code state test method and frequency requirements for pumps and valves respectively. Tests vary greatly in quality and frequency. This paper explores the concept of test quality and its relationship with operational readiness and preventive maintenance. This paper also considers the frequencies of component testing. Test quality is related to a test`s ability to detect degradation that can cause component failure. The quality of the test depends on several factors, including specific parameters measured, system or component conditions, and instrument accuracy. The quality of some currently required tests for check valves, motor-operated valves, and pumps is also discussed. Suggestions are made to improve test quality by measuring different parameters, testing valves under load, and testing positive displacement pumps at high pressure and centrifugal pumps at high flow rate conditions. These suggestions can help to improve the level of assurance of component operational readiness gained from testing.

  20. DA WHITE DWARFS OBSERVED IN THE LAMOST PILOT SURVEY

    SciTech Connect (OSTI)

    Zhang Yueyang; Deng Licai; Liu Chao; Carrell, Kenneth; Yang Fan; Gao Shuang; Xu Yan; Li Jing; Zhang Haotong; Zhao Yongheng; Luo Ali; Bai Zhongrui; Yuan Hailong [Key Lab for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Lepine, Sebastien [Department of Astrophysics, Division of Physical Sciences, American Museum of Natural History, Central Park West at 79th Street, New York, NY (United States); Newberg, Heidi Jo; Carlin, Jeffrey L. [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States); Jin Ge [University of Science and Technology of China, Hefei 230026 (China)

    2013-08-01T23:59:59.000Z

    A total of {approx}640, 000 objects from the LAMOST pilot survey have been publicly released. In this work, we present a catalog of DA white dwarfs (DAWDs) from the entire pilot survey. We outline a new algorithm for the selection of white dwarfs (WDs) by fitting Sersic profiles to the Balmer H{beta}, H{gamma}, and H{delta} lines of the spectra, and calculating the equivalent width of the Ca II K line. Two thousand nine hundred sixty-four candidates are selected by constraining the fitting parameters and the equivalent width of the Ca II K line. All the spectra of candidates are visually inspected. We identify 230 DAWDs (59 of which are already included in the Villanova and SDSS WD catalogs), 20 of which are DAWDs with non-degenerate companions. In addition, 128 candidates are classified as DAWDs/subdwarfs, which means the classifications are ambiguous. The result is consistent with the expected DAWD number estimated based on the LEGUE target selection algorithm.

  1. Pilot study dismantlement of 20 lead-lined shipping casks

    SciTech Connect (OSTI)

    Thurmond, S.M.

    1995-08-01T23:59:59.000Z

    This report describes a pilot study conducted at the INEL to dismantle lead-lined casks and shielding devices, separate the radiologically contaminated and hazardous materials, and recycle resultant scrap lead. The facility areas where the work was performed, dismantlement methods, and process equipment are described. Issues and results associated with recycling the lead as a free-released scrap metal are presented and discussed. Data and results from the pilot study are summarized and presented. The study concluded that cask dismantlement at the INEL can be performed as a legitimate recycling activity for scrap lead. Ninety-one percent of the lead recovered passed free-release criteria. The value of the 50,375 lb of recovered lead is approximately $0.45/lb. Resultant waste streams can be satisfactorily treated and disposed. Only very low levels of bulk radiological contamination (47 picocuries/gram of 137 Cs and 3.2 picocuries/gram of {sup 6O}Co) were detected in the lead rejected for free release.

  2. U.S. Nuclear Regulatory Commission Extremely Low Probability of Rupture pilot study : xLPR framework model user's guide.

    SciTech Connect (OSTI)

    Kalinich, Donald A.; Sallaberry, Cedric M.; Mattie, Patrick D.

    2010-12-01T23:59:59.000Z

    For the U.S. Nuclear Regulatory Commission (NRC) Extremely Low Probability of Rupture (xLPR) pilot study, Sandia National Laboratories (SNL) was tasked to develop and evaluate a probabilistic framework using a commercial software package for Version 1.0 of the xLPR Code. Version 1.0 of the xLPR code is focused assessing the probability of rupture due to primary water stress corrosion cracking in dissimilar metal welds in pressurizer surge nozzles. Future versions of this framework will expand the capabilities to other cracking mechanisms, and other piping systems for both pressurized water reactors and boiling water reactors. The goal of the pilot study project is to plan the xLPR framework transition from Version 1.0 to Version 2.0; hence the initial Version 1.0 framework and code development will be used to define the requirements for Version 2.0. The software documented in this report has been developed and tested solely for this purpose. This framework and demonstration problem will be used to evaluate the commercial software's capabilities and applicability for use in creating the final version of the xLPR framework. This report details the design, system requirements, and the steps necessary to use the commercial-code based xLPR framework developed by SNL.

  3. NEW YORK STATE WATER RESOURCES INSTITUTE

    E-Print Network [OSTI]

    Wang, Z. Jane

    ://wri.eas.cornell.edu Email: nyswri@cornell.edu Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling of Marcellus Shale gas development on drinking water supplies. It is intended for landowners and private

  4. Test quality

    SciTech Connect (OSTI)

    Hartley, R.S. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Keller, A.E. (Nuclear Regulatory Commission, Washington, DC (United States))

    1992-01-01T23:59:59.000Z

    This document discusses inservice testing of safety-related components at nuclear power plants which is performed under the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (the Code). Subsections IWP and IWV of Section XI of the Code state test method and frequency requirements for pumps and valves respectively. Tests vary greatly in quality and frequency. This paper explores the concept of test quality and its relationship with operational readiness and preventive maintenance. This paper also considers the frequencies of component testing. Test quality is related to a test's ability to detect degradation that can cause component failure. The quality of the test depends on several factors, including specific parameters measured, system or component conditions, and instrument accuracy. The quality of some currently required tests for check valves, motor-operated valves, and pumps is also discussed. Suggestions are made to improve test quality by measuring different parameters, testing valves under load, and testing positive displacement pumps at high pressure and centrifugal pumps at high flow rate conditions. These suggestions can help to improve the level of assurance of component operational readiness gained from testing.

  5. Test Images

    E-Print Network [OSTI]

    Test Images. I hope to have a set of test images for the course soon. Some images are available now; some will have to wait until I can find another 100-200

  6. Caustic Recycling Pilot Unit to Separate Sodium from LLW at Hanford Site - 12279

    SciTech Connect (OSTI)

    Pendleton, Justin; Bhavaraju, Sai; Priday, George; Desai, Aditya; Duffey, Kean; Balagopal, Shekar [Ceramatec Inc., Salt Lake City, UT 84119 (United States)

    2012-07-01T23:59:59.000Z

    As part of the Department of Energy (DOE) sponsored Advanced Remediation Technologies initiative, a scheme was developed to combine Continuous Sludge Leaching (CSL), Near-Tank Cesium Removal (NTCR), and Caustic Recycling Unit (CRU) using Ceramatec technology, into a single system known as the Pilot Near-Tank Treatment System (PNTTS). The Cesium (Cs) decontaminated effluent from the NTCR process will be sent to the caustic recycle process for recovery of the caustic which will be reused in another cycle of caustic leaching in the CSL process. Such an integrated mobile technology demonstration will give DOE the option to insert this process for sodium management at various sites in Hanford, and will minimize the addition of further sodium into the waste tanks. This allows for recycling of the caustic used to remove aluminum during sludge washing as a pretreatment step in the vitrification of radioactive waste which will decrease the Low Level Waste (LLW) volume by as much as 39%. The CRU pilot process was designed to recycle sodium in the form of pure sodium hydroxide. The basis for the design of the 1/4 scale pilot caustic recycling unit was to demonstrate the efficient operation of a larger scale system to recycle caustic from the NTCR effluent stream from the Parsons process. The CRU was designed to process 0.28 liter/minute of NTCR effluent, and generate 10 M concentration of 'usable' sodium hydroxide. The proposed process operates at 40 deg. C to provide additional aluminum solubility and then recover the sodium hydroxide to the point where the aluminum is saturated at 40 deg. C. A system was developed to safely separate and vent the gases generated during operation of the CRU with the production of 10 M sodium hydroxide. Caustic was produced at a rate between 1.9 to 9.3 kg/hr. The CRU was located inside an ISO container to allow for moving of the unit close to tank locations to process the LLW stream. Actual tests were conducted with the NTCR effluent simulant from the Parsons process in the CRU. The modular CRU is easily scalable as a standalone system for caustic recycling, or for NTTS integration or for use as an In-Tank Treatment System to process sodium bearing waste to meet LLW processing needs at the Hanford site. The standalone pilot operation of the CRU to recycle sodium from NTCR effluent places the technology demonstration at TRL level 6. Multiple operations were performed with the CRU to process up to 500 gallons of the NTCR effluent and demonstrate an efficient separation of up to 70 % of the sodium without solids precipitation while producing 10 M caustic. Batch mode operation was conducted to study the effects of chemistry variation, establish the processing rate, and optimize the process operating conditions to recycle caustic from the NTCR effluent. The performance of the CRU was monitored by tracking the density parameter to control the concentration of caustic produced. Different levels of sodium were separated in tests from the effluent at a fixed operating current density and temperature. The voltage of the modules remained stable during the unit operation which demonstrated steady operation to separate sodium from the NTCR effluent. The sodium transfer current efficiency was measured in testing based on the concentration of caustic produced. Measurements showed a current efficiency of 99.8% for sodium transfer from the NTCR effluent to make sodium hydroxide. The sodium and hydroxide contents of the anolyte (NTCR feed) and catholyte (caustic product) were measured before and after each batch test. In two separate batch tests, samples were taken at different levels of sodium separation and analyzed to determine the stability of the NTCR effluent after sodium separation. The stability characteristics and changes in physical and chemical properties of the NTCR effluent chemistry after separation of sodium hydroxide as a function of storage time were evaluated. Parameters such as level of precipitated alumina, total alkalinity, analysis of Al, Na, K, Cs, Fe, OH, nitrate, nitrite, total dissolved and

  7. Interpretation of in-situ pressure and flow measurements of the Salado Formation at the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Howarth, S.M.; Peterson, E.W.; Lagus, P.L.; Lie, K.; Finley, S.J.; Nowak, E.J.

    1991-01-01T23:59:59.000Z

    This paper describes preliminary interpretation of in-situ pressure and flow measurements of the Salado Formation at the Waste Isolation Pilot Plant (WIPP). The WIPP facility is located 660 m underground in the Salado, a bedded salt deposit. Shut-in pressure tests were conducted prior to, and subsequent to, the mining of a circular drift in order to evaluate excavation effects on pore pressure, permeability, and host rock heterogeneity. Borehole deformation was measured during these tests and used to correct for changes in the test region volume due to salt creep effects. Preliminary pre-excavation results indicate that the flow properties of this layered host rock are heterogeneous. Resulting pore pressures range from 1 to 14 MPa and permeabilities range from below measurable to about 1 nanodarcy. Normalized borehole diameter change rates were between {minus}4 and 63 microstrains/day. Shut-in pressures and borehole diameters in all test boreholes were affected by the excavation of Room Q coincident with the advances of the boring machine. Preliminary results from post-excavation test results show decreased pore pressures compared to pre-excavation values.

  8. Final environmental impact statement. Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Not Available

    1980-10-01T23:59:59.000Z

    This volume contains the appendices for the Final Environmental Impact Statement for the Waste Isolation Pilot Plant (WIPP). Alternative geologic environs are considered. Salt, crystalline rock, argillaceous rock, and tuff are discussed. Studies on alternate geologic regions for the siting of WIPP are reviewed. President Carter's message to Congress on the management of radioactive wastes and the findings and recommendations of the interagency review group on nuclear waste management are included. Selection criteria for the WIPP site including geologic, hydrologic, tectonic, physicochemical compatability, and socio-economic factors are presented. A description of the waste types and the waste processing procedures are given. Methods used to calculate radiation doses from radionuclide releases during operation are presented. A complete description of the Los Medanos site, including archaeological and historic aspects is included. Environmental monitoring programs and long-term safety analysis program are described. (DMC)

  9. 70 DA WHITE DWARFS IDENTIFIED IN LAMOST PILOT SURVEY

    SciTech Connect (OSTI)

    Zhao, J. K.; Luo, A. L.; Zhao, G. [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Oswalt, T. D., E-mail: zjk@bao.ac.cn, E-mail: gzhao@bao.ac.cn, E-mail: lal@bao.ac.cn, E-mail: toswalt@fit.edu [Physics and Space Science Department, Florida Institute of Technology, Melbourne, FL 32901 (United States)

    2013-06-01T23:59:59.000Z

    We present a spectroscopically identified catalog of 70 DA white dwarfs (WDs) from the LAMOST pilot survey. Thirty-five are found to be new identifications after cross-correlation with the Eisenstein et al. and Villanova catalogs. The effective temperature and gravity of these WDs are estimated by Balmer lines fitting. Most of them are hot WDs. The cooling times and masses of these WDs are estimated by interpolation in theoretical evolution tracks. The peak of the mass distribution is found to be {approx}0.6 M {sub Sun }, which is consistent with prior work in the literature. The distances of these WDs are estimated using the method of synthetic spectral distances. All of these WDs are found to be in the Galactic disk from our analysis of space motions. Our sample supports the expectation that WDs with high mass are concentrated near the plane of the Galactic disk.

  10. Weatherization Innovation Pilot Program (WIPP): Technical Assistance Summary

    SciTech Connect (OSTI)

    Hollander, A.

    2014-09-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Programs Office (WIPO) launched the Weatherization Innovation Pilot Program (WIPP) to accelerate innovations in whole-house weatherization and advance DOE's goal of increasing the energy efficiency and health and safety of low-income residences without the utilization of additional taxpayer funding. Sixteen WIPP grantees were awarded a total of $30 million in Weatherization Assistance Program (WAP) funds in September 2010. These projects focused on: including nontraditional partners in weatherization service delivery; leveraging significant non-federal funding; and improving the effectiveness of low-income weatherization through the use of new materials, technologies, behavior-change models, and processes.

  11. Bentonite as a waste isolation pilot plant shaft sealing material

    SciTech Connect (OSTI)

    Daemen, J.; Ran, Chongwei [Univ. of Nevada, Reno, NV (United States)

    1996-12-01T23:59:59.000Z

    Current designs of the shaft sealing system for the Waste Isolation Pilot Plant (WIPP) propose using bentonite as a primary sealing component. The shaft sealing designs anticipate that compacted bentonite sealing components can perform through the 10,000-year regulatory period and beyond. To evaluate the acceptability of bentonite as a sealing material for the WIPP, this report identifies references that deal with the properties and characteristics of bentonite that may affect its behavior in the WIPP environment. This report reviews published studies that discuss using bentonite as sealing material for nuclear waste disposal, environmental restoration, toxic and chemical waste disposal, landfill liners, and applications in the petroleum industry. This report identifies the physical and chemical properties, stability and seal construction technologies of bentonite seals in shafts, especially in a saline brine environment. This report focuses on permeability, swelling pressure, strength, stiffness, longevity, and densification properties of bentonites.

  12. Five-megawatt geothermal-power pilot-plant project

    SciTech Connect (OSTI)

    Not Available

    1980-08-29T23:59:59.000Z

    This is a report on the Raft River Geothermal-Power Pilot-Plant Project (Geothermal Plant), located near Malta, Idaho; the review took place between July 20 and July 27, 1979. The Geothermal Plant is part of the Department of Energy's (DOE) overall effort to help commercialize the operation of electric power plants using geothermal energy sources. Numerous reasons were found to commend management for its achievements on the project. Some of these are highlighted, including: (a) a well-qualified and professional management team; (b) effective cost control, performance, and project scheduling; and (c) an effective and efficient quality-assurance program. Problem areas delineated, along with recommendations for solution, include: (1) project planning; (2) facility design; (3) facility construction costs; (4) geothermal resource; (5) drilling program; (6) two facility construction safety hazards; and (7) health and safety program. Appendices include comments from the Assistant Secretary for Resource Applications, the Controller, and the Acting Deputy Director, Procurement and Contracts Management.

  13. TEST PROGRAM FOR ALUMINA REMOVAL AND SODIUM HYDROXIDE REGENERATION FROM HANFORD WASTE BY LITHIUM HYDROTALCITE PRECIPITATION

    SciTech Connect (OSTI)

    SAMS TL; GEINESSE D

    2011-01-28T23:59:59.000Z

    This test program sets a multi-phased development path to support the development of the Lithium Hydrotalcite process, in order to raise its Technology Readiness Level from 3 to 6, based on tasks ranging from laboratory scale scientific research to integrated pilot facilities.

  14. Microbial field pilot study: Quarterly progress report, March 1, 1989--June 30, 1989

    SciTech Connect (OSTI)

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Chisholm, J.L.

    1989-07-18T23:59:59.000Z

    The objective of this report is to perform a microbially enhanced oil recovery field pilot test in the Southeast Vassar Vertz Sand Unit (SEVVSU) in Payne County, Oklahoma. Indigenous, anaerobic, nitrate-reducing bacteria will be stimulated to selectively plug flow paths which have been preferentially swept by a prior waterflood. This will force future flood water to invade bypassed regions of the reservoir and increase sweep efficiency. Experiments are underway to determine the influence of permeability, pore throat size, and porosity on bacterial movement within porous media. The penetration rates of two motile Escherichia coli strains, as well as two nonmotile strains, are being compared for their ability to penetrate cores consisting of uniformity packed glass beads. To establish if gas production has an effect at differing pore throat sizes, each strain will be compared either under a condition which supports gas production for both wild type strains only (i.e. fermentation), or one which does not result in gas production from any strain (i.e. nitrate-reducing conditions). Research progress on mathematical modeling, core flooding and field experiments is also briefly discussed. 2 refs., 3 figs.

  15. Paso del Norte pilot border study of ozone precursors and air toxics

    SciTech Connect (OSTI)

    Zielinska, B.; Sheetz, L.; Harshfield, G. [Desert Research Institute, Reno, NV (United States)] [and others

    1996-12-31T23:59:59.000Z

    A comprehensive monitoring program for ozone precursors and air toxics in the Paso del Norte border area is planned by the U.S. EPA for the Summer of 1996. A pilot study was carried out in October 1995 in the Paso del Norte area (El Paso, Texas, Ciudad Juarez, Chihuahua, and Sunland Park, New Mexico) to test the appropriateness of proposed sampling and analysis methods and to provide preliminary data to be used for planning the Summer 1996 study. Two monitoring sites were selected, one in Ciudad Juarez, and one in the El Paso area. Samples were collected every second day from October 21 to October 31, from 0300 to 0900 hr using stainless steel canisters (for VOC in the C{sub 2}-C{sub 12} range), Tenax-TA solid adsorbent cartridges (for C{sub 8}-C{sub 20} hydrocarbons). DNPH impregnated C{sub 18} Sep-Pack cartridges (for carbonyl compounds) and Teflon impregnated glass fiber filters followed by PUF/YAD/PUF {open_quotes}sandwich{close_quotes} cartridges (for SVOC). This paper discusses the data set obtained from the analyses of these samples. 6 refs., 7 figs.

  16. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect (OSTI)

    Westinghouse TRU Solutions

    2000-12-01T23:59:59.000Z

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 1998, to March 31, 2000. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, and amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Area Office's (hereinafter the ''CAO'') compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. An issue was identified in the 1998 BECR relating to a potential cross-connection between the fire-water systems and the site domestic water system. While the CAO and its managing and operating contractor (hereinafter the ''MOC'') believe the site was always in compliance with cross-connection control requirements, hardware and procedural upgrades w ere implemented in March 1999 to strengthen its compliance posture. Further discussion of this issue is presented in section 30.2.2 herein. During this reporting period WIPP received two letters and a compliance order alleging violation of certain requirements outlined in section 9(a)(1) of the LWA. With the exception of one item, pending a final decision by the New Mexico Environment Department (NMED), all alleged violations have been resolved without the assessment of fines or penalties. Non-mixed TRU waste shipments began on March 26, 1999. Shipments continued through November 26, 1999, the effective date of the Waste Isolation Pilot Plant Hazardous Waste Facility Permit (NM4890139088-TSDF). No shipments regulated under the Hazardous Waste Facility Permit were received at WIPP during this BECR reporting period.

  17. Evaluation of Machine Guarding pilot course taught in Idaho Falls, Idaho, June 23, 1992--June 25, 1992

    SciTech Connect (OSTI)

    Wright, T.S.

    1992-10-01T23:59:59.000Z

    This report summarizes trainee evaluations for the Safety Training Section course, Machine Guarding which was conducted June 23--25 at the Westinghouse Idaho Nuclear Company, in Idaho Falls, Idaho. This class was the fourth pilot course taught. Also, this report summarize the quantitative course evaluations that trainees provided upon completion of the course. Appendix A provides a transcript of the trainees` written comments. This class was conducted concurrently with a ``Supervisors Orientation to Occupational Safety in DOE`` class. This allowed the lead instructor to use two experts in the classes without additional cost. The experiment was successful, both from a standpoint of cost and quality. The same format (concurrent classes) will be used at the Nevada test site in October.

  18. Evaluation of Machine Guarding pilot course taught in Idaho Falls, Idaho, June 23, 1992--June 25, 1992

    SciTech Connect (OSTI)

    Wright, T.S.

    1992-10-01T23:59:59.000Z

    This report summarizes trainee evaluations for the Safety Training Section course, Machine Guarding which was conducted June 23--25 at the Westinghouse Idaho Nuclear Company, in Idaho Falls, Idaho. This class was the fourth pilot course taught. Also, this report summarize the quantitative course evaluations that trainees provided upon completion of the course. Appendix A provides a transcript of the trainees' written comments. This class was conducted concurrently with a Supervisors Orientation to Occupational Safety in DOE'' class. This allowed the lead instructor to use two experts in the classes without additional cost. The experiment was successful, both from a standpoint of cost and quality. The same format (concurrent classes) will be used at the Nevada test site in October.

  19. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 7: Appendix GCR Volume 2

    SciTech Connect (OSTI)

    NONE

    1995-03-31T23:59:59.000Z

    This report contains the second part of the geological characterization report for the Waste Isolation Pilot Plant. Both hydrology and geochemistry are evaluated. The following aspects of hydrology are discussed: surface hydrology; ground water hydrology; and hydrology drilling and testing. Hydrologic studies at the site and adjacent site areas have concentrated on defining the hydrogeology and associated salt dissolution phenomena. The geochemical aspects include a description of chemical properties of geologic media presently found in the surface and subsurface environments of southeastern New Mexico in general, and of the proposed WIPP withdrawal area in particular. The characterization does not consider any aspect of artificially-introduced material, temperature, pressure, or any other physico-chemical condition not native to the rocks of southeastern New Mexico.

  20. Receiver subsystem analysis report (RADL Item 4-1). 10-MWe Solar Thermal Central-Receiver Pilot Plant: solar-facilities design integration

    SciTech Connect (OSTI)

    Not Available

    1982-04-01T23:59:59.000Z

    The results are presented of those thermal hydraulic, structural, and stress analyses required to demonstrate that the Receiver design for the Barstow Solar Pilot Plant will satisfy the general design and performance requirements during the plant's design life. Recommendations resulting from those analyses and supporting test programs are presented regarding operation of the receiver. The analyses are limited to receiver subsystem major structural parts (primary tower, receiver unit core support structure), pressure parts (absorber panels, feedwater, condensate and steam piping/components, flash tank, and steam mainfold) and shielding. (LEW)

  1. Instrumentation and Evaluation of a Pilot Scale Fluidized Bed Biomass Gasification System

    E-Print Network [OSTI]

    Maglinao, Amado L

    2009-12-04T23:59:59.000Z

    A pilot scale fluidized bed biomass gasifier developed at Texas A&M University in College Station, Texas was instrumented with thermocouples, pressure transducers and motor controllers for monitoring gasification temperature and pressure, air flow...

  2. GE Teams with NY College to Pilot SOFC Technology |GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hudson Valley Community College to Pilot GE Solid Oxide Fuel Cell Technology Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to...

  3. Facing Racism at 30,000 Feet: African American Pilots, Flight Attendants, and Emotional Labor

    E-Print Network [OSTI]

    Evans, Louwanda

    2012-07-16T23:59:59.000Z

    In this qualitative study, I examine the experiences of African American pilots and flight attendants with emotional labor. Integral to existing theories of emotional labor is the incorporation of voices of color and their contemporary movement...

  4. Toward the definition and measurement of the mental workload of transport pilots

    E-Print Network [OSTI]

    Sheridan, Thomas B.

    1979-01-01T23:59:59.000Z

    This report describes work performed in the first year of a continuing research project aimed at developing useful methods for measuring the workload of pilots operating aircraft in the ATC system. Good methods of measuring ...

  5. Extending safety assessment methods for remotely piloted aircraft operations in the national airspace system

    E-Print Network [OSTI]

    Horrell, Alexander C. (Alexander Chapman)

    2012-01-01T23:59:59.000Z

    Remotely Piloted Aircraft operations are growing rapidly in the United States specifically for the Department of Defense to achieve training needs. To ensure the safety of the National Airspace System is maintained to a ...

  6. Instrumentation and Evaluation of a Pilot Scale Fluidized Bed Biomass Gasification System 

    E-Print Network [OSTI]

    Maglinao, Amado L

    2009-12-04T23:59:59.000Z

    A pilot scale fluidized bed biomass gasifier developed at Texas A&M University in College Station, Texas was instrumented with thermocouples, pressure transducers and motor controllers for monitoring gasification temperature and pressure, air flow...

  7. Independent review of estimated load reductions for PJM's small customer load response pilot project

    E-Print Network [OSTI]

    Heffner, G.; Moezzi, M.; Goldman, C.

    2004-01-01T23:59:59.000Z

    of Estimated Load Reductions for PJM’s Small Customer Loadof Estimated Load Reductions for PJM’s Small Customer LoadResponse Pilot Project Prepared for PJM Interconnection, LLC

  8. Microsoft Word - CX-Redmond-PilotButte-WoodPoleFY12_WEB.doc

    Broader source: Energy.gov (indexed) [DOE]

    3, 2012 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Richard Heredia Project Manager - TEP-TPP-1 Proposed Action: Redmond-Pilot Butte No. 1 Wood Pole...

  9. Microsoft Word - CX-PilotButte-LaPineWoodPoleFY12_WEB.docx

    Broader source: Energy.gov (indexed) [DOE]

    0, 2012 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Richard Heredia Project Manager - TEP-TPP-1 Proposed Action: Pilot Butte-La Pine No. 1 Wood Pole...

  10. Application to Export Electric Energy OE Docket No. EA-383 Pilot...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inc.: Federal Register Notice Volume 77, No. 38 - Feb. 27, 2012 Application to Export Electric Energy OE Docket No. EA-383 Pilot Power Group, Inc.: Federal Register Notice Volume...

  11. The MQ-9 Reaper remotely piloted aircraft : humans and machines in action

    E-Print Network [OSTI]

    Cullen, Timothy M

    2011-01-01T23:59:59.000Z

    Remotely piloted aircraft and the people that control them are changing how the US military operates aircraft and those who fly, yet few know what "drone" operators actually do, why they do what they do, or how they shape ...

  12. Physical and numerical modeling of the external fluid mechanics of OTEC pilot plants

    E-Print Network [OSTI]

    Singarella, Paul N.

    1982-01-01T23:59:59.000Z

    This study examined the near field external fluid mechanics of symmetrical OTEC pilot plant designs (20-80 MWe) under realistic deep water conditions. The objective was to assess the environmental impact of different plant ...

  13. A Cold Water Pipe for an OTEC Pilot Plant: Design Considerations

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    A Cold Water Pipe for an OTEC Pilot Plant: Design Considerations Kara Silver Abstract Ocean Thermal Energy Conversion (OTEC) is a baseload renewable technology for tropical countries and islands. In order

  14. Request for Applications: Collaborative Bioinformatics Pilot Award Center for Integrative Bioinformatics and Experimental Mathematics (CIBEM), URMC

    E-Print Network [OSTI]

    Goldman, Steven A.

    complex computational bioinformatics technologies or systems biology approaches. 3. A pilot study) at the Department of Biostatistics and Computational Biology, University of Rochester Medical Center (URMC) invites that require both innovative bioinformatics experimental technologies and novel bioinformatics/computational

  15. A determination of microbial parameters of a coconut processing pilot plant

    E-Print Network [OSTI]

    Kajs, Theresa Marie

    1975-01-01T23:59:59.000Z

    A DETERMINATION OF MICROBIAL PARAMETERS OF A COCONUT PROCESSING PILOT PLANT A Thesis by Theresa Marie Kajs Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE May 1975 Major Subject: Microbiology A DETERMINATION OF MICROBIAL PARAMETERS OF A COCONUT PROCESSING PILOT PLANT A Thesis by Theresa Marie Kajs Approved as to style and content by: , ) g (Co-chairman of C~ittee) (Co-chairman of Committee...

  16. PanDA Pilot Submission using Condor-G: Experience and Improvements

    SciTech Connect (OSTI)

    Zhao X.; Hover John; Wlodek Tomasz; Wenaus Torre; Frey Jaime; Tannenbaum Todd; Livny Miron

    2011-01-01T23:59:59.000Z

    PanDA (Production and Distributed Analysis) is the workload management system of the ATLAS experiment, used to run managed production and user analysis jobs on the grid. As a late-binding, pilot-based system, the maintenance of a smooth and steady stream of pilot jobs to all grid sites is critical for PanDA operation. The ATLAS Computing Facility (ACF) at BNL, as the ATLAS Tier1 center in the US, operates the pilot submission systems for the US. This is done using the PanDA 'AutoPilot' scheduler component which submits pilot jobs via Condor-G, a grid job scheduling system developed at the University of Wisconsin-Madison. In this paper, we discuss the operation and performance of the Condor-G pilot submission at BNL, with emphasis on the challenges and issues encountered in the real grid production environment. With the close collaboration of Condor and PanDA teams, the scalability and stability of the overall system has been greatly improved over the last year. We review improvements made to Condor-G resulting from this collaboration, including isolation of site-based issues by running a separate Gridmanager for each remote site, introduction of the 'Nonessential' job attribute to allow Condor to optimize its behavior for the specific character of pilot jobs, better understanding and handling of the Gridmonitor process, as well as better scheduling in the PanDA pilot scheduler component. We will also cover the monitoring of the health of the system.

  17. Impact of Pilot Light Modeling on the Predicted Annual Performance of Residential Gas Water Heaters: Preprint

    SciTech Connect (OSTI)

    Maguire, J.; Burch, J.

    2013-08-01T23:59:59.000Z

    Modeling residential water heaters with dynamic simulation models can provide accurate estimates of their annual energy consumption, if the units? characteristics and use conditions are known. Most gas storage water heaters (GSWHs) include a standing pilot light. It is generally assumed that the pilot light energy will help make up standby losses and have no impact on the predicted annual energy consumption. However, that is not always the case. The gas input rate and conversion efficiency of a pilot light for a GSWH were determined from laboratory data. The data were used in simulations of a typical GSWH with and without a pilot light, for two cases: 1) the GSWH is used alone; and 2) the GSWH is the second tank in a solar water heating (SWH) system. The sensitivity of wasted pilot light energy to annual hot water use, climate, and installation location was examined. The GSWH used alone in unconditioned space in a hot climate had a slight increase in energy consumption. The GSWH with a pilot light used as a backup to an SWH used up to 80% more auxiliary energy than one without in hot, sunny locations, from increased tank losses.

  18. SITE CHARACTERIZATION AND MONITORING DATA FROM THE AREA 5 PILOT WELLS

    SciTech Connect (OSTI)

    BECHTEL NEVADA; U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE

    2005-09-01T23:59:59.000Z

    Three exploratory boreholes were drilled and completed to the uppermost alluvial aquifer in Area 5 of the Nevada Test Site, Nye County, Nevada, in 1992. The boreholes and associated investigations were part of the Area 5 Site Characterization Program developed to meet data needs associated with regulatory requirements applicable to the disposal of low-level, mixed, and high-specific-activity waste at this site. This series of boreholes was specifically designed to characterize the hydrogeology of the thick vadose zone and to help define the water quality and hydraulic properties of the uppermost aquifer. Wells UE5PW-1, UE5PW-2, and UE5PW-3 are located in a triangular array near the southeast, northeast, and northwest corners, respectively, of the approximately 2.6-square-kilometer Area 5 Radioactive Waste Management Site to give reasonable spatial coverage for sampling and characterization, and to help define the nearly horizontal water table. Two of the wells, UE5PW-1 and UE5PW-2, penetrated only unconsolidated alluvial materials. The third well, located closer to the margin of the basin, penetrated both alluvium and underlying ash-flow and bedded tuff units. The watertable was encountered at the elevation of approximately 734 meters. The results of laboratory testing of core and drill cuttings samples indicate that the mineralogical, material, and hydrologic properties of the alluvium are very similar within and between boreholes. Additional tests on the same core and drill cuttings samples indicate that hydrologic conditions within the alluvium are also similar between pilot wells. Both core and drill cuttings samples are dry (less than 10 percent water content by weight) throughout the entire unsaturated section of alluvium, and water content increases slightly with depth in each borehole. Water potential measurements on core samples show a large positive potential gradient (water tends to move upward, rather than downward) to a depth of approximately 30.5 meters in each borehole, and a nearly zero potential gradient throughout the remaining portion of the vadose zone. These hydrologic condition data and hydrologic property data indicate that little net downward liquid flow is occurring (if any) through the thick vadose zone. Conversely, gas flow by diffusion, and possibly by advection, may be an important transport mechanism. Environmental tracer measurements made on water extracted from geologic samples suggest that water vapor in the upper portion of the vadose zone is moving upward in response to evaporative demand of the present arid climate. Preliminary water quality data indicate that the key hazardous and radioactive constituents do not exceed appropriate standards. Monitoring instruments and equipment were installed in each pilot well for making in-situ measurements of key hydrologic and pneumatic parameters and to monitor change in these parameters over time.

  19. Waste Isolation Pilot Plant Annual Site Enviromental Report for 2008

    SciTech Connect (OSTI)

    Washington Regulatory and Enviromnetal Services

    2009-09-21T23:59:59.000Z

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2008 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to characterize site environmental management performance; summarize environmental occurrences and responses reported during the calendar year; confirm compliance with environmental standards and requirements; highlight significant facility programs and efforts; and describe how compliance and environmental improvement is accomplished through the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the Waste Isolation Pilot Plant (WIPP). DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit (HWFP) Number NM4890139088-TSDF (treatment, storage, and disposal facility) further requires that the ASER be provided to the New Mexico Environment Department (NMED). The WIPP mission is to safely dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States. In 2008, 5,265 cubic meters (m3) of TRU waste were disposed of at the WIPP facility, including 5,216 m3 of contact-handled (CH) TRU waste and 49 m3 of remote-handled (RH) TRU waste. From the first receipt of waste in March 1999 through the end of 2008, 57,873 m3 of TRU waste had been disposed of at the WIPP facility.

  20. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    chemical conditions of the site must be determined. An engineering test plan for evaluation of plant design

  1. Test Comparability

    E-Print Network [OSTI]

    Keller, Christine; Shulenburger, David E.

    2010-01-01T23:59:59.000Z

    KU ScholarWorks | http://kuscholarworks.ku.edu Test Comparability 2010 by Christine Keller and David Shulenburger This work has been made available by the University of Kansas Libraries’ Office of Scholarly Communication and Copyright. Please... and Shulenburger, David. “Test comparability,” with Christine Keller in the Letters section of Change, September/October 2010, p. 6. Published version: http://www.changemag.org/Archives/Back%20 Issues/September-October%202010/letters-to-editor.html Terms of Use...

  2. Test Automation Ant JUnit Test Automation

    E-Print Network [OSTI]

    Mousavi, Mohammad

    Test Automation Ant JUnit Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2012 Mousavi: Test Automation #12;Test Automation Ant JUnit Outline Test Automation Ant JUnit Mousavi: Test Automation #12;Test Automation Ant JUnit Why? Challenges of Manual Testing

  3. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2006-10-12T23:59:59.000Z

    This Biennial Environmental Compliance Report (BECR) documents compliance with environmental regulations at the Waste Isolation Pilot Plant (WIPP), a facility designed and authorized for the safe disposal of transuranic (TRU) radioactive waste. This BECR covers the reporting period from April 1, 2004, to March 31, 2006. As required by the WIPP Land Withdrawal Act (LWA) (Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents United States (U.S.) Department of Energy (DOE) compliance with regulations and permits issued pursuant to the following: (1) Title 40 Code of Federal Regulations (CFR) Part 191, Subpart A, "Environmental Standards for Management and Storage"; (2) Clean Air Act (CAA) (42 United States Code [U.S.C.] §7401, et seq.); (3) Solid Waste Disposal Act (SWDA) (42 U.S.C. §§6901-6992, et seq.); (4) Safe Drinking Water Act (SDWA) (42 U.S.C. §§300f, et seq.); (5) Toxic Substances Control Act (TSCA) (15 U.S.C. §§2601, et seq.); (6) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) (42 U.S.C. §§9601, et seq.); and all other federal and state of New Mexico laws pertaining to public health and safety or the environment.

  4. Supervisory control of a pilot-scale cooling loop

    SciTech Connect (OSTI)

    Kris Villez; Venkat Venkatasubramanian; Humberto Garcia

    2011-08-01T23:59:59.000Z

    We combine a previously developed strategy for Fault Detection and Identification (FDI) with a supervisory controller in closed loop. The combined method is applied to a model of a pilot-scale cooling loop of a nuclear plant, which includes Kalman filters and a model-based predictive controller as part of normal operation. The system has two valves available for flow control meaning that some redundancy is available. The FDI method is based on likelihood ratios for different fault scenarios which in turn are derived from the application of the Kalman filter. A previously introduced extension of the FDI method is used here to enable detection and identification of non-linear faults like stuck valve problems and proper accounting of the time of fault introduction. The supervisory control system is designed so to take different kinds of actions depending on the status of the fault diagnosis task and on the type of identified fault once diagnosis is complete. Some faults, like sensor bias and drift, are parametric in nature and can be adjusted without need for reconfiguration of the regulatory control system. Other faults, like a stuck valve problem, require reconfiguration of the regulatory control system. The whole strategy is demonstrated for several scenarios.

  5. Compliance status report for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Not Available

    1994-03-31T23:59:59.000Z

    The US Department of Energy (DOE) is responsible for the disposition of transuranic (TRU) waste generated through national defense-related activities. Approximately 53,700 m{sup 2} of these wastes have been generated and are currently stored at government defense installations across the country. The Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico, has been sited and constructed to meet the criteria established by the scientific and regulatory community for the safe, long-term disposal of TRU and TRU-mixed wastes. This Compliance Status Report (CSR) provides an assessment of the progress of the WIPP Program toward compliance with long-term disposal regulations, set forth in Title 40 CFR 191 (EPA, 1993a), Subparts B and C, and Title 40 CFR {section}268.6 (EPA, 1993b), in order to focus on-going and future experimental and engineering activities. The CSR attempts to identify issues associated with the performance of the WIPP as a long-term repository and to focus on the resolution of these issues. This report will serve as a tool to focus project resources on the areas necessary to ensure complete, accurate, and timely submittal of the compliance application. This document is not intended to constitute a statement of compliance or a demonstration of compliance.

  6. Newberry Geothermal Pilot Project : Final Environmental Impact Statement.

    SciTech Connect (OSTI)

    US Forest Service; US Bureau of Land Management; US Bonneville Power Administration

    1994-09-01T23:59:59.000Z

    BPA has decided to acquire 20 average megawatts (aMW) of electrical power from a privately-owned geothermal power plant on the west flank of Newberry Volcano in Deschutes County, Oregon. The Newberry Project will generate 30 aMW and will be developed, owned, and operated by CE Newberry, Inc. of Portland, Oregon. In addition, BPA has decided to grant billing credits to EWEB for 10 aMW of electrical power and to provide wheeling services to EWEB for the transmission of this power to their system. BPA expects the Newberry Project to be in commercial operation by November 1997. BPA has statutory responsibilities to supply electrical power to its utility industrial and other customers in the Pacific Northwest. The Newberry Project will be used to meet the electrical power supply obligations of these customers. The Newberry Project will also demonstrate the availability of geothermal power to meet power supply needs in the Pacific Northwest and is expected to be the first commercial geothermal plant in the region. The Newberry Project was selected under the BPA Geothermal Pilot Project Program. The goal of the Program is to initiate development of the Pacific Northwest`s large, but essentially untapped, geothermal resources, and to confirm the availability of this resource to meet the energy needs of the region. The primary underlying objective of this Program is to assure the supply of alternative sources of electrical power to help meet growing regional power demands and needs.

  7. Waste Isolation Pilot Plant Annual Site Environmental Report for 2010

    SciTech Connect (OSTI)

    None

    2011-09-01T23:59:59.000Z

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2010 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: (1) Characterize site environmental management performance. (2) Summarize environmental occurrences and responses reported during the calendar year. (3) Confirm compliance with environmental standards and requirements. (4) Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the WIPP. DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit Number NM4890139088-TSDF (Permit) further requires that the ASER be provided to the New Mexico Environment Department (NMED).

  8. Waset Isolation Pilot Plant Annual Site Environmental Report for 2006

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2007-09-26T23:59:59.000Z

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2006 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data that: (a) Characterize site environmental management performance; (b) Summarize environmental occurrences and responses reported during the calendar year; (c) Confirm compliance with environmental standards and requirements; and (d) Highlight significant facility programs and efforts. The DOE Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) maintain and preserve the environmental resources at the WIPP site. DOE Order 231.1A; DOE Order 450.1, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This report was prepared in accordance with DOE Order 231.1A. This order requires that DOE facilities submit an ASER to the DOE Headquarters Office of the Assistant Secretary for Environment, Safety, and Health. The WIPP Hazardous Waste Facility Permit (HWFP) (No. NM4890139088-TSDF [treatment, storage, and disposal facility]) further requires that the ASER be provided to the New Mexico Environment Department (NMED).

  9. Field Testing of a Wet FGD Additive for Enhanced Mercury Control

    SciTech Connect (OSTI)

    Gary Blythe; MariJon Owens

    2007-12-31T23:59:59.000Z

    This document is the final report for DOE-NETL Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project has been to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project was intended to demonstrate whether such additives can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project involved pilot- and full-scale tests of the additives in wet FGD absorbers. The tests were intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power provided the Texas lignite/PRB co-fired test site for pilot FGD tests and project cost sharing. Southern Company provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested, and project cost sharing. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation provided the TMT-15 additive, and the Nalco Company provided the Nalco 8034 additive. Both companies also supplied technical support to the test program as in-kind cost sharing. The project was conducted in six tasks. Of the six tasks, Task 1 involved project planning and Task 6 involved management and reporting. The other four tasks involved field testing on FGD systems, either at pilot or full scale. These four tasks included: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and the full-scale test using high-sulfur coal was completed in 2006; only the TMT-15 additive was tested in these efforts. The Task 5 full-scale additive tests conducted at Southern Company's Plant Yates Unit 1 were completed in 2007, and both the TMT-15 and Nalco 8034 additives were tested.

  10. On-Site Pilot Study - Removal of Uranium, Radium-226 and Arsenic from Impacted Leachate by Reverse Osmosis - 13155

    SciTech Connect (OSTI)

    McMurray, Allan; Everest, Chris; Rilling, Ken [Conestoga-Rovers and Associates, 651 Colby Dr, Waterloo, ON (Canada)] [Conestoga-Rovers and Associates, 651 Colby Dr, Waterloo, ON (Canada); Vandergaast, Gary [Atomic Energy of Canada Ltd, 115 Toronto Road, Port Hope, ON (Canada)] [Atomic Energy of Canada Ltd, 115 Toronto Road, Port Hope, ON (Canada); LaMonica, David [RoChem Membrane Systems Inc., 430 30th Street, Hermosa Beach, CA (United States)] [RoChem Membrane Systems Inc., 430 30th Street, Hermosa Beach, CA (United States)

    2013-07-01T23:59:59.000Z

    Conestoga-Rovers and Associates (CRA-LTD) performed an on-site pilot study at the Welcome Waste Management Facility in Port Hope, Ontario, Canada, to evaluate the effectiveness of a unique leachate treatment process for the removal of radioactive contaminants from leachate impacted by low-level radioactive waste. Results from the study also provided the parameters needed for the design of the CRA-LTD full scale leachate treatment process design. The final effluent water quality discharged from the process to meet the local surface water discharge criteria. A statistical software package was utilized to obtain the analysis of variance (ANOVA) for the results from design of experiment applied to determine the effect of the evaluated factors on the measured responses. The factors considered in the study were: percent of reverse osmosis permeate water recovery, influent coagulant dosage, and influent total dissolved solids (TDS) dosage. The measured responses evaluated were: operating time, average specific flux, and rejection of radioactive contaminants along with other elements. The ANOVA for the design of experiment results revealed that the operating time is affected by the percent water recovery to be achieved and the flocculant dosage over the range studied. The average specific flux and rejection for the radioactive contaminants were not affected by the factors evaluated over the range studied. The 3 month long on-site pilot testing on the impacted leachate revealed that the CRA-LTD leachate treatment process was robust and produced an effluent water quality that met the surface water discharge criteria mandated by the Canadian Nuclear Safety Commission and the local municipality. (authors)

  11. In the field. Pilot project uses innovative process to capture CO{sub 2} from flue gas

    SciTech Connect (OSTI)

    NONE

    2008-04-01T23:59:59.000Z

    A pilot project at We Energies' Pleasant Prairie Power Plant uses chilled ammonia to capture CO{sub 2} from flue gas. 3 photos.

  12. Verification Testing Test Driven Development Testing with JUnit Verification

    E-Print Network [OSTI]

    Peters, Dennis

    Verification Testing Test Driven Development Testing with JUnit Verification Any activity should be verified. #12;Verification Testing Test Driven Development Testing with JUnit Approaches to verification 1 Testing 2 Static Analysis · Peer review · Insepction/Walk-through/Structured review · Formal

  13. Geological evaluation of San Diego Norte Pilot Project, Zuata area, Orinoco Oil Belt, Venezuela

    SciTech Connect (OSTI)

    De Rojas, I.

    1987-10-01T23:59:59.000Z

    The San Diego Norte Pilot Project consists of twelve inclined wells (7 producing wells 300 m (984 ft) apart, plus 5 observation wells) drilled from a cluster, to study the production and compaction behavior under steam soak (huff and puff) of the Tertiary heavy crude oil reservoirs of the Zuata area. This area is located within the Orinoco Heavy Oil belt of Venezuela. A geological model was needed as a base for the reservoir studies and to understand the geological setting. This model was constructed from extensive log information, seismic lines, well samples, and cores. The reservoir sands are friable with an average porosity of 34% and permeabilities ranging from 1 to 7 ..mu..m/sup 2/ (1 to 7 darcys). The sands were deposited in meander belts that stacked up forming multistory bodies. Point bars and channel fills account for 80-90% of the total sand. These sands are internally heterogeneous, sinuous and elongated, and larger than the 1 km/sup 2/ area covered by the project. The topmost two productive sands, which together average 22 m (72 ft), show the best porosities and permeabilities and are isolated by thick clays that make them suitable for selective steam injection. In the project, the oil has a density of about 1.0 g/cm/sup 3/ (10/sup 0/ API) and fills all the sands down to the oil-water contact. The depth of this contact is controlled by regional faults. Based on core compressibility tests, compaction is expected to be the principal production mechanism that could increase the expected primary recovery of 4 to 12% by huff and puff steam injection, leading to a possible recovery of 0.64 x 10/sup 6/ m/sup 3/ (4 million bbl) in six years with four cycles of steam injection. 16 figures, 2 tables.

  14. Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture

    SciTech Connect (OSTI)

    Farnum, Rachel; Perry, Robert; Wood, Benjamin

    2014-12-31T23:59:59.000Z

    GE Global Research is developing technology to remove carbon dioxide (CO 2) from the flue gas of coal-fired powerplants. A mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) and triethylene glycol (TEG) is the preferred CO2-capture solvent. GE Global Research was contracted by the Department of Energy to test a pilot-scale continuous CO2 absorption/desorption system using a GAP-1m/TEG mixture as the solvent. As part of that effort, an Environmental, Health, and Safety (EH&S) assessment for a CO2-capture system for a 550 MW coal-fired powerplant was conducted. Five components of the solvent, CAS#2469-55-8 (GAP-0), CAS#106214-84-0 (GAP-1-4), TEG, and methanol and xylene (minor contaminants from the aminosilicone) are included in this assessment. One by-product, GAP- 1m/SOX salt, and dodecylbenzenesulfonicacid (DDBSA) were also identified foranalysis. An EH&S assessment was also completed for the manufacturing process for the GAP-1m solvent. The chemicals associated with the manufacturing process include methanol, xylene, allyl chloride, potassium cyanate, sodium hydroxide (NaOH), tetramethyldisiloxane (TMDSO), tetramethyl ammonium hydroxide, Karstedt catalyst, octamethylcyclotetrasiloxane (D4), Aliquat 336, methyl carbamate, potassium chloride, trimethylamine, and (3-aminopropyl) dimethyl silanol. The toxicological effects of each component of both the CO2 capture system and the manufacturing process were defined, and control mechanisms necessary to comply with U.S. EH&S regulations are summarized. Engineering and control systems, including environmental abatement, are described for minimizing exposure and release of the chemical components. Proper handling and storage recommendations are made for each chemical to minimize risk to workers and the surrounding community.

  15. Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation

    SciTech Connect (OSTI)

    Xu, M.; Wu, W.-M.; Wu, L.; He, Z.; Van Nostrand, J.D.; Deng, Y.; Luo, J.; Carley, J.; Ginder-Vogel, M.; Gentry, T.J.; Gu, B.; Watson, D.; Jardine, P.M.; Marsh, T.L.; Tiedje, J.M.; Hazen, T.C.; Criddle, C.S.; Zhou, J.

    2010-02-15T23:59:59.000Z

    A pilot-scale field test system with an inner loop nested within an outer loop was constructed for in situ U(VI) bioremediation at a US Department of Energy site, Oak Ridge, TN. The outer loop was used for hydrological protection of the inner loop where ethanol was injected for biostimulation of microorganisms for U(VI) reduction/immobilization. After 2 years of biostimulation with ethanol, U(VI) levels were reduced to below drinking water standard (<30 {micro}gl{sup -1}) in the inner loop monitoring wells. To elucidate the microbial community structure and functions under in situ uranium bioremediation conditions, we used a comprehensive functional gene array (GeoChip) to examine the microbial functional gene composition of the sediment samples collected from both inner and outer loop wells. Our study results showed that distinct microbial communities were established in the inner loop wells. Also, higher microbial functional gene number, diversity and abundance were observed in the inner loop wells than the outer loop wells. In addition, metal-reducing bacteria, such as Desulfovibrio, Geobacter, Anaeromyxobacter and Shewanella, and other bacteria, for example, Rhodopseudomonas and Pseudomonas, are highly abundant in the inner loop wells. Finally, the richness and abundance of microbial functional genes were highly correlated with the mean travel time of groundwater from the inner loop injection well, pH and sulfate concentration in groundwater. These results suggest that the indigenous microbial communities can be successfully stimulated for U bioremediation in the groundwater ecosystem, and their structure and performance can be manipulated or optimized by adjusting geochemical and hydrological conditions.

  16. Market assessment of PFBC ash use

    SciTech Connect (OSTI)

    Bland, A. E.; Brown, T. H., Western Research Institute

    1998-01-01T23:59:59.000Z

    Pressurized fluidized bed combustion (PFBC) of coal is undergoing demonstration in the United States, as well as throughout the world. American Electric Power`s (AEP`s) bubbling PFBC 70 MWe Tidd demonstration program in Ohio and pilot-scale development at Foster Wheeler Energia Oy 10 MWth circulating PFBC at Karhula, Finland, have demonstrated the advantages of PFBC technology. Further technology development in the US is planned with the deployment of the technology at the MacIntosh Clean Coal project in Lakeland, Florida. Development of uses for solid wastes from PFBC coal-fired power systems is being actively pursued as part of the demonstration of PFBC technologies. Ashes collected from Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, operating on (1) low sulfur subbituminous and (2) high sulfur bituminous coal; and ash from the AEP`s high-sulfur bituminous coal-fired bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing at Western Research Institute (WRI).

  17. Independent review of estimated load reductions for PJM's small customer load response pilot project

    SciTech Connect (OSTI)

    Heffner, G.; Moezzi, M.; Goldman, C.

    2004-06-01T23:59:59.000Z

    This study describes the results of a low-cost approach used to measure reported load reductions from a residential electric water heater (EWH) load control program operated as part of PJM Interconnection's Demand Response small customer pilot program. Lawrence Berkeley National Laboratory (LBNL) conducted this independent review of the engineering estimates for EWH load control reported by a Curtailment Service Provider (CSP) at PJM's request. LBNL employed low-cost measurement and verification (M&V) approaches that utilized existing interval metering equipment to monitor results for a series of load control tests. The CSP collected hourly load data for two substations and several hundred households over a six-week period in October and November 2003. During this time period, the CSP operated its electric water heater load control program during pre-specified test periods in the morning, afternoon and early evening. LBNL then analyzed substation and premise-level data from these tests in order to verify the diversified demand reductions claimed by the CSP for customers participating in the EWH load control program. We found that the observed load reductions for the premise-level data aggregated over all households in the two participating electric cooperatives were, respectively, 40 percent-60 percent less and 3 percent less-10 percent higher than the estimated diversified demand reduction values assumed by the CSP, depending on whether observed or normalized results are considered. We also analyzed sub-station level data and found that the observed load reductions during the test periods were significantly lower than expected, although confounding influences and operational problems signifiogram during pre-specified test periods in the morning, afternoon and early evening. LBNL then analyzed substation and premise-level data from these tests in order to verify the diversified demand reductions claimed by the CSP for customers participating in the EWH load control program. We found that the observed load reductions for the premise-level data aggregated over all households in the two participating electric cooperatives were, respectively, 40 percent-60 percent less and 3 percent less-10 percent higher than the estimated diversified demand reduction values assumed by the CSP, depending on whether observed or normalized results are considered. We also analyzed sub-station level data and found that the observed load reductions during the test periods were significantly lower than expected, although confounding influences and operational problems significantly limit our ability to differentiate between control-related and non-control related differences in substation-level load shape data. The usefulness and accuracy of the results were hampered by operational problems encountered during the measurement period as well as in sufficient number of load research grade interval meters at one cooperative. Given the larger sample size at one electric cooperative and more statistically-robust results, there is some basis to suggest that the Adjusted Diversified Demand Factor (ADDF) values used by the CSP somewhat over-state the actual load reductions. Given the results and limitations of the M&V approach as implemented, we suggest several options for PJM to consider: (1) require load aggregators participating in ISODR programs to utilize formal PURPA-compliant load research samples in their M&V plans, and (2) continue developing lower cost M&V approaches for mass market load control programs that incorporate suggested improvements described in this study.

  18. Verifying Test Hypotheses -HOL/TestGen Verifying Test Hypotheses -HOL/TestGen

    E-Print Network [OSTI]

    Verifying Test Hypotheses - HOL/TestGen Verifying Test Hypotheses - HOL/TestGen An Experiment in Test and Proof Thomas Malcher January 20, 2014 1 / 20 #12;Verifying Test Hypotheses - HOL/TestGen HOL/TestGen Outline Introduction Test Hypotheses HOL/TestGen - Demo Verifying Test Hypotheses Conclusion 2 / 20 #12

  19. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2005-07-01T23:59:59.000Z

    The DOE established the Groundwater Monitoring Program (GMP) (WP 02-1) to monitor groundwater resources at WIPP. In the past, the GMP was conducted to establish background data of existing conditions of groundwater quality and quantity in the WIPP vicinity, and to develop and maintain a water quality database as required by regulation. Today the GMP is conducted consistent with 204.1.500 NMAC (New MexicoAdministrative Code), "Adoption of 40 CFR [Code of Federal Regulations] Part 264,"specifically 40 CFR §264.90 through §264.101. These sections of 20.4.1 NMAC provide guidance for detection monitoring of groundwater that is, or could be, affected by waste management activities at WIPP. Detection monitoring at WIPP is designed to detect contaminants in the groundwater long before the general population is exposed. Early detection will allow cleanup efforts to be accomplished before any exposure to the general population can occur. Title 40 CFR Part 264, Subpart F, stipulates minimum requirements of Resource Conservation and Recovery Act of 1976 (42 United States Code [U.S.C.] §6901 et seq.) (RCRA) groundwater monitoring programs including the number and location of monitoring wells; sampling and reporting schedules; analytical methods and accuracy requirements; monitoring parameters; and statistical treatment of monitoring data. This document outlines how WIPP intends to protect and preserve groundwater within the WIPP Land Withdrawal Area (WLWA). Groundwater protection is just one aspect of the WIPP environmental protection effort. An overview of the entire environmental protection effort can be found in DOE/WIPP 99-2194, Waste Isolation Pilot Plant Environmental Monitoring Plan. The WIPP GMP is designed to statistically determine if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will then be determined and the appropriate corrective action(s) initiated.

  20. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect (OSTI)

    Washinton TRU Solutions LLC

    2002-09-30T23:59:59.000Z

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2000, to March 31, 2002. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Field Office's (CBFO) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. In the prior BECR, the CBFO and the management and operating contractor (MOC)committed to discuss resolution of a Letter of Violation that had been issued by the New Mexico Environment Department (NMED) in August 1999, which was during the previous BECR reporting period. This Letter of Violation alleged noncompliance with hazardous waste aisle spacing, labeling, a nd tank requirements. At the time of publication of the prior BECR, resolution of the Letter of Violation was pending. On July 7, 2000, the NMED issued a letter noting that the aisle spacing and labeling concerns had been adequately addressed and that they were rescinding the violation alleging that the Exhaust Shaft Catch Basin failed to comply with the requirements for a hazardous waste tank. During the current reporting period, WIPP received a Notice of Violation and a compliance order alleging the violation of the New Mexico Hazardous Waste Regulations and the WIPP Hazardous Waste Facility Permit (HWFP).

  1. Final environmental impact statement. Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Not Available

    1980-10-01T23:59:59.000Z

    In accordance with the National Environmental Policy Act (NEPA) of 1969, the US Department of Energy (DOE) has prepared this document as environmental input to future decisions regarding the Waste Isolation Pilot Plant (WIPP), which would include the disposal of transuranic waste, as currently authorized. The alternatives covered in this document are the following: (1) Continue storing transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) as it is now or with improved confinement. (2) Proceed with WIPP at the Los Medanos site in southeastern New Mexico, as currently authorized. (3) Dispose of TRU waste in the first available repository for high-level waste. The Los Medanos site would be investigated for its potential suitability as a candidate site. This is administration policy and is the alternative preferred by the DOE. (4) Delay the WIPP to allow other candidate sites to be evaluated for TRU-waste disposal. This environmental impact statement is arranged in the following manner: Chapter 1 is an overall summary of the analysis contained in the document. Chapters 2 and 4 set forth the objectives of the national waste-management program and analyze the full spectrum of reasonable alternatives for meeting these objectives, including the WIPP. Chapter 5 presents the interim waste-acceptance criteria and waste-form alternatives for the WIPP. Chapters 6 through 13 provide a detailed description and environmental analysis of the WIPP repository and its site. Chapter 14 describes the permits and approvals necessary for the WIPP and the interactions that have taken place with Federal, State, and local authorities, and with the general public in connection with the repository. Chapter 15 analyzes the many comments received on the DEIS and tells what has been done in this FEIS in response. The appendices contain data and discussions in support of the material in the text.

  2. Final report and recommendations of the ESnet Authentication Pilot Project

    SciTech Connect (OSTI)

    Johnson, G.R.; Moore, J.P. [Pacific Northwest Lab., Richland, WA (United States); Athey, C.L. [Lawrence Livermore National Lab., CA (United States); Engert, D.E. [Argonne National Lab., IL (United States); Ramus, J.E. [National Energy Research Supercomputer Center, Livermore, CA (United States)

    1995-01-01T23:59:59.000Z

    To conduct their work, U.S. Department of Energy (DOE) researchers require access to a wide range of computing systems and information resources outside of their respective laboratories. Electronically communicating with peers using the global Internet has become a necessity to effective collaboration with university, industrial, and other government partners. DOE`s Energy Sciences Network (ESnet) needs to be engineered to facilitate this {open_quotes}collaboratory{close_quotes} while ensuring the protection of government computing resources from unauthorized use. Sensitive information and intellectual properties must be protected from unauthorized disclosure, modification, or destruction. In August 1993, DOE funded four ESnet sites (Argonne National Laboratory, Lawrence Livermore National Laboratory, the National Energy Research Supercomputer Center, and Pacific Northwest Laboratory) to begin implementing and evaluating authenticated ESnet services using the advanced Kerberos Version 5. The purpose of this project was to identify, understand, and resolve the technical, procedural, cultural, and policy issues surrounding peer-to-peer authentication in an inter-organization internet. The investigators have concluded that, with certain conditions, Kerberos Version 5 is a suitable technology to enable ESnet users to freely share resources and information without compromising the integrity of their systems and data. The pilot project has demonstrated that Kerberos Version 5 is capable of supporting trusted third-party authentication across an inter-organization internet and that Kerberos Version 5 would be practical to implement across the ESnet community within the U.S. The investigators made several modifications to the Kerberos Version 5 system that are necessary for operation in the current Internet environment and have documented other technical shortcomings that must be addressed before large-scale deployment is attempted.

  3. Test Plan: Sludge Treatment Project Corrosion Process Chemistry Follow-on Testing

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Schmidt, Andrew J.; Poloski, Adam P.

    2007-08-17T23:59:59.000Z

    This test plan was prepared by the Pacific Northwest National Laboratory (PNNL) under contract with Fluor Hanford (FH). The test plan describes the scope and conditions to be used to perform laboratory-scale testing of the Sludge Treatment Project (STP) hydrothermal treatment of K Basin sludge. The STP, managed for the U. S. Department of Energy (DOE) by FH, was created to design and operate a process to eliminate uranium metal from the sludge prior to packaging for Waste Isolation Pilot Plant (WIPP) by using high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. The proposed testing builds on the approach and laboratory test findings for both K Basin sludge and simulated sludge garnered during prior testing from September 2006 to March 2007. The outlined testing in this plan is designed to yield further understanding of the nature of the chemical reactions, the effects of compositional and process variations and the effectiveness of various strategies to mitigate the observed high shear strength phenomenon observed during the prior testing. These tests are designed to provide process validation and refinement vs. process development and design input. The expected outcome is to establish a level of understanding of the chemistry such that successful operating strategies and parameters can be implemented within the confines of the existing STP corrosion vessel design. In July 2007, the DOE provided direction to FH regarding significant changes to the scope of the overall STP. As a result of the changes, FH directed PNNL to stop work on most of the planned activities covered in this test plan. Therefore, it is unlikely the testing described here will be performed. However, to preserve the test strategy and details developed to date, the test plan has been published.

  4. Pilot Study: Somatic Cell Genealogies and Differentiation This is a 2-month pilot study in the sense that it is an investigation that will evaluate the feasibility of a certain approach to some big

    E-Print Network [OSTI]

    Goldschmidt, Christina

    Pilot Study: Somatic Cell Genealogies and Differentiation This is a 2-month pilot study Cell 1014 Zygote ~40 generations/duplications Cell 2 The cell genealogy is enormous with 1014 leaves . Only a sub-sample of cells (illustrated in bold) will be available defining a sub-genealogy

  5. Microgrid Testing

    SciTech Connect (OSTI)

    Shirazi, M.; Kroposki, B.

    2012-01-01T23:59:59.000Z

    With the publication of IEEE 1574.4 Guide for Design, Operation, and Integration of Distributed Resource Island Systems with Electric Power Systems, there is an increasing amount of attention on not only the design and operations of microgrids, but also on the proper operation and testing of these systems. This standard provides alternative approaches and good practices for the design, operation, and integration of microgrids. This includes the ability to separate from and reconnect to part of the utility grid while providing power to the islanded power system. This presentation addresses the industry need to develop standardized testing and evaluation procedures for microgrids in order to assure quality operation in the grid connected and islanded modes of operation.

  6. Committee on the Challenges of Modern Society solar energy pilot study. First follow-up report, October 1979, pilot country: United States; co-pilot countries: Denmark and France. CCMS report No. 110

    SciTech Connect (OSTI)

    None

    1980-01-01T23:59:59.000Z

    During 1973 to 1978, over twenty nations participated in the NATO/CCMS Solar Energy Pilot Study, whose objective was to promote and accelerate the use of solar heating and cooling of buildings. The activities in this information exchange included (1) the regular reporting of national solar heating and cooling programs, (2) the development of a format for reporting the performance of solar heating and cooling systems, (3) the exchange of system performance reports, (4) the establishment of two specialized working groups for solar-assisted low energy dwellings and passive solar applications. At the conclusion of the pilot study in 1978, the participants formulated recommendations for continued action at the international level, as well as for action at the national level. This report describes the progress made in implementing those recommendations. In addition to detailing the steps taken to continue collaboration in various efforts initiated within the Solar Energy Pilot Study, the report contains papers on the 1979 status of the solar heating and cooling programs in seventeen CCMS countries.

  7. Surface process study for oil recovery using a thermal extraction process

    SciTech Connect (OSTI)

    Sethl, V.K.; Satchwell, R.M.; Johnson, L.A. Jr.

    1994-06-01T23:59:59.000Z

    Geological studies have shown that there are many surface or near-surface deposits in the United States that contain large quantities of petroleum. In the State of Wyoming, a high concentration of such deposits exists in the Wind River, Big Horn, and Powder River Basins. These shallow deposits typically occur as unconsolidated or friable formations that contain millions of barrels of oil. Conventional petroleum production techniques have been attempted in many of these deposits with little or no economic success. In an attempt to improve the production economics, the Western Research Institute was solicited to develop a technique for the recovery of oil from these deposits. WRI, with support from the Economic and Community Development Division of the State of Wyoming, and as a part of the WRI/US Department of Energy, Jointly Sponsored Research program, proposed to develop, test, and demonstrate a viable and economical technology for the recovery of oil using mining and surface recovery processes. Reneau Energy, Inc. of La Quinta, California, agreed to participate in the project in providing a test site and mined materials. The goal of the proposed project to be completed in two phases, was to develop existing energy resources which are not presently being utilized. Phase 1 of the project, consisting of six specific tasks, was conducted to evaluate the suitability of various surface processing schemes. Phase 1 also included gravity drainage tests to determine if recovery techniques such as horizontal drilling could be applied. Phase 1 work was completed, and a final report was prepared and submitted to the funding agencies. Based on the results obtained in Phase 1 of the project, fluidized-bed based thermal recovery appeared to be a viable option. A 100 tons per day pilot plant was designed, constructed, and operated in the field. This report describes the results and experiences of the Phase 2 testing.

  8. Flying knights or Flying scientists? a cognitive history of the US Air Force Fighter Pilot in air-to-air combat, 1950-1980

    E-Print Network [OSTI]

    Fino, Steven A. (Steven Andrew)

    2014-01-01T23:59:59.000Z

    US Air Force fighter aircraft underwent a remarkable transformation in the period from 1950 to 1980. Whereas the lone fighter pilots of earlier fame relied on the power of their eyesight, the finesse of their piloting ...

  9. Pilot plant studies for a new hot water process for extraction of bitumen from Utah tar sands

    SciTech Connect (OSTI)

    Dahlstrom, D.A.

    1996-12-31T23:59:59.000Z

    A process development pilot plant for extracting bitumen from tar sands under arid conditions are described. The hot water recovery process under development is required to maximize heat and water recovery, recover more than 90% of the bitumen, minimize the operating cost, and eliminate the use of a tailings pond by increasing the effectiveness of solids separation and dewatering. Technical aspects of process flow conditions, the liquid cyclone separator under development, and testing to analyze the influence of flow rates, size distribution in discharge streams, amount of bitumen recovery from different streams, and air addition are summarized. Test results indicate that bitumen recovery should be at least 90%, water content from thickener underflow and dewater coarse solids averages about 30 weight percent moisture, and the forced vortex cyclone can produce an underflow solids concentration of 69 to 72 weight percent moisture. The proposed flow sheet is believed to be a very low-cost method for bitumen recovery. 5 refs., 3 figs., 2 tabs.

  10. 100 Area soil washing treatability test plan

    SciTech Connect (OSTI)

    Not Available

    1993-03-01T23:59:59.000Z

    This test plan describes specifications, responsibilities, and general methodology for conducting a soil washing treatability study as applied to source unit contamination in the 100 Area. The objective ofthis treatability study is to evaluate the use of physical separation systems and chemical extraction methods as a means of separating chemically and radioactively contaminated soil fractions from uncontaminated soil fractions. The purpose of separating these fractions is to minimize the volume of soil requiring permanent disposal. It is anticipated that this treatability study will be performed in two phases of testing, a remedy screening phase and a remedy selection phase. The remedy screening phase consists of laboratory- and bench-scale studies performed by Battelle Pacific Northwest laboratories (PNL) under a work order issued by Westinghouse Hanford Company (Westinghouse Hanford). This phase will be used to provide qualitative evaluation of the potential effectiveness of the soil washing technology. The remedy selection phase, consists of pilot-scale testing performed under a separate service contract to be competitively bid under Westinghouse Hanford direction. The remedy selection phase will provide data to support evaluation of the soil washing technology in future feasibility studies for Interim Remedial Measures (IRMs) or final operable unit (OU) remedies. Performance data from these tests will indicate whether applicable or relevant and appropriate requirements (ARARs) or cleanup goals can be met at the site(s) by application of soil washing. The remedy selection tests wig also allow estimation of costs associated with implementation to the accuracy required for the Feasibility Study.

  11. Hydraulically actuated fuel injector including a pilot operated spool valve assembly and hydraulic system using same

    DOE Patents [OSTI]

    Shafer, Scott F. (Morton, IL)

    2002-01-01T23:59:59.000Z

    The present invention relates to hydraulic systems including hydraulically actuated fuel injectors that have a pilot operated spool valve assembly. One class of hydraulically actuated fuel injectors includes a solenoid driven pilot valve that controls the initiation of the injection event. However, during cold start conditions, hydraulic fluid, typically engine lubricating oil, is particularly viscous and is often difficult to displace through the relatively small drain path that is defined past the pilot valve member. Because the spool valve typically responds slower than expected during cold start due to the difficulty in displacing the relatively viscous oil, accurate start of injection timing can be difficult to achieve. There also exists a greater difficulty in reaching the higher end of the cold operating speed range. Therefore, the present invention utilizes a fluid evacuation valve to aid in displacement of the relatively viscous oil during cold start conditions.

  12. SimPilot: An exploration of modeling a highly interactive task with delayed feedback in a multitasking environment

    E-Print Network [OSTI]

    Gray, Wayne

    SimPilot: An exploration of modeling a highly interactive task with delayed feedback of cognition and the building of process models of taxiing. We describe a model, SimPilot, its initial feedback, threaded cognition; cognitive control; task switching. Introduction A good applied problem drives

  13. Light-Emitting Tag Testing in Conjunction with Testing of the Minimum Gap Runner Turbine Design at Bonneville Dam Powerhouse 1

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Weiland, Mark A.

    2001-01-30T23:59:59.000Z

    This report describes a pilot study conducted by Tom Carlson of PNNL and Mark Weiland of MEVATEC Corp to test the feasibility of using light-emitting tags to visually track objects passing through the turbine environment of a hydroelectric dam. Light sticks were released at the blade tip, mid-blade, and hub in the MGR turbine and a Kaplan turbine at Bonneville Dam and videotaped passing thru the dam to determine visibility and object trajectories.

  14. Case studies of energy efficiency financing in the original five pilot states, 1993-1996

    SciTech Connect (OSTI)

    Farhar, B.C.; Collins, N.E.; Walsh, R.W.

    1997-05-01T23:59:59.000Z

    The purpose of this report is to document progress in state-level programs in energy efficiency financing programs that are linked with home energy rating systems. Case studies are presented of programs in five states using a federal pilot program to amortize the costs of home energy improvements. The case studies present background information, describe the states` program, list preliminary evaluation data and findings, and discuss problems and solution encountered in the programs. A comparison of experiences in pilot states will be used to provide guidelines for program implementers, federal agencies, and Congress. 5 refs.

  15. Conceptual Design for the Pilot-Scale Plutonium Oxide Processing Unit in the Radiochemical Processing Laboratory

    SciTech Connect (OSTI)

    Lumetta, Gregg J.; Meier, David E.; Tingey, Joel M.; Casella, Amanda J.; Delegard, Calvin H.; Edwards, Matthew K.; Jones, Susan A.; Rapko, Brian M.

    2014-08-05T23:59:59.000Z

    This report describes a conceptual design for a pilot-scale capability to produce plutonium oxide for use as exercise and reference materials, and for use in identifying and validating nuclear forensics signatures associated with plutonium production. This capability is referred to as the Pilot-scale Plutonium oxide Processing Unit (P3U), and it will be located in the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. The key unit operations are described, including plutonium dioxide (PuO2) dissolution, purification of the Pu by ion exchange, precipitation, and conversion to oxide by calcination.

  16. Characterization of ash deposition and heat transfer behavior of coals during combustion in a pilot-scale facility and full-scale utility

    SciTech Connect (OSTI)

    Sushil Gupta; Rajender Gupta; Gary Bryant; Terry Wall; Shinji Watanabe; Takashi Kiga; Kimihito Narukawa [University of New South Wales, Sydney, NSW (Australia). Centre for Sustainable Materials Research & Technology

    2009-05-15T23:59:59.000Z

    Experimental measurements as well as theoretical models were used to investigate the impact of mineral matter of three coals on ash deposition and heat transfer for pulverized coal fired boilers. The ash deposition experiments were conducted in a pulverized fuel combustion pilot-scale facility and a full-scale unit. A mathematical model with input from computer-controlled scanning electron microscopy analysis of coal minerals was used to predict the effect of ash deposition on heat transfer. The predicted deposit thickness and heat flux from the model are shown to be consistent with the measurements in the test facility. The model differentiates the coals according to the deposits they form and their effect on heat transfer. The heat transfer predictions in the full-scale unit were found to be most suitable for the water wall under the furnace nose. The study demonstrates that the measurements in a full-scale unit can differ significantly from those in pilot-scale furnaces due to soot-blowing operations. 9 refs., 12 figs., 3 tabs.

  17. Prototype to Test WHY prototype to test

    E-Print Network [OSTI]

    Prinz, Friedrich B.

    Prototype to Test METHOD WHY prototype to test HOW to prototype to test Prototyping to test or design space. The fundamental way you test your prototypes is by letting users experience them and react to them. In creating prototypes to test with users you have the opportunity to examine your solution

  18. Treatment of septage in sludge drying reed beds: a case study on pilot-scale beds

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Treatment of septage in sludge drying reed beds: a case study on pilot-scale beds S. Troesch***, A systems by local authorities. This will result in a large increase of the quantity of sludge from septic to treat this sludge because they may have reached their nominal load or they are not so numerous in rural

  19. Sludge drying reed beds: a full and pilot-scales study for activated sludge treatment

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Sludge drying reed beds: a full and pilot-scales study for activated sludge treatment S. Troesch.troesch@cemagref.fr, dirk.esser@sint.fr Abstract Sludge drying reed beds have been used for dewatering and mineralization of sludge since the beginning of the 90's, but their insufficient performances in terms of Dry Matter [DM

  20. Long-term pilot scale investigation of novel hybrid ultrafiltration-osmotic membrane bioreactors

    E-Print Network [OSTI]

    Long-term pilot scale investigation of novel hybrid ultrafiltration-osmotic membrane bioreactors Innovations, Albany, OR, USA H I G H L I G H T S · A hybrid ultrafiltration-osmotic mem- brane bioreactor bioreactor Forward osmosis Osmotic MBR Nutrient recovery Salt rejection Direct potable reuse An osmotic

  1. Pilot Scale Study of Excess Sludge Production Reduction in Wastewater Treatment by Ozone

    E-Print Network [OSTI]

    Barthelat, Francois

    Pilot Scale Study of Excess Sludge Production Reduction in Wastewater Treatment by Ozone Yuan Ma-scale reactors were operated at the LaPrairie Wastewater Treatment plant (one control and one ozonated) to investigate the sludge reduction potential of partially ozonating sludge return activated sludge (RAS

  2. A Text Mining Approach to Tracking Elements of Decision Making: a pilot study

    E-Print Network [OSTI]

    A Text Mining Approach to Tracking Elements of Decision Making: a pilot study C. Chibelushi, B industrial problems in system engineering projects. The aim of our research is to apply text mining and rework. Text mining is similar to data mining: while data mining seeks to discover meaningful patterns

  3. Chemistry research and development. Progress report, December 1978-May 1979. [Component, pilot plant, instrumentation

    SciTech Connect (OSTI)

    Miner, F. J.

    1980-06-30T23:59:59.000Z

    Progress and activities are reported on component development, pilot plant development, and instrumentation and statistical systems. Specific items studied include processing of pond sludge, transport of radioactive materials and wastes, corrosion, decontamination and cleaning, fluidized-bed incineration, Pu contamination of soils, chemical analysis, radiometric analysis, security. (DLC)

  4. RIS-M-2483 A PILOT INVESTIGATION OP NATORAL RADIATION IN DANISH HOUSES

    E-Print Network [OSTI]

    EQUIVALENTS; DOSB RATES; DOSBMBTBRS; BTCHING; EXPERIMEN- TAL DATA; GAMMA RADIATION; HOUSES; NATURALRISø-M-2483 A PILOT INVESTIGATION OP NATORAL RADIATION IN DANISH HOUSES A. Sørensen, L. Bøtter radiation in Denmark. A passive cup dosemeter was designed containing CR39 track detectors and TLD

  5. Assessing Rural Transformations: Piloting a Qualitative Impact Protocol in Malawi and Ethiopia

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    Assessing Rural Transformations: Piloting a Qualitative Impact Protocol in Malawi and Ethiopia a Qualitative Impact Protocol in Malawi and Ethiopia James Copestake and Fiona Remnant Abstract This paper impact evaluation of NGO sponsored rural development projects in Malawi and Ethiopia. Two of the projects

  6. Transport of lead and diesel fuel through a peat soil near Juneau, AK: a pilot study

    E-Print Network [OSTI]

    Walter, M.Todd

    Transport of lead and diesel fuel through a peat soil near Juneau, AK: a pilot study Julian Deissa potential of lead (Pb) and diesel range organics (DRO) in palustrine slope wetlands near Juneau, AK; Lead (Pb); Diesel range organic (DRO); Macropore; Rifle range; Wetland 0169-7722/$ - see front matter D

  7. Pilot projects for cooperation between European Institutes of Technology Supporting integrated innovation networks Call for proposals

    E-Print Network [OSTI]

    De Cindio, Fiorella

    with their own legal form, or in the European Institute of Technology, where research, education and innovation partnerships between the actors involved in technological 1 "Creating an innovative Europe", ReportPilot projects for cooperation between European Institutes of Technology Supporting integrated

  8. Hybrid Traffic Data Collection Roadmap: Pilot Procurement of Third-Party Traffic Data

    E-Print Network [OSTI]

    Alexandre, Bayen

    2013-01-01T23:59:59.000Z

    Avenue exit sign at Lat/Lng 34.154224, -117.474847 BT2Next Exit” sign at Lat/Lng 34.128846, Pilot Procurement of3-48: Ontario Freeway at Lat/Lng 34.117684, -117.518984 BT4

  9. CLINICAL AND TRANSLATIONAL SCIENCE INSTITUTE (CTSI) BASIC TO CLINICAL COLLABORATIVE RESEARCH PILOT PROGRAM

    E-Print Network [OSTI]

    Jiang, Huiqiang

    CLINICAL AND TRANSLATIONAL SCIENCE INSTITUTE (CTSI) BASIC TO CLINICAL COLLABORATIVE RESEARCH PILOT PROGRAM (Revised, May 2014) Program summary The CTSI Basic to Clinical Collaborative Research (Ba such project representing a collaboration between a clinical scientist and a basic research scientist. A true

  10. Energy Extension Service Pilot Program: evaluation report after two years. Volume I. Evaluation summary

    SciTech Connect (OSTI)

    None

    1980-04-01T23:59:59.000Z

    The EES pilot program was initiated in August 1977, when 10 states were selected on a competitive basis for participation. The pilot states (Alabama, Connecticut, Michigan, New Mexico, Pennsylvania, Tennessee, Texas, Washington, Wisconsin, and Wyoming) devoted the first 6 months to start-up activities. This document is a follow-up report to the three volume Evaluation Summary of the first year of the pilot EES program published in September 1979. The purpose of this report is to provide an overview of the impacts and costs of the two years of the pilot program, and to check the consistency of findings over the two year period. The analysis addresses the following: (1) were the impact findings of Year I and Year II consistent, or did Year I and Year II attitudes and behavior vary. If variation existed, could it be attributed to program changes as the EES progressed from a start-up phase (Year I) to more normal service delivery (Year II); and (2) did costs of service delivery change (again reflecting start-up and normal service delivery costs). Did cost changes affect conclusions about the relative cost effectiveness of delivering services to different target audiences.

  11. Light Water Reactor Sustainability Constellation Pilot Project FY11 Summary Report

    SciTech Connect (OSTI)

    R. Johansen

    2011-09-01T23:59:59.000Z

    Summary report for Fiscal Year 2011 activities associated with the Constellation Pilot Project. The project is a joint effor between Constellation Nuclear Energy Group (CENG), EPRI, and the DOE Light Water Reactor Sustainability Program. The project utilizes two CENG reactor stations: R.E. Ginna and Nine Point Unit 1. Included in the report are activities associate with reactor internals and concrete containments.

  12. SOLARIZE RALEIGH PILOT PROGRAM DRAFT Request for Proposals from Installers of Residential Solar Photovoltaic Systems

    E-Print Network [OSTI]

    solar photovoltaic ("PV") installation companies ("Installer(s)") or teams of installation companiesSOLARIZE RALEIGH PILOT PROGRAM DRAFT Request for Proposals from Installers of Residential Solar Photovoltaic Systems Proposed Posting Date: February 4, 2014 I. OPPORTUNITY SUMMARY: The North Carolina Solar

  13. A Pilot Study to Evaluate Development Effort for High Performance Computing

    E-Print Network [OSTI]

    Basili, Victor R.

    1 A Pilot Study to Evaluate Development Effort for High Performance Computing Victor Basili1 the development time for programs written for high performance computers (HPC). To attack this relatively novel students in a graduate level High Performance Computing class at the University of Maryland. We collected

  14. Project ID: 35011 Title: The Floating Net Pen Transportation System Pilot Project

    E-Print Network [OSTI]

    Project ID: 35011 Title: The Floating Net Pen Transportation System Pilot Project Sponsor: Columbia sufficient. The proposal does not specify what benefits might be expected from use of net pens relative raceways or other sources to the net pens is discussed in the proposal. The reviewers are aware

  15. DOE Awards Grant to New Mexico Environment Department for Waste Isolation Pilot Plant Oversight, Monitoring

    Broader source: Energy.gov [DOE]

    Carlsbad, NM - The Department of Energy (DOE) today awarded a grant for an estimated $1.6 million to the New Mexico Environment Department (NMED). The five-year grant funds an agreement for NMED to conduct non-regulatory environmental oversight and monitoring to evaluate activities conducted at DOE’s Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico.

  16. The deployment of urban logistics solutions from research, development and pilot results

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The deployment of urban logistics solutions from research, development and pilot results Lessons logistics solutions is one of the main pending questions in the field of urban goods transport research demonstration project, this paper presents the main issues related to the deployment of urban logistics

  17. CMU-ITC-84-036 Pilot DeNoyment of

    E-Print Network [OSTI]

    CMU-ITC-84-036 Pilot DeNoyment of the ITC "File System John H Howard September 28, 1984 Introduction Our grand plan for developing the ITC file system calls for an initial version which establishes, and if we do a poor job of it we may be faced with a continuing job of hand-holding. Therefore I am

  18. EA-1870: Utah Coal and Biomass Fueled Pilot Plant, Kanab, Kane County, Utah

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared an Environmental Assessment to evaluate the potential impacts of providing financial assistance to Viresco Energy, LLC, for its construction and operation of a Coal and Biomass Fueled Pilot Plant, which would be located in Kanab, Utah.

  19. Multi-loop Pilot Behaviour Identification in Response to Simultaneous Visual and Haptic Stimuli

    E-Print Network [OSTI]

    Equivalent time delay (s). e Visual error (rad). fd Force disturbance set of frequencies (Hz). ft Target position set of frequencies (Hz). Fadm Human force given by arm admittance (N). Fdist Disturbance force (N, the various frequency response functions that build up the pilot model are identified using multi

  20. Research Excellence Framework: Impact pilot Example case studies from Earth Systems and

    E-Print Network [OSTI]

    Crowther, Paul

    at www.ref.ac.uk under Impact pilot exercise. #12;2 Establishing methods to detect irradiated foods.Underpinning research In the 1980s, it was believed that irradiated food could not be detected. The UK Advisory Committee for Irradiated and Novel Foods reported in 1986 that "There are as yet no generally applicable

  1. The Science of Sleep-Aviation Rest and Fatigue Regulations for Pilots

    E-Print Network [OSTI]

    Bustamante, Fabián E.

    and Circadian Rhythm Research Program Northwestern University Feinberg School of Medicine Chicago, IL April1 for Pilots Kathryn Reid, PhD Research Associate Professor of Neurology Associate Director, Sleep, 2003 #12;· To sleep well there are several sleep hygiene rules to follow - those related to the sleep

  2. Texas AgriLife Research with General Atomics Pilots Microalgae Ponds in Pecos BIOENERGY PROGRAM

    E-Print Network [OSTI]

    Texas AgriLife Research with General Atomics Pilots Microalgae Ponds in Pecos BIOENERGY PROGRAM systems for microalgae capable of producing biofuels. Diesel and jet fuels are critical to our nation from renewable sources by 2020. Energy and financial analysts acknowledge that the world has entered

  3. Weatherization Innovation Pilot Program: Program Overview and Philadelphia Project Highlight (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01T23:59:59.000Z

    Case Study with WIPP program overview, information regarding eligibility, and successes from Pennsylvania's Commission on Economic Opportunity (CEO) that demonstrate innovative approaches that maximize the benefit of the program. The Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) recently launched the Weatherization Innovation Pilot Program (WIPP) to accelerate innovations in whole-house weatherization and advance DOE's goal of increasing the energy efficiency and health and safety of homes of low-income families. Since 2010, WIPP has helped weatherization service providers as well as new and nontraditional partners leverage non-federal financial resources to supplement federal grants, saving taxpayer money. WIPP complements the Weatherization Assistance program (WAP), which operates nation-wide, in U.S. territories and in three Native American tribes. 16 grantees are implementing weatherization innovation projects using experimental approaches to find new and better ways to weatherize homes. They are using approaches such as: (1) Financial tools - by understanding a diverse range of financing mechanisms, grantees can maximize the impact of the federal grant dollars while providing high-quality work and benefits to eligible low-income clients; (2) Green and healthy homes - in addition to helping families reduce their energy costs, grantees can protect their health and safety. Two WIPP projects (Connecticut and Maryland) will augment standard weatherization services with a comprehensive green and healthy homes approach; (3) New technologies and techniques - following the model of continuous improvement in weatherization, WIPP grantees will continue to use new and better technologies and techniques to improve the quality of work; (4) Residential energy behavior change - Two grantees are rigorously testing home energy monitors (HEMs) that display energy used in kilowatt-hours, allowing residents to monitor and reduce their energy use, and another is examining best-practices for mobile home energy efficiency; (5) Workforce development and volunteers - with a goal of creating a self-sustaining weatherization model that does not require future federal investment, three grantees are adapting business models successful in other sectors of the home performance business to perform weatherization work. Youthbuild is training youth to perform home energy upgrades to eligible clients and Habitat for Humanity is developing a model for how to incorporate volunteer labor in home weatherization. These innovative approaches will improve key weatherization outcomes, such as: Increasing the total number of homes that are weatherized; Reducing the weatherization cost per home; Increasing the energy savings in each weatherized home; Increasing the number of weatherization jobs created and retained; and Reducing greenhouse gas emissions.

  4. MECHANICAL TEST LAB CAPABILITIES

    E-Print Network [OSTI]

    MECHANICAL TEST LAB CAPABILITIES · Static and cyclic testing (ASTM and non-standard) · Impact drop testing · Slow-cycle fatigue testing · High temperature testing to 2500°F · ASTM/ Boeing/ SACMA standard testing · Ability to design and fabricate non-standard test fixtures and perform non-standard tests

  5. Orion Flight Test Exploration Flight Test-1

    E-Print Network [OSTI]

    Waliser, Duane E.

    Orion Flight Test Exploration Flight Test-1 PRESS KIT/December 2014 www.nasa.gov NP-2014-11-020-JSC National Aeronautics and Space Administration #12;#12;Orion Flight Test December 2014 Contents Section Page ........................................................................................... 28 i #12;Orion Flight Test ii December 2014 #12;Orion Flight Test December 2014 Flight Overview

  6. Test Preparation Options Free Test Prep Websites

    E-Print Network [OSTI]

    Stowell, Michael

    Test Preparation Options Free Test Prep Websites ACT: http: http://www.collegeboard.com/student/testing/sat/prep_one/test.html http://www.number2.com://testprep.princetonreview.com/CourseSearch/Search.aspx?itemCode=17&productType=F&rid=1&zip=803 02 Test Prep Classes Front Range Community College: Classes

  7. Test and Test Equipment Joshua Lottich

    E-Print Network [OSTI]

    Patel, Chintan

    Test and Test Equipment Joshua Lottich CMPE 640 11/23/05 #12;Testing Verifies that manufactured chip meets design specifications. Cannot test for every potential defect. Modeling defects as faults allows for passing and failing of chips. Ideal test would capture all defects and pass only chips

  8. X-ray fluorescence investigation of surface lead in the Pilot Plant Complex, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Brubaker, K.L.; O`Neill, H.J.; Parks, J.E.; Rueda, J.F.; Schneider, J.F.; Zimmerman, R.E.

    1995-09-01T23:59:59.000Z

    This report presents the results and findings from a field measurement program undertaken in the Pilot Plant Complex (PPC) at Aberdeen Proving Ground, Maryland, to address the potential contamination of the PPC structures with lead in paint. A portable x-ray fluorescence device was used to measure the lead loading at approximately 1,000 locations on painted surfaces in the PPC buildings. The device performed well, although external calibration was necessary for accurate results. The principal conclusion is that the amount of lead present in all the buildings examined presents no regulatory waste disposal problems. The analysis showed that the estimated lead concentration in the amount of rubble expected from each building is far below the regulatory limit, even assuming that all the lead present would be leached during the test procedure (Toxicity Characteristic Leaching Procedure). The level of confidence for this conclusion exceeds 95%. The frequency distributions of the data were markedly skewed; the most probable values were quite low, but significant tails were detected. Evidence for at least three different sub-populations of lead loading values was found, and no simple curve is adequate to describe the observed distributions.

  9. A summary of the Fire Testing Program at the German HDR Test Facility

    SciTech Connect (OSTI)

    Nowlen, S.P. [Sandia National Labs., Albuquerque, NM (United States)

    1995-11-01T23:59:59.000Z

    This report provides an overview of the fire safety experiments performed under the sponsorship of the German government in the containment building of the decommissioned pilot nuclear power plant known as HDR. This structure is a highly complex, multi-compartment, multi-level building which has been used as the test bed for a wide range of nuclear power plant operation safety experiments. These experiments have included numerous fire tests. Test fire fuel sources have included gas burners, wood cribs, oil pools, nozzle release oil fires, and cable in cable trays. A wide range of ventilation conditions including full natural ventilation, full forced ventilation, and combined natural and forced ventilation have been evaluated. During most of the tests, the fire products mixed freely with the full containment volume. Macro-scale building circulation patterns which were very sensitive to such factors as ventilation configuration were observed and characterized. Testing also included the evaluation of selective area pressurization schemes as a means of smoke control for emergency access and evacuation stairwells.

  10. PULSE COMBUSTOR DESIGN QUALIFICATION TEST AND CLEAN COAL FEEDSTOCK TEST - VOLUME I AND VOLUME II

    SciTech Connect (OSTI)

    Unknown

    2002-02-08T23:59:59.000Z

    For this Cooperative Agreement, the pulse heater module is the technology envelope for an indirectly heated steam reformer. The field of use of the steam reformer pursuant to this Cooperative Agreement with DOE is for the processing of sub-bituminous coals and lignite. The main focus is the mild gasification of such coals for the generation of both fuel gas and char--for the steel industry is the main focus. An alternate market application for the substitution of metallurgical coke is also presented. This project was devoted to qualification of a 253-tube pulse heater module. This module was designed, fabricated, installed, instrumented and tested in a fluidized bed test facility. Several test campaigns were conducted. This larger heater is a 3.5 times scale-up of the previous pulse heaters that had 72 tubes each. The smaller heater has been part of previous pilot field testing of the steam reformer at New Bern, North Carolina. The project also included collection and reduction of mild gasification process data from operation of the process development unit (PDU). The operation of the PDU was aimed at conditions required to produce char (and gas) for the Northshore Steel Operations. Northshore Steel supplied the coal for the process unit tests.

  11. LUNEX5: A FRENCH FEL TEST FACILITY LIGHT SOURCE PROPOSAL A. Loulergue, C. Benabderrahmane, M. Bessire, P. Betinelli, F. Bouvet, A. Buteau, L. Cassinari,

    E-Print Network [OSTI]

    Boyer, Edmond

    LUNEX5: A FRENCH FEL TEST FACILITY LIGHT SOURCE PROPOSAL A. Loulergue, C. Benabderrahmane, M is a new Free Electron Laser (FEL) source project aimed at delivering short and coherent X-ray pulses seeded FEL operations aiming at producing higher coherence and energetic X-rays for the pilot user

  12. Waste Isolation Pilot Plant design validation: Final report, Appendices

    SciTech Connect (OSTI)

    Not Available

    1986-10-01T23:59:59.000Z

    This volume is comprised of the following appendices: DOE stipulated agreement with State of New Mexico (partial); geologic correlations; mathematical simulation of underground in situ behavior; C and SH shaft geologic logs and maps; waste shaft geologic logs and maps; exhaust shaft geologic log; test rooms geologic maps and sections; drift cross sections; facility level geologic core hole logs; geomechanical instrumentation data plots; and analytical data plots.

  13. Commercial and Industrial Base Intermittent Resource Management Pilot

    SciTech Connect (OSTI)

    Kiliccote, Sila; Sporborg, Pamela; Sheik, Imran; Huffaker, Erich; Piette, Mary Ann

    2010-11-30T23:59:59.000Z

    This scoping study summarizes the challenges with integrating wind and solar generation into the California's electricity grid. These challenges include: Smoothing intra-hour variability; - Absorbing excess renewable energy during over-generation periods; - Addressing morning and evening ramping periods. In addition, there are technical challenges to integrating retail demand response (DR) triggered by the wholesale conditions into the CAISO markets. The study describes the DR programs available to the consumers through the utilities in California and CAISO's ancillary services market because an integration of the wholesale and retail DR requires an understanding of these different offerings and the costs associated with acquiring them. Demand-side active and passive storage systems are proposed as technologies that may be used to mitigate the effects of intermittence due to renewable generation. Commercial building technologies as well as industrial facilities with storage capability are identified as targets for the field tests. Two systems used for ancillary services communications are identified as providing the triggers for DR enablement. Through the field tests, issues related to communication, automation and flexibility of demand-side resources will be explored and the performance of technologies that participate in the field tests will be evaluated. The major outcome of this research is identifying and defining flexibility of DR resources and optimized use of these resources to respond to grid conditions.

  14. LiveWall Operational Evaluation: Seattle Law Enforcement Pilot

    SciTech Connect (OSTI)

    Barr, Jonathan L.; Burtner, Edwin R.; Stein, Steven L.

    2013-10-01T23:59:59.000Z

    The LiveWall concept envisioned as an outgrowth of the Precision Information Environment (PIE) project allows communications between separate groups using interactive video, audio, and a shared desktop environment; this allows everyone to participate and collaborate in real time, regardless of location. The LiveWall concept provides a virtual window to other locations, where all parties can interact and collaboratively work with each other. This functionality is intended to improve multi-site coordination amongst emergency operations centers (EOC), field operations sites and across organizations and jurisdictions to accommodate communications during routine and emergency events. For the initial LiveWall operational evaluation PNNL partnered with the Seattle Police Department (SPD). This partnership allowed for the creation of an excellent LiveWall test bed specific to law enforcement. This partnership made it possible to test the LiveWall concept with scenarios involving the many facets of the law enforcement work done by SPD. PNNL and SPD agreed that integrating the systems into operations for a real event would be the best test of the technology and give SPD staff greater visibility into the functionality and benefits offered by the LiveWall concept.

  15. Pilot-scale study of the effect of selective catalytic reduction catalyst on mercury speciation in Illinois and Powder River Basin coal combustion flue gases

    SciTech Connect (OSTI)

    Lee, C.W.; Srivastava, R.K.; Ghorishi, S.B.; Karwowski, J.; Hastings, T.H.; Hirschi, J.C. [US Environmental Protection Agency, Triangle Park, NC (United States)

    2006-05-15T23:59:59.000Z

    A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur (S) and chlorine (Cl)) and one Powder River Basin (PRB) subbituminous coal with very low S and very low Cl were tested in a pilot-scale combustor equipped with an SCR reactor for controlling nitrogen oxides (NO{sub x}) emissions. The SCR catalyst induced high oxidation of elemental Hg (Hg{sup 0}), decreasing the percentage of Hg{sup 0} at the outlet of the SCR to values <12% for the three Illinois coal tests. The PRB coal test indicated a low oxidation of Hg{sup 0} by the SCR catalyst, with the percentage of Hg{sup 0} decreasing from {approximately} 96% at the inlet of the reactor to {approximately} 80% at the outlet. The low Cl content of the PRB coal and corresponding low level of available flue gas Cl species were believed to be responsible for low SCR Hg oxidation for this coal type. The test results indicated a strong effect of coal type on the extent of Hg oxidation. 16 refs., 4 figs., 3 tabs.

  16. DER Certification Laboratory Pilot, Accreditation Plan, and Interconnection Agreement Handbook

    SciTech Connect (OSTI)

    Key, T.; Sitzlar, H. E.; Ferraro, R.

    2003-11-01T23:59:59.000Z

    This report describes the first steps toward creating the organization, procedures, plans and tools for distributed energy resources (DER) equipment certification, test laboratory accreditation, and interconnection agreements. It covers the activities and accomplishments during the first period of a multiyear effort. It summarizes steps taken to outline a certification plan to assist in the future development of an interim plan for certification and accreditation activities. It also summarizes work toward a draft plan for certification, a beta Web site to support communications and materials, and preliminary draft certification criteria.

  17. Texas Propane Fleet Pilot Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartment ofTankTest Site2009 DOETechnology Showcase

  18. Texas Propane Vehicle Pilot Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartment ofTankTest Site2009 DOETechnology Showcase2

  19. Texas Propane Vehicle Pilot Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartment ofTankTest Site2009 DOETechnology Showcase21

  20. Past Test One

    E-Print Network [OSTI]

    MA 366: Introduction to Di?'erential Equations. Fall 2001, Test One. Instructor: Yip o This test booklet has FIVE QUESTIONS, totaling 50 points for the whole test.