National Library of Energy BETA

Sample records for worth tx metropolitan

  1. Metropolitan Washington

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metropolitan Washington Council of Governments A White House Climate Action Champions Case Study INDEX Executive Summary...............................2 Climate Action Champion.....................2 Project Spotlight.................................3-5 Co-benefits.............................................5 Challenges and Lessons Learned.........5 Resources and Contacts........................7 2 Executive Summary The Metropolitan Washington Council of Governments (COG) is an independent,

  2. US WSC TX Site Consumption

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    WSC TX Site Consumption million Btu 0 500 1,000 1,500 2,000 2,500 US WSC TX ... 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours 0 500 1,000 1,500 ...

  3. EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX February 18, 2009 EIS-0412: ...

  4. D&TX

    Office of Legacy Management (LM)

    *. ( ARGONNE RATIONAL 1-Ci3ORATORY . 1 D&TX 7. my 19, 1349 70 t. Z. ROse at L, Em &=i*p~~4 DVur;uM hLl%L ?bvs -Lcs . FReti c. c. Fqpr an2 2. E. sulu+rr fis2 S*crep t & fbQ s-e: of the ?atagel DrFAm%un !! 1 0 * the >rt &Fz=z d t& &men of ScieJce & >&7*-z 4-q 2s'; %rZion 0C the ZLLS~~~ of Science a2 31~52-37 fo2 T&imcyyg c.=A+=< he-< - ,,a uas c:cgetes ALL 12, 1SL9. Z 0 sor;~~,-~-lioi! c.jme s 'm&-go& ~WC& c ",& d*cg&A

  5. CleanTX Foundation | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. CleanTX Foundation is a policy organization located in Austin, Texas. References About CleanTX Foundation Retrieved from...

  6. EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TX | Department of Energy 2: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX February 18, 2009 EIS-0412: Notice of Intent to Prepare an Environmental Impact Statement Construction of the TX Energy, LLC, Industrial Gasification Facility near Beaumont, Texas

  7. What's Green Worth? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    What's Green Worth? What's Green Worth? July 23, 2015 - 6:12pm Addthis The Self-Help Office Building in Wilmington, N.C., reduced nearly 11,000 in annual energy costs and ...

  8. Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  9. Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  10. EDF Industrial Power Services (TX), LLC | Open Energy Information

    Open Energy Info (EERE)

    EDF Industrial Power Services (TX), LLC Jump to: navigation, search Name: EDF Industrial Power Services (TX), LLC Place: Texas Phone Number: 877-432-4530 Website:...

  11. Los Angeles County Metropolitan Transportation Authority Metro...

    Open Energy Info (EERE)

    County Metropolitan Transportation Authority Metro Jump to: navigation, search Name: Los Angeles County Metropolitan Transportation Authority (Metro) Place: Los Angeles, California...

  12. TX-100 manufacturing final project report.

    SciTech Connect (OSTI)

    Ashwill, Thomas D.; Berry, Derek S.

    2007-11-01

    This report details the work completed under the TX-100 blade manufacturing portion of the Carbon-Hybrid Blade Developments: Standard and Twist-Coupled Prototype project. The TX-100 blade is a 9 meter prototype blade designed with bend-twist coupling to augment the mitigation of peak loads during normal turbine operation. This structural coupling was achieved by locating off axis carbon fiber in the outboard portion of the blade skins. The report will present the tooling selection, blade production, blade instrumentation, blade shipping and adapter plate design and fabrication. The baseline blade used for this project was the ERS-100 (Revision D) wind turbine blade. The molds used for the production of the TX-100 were originally built for the production of the CX-100 blade. The same high pressure and low pressure skin molds were used to manufacture the TX-100 skins. In order to compensate for the difference in skin thickness between the CX-100 and the TX-100, however, a new TX-100 shear web plug and mold were required. Both the blade assembly fixture and the root stud insertion fixture used for the CX-100 blades could be utilized for the TX-100 blades. A production run of seven TX-100 prototype blades was undertaken at TPI Composites during the month of October, 2004. Of those seven blades, four were instrumented with strain gauges before final assembly. After production at the TPI Composites facility in Rhode Island, the blades were shipped to various test sites: two blades to the National Wind Technology Center at the National Renewable Energy Laboratory in Boulder, Colorado, two blades to Sandia National Laboratory in Albuquerque, New Mexico and three blades to the United States Department of Agriculture turbine field test facility in Bushland, Texas. An adapter plate was designed to allow the TX-100 blades to be installed on existing Micon 65/13M turbines at the USDA site. The conclusion of this program is the kick-off of the TX-100 blade testing at the three

  13. A Competition Worth Winning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Competition Worth Winning A Competition Worth Winning August 31, 2011 - 11:59am Addthis U.S. solar cell (PV) and module manufacturing market share. | Sources: PV News and Navigating Consulting. U.S. solar cell (PV) and module manufacturing market share. | Sources: PV News and Navigating Consulting. Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs Since 2009, the Department of Energy's Loan Program has supported a robust, diverse portfolio of more than 40 projects that are

  14. Roma, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Roma, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Roma, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep ...

  15. Chicago Metropolitan Agency for Planning Data Dashboard

    Broader source: Energy.gov [DOE]

    The data dashboard for Chicago Metropolitan Agency for Planning, a partner in the Better Buildings Neighborhood Program.

  16. DOE - Office of Legacy Management -- Sutton Steele and Steele Co - TX 09

    Office of Legacy Management (LM)

    Sutton Steele and Steele Co - TX 09 FUSRAP Considered Sites Site: SUTTON, STEELE & STEELE CO. (TX.09) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Sutton, Steele & Steele, Inc. TX.09-1 Location: Dallas , Texas TX.09-1 Evaluation Year: 1993 TX.09-2 Site Operations: Conducted operations to separate Uranium shot by means of air float tables and conducted research to air classify C-Liner and C-Special materials. TX.09-1 TX.09-3 TX.09-4 TX.09-5

  17. RAPID/Roadmap/6-TX-b | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Construction Storm Water Permit (6-TX-b) The Texas...

  18. RAPID/Roadmap/15-TX-a | Open Energy Information

    Open Energy Info (EERE)

    BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Air Quality Permit - Permit to Construct (15-TX-a) This flowchart illustrates the general...

  19. RAPID/Roadmap/11-TX-c | Open Energy Information

    Open Energy Info (EERE)

    11-TX-c.2 - Does the Project Area Contain a Recorded Archaeological Site? However, oil, gas, or other mineral exploration, production, processing, marketing, refining, or...

  20. RAPID/Roadmap/3-TX-i | Open Energy Information

    Open Energy Info (EERE)

    construction plans on the leased asset; Permission for the representatives of TxDOT to enter the area for inspection, maintenance, or reconstruction of highway facilities as...

  1. ,"Alamo, TX Natural Gas Pipeline Imports From Mexico (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Alamo, TX Natural Gas Pipeline Imports From Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

  2. RAPID/Roadmap/6-TX-a | Open Energy Information

    Open Energy Info (EERE)

    must obtain the proper oversizeoverweight permit from the Texas Department of Motor Vehicles (TxDMV). 06TXAExtraLegalVehiclePermittingProcess.pdf Error creating...

  3. RAPID/Roadmap/19-TX-a | Open Energy Information

    Open Energy Info (EERE)

    Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Water Access and Water Rights Overview (19-TX-a) In the late 1960's Texas...

  4. RAPID/Roadmap/14-TX-d | Open Energy Information

    Open Energy Info (EERE)

    Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us 401 Water Quality Certification (14-TX-d) Section 401 of the Clean Water Act (CWA)...

  5. RAPID/Roadmap/11-TX-b | Open Energy Information

    Open Energy Info (EERE)

    Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Human Remains Process (11-TX-b) This flowchart illustrates the procedure a...

  6. RAPID/Roadmap/11-TX-a | Open Energy Information

    Open Energy Info (EERE)

    thumbnail: Page number not in range. Flowchart Narrative 11-TX-a.1 - Have Potential Human Remains Been Discovered? If the developer discovers potential human remains during any...

  7. Metropolitan Edison Co (Pennsylvania) | Open Energy Information

    Open Energy Info (EERE)

    Edison Co (Pennsylvania) Jump to: navigation, search Name: Metropolitan Edison Co Place: Pennsylvania Phone Number: 1-800-545-7741 Website: www.firstenergycorp.comconten Twitter:...

  8. Hanford Single Shell Tank Leak Causes and Locations - 241-TX Farm

    SciTech Connect (OSTI)

    Girardot, C. L.; Harlow, D> G.

    2014-07-22

    This document identifies 241-TX Tank Farm (TX Farm) leak causes and locations for the 100 series leaking tanks (241-TX-107 and 241-TX-114) identified in RPP-RPT-50870, Rev. 0, Hanford 241-TX Farm Leak Inventory Assessment Report. This document satisfies the TX Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  9. Dynamic worth of control element assemblies in PWRs

    SciTech Connect (OSTI)

    Marinkovic, P.; Popovic, D. ); Pesic, M. )

    1992-01-01

    The dynamic worth of control element assemblies (CEAs) in a nuclear reactor is considered in this paper. Conservation of the CEA worth for a pressurized water reactor (PWR) as a function of fuel burnup, xenon and samarium poisoning, boric acid concentration, and power density axial offset value is analyzed. Calculations of the dynamic worth of CEAs are carried out by newly developed quasi-static four-group neutron one-dimensional and two-dimensional diffusion computer codes. The nonconservation of the CEA worth is shown.

  10. DOE - Office of Legacy Management -- Texas City Chemicals Co Inc - TX 02

    Office of Legacy Management (LM)

    Texas City Chemicals Co Inc - TX 02 FUSRAP Considered Sites Site: TEXAS CITY CHEMICALS CO., INC. (TX.02 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Texas City , Texas TX.02-1 Evaluation Year: 1985 TX.02-2 Site Operations: Process development studies and pilot plant testing of uranium recovery from phosphoric acid during the mid-1950s TX.02-3 TX.02-4 Site Disposition: Eliminated - No Authority TX.02-4 Radioactive Materials Handled:

  11. Freeport, TX Exports to India Liquefied Natural Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports to India Liquefied Natural Gas (Million Cubic Feet) Freeport, TX Exports to India Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct ...

  12. Freeport, TX LNG Imports (Price) from Norway (Dollars per Thousand...

    Gasoline and Diesel Fuel Update (EIA)

    Norway (Dollars per Thousand Cubic Feet) Freeport, TX LNG Imports (Price) from Norway (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  13. Freeport, TX Liquefied Natural Gas Exports to Egypt (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Egypt (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 2,947 - No Data ...

  14. RAPID/Roadmap/12-TX-a | Open Energy Information

    Open Energy Info (EERE)

    Contribute Contact Us State Biological Resource Considerations (12-TX-a) In Texas, no person may capture, trap, take, or kill, or attempt to capture, trap, take, or kill,...

  15. TxDOT Access Management Manual | Open Energy Information

    Open Energy Info (EERE)

    Access Management Manual Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: TxDOT Access Management ManualLegal Abstract Manual prepared...

  16. Price Liquefied Freeport, TX Natural Gas Exports Price to Japan...

    U.S. Energy Information Administration (EIA) Indexed Site

    Japan (Dollars per Thousand Cubic Feet) Price Liquefied Freeport, TX Natural Gas Exports Price to Japan (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  17. RAPID/Roadmap/19-TX-b | Open Energy Information

    Open Energy Info (EERE)

    19-TX-b.6 - Does the Developer Own the Overlying Land? In Texas, the right to acquire and pump ground water is tied to the ownership of the land overlying the groundwater aquifer....

  18. Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 252 1,324 824 1,017 871 770 ...

  19. Freeport, TX Liquefied Natural Gas Exports to Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 2,725 - No Data ...

  20. Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 12 40 77 59 55 47 43 41 ...

  1. Laredo, TX Liquefied Natural Gas Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Laredo, TX Liquefied Natural Gas Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 0.512 0.497 2016 2.732 - No ...

  2. Freeport, TX Liquefied Natural Gas Exports to Turkey (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Turkey (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to Turkey (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 3,145 - No Data ...

  3. RAPID/Roadmap/19-TX-e | Open Energy Information

    Open Energy Info (EERE)

    will not interfere with other water rights. 19-TX-e Temporary Surface Water Permit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  4. RAPID/Roadmap/3-TX-e | Open Energy Information

    Open Energy Info (EERE)

    the leasing process. 03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  5. El Paso, TX Natural Gas Pipeline Imports From Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) El Paso, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's ...

  6. El Paso, TX Natural Gas Pipeline Imports From Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dollars per Thousand Cubic Feet) El Paso, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  7. The Metropolitan Water District of Southern California

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SW Washington, DC 20585-0121 QERcomments@hq.doe.gov Comments on the Department of Energy's Quadrennial Energy Review: Water-Energy Nexus The Metropolitan Water District of Southern ...

  8. DOE - Office of Legacy Management -- Pantex Sewage Reservoir - TX 03

    Office of Legacy Management (LM)

    Pantex Sewage Reservoir - TX 03 FUSRAP Considered Sites Site: Pantex Sewage Reservoir (TX.03 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is one of a group of 77 FUSRAP considered sites for which few, if any records are available in their respective site files to provide an historical account of past operations and their

  9. City of Forth Worth- Green Building Policy for Municipal Buildings

    Broader source: Energy.gov [DOE]

    The City of Fort Worth adopted a goal to reduce its electricity consumption by 5% each fiscal year for 10 years beginning in 2011 in reaction to Texas S.B. 898, which required political subdivisi...

  10. Metropolitan Water District of S CA | Open Energy Information

    Open Energy Info (EERE)

    Metropolitan Water District of S CA Jump to: navigation, search Name: Metropolitan Water District of S CA Place: California Phone Number: (213) 217-6000 Website: www.mwdh2o.com...

  11. Price of San Elizario, TX Natural Gas Pipeline Exports to Mexico...

    Gasoline and Diesel Fuel Update (EIA)

    Price of San Elizario, TX Natural Gas Pipeline Exports to Mexico (Dollars per Thousand Cubic Feet) Price of San Elizario, TX Natural Gas Pipeline Exports to Mexico (Dollars per...

  12. McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  13. File:03-TX-e - Lease of Texas Parks & Wildlife Department Land...

    Open Energy Info (EERE)

    3-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-e - Lease of Texas Parks & Wildlife...

  14. File:03-TX-g - Lease of Relinquishment Act Lands.pdf | Open Energy...

    Open Energy Info (EERE)

    TX-g - Lease of Relinquishment Act Lands.pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-g - Lease of Relinquishment Act Lands.pdf Size of this...

  15. File:03-TX-f - Lease of Land Trade Lands.pdf | Open Energy Information

    Open Energy Info (EERE)

    TX-f - Lease of Land Trade Lands.pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-f - Lease of Land Trade Lands.pdf Size of this preview: 463 599...

  16. ARM - Field Campaign - TX-2002 AIRS Validation Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsTX-2002 AIRS Validation Campaign Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : TX-2002 AIRS Validation Campaign 2002.11.18 - 2002.12.13 Lead Scientist : Robert Knuteson Abstract NASA is conducting an aircraft campaign for the validation of the AIRS and MODIS instruments on the EOS Aqua platform. The NASA high altitude ER-2 aircraft will be based in San Antonio, Texas. The ARM SGP central facility is one of the ground

  17. Clint, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Clint, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 8,088 6,402 7,296 6,783 8,836 ...

  18. Rotary mode core sampling approved checklist: 241-TX-113

    SciTech Connect (OSTI)

    Fowler, K.D.

    1998-08-03

    The safety assessment for rotary mode core sampling was developed using certain bounding assumptions, however, those assumptions were not verified for each of the existing or potential flammable gas tanks. Therefore, a Flammable Gas/Rotary Mode Core Sampling Approved Checklist has been completed for tank 241-TX-113 prior to sampling operations. This transmittal documents the dispositions of the checklist items from the safety assessment.

  19. Rotary mode core sampling approved checklist: 241-TX-116

    SciTech Connect (OSTI)

    FOWLER, K.D.

    1999-02-24

    The safety assessment for rotary mode core sampling was developed using certain bounding assumptions, however, those assumptions were not verified for each of the existing or potential flammable gas tanks. Therefore, a Flammable Gas/Rotary Mode Core Sampling Approved Checklist has been completed for tank 241-TX-116 prior to sampling operations. This transmittal documents the dispositions of the checklist items from the safety assessment.

  20. Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugarland, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sugarland, TX Website: www.netl.doe.gov Customer Service: 1-800-553-7681 Enhanced Oil Recovery Program The mission of the Enhanced Oil Recovery Program is to provide information and technologies that will assure sustainable, reliable, affordable, and environmentally sound supplies of domestic oil resources. The Strategic Center for Natural Gas and Oil (SCNGO) seeks to accomplish this critical mission by advancing environmentally responsible technological solutions that enhance recovery of oil

  1. Freeport, TX Liquefied Natural Gas Exports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 2,725 2014 2,664 2015 2,805 2,728 2,947 3,145 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  2. Freeport, TX Liquefied Natural Gas Exports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 2 2 3 1 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  3. Climate Action Champions: Metropolitan Washington Council of Governments,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DC, MD, and VA | Department of Energy Metropolitan Washington Council of Governments, DC, MD, and VA Climate Action Champions: Metropolitan Washington Council of Governments, DC, MD, and VA The Metropolitan Washington Council of Governments (COG) is an independent, nonprofit association that brings area leaders together to address major regional issues in the District of Columbia, suburban Maryland, and Northern Virginia. COG and its member governments seek to create a more accessible,

  4. Chicago Metropolitan Agency for Planning Summary of Reported Data |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Summary of Reported Data Chicago Metropolitan Agency for Planning Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Chicago Metropolitan Agency for Planning. Chicago Metropolitan Agency for Planning Summary of Reported Data (762.93 KB) More Documents & Publications Better Buildings Neighborhood Program Summary of Reported Data From July 1, 2010 - September 30, 2013 Energize New York Summary of Reported Data Maryland

  5. Chicago Metropolitan Agency for Planning Data Dashboard | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    File Chicago Metropolitan Agency for Planning Data Dashboard More Documents & Publications Austin Energy Data Dashboard Massachusetts -- SEP Data Dashboard Phoenix, Arizona Data ...

  6. Microsoft Word - TX-100 Final Report - SAND2007-6066.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manager: Tom Ashwill Abstract This report details the work completed under the TX-100 blade manufacturing portion of the Carbon-Hybrid Blade Developments: Standard and...

  7. LANL awards Recovery Act contract worth up to $100 million

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL Awards Recovery Act contract LANL awards Recovery Act contract worth up to $100 million TerranearPMC, LLC will haul demolition debris and soils from LANL's Recovery Act cleanup projects for disposal in licensed facilities. March 10, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new

  8. Freeport, TX Liquefied Natural Gas Exports Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Price (Dollars per Thousand Cubic Feet) Freeport, TX Liquefied Natural Gas Exports Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 10.00 15.19 10.00 10.00 10.00 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Price of

  9. Hybrid nuclear reactor grey rod to obtain required reactivity worth

    DOE Patents [OSTI]

    Miller, John V.; Carlson, William R.; Yarbrough, Michael B.

    1991-01-01

    Hybrid nuclear reactor grey rods are described, wherein geometric combinations of relatively weak neutron absorber materials such as stainless steel, zirconium or INCONEL, and relatively strong neutron absorber materials, such as hafnium, silver-indium cadmium and boron carbide, are used to obtain the reactivity worths required to reach zero boron change load follow. One embodiment includes a grey rod which has combinations of weak and strong neutron absorber pellets in a stainless steel cladding. The respective pellets can be of differing heights. A second embodiment includes a grey rod with a relatively thick stainless steel cladding receiving relatively strong neutron absorber pellets only. A third embodiment includes annular relatively weak netron absorber pellets with a smaller diameter pellet of relatively strong absorber material contained within the aperture of each relatively weak absorber pellet. The fourth embodiment includes pellets made of a homogeneous alloy of hafnium and a relatively weak absorber material, with the percentage of hafnium chosen to obtain the desired reactivity worth.

  10. CX-100 and TX-100 blade field tests.

    SciTech Connect (OSTI)

    Holman, Adam (USDA-Agriculture Research Service, Bushland, TX); Jones, Perry L.; Zayas, Jose R.

    2005-12-01

    In support of the DOE Low Wind Speed Turbine (LWST) program two of the three Micon 65/13M wind turbines at the USDA Agricultural Research Service (ARS) center in Bushland, Texas will be used to test two sets of experimental blades, the CX-100 and TX-100. The blade aerodynamic and structural characterization, meteorological inflow and wind turbine structural response will be monitored with an array of 75 instruments: 33 to characterize the blades, 15 to characterize the inflow, and 27 to characterize the time-varying state of the turbine. For both tests, data will be sampled at a rate of 30 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow.

  11. DOE Zero Energy Ready Home Case Study: Green Extreme Homes & Carl Franklin Homes, Garland, TX

    Broader source: Energy.gov [DOE]

    Case study of a DOE Zero Energy Ready affordable home in Garland, TX, that was the first retrofit home certified to the DOE Zero Energy Ready home requirements. The construction team achieved a...

  12. File:USDA-CE-Production-GIFmaps-TX.pdf | Open Energy Information

    Open Energy Info (EERE)

    TX.pdf Jump to: navigation, search File File history File usage Texas Ethanol Plant Locations Size of this preview: 776 600 pixels. Full resolution (1,650 1,275 pixels,...

  13. TxDOT - Right of Way Forms webpage | Open Energy Information

    Open Energy Info (EERE)

    Right of Way Forms webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: TxDOT - Right of Way Forms webpage Abstract This webpage provides the...

  14. Texas A&M University College Station, TX 77843-3366

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MS 3366 Texas A&M University College Station, TX 77843-3366 Ph: 979-845-1411 Fax: 979-458-3213 Beam Time Request Form In order to be scheduled you must fill in and return this ...

  15. DOE - Office of Legacy Management -- Falls City Mill Site - TX 04

    Office of Legacy Management (LM)

    Mill Site - TX 04 FUSRAP Considered Sites Site: Falls City Mill Site (TX.04 ) Licensed to DOE for long-term custody and managed by the Office of Legacy Management. Designated Name: Falls City, Texas, Disposal Site Alternate Name: Falls City Mill Site Uranium Mill in Falls City Location: Karnes County, Texas Evaluation Year: Site Operations: Site Disposition: Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I site Radioactive Materials Handled: Primary Radioactive Materials Handled:

  16. DOE - Office of Legacy Management -- Falls City Uranium Ore Stockpile - TX

    Office of Legacy Management (LM)

    04A Falls City Uranium Ore Stockpile - TX 04A FUSRAP Considered Sites Site: Falls City Uranium Ore Stockpile (TX.04A ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that

  17. ORNL measurements at Hanford Waste Tank TX-118

    SciTech Connect (OSTI)

    Koehler, P.E.; Mihalczo, J.T.

    1995-02-01

    A program of measurements and calculations to develop a method of measuring the fissionable material content of the large waste storage tanks at the Hanford, Washington, site is described in this report. These tanks contain radioactive waste from the processing of irradiated fuel elements from the plutonium-producing nuclear reactors at the Hanford site. Time correlation and noise analysis techniques, similar to those developed for and used in the Nuclear Weapons Identification System at the Y-12 Plant in Oak Ridge, Tennessee, will be used at the Hanford site. Both ``passive`` techniques to detect the neutrons emitted spontaneously from the waste in the tank and ``active`` techniques using AmBe and {sup 252}Cf neutron sources to induce fissions will be used. This work is divided into three major tasks: (1) development of high-sensitivity neutron detectors that can selectively count only neutrons in the high {gamma} radiation fields in the tanks, (2) Monte Carlo neutron transport calculations using both the KENO and MCNP codes to plan and analyze the measurements, and (3) the measurement of time-correlated neutrons by time and frequency analysis to distinguish spontaneous fission from sources inside the tanks. This report describes the development of the detector and its testing in radiation fields at the Radiation Calibration Facility at Oak Ridge National Laboratory and in tank TX-118 at the 200 W area at Westinghouse Hanford Company.

  18. DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    60tifrancis2012o.pdf More Documents & Publications DeKalb CountyMetropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project DeKalb CountyMetropolitan...

  19. DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vt060francis2010p.pdf More Documents & Publications DeKalb CountyMetropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project DeKalb CountyMetropolitan...

  20. DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    60tifrancis2011p.pdf More Documents & Publications DeKalb CountyMetropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project DeKalb CountyMetropolitan...

  1. Composite Multilinearity, Epistemic Uncertainty and Risk Achievement Worth

    SciTech Connect (OSTI)

    E. Borgonovo; C. L. Smith

    2012-10-01

    Risk Achievement Worth is one of the most widely utilized importance measures. RAW is defined as the ratio of the risk metric value attained when a component has failed over the base case value of the risk metric. Traditionally, both the numerator and denominator are point estimates. Relevant literature has shown that inclusion of epistemic uncertainty i) induces notable variability in the point estimate ranking and ii) causes the expected value of the risk metric to differ from its nominal value. We obtain the conditions under which the equality holds between the nominal and expected values of a reliability risk metric. Among these conditions, separability and state-of-knowledge independence emerge. We then study how the presence of epistemic uncertainty aspects RAW and the associated ranking. We propose an extension of RAW (called ERAW) which allows one to obtain a ranking robust to epistemic uncertainty. We discuss the properties of ERAW and the conditions under which it coincides with RAW. We apply our findings to a probabilistic risk assessment model developed for the safety analysis of NASA lunar space missions.

  2. RCRA Assessment Plan for Single-Shell Tank Waste Management Area TX-TY

    SciTech Connect (OSTI)

    Horton, Duane G.

    2007-03-26

    WMA TX-TY contains underground, single-shell tanks that were used to store liquid waste that contained chemicals and radionuclides. Most of the liquid has been removed, and the remaining waste is regulated under the RCRA as modified in 40 CFR Part 265, Subpart F and Washington States Hazardous Waste Management Act . WMA TX-TY was placed in assessment monitoring in 1993 because of elevated specific conductance. A groundwater quality assessment plan was written in 1993 describing the monitoring activities to be used in deciding whether WMA TX-TY had affected groundwater. That plan was updated in 2001 for continued RCRA groundwater quality assessment as required by 40 CFR 265.93 (d)(7). This document further updates the assessment plan for WMA TX-TY by including (1) information obtained from ten new wells installed at the WMA after 1999 and (2) information from routine quarterly groundwater monitoring during the last five years. Also, this plan describes activities for continuing the groundwater assessment at WMA TX TY.

  3. A Second Opinion is Worth the Cost - 12479

    SciTech Connect (OSTI)

    Madsen, Drew

    2012-07-01

    This paper, 'A Second Opinion is Worth the Cost', shows how a second opinion for a Department of Energy (DOE) Project helped prepare and pass a DOE Order 413.3A 'Program and Project Management for the acquisition of Capital Assets' Office of Engineering and Construction Management (OECM) required External Independent Review (EIR) in support of the approved baseline for Critical Decision (CD) 2. The DOE project personnel were informed that the project's Total Project Cost (TPC) was going to increase from $815 million to $1.1 billion due to unforeseen problems and unexplained reasons. The DOE Project Team determined that a second opinion was needed to review and validate the TPC. Project Time and Cost, Inc. (PT and C) was requested to evaluate the cost estimate, schedule, basis of estimate (BOE), and risk management plan of the Project and to give an independent assessment of the TPC that was presented to DOE. This paper will demonstrate how breaking down a project to the work breakdown structure (WBS) level allows a project to be analyzed for potential cost increases and/or decreases, thus providing a more accurate TPC. The review Team's cost analyses of Projects identified eight primary drivers resulting in cost increases. They included: - Overstatement of the effort required to develop drawings and specifications. - Cost allocation to 'Miscellaneous' without sufficient detail or documentation. - Cost for duplicated efforts. - Vendor estimates or quotations without sufficient detail. - The practice of using the highest price quoted then adding an additional 10% mark-up. - Application of Nuclear Quality Assurance (NQA) highest level quality requirements when not required. - Allocation of operational costs to the Project Costs instead of to the Operating Expenses (OPEX). OPEX costs come from a different funding source. - DOE had not approved the activities. By using a Team approach with professionals from cost, civil, mechanical, electrical, structural and nuclear

  4. Hanford Tank Farms Vadose Zone, Addendum to the TX Tank Farm Report

    SciTech Connect (OSTI)

    Spatz, R.

    2000-08-01

    This addendum to the TX Tank Farm Report (GJO-97-13-TAR, GJO-HAN-11) published in September 1997 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the TX Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the TX Tank Farm at the DOE Hanford Site in the state of Washington.

  5. Energy Department Recognizes Fort Worth for Leadership in Advancing Energy Efficiency

    Broader source: Energy.gov [DOE]

    As part of the Administration’s effort to cut energy waste in the nation’s buildings, the Energy Department will acknowledge the city of Fort Worth today for its leadership in advancing energy efficiency.

  6. Freeport, TX Liquefied Natural Gas Exports to Brazil (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Brazil (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to Brazil (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,581 2012 2,601 2,644 2,897 2014 2,664 2015 2,805 2,728 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Freeport, TX Liquefied Natural Gas

  7. Freeport, TX Liquefied Natural Gas Exports to South Korea (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) South Korea (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to South Korea (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,157 3,085 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Freeport, TX Liquefied Natural Gas Exports to South Korea

  8. Freeport, TX Liquefied Natural Gas Imports From Peru (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    From Peru (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Imports From Peru (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,175 3,338 3,262 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports from Peru

  9. Freeport, TX Liquefied Natural Gas Imports from Norway (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Norway (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Imports from Norway (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 2,709 2,918 2015 5,992 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports from Norway

  10. Freeport, TX Liquefied Natural Gas Imports from Yemen (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Yemen (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Imports from Yemen (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,869 3,108 2012 2,979 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports from Yemen

  11. Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars per Thousand Cubic Feet) Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 6.43 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  12. Freeport, TX Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 2,703 2,994 2015 5,992 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports from All Countries

  13. Freeport, TX Natural Gas Liquefied Natural Gas Imports from Egypt (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Egypt (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,969 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports from Egypt

  14. Freeport, TX Natural Gas Liquefied Natural Gas Imports from Other Countries

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Other Countries (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports from Other Countries (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 2,703 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports

  15. Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 7.90 5.36 -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016

  16. DOE Zero Energy Ready Home Case Study: Sterling Brook Custom Homes, Double Oak, TX

    Broader source: Energy.gov [DOE]

    Case study of a DOE Zero Energy Ready home in Double Oak, TX, north of Dallas, that scored a HERS 44 without PV. The 3,752-ft2 two-story home served as an energy-efficient model home for the custom...

  17. DOE Zero Energy Ready Home Case Study: M Street Homes, Houston, TX

    Broader source: Energy.gov [DOE]

    Case study of a DOE Zero Energy Ready home in Houston, TX, that achieves a HERS 45 without PV or HERS 32 with 1.2 kW PV. The three-story, 4,507-ft2 custom home is powered by a unique tri-generation...

  18. McAllen, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) McAllen, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4,414 4,236 5,595 6,174 4,938 ...

  19. Washington Metropolitan Area Transit Authority: Compressed Natural Gas Transit Bus Evaluation

    SciTech Connect (OSTI)

    Chandler, K.; Eberts, E.; Melendez, M.

    2006-04-01

    Evaluates compressed natural gas (CNG) powered transit buses at Washington Metropolitan Area Transit Authority (WMATA), providing a comparison between them and standard diesel transit buses.

  20. Fact #927: May 30, 2016 The United States Imported Over $70 Billion Worth

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Vehicles and Parts from Mexico in 2015 | Department of Energy 7: May 30, 2016 The United States Imported Over $70 Billion Worth of Vehicles and Parts from Mexico in 2015 Fact #927: May 30, 2016 The United States Imported Over $70 Billion Worth of Vehicles and Parts from Mexico in 2015 SUBSCRIBE to the Fact of the Week U.S. imports and exports of vehicles and parts dipped sharply during the Great Recession in 2009. Since that time, imports of vehicles and parts from Mexico to the United

  1. Issue #4: Are High Efficiency Hot Water Heating Systems Worth the Cost? |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 4: Are High Efficiency Hot Water Heating Systems Worth the Cost? Issue #4: Are High Efficiency Hot Water Heating Systems Worth the Cost? What are realistic energy savings associated with the latest advanced and forthcoming water heating technologies and are they cost effective? issue4_gasfired_waterheater.pdf (1.27 MB) issue4_tankless_wh.pdf (510.42 KB) issue4_waterhtg_solutions.pdf (528.96 KB) More Documents & Publications Cost Effective Water Heating Solutions

  2. Backed apple? Metropolitan New York in the greenhouse

    SciTech Connect (OSTI)

    Hill, D.

    1997-12-31

    Steps to mitigate global climate change are being negotiated internationally, but it is on the local level that its effects will be felt and actions are taken. Like many midlatitude coastal cities, metropolitan New York could expect serious consequences from global warming: killing hot spells, worsened ozone pollution, uncertain water supply, and inundation of its waterfront from higher sea level and violent storms. Seen at the local level, the opportunities and limitations of measures to mitigate or adapt to climate change become explicit. Indirect local effects from changes elsewhere in the world must also be considered.

  3. Measuring and Mitigating Urban Warming in a Northern Metropolitan Area |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Measuring and Mitigating Urban Warming in a Northern Metropolitan Area Event Sponsor: Environmental Science Seminar Start Date: Aug 25 2016 - 11:00am Building/Room: Building 240/Room 4301 Location: Argonne National Laboratory Speaker(s): Peter Snyder Speaker(s) Title: University of Minnesota In the United States and much of the rest of the world, cities are warming at twice the rate of outlying rural areas and the planet as a whole. While the warming can

  4. Penitas, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Penitas, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 253 40 NA 2000's NA NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Center CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Hilary Olson Project Director/Principal Investigator University of Texas at Austin 1 University Station, C0300 Austin, TX

  6. Roma, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Roma, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 1 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  7. McAllen, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) McAllen, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's 1,118 NA 402 0 0 5,322 7,902 26,605 20,115 12,535 2010's 2,520 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  8. DOE Zero Energy Ready Home Case Study 2014: Durable Energy Builders, Houston, TX

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Durable Energy Builders Houston, TX DOE ZERO ENERGY READY HOME(tm) CASE STUDY The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research. Advanced technologies are designed

  9. Alamo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Alamo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 12,651 2000's 8,390 2,984 571 0 0 2,656 3,880 22,197 20,653 13,279 2010's 4,685 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  10. Freeport, TX Natural Gas Liquefied Natural Gas Imports from Trinidad and

    U.S. Energy Information Administration (EIA) Indexed Site

    Tobago (Million Cubic Feet) Trinidad and Tobago (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,706 2012 2,872 2014 2,994 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point

  11. Golden Pass, TX Natural Gas Liquefied Natural Gas Imports from Qatar

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) from Qatar (Million Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,902 4,896 4,100 18,487 4,900 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  12. Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 13,609 17,243 13,496 41,879 2000's 2,093 7,292 782 0 0 1,342 967 5,259 1,201 284 2010's 62 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  13. Price Liquefied Freeport, TX Natural Gas Exports Price to United Kingdom

    U.S. Energy Information Administration (EIA) Indexed Site

    (Dollars per Thousand Cubic Feet) United Kingdom (Dollars per Thousand Cubic Feet) Price Liquefied Freeport, TX Natural Gas Exports Price to United Kingdom (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 7.56 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring

  14. Roma, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Roma, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 2.06 2.61 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Price of

  15. Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S. Wayne West Virginia University D. Smith U.S. Department of Energy Technical Report NREL/TP-540-36355 December 2005 Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S.

  16. Cost-effectiveness analysis of TxDOT LPG fleet conversion. Volume 1. Interim research report

    SciTech Connect (OSTI)

    Euritt, M.A.; Taylor, D.B.; Mahmassani, H.

    1992-10-01

    Increased emphasis on energy efficiency and air quality has resulted in a number of state and federal initiatives examining the use of alternative fuels for motor vehicles. Texas' program for alternate fuels includes liquefied petroleum gas (LPG). Based on an analysis of 30-year life-cycle costs, development of a propane vehicle program for the Texas Department of Transportation (TxDOT) would cost about $24.3 million (in 1991 dollars). These costs include savings from lower-priced LPG and differentials between propane and gasoline/diesel in infrastructure costs for a fueling station, vehicle costs, and operating costs. The 30-year life-cycle costs translate into an average annual vehicle cost increase of $308, or about 2.5 cents more per vehicle mile of travel. Sensitivity analyses are performed on the discount rate, price of propane, maintenance savings, vehicle utilization, diesel vehicles, extended vehicle life, original equipment manufacturer (OEM) vehicles, and operating and infrastructure costs. The best results are obtained when not converting diesel vehicles, converting only large fleets, and extending the period the vehicle is kept in service. Combining these factors yields results that are most cost-effective for TxDOT. This is volume one of two volumes.

  17. Cost-effectiveness analysis of TxDOT LPG fleet conversion. Volume 2. Interim research report

    SciTech Connect (OSTI)

    Euritt, M.A.; Taylor, D.B.; Mahmassani, H.

    1992-11-01

    Increased emphasis on energy efficiency and air quality has resulted in a number of state and federal initiatives examining the use of alternative fuels for motor vehicles. Texas' program for alternate fuels includes liquefied petroleum gas (LPG), commonly called propane. Based on an analysis of 30-year life-cycle costs, development of a propane vehicle program for the Texas Department of Transportation (TxDOT) would cost about $24.3 million (in 1991 dollars). These costs include savings from lower-priced propane and differentials between propane and gasoline/diesel in infrastructure costs, vehicle costs, and operating costs. The 30-year life-cycle costs translate into an average annual vehicle cost increase of $308, or about 2.5 cents more per vehicle mile of travel. Based on the cost-effectiveness analysis and assumptions, there are currently no TxDOT locations that can be converted to propane without additional financial outlays. This is volume two of two volumes.

  18. Truck transport of RAM: Risk effects of avoiding metropolitan areas

    SciTech Connect (OSTI)

    Mills, G.S.; Neuhauser, K.S.

    1997-11-01

    In the transport of radioactive material (RAM), e.g., spent nuclear fuel (SNF), stakeholders are generally most concerned about risks in high population density areas along transportation routes because of the perceived high consequences of potential accidents. The most significant portions of a transcontinental route and an alternative examined previously were evaluated again using population density data derived from US Census Block data. This method of characterizing population that adjoins route segments offers improved resolution of population density variations, especially in high population density areas along typical transport routes. Calculated incident free doses and accident dose risks for these routes, and the rural, suburban and urban segments are presented for comparison of their relative magnitudes. The results indicate that modification of this route to avoid major metropolitan areas through use of non-Interstate highways increases total risk yet does not eliminate a relatively small urban component of the accident dose risk. This conclusion is not altered by improved resolution of route segments adjoining high density populations.

  19. Benchmark Evaluation of Fuel Effect and Material Worth Measurements for a Beryllium-Reflected Space Reactor Mockup

    SciTech Connect (OSTI)

    Marshall, Margaret A.; Bess, John D.

    2015-02-01

    The critical configuration of the small, compact critical assembly (SCCA) experiments performed at the Oak Ridge Critical Experiments Facility (ORCEF) in 1962-1965 have been evaluated as acceptable benchmark experiments for inclusion in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. The initial intent of these experiments was to support the design of the Medium Power Reactor Experiment (MPRE) program, whose purpose was to study “power plants for the production of electrical power in space vehicles.” The third configuration in this series of experiments was a beryllium-reflected assembly of stainless-steel-clad, highly enriched uranium (HEU)-O2 fuel mockup of a potassium-cooled space power reactor. Reactivity measurements cadmium ratio spectral measurements and fission rate measurements were measured through the core and top reflector. Fuel effect worth measurements and neutron moderating and absorbing material worths were also measured in the assembly fuel region. The cadmium ratios, fission rate, and worth measurements were evaluated for inclusion in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. The fuel tube effect and neutron moderating and absorbing material worth measurements are the focus of this paper. Additionally, a measurement of the worth of potassium filling the core region was performed but has not yet been evaluated Pellets of 93.15 wt.% enriched uranium dioxide (UO2) were stacked in 30.48 cm tall stainless steel fuel tubes (0.3 cm tall end caps). Each fuel tube had 26 pellets with a total mass of 295.8 g UO2 per tube. 253 tubes were arranged in 1.506-cm triangular lattice. An additional 7-tube cluster critical configuration was also measured but not used for any physics measurements. The core was surrounded on all side by a beryllium reflector. The fuel effect worths were measured by removing fuel tubes at various radius. An accident scenario

  20. EIS-0412: Federal Loan Guarantee to Support Construction of the TX Energy LLC, Industrial Gasification Facility near Beaumont, Texas

    Broader source: Energy.gov [DOE]

    The Department of Energy is assessing the potential environmental impacts for its proposed action of issuing a Federal loan guarantee to TX Energy, LLC (TXE). TXE submitted an application to DOE under the Federal loan guarantee program pursuant to the Energy Policy Act of 2005 (EPAct 2005) to support construction of the TXE industrial Gasification Facility near Beaumont, Texas.

  1. RCRA Assessment Plan for Single-Shell Tank Waste Management Area TX-TY at the Hanford Site

    SciTech Connect (OSTI)

    Hodges, Floyd N.; Chou, Charissa J.

    2001-02-23

    A groundwater quality assessment plan was prepared to investigate the rate and extent of aquifer contamination beneath Waste Management Area TX-TY on the Hanford Site in Washington State. This plan is an update of a draft plan issued in February 1999, which guided work performed in fiscal year 2000.

  2. Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dollars per Thousand Cubic Feet) Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.26 2.31 2.03 2.09 2000's 5.85 4.61 2.26 -- -- 8.10 5.53 6.23 5.55 4.40 2010's 4.21 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016

  3. Benchmark Evaluation of the HTR-PROTEUS Absorber Rod Worths (Core 4)

    SciTech Connect (OSTI)

    John D. Bess; Leland M. Montierth

    2014-06-01

    PROTEUS was a zero-power research reactor at the Paul Scherrer Institute (PSI) in Switzerland. The critical assembly was constructed from a large graphite annulus surrounding a central cylindrical cavity. Various experimental programs were investigated in PROTEUS; during the years 1992 through 1996, it was configured as a pebble-bed reactor and designated HTR-PROTEUS. Various critical configurations were assembled with each accompanied by an assortment of reactor physics experiments including differential and integral absorber rod measurements, kinetics, reaction rate distributions, water ingress effects, and small sample reactivity effects [1]. Four benchmark reports were previously prepared and included in the March 2013 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook) [2] evaluating eleven critical configurations. A summary of that effort was previously provided [3] and an analysis of absorber rod worth measurements for Cores 9 and 10 have been performed prior to this analysis and included in PROTEUS-GCR-EXP-004 [4]. In the current benchmark effort, absorber rod worths measured for Core Configuration 4, which was the only core with a randomly-packed pebble loading, have been evaluated for inclusion as a revision to the HTR-PROTEUS benchmark report PROTEUS-GCR-EXP-002.

  4. Fact #927: May 30, 2016 The United States Imported Over $70 Billion Worth of Vehicles and Parts from Mexico in 2015- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for The United States Imported Over $70 Billion Worth of Vehicles and Parts from Mexico in 2015

  5. Reservoir fracture mapping using microearthquakes: Austin chalk, Giddings field, TX and 76 field, Clinton Co., KY

    SciTech Connect (OSTI)

    Phillips, W.S.; Rutledge, J.T.; Gardner, T.L.; Fairbanks, T.D.; Miller, M.E.; Schuessler, B.K.

    1996-11-01

    Patterns of microearthquakes detected downhole defined fracture orientation and extent in the Austin chalk, Giddings field, TX and the 76 field, Clinton Co., KY. We collected over 480 and 770 microearthquakes during hydraulic stimulation at two sites in the Austin chalk, and over 3200 during primary production in Clinton Co. Data were of high enough quality that 20%, 31% and 53% of the events could be located, respectively. Reflected waves constrained microearthquakes to the stimulated depths at the base of the Austin chalk. In plan view, microearthquakes defined elongate fracture zones extending from the stimulation wells parallel to the regional fracture trend. However, widths of the stimulated zones differed by a factor of five between the two Austin chalk sites, indicating a large difference in the population of ancillary fractures. Post-stimulation production was much higher from the wider zone. At Clinton Co., microearthquakes defined low-angle, reverse-fault fracture zones above and below a producing zone. Associations with depleted production intervals indicated the mapped fractures had been previously drained. Drilling showed that the fractures currently contain brine. The seismic behavior was consistent with poroelastic models that predicted slight increases in compressive stress above and below the drained volume.

  6. Nanoscale elastic changes in 2D Ti3C2Tx (MXene) pseudocapacitive electrodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Come, Jeremy; Xie, Yu; Naguib, Michael; Jesse, Stephen; Kalinin, Sergei V.; Gogotsi, Yury; Kent, Paul R. C.; Balke, Nina

    2016-02-01

    Designing sustainable electrodes for next generation energy storage devices relies on the understanding of their fundamental properties at the nanoscale, including the comprehension of ions insertion into the electrode and their interactions with the active material. One consequence of ion storage is the change in the electrode volume resulting in mechanical strain and stress that can strongly affect the cycle life. Therefore, it is important to understand the changes of dimensions and mechanical properties occurring during electrochemical reactions. While the characterization of mechanical properties via macroscopic measurements is well documented, in-situ characterization of their evolution has never been achieved atmore » the nanoscale. Two dimensional (2D) carbides, known as MXenes, are promising materials for supercapacitors and various kinds of batteries, and understating the coupling between their mechanical and electrochemical properties is therefore necessary. Here we report on in-situ imaging, combined with density functional theory of the elastic changes, of a 2D titanium carbide (Ti3C2Tx) electrode in direction normal to the basal plane during cation intercalation. The results show a strong correlation between the Li+ ions content and the elastic modulus, whereas little effects of K+ ions are observed. Moreover, this strategy enables identifying the preferential intercalation pathways within a single particle.« less

  7. Fast Neutron Spectrum Potassium Worth for Space Power Reactor Design Validation

    SciTech Connect (OSTI)

    Bess, John D.; Marshall, Margaret A.; Briggs, J. Blair; Tsiboulia, Anatoli; Rozhikhin, Yevgeniy; Mihalczo, John T.

    2015-03-01

    graphite reflected (2 inches or less) experiments also using the same set of highly enriched uranium metal parts are evaluated in HEU MET FAST 071. Polyethylene-reflected configurations are evaluated in HEU-MET-FAST-076. A stack of highly enriched metal discs with a thick beryllium top reflector is evaluated in HEU-MET-FAST-069, and two additional highly enriched uranium annuli with beryllium cores are evaluated in HEU-MET-FAST-059. Both detailed and simplified model specifications are provided in this evaluation. Both of these fast neutron spectra assemblies were determined to be acceptable benchmark experiments. The calculated eigenvalues for both the detailed and the simple benchmark models are within ~0.26 % of the benchmark values for Configuration 1 (calculations performed using MCNP6 with ENDF/B-VII.1 neutron cross section data), but under-calculate the benchmark values by ~7s because the uncertainty in the benchmark is very small: ~0.0004 (1s); for Configuration 2, the under-calculation is ~0.31 % and ~8s. Comparison of detailed and simple model calculations for the potassium worth measurement and potassium mass coefficient yield results approximately 70 – 80 % lower (~6s to 10s) than the benchmark values for the various nuclear data libraries utilized. Both the potassium worth and mass coefficient are also deemed to be acceptable benchmark experiment measurements.

  8. DOE Zero Ready Home Case Study: Sterling Brook Custom Homes, Village Park Eco Home, Double Oak, TX

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sterling Brook Custom Homes Village Park Eco Home Double Oak, TX DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research. Advanced

  9. SURFACE GEOPHYSICAL EXPLORATION OF TX-TY TANK FARMS AT THE HANFORD SITE RESULTS OF BACKGROUND CHARACTERIZATION WITH GROUND PENETRATING RADAR

    SciTech Connect (OSTI)

    MYERS DA; CUBBAGE R; BRAUCHLA R; O'BRIEN G

    2008-07-24

    Ground penetrating radar surveys of the TX and TY tank farms were performed to identify existing infrastructure in the near surface environment. These surveys were designed to provide background information supporting Surface-to-Surface and Well-to-Well resistivity surveys of Waste Management Area TX-TY. The objective of the preliminary investigation was to collect background characterization information with GPR to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity{trademark} surveys. The results of the background characterization confirm the existence of documented infrastructure, as well as highlight locations of possible additional undocumented subsurface metallic objects.

  10. Alternating magnetic anisotropy of Li2(Li1–xTx)N (T = Mn, Fe, Co, and Ni)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jesche, A.; Ke, L.; Jacobs, J. L.; Harmon, B.; Houk, R. S.; Canfield, P. C.

    2015-05-11

    Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be substituted for Li in single crystalline Li2(Li1–xTx)N. Isothermal and temperature-dependent magnetization measurements reveal local magnetic moments with magnitudes significantly exceeding the spin-only value. The additional contributions stem from unquenched orbital moments that lead to rare-earth-like behavior of the magnetic properties. Accordingly, extremely large magnetic anisotropies have been found. Most notably, the magnetic anisotropy alternates as easy plane→easy axis→easy plane→easy axis when progressing from T = Mn → Fe → Co → Ni. This behavior can be understood based on a perturbation approach in an analytical, single-ion model.more » As a result, the calculated magnetic anisotropies show surprisingly good agreement with the experiment and capture the basic features observed for the different transition metals.« less

  11. Alternating magnetic anisotropy of Li2(Li1xTx)N(T=Mn,Fe,Co,andNi)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jesche, A.; Ke, L.; Jacobs, J. L.; Harmon, B.; Houk, R. S.; Canfield, P. C.

    2015-05-11

    Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be substituted for Li in single crystalline Li2(Li1xTx)N. Isothermal and temperature-dependent magnetization measurements reveal local magnetic moments with magnitudes significantly exceeding the spin-only value. The additional contributions stem from unquenched orbital moments that lead to rare-earth-like behavior of the magnetic properties. Accordingly, extremely large magnetic anisotropies have been found. Most notably, the magnetic anisotropy alternates as easy plane?easy axis?easy plane?easy axis when progressing from T = Mn ? Fe ? Co ? Ni. This behavior can be understood based on a perturbation approach in an analytical, single-ion model.moreAs a result, the calculated magnetic anisotropies show surprisingly good agreement with the experiment and capture the basic features observed for the different transition metals.less

  12. Gasoline distribution cycle and vapor emissions in Mexico City metropolitan area

    SciTech Connect (OSTI)

    Molina, M.M.; Secora, I.S.; Gallegos, J.R.M.; Grapain, V.M.G.; Villegas, F.M.R.; Flores, L.A.M.

    1997-12-31

    Ozone in the main air pollutant in Mexico City Metropolitan Area (MCMA). This kind of pollution is induced by the emissions of nitrogen oxides and hydrocarbons. According to Official Statistics National Air Pollution Quality Standard is exceeded over 300 days a year. Volatile hydrocarbons are generated in the cycle of storage transport and distribution of fuel (Gasoline Distribution Cycle). Above 17 millions of liters are handled daily in MCMA. Evaporative emission control is a complex task involving: floating roof tanks and vapor recovery units installation at bulk terminals and implementation of Phase 1 and Phase 2 vapor recovery systems at service stations. Since 1990, IMP has been involved in researching vapor emissions associated to gasoline storage and distribution cycle. Besides, the authors evaluate several technologies for bulk terminals and service stations. In this job, the authors present the results of an evaluation according to Mexican Official Standard of 500 vehicles. The gasoline vapors are trapped during refueling of cars and they are conduced to an equipment that includes an activated charcoal canister in order to adsorb them. Another Activated charcoal canister adsorbs ambient air as a reference. Experimental results showed that refueling hydrocarbon emissions are between 0.4 and 1.2 grams per liter with averages of 0.79 and 0.88 grams per liter according with two different gasoline types. These results were applied to Mexico City Vehicular fleet for the gasoline distribution cycle in order to obtain a total volatile hydrocarbon emission in Mexico City Metropolitan Area.

  13. Metropolitan Washington

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... local communities and agencies to surpass this goal. Bulk renewable energy ... Procurement Program operates with the ... County and the Cities of Bowie and ...

  14. Are green lots worth more than brown lots? An economic incentive for erosion control on residential developments

    SciTech Connect (OSTI)

    Herzog, M.; Harbor, J.; McClintock, K.; Law, J.; Bennett, K.

    2000-03-01

    Construction sites are major contributors to nonpoint source (NPS) pollution. However, a lack of personnel to enforce erosion control regulations and limited voluntary compliance means that few developers apply effective erosion control. New approaches are needed to increase erosion control on construction sites if this source of NPS pollution is to be significantly reduced. This study tests whether an economic advantage exists for developers who use vegetative cover for erosion control, independent of advantages gained in addressing environmental or regulatory concerns. Improving residential lot appearance from muddy brown to green grass may increase the appeal of the lot to buyers. A market survey shows that homebuyers and realtors perceive vegetated lots to be worth more than unvegetated lots, and this increased value exceeds the cost of seeding. Thus, developers can now be encouraged to invest in vegetative cover because of the potentially high return on the investment.

  15. Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wesolowski, David J.; Wang, Hsiu -Wen; Page, Katharine L.; Naguib, Michael; Gogotsi, Yury

    2015-12-08

    MXenes are a recently discovered family of two-dimensional (2D) early transition metal carbides and carbonitrides, which have already shown many attractive properties and a great promise in energy storage and many other applications. However, a complex surface chemistry and small coherence length has been an obstacle in some applications of MXenes, also limiting accuracy of predictions of their properties. In this study, we describe and benchmark a novel way of modeling layered materials with real interfaces (diverse surface functional groups and stacking order between the adjacent monolayers) against experimental data. The structures of three kinds of Ti3C2Tx MXenes (T standsmore » for surface terminating species, including O, OH, and F) produced under different synthesis conditions were resolved for the first time using atomic pair distribution function obtained by high-quality neutron total scattering. The true nature of the material can be easily captured with the sensitivity of neutron scattering to the surface species of interest and the detailed third-generation structure model we present. The modeling approach leads to new understanding of MXene structural properties and can replace the currently used idealized models in predictions of a variety of physical, chemical and functional properties of Ti3C2-based MXenes. Furthermore, the developed models can be employed to guide the design of new MXene materials with selected surface termination and controlled contact angle, catalytic, optical, electrochemical and other properties. We suggest that the multi-level structural modeling should form the basis for a generalized methodology on modeling diffraction and pair distribution function data for 2D and layered materials.« less

  16. Reactivity-worth estimates of the OSMOSE samples in the MINERVE reactor R1-MOX, R2-UO2 and MORGANE/R configurations.

    SciTech Connect (OSTI)

    Zhong, Z.; Klann, R. T.; Nuclear Engineering Division

    2007-08-03

    An initial series of calculations of the reactivity-worth of the OSMOSE samples in the MINERVE reactor with the R2-UO2 and MORGANE/R core configuration were completed. The calculation model was generated using the lattice physics code DRAGON. In addition, an initial comparison of calculated values to experimental measurements was performed based on preliminary results for the R1-MOX configuration.

  17. HIA 2015 DOE Zero Energy Ready Home Case Study: Carl Franklin Homes, L.C./Green Extreme Homes, CDC, McKinley Project, Garland TX

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Franklin Homes, L.C./ Green Extreme Homes, CDC McKinley Project Garland, TX DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research.

  18. DOE Zero Ready Home Case Study: Green Extreme Homes & Carl Franklin Homes, First DOE Zero Energy Ready Home Retrofit, Garland, TX

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Extreme Homes & Carl Franklin Homes First DOE Zero Energy Ready Home Retrofit Garland, TX DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building

  19. What's A Watt Worth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... reserves, flexi-ramp RPS Procurement cost Societal public safety Qualitatively 18 Integrating DERs in planning processes Load Forecasting Distribution Planning Transmission ...

  20. SU-E-J-48: Imaging Origin-Radiation Isocenter Coincidence for Linac-Based SRS with Novalis Tx

    SciTech Connect (OSTI)

    Geraghty, C; Workie, D; Hasson, B

    2015-06-15

    Purpose To implement and evaluate an image-based Winston-Lutz (WL) test to measure the displacement between ExacTrac imaging origin and radiation isocenter on a Novalis Tx system using RIT V6.2 software analysis tools. Displacement between imaging and radiation isocenters was tracked over time. The method was applied for cone-based and MLC-based WL tests. Methods The Brainlab Winston-Lutz phantom was aligned to room lasers. The ExacTrac imaging system was then used to detect the Winston- Lutz phantom and obtain the displacement between the center of the phantom and the imaging origin. EPID images of the phantom were obtained at various gantry and couch angles and analyzed with RIT calculating the phantom center to radiation isocenter displacement. The RIT and Exactrac displacements were combined to calculate the displacement between imaging origin and radiation isocenter. Results were tracked over time. Results Mean displacements between ExacTrac origin and radiation isocenter were: VRT: −0.1mm ± 0.3mm, LNG: 0.5mm ± 0.2mm, LAT: 0.2mm ± 0.2mm (vector magnitude of 0.7 ± 0.2mm). Radiation isocenter was characterized by the mean of the standard deviations of the WL phantom displacements: σVRT: 0.2mm, σLNG: 0.4mm, σLAT: 0.6mm. The linac couch base was serviced to reduce couch walkout. This reduced σLAT to 0.2mm. These measurements established a new baseline of radiation isocenter-imaging origin coincidence. Conclusion The image-based WL test has ensured submillimeter localization accuracy using the ExacTrac imaging system. Standard deviations of ExacTrac-radiation isocenter displacements indicate that average agreement within 0.3mm is possible in each axis. This WL test is a departure from the tradiational WL in that imaging origin/radiation isocenter agreement is the end goal not lasers/radiation isocenter.

  1. The influence of coyotes on an urban Canada goose population in the Chicago metropolitan area

    SciTech Connect (OSTI)

    Brown, Justin L.; /Ohio State U.

    2007-01-01

    Canada geese (Branta canadensis) have become common in many urban areas, often creating nuisance problems for human residents. The presence of urban geese has raised concerns about the spread of disease, increased erosion, excessive noise, eutrophication of waterways, and general nuisance problems. Goose populations have grown due to an increase in urbanization resulting in an abundance of high quality food (urban grass) and suitable nesting sites, as well as a decrease in some predators. I monitored nest predation in the Chicago suburbs during the 2004 and 2005 nesting seasons using 3 nest monitoring techniques to identify predators: video cameras, plasticine eggs, and sign from nest using a classification tree analysis. Of 58 nests monitored in 2004 and 286 in 2005, only raccoons (Procyon lotor) and coyotes (Canis latrans) were identified as nest predators. Raccoons were responsible for 22-25% of depredated nests, but were rarely capable of depredating nests that were actively defended by a goose. Coyotes were responsible for 75-78% of all Canada goose nest depredation and were documented killing one adult goose and feeding on several others. The coyote is a top-level predator that had increased in many metropolitan areas in recent years. To determine if coyotes were actively hunting geese or eggs during the nesting season, I analyzed coyote habitat selection between nesting and pre-nesting or post-nesting seasons. Coyote home ranges (95% Minimum Convex Polygon) were calculated for 19 coyotes to examine third order habitat selection related to goose nest abundance. A 100 m buffer (buffer habitat) was created and centered on each waterway edge and contained 90% of all nests. Coyotes showed selection for habitats during all seasons. Buffer habitat was the top ranked habitat in both pre-nesting and nesting seasons, but dropped to third ranked in post-nesting season. Habitat selection across seasons was compared using a repeated measures MANOVA. Habitat selection

  2. Characterization of Vadose Zone Sediments Below the TX Tank Farm: Boreholes C3830, C3831, C3832 and RCRA Borehole 299-W10-27

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28,4.43, and 4.59. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in April 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C3830, C3831, and C3832 in the TX Tank Farm, and from borehole 299-W-10-27 installed northeast of the TY Tank Farm.

  3. ~tx421.ptx

    U.S. Energy Information Administration (EIA) Indexed Site

    FRIDAY APRIL 3, 2009 The meeting convened at 9:00 a.m. in Room 8E-089 of the James Forrestal Building, 1000 Independence Avenue, S.W., Washington, D.C., Edward Blair, Chair, presiding. COMMITTEE MEMBERS PRESENT: EDWARD BLAIR, Chair STEVE BROWN BARBARA FORSYTH WALTER HILL VINCENT IANNACCHIONE NANCY KIRKENDALL EDWARD KOKKELENBERG ISRAEL MELENDEZ MICHAEL TOMAN JOHN WEYANT (202) 234-4433 Neal R. Gross & Co., Inc. Page 2 EIA STAFF PRESENT: STEPHANIE BROWN, Designated Federal Official, Director,

  4. Training Session: Euless, TX

    Broader source: Energy.gov [DOE]

    This 3.5-hour training provides builders with a comprehensive review of zero energy-ready home construction including the business case, detailed specifications, and opportunities to be recognized...

  5. ~tx410.ptx

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Some of the comments 6 include coal is not coal is not coal. That 7 was the plant issue, it's not ... So there's a tremendous capability 3 there. It improves the use of fossil-fired ...

  6. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    SciTech Connect (OSTI)

    Apel, Eric; Emmons, L.; Karl, Thomas G.; Flocke, Frank M.; Hills, A. J.; Madronich, Sasha; Lee-Taylor, J.; Fried, Alan; Weibring, P.; Walega, J.; Richter, Dirk; Tie, X.; Mauldin, L.; Campos, Teresa; Weinheimer, Andrew J.; Knapp, David; Sive, B.; Kleinman, Lawrence I.; Springston, S.; Zaveri, Rahul A.; Ortega, John V.; Voss, Paul B.; Blake, D. R.; Baker, Angela K.; Warneke, Carsten; Welsh-Bon, Daniel; de Gouw, Joost A.; Zheng, J.; Zhang, Renyi; Rudolph, Jochen; Junkermann, W.; Riemer, D.

    2010-01-01

    The volatile organic compound (VOC) distribution in the Mexico City Metropolitan Area (MCMA) and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs) but with a substantial contribution from oxygenated volatile organic compounds (OVOCs), predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry) model and MOZART (Model for Ozone and Related chemical Tracers) were able to reproduce the general features of the daytime cycle of the VOC OH reactivity distribution showing that NMHCs dominate the distribution except in the afternoon hours and that the VOC OH reactivity peaks in the early morning due to high morning emissions from the city into a shallow boundary layer. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height. In addition, a plume was studied in which air was advected out of the MCMA and intercepted downwind with the DOE G1 on March 18 and the NCAR C130 one day later on March 19. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind. Ozone and many OVOCs were photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial and temporal extent of the March 19 plume and to help interpret the OH

  7. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    SciTech Connect (OSTI)

    Apel, E.; Springston, S.; Karl, T.; Emmons, L.; Flocke, F.; Hills, A. J.; Madronich, S.; Lee-Taylor, J.; Fried, A.; Weibring, P.; Walega, J.; Richter, D., Tie, X.; Mauldin, L.; Campos, T.; Sive, B.; Kleinman, L.; Springston, S., Zaveri, R.; deGouw, J.; Zheng, J.; Zhang, R.; Rudolph, J.; Junkermann, W.; Riemer, D. D.

    2009-11-01

    The volatile organic compound (VOC) distribution in the Mexico City Metropolitan Area (MCMA) and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs) but with a substantial contribution from oxygenated volatile organic compounds (OVOCs), predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry) model and MOZART (Model for Ozone and Related chemical Tracers) were able to reproduce the general features of the daytime cycle of the VOC OH reactivity distribution showing that NMHCs dominate the distribution except in the afternoon hours and that the VOC OH reactivity peaks in the early morning due to high morning emissions from the city into a shallow boundary layer. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height. In addition, a plume was studied in which air was advected out of the MCMA and intercepted downwind with the DOE G1 on 18 March and the NCAR C130 one day later on 19 March. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind. Ozone and many OVOCs were photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial and temporal extent of the 19 March plume and to help interpret the OH

  8. Advanced Manufacturing Office and Potential Technologies for...

    Broader source: Energy.gov (indexed) [DOE]

    Potential Technologies for Clean Energy Manufacturing Innovation October 8, 2014 DOEDOD Planning Workshop- Fort Worth, TX 2 1. Background on DOE and Manufacturing 2. Technical ...

  9. Environmental benefits of replacing fuel oil by natural gas in the metropolitan region of Sao Paulo, Brazil

    SciTech Connect (OSTI)

    Kondo, S.; Assuncao, J.V. de

    1998-12-31

    The Metropolitan Region of Sao Paulo (Brazil) has a population 16.322 million people (1995 estimate) living in an area of 8,051 km2 with most of them concentrated in the city of Sao Paulo with 9.8 million people and 4.6 million cars. Although with an air quality better than some other Latin American megacities such as Mexico and Santiago do Chile, the air quality still exceeds the national air quality standards. In 2/17/1993 Brazilian Petroleum Company (PETROBRAS) and the Bolivian Petroleum Company (Yacimientos Petroliferos Fiscales Bolivianos -- YPFB) signed an agreement to bring natural gas from Bolivia to the south and southeast of Brazil. The end of the construction of the gas pipeline will be in 1999, and it will deliver 4 million Nm3/day of natural gas to COMGAS Sao Paulo State Gas Company. This amount will increase to 8.1 million Nm3/day by the year 2006, that will be sufficient to supply the Sao Paulo Metropolitan Region market need at that time. In this study an estimate of the influence in the air quality was performed supposing the substitution of fuel oil by natural gas in industry and also in diesel buses. The results showed that there will be benefits in relation to sulfur dioxide, PM10, greenhouse gases and trace elements, and negligible effects in relation to NO{sub x}, NMTOC and carbon monoxide.

  10. DOE - Office of Legacy Management -- American Manufacturing Co of Texas -

    Office of Legacy Management (LM)

    TX 08 Manufacturing Co of Texas - TX 08 FUSRAP Considered Sites Site: American Manufacturing Co of Texas - TX 08 ( TX.08 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: North Sylvania Ave. , Fort Worth , Texas TX.08-1 Evaluation Year: Circa 1995 TX.08-1 TX.08-2 Site Operations: Specialized tube elongation and billet piercing tests on Uranium metal for the AEC. TX.08-1 Site Disposition: Eliminated - Based upon the results of

  11. Characterization of Vadose Zone Sediments Below the TX Tank Farm: Probe Holes C3830, C3831, C3832 and 299-W10-27

    SciTech Connect (OSTI)

    Serne, R JEFFREY.; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; LeGore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2004-04-01

    Pacific Northwest National Laboratory performed detailed analyses on vadose zone sediments from within Waste Management Area T-TX-TY. This report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from three probe holes (C3830, C3831, and C3832) in the TX Tank Farm, and from borehole 299-W-10-27. Sediments from borehole 299-W-10-27 are considered to be uncontaminated sediments that can be compared with contaminated sediments. This report also presents our interpretation of the sediment lithologies, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the TX Tank Farm. Sediment from the probe holes was analyzed for: moisture, radionuclide and carbon contents;, one-to-one water extracts (soil pH, electrical conductivity, cation, trace metal, and anion data), and 8 M nitric acid extracts. Overall, our analyses showed that common ion exchange is a key mechanism that influences the distribution of contaminants within that portion of the vadose zone affected by tank liquor. We did not observe significant indications of caustic alteration of the sediment mineralogy or porosity, or significant zones of slightly elevated pH values in the probe holes. The sediments do show that sodium-, nitrate-, and sulfate-dominated fluids are present. The fluids are more dilute than tank fluids observed below tanks at the SX and BX Tank Farms. Three primary stratigraphic units were encountered in each probe hole: (1) backfill material, (2) the Hanford formation, and (3) the Cold Creek unit. Each of the probe holes contain thin fine-grained layers in the Hanford H2 stratigraphic unit that may impact the flow of leaked fluids and effect irregular and horizontal flow. The probe holes could not penetrate below the enriched calcium carbonate strata of the Cold Creek lower subunit; therefore, we did not

  12. Exploring the effects of data quality, data worth, and redundancy of CO2 gas pressure and saturation data on reservoir characterization through PEST Inversion

    SciTech Connect (OSTI)

    Fang, Zhufeng; Hou, Zhangshuan; Lin, Guang; Engel, David W.; Fang, Yilin; Eslinger, Paul W.

    2014-04-01

    This study examined the impacts of reservoir properties on CO2 migration after subsurface injection and evaluated the possibility of characterizing reservoir properties using CO2 monitoring data such as saturation distribution. The injection reservoir was assumed to be located 1400-1500 m below the ground surface such that CO2 remained in the supercritical state. The reservoir was assumed to contain layers with alternating conductive and resistive properties, which is analogous to actual geological formations such as the Mount Simon Sandstone unit. The CO2 injection simulation used a cylindrical grid setting in which the injection well was situated at the center of the domain, which extended up to 8000 m from the injection well. The CO2 migration was simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). We adopted a nonlinear parameter estimation and optimization modeling software package, PEST, for automated reservoir parameter estimation. We explored the effects of data quality, data worth, and data redundancy on the detectability of reservoir parameters using CO2 saturation monitoring data, by comparing PEST inversion results using data with different levels of noises, various numbers of monitoring wells and locations, and different data collection spacing and temporal sampling intervals. This study yielded insight into the use of CO2 saturation monitoring data for reservoir characterization and how to design the monitoring system to optimize data worth and reduce data redundancy.

  13. Mathematical Modeling of Hepatitis C Prevalence Reduction with Antiviral Treatment Scale-Up in Persons Who Inject Drugs in Metropolitan Chicago

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Echevarria, Desarae; Gutfraind, Alexander; Boodram, Basmattee; Major, Marian; Del Valle, Sara; Cotler, Scott J.; Dahari, Harel

    2015-08-21

    New direct-acting antivirals (DAAs) provide an opportunity to combat hepatitis C virus (HCV) infection in persons who inject drugs (PWID). Here we use a mathematical model to predict the impact of a DAA-treatment scale-up on HCV prevalence among PWID and the estimated cost in metropolitan Chicago.

  14. Comparison of Daytime and Nighttime Populations Adjacent to Interstate Highways in Metropolitan Areas Using LandScan USA

    SciTech Connect (OSTI)

    Johnson, Paul E

    2007-01-01

    An article of similar title was published in the International Journal of Radioactive Materials Transport in 1999. The study concluded that the daytime and nighttime populations are not substantially different for the metropolitan areas examined. This study revisits the issue, but using the LandScan USA high resolution population distribution data, which includes daytime and night-time population. Segments of Interstate highway beltways, along with the direct route through the city, for Atlanta, St. Louis, and Kansas City are examined with an 800m buffer from either side of the highways. The day/night ratio of population is higher using the LandScan USA data. LandScan USA daytime and night-time data will be incorporated into the TRAGIS routing model in future.

  15. Urban stormwater quality, event-mean concentrations, and estimates of stormwater pollutant loads, Dallas-Fort Worth area, Texas, 1992--1993

    SciTech Connect (OSTI)

    Baldys, S.; Raines, T.H.; Mansfield, B.L.; Sandlin, J.T.

    1998-12-31

    The quality of urban stormwater is characterized with respect of 188 properties and constituents. Event-mean concentrations and loads for three land uses (residential, industrial, commercial), and annual loads for 12 selected properties and constituents for 26 gaged basins in the Dallas-Forth Worth study area are presented. Event-mean concentrations (EMCs) were computed for each land use for biochemical oxygen demand; chemical oxygen demand; suspended and dissolved solids; total nitrogen and ammonia plus organic nitrogen; total and dissolved phosphorus; total recoverable copper, lead, and zinc; and total diazinon. The EMCs of chemical oxygen demand; total nitrogen and ammonia plus organic nitrogen; total and dissolved phosphorus; and total diazinon were greatest in samples from residential land-use basins. The EMCs of biochemical oxygen demand; suspended and dissolved solids; and total copper, lead, and zinc were greatest in samples from industrial land-use basins.

  16. Secondary natural gas recovery: Targeted applications for infield reserve growth in midcontinent reservoirs, Boonsville Field, Fort Worth Basin, Texas. Topical report, May 1993--June 1995

    SciTech Connect (OSTI)

    Hardage, B.A.; Carr, D.L.; Finley, R.J.; Tyler, N.; Lancaster, D.E.; Elphick, R.Y.; Ballard, J.R.

    1995-07-01

    The objectives of this project are to define undrained or incompletely drained reservoir compartments controlled primarily by depositional heterogeneity in a low-accommodation, cratonic Midcontinent depositional setting, and, afterwards, to develop and transfer to producers strategies for infield reserve growth of natural gas. Integrated geologic, geophysical, reservoir engineering, and petrophysical evaluations are described in complex difficult-to-characterize fluvial and deltaic reservoirs in Boonsville (Bend Conglomerate Gas) field, a large, mature gas field located in the Fort Worth Basin of North Texas. The purpose of this project is to demonstrate approaches to overcoming the reservoir complexity, targeting the gas resource, and doing so using state-of-the-art technologies being applied by a large cross section of Midcontinent operators.

  17. Emission factors for domestic use of L.P. gas in the metropolitan area of Mexico City

    SciTech Connect (OSTI)

    Molina, M.M.; Schifter, I.; Ontiveros, L.E.; Salinas, A.; Moreno, S.; Melgarejo, L.A.; Molina, R.; Krueger, B.

    1998-12-31

    One of the main problems found in air pollution in the Metropolitan Area of Mexico City (MAMC) is the presence of high concentrations of ozone at ground level in the atmosphere. The official Mexican standard for ozone concentration in the air (0.11 ppm, one hour, once every 3 years) has been exceeded more than 300 days per year. Ozone is formed due to the emissions of nitrogen oxides and hydrocarbons originated from either combustion processes or vapors emanating from fuel handling operations. The results of an evaluation of several domestic devices like stoves and water heaters with L.P. gas as fuel are presented. A method for the evaluation of hydrocarbon emission was developed. A prototype of domestic installation was constructed. The prototype includes L.P. gas tank, domestic stove, water heater, piping and instrumentation. Several combinations of stoves and water heaters were evaluated. The sampling and analysis of hydrocarbons were performed using laboratory equipment originally designed for the evaluation of combustion and evaporative emissions in automobiles: a SHED camera (sealed room equipped with an hydrocarbon analyzer) was used to measure leaks in the prototype of domestic installation and a Constant Volume Sampler (CVS) for the measurement of incomplete combustion emissions. Emission factors were developed for each domestic installation.

  18. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    DOE R&D Accomplishments [OSTI]

    Molina, Luisa T.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavala, Miguel; Velasco, Erik; Molina; Mario J.

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation.

  19. Mangroves - what are they worth

    SciTech Connect (OSTI)

    Christensen, B.

    1983-01-01

    This paper is based on a study for FAO and on the management and utilization of mangroves in Asia and the Pacific. Land use options are examined in relation to the different roles which mangroves play (provision of firewood, charcoal, timber and pulp; wildlife; fisheries and aquaculture; and agriculture). Special attention is paid to mangrove management in Malaysia. (Refs 26)

  20. Ed Worth | Department of Energy

    Energy Savers [EERE]

    Dispatch of Electric Generation Capacity Economic Dispatch of Electric Generation Capacity A report to congress and the states pursuant to sections 1234 and 1832 of the Energy Polict Act of 2005. Economic Dispatch of Electric Generation Capacity (57.14 KB) More Documents & Publications THE VALUE OF ECONOMIC DISPATCH A REPORT TO CONGRESS PURSUANT TO SECTION 1234 OF THE ENERGY POLICY ACT OF 2005 Transmission Constraints and Congestion in the Western and Eastern Interconnections, 2009-2012

  1. Is recycling worth the trouble

    SciTech Connect (OSTI)

    Boltz, C.M.

    1995-03-01

    A panel of waste industry experts met recently at a Washington, DC, conference to discuss and debate the costs, benefits, and economics of recycling solid waste. The nearly unanimous conclusion from some of the speakers--that recycling, as it is implemented today, has costs that far outweigh its benefits--is evidence of a growing backlash among solid waste officials against a recycling movement they feel has been grossly over-inflated by environmental groups as a solution to a non-existent problem known as the garbage crisis. The public should not place such a strong emphasis on recycling as a cure-all for environmental problems, according to the panel of four waste management policy analysts at The State of Garbage'' session held in mid-January at the 1995 US/Canadian Federation Solid Waste Management Conference. Moreover, some panel members said, recycling should take place only if it makes economic sense.

  2. US WSC TX Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    than the U.S. average. * Average electricity consumption per Texas home is 26% higher than ... CONSUMPTION BY END USE Compared to other areas of the United States, the warmer ...

  3. ~tx22C0.ptx

    Office of Environmental Management (EM)

    ... that allowed you to search, 6 navigate, and control ... we are preparing to enter 14 into contracts with all ... clearly 17 define what the terms are that we can use that 18 ...

  4. About ZERH Sessions: Austin, TX

    Broader source: Energy.gov [DOE]

    10:00 a.m. - 12:30 p.m. An Overview: What is it, and how do I participate?This session discusses the critical components that define a truly zero energy ready home (ZERH), how builders are able to...

  5. ~txF74.ptx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TOM BIALEK, Chief Engineer, Smart Grid, San Diego Gas & Electric Company JIM CREEVY, NEMA ... And having been in this business a 15 while, as many of you, we've seen ups and 16 downs. ...

  6. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    SciTech Connect (OSTI)

    Molina, Luisa T.; Molina, Mario J.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavaka, Miguel; Velasco, Erik

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation. The measurement phase of the MILAGRO Campaign was successfully completed in March 2006 with excellent participation from the international scientific community and outstanding cooperation from the Mexican government agencies and institutions. The project reported here was led by the Massachusetts Institute of Technology/Molina Center for Energy and the Environment (MIT/MCE2) team and coordinated with DOE/ASP-funded collaborators at Aerodyne Research Inc., University of Colorado at Boulder and Montana State University. Currently 24 papers documenting the findings from this project have been published. The results from the project have improved significantly our understanding of the meteorological and photochemical processes contributing to the formation of ozone, secondary aerosols and other pollutants. Key findings from the MCMA-2003 include a vastly improved speciated emissions inventory from on

  7. Urban Surfaces and Heat Island Mitigation Potentials (Journal...

    Office of Scientific and Technical Information (OSTI)

    areas of Chicago, IL, Houston, TX, Sacramento, CA, and Salt Lake City, UT. The digital high resolution (0.3 to 0.5-m) aerial photographs for each of these metropolitan areas ...

  8. DOE and DoD Multi-topic Workshop Modern Fiber and Textiles

    Broader source: Energy.gov (indexed) [DOE]

    Abhai Kumar Analytical Services, Inc. DOE and DoD Multi-topic Workshop Modern Fiber and Textiles Fort Worth, TX October 9, 2014 Institute Design Salient Features 2 * Public Private ...

  9. A Case Study of Urbanization Impact on Summer Precipitation in the Greater Beijing Metropolitan Area. Urban Heat Island Versus Aerosol Effects

    SciTech Connect (OSTI)

    Zhong, Shi; Qian, Yun; Zhao, Chun; Leung, Lai-Yung R.; Yang, Xiuqun

    2015-10-23

    Convection-resolving ensemble simulations using the WRF-Chem model coupled with a single-layer Urban Canopy Model (UCM) are conducted to investigate the individual and combined impacts of land use and anthropogenic pollutant emissions from urbanization on a heavy rainfall event in the Greater Beijing Metropolitan Area (GBMA) in China. The simulation with the urbanization effect included generally captures the spatial pattern and temporal variation of the rainfall event. An improvement of precipitation is found in the experiment including aerosol effect on both clouds and radiation. The expanded urban land cover and increased aerosols have an opposite effect on precipitation processes, with the latter playing a more dominant role, leading to suppressed convection and rainfall over the upstream (northwest) area, and enhanced convection and more precipitation in the downstream (southeast) region of the GBMA. In addition, the influence of aerosol indirect effect is found to overwhelm that of direct effect on precipitation in this rainfall event. Increased aerosols induce more cloud droplets with smaller size, which favors evaporative cooling and reduce updrafts and suppress convection over the upstream (northwest) region in the early stage of the rainfall event. As the rainfall system propagates southeastward, more latent heat is released due to the freezing of larger number of smaller cloud drops that are lofted above the freezing level, which is responsible for the increased updraft strength and convective invigoration over the downstream (southeast) area.

  10. Agent-based model forecasts aging of the population of people who inject drugs in metropolitan Chicago and changing prevalence of hepatitis C infections

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gutfraind, Alexander; Boodram, Basmattee; Prachand, Nikhil; Hailegiorgis, Atesmachew; Dahari, Harel; Major, Marian E.; Kaderali, Lars

    2015-09-30

    People who inject drugs (PWID) are at high risk for blood-borne pathogens transmitted during the sharing of contaminated injection equipment, particularly hepatitis C virus (HCV). HCV prevalence is influenced by a complex interplay of drug-use behaviors, social networks, and geography, as well as the availability of interventions, such as needle exchange programs. To adequately address this complexity in HCV epidemic forecasting, we have developed a computational model, the Agent-based Pathogen Kinetics model (APK). APK simulates the PWID population in metropolitan Chicago, including the social interactions that result in HCV infection. We used multiple empirical data sources on Chicago PWID tomore » build a spatial distribution of an in silico PWID population and modeled networks among the PWID by considering the geography of the city and its suburbs. APK was validated against 2012 empirical data (the latest available) and shown to agree with network and epidemiological surveys to within 1%. For the period 2010–2020, APK forecasts a decline in HCV prevalence of 0.8% per year from 44(±2)% to 36(±5)%, although some sub-populations would continue to have relatively high prevalence, including Non-Hispanic Blacks, 48(±5)%. The rate of decline will be lowest in Non-Hispanic Whites and we find, in a reversal of historical trends, that incidence among non-Hispanic Whites would exceed incidence among Non-Hispanic Blacks (0.66 per 100 per years vs 0.17 per 100 person years). APK also forecasts an increase in PWID mean age from 35(±1) to 40(±2) with a corresponding increase from 59(±2)% to 80(±6)% in the proportion of the population >30 years old. Our research highlight the importance of analyzing sub-populations in disease predictions, the utility of computer simulation for analyzing demographic and health trends among PWID and serve as a tool for guiding intervention and prevention strategies in Chicago, and other major cities.« less

  11. Agent-based model forecasts aging of the population of people who inject drugs in metropolitan Chicago and changing prevalence of hepatitis C infections

    SciTech Connect (OSTI)

    Gutfraind, Alexander; Boodram, Basmattee; Prachand, Nikhil; Hailegiorgis, Atesmachew; Dahari, Harel; Major, Marian E.; Kaderali, Lars

    2015-09-30

    People who inject drugs (PWID) are at high risk for blood-borne pathogens transmitted during the sharing of contaminated injection equipment, particularly hepatitis C virus (HCV). HCV prevalence is influenced by a complex interplay of drug-use behaviors, social networks, and geography, as well as the availability of interventions, such as needle exchange programs. To adequately address this complexity in HCV epidemic forecasting, we have developed a computational model, the Agent-based Pathogen Kinetics model (APK). APK simulates the PWID population in metropolitan Chicago, including the social interactions that result in HCV infection. We used multiple empirical data sources on Chicago PWID to build a spatial distribution of an in silico PWID population and modeled networks among the PWID by considering the geography of the city and its suburbs. APK was validated against 2012 empirical data (the latest available) and shown to agree with network and epidemiological surveys to within 1%. For the period 2010–2020, APK forecasts a decline in HCV prevalence of 0.8% per year from 44(±2)% to 36(±5)%, although some sub-populations would continue to have relatively high prevalence, including Non-Hispanic Blacks, 48(±5)%. The rate of decline will be lowest in Non-Hispanic Whites and we find, in a reversal of historical trends, that incidence among non-Hispanic Whites would exceed incidence among Non-Hispanic Blacks (0.66 per 100 per years vs 0.17 per 100 person years). APK also forecasts an increase in PWID mean age from 35(±1) to 40(±2) with a corresponding increase from 59(±2)% to 80(±6)% in the proportion of the population >30 years old. Our research highlight the importance of analyzing sub-populations in disease predictions, the utility of computer simulation for analyzing demographic and health trends among PWID and serve as a tool for guiding intervention and prevention strategies in Chicago, and other major cities.

  12. Penitas, TX Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Working Gas from Same Month Previous Year (Percent) Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Pacific Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 39.40 137.00 162.70 103.50 62.40 34.80 25.30 14.90 12.90 9.80 8.70 -0.90 2016 0.10 -3.90 -3.60 -2.20 -6.10 -6.00 - = No Data Reported; -- = Not

  13. Roma, TX Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    36,813 65,794 133,769 138,340 154,471 168,049 1999-2015 Pipeline Prices 4.55 4.14 2.86 3.80 4.62 2.79

  14. Penitas, TX Natural Gas Exports to Mexico

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Overview of North American Energy Trade Statistics: Methodologies and Characteristics Trilateral MOU Concerning Cooperation on Energy Information, Subgroup A: Energy Trade Statistics December 2015 DRAFT December 16, 2015 Overview of North American Energy Trade Statistics: Methodologies and Characteristics 1 Table of Contents 1. Introduction ......................................................................................................................................... 2 2. Canada

  15. Alamo, TX Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Onshore Natural Gas Dry Production (Million Cubic Feet) Alabama--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 125,180 106,903 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production Alabama Onshore

    Dry Production (Million Cubic Feet)

  16. Clint, TX Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    EIA Energy Conference April 7, 2009 John W. Rowe Chairman and CEO Exelon Corporation Exelon Surpasses EPA Climate Leaders Goal by Reducing GHG Emissions by 35% We couldn't take a million cars off the road. But we did reduce our GHG emissions by that much. ($75) ($50) ($25) $0 $25 $50 $75 $100 $125 $150 0 5 10 15 20 25 30 million metric tons of CO2 $/metric ton of CO2 Landfill Gas 25% Reduction in Building Energy Use Solar PV >$700 (>$250 with tax Incentives) Exelon's Supply Curve of CO2

  17. Hidalgo, TX Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    0 2,506 9,227 14,862 8,817 1996-2015 Pipeline Prices -- -- 3.47 3.92 4.68 2.28 1996

  18. ~txF7D.ptx

    Broader source: Energy.gov (indexed) [DOE]

    ... storage configurations, reducing the peak 3 load. 4 And, ... replace retiring coal 11 plants. 12 I don't know; it ... 2 gas to replace all the coal-fired generation. 3 Whoops, my ...

  19. Micro-Grids for Colonias (TX)

    SciTech Connect (OSTI)

    Dean Schneider; Michael Martin; Renee Berry; Charles Moyer

    2012-07-31

    This report describes the results of the final implementation and testing of a hybrid micro-grid system designed for off-grid applications in underserved Colonias along the Texas/Mexico border. The project is a federally funded follow-on to a project funded by the Texas State Energy Conservation Office in 2007 that developed and demonstrated initial prototype hybrid generation systems consisting of a proprietary energy storage technology, high efficiency charging and inverting systems, photovoltaic cells, a wind turbine, and bio-diesel generators. This combination of technologies provided continuous power to dwellings that are not grid connected, with a significant savings in fuel by allowing power generation at highly efficient operating conditions. The objective of this project was to complete development of the prototype systems and to finalize and engineering design; to install and operate the systems in the intended environment, and to evaluate the technical and economic effectiveness of the systems. The objectives of this project were met. This report documents the final design that was achieved and includes the engineering design documents for the system. The system operated as designed, with the system availability limited by maintenance requirements of the diesel gensets. Overall, the system achieved a 96% availability over the operation of the three deployed systems. Capital costs of the systems were dependent upon both the size of the generation system and the scope of the distribution grid, but, in this instance, the systems averaged $0.72/kWh delivered. This cost would decrease significantly as utilization of the system increased. The system with the highest utilization achieved a capitol cost amortized value of $0.34/kWh produced. The average amortized fuel and maintenance cost was $0.48/kWh which was dependent upon the amount of maintenance required by the diesel generator. Economically, the system is difficult to justify as an alternative to grid power. However, the operational costs are reasonable if grid power is unavailable, e.g. in a remote area or in a disaster recovery situation. In fact, avoided fuel costs for the smaller of the systems in use during this project would have a payback of the capital costs of that system in 2.3 years, far short of the effective system life.

  20. TX, RRC District 1 Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    26 144 436 1,266 1,324 1,427 1996-2014 Lease Condensate (million bbls) 6 28 128 257 158 233 1998-2014 Total Gas (billion cu ft) 743 1,725 3,627 6,524 4,317 7,542 1996-2014 Nonassociated Gas (billion cu ft) 719 1,545 2,960 4,532 2,079 4,721 1996-2014 Associated Gas (billion cu ft) 24 180 667 1,992 2,238 2,821

  1. TX, RRC District 10 Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    9 35 51 70 70 46 1996-2014 Lease Condensate (million bbls) 27 55 54 59 41 68 1998-2014 Total Gas (billion cu ft) 2,325 3,353 2,954 2,906 2,062 2,744 1996-2014 Nonassociated Gas (billion cu ft) 2,162 3,138 2,633 2,579 1,728 2,486 1996-2014 Associated Gas (billion cu ft) 163 215 321 327 334 258

  2. TX, RRC District 5 Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    0 1 29 12 28 1996-2014 Lease Condensate (million bbls) 0 0 0 0 0 0 1998-2014 Total Gas (billion cu ft) 9,039 9,340 8,784 3,255 2,729 3,216 1996-2014 Nonassociated Gas (billion cu ft) 9,039 9,340 8,779 3,237 2,724 3,201 1996-2014 Associated Gas (billion cu ft) 0 0 5 18 5 15

  3. TX, RRC District 6 Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    2 11 16 32 18 40 1996-2014 Lease Condensate (million bbls) 21 34 25 39 27 42 1998-2014 Total Gas (billion cu ft) 5,690 7,090 6,712 4,849 4,273 4,458 1996-2014 Nonassociated Gas (billion cu ft) 5,671 6,977 6,596 4,643 4,087 4,373 1996-2014 Associated Gas (billion cu ft) 19 113 116 206 186 8

  4. TX, RRC District 8 Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    679 790 934 1,144 1,057 1,441 1996-2014 Lease Condensate (million bbls) 6 44 19 29 30 20 1998-2014 Total Gas (billion cu ft) 2,469 2,518 2,891 2,626 2,752 3,333 1996-2014 Nonassociated Gas (billion cu ft) 1,427 1,157 991 335 402 368 1996-2014 Associated Gas (billion cu ft) 1,042 1,361 1,900 2,291 2,350 2,965

  5. TX, RRC District 9 Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    5 21 20 32 20 39 1996-2014 Lease Condensate (million bbls) 8 8 12 8 10 4 1998-2014 Total Gas (billion cu ft) 4,168 4,274 2,974 2,824 2,455 2,133 1996-2014 Nonassociated Gas (billion cu ft) 3,935 4,043 2,724 2,452 2,236 1,763 1996-2014 Associated Gas (billion cu ft) 233 231 250 372 219 370

  6. TX, State Offshore Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    0 0 1 0 0 0 1996-2014 Lease Condensate (million bbls) 2 0 1 0 1 0 1998-2014 Total Gas (billion cu ft) 61 29 29 24 15 10 1996-2014 Nonassociated Gas (billion cu ft) 59 29 25 22 13 10 1996-2014 Associated Gas (billion cu ft) 2 0 4 2 2 0

  7. Microsoft Word - abstract-lacognata-tx_2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASTROPHYSICAL ENERGIES Dr. M. La Cognata INFN-Laboratori Nazionali del Sud, Catania, Italy ABSTRACT The 19 F(p,) 16 O reaction is an important fluorine destruction channel in ...

  8. Pantex Regional Middle School Science Bowl | U.S. DOE Office...

    Office of Science (SC) Website

    TX Collingsworth County, TX Crosby County, TX Dallam County, TX Dawson County, TX Deaf Smith County, TX Donley County, TX Floyd County, TX Gaines County, TX Garza County, TX Gray ...

  9. Pantex Regional High School Science Bowl | U.S. DOE Office of...

    Office of Science (SC) Website

    TX Cottle County, TX Crosby County, TX Dallam County, TX Dawson County, TX Deaf Smith County, TX Dickens County, TX Donley County, TX Floyd County, TX Gaines County, TX ...

  10. Formerly Utilized Sites Remedial Action Program Formal Elimination Report

    Office of Legacy Management (LM)

    Formerly Utilized Sites Remedial Action Program Formal Elimination Report for The Former American Manufacturing Company of Texas (AMCOT) in Fort Worth, Texas U.S. Department of Energy Office of Environmental Restoration Elimination Report Former AMCOT Facility, Ft. Worth, TX INTRODUCTION The Department of Energy (DOE), Office of Environmental Restoration, had reviewed the past activities of the Manhattan Engineer District (MED) and the Atomic Energy ' Commission (AEC) at the former American

  11. Climate Action Champions: Metropolitan Washington Council of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    baseline regional greenhouse gas inventory, examines potential climate change impacts, evaluates mitigation and adaptation strategies, and establishes greenhouse gas emission ...

  12. Alternative Fuels Data Center: Metropolitan Utilities District...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Regional Heavy-Duty LNG Fueling Station March 21, 2015 Photo of a street sweeper New Hampshire Fleet Revs up With Natural Gas March 7, 2015 Photo of a truck pulling into a CNG ...

  13. U.S. Department of Energy

    Gasoline and Diesel Fuel Update (EIA)

    ... TX ROBERTS INDIAN CREEK 1909833001 TX GREGG LONGVIEW 1976560001 TX SMITH CHAPEL HILL ... TX STEPHENS SHACKELFORD 170 4916171012 TX IRION MERTZON 4916171017 TX SMITH TYLER GAS ...

  14. City of Lake Worth, Florida (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Florida Phone Number: 561.533.7300 or 561.586.1665 Website: www.lakeworth.orgutilitiesel Outage Hotline: 1.877.454.4480 or 561.586.1695 References: EIA Form EIA-861 Final Data...

  15. Exploring the effects of data quality, data worth, and redundancy...

    Office of Scientific and Technical Information (OSTI)

    reservoir properties using CO2 monitoring data such as saturation distribution. ... parameters using CO2 saturation monitoring data, by comparing PEST inversion ...

  16. How much is energy R and D worth?

    SciTech Connect (OSTI)

    Schock, R. N., LLNL

    1997-05-06

    The value of energy technology R and D as an insurance investment to reduce the cost of climate change stabilization, oil price shocks, urban air pollution, and energy disruptions is estimated to be $5-8 billion/year in sum total. However, the total that is justified is actually less than this sum because some R and D is applicable to more than one risk. nevertheless, the total DOE investment in energy technology R and D (about $1.3 billion/year in FY97) seems easily justified by its insurance value alone; and, in fact, more might be warranted, particularly in the areas related to climate change and urban air pollution. This conclusion appears robust even if the private sector is assumed to be investing a comparable amount. Not counted is the value to the economy and to US competitiveness of better energy technologies that may result from the R and D; only the insurance value for reducing the cost of these four risks to society was estimated.

  17. Observation manipulator bell proves worth in Transmediterranean pipeline construction

    SciTech Connect (OSTI)

    Lewis, R.E.

    1981-10-26

    In constructing the trans-Mediterranean undersea pipeline between Tunisia and Sicily, Perry Oceanographics used a manned, tethered vehicle called an observation manipulator bell (OMB), which has proven itself in deepwater pipelaying operations. The OMB carries a crew of two inside a pressure hull with an internal diameter of 76 in. Its overall diameter is 102 in. and it weighs 17,500 lb. The vehicle has two 5-hp port- and starboard-mounted electric thrusters. Its vertical position can be controlled by either the bell operator using a clump-weight haul-down winch or the surface operator with the umbilical winch. The OMB is fitted with video cameras and voice communication. The vehicle has reached depths of 3000 ft within 30 min with only a 10-ft overshoot. The OMB's single and/or dual manipulator-arm systems can operate its onboard impact wrenches, cut-off saws, water jets, and cable cutters. In addition, the manipulator claws can operate valve wheels and levers, attach anodes, and connect of disconnect cables and hydraulic systems. The versatility of the OMB was demonstrated recently when the vehicle rescued a PC-1602 submarine that had become entangled at 1740 ft.

  18. Garbage as fuel: is it worth the headaches

    SciTech Connect (OSTI)

    Reason, J.

    1982-12-01

    The incentive to develop resource recovery is the pressure that municipalities are under to find better ways of getting rid of garbage. Burning not only reduces the volume (by as much as 90%), but it also offers the possibility of the production of energy whose sale can be used to offset the cost of collecting the garbage. Suitable markets for resource-recovery facilities are direct sale of steam to a local industrial plant, district heating, and electric-power generation and sale to an electric utility.

  19. Energy Department Recognizes Fort Worth for Leadership in Advancing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    provides a local education and outreach program ... The city is planning additional improvements, with the goal ... opportunities to achieve strategic goals of the city." ...

  20. Price Liquefied Freeport, TX Natural Gas Exports to India (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 7.56 8.66 11.10 -- --

  1. Freeport, TX Liquefied Natural Gas Exports to Brazil (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 2,581 8,142 0 2,664...

  2. TX, RRC District 3 Onshore Coalbed Methane Proved Reserves, Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    71 47 2005-2013 Adjustments 0 0 0 81 -17 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

  3. TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8 7 2005-2013 Adjustments 0 0 0 9 0 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

  4. TX, RRC District 4 Onshore Coalbed Methane Proved Reserves, Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    1 1 2005-2013 Adjustments 0 0 0 1 0 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

  5. TX, RRC District 2 Onshore Coalbed Methane Proved Reserves, Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    1 2 2005-2013 Adjustments 0 0 0 1 1 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

  6. RAPID/Roadmap/7-TX-b | Open Energy Information

    Open Energy Info (EERE)

    defined in PUCT Substantive Rule 25.173(c) and must meet the requirements of 25.173. A power generating company may participate in the program and may generate RECs and buy or...

  7. RAPID/Roadmap/7-TX-c | Open Energy Information

    Open Energy Info (EERE)

    in this state a facility to provide retail electric utility service. If a power producer is not a "retail electric utility" then the developer is not required to obtain a...

  8. TX, RRC District 3 Onshore Proved Nonproducing Reserves

    Gasoline and Diesel Fuel Update (EIA)

    (million bbls) 14 15 14 25 13 19 1998-2014 Total Gas (billion cu ft) 798 879 714 671 735 709 1996-2014 Nonassociated Gas (billion cu ft) 685 739 627 556 502 527 1996-2014...

  9. ,"TX, RRC District 10 Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  10. ,"TX, RRC District 10 Crude Oil plus Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  11. ,"TX, RRC District 1 Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  12. ,"TX, RRC District 5 Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  13. ,"TX, RRC District 3 Onshore Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  14. ,"TX, RRC District 8A Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  15. ,"TX, RRC District 4 Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  16. ,"TX, RRC District 7B Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  17. ,"TX, RRC District 3 Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  18. ,"TX, State Offshore Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  19. ,"TX, State Offshore Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  20. ,"TX, RRC District 4 Onshore Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  1. ,"TX, RRC District 9 Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  2. ,"TX, RRC District 8 Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  3. ,"TX, RRC District 2 Onshore Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  4. ,"TX, RRC District 6 Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  5. ,"TX, RRC District 2 Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  6. ,"TX, RRC District 7C Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  7. RAPID/Roadmap/3-TX-a | Open Energy Information

    Open Energy Info (EERE)

    Act Lands' are defined in the Texas Administrative Code as "any public free school or asylum lands, whether surveyed or unsurveyed, sold with a mineral classification or...

  8. RAPID/Roadmap/14-TX-b | Open Energy Information

    Open Energy Info (EERE)

    Wyoming. On October 9, 2015, the U.S. Court of Appeals for the Sixth Circuit issued a stay halting implementation of the new rule nationwide pending its own determination of its...

  9. TX, State Offshore Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions 0 0 0 0 0 0 1981-2014 New Field Discoveries 0 0 0 0 0 0 1981-2014 New Reservoir Discoveries in Old Fields 10 0 0 0 8 0 1981-2014 Estimated Production 40 27 21 22 14 10 ...

  10. TX, State Offshore Associated-Dissolved Natural Gas Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions 0 4 0 0 0 0 2000-2014 Extensions 0 0 0 0 0 0 1981-2014 New Field Discoveries 0 0 0 0 0 0 1981-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 1981-2014 ...

  11. TX, RRC District 8A Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions 8 14 10 16 23 8 1977-2014 New Field Discoveries 0 0 0 1 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 0 1 1 0 0 1977-2014 Estimated Production 108 93 94 97 99 ...

  12. TX, State Offshore Shale Gas Proved Reserves, Reserves Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions 0 0 2009-2010 Extensions 0 0 2009-2010 New Field Discoveries 0 0 2009-2010 New Reservoir Discoveries in Old Fields 0 0 2009-2010 Estimated Production 0 0 0 0 2007-2010

  13. TX, State Offshore Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions 0 1 0 0 0 0 2009-2014 Extensions 0 0 0 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 ...

  14. Laredo, TX Liquefied Natural Gas Exports to Mexico (Dollars per...

    Gasoline and Diesel Fuel Update (EIA)

    to Mexico (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 16.950 - No Data Reported; -- Not Applicable; NA Not Available; W ...

  15. Laredo, TX Liquefied Natural Gas Exports Price (Dollars per Thousand...

    Gasoline and Diesel Fuel Update (EIA)

    Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 17 - No Data Reported; -- Not Applicable; NA Not Available; W ...

  16. Rio Grande, TX Natural Gas Pipeline Exports to Mexico (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 8,045 2015 15,984 17,668 21,372 22,842 23,041 24,529 29,766 30,441 29,787 31,090...

  17. Laredo, TX Liquefied Natural Gas Exports (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 1 - No Data Reported; -- Not Applicable; NA Not Available; W Withheld...

  18. TX, State Offshore Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update (EIA)

    2007 2008 2009 2010 View History Proved Reserves as of Dec. 31 0 0 0 0 2007-2010 Adjustments 0 0 2009-2010 Revision Increases 0 0 2009-2010 Revision Decreases 0 0 2009-2010 Sales...

  19. TX, RRC District 5 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update (EIA)

    13,691 16,032 19,747 11,513 13,592 2007-2013 Adjustments 657 105 233 -516 -70 2009-2013 Revision Increases 928 643 3,094 30 2,922 2009-2013 Revision Decreases 587 405 1,405 6,895...

  20. TX, RRC District 8 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update (EIA)

    48 24 90 61 583 649 2007-2013 Adjustments -1 53 -79 249 -21 2009-2013 Revision Increases 2 20 45 19 121 2009-2013 Revision Decreases 22 0 12 47 112 2009-2013 Sales 0 0 0 19 50...

  1. TX, RRC District 1 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update (EIA)

    2 435 1,564 5,123 8,340 7,357 2007-2013 Adjustments 5 8 0 47 315 2009-2013 Revision Increases 1 322 2,141 1,852 1,083 2009-2013 Revision Decreases 0 251 48 1,272 2,818 2009-2013...

  2. TX, RRC District 6 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update (EIA)

    73 1,161 4,381 6,584 4,172 4,633 2007-2013 Adjustments 40 1,968 26 -225 564 2009-2013 Revision Increases 422 1,206 2,322 999 513 2009-2013 Revision Decreases 8 1,319 1,860 2,907...

  3. TX, RRC District 3 Onshore Shale Gas Proved Reserves, Reserves...

    Gasoline and Diesel Fuel Update (EIA)

    0 0 1 6 24 2007-2013 Adjustments 0 0 1 1 -3 2009-2013 Revision Increases 0 0 0 1 2 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 4 2009-2013 Acquisitions 0 0 0 2 0...

  4. TX, RRC District 4 Onshore Shale Gas Proved Reserves, Reserves...

    Gasoline and Diesel Fuel Update (EIA)

    78 565 2,611 3,091 4,377 2007-2013 Adjustments 53 0 185 300 592 2009-2013 Revision Increases 0 66 792 253 174 2009-2013 Revision Decreases 0 12 295 1,160 819 2009-2013 Sales 0 0 75...

  5. TX, RRC District 9 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update (EIA)

    10,756 12,573 10,276 9,260 9,580 2007-2013 Adjustments 179 533 42 -483 378 2009-2013 Revision Increases 580 1,044 3,005 200 1,092 2009-2013 Revision Decreases 469 191 5,864...

  6. TX, RRC District 2 Onshore Shale Gas Proved Reserves, Reserves...

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 View History Proved Reserves as of Dec. 31 395 1,692 4,743 5,595 2010-2013 Adjustments 6 237 494 40 2010-2013 Revision Increases 6 388 326 839 2010-2013...

  7. TX, RRC District 10 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update (EIA)

    0 0 0 0 37 37 2007-2013 Adjustments 0 0 -1 11 6 2009-2013 Revision Increases 0 0 0 31 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 1 2009-2013 Acquisitions 0 0...

  8. RAPID/Roadmap/14-TX-a | Open Energy Information

    Open Energy Info (EERE)

    specifically CWA 319(b). The Management Program outlines Texas' comprehensive strategy to protect and restore water quality impacted by nonpoint sources of pollution....

  9. High Performance Builder Spotlight: GreenCraft, Lewisville, TX

    SciTech Connect (OSTI)

    2011-01-01

    In October and November 2009, the TimberCreek Zero Energy House in Lewisville, Texas, opened as a Building America Demonstration House. The 2,538-foot,three-bedroom, 2½-bath custom-built home showed a home energy rating score (HERS) of 56 without the solar photovoltaics and a HERS score of 1 with PV.

  10. Penitas, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 1996 1998 1999 2000 2001 2002 View History Pipeline Volumes 253 40 NA NA NA NA 1996-2002 Pipeline Prices 1.72 2.04 1996-1998

  11. Rio Bravo, TX Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    62,914 74,790 75,026 78,196 76,154 81,837 1999-2015 Pipeline Prices 4.42 4.14 2.94 3.88 4.47 2.71

  12. Rio Grande, TX Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    2013 2014 2015 View History Pipeline Volumes 0 8,045 310,965 2013-2015 Pipeline Prices -- 4.42 2.85 2013

  13. TX, RRC District 1 Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    96 263 893 2,031 2,360 2,887 2009-2014 Adjustments -3 -20 7 -19 -60 83 2009-2014 Revision Increases 19 16 95 302 288 330 2009-2014 Revision Decreases 19 10 52 253 237 262 2009-2014 Sales 0 4 33 7 90 56 2009-2014 Acquisitions 0 9 33 6 123 86 2009-2014 Extensions 8 137 593 1,194 484 591 2009-2014 New Field Discoveries 4 54 29 19 2 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 2 8 11 18 2009-2014 Estimated Production 10 15 44 112 192 263

    398 2,399 5,910 8,868 7,784 11,945 1977-2014

  14. TX, RRC District 10 Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    523 2,599 6,127 9,141 8,118 12,431 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 1,456 2,332 5,227 6,516 4,442 7,733 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 67 267 900 2,625 3,676 4,698 1979-2014 Dry Natural Gas 1,398 2,399 5,910 8,868 7,784 11,945 Lease Separation

    456 2,332 5,227 6,516 4,442 7,733 1979-2014 Adjustments 5 -95 -42 20 120 -73 1979-2014 Revision Increases 110 430 2,184 1,620 702 3,462 1979-2014 Revision Decreases 110 331 116

  15. TX, RRC District 2 Onshore Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    7,594 8,484 8,373 8,007 7,744 8,354 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 6,984 7,915 7,475 7,073 6,660 7,140 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 610 569 898 934 1,084 1,214 1979-2014 Dry Natural Gas 6,882 7,663 7,513 7,253 7,034 7,454 Lease Separation

    6,984 7,915 7,475 7,073 6,660 7,140 1979-2014 Adjustments 223 -144 -5 213 23 233 1979-2014 Revision Increases 492 1,288 593 1,044 762 801 1979-2014 Revision Decreases 1,120 868

  16. TX, RRC District 3 Onshore Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    909 2,235 3,690 5,985 6,640 7,524 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 1,837 2,101 2,766 3,986 4,348 4,802 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 72 134 924 1,999 2,292 2,722 1979-2014 Dry Natural Gas 1,800 2,090 3,423 5,462 5,910 6,559 After Lease Separation

    837 2,101 2,766 3,986 4,348 4,802 1979-2014 Adjustments -101 18 153 15 -39 -1 1979-2014 Revision Increases 194 321 397 212 719 454 1979-2014 Revision Decreases 364 308 572

  17. TX, RRC District 4 Onshore Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    2,802 2,774 2,490 2,429 2,592 2,483 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 2,326 2,308 2,091 1,965 1,795 1,760 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 476 466 399 464 797 723 1979-2014 Dry Natural Gas 2,616 2,588 2,260 2,154 2,307 2,19 After Lease Separation

    2,326 2,308 2,091 1,965 1,795 1,760 1979-2014 Adjustments -105 56 -29 164 -99 52 1979-2014 Revision Increases 456 419 355 608 335 290 1979-2014 Revision Decreases 338 288 225 655

  18. TX, RRC District 5 Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    4 22 28 65 47 62 2009-2014 Adjustments -4 1 5 1 5 4 2009-2014 Revision Increases 5 3 8 11 1 3 2009-2014 Revision Decreases 1 3 3 3 22 7 2009-2014 Sales 0 0 6 0 0 19 2009-2014 Acquisitions 0 0 6 24 0 19 2009-2014 Extensions 1 0 0 9 4 21 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 3 3 4 5 6 6

    22,343 24,363 27,843 17,331 19,280 17,880 1977-2014 Adjustments 96 27 674 -1,078 269 -119 1977-2014 Revision

  19. TX, RRC District 6 Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    24 240 232 252 267 299 2009-2014 Adjustments 3 3 16 18 -37 19 2009-2014 Revision Increases 38 45 38 17 35 62 2009-2014 Revision Decreases 29 29 43 31 26 27 2009-2014 Sales 3 5 28 18 13 94 2009-2014 Acquisitions 4 11 21 23 26 80 2009-2014 Extensions 8 9 6 30 49 12 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 18 18 18 19 19 20

    12,795 14,886 15,480 11,340 11,655 11,516 1977-2014 Adjustments 423 403 296

  20. TX, RRC District 7B Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    102 102 126 134 113 148 2009-2014 Adjustments 9 4 -3 5 -37 39 2009-2014 Revision Increases 7 9 16 19 24 23 2009-2014 Revision Decreases 7 3 3 5 8 17 2009-2014 Sales 0 0 2 1 0 1 2009-2014 Acquisitions 1 0 27 1 10 0 2009-2014 Extensions 1 0 0 0 1 3 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 10 10 11 11 11 12

    2,077 2,242 3,305 2,943 2,787 2,290 1977-2014 Adjustments 63 68 -65 666 -162 -170 1977-2014

  1. TX, RRC District 7C Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    509 618 672 891 964 1,298 2009-2014 Adjustments 35 -10 8 63 -23 30 2009-2014 Revision Increases 55 69 77 66 162 363 2009-2014 Revision Decreases 25 37 118 139 271 421 2009-2014 Sales 7 56 56 13 9 14 2009-2014 Acquisitions 25 83 62 30 21 155 2009-2014 Extensions 69 88 121 254 227 309 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 6 0 8 29 0 2009-2014 Estimated Production 32 34 40 50 63 8

    4,827 4,787 4,475 4,890 4,800 6,422 1977-2014 Adjustments

  2. TX, RRC District 8 Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    985 2,254 2,709 3,304 3,356 4,142 2009-2014 Adjustments 10 -93 75 69 33 -16 2009-2014 Revision Increases 201 273 309 401 383 948 2009-2014 Revision Decreases 99 149 235 339 471 554 2009-2014 Sales 63 116 125 78 321 232 2009-2014 Acquisitions 87 315 253 242 270 302 2009-2014 Extensions 202 196 332 500 375 605 2009-2014 New Field Discoveries 0 0 2 3 0 0 2009-2014 New Reservoir Discoveries in Old Fields 4 1 0 2 11 16 2009-2014 Estimated Production 121 158 156 205 228 283

    6,672 7,206 7,039 7,738

  3. TX, RRC District 8A Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    790 1,822 1,800 1,758 1,736 1,668 2009-2014 Adjustments 19 21 13 10 27 37 2009-2014 Revision Increases 172 181 115 103 97 78 2009-2014 Revision Decreases 15 66 90 66 54 63 2009-2014 Sales 8 23 70 60 57 36 2009-2014 Acquisitions 24 12 102 49 51 17 2009-2014 Extensions 4 15 14 17 21 7 2009-2014 New Field Discoveries 1 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 1 13 0 0 2009-2014 Estimated Production 111 108 107 108 107 108

    1,218 1,164 1,226 1,214 1,269 1,257 1977-2014

  4. TX, RRC District 9 Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    49 155 181 177 195 209 2009-2014 Adjustments -24 13 -18 -7 37 20 2009-2014 Revision Increases 29 11 32 13 15 28 2009-2014 Revision Decreases 9 21 17 17 45 22 2009-2014 Sales 12 4 11 13 9 2 2009-2014 Acquisitions 22 10 22 11 15 4 2009-2014 Extensions 45 14 39 31 25 7 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 1 0 2009-2014 Estimated Production 15 17 21 22 21 21

    10,904 12,464 10,115 8,894 9,195 8,791 1977-2014 Adjustments 18 336 -110

  5. TX, State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and

    Gasoline and Diesel Fuel Update (EIA)

    11,522 13,172 10,920 9,682 10,040 9,760 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 11,100 12,587 9,963 8,521 8,947 8,283 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 422 585 957 1,161 1,093 1,477 1979-2014 Dry Natural Gas 10,904 12,464 10,115 8,894 9,195 8,791 Lease Separation

    11,100 12,587 9,963 8,521 8,947 8,283 1979-2014 Adjustments 98 345 211 -609 407 102 1979-2014 Revision Increases 628 932 3,016 177 1,110 774 1979-2014 Revision

  6. TX, State Offshore Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    4 4 3 3 2 2 2009-2014 Adjustments -2 0 -2 1 -1 1 2009-2014 Revision Increases 1 0 3 0 0 1 2009-2014 Revision Decreases 0 0 2 1 0 2 2009-2014 Sales 0 0 0 0 0 0 2009-2014 Acquisitions 0 1 0 0 0 0 2009-2014 Extensions 0 0 0 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 1 1 0 0 0

    64 131 118 94 59 42 1981-2014 Adjustments -29 11 -25 16 -13 -3 1981-2014 Revision Increases 29 20 75 16 9 18 1981-2014

  7. Alamo, TX Natural Gas Imports by Pipeline from Mexico

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4,382 29,595 30,309 30,632 34,015 35,551 1995-2016 Base Gas 9,640 9,640 9,640 9,640 10,450 10,450 1995-2016 Working Gas 24,742 19,955 20,669 20,992 23,565 25,101 1995-2016 Net Withdrawals -249 4,787 -713 -323 -3,383 -1,536 1993-2016 Injections 1,867 1,260 3,081 2,222 3,807 3,036 1994-2016 Withdrawals 1,618 6,047 2,367 1,898 424 1,500 1994-2016 Change in Working Gas from Same Period Previous Year Volume 4,628 4,615 13,768 13,039 9,452 5,305 1996-2016 Percent 23.0 30.1 199.5 163.9 67.0 26.8 1996

  8. El Paso, TX Natural Gas Imports by Pipeline from Mexico

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's NA NA 4.40 4.34 5.36 -- -- -- 7.43 4.49 2010's 5.85 4.74 -- 3.27 -- Cubic Feet)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.74 2013 3.27

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 10 2013 6

    Cubic Feet)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.22 1.60 1.60 2.04 2000's 3.79 4.71 2.83

  9. Galvan Ranch, TX Natural Gas Imports by Pipeline from Mexico

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2014 View History Natural Gas Processed (Million Cubic Feet) 2,915 2014-2014 Total Liquids Extracted (Thousand Barrels) 173 2014-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 233 2014

    Approved 0MB No. 1905-0092. El A 457B (Expires May 31, 1990.) This survey is voluntary and authorized under the Federal Energy Administration Act of 1974 (Public Law 93-275} as amended. Information about specific households will be kept strictly confidential. The data will be summarized within

  10. Hidalgo, TX Natural Gas Imports by Pipeline from Mexico

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 2,506 9,227 14,862 8,817 1996-2015 Pipeline Prices -- -- 3.47 3.92 4.68 2.28 1996

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 284 62 0 0 0 0 1996-2014 Pipeline Prices 4.40 4.21 -- -- -- -- 1996-2014

  11. TX, RRC District 1 Coalbed Methane Proved Reserves, Reserves...

    Gasoline and Diesel Fuel Update (EIA)

    0 0 0 2005-2014 Adjustments 0 0 0 0 0 0 2009-2014 Revision Increases 0 0 0 0 0 0 2009-2014 Revision Decreases 0 0 0 0 0 0 2009-2014 Sales 0 0 0 0 0 0 2009-2014 Acquisitions 0 0 0 0...

  12. RAPID/Roadmap/3-TX-f | Open Energy Information

    Open Energy Info (EERE)

    address of the surface owner of record in the tax assessor's office; The name, address, phone number, and taxpayer ID number of a non-corporate applicant; The corporate name,...

  13. RAPID/Roadmap/3-TX-d | Open Energy Information

    Open Energy Info (EERE)

    in the section, and county or counties in which the land lies; The name, address, phone number, and taxpayer ID number of a non-corporate applicant; The corporate name,...

  14. RAPID/Roadmap/19-TX-c | Open Energy Information

    Open Energy Info (EERE)

    post-office address of the applicant; Identify the source of water supply; State the nature and purposes of the proposed use or uses and the amount of water to be used for each...

  15. RAPID/Roadmap/18-TX-a | Open Energy Information

    Open Energy Info (EERE)

    used in connection with an activity associated with the exploration, development, or production of oil, gas, or geothermal resources, or any other activity regulated by the...

  16. RAPID/Roadmap/5-TX-a | Open Energy Information

    Open Energy Info (EERE)

    for exploratory wells, commercial drilling operations, geothermal wells, and co-production wells. A geothermal resource well is a well drilled within the established...

  17. RAPID/Roadmap/14-TX-c | Open Energy Information

    Open Energy Info (EERE)

    A reservoir is considered to be in a productive reservoir if there is any current or past production of oil, gas, or geothermal resources within 2 mile radius of the proposed well...

  18. RAPID/Roadmap/13-TX-a | Open Energy Information

    Open Energy Info (EERE)

    15.3(d)). Note: Under the Beach Dune Rules Sec. 15.3(s)(2)(a) the exploration for and production of oil and gas is exempted from the Dune Protection permit requirement. If the...

  19. RAPID/Roadmap/3-TX-c | Open Energy Information

    Open Energy Info (EERE)

    c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  20. RAPID/Roadmap/8-TX-a | Open Energy Information

    Open Energy Info (EERE)

    a Certificate of Convenience and Necessity (CCN). However, minor modifications and maintenance to an existing transmission system may not need a CCN. 08TXATransmissionSiting.pdf...

  1. RAPID/Roadmap/8-TX-b | Open Energy Information

    Open Energy Info (EERE)

    This flowchart illustrates the procedures for interconnection with Electricity Reliability Council of Texas (ERCOT) in Texas. According to PUCT Substantive Rule 25.198, the...

  2. Alamo, TX Natural Gas Imports by Pipeline from Mexico

    U.S. Energy Information Administration (EIA) Indexed Site

    3,678 27,479 48,850 72,039 76,111 78,866 1998-2014 Pipeline Prices 3.95 4.50 4.10 2.86 3.81 4.63 1998...

  3. TX, State Offshore Nonassociated Natural Gas Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    161 128 113 88 56 42 1981-2014 Adjustments -29 -7 -24 7 -10 -2 1981-2014 Revision Increases 29 20 70 14 9 17 1981-2014 Revision Decreases 21 35 65 9 19 19 1981-2014 Sales 3 20 2 23 ...

  4. TX, State Offshore Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 2 1 1 1 1 1981-2014 Adjustments -1 0 -1 0 0 1 2009-2014 Revision Increases 1 0 1 0 0 0 2009-2014 Revision Decreases 0 0 1 0 0 1 2009-2014 Sales 0 0 0 0 0 0 2009-2014 Acquisitions ...

  5. Clint, TX Natural Gas Pipeline Exports to Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.51 4.57 4.11 4.50 4.51 4.73 4.68 4.57 4.21 3.89 3.71 3.63 2012 3.30 2.93 2.62 2.34 2.57 2.82 3.13 3.23 3.07 3.53 3.83 ...

  6. Penitas, TX Natural Gas Pipeline Exports to Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.43 4.15 3.95 4.32 4.37 4.58 4.44 4.38 3.88 3.64 3.10

  7. Alamo, TX Natural Gas Pipeline Exports to Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.37 4.38 3.92 4.24 4.36 4.46 4.46 4.29 3.88 3.67 3.40 3.31 2012 3.11 2.64 2.28 2.09 2.41 2.48 2.90 3.08 2.80 3.26 3.53 ...

  8. Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.52 2.79 2.24 2.35 2000's 3.91 4.45 3.44 5.34 5.95 7.49 6.73 6.72 9.00 4.47 2010's 5.13 4.57 ...

  9. Romas, TX Natural Gas Pipeline Exports (Price) Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.54 4.33 3.95 4.33 4.42 4.49 4.47 4.44 3.92 3.66 3.24 3.30 2012 2.81 2.64 2.35 2.09 2.46 2.63 2.93 3.05 2.81 3.23 3.49 ...

  10. Alamo, TX Natural Gas Pipeline Exports to Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's 4.49 4.12 3.35 5.36 5.97 7.17 6.62 7.11 8.40 3.95 2010's 4.50 4.10 2.86 3.81 4.63 ...

  11. Clint, TX Natural Gas Pipeline Exports to Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.24 1.99 2.22 2000's 3.95 4.28 3.16 5.50 5.91 8.01 6.42 6.37 7.83 3.78 2010's 4.61 4.29 3.08 ...

  12. Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3.27 3.34 2.85 3.28 3.41 3.38 3.44 3.42 2.94 2.82 2.55 2.41 2012 2.17 1.80 1.56 1.27 1.15 1.52 1.86 2.09 1.76 2.09 2.80 ...

  13. Penitas, TX Natural Gas Pipeline Exports to Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.05 2.62 2.09 NA 2000's NA NA 3.27 6.53 5.71 -- -- -- 8.41 4.37 2010's 4.94 4.19 -- -- --

  14. Romas, TX Natural Gas Pipeline Exports (Price) Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2000's NA NA NA 5.18 5.84 7.29 6.75 6.93 8.58 3.91 2010's 4.55 4.14 2.86 3.80 4.62 2.79

  15. Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- 2.69 2010's 3.52 3.12 1.87 2.66 3.45 1.71

  16. Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.77 4.97 4.44 4.94 5.00 4.95 5.04 4.61 4.61 4.39 4.11 3.94 2012 3.67 3.24 3.02 2.78 2.63 3.10 3.43 3.78 3.28 3.64 4.04 ...

  17. Alamo, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 13,279 4,685 0 0 0 0 1998-2014 Pipeline Prices 4.10 4.30 -- -- -- -- 1998-2014

  18. Del Rio, TX Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    320 282 355 372 324 306 2006-2015 Pipeline Prices 5.92 5.53 4.33 4.69 5.35 3.59 200

  19. Eagle Pass, TX Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    1: "The Future for Transport Demand" Dr. Kydes: Why don't we begin. Good morning, thank you for attending, and welcome to our session entitled The Future of Transport Demand. My name is Andy Kydes. I'm the only one at the table without a table name tag; it shows the importance of the people here; it turns out I'm the Senior Technical Advisor to the Office of Integrated Analysis and Forecasting. Now why is this topic important? I'm going, in the interest of time, to skip over a number

  20. El Paso, TX Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Administration (EIA) definitions English FranÇais Español A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Browse terms related to these categories: border crossing electricity border crossing gas border crossing liquid liquefied natural gas terminals natural gas processing plants power plants refineries See index of all terms A

    Referencia cruzada de definición English FranÇais Español A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Explorar los términos relacionados con las

  1. El Paso, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 1998 1999 2000 2001 2002 View History Pipeline Volumes 996 NA NA NA NA 1998-2002 Pipeline Prices 2.09 1998-1998

  2. Galvan Ranch, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    225 501 314 1,046 1,426 933 2007-2015 Pipeline Prices 3.52 3.12 1.87 2.66 3.45 1.71 2007

  3. Hidalgo, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 284 62 0 0 0 0 1996-2014 Pipeline Prices 4.40 4.21 -- -- -- -- 1996-2014

  4. McAllen, TX Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    0,627 56,569 68,425 78,000 79,396 61,402 1998-2015 Pipeline Prices 4.52 4.19 2.95 3.84 4.62 2.85 1998

  5. RAPID/Roadmap/14-TX-e | Open Energy Information

    Open Energy Info (EERE)

    Publication. If the pit is in a wetland, submit a copy of the Army Corp of Engineers Wetlands Permit or Permit Application. Note: In addition to requirements listed by the RRC,...

  6. Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Houston, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL R&D Tackles Technological Challenges of the Williston Basin's Bakken Formation Recent development of the Bakken Formation in the Williston Basin of western North Dakota and eastern Montana is a good example of persistent analysis of geologic data and adaptation of new completion technologies overcoming the challenges posed by unconventional reservoirs. However, as with most unconventional plays, as Bakken development continues, questions regarding exactly how to refine newly applied

  7. RAPID/Roadmap/3-TX-b | Open Energy Information

    Open Energy Info (EERE)

    following: A diagram of the project showing all structures and dimensions; A copy of a tax statement as proof of ownership of littoral property; A vicinity map showing project...

  8. RAPID/Roadmap/8-TX-f | Open Energy Information

    Open Energy Info (EERE)

    of the total load of the secondary network under consideration; The TDU may postpone processing an application for an individual distributed generation facility if the total...

  9. Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 942 1,260 1,471 1,990 2000's 2,114 1,896 1,914 1,969 2,258 2,132 2,118 1,955 1,695 1,237 2010's ...

  10. TX, RRC District 4 Onshore Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    80 3 1 7 6 1996-2014 Lease Condensate (million bbls) 23 43 83 90 132 115 1998-2014 Total Gas (billion cu ft) 2,663 3,171 4,489 4,755 5,850 6,564 1996-2014 Nonassociated Gas ...

  11. RAPID/Roadmap/4-TX-a | Open Energy Information

    Open Energy Info (EERE)

    and written evidence confirming that it is not delinquent in paying its franchise taxes. The application to prospect must be accompanied by the appropriate filing fee....

  12. Transactive Controls R&D (Tx-R&D)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and communication technologies (ICT). - Most common signal is economics based: ... ICT & related physical hardware) that allow applications to be programmed and negotiate...

  13. RAPID/Roadmap/1-TX-a | Open Energy Information

    Open Energy Info (EERE)

    Land use planning in Texas is delegated to municipalities. 01TXALandUsePlanning.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  14. RAPID/Roadmap/19-TX-d | Open Energy Information

    Open Energy Info (EERE)

    Quality (TCEQ) handles transfers of surface water rights. 19TXDTransferOfWaterRight.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  15. Freeport, TX Liquefied Natural Gas Exports Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 10.31 11.16 13.45 15.51 15.7

  16. Freeport, TX Liquefied Natural Gas Exports Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 13.45 2014 15.51 2015 17.44 12.89 16.71 15.9

  17. Alamo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    8,101 6,852 6,008 5,844 5,840 4,837 2015 3,440 3,990 6,547 6,431 7,980 6,896 7,411 5,451 5,292 6,185 4,875 4,771 2016 7,203 5,595 - No Data Reported; -- Not Applicable; NA ...

  18. TX, RRC District 4 Onshore Coalbed Methane Proved Reserves, Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    1 1 1 2005-2014 Adjustments 0 0 0 1 0 0 2009-2014 Revision Increases 0 0 0 0 0 0 2009-2014 Revision Decreases 0 0 0 0 0 0 2009-2014 Sales 0 0 0 0 0 0 2009-2014 Acquisitions 0 0 0 0 ...

  19. TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    8 7 7 2005-2014 Adjustments 0 0 0 9 0 5 2009-2014 Revision Increases 0 0 0 0 0 0 2009-2014 Revision Decreases 0 0 0 0 0 4 2009-2014 Sales 0 0 0 0 0 0 2009-2014 Acquisitions 0 0 0 0 ...

  20. TX, RRC District 3 Onshore Coalbed Methane Proved Reserves, Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    71 47 49 2005-2014 Adjustments 0 0 0 81 -17 -37 2009-2014 Revision Increases 0 0 0 0 0 21 2009-2014 Revision Decreases 0 0 0 0 0 0 2009-2014 Sales 0 0 0 0 0 1 2009-2014 ...

  1. TX, RRC District 2 Onshore Coalbed Methane Proved Reserves, Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    1 2 4 2005-2014 Adjustments 0 0 0 1 1 -5 2009-2014 Revision Increases 0 0 0 0 0 9 2009-2014 Revision Decreases 0 0 0 0 0 0 2009-2014 Sales 0 0 0 0 0 1 2009-2014 Acquisitions 0 0 0 ...

  2. RAPID/Roadmap/7-TX-a | Open Energy Information

    Open Energy Info (EERE)

    is intended to be sold at wholesale, including the owner or operator of electric energy storage equipment or facilities to which the Public Utility Regulatory Act applies; Does...

  3. TX, RRC District 1 Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    398 2,399 5,910 8,868 7,784 11,945 1977-2014 Adjustments -22 -95 53 122 161 81 1977-2014 Revision Increases 105 424 2,221 1,896 1,141 4,001 1977-2014 Revision Decreases 104 320 174 1,548 2,833 872 1977-2014 Sales 35 466 1,193 32 91 150 2000-2014 Acquisitions 50 416 1,139 19 127 173 2000-2014 Extensions 143 1,023 1,657 2,884 1,076 1,766 1977-2014 New Field Discoveries 358 117 24 38 2 0 1977-2014 New Reservoir Discoveries in Old Fields 0 15 2 1 11 16 1977-2014 Estimated Production 82 113 218 422

  4. TX, RRC District 10 Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    6,882 7,663 7,513 7,253 7,034 7,454 1977-2014 Adjustments 188 -172 -76 301 41 127 1977-2014 Revision Increases 526 1,252 795 1,022 891 910 1977-2014 Revision Decreases 1,060 958 1,413 2,427 1,369 1,101 1977-2014 Sales 46 131 1,089 132 533 1,387 2000-2014 Acquisitions 68 96 579 671 813 1,846 2000-2014 Extensions 837 1,263 1,687 1,003 532 657 1977-2014 New Field Discoveries 0 0 3 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 0 14 0 92 0 1977-2014 Estimated Production 553 569 650 698

  5. TX, RRC District 2 Onshore Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    800 2,090 3,423 5,462 5,910 6,559 1977-2014 Adjustments -90 -10 178 -19 -219 -84 1977-2014 Revision Increases 190 333 425 403 985 633 1977-2014 Revision Decreases 372 302 550 614 1,462 732 1977-2014 Sales 22 18 162 11 370 1,327 2000-2014 Acquisitions 5 30 634 195 426 1,267 2000-2014 Extensions 86 178 1,001 2,446 1,595 1,462 1977-2014 New Field Discoveries 11 307 0 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 13 9 113 69 27 103 1977-2014 Estimated Production 259 237 306 430 534 673

  6. TX, RRC District 2 Onshore Lease Condensate Proved Reserves, Reserve

    U.S. Energy Information Administration (EIA) Indexed Site

    Changes, and Production 5 47 229 506 594 706 1979-2014 Adjustments 3 1 13 -26 7 -9 2009-2014 Revision Increases 2 4 33 54 98 70 2009-2014 Revision Decreases 6 4 20 15 162 89 2009-2014 Sales 0 0 6 0 10 139 2009-2014 Acquisitions 0 0 80 22 24 137 2009-2014 Extensions 1 15 91 272 179 208 2009-2014 New Field Discoveries 0 21 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 1 0 9 3 1 0 2009-2014 Estimated Production 3 5 18 33 49 6

  7. TX, RRC District 2 Onshore Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    14 53 242 711 615 825 1996-2014 Lease Condensate (million bbls) 1 22 100 369 268 438 1998-2014 Total Gas (billion cu ft) 648 886 1,504 3,707 2,477 4,014 1996-2014 Nonassociated Gas (billion cu ft) 617 810 1,104 2,307 1,567 2,454 1996-2014 Associated Gas (billion cu ft) 31 76 400 1,400 910 1,560

  8. TX, RRC District 3 Onshore Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    2,616 2,588 2,260 2,154 2,307 2,199 1977-2014 Adjustments -124 82 -95 164 49 -191 1977-2014 Revision Increases 490 482 375 604 547 370 1977-2014 Revision Decreases 369 319 252 631 284 264 1977-2014 Sales 174 184 274 214 103 142 2000-2014 Acquisitions 190 199 204 182 130 171 2000-2014 Extensions 288 175 104 121 119 222 1977-2014 New Field Discoveries 61 20 16 10 3 27 1977-2014 New Reservoir Discoveries in Old Fields 11 25 3 8 9 20 1977-2014 Estimated Production 509 508 409 350 317 321

  9. TX, RRC District 3 Onshore Lease Condensate Proved Reserves, Reserve

    U.S. Energy Information Administration (EIA) Indexed Site

    Changes, and Production 75 76 81 63 67 1979-2014 Adjustments 3 -2 3 13 -8 1 2009-2014 Revision Increases 20 19 18 20 12 9 2009-2014 Revision Decreases 10 16 9 16 17 8 2009-2014 Sales 1 4 11 8 2 3 2009-2014 Acquisitions 1 12 10 4 4 7 2009-2014 Extensions 10 10 6 6 3 4 2009-2014 New Field Discoveries 3 1 0 0 0 1 2009-2014 New Reservoir Discoveries in Old Fields 0 1 0 0 1 3 2009-2014 Estimated Production 17 20 16 14 11 10

  10. TX, RRC District 4 Onshore Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    6,728 7,014 9,458 8,743 9,640 11,057 1977-2014 Adjustments -127 3 358 635 225 82 1977-2014 Revision Increases 774 1,084 2,271 965 905 1,496 1977-2014 Revision Decreases 1,419 850 1,087 2,072 1,491 786 1977-2014 Sales 260 208 939 550 424 505 2000-2014 Acquisitions 309 180 1,245 65 523 1,148 2000-2014 Extensions 506 943 1,452 1,162 1,977 843 1977-2014 New Field Discoveries 45 24 7 1 0 2 1977-2014 New Reservoir Discoveries in Old Fields 309 3 23 5 1 19 1977-2014 Estimated Production 1,013 893 886

  11. TX, RRC District 4 Onshore Lease Condensate Proved Reserves, Reserve

    U.S. Energy Information Administration (EIA) Indexed Site

    Changes, and Production 96 202 181 228 223 1979-2014 Adjustments -2 -1 4 28 83 -16 2009-2014 Revision Increases 15 12 47 17 23 16 2009-2014 Revision Decreases 16 14 35 100 74 24 2009-2014 Sales 5 2 10 3 8 4 2009-2014 Acquisitions 3 2 20 2 5 18 2009-2014 Extensions 7 37 94 53 38 26 2009-2014 New Field Discoveries 3 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 1 0 1 0 0 0 2009-2014 Estimated Production 11 12 15 18 20 21

  12. TX, RRC District 5 Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    22,343 24,363 27,843 17,331 19,280 17,880 1977-2014 Adjustments 96 27 674 -1,078 269 -119 1977-2014 Revision Increases 1,904 1,577 3,693 336 3,338 740 1977-2014 Revision Decreases 1,458 1,274 2,157 8,168 769 1,417 1977-2014 Sales 31 1 10,556 529 93 614 2000-2014 Acquisitions 277 5 10,694 289 574 1,229 2000-2014 Extensions 2,992 3,457 3,034 387 188 193 1977-2014 New Field Discoveries 0 0 2 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 0 0 3 24 0 1977-2014 Estimated Production 1,718

  13. TX, RRC District 6 Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    12,795 14,886 15,480 11,340 11,655 11,516 1977-2014 Adjustments 423 403 296 -1,010 128 -272 1977-2014 Revision Increases 1,820 2,660 4,894 2,108 2,089 1,979 1977-2014 Revision Decreases 2,225 2,680 5,464 5,203 1,404 1,178 1977-2014 Sales 358 505 3,938 290 429 842 2000-2014 Acquisitions 243 955 3,944 393 572 614 2000-2014 Extensions 1,671 2,173 1,670 979 409 562 1977-2014 New Field Discoveries 0 51 3 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 41 51 268 7 7 0 1977-2014 Estimated

  14. TX, RRC District 7B Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    2,077 2,242 3,305 2,943 2,787 2,290 1977-2014 Adjustments 63 68 -65 666 -162 -170 1977-2014 Revision Increases 144 260 387 41 405 203 1977-2014 Revision Decreases 193 231 344 983 223 355 1977-2014 Sales 494 3 683 142 18 2 2000-2014 Acquisitions 27 0 1,855 116 15 0 2000-2014 Extensions 319 220 109 205 2 8 1977-2014 New Field Discoveries 0 0 0 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 53 0 1977-2014 Estimated Production 171 149 196 265 228 181

  15. TX, RRC District 7B Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    8 8 13 19 12 16 1996-2014 Lease Condensate (million bbls) 0 1 0 0 0 0 1998-2014 Total Gas (billion cu ft) 737 897 890 857 629 464 1996-2014 Nonassociated Gas (billion cu ft) 714 890 878 840 617 407 1996-2014 Associated Gas (billion cu ft) 23 7 12 17 12 5

  16. TX, RRC District 7C Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    4,827 4,787 4,475 4,890 4,800 6,422 1977-2014 Adjustments 29 68 -311 639 -236 764 1977-2014 Revision Increases 355 535 684 421 693 1,343 1977-2014 Revision Decreases 447 710 708 1,113 889 1,177 1977-2014 Sales 90 575 260 84 129 636 2000-2014 Acquisitions 97 451 271 106 127 886 2000-2014 Extensions 263 496 305 708 568 865 1977-2014 New Field Discoveries 0 0 0 1 0 0 1977-2014 New Reservoir Discoveries in Old Fields 2 10 0 46 104 1 1977-2014 Estimated Production 328 315 293 309 328 424

  17. TX, RRC District 7C Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    221 286 301 438 400 642 1996-2014 Lease Condensate (million bbls) 10 13 4 14 3 5 1998-2014 Total Gas (billion cu ft) 1,619 1,659 1,551 1,844 1,540 2,305 1996-2014 Nonassociated Gas (billion cu ft) 875 789 447 387 157 318 1996-2014 Associated Gas (billion cu ft) 744 870 1,104 1,457 1,383 1,98

  18. TX, RRC District 8 Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    6,672 7,206 7,039 7,738 8,629 9,742 1977-2014 Adjustments 233 304 -703 395 243 -395 1977-2014 Revision Increases 828 1,082 1,056 1,115 1,154 2,164 1977-2014 Revision Decreases 1,375 1,268 1,028 1,549 1,060 1,388 1977-2014 Sales 260 363 185 385 608 734 2000-2014 Acquisitions 194 758 482 656 575 771 2000-2014 Extensions 747 568 676 1,023 1,223 1,429 1977-2014 New Field Discoveries 1 0 4 7 0 1 1977-2014 New Reservoir Discoveries in Old Fields 25 2 1 1 26 32 1977-2014 Estimated Production 545 549

  19. TX, RRC District 8A Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    413 418 419 433 367 361 1996-2014 Lease Condensate (million bbls) 6 11 5 6 0 0 1998-2014 Total Gas (billion cu ft) 376 369 360 336 309 258 1996-2014 Nonassociated Gas (billion cu ft) 2 1 1 1 1 1 1996-2014 Associated Gas (billion cu ft) 374 368 359 335 308 25

  20. TX, RRC District 2 Onshore Nonassociated Natural Gas Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments -101 18 153 15 -39 -1 1979-2014 Revision Increases 194 321 397 212 719 454 1979-2014 Revision Decreases 364 308 572 516 990 642 1979-2014 Sales 23 19 167 11 335 944 ...

  1. TX, RRC District 9 Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments 18 336 -110 -725 378 248 1977-2014 Revision Increases 610 1,070 2,850 212 1,087 793 1977-2014 Revision Decreases 503 221 5,564 1,048 636 1,036 1977-2014 Sales 71 92 ...

  2. Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 159 155 151 135 135 127 118 210 210 257 243 213 2012 281 269 283 258 201 247 244 256 228 247 246 212 2013 259 236 246 250 ...

  3. RAPID/Roadmap/3-TX-g | Open Energy Information

    Open Energy Info (EERE)

    must report on the status of the exploration, development, and production of geothermal energy and associated resources under the land governed by Tex. Nat. Rec. Code Sec. 141...

  4. EV Community Readiness projects: Center for the Commercialization of Electric Technologies (TX); City of Austin, Austin Energy (TX)

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. R2R Breakout Session

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 | Energy Efficiency and Renewable Energy eere.energy.gov David Hardy Technology Advisor Advanced Manufacturing Office www.manufacturing.energy. gov DOE - DoD Multi-topic Ft worth, TX workshop R2R Breakout Session October 8, 2014 U.S. Department of ENERGY Energy Efficiency & Renewable Energy R2R Breakout Session OUTLINE Institute elements Challenges and Rational Deposition/Printing Technologies Equipment and Process Control (Integration) Substrate Materials Applications Technology

  6. Manufacturing Innovation Multi-Topic Workshop Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Innovation Multi-Topic Workshop Report Manufacturing Innovation Multi-Topic Workshop Report The U.S. Department of Energy (DOE) and Department of Defense (DoD) held a Manufacturing Innovation Topics Workshop on October 8 and 9, 2014. Representatives from industry, academia, DOE national laboratories, and DoD centers gathered in Fort Worth TX to hear keynote addresses and participate in workshop breakout sessions. The Workshop Report is listed below. U.S DOE and DoD Manufacturing

  7. Manufacturing Innovation Multi-Topic Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Multi-Topic Workshop Manufacturing Innovation Multi-Topic Workshop DOE's Advanced Manufacturing Office (AMO) and the Office of Secretary of Defense Manufacturing Technology Program (OSD ManTech) held a joint workshop October 8 and 9, 2014 in Fort Worth, TX. This workshop identified mid-Technology Readiness Level (TRL) research and development (R&D) needs, market and supply chain challenges, and shared facility needs for advanced manufacturing. The workshop complemented a recently

  8. Manufacturing Innovation Topics Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Manufacturing Office (AMO) and the Office of the Secretary of Defense Manufacturing Technology Program (OSD ManTech) will host a workshop to discuss AMO's recent Request for Information (RFI) on Clean Energy Manufacturing Topic Areas as well as the recent areas of interest announced by OSD ManTech for a new Manufacturing Innovation Institute on October 8-9, 2014 in Fort Worth, TX.

  9. Biofuels Issues and Trends - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    tight oil plays: production and proved reserves, 2013-14 million barrels 2013 2013 Basin Play State(s) Production Reserves Williston Bakken ND, MT, SD 270 4,844 387 5,972 1,128 Western Gulf Eagle Ford TX 351 4,177 497 5,172 995 Permian Bone Spring, Wolfcamp NM, TX 21 335 53 722 387 Denver-Julesberg Niobrara CO, KS, NE, WY 2 17 42 512 495 Appalachian Marcellus* PA, WV 7 89 13 232 143 Fort Worth Barnett TX 9 58 9 47 -11 Sub-total 660 9,520 1,001 12,657 3,137 Other tight oil 41 523 56 708 185 U.S.

  10. Basin Play State(s) Production Reserves Williston Bakken ND, MT, SD

    U.S. Energy Information Administration (EIA) Indexed Site

    tight oil plays: production and proved reserves, 2013-14 million barrels 2013 2013 Basin Play State(s) Production Reserves Williston Bakken ND, MT, SD 270 4,844 387 5,972 1,128 Western Gulf Eagle Ford TX 351 4,177 497 5,172 995 Permian Bone Spring, Wolfcamp NM, TX 21 335 53 722 387 Denver-Julesberg Niobrara CO, KS, NE, WY 2 17 42 512 495 Appalachian Marcellus* PA, WV 7 89 13 232 143 Fort Worth Barnett TX 9 58 9 47 -11 Sub-total 660 9,520 1,001 12,657 3,137 Other tight oil 41 523 56 708 185 U.S.

  11. MPO SAN ANTONIO - BEXAR COUNTY METROPOLITAN PLANNING ORGANIZATION

    Energy Savers [EERE]

    ... agricultural tractors, combines, commercial airports, point sources, and heavy duty truck idling 2012 With Eagle Ford Emission Inventory WRF v3.2 CAMx 5.40 Local 2012 San ...

  12. Metropolitan Edison Company SEF Loans (FirstEnergy Territory...

    Broader source: Energy.gov (indexed) [DOE]

    grid supply; projects involving the development of a sustainable energy technology (e.g., solar panel manufacturing); businesses that use renewable energy in the operation of a...

  13. Chicago Metropolitan Agency for Planning Summary of Reported...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Retrofit Rebate Program (Pilot) * Multifamily Residential Programs o Community Investment Corporation (CIC) Energy Savers Multifamily Loan Program o Village of Oak Park...

  14. Metropolitan Edison Company SEF Grants (FirstEnergy Territory)

    Broader source: Energy.gov [DOE]

    Examples of projects funded in the past are available on the program web site, along with details of the grant guidelines.

  15. Obama Administration Announces Additional $208,759,900 for Local...

    Energy Savers [EERE]

    ... TX TexasTotal Sum City , County, and SEO Allocations All 208,759,900 TX Texas State ... TX Dallas City 12,787,300 TX Del Rio City 156,300 TX Denton City 1,117,000 TX ...

  16. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TX University of Texas at Austin - Austin, TX (approved CX); Bureau of Economic Geology UT-Austin - Austin, TX (approved CX) Laredo Petroleum, Inc. - Reagan Co., TX FE...

  17. Texas A&M Regional High School Science Bowl | U.S. DOE Office...

    Office of Science (SC) Website

    National Science Bowl U.S. Department of Energy SC-27 Forrestal Building 1000 ... County, TX Titus County, TX Tom Green County, TX Travis County, TX Trinity ...

  18. Texas AM Junior Science Bowl | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    National Science Bowl U.S. Department of Energy SC-27 Forrestal Building 1000 ... County, TX Titus County, TX Tom Green County, TX Travis County, TX Trinity ...

  19. Is it Worth it? A Comparative Analysis of Cost-Benefit Projectionsfor State Renewables Portfolio Standards

    SciTech Connect (OSTI)

    Chen, Cliff; Wiser, Ryan; Bolinger, Mark

    2006-06-05

    State renewables portfolio standards (RPS) have emerged as one of the most important policy drivers of renewable energy capacity expansion in the U.S. Collectively, these policies now apply to almost 40% of U.S. electricity load, and may have substantial impacts on electricity markets, ratepayers, and local economies. As RPS policies have been proposed or adopted in an increasing number of states, a growing number of studies have attempted to quantify the potential impacts of these policies, focusing primarily on projecting cost impacts, but sometimes also estimating macroeconomic and environmental effects. This report synthesizes and analyzes the results and methodologies of twenty-six distinct state or utility-level RPS cost impact analyses completed since 1998 (see Figure 1 and Appendix for a complete list of the studies). Together, these studies model proposed or adopted RPS policies in seventeen different states. We highlight the key findings of these studies on the costs and benefits of RPS policies, examine the sensitivity of projected costs to model assumptions, assess the attributes of different modeling approaches, and suggest possible areas of improvement for future RPS analysis.

  20. OXY (Occidental Petroleum Corp. ) units plan U. K. work worth $1. 5 billion

    SciTech Connect (OSTI)

    Not Available

    1980-09-15

    Occidental Refineries Ltd., an Occidental Petroleum Corp. subsidiary, plans to spend about $500,000 to build a 60,000 bbl/day hydrocracker on Canvey Island near London to produce aviation fuel, naphtha, and gasoline. Occidental hopes to deflect criticism by environmentalists, concerned about the concentration of petroleum facilities in the area, by installing a minimum amount of LPG storage and not using hydrogen sulfide on the site. During the 1970's, Occidental had prepared the site for the construction of a 125,000 bbl/day refinery, plans for which were scrapped after the demand for product compounds decreased. Occidental Chemical Co., another Occidental Petroleum subsidiary, plans to spend about $500,000 to build a 300,000 ton/yr ethylene plant at Peterhead, Scotl. The cracker would take part of the output from the de-ethanizer at the St. Fergus terminal for the proposed U.K. gas-gathering pipeline. Both projects would require about 3-4 yr to complete. Esso Chemical Ltd. will build a 550,000 ton/yr ethylene plant near the Mossmoran gas liquids plant in Fife, Scotl.

  1. Former Assistant Secretary Reflects on Career High Point Leading EM: 'Well Worth the Effort'

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – In an occasional EM Update series, we feature interviews with former EM Assistant Secretaries to reflect on their achievements and challenges in the world’s largest nuclear cleanup and to discuss endeavors in life after EM.

  2. When one picture is worth a thousand algorithms; Covert smart sensors provide early warning edge

    SciTech Connect (OSTI)

    Anderson, D.C. )

    1991-01-01

    An early intrusion detection and video assessment, well in advance of a perimeter penetration, give personnel critical information and extra time to effectively respond to varied threats. Concealing small numbers of video verified portable intrusion sensor/transmitters observing critical remote assets and distance approaches to facilities immediately gives advanced warning of threats without traditional false alarm problems. By adding image assessment, reliable intrusion detection in environmentally sensitive areas, during temporary construction, along waterfronts, where wildlife are present, and in very remote areas in now practical with portable intrusion sensors. The paper discusses how to effectively integrate radio transmission, sensing, and video into low power systems for early verified detection in nuclear facilities.

  3. The cost effectiveness of NEPA: Are the benefits worth the costs

    SciTech Connect (OSTI)

    Mangi, J.I. )

    1993-01-01

    NEPA is much loved, and much hated; too often ignored, and even more often ill-used. NEPA's framers intended the Act to have some substantive effects on Government actions, but they did not foresee the regulatory process and organizational structures that have accreted around the Act. Compliance with NEPA and its regulations may cost the US taxpayer, directly and indirectly, on the order of $1 billion a year. The benefits of NEPA compliance are obvious in some cases, not so in others. NEPA has success stories, but also boondoggles in its current and recent practice. Yet the taxpayer is entitled to know whether NEPA's non-trivial costs yield sufficient benefit to make compliance efforts a worthwhile investment. This paper will analyze the issue of the costs of NEPA compliance, and the issue of its benefits, and will suggest an answer as to the question of NEPA's cost effectiveness.

  4. Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 8,489 2,977 1,206 NA 2000's NA NA 5,100 3,036 718 0 0 0 18,923 4,262 2010's 1,371 6,871 0 0 0

  5. Price of Freeport, TX Natural Gas LNG Imports from Egypt (Nominal...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- 4.24 2010's -- 12.23 -- -- --

  6. 2013 INORGANIC REACTION MECHANISMS GORDON RESEARCH CONFERENCE (MARCH 3-8, 2013 - HOTEL GALVEZ, GALVESTON TX)

    SciTech Connect (OSTI)

    Abu-Omar, Mahdi M.

    2012-12-08

    The 2013 Gordon Conference on Inorganic Reaction Mechanisms will present cutting-edge research on the molecular aspects of inorganic reactions involving elements from throughout the periodic table and state-of-the art techniques that are used in the elucidation of reaction mechanisms. The Conference will feature a wide range of topics, such as homogeneous and heterogeneous catalysis, metallobiochemistry, electron-transfer in energy reactions, polymerization, nitrogen fixation, green chemistry, oxidation, solar conversion, alkane functionalization, organotransition metal chemistry, and computational chemistry. The talks will cover themes of current interest including energy, materials, and bioinorganic chemistry. Sections cover: Electron-Transfer in Energy Reactions; Catalytic Polymerization and Oxidation Chemistry; Kinetics and Spectroscopy of Heterogeneous Catalysts; Metal-Organic Chemistry and its Application in Synthesis; Green Energy Conversion;Organometallic Chemistry and Activation of Small Molecules; Advances in Kinetics Modeling and Green Chemistry; Metals in Biology and Disease; Frontiers in Catalytic Bond Activation and Cleavage.

  7. AHS National Specialists' Meeting on Rotorcraft Dynamics, Arlington, TX, Nov. 13, 14, 1989, Proceedings

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    Various papers on rotorcraft dynamics are presented. Individual topics addressed include: aeromechanical stability of helicopters, evolution and test history of the V-22 Aeroelastic Model Series, helicopter individual blade control through optimal output feedback, dynamic characteristics of composite beam structures, dynamic testing of thin-walled composite box beams in a vacuum chamber, fundamental dynamics issues for comprehensive rotorcraft analyses, and development of the second generation Comprehensive Helicopter Analysis System. Also considered are: experiences in NASTRAN airframe vibration predictions, application of CRFD program to total helicopter dynamics, vibration reduction on servoflap controlled rotor using HHC, V-22 MSC/NASTRAN airframe vibration analysis and correlation, responses of helicopter rotors to vibratory airloads, helicopter rotor load calculations, prediction and alleviation of V-22 rotor dynamic loads, free wake analysis of rotor configurations for reduced vibratory airloads.

  8. TX, RRC District 8 Associated-Dissolved Natural Gas Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions 341 376 759 1,048 1,019 1,585 1979-2014 New Field Discoveries 1 0 4 8 0 0 1979-2014 New Reservoir Discoveries in Old Fields 25 2 1 2 26 38 1979-2014 Estimated Production ...

  9. TX, RRC District 9 Associated-Dissolved Natural Gas Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions 302 5 419 352 236 61 1979-2014 New Field Discoveries 0 0 11 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 1979-2014 Estimated Production 23 44 73 ...

  10. TX, RRC District 10 Associated-Dissolved Natural Gas Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions 106 124 204 261 159 206 1979-2014 New Field Discoveries 0 0 0 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 18 0 1979-2014 Estimated Production 48 57 ...

  11. TX, RRC District 7C Associated-Dissolved Natural Gas Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions 203 205 309 774 660 956 1979-2014 New Field Discoveries 0 0 0 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 2 11 0 53 121 1 1979-2014 Estimated Production 97 ...

  12. TX, RRC District 1 Associated-Dissolved Natural Gas Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions 14 148 601 1,599 771 902 1979-2014 New Field Discoveries 0 63 22 38 2 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 2 1 11 16 1979-2014 Estimated Production 6 ...

  13. TX, RRC District 8A Associated-Dissolved Natural Gas Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions 2 7 8 16 23 8 1979-2014 New Field Discoveries 0 0 0 1 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 1 1 0 0 1979-2014 Estimated Production 107 90 95 100 101 ...

  14. TX, RRC District 2 Onshore Associated-Dissolved Natural Gas Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions 11 67 440 1,022 769 515 1979-2014 New Field Discoveries 12 1 0 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 86 53 23 114 1979-2014 Estimated Production 16 ...

  15. Best Practices Case Study: David Weekley Homes - Eagle Springs and Waterhaven, Houston, TX

    SciTech Connect (OSTI)

    none,

    2011-04-01

    Case study describing David Weekley Homes, Houston Division, has qualified more than 1,240 homes for the DOE Builders Challenge. Advanced framed 2x6 walls with open headers and two-stud corners allow more room for R-20 damp sprayed cellulose wall cavity insulation that is covered with R-5 rigid XPS foam. A radiant barrier cuts heat gain in the R-38 insulated vented attics. Draft stopping at fireplace and duct chases and behind tubs, gluing sheetrock to framing, and extensive caulking make for air-tight homes at 3.0 ACH50.

  16. ,"TX, RRC District 7B Crude Oil plus Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  17. ,"TX, RRC District 7C Crude Oil plus Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  18. ,"TX, RRC District 1 Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  19. ,"TX, RRC District 9 Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  20. ,"TX, RRC District 8 Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  1. ,"TX, RRC District 6 Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  2. ,"TX, RRC District 5 Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  3. ,"TX, RRC District 8A Crude Oil plus Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  4. New Whole-House Solutions Case Study: Imagine Homes, San Antonio, TX

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Founded in 2006, Imagine Homes of San Antonio has worked with DOE's Building America research team IBACOS to build more than 300 high-performance homes that achieve HERS energy efficiency scores from 52 to 65. Imagine Homes was also the first San Antonio builder to certify all of its homes to both the federal ENERGY STAR program and the Build San Antonio Green program. The local company has sold 77 homes per year over the last 4 years in a market flooded with just-to- code homes by national

  5. Best Practices Case Study: Imagine Homes - Stillwater Ranch, San Antonio, TX

    SciTech Connect (OSTI)

    none,

    2011-04-01

    This case study describes Imagine Homes, who met Builders Challenge criteria on more than 200 homes in San Antonio with rigid foam exterior sheathing, ducts and air handler in conditioned space in a spray-foam insulated attic, and high-efficiency HVAC, windows, and appliances.

  6. TX, RRC District 3 Onshore Associated-Dissolved Natural Gas Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions 38 7 9 14 47 154 1979-2014 New Field Discoveries 8 0 11 4 3 12 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 1 3 0 1979-2014 Estimated Production 70 66 57 64 ...

  7. TX, RRC District 2 Onshore Crude Oil plus Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions 13 72 296 761 590 486 2009-2014 New Field Discoveries 0 22 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 1 0 39 28 12 48 2009-2014 Estimated Production 10 15 ...

  8. TX, RRC District 5 Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions 0 0 6 24 0 19 2009-2014 Extensions 1 0 0 9 4 21 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 ...

  9. TX, RRC District 10 Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions 39 67 75 75 47 46 2009-2014 New Field Discoveries 0 0 1 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 1 0 5 0 2009-2014 Estimated Production 16 22 30 40 43 ...

  10. TX, RRC District 9 Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions 45 14 39 31 25 7 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 1 0 2009-2014 Estimated Production 15 17 21 22 21 ...

  11. TX, RRC District 7C Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions 69 88 121 254 227 309 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 6 0 8 29 0 2009-2014 Estimated Production 32 34 40 ...

  12. TX, RRC District 1 Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions 8 137 593 1,194 484 591 2009-2014 New Field Discoveries 4 54 29 19 2 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 2 8 11 18 2009-2014 Estimated Production 10 ...

  13. TX, RRC District 6 Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions 8 9 6 30 49 12 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 18 18 18 19 19 20

  14. TX, RRC District 5 Associated-Dissolved Natural Gas Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions 0 0 4 20 0 41 2000-2014 Extensions 0 0 0 10 2 1 1979-2014 New Field Discoveries 0 0 0 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 1979-2014 ...

  15. TX, RRC District 3 Onshore Crude Oil plus Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions 19 29 16 16 73 115 2009-2014 New Field Discoveries 3 2 1 1 1 10 2009-2014 New Reservoir Discoveries in Old Fields 0 1 0 1 3 4 2009-2014 Estimated Production 40 44 40 42 ...

  16. TX, RRC District 7B Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions 1 0 27 1 10 0 2009-2014 Extensions 1 0 0 0 1 3 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 ...

  17. TX, RRC District 4 Onshore Crude Oil plus Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions 7 39 96 54 43 31 2009-2014 New Field Discoveries 3 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 1 0 1 0 0 0 2009-2014 Estimated Production 14 15 17 21 23 ...

  18. TX, RRC District 4 Onshore Associated-Dissolved Natural Gas Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions 0 1 4 4 2 114 2000-2014 Extensions 1 9 0 9 13 14 1979-2014 New Field Discoveries 0 0 0 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 1979-2014 ...

  19. TX, RRC District 7B Associated-Dissolved Natural Gas Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions 0 0 21 0 1 0 2000-2014 Extensions 37 0 6 0 0 4 1979-2014 New Field Discoveries 0 0 0 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 2 0 1979-2014 ...

  20. TX, RRC District 7C Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 View History Proved Reserves as of Dec. 31 13 27 81 409 2010-2013 Adjustments 0 -1 1 -1 2010-2013 Revision Increases 0 13 20 217 2010-2013 Revision Decreases 0...

  1. TX, RRC District 8A Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update (EIA)

    2012 2013 View History Proved Reserves as of Dec. 31 0 0 2012-2013 Adjustments 0 0 2012-2013 Revision Increases 0 0 2012-2013 Revision Decreases 0 0 2012-2013 Sales 0 0 2012-2013...

  2. TX, RRC District 7B Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update (EIA)

    2,022 2,435 3,466 2,952 2,802 2007-2013 Adjustments 56 267 -193 567 -106 2009-2013 Revision Increases 119 273 385 17 331 2009-2013 Revision Decreases 181 242 358 1,028 212...

  3. Laredo, TX Liquefied Natural Gas Exports Price (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 17

  4. Laredo, TX Liquefied Natural Gas Exports to Mexico (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 17.06

  5. McAllen, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's 4,291 45,477 76,345 50,884 60,801 27,025 18,631 4,142 17,400 10,935 2010's 20,627 56,569 68,425 78,000 79,396 61,402

  6. File:03-TX-d - Lease of Public School Fund Land (1).pdf | Open...

    Open Energy Info (EERE)

    file as it appeared at that time. DateTime Thumbnail Dimensions User Comment current 14:56, 5 August 2014 Thumbnail for version as of 14:56, 5 August 2014 1,275 1,650 (85 KB)...

  7. Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.05 2.62 2.09 NA 2000's NA NA 3.27 6.53 5.71 -- -- -- 8.41 4.37 2010's 4.94 4.19 -- -- -- Cubic Feet)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.43 4.15 3.95 4.32 4.37 4.58 4.44 4.38 3.88 3.64 3.10

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 252 1,324 824 1,017 871 770 354 155 916 331 57

  8. Rio Bravo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2000's NA NA NA 4.99 6.13 8.02 6.51 6.80 9.11 3.91 2010's 4.42 4.14 2.94 3.88 4.47 2.7 Thousand Cubic Feet)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.58 4.26 4.13 4.36 4.44 4.69 4.56 4.22 4.03 3.68 3.34 3.32 2012 2.85 2.64 2.34 2.09 2.59 2.56 3.05 3.00 2.97 3.44 3.65 3.52 2013 3.52 3.44 4.02 4.31 4.25 4.03 3.77 3.58 3.80 3.80 3.74 4.31 2014 4.73 6.15 4.95 4.74

  9. Roma, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 5,096 4,366 5,682 7,739 7,085 7,322 6,867 4,309 3,565 3,941 3,724 6,098 2012 7,203 6,395 9,986 11,277 12,777 12,656 12,587 12,852 12,403 12,529 11,604 11,500 2013 12,364 10,749 12,263 12,320 13,026 12,678 12,542 12,790 11,100 10,410 9,480 8,619 2014 11,008 11,039 12,280 11,962 12,995 12,455 12,784 12,812 13,937 15,124 15,124 12,951 2015 12,494 10,114 11,377 12,397 14,689 15,053 15,779 16,165 15,423 15,404 14,585 14,568 2016 13,965 11,742

  10. TX, RRC District 5 Coalbed Methane Proved Reserves, Reserves Changes, and

    Gasoline and Diesel Fuel Update (EIA)

    7,057 7,392 10,054 9,566 11,101 12,482 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 6,961 7,301 9,993 9,467 11,038 12,291 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 96 91 61 99 63 191 1979-2014 Dry Natural Gas 6,728 7,014 9,458 8,743 9,640 11,057 After Lease Separation

    6,961 7,301 9,993 9,467 11,038 12,291 1979-2014 Adjustments -94 38 434 892 803 -117 1979-2014 Revision Increases 798 1,129 2,390 1,032 1,007 1,651 1979-2014 Revision Decreases

  11. TX, RRC District 6 Coalbed Methane Proved Reserves, Reserves Changes, and

    Gasoline and Diesel Fuel Update (EIA)

    22,623 24,694 28,187 17,640 19,531 18,155 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 22,602 24,686 28,147 17,587 19,354 17,970 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 21 8 40 53 177 185 1979-2014 Dry Natural Gas 22,343 24,363 27,843 17,331 19,280 17,880 Lease Separation

    22,602 24,686 28,147 17,587 19,354 17,970 1979-2014 Adjustments 130 65 646 -951 207 -46 1979-2014 Revision Increases 1,921 1,596 3,708 338 3,185 723 1979-2014 Revision

  12. TX, RRC District 7B Coalbed Methane Proved Reserves, Reserves Changes, and

    Gasoline and Diesel Fuel Update (EIA)

    13,257 15,416 15,995 11,726 12,192 12,023 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 12,806 14,958 15,524 11,204 11,553 11,640 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 451 458 471 522 639 383 1979-2014 Dry Natural Gas 12,795 14,886 15,480 11,340 11,655 11,516 Lease Separation

    12,806 14,958 15,524 11,204 11,553 11,640 1979-2014 Adjustments 426 400 233 -1,035 322 -338 1979-2014 Revision Increases 1,801 2,732 5,023 1,960 2,107 2,009

  13. TX, RRC District 7C Coalbed Methane Proved Reserves, Reserves Changes, and

    Gasoline and Diesel Fuel Update (EIA)

    2,424 2,625 3,887 3,363 3,267 2,695 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 2,322 2,504 3,754 3,183 3,040 2,418 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 102 121 133 180 227 277 1979-2014 Dry Natural Gas 2,077 2,242 3,305 2,943 2,787 2,290 Lease Separation

    2,322 2,504 3,754 3,183 3,040 2,418 1979-2014 Adjustments 106 48 -38 585 -44 -231 1979-2014 Revision Increases 152 295 417 24 313 209 1979-2014 Revision Decreases 221 256 393 1,101

  14. TX, RRC District 8 Coalbed Methane Proved Reserves, Reserves Changes, and

    Gasoline and Diesel Fuel Update (EIA)

    5,430 5,432 5,236 5,599 5,584 7,103 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 3,724 3,502 2,857 2,523 2,183 2,444 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 1,706 1,930 2,379 3,076 3,401 4,659 1979-2014 Dry Natural Gas 4,827 4,787 4,475 4,890 4,800 6,422 Lease Separation

    3,724 3,502 2,857 2,523 2,183 2,444 1979-2014 Adjustments 56 84 -184 408 -105 352 1979-2014 Revision Increases 175 380 412 248 347 177 1979-2014 Revision Decreases 444 714

  15. TX, RRC District 8A Coalbed Methane Proved Reserves, Reserves Changes, and

    Gasoline and Diesel Fuel Update (EIA)

    7,440 8,105 8,088 8,963 9,715 11,575 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 3,950 3,777 3,006 2,309 2,315 2,480 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 3,490 4,328 5,082 6,654 7,400 9,095 1979-2014 Dry Natural Gas 6,672 7,206 7,039 7,738 8,629 9,742 Lease Separation

    3,950 3,777 3,006 2,309 2,315 2,480 1979-2014 Adjustments 150 229 -274 184 -127 9 1979-2014 Revision Increases 491 642 431 451 247 411 1979-2014 Revision Decreases 1,242

  16. TX, RRC District 9 Coalbed Methane Proved Reserves, Reserves Changes, and

    Gasoline and Diesel Fuel Update (EIA)

    1,289 1,228 1,289 1,280 1,338 1,328 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 43 58 31 20 23 24 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 1,246 1,170 1,258 1,260 1,315 1,304 1979-2014 Dry Natural Gas 1,218 1,164 1,226 1,214 1,269 1,257 Lease Separation

    43 58 31 20 23 24 1979-2014 Adjustments -1 20 -24 -11 5 5 1979-2014 Revision Increases 2 5 3 2 3 5 1979-2014 Revision Decreases 21 7 5 3 4 6 1979-2014 Sales 0 3 9 1 0 0 2000-2014

  17. McAllen, TX Natural Gas Imports by Pipeline from Mexico

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 472 Cubic Feet)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.92 3.04 2.78 2.81 2000's 4.25 4.96 4.08 6.08 7.06 9.34 8.95 7.78 9.69 6.85 2010's 6.48 6.55 5.75 6.04 7.34 5.65 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 07/29/2016 Next Release Date: 08/31/2016 Referring Pages: U.S. Price of Natural Gas

  18. Municipal Consortium LED Street Lighting Workshop Presentations and Materials—Dallas, TX

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Workshop held in Dallas March 15–16, 2012.

  19. TX, State Offshore Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    64 131 118 94 59 42 1981-2014 Natural Gas Nonassociated, Wet After Lease Separation 161 128 113 88 56 42 1981-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 3 3 ...

  20. McAllen, TX Natural Gas Pipeline Exports to Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.52 4.36 3.99 4.35 4.41 4.53 4.49 4.45 3.99 3.74 3.50 3.34 2012 3.08 2.66 2.41 2.16 2.32 2.54 2.98 3.20 2.83 3.30 3.61 ...

  1. McAllen, TX Natural Gas Pipeline Exports to Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's 4.81 3.37 3.42 5.36 5.92 7.49 6.76 6.65 9.07 3.90 2010's 4.52 4.19 2.95 3.84 4.62 ...

  2. EA-1939: Reese Technology Center Wind and Battery Integration Project, Lubbock County, TX

    Broader source: Energy.gov [DOE]

    This EA will evaluate the potential environmental impacts of a proposal by the Center for Commercialization of Electric Technologies to demonstrate battery technology integration with wind generated electricity by deploying and evaluating utility-scale lithium battery technology to improve grid performance and thereby aid in the integration of wind generation into the local electricity supply.

  3. Alamo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's 4.49 4.12 3.35 5.36 5.97 7.17 6.62 7.11 8.40 3.95 2010's 4.50 4.10 2.86 3.81 4.63 2.72 Cubic Feet)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.37 4.38 3.92 4.24 4.36 4.46 4.46 4.29 3.88 3.67 3.40 3.31 2012 3.11 2.64 2.28 2.09 2.41 2.48 2.90 3.08 2.80 3.26 3.53 3.68 2013 3.45 3.41 3.89 4.26 4.17 4.08 3.73 3.53 3.68 3.77 3.78 4.29 2014 4.68 5.89 5.00 4.78 4.89

  4. Clint, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.24 1.99 2.22 2000's 3.95 4.28 3.16 5.50 5.91 8.01 6.42 6.37 7.83 3.78 2010's 4.61 4.29 3.08 4.05 4.68 2.70 Cubic Feet)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.51 4.57 4.11 4.50 4.51 4.73 4.68 4.57 4.21 3.89 3.71 3.63 2012 3.30 2.93 2.62 2.34 2.57 2.82 3.13 3.23 3.07 3.53 3.83 3.80 2013 3.71 3.67 4.03 4.33 4.30 4.22 3.91 3.79 3.92 3.93 4.08 4.66 2014 4.96 6.70 5.41 4.87

  5. Del Rio, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 7.74 10.76 8.20 2010's 5.92 5.53 4.33 4.69 5.35 3.59 Cubic Feet)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 5.49 5.62 5.33 5.68 6.08 5.89 5.68 5.52 5.52 5.50 4.97 5.40 2012 4.40 4.40 4.17 4.18 3.95 4.31 4.33 4.50 4.37 4.42 4.39 4.56 2013 4.54 4.56 4.58 4.93 5.24 5.14 4.63 4.48 4.50 4.44 4.52 4.71 2014 5.30 6.18 5.65 5.49 5.73 5.43 5.53 4.78 4.98 4.95 4.60 5.26 2015 4.02

  6. Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.52 2.79 2.24 2.35 2000's 3.91 4.45 3.44 5.34 5.95 7.49 6.73 6.72 9.00 4.47 2010's 5.13 4.57 3.41 4.37 5.18 3.78 Cubic Feet)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.77 4.97 4.44 4.94 5.00 4.95 5.04 4.61 4.61 4.39 4.11 3.94 2012 3.67 3.24 3.02 2.78 2.63 3.10 3.43 3.78 3.28 3.64 4.04 4.38 2013 4.06 3.97 4.09 4.67 4.97 4.90 4.38 4.23 4.25 4.20 4.27 4.66 2014 5.13 6.13 5.56

  7. El Paso, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.14 2.36 2.05 2.43 2000's 4.35 4.35 3.28 5.20 5.76 8.06 6.47 6.76 7.60 3.98 2010's 4.72 4.34 3.09 4.05 5.13 2.83 Cubic Feet)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.67 5.14 4.18 4.52 4.43 4.75 4.70 4.44 4.13 3.68 3.49 3.87 2012 3.30 3.11 2.49 2.31 2.71 2.71 3.17 3.25 3.15 3.59 3.73 3.58 2013 3.68 3.57 4.00 4.37 4.21 4.01 3.96 3.76 3.91 4.02 4.01 4.94 2014 4.95 7.67 5.16

  8. Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- 2.69 2010's 3.52 3.12 1.87 2.66 3.45 1.71 Thousand Cubic Feet)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3.27 3.34 2.85 3.28 3.41 3.38 3.44 3.42 2.94 2.82 2.55 2.41 2012 2.17 1.80 1.56 1.27 1.15 1.52 1.86 2.09 1.76 2.09 2.80 2.76 2013 2.42 2.34 2.53 2.53 3.21 3.21 2.77 2.52 2.61 2.56 2.56 2.85 2014 3.41 4.55 3.79 3.58 3.77 3.61 3.41 2.84 3.00 3.02 2.74 3.30

  9. Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.16 2.54 2.13 2.04 2000's 3.26 2.46 3.39 5.61 5.87 -- -- -- -- 4.17 2010's -- -- 3.47 3.92 4.68 2.28 Cubic Feet)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 3.12 3.52 3.68 3.64 2013 4.31 4.29 4.35 4.05 3.83 3.61 3.80 3.95 3.99 4.52 2014 4.98 6.18 5.17 5.01 4.90 4.90 4.47 4.20 4.22 4.22 4.22 4.19 2015 3.37 2.71 2.72 2.44 2.15 2016 2.25 2.09 1.72

    Year Jan Feb Mar Apr May

  10. McAllen, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 12,535 2,520 0 0 0 0 1998-2014 Pipeline Prices 3.89 4.20 -- -- -- -- 1998-2014

  11. McAllen, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's 4.81 3.37 3.42 5.36 5.92 7.49 6.76 6.65 9.07 3.90 2010's 4.52 4.19 2.95 3.84 4.62 2.85 Cubic Feet)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.52 4.36 3.99 4.35 4.41 4.53 4.49 4.45 3.99 3.74 3.50 3.34 2012 3.08 2.66 2.41 2.16 2.32 2.54 2.98 3.20 2.83 3.30 3.61 3.62 2013 3.47 3.42 3.75 4.30 4.28 4.13 3.79 3.60 3.73 3.70 3.75 4.06 2014 4.63 5.89 4.90 4.73 4.75

  12. Structural and magnetic phase transitions in CeCu6-xTx (T = Ag...

    Office of Scientific and Technical Information (OSTI)

    ... Type: Accepted Manuscript Journal Name: Physical Review. B, Condensed Matter and Materials ... Export Metadata Endnote Excel CSV XML Save to My Library Send to Email Send to Email ...

  13. File:15-TX-a- Fact Sheet - Tips for a Speedy Administrative Review...

    Open Energy Info (EERE)

    was last modified 05:03, 11 September 2012 Software used Acrobat PDFMaker 10.1 for Word Short title a Speedy Administrative Review Keywords fact, sheet, tips, review, permit,...

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Oil Systems Analysis Program Background In support of its mission, to advance the efficient recovery of our nation's oil and natural gas resources in an environmentally safe manner, the Strategic Center for National Gas and Oil (SCNGO) carries out a variety of analyses. These generally fall into four categories: 1. Technology Analysis - Evaluation of the state of current technology, the potential benefits of technology advancements, and the research needed to overcome barriers to those

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure The various elements of the U.S. natural gas industry-production, gathering, processing, transportation, storage, and distribution-play important roles that affect nearly every sector of the economy. Natural gas accounts for 42 percent of the energy delivered to the U.S. industrial sector and provides heat for over 66 million residential consumers. Advances in unconventional gas production technology have led to a rapid increase in domestic gas production. In the decade between

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combining Space Geodesy, Seismology, and Geochemistry for MVA of CO2 in Sequestration Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO2) leakage at CO2 geologic storage sites. MVA efforts focus on the development and deployment of technologies

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GEOSEQ: Monitoring of Geological CO2 Sequestration Using Isotopes and Perfluorocarbon Tracers (PFTs) Background The purpose of this project is to develop monitoring, verification, and accounting (MVA) tools to ensure the safety and viability of long-term geologic storage of CO2. The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) and Oak Ridge National Laboratory (ORNL) will expand the lessons learned at the Frio Brine Pilot (as part of the GEO-SEQ project) to

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O G R A M FAC T S Strategic Center for Natural Gas & Oil LOCATION Arctic Energy Office National Energy Technology Laboratory 420 L Street, Suite 305 Anchorage, Alaska 99501-5901 CONTACTS Albert B. Yost II Sr. Management Technical Advisor Strategic Center for Natural Gas & Oil National Energy Technology Laboratory 3610 Collins Ferry Road Morgantown, WV 26507-0880 304-285-4479 albert.yost@netl.doe.gov Maria Vargas Deputy Director Strategic Center for Natural Gas & Oil National Energy

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Technologies for Monitoring CO 2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Near-Surface Leakage Monitoring for the Verification and Accounting of Geologic Carbon Sequestration Using a Field- Ready 14 C Isotopic Analyzer Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Capture and Storage Training Background Carbon capture, utilization, and storage (CCUS) technologies offer great potential for mitigating carbon dioxide (CO2) emissions emitted into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications will require a drastically expanded workforce trained in CCUS related disciplines, including geologists, engineers, scientists, and technicians. Training to

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea McNemar Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-2024 andrea.mcnemar@netl.doe.gov Constantin Cranganu Principal Investigator Brooklyn College 2900 Bedford Avenue 4415 Ingersoll Hall Brooklyn, NY 11210 718-951-5000

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Joshua Hull Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P. O. Box 880 Morgantown, WV 26507-0880 304-285-0906 joshua.hull@netl.doe.gov William Lawson Principal Investigator Petroleum Technology Transfer Council P.O. Box 8531 Tulsa, OK 74101-8531 918-629-1056 wlawson@appg.org

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements of 222 Rn, 220 Rn, and CO2 Emissions in Natural CO2 Fields in Wyoming: Monitoring, Verification, and Accounting Techniques for Determining Gas Transport and Caprock Integrity Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO 2 ). Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Space Geodesy and Geochemistry Applied to the Monitoring, Verification of Carbon Capture and Storage (CCS): Training and Research Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO2). Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Actualistic and Geomechanical Modeling of Reservoir Rock, CO2 and FormationFluid Interaction, Citronelle Oil Field, Alabama Background Fundamental and applied research on carbon capture, utilization and storage (CCUS) technologies is necessary in preparation for future commercial deployment. These technologies offer great potential for mitigating carbon dioxide (CO2) emissions intothe atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Darin Damiani Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4398 darin.damiani@netl.doe.gov Vivak Malhotra Principal Investigator Southern Illinois University Neckers 483A Mailcode: 4401 Carbondale, IL 62901 618-453-2643 Fax:

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wellbore Seal Repair Using Nanocomposite Materials Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lawrence Livermore National Laboratory - Advancing the State of Geologic Sequestration Technologies towards Commercialization Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop carbon capture and storage (CCS) technologies to capture, separate, and store carbon dioxide (CO 2 ) in order to reduce green-house gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory - Management of Water from Carbon Capture and Storage Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop technologies to capture, separate, and store carbon dioxide (CO 2 ) to aid in reducing green-house gas (GHG) emissions without adversely influencing energy use or hindering economic growth. Carbon capture and sequestra- tion (CCS) - the capture of CO 2 from large point sources and subsequent injection

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Darin Damiani Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4398 darin.damiani@netl.doe.gov Robert J. Finley Principal Investigator Illinois State Geological Survey 615 E. Peabody Drive Champaign, IL 61820 217-244-8389 finley@illinois.edu PARTNERS Ameren American Air

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R &D FAC T S Carbon Storage CONTACTS Mary Anne Alvin Division Director Geosciences Division 412-386-5498 maryanne.alvin@netl.doe.gov T. Robert McLendon Geosciences Division 304-285-5749 t.mclendon@netl.doe.gov Geologic Sequestration Core Flow Laboratory Background Sequestration of CO 2 and production of coalbed methane (CBM) can affect the strata in various ways. For example, coal can swell or shrink, depending on the specific adsorbed/absorbed gas. In turn, this can affect permeability and

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FutureGen 2.0 Background The combustion of fossil fuels for electricity generation is one of the largest contributors to carbon dioxide (CO 2 ) emissions in the United States and the world. Future federal legislation and/or regulation may further limit CO 2 emissions from U.S. power generation. Efforts to control CO 2 emissions from this sector are under- way through the development of carbon capture and storage (CCS) technologies. CCS could virtually eliminate CO 2 emissions from power plants

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PROGRAM FACTS Strategic Center for Natural Gas & Oil CONTACTS Roy Long Offshore Technology Manager Strategic Center for Natural Gas & Oil 281-494-2520 roy.long@netl.doe.gov Kelly Rose Offshore Technical Portfolio Lead Office of Research and Development 541-967-5883 kelly.rose@netl.doe.gov William Fincham Project Manager Natural Gas & Oil Project Management Division 304-285-4268 william.fincham@netl.doe.govv Jared Ciferno Director Strategic Center for Natural Gas & Oil

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Storage Research Carbon capture and storage (CCS) is a key component of the U.S. carbon manage- ment portfolio. Numerous studies have shown that CCS can account for up to 55 percent of the emission reductions needed to stabilize and ultimately reduce atmospheric concentrations of CO 2 . The National Energy Technology Laboratory's (NETL) Carbon Storage Program is pre- paring CCS technologies for widespread laboratory deployment by 2020. The program goals are to: * Support industries'

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTACTS J. Alexandra Hakala Geosciences Division Engineered Natural Systems Division National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-5487 Alexandra.Hakala@netl.doe.gov George Guthrie Geological and Environmental Sciences Focus Area Leader Office of Research and Development National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6571 George.Guthrie@netl.doe.gov PARTNERS Carnegie

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Performance Project Research programs initiated by the U.S. Department of Energy (DOE) to achieve increased efficiency and reduced emissions are expected to result in the development of highly integrated power generation technologies that are clean and use far less fuel to produce the same power as technologies used today. This highly efficient technology would extend our natural resources and reduce the dependence of the United States on foreign sources of oil and other energy

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yee Soong Principal Investigator Research Chemical Engineer 412-386-4925 yee.soong@netl.doe.gov Robert McLendon Research Engineer 412-386-5749 T.McLendon@netl.doe.gov Jamie Brown Associate Director 304-285-5428 jamie.brown@netl.doe.gov Grant Bromhal Acting Senior Fellow 304-285-4688 grant.bromhal@netl.doe.gov Cynthia Powell Executive Director 541-967-5803 cynthia.powell@netl.doe.gov Geologic Storage Core Flow Laboratory Background The storage of CO₂ and production of coalbed methane (CBM) can

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fractured Reservoir Generation and Simulation Codes: FracGen and NFflow Background Fluid flow through fractured media is becoming an ever more important part of our energy future for several reasons. Shale gas and shale oil are supplying larger amounts of our petroleum needs, and both rely on production from fractured rock. Other unconventional formations, such as tight sands, are also supplying a larger portion of our energy needs, and these also depend on flow through fractures for economical

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering & Manufacturing Onsite Research The National Energy Technology Laboratory (NETL) is the lead laboratory for the Depart- ment of Energy's Office of Fossil Energy research and development (R&D) program and has established a robust onsite research program. Federal scientists and engineers work closely with contractor organizations and researchers from universities to conduct cross- disciplinary research. Onsite R&D is managed by NETL's Research & Innovation Center (RIC),

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science & Engineering OFFICE OF RESEARCH AND DEVELOPMENT Madhava Syamlal Focus Area Lead Computational Science and Engineering 304-285-4685 madhava.syamlal@netl.doe.gov David Miller Technical Portfolio Lead Carbon Capture Simulation Initiative 412-386-6555 david.miller@netl.doe.gov Computational Science and Engineering Onsite Research As the lead field center for the DOE Office of Fossil Energy's research and development program, the National Energy Technology Laboratory (NETL)

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy System Dynamics OFFICE OF RESEARCH AND DEVELOPMENT George Richards Focus Area Lead Energy System Dynamics 304-285-4458 george.richards@netl.doe.gov Energy System Dynamics NETL Onsite Research As the lead field center for the DOE Office of Fossil Energy's research and development program, the National Energy Technology Laboratory (NETL) has established a strong onsite research program conducted by Federal scientists and engineers who work closely with employees of contractor organizations

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cynthia Powell Executive Director 541-967-5803 cynthia.powell@netl.doe.gov Bryan Morreale Deputy Executive Director (acting) 412-386-5929 bryan.morreale@netl.doe.gov Jimmy Thornton Chief of Staff 304-285-4427 jimmy.thornton@netl.doe.gov Research and Innovation Center The National Energy Technology Laboratory (NETL), one of the Depart- ment of Energy's (DOE) 17 national laboratories, is leading research, development, and demonstration programs to resolve the environmen- tal, supply, and

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Process Development Division OFFICE OF RESEARCH AND DEVELOPMENT David Alman Acting Focus Area Lead Materials Science and Engineering 541-967-5885 david.alman@netl.doe.gov An Integrated Approach To Materials Development Traditional trial-and-error method in materials development is time consuming and costly. In order to speed up materials discovery for a variety of energy applications, an integrated approach for multi-scale materials simulations and materials design has been adopted at NETL. The

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equation of State Model Development for Extreme Temperatures and Pressures Background The density and viscosity of natural gas and crude oil at reservoir conditions are critical fundamental properties required to accurately assess the amount of recoverable petroleum within a reservoir, and to model the flow of these fluids within the porous media and wellbore. These properties are also used to design appropriate drilling and production equipment, such as blow-out preventers and risers. A limited

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance in High-Pressure, High-Temperature, and Ultra-Deep Drilling Environments Background Oil and natural gas fuel America's economy and account for more than 60 percent of the energy consumed in the United States (U.S.). Most forecasts indicate that these resources will continue to play a vital role in the U.S. energy portfolio for the next several decades. Increasingly, however, the domestic oil and gas industry must search for hydrocarbons in geologically challenging and operationally

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deepwater Research in the DOE NETL High-Pressure Water Tunnel Facility Background The National Energy Technology Laboratory's (NETL) High-Pressure Water Tunnel Facility (HWTF) allows researchers to investigate the chemistry, physics, and hydrodynamics of gas bubbles, liquid drops, and solid particles in deepwater environments. Built to withstand conditions at simulated ocean depths in excess of 3,000 meters, the facility was originally used to study the fate of carbon dioxide (CO₂) in the deep

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Research Portfolio Assessing Risk and Mitigating Adverse Events Associated with Drilling and Production Background Increasingly, offshore domestic oil and natural gas activities are associated with challenging offshore regions such as the ultra-deepwater (> 5,000 feet) Gulf of Mexico and the offshore Arctic. Development in these areas poses unique technical and operational challenges as well as distinct environmental and societal concerns. At present, offshore domestic resources

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unconventional Resources Background Natural gas and crude oil provide two-thirds of our Nation's primary energy supply and will continue to do so for at least the next several decades, as the Nation transitions to a more sustainable energy future. The natural gas resource estimated to exist within the United States has expanded significantly, but because this resource is increasingly harder to locate and produce, new technologies are required to extract it. Under the Energy Policy Act of 2005,

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OFFICE OF RESEARCH AND DEVELOPMENT Cynthia Powell Director 541-967-5803 cynthia.powell@netl.doe.gov Alexandra Hakala Technical Coordinator Unconventional Resources 412-386-5487 alexandra.hakala@netl.doe.gov Natalie Pekney Technical Coordinator Unconventional Resources 412-386-5953 natalie.pekney@netl.doe.gov PARTNERS Carnegie Mellon University Penn State University University of Pittsburgh URS Virginia Tech West Virginia University Analytical chemist working with the inductively coupled plasma

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subsurface Experimental Laboratory Autoclave and Core Flow Test Facilities Description Researchers at the National Energy Technology Laboratory (NETL) study subsurface systems to better characterize and understand gas-fluid-rock and material inter- actions that impact environmental and resource issues related to oil, gas, and CO2 storage development. However, studying the wide variety of subsurface environments related to hydrocarbon and CO2 systems requires costly and technically challenging

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Engineering Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's economic and energy security. Technical advancement for any type of gas turbine generally implies better performance, greater efficiency, and extended component life. From the standpoint of cycle efficiency and durability, this suggests that a continual goal for higher gas turbine- inlet

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Capture CONTACTS David Hopkinson Principal Investigator Technical Portfolio Lead for Carbon Capture 304-285-4360 david.hopkinson@netl.doe.gov David Alman Associate Director for Materials Engineering & Manufacturing 541-967-5885 david.alman@netl.doe.gov RESEARCH PARTNERS Energy Frontiers Research Centers Lawrence Berkeley National Laboratory AECOM Carbon Capture Research and Development Carbon capture and storage from fossil-based power generation is a critical component of realistic

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science & Engineering CONTACTS David Miller Technical Director Carbon Capture Simulation Initiative 412-386-6555 david.miller@netl.doe.gov Madhava Syamlal Senior Fellow Computational Engineering 304-285-4685 madhava.syamlal@netl.doe.gov RESEARCH PARTNERS AECOM Boston University Carnegie Mellon University Lawrence Berkeley National Laboratory Lawrence Livermore National Laboratory Los Alamos National Laboratory Pacific Northwest National Laboratory Princeton University

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL-RIC Geomaterials Research Facilities The National Energy Technology Laboratory (NETL) Research & Innovation Center (RIC) Geomaterials group uses unique facilities to analyze natural and manmade material samples and characterize the geologic framework of natural systems using the following tools: * Petrography * Scanning electron microscopy * X-ray microanalysis * X-ray- and micro-x-ray diffraction * Permeability measurements * Thermogravimetric analysis * Differential scanning

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL Geoimaging Characterization CT Scanners Background Traditional petrographic and core-evaluation techniques typically aim to determine the mineral make-up and internal structure of rock cores and to analyze the properties influencing fluid flow. Often this type of evaluation is destructive because it involves physically sectioning the core to capture details of the sample's internal composition. The National Energy Technology Laboratory's (NETL) geoimaging facility provides a non-destructive

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Risk Assessment Partnership The Need for Quantitative Risk Assessment for Carbon Utilization and Storage Carbon utilization and storage-the injection of carbon dioxide (CO2) into permanent underground and terrestrial storage sites-is an important part of our nation's strategy for managing CO2 emissions. Several pilot- to intermediate-scale carbon storage projects have been performed in the U.S. and across the world. However, some hurdles still exist before carbon storage becomes a

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cells The Solid Oxide Fuel Cell (SOFC) Program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust SOFC system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $225 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per 1,000 hours over a 40,000 hour lifetime. The Fuel Cell Team performs fundamental SOFC technology evaluation, enhances

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EDX: NETL's Data Driven Tool for Science-Based Decision Making Data Exchange for Energy Solutions Background and Benefits In 2011, the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) initiated the Energy Data eXchange (EDX), an online collection of capabilities and resources that advance research and customize energy-related needs. EDX was developed and is maintained by NETL's Research & Innovation Center (NETL-RIC) researchers and technical computing teams to

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of Foamed Wellbore Cement Stability Under Deep-Water Conditions Background Foamed cement is a gas-liquid dispersion that is produced when an inert gas, typically nitrogen, is injected into a conventional cement slurry to form microscopic bubbles. Foamed cements are ultralow-density systems typically employed in formations that are unable to support the annular hydrostatic pressure exerted by conventional cement slurries. More recently, the use of foamed cement has expanded into

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geomechanical Impacts of Shale Gas Activities Background The technique of hydraulic fracturing, in which large volumes of fluid are injected at high pressures into low-permeability shale, can improve hydraulic connectivity and enable production of gas. In the past decade, hydraulic fracturing has dramatically increased the domestic production of natural gas due to widespread application in formations nationwide. This rapid increase in hydraulic fracturing activities has also created concern

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer at NETL Carbon capture, quantum mechanical simulations, integrated gasification, and clean power: words like these instill enthusiasm in National Energy Technology Laboratory (NETL) in-house researchers because they describe the future of energy. And, as technology transfer professionals who gather cutting-edge inventions to present a wide energy research portfolio, we find the excitement contagious. Facilities and Capabilities As a federal laboratory, we welcome the

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Figure 1. Predicted spill trajectory 40 days after a hypothetical blowout and the predicted location of beached oil as a result of this hypothetical spill. NETL's Blowout and Spill Occurrence Model (BLOSOM) Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) has created an integrated data and modeling system to support DOE's mission to produce science-based evaluations of engineered and natural systems to ensure sustainable, environmentally responsible

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kelly Rose Principal Investigator Research Scientist 541-967-5883 kelly.rose@netl.doe.gov Jennifer Bauer Geospatial Researcher 541-918-4507 jennifer.bauer@netl.doe.gov Jamie Brown Associate Director 304-285-5428 jamie.brown@netl.doe.gov Grant Bromhal Acting Senior Fellow 304-285-4688 grant.bromhal@netl.doe.gov Cynthia Powell Executive Director 541-967-5803 cynthia.powell@netl.doe.gov GAIA LOCATIONS Albany, Oregon Building 1, Room 315 541-918-4507 Building 28, Room 155 541-967-5964 Morgantown,

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pre-combustion Solvents for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical compo- nent of realistic strategies for arresting the rise in atmospheric CO 2 concentrations, but capturing substantial amounts of CO 2 using current technology would result in a pro- hibitive rise in the cost of producing energy. In high-pressure CO 2 -containing streams, such as those found in coal gasification processes, one well-established approach to removing

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Post-combustion Membranes for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical component of realistic strategies for arresting the rise in atmospheric CO 2 concentrations, but capturing substantial amounts of CO 2 using current technology would result in a prohibitive rise in the cost of producing energy. The National Energy Technology Laboratory (NETL) is pursuing a multi-faceted approach, which leverages cutting-edge research facilities,

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kelly Rose Principal Investigator Research Scientist 541-967-5883 kelly.rose@netl.doe.gov Jennifer Bauer Geospatial Researcher 541-918-4507 jennifer.bauer@contr.netl.doe.gov Jamie Brown Associate Director 304-285-5428 jamie.brown@netl.doe.gov Grant Bromhal Acting Senior Fellow 304-285-4688 grant.bromhal@netl.doe.gov Cynthia Powell Executive Director 541-967-5803 cynthia.powell@netl.doe.gov RESEARCH PARTNERS AECOM Oak Ridge Institute for Science and Education (ORISE) Oregon State University

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensors and Control CONTACTS OFFICE OF RESEARCH AND DEVELOPMENT Steven Woodruff Principal Investigator 304-285-4175 steven.woodruff@netl.doe.gov Benjamin Chorpening Research Mechanical Engineer 304-285-4673 benjamin.chorpening@netl.doe.gov Michael Buric Research Scientist/Engineer 304-285-2052 michael.buric@netl.doe.gov George Richards Focus Area Lead 304-285-4458 george.richards@netl.doe.gov Raman Gas Analyzer for Natural Gas and Syngas Applications Goal The goal of this project is to develop

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry and Surface Science CONTACTS OFFICE OF RESEARCH AND DEVELOPMENT Madhava Syamlal Focus Area Lead Computational Science and Engineering 304-285-4685 madhava.syamlal@netl.doe.gov Computational Chemistry Research in Support of Future Energy Technologies Background Development of efficient future technologies for energy production with zero carbon emissions based on the use of fossil fuels or novel renewable resources is highly dependent on solving a large number of individual break-through

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subsurface Experimental Laboratories Autoclave and Core Flow Test Facilities Description Researchers at the National Energy Technology Laboratory (NETL) study subsurface systems to better characterize and understand gas-fluid-rock and material inter- actions that impact environmental and resource issues related to oil, gas, and CO2 storage development. However, studying the wide variety of subsurface environments related to hydrocarbon and CO2 systems requires costly and technically challenging

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The NETL SuperComputer Introduction The National Energy Technology Laboratory (NETL) is home to Joule-one of the world's largest high-performance computers-along with advanced visualization centers serving the organization's research and development needs. Supercomputing provides the foundation of NETL's research efforts on behalf of the Department of Energy, and NETL maintains supercomputing capabilities to effectively support its research to meet DOE's Fossil Energy goals. Supercomputing

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Southwestern United States Carbon Sequestration Training Center Background The focus of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2025 and 2035. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO 2 ) to reduce

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO 2 Geological Storage: Coupled Hydro- Chemo-Thermo-Mechanical Phenomena- From Pore-Scale Processes to Macroscale Implications Background The focus of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2025 and 2035. Research conducted to develop these technologies will ensure safe

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Joshua Hull Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-0906 joshua.hull@netl.doe.gov Dr. Brenda Bowen Principal Investigator Associate Director, Global Change and Sustainability Center Associate Research Professor, Geology and Geophysics

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea McNemar Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-2024 andrea.mcnemar@netl.doe.gov Ruben Juanes Principal Investigator Massachusetts Institute of Technology 77 Massachusetts Avenue Room 48-319 Cambridge, MA 02139

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-1345 traci.rodosta@netl.doe.gov Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Marte Gutierrez Principal Investigator Colorado School of Mines 1600 Illinois Street Golden, CO 80401 303-273-3468 Fax: 303-273-3602

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Analysis of CO2 Exposed Wells to Predict Long Term Leakage through the Development of an Integrated Neural-Genetic Algorithm Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Southwest Regional Partnership Farnsworth Unit EOR Field Project - Development Phase Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The purpose of these partnerships is to determine the best regional approaches for permanently storing carbon dioxide (CO 2 ) in geologic formations. Each RCSP includes stakeholders comprised of state and local agencies, private companies, electric utilities, universities, and

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O G R A M FAC T S Strategic Center for Natural Gas & Oil CONTACTS Roy Long Offshore Technology Manager Strategic Center for Natural Gas & Oil 281-494-2520 roy.long@netl.doe.gov Kelly Rose Offshore Technical Portfolio Lead Office of Research and Development 541-967-5883 kelly.rose@netl.doe.gov William Fincham Project Manager Natural Gas & Oil Project Management Division 304-285-4268 william.fincham@netl.doe.govv Jared Ciferno Director Strategic Center for Natural Gas & Oil

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Bruce Brown Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7313 bruce.brown@netl.doe.gov Kathryn Baskin Principal Investigator Managing Director Southern States Energy Board 6325 Amherst Court Norcross, GA 30092 770-242-7712 baskin@sseb.org PARTNERS