National Library of Energy BETA

Sample records for worn pipe insulation

  1. Aerogel Impregnated Polyurethane Piping and Duct Insulation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aerogel Impregnated Polyurethane Piping and Duct Insulation David M. Hess InnoSense LLC david.hess@innosense.us, 310-530-2011 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Develop an efficient insulation system that will adhere to housing duct work and pipe structures while conforming to complex geometries. New insulations must increase the R-value of existing materials and be easy to apply or retrofit to existing structures. Impact of

  2. Savings Project: Insulate Hot Water Pipes for Energy Savings | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Hot Water Pipes for Energy Savings Savings Project: Insulate Hot Water Pipes for Energy Savings Addthis Project Level Medium Energy Savings $8-$12 annually Time to Complete 3 hours for a small house Overall Cost $10-$15 Insulating water pipes can save you water, energy, and money. | Photo courtesy of iStockphoto.com/nsj-images Insulating water pipes can save you water, energy, and money. | Photo courtesy of iStockphoto.com/nsj-images Insulating your hot water pipes reduces heat

  3. Heat transfer model of above and underground insulated piping systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Conference) | SciTech Connect Heat transfer model of above and underground insulated piping systems Citation Details In-Document Search Title: Heat transfer model of above and underground insulated piping systems × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science

  4. Aerogel Impregnated Polyurethane Piping and Duct Insulation | Department of

    Energy Savers [EERE]

    Energy Aerogel Impregnated Polyurethane Piping and Duct Insulation Aerogel Impregnated Polyurethane Piping and Duct Insulation Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review PDF icon emrgtech28_hess_040413.pdf More Documents & Publications WICF Certification, Compliance and Enforcement webinar New Code Compliance Briefs Assist in Resolving Codes and Standards Concerns in Energy Innovations Building America Best Practices Series: Volume 12.

  5. A comparative examination of the fire performance of pipe insulation

    SciTech Connect (OSTI)

    Babrauskas, V.

    1996-12-31

    A standard method for evaluating the fire performance of pipe insulation is not available in North America. In Europe, however, the regional standards organization NORDTEST has had available for several years now a method specifically designed for this purpose. The NORDTEST NT FIRE 036 test is a full-scale room fire test where the pipe insulation is installed along the ceiling and subjected to a gas burner fire. Four classes of performance (Class I through III, plus unrated) are used to evaluate the products. In the present work, 4 different pipe insulation products, representing the most common materials used for this purpose, have been examined according to this test. The results showed that rock wool insulation gave the best fire performance, with phenolic foam being in the least safe rated category. Synthetic foam rubber and polyethylene insulation products gave intermediate performance. 12 refs., 3 figs., 11 tabs.

  6. BOA: Asbestos pipe insulation removal robot system. Phase 1

    SciTech Connect (OSTI)

    Schempf, H.; Bares, J.E.

    1995-02-01

    The project described in this report targets the development of a mechanized system for safe, cost-efficient and automated abatement of asbestos containing materials used as pipe insulation. Based on several key design criteria and site visits, a proof-of-concept prototype robot system, dubbed BOA, was designed and built, which automatically strips the lagging and insulation from the pipes, and encapsulates them under complete vacuum operation. The system can operate on straight runs of piping in horizontal or vertical orientations. Currently we are limited to four-inch diameter piping without obstacles as well as a somewhat laborious emplacement and removal procedure -- restrictions to be alleviated through continued development. BOA removed asbestos at a rate of 4-5 ft./h compared to 3 ft./h for manual removal of asbestos with a 3-person crew. The containment and vacuum system on BOA was able to achieve the regulatory requirement for airborne fiber emissions of 0.01 fibers/ccm/ 8-hr. shift. This program consists of two phases. The first phase was completed and a demonstration was given to a review panel, consisting of DOE headquarters and site representatives as well as commercial abatement industry representatives. Based on the technical and programmatic recommendations drafted, presented and discussed during the review meeting, a new plan for the Phase II effort of this project was developed. Phase 11 will consist of a 26-month effort, with an up-front 4-month site-, market-, cost/benefit and regulatory study before the next BOA robot (14 months) is built, and then deployed and demonstrated (3 months) at a DOE site (such as Fernald or Oak Ridge) by the beginning of FY`97.

  7. BOA: Asbestos pipe-insulation removal robot system, Phase 2. Topical report, January--June 1995

    SciTech Connect (OSTI)

    Schempf, H.; Bares, J.E.

    1995-06-01

    This report explored the regulatory impact and cost-benefit of a robotic thermal asbestos pipe-insulation removal system over the current manual abatement work practice. The authors are currently in the second phase of a two-phase program to develop a robotic asbestos abatement system, comprised of a ground-based support system (including vacuum, fluid delivery, computing/electronics/power, and other subsystems) and several on-pipe removal units, each sized to handle pipes within a given diameter range. The intent of this study was to (i) aid in developing design and operational criteria for the overall system to maximize cost-efficiency, and (ii) to determine the commercial potential of a robotic pipe-insulation abatement system.

  8. Effect of pipe insulation losses on a loss-of-heat sink accident for an LMR

    SciTech Connect (OSTI)

    Horak, W.C.; Guppy, J.G.; Wood, P.M.

    1985-01-01

    The efficacy of pipe radiation losses as a heat sink during LOHS in a loop-type LMR plant is investigated. The Super System Code (SSC), which was modified to include pipe radiation losses, was used to simulate such an LOHS in an LMR plant. In order to enhance these losses, the pipes were assumed to be insulated by rock wool, a material whose thermal conductivity increases with increasing temperature. A transient was simulated for a total of eight days, during which the coolant temperatures peaked well below saturation conditions and then declined steadily. The coolant flow rate in the loop remained positive throughout the transient.

  9. BOA: Asbestos pipe-insulation removal robot system. Phase I. Topical report, November 1993--December 1994

    SciTech Connect (OSTI)

    Schempf, H.; Bares, J.E.

    1995-01-01

    Based on several key design criteria and site visits, we developed a Robot design and built a system which automatically strips the lagging and insulation from the pipes, and encapsulates them under complete vacuum operation. The system can operate on straight runs of piping in horizontal or vertical orientations. Currently we are limited to four-inch diameter piping without obstacles as well as a somewhat laborious emplacement and removal procedure. Experimental results indicated that the current robotic abatement process is sound yet needs to be further expanded and modified. One of the main discoveries was that a longitudinal cut to fully allow the paddles to dig in and compress the insulation off the pipe is essential. Furthermore, a different cutting method might be explored to alleviate the need for a deeper cut and to enable a combination of certain functions such as compression and cutting. Unfortunately due to a damaged mechanism caused by extensive testing, we were unable to perform vertical piping abatement experiments, but foresee no trouble in implementing them in the next proposed Phase. Other encouraging results have BOA removing asbestos at a rate of 4-5 ft./h compared to 3 ft./h for manual removal of asbestos with a 3-person crew. However, we feel confident that we can double the asbestos removal rate by improving cutting speed, and increasing the length of the BOA robot. The containment and vacuum system on BOA is able to achieve the regulatory requirement for airborne fiber emissions of 0.01 fibers/ccm/8-hr. shift. Currently, BOA weighs about 117 pounds which is more than a human is permitted to lift overhead under OSHA requirements (i.e., 25 pounds). We are considering designing the robot into two components (i.e., locomotor section and cutter/removal section) to aid human installation as well as incorporating composite materials. A more detailed list of all the technical modifications is given in this topical report.

  10. Development and Application of Insulated Drill Pipe for High Temperature, High Pressure Drilling

    SciTech Connect (OSTI)

    Tom Champness; Tony Worthen; John Finger

    2008-12-31

    This project aimed to extend the insulated drill pipe (IDP) technology already demonstrated for geothermal drilling to HTHP drilling in deep gas reservoirs where temperatures are high enough to pose a threat to downhole equipment such as motors and electronics. The major components of the project were: a preliminary design; a market survey to assess industry needs and performance criteria; mechanical testing to verify strength and durability of IDP; and development of an inspection plan that would quantify the ability of various inspection techniques to detect flaws in assembled IDP. This report is a detailed description of those activities.

  11. Foam insulated transfer line test report

    SciTech Connect (OSTI)

    Squier, D.M.

    1994-06-01

    Miles of underground insulated piping will be installed at the Hanford site to transfer liquid waste. Significant cost savings may be realized by using pre-fabricated polyurethane foam insulated piping. Measurements were made on sections of insulated pipe to determine the insulation`s resistance to axial expansion of the pipe, the force required to compress the foam in the leg of an expansion loop and the time required for heat up and cool down of a buried piping loop. These measurements demonstrated that the peak axial force increases with the amount of adhesion between the encasement pipe and the insulation. The compressive strength of the foam is too great to accommodate the thermal growth of long straight pipe sections into the expansion loops. Mathematical models of the piping system`s thermal behavior can be refined by data from the heated piping loop.

  12. Aerogel-Based Insulation for Industrial Steam Distribution Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Aerogel-Based Insulation for Industrial Steam Distribution Systems Aerogel-Based Insulation for Industrial Steam Distribution Systems New Efficient Insulation for Pipes Allows for the Use of Less Material with High-Temperature Durability Thermal loss through steam distribution systems is a significant source of wasted energy in the U.S. industrial sector. Traditional pipe insulation employs mineral wool, fiberglass, calcium silicate, perlite, and various foams. Annular

  13. Hot Leg Piping Materials Issues

    SciTech Connect (OSTI)

    V. Munne

    2006-07-19

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the space nuclear power plant (SNPP) for Project Prometheus (References a and b) the reactor outlet piping was recognized to require a design that utilizes internal insulation (Reference c). The initial pipe design suggested ceramic fiber blanket as the insulation material based on requirements associated with service temperature capability within the expected range, very low thermal conductivity, and low density. Nevertheless, it was not considered to be well suited for internal insulation use because its very high surface area and proclivity for holding adsorbed gases, especially water, would make outgassing a source of contaminant gases in the He-Xe working fluid. Additionally, ceramic fiber blanket insulating materials become very friable after relatively short service periods at working temperatures and small pieces of fiber could be dislodged and contaminate the system. Consequently, alternative insulation materials were sought that would have comparable thermal properties and density but superior structural integrity and greatly reduced outgassing. This letter provides technical information regarding insulation and materials issues for the Hot Leg Piping preconceptual design developed for the Project Prometheus space nuclear power plant (SNPP).

  14. Wall Insulation

    SciTech Connect (OSTI)

    2000-10-01

    This fact sheet provides information on advanced wall framing, including insulating walls, airtight construction, and moisture control.

  15. Pipe connector

    DOE Patents [OSTI]

    Sullivan, Thomas E. (Evergreen Park, IL); Pardini, John A. (Brookfield, IL)

    1978-01-01

    A safety test facility for testing sodium-cooled nuclear reactor components includes a reactor vessel and a heat exchanger submerged in sodium in the tank. The reactor vessel and heat exchanger are connected by an expansion/deflection pipe coupling comprising a pair of coaxially and slidably engaged tubular elements having radially enlarged opposed end portions of which at least a part is of spherical contour adapted to engage conical sockets in the ends of pipes leading out of the reactor vessel and in to the heat exchanger. A spring surrounding the pipe coupling urges the end portions apart and into engagement with the spherical sockets. Since the pipe coupling is submerged in liquid a limited amount of leakage of sodium from the pipe can be tolerated.

  16. Compact vacuum insulation embodiments

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  17. Compact vacuum insulation

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  18. Compact vacuum insulation

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

    1993-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  19. Compact vacuum insulation embodiments

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

    1992-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  20. Slab Insulation

    SciTech Connect (OSTI)

    2000-12-01

    Fact sheet for homeowners and contractors on how to insulate slab-on-grade floors and control moisture, air leakage, termites, and radon.

  1. Pipe overpack container for trasuranic waste storage and shipment

    DOE Patents [OSTI]

    Geinitz, Richard R. (Arvada, CO); Thorp, Donald T. (Broomfield, CO); Rivera, Michael A. (Boulder, CO)

    1999-01-01

    A Pipe Overpack Container for transuranic waste storage and shipment. The system consists of a vented pipe component which is positioned in a vented, insulated 55 gallon steel drum. Both the vented pipe component and the insulated drum are capable of being secured to prevent the contents from leaving the vessel. The vented pipe component is constructed of 1/4 inch stainless steel to provide radiation shielding. Thus, allowing shipment having high Americium-241 content. Several Pipe Overpack Containers are then positioned in a type B, Nuclear Regulatory Commission (NRC) approved, container. In the current embodiment, a TRUPACT-II container was employed and a maximum of fourteen Pipe Overpack Containers were placed in the TRUPACT-II. The combination received NRC approval for the shipment and storage of transuranic waste.

  2. Install Removable Insulation on Valves and Fittings, Energy Tips: STEAM, Steam Tip Sheet #17 (Fact Sheet), Advanced Manufacturing Office (AMO), Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 Install Removable Insulation on Valves and Fittings During maintenance, the insulation that covers pipes, valves, and fttings is often dam- aged or removed and not replaced. Pipes, valves, and fttings that are not insulated can be safety hazards and sources of heat loss. Removable and reusable insulating pads are available to cover almost any surface. The pads are made of a noncombustible inside cover, insulation material, and a noncombustible outside cover that resists tears and abrasion.

  3. Industrial Strength Pipes

    Energy Science and Technology Software Center (OSTI)

    2006-01-23

    Industrial Strength Pipes (ISP) is a toolkit for construction pipeline applications using the UNIX pipe and filter model.

  4. Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation Insulation Where to Insulate Where to Insulate Learn where to insulate in a home to save money and improve comfort. Read more Insulation Insulation Get the facts about how insulation works. Read more Moisture Control Moisture Control Learn how to control moisture in your home to improve the effectiveness of your insulation and air sealing strategies. Read more You can reduce your home's heating and cooling costs through proper insulation and air sealing techniques. These techniques

  5. Ultrasonic pipe assessment

    DOE Patents [OSTI]

    Thomas, Graham H.; Morrow, Valerie L.; Levie, Harold; Kane, Ronald J.; Brown, Albert E.

    2003-12-23

    An ultrasonic pipe or other structure assessment system includes an ultrasonic transducer positioned proximate the pipe or other structure. A fluid connection between the ultrasonic transducer and the pipe or other structure is produced. The ultrasonic transducer is moved relative to the pipe or other structure.

  6. Flexible ocean upwelling pipe

    DOE Patents [OSTI]

    Person, Abraham (Los Alamitos, CA)

    1980-01-01

    In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

  7. Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherize » Insulation Insulation Spray foam insulation fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSEC/IBACOS. Spray foam insulation fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSEC/IBACOS. Foam core structural insulated panels are built in a factory, shipped to the jobsite, and assembled. | Photo courtesy of Michael Baechler. Foam core structural insulated panels are built in a

  8. Reusable pipe flange covers

    DOE Patents [OSTI]

    Holden, James Elliott (Simpsonville, SC); Perez, Julieta (Houston, TX)

    2001-01-01

    A molded, flexible pipe flange cover for temporarily covering a pipe flange and a pipe opening includes a substantially round center portion having a peripheral skirt portion depending from the center portion, the center portion adapted to engage a front side of the pipe flange and to seal the pipe opening. The peripheral skirt portion is formed to include a plurality of circumferentially spaced tabs, wherein free ends of the flexible tabs are formed with respective through passages adapted to receive a drawstring for pulling the tabs together on a back side of the pipe flange.

  9. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Print Wednesday, 26 January 2011 00:00 Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a...

  10. New pipe-lay method proposed for under water

    SciTech Connect (OSTI)

    Not Available

    1980-03-31

    The ''ice-hole bottom pull'' technique of pipelaying, developed by Polar Gas Ltd. for the laying of pipe across M'Clure Strait between Melville and Victoria Islands, Can., since the ice at some points is too thick to allow installation of a continuous trench, is described in detail, including the drilling of holes 2 km apart and insulating them to prevent refreezing; pulling the pipe from hole to hole via a series of increasingly heavy cables; undersea welding of the pipe after it is pulled into place; and the need to lay pipe in a tunnel at least 45 m below the sea bottom near shore and in other areas subject to ice scour, where the pipe could be damaged by exceptionally thick ice.

  11. Multiple density layered insulator

    DOE Patents [OSTI]

    Alger, T.W.

    1994-09-06

    A multiple density layered insulator for use with a laser is disclosed which provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation. 4 figs.

  12. Multiple density layered insulator

    DOE Patents [OSTI]

    Alger, Terry W. (Tracy, CA)

    1994-01-01

    A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

  13. Calcium silicate insulation structure

    DOE Patents [OSTI]

    Kollie, Thomas G. (Oak Ridge, TN); Lauf, Robert J. (Oak Ridge, TN)

    1995-01-01

    An insulative structure including a powder-filled evacuated casing utilizes a quantity of finely divided synthetic calcium silicate having a relatively high surface area. The resultant structure-provides superior thermal insulating characteristics over a broad temperature range and is particularly well-suited as a panel for a refrigerator or freezer or the insulative barrier for a cooler or a insulated bottle.

  14. Tips: Insulation | Department of Energy

    Energy Savers [EERE]

    Tips: Insulation Tips: Insulation Where to insulate. Adding insulation in the areas shown here may be the best way to improve your home's energy efficiency. Insulate either the attic floor or under the roof. Check with a contractor about crawl space or basement insulation. Where to insulate. Adding insulation in the areas shown here may be the best way to improve your home's energy efficiency. Insulate either the attic floor or under the roof. Check with a contractor about crawl space or

  15. Tips: Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation Tips: Insulation Where to insulate. Adding insulation in the areas shown here may be the best way to improve your home's energy efficiency. Insulate either the attic floor or under the roof. Check with a contractor about crawl space or basement insulation. Where to insulate. Adding insulation in the areas shown here may be the best way to improve your home's energy efficiency. Insulate either the attic floor or under the roof. Check with a contractor about crawl space or basement

  16. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, Donald M. (Leola, PA)

    1984-10-23

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  17. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, D.M.

    1984-10-23

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  18. Internal pipe attachment mechanism

    DOE Patents [OSTI]

    Bast, Richard M. (Livermore, CA); Chesnut, Dwayne A. (Pleasanton, CA); Henning, Carl D. (Livermore, CA); Lennon, Joseph P. (Livermore, CA); Pastrnak, John W. (Livermore, CA); Smith, Joseph A. (Livermore, CA)

    1994-01-01

    An attachment mechanism for repairing or extending fluid carrying pipes, casings, conduits, etc. utilizing one-way motion of spring tempered fingers to provide a mechanical connection between the attachment mechanism and the pipe. The spring tempered fingers flex to permit insertion into a pipe to a desired insertion depth. The mechanical connection is accomplished by reversing the insertion motion and the mechanical leverage in the fingers forces them outwardly against the inner wall of the pipe. A seal is generated by crushing a sealing assembly by the action of setting the mechanical connection.

  19. Pipe crawler apparatus

    DOE Patents [OSTI]

    Hovis, Gregory L.; Erickson, Scott A.; Blackmon, Bruce L.

    2002-01-01

    A pipe crawler apparatus particularly useful for 3-inch and 4-inch diameter pipes is provided. The pipe crawler apparatus uses a gripping apparatus in which a free end of a piston rod is modified with a bearing retaining groove. Bearings, placed within the groove, are directed against a camming surface of three respective pivoting support members. The non-pivoting ends of the support members carry a foot-like gripping member that, upon pivoting of the support member, engages the interior wall of the pipe.

  20. Internal pipe attachment mechanism

    DOE Patents [OSTI]

    Bast, R.M.; Chesnut, D.A.; Henning, C.D.; Lennon, J.P.; Pastrnak, J.W.; Smith, J.A.

    1994-12-13

    An attachment mechanism is described for repairing or extending fluid carrying pipes, casings, conduits, etc. utilizing one-way motion of spring tempered fingers to provide a mechanical connection between the attachment mechanism and the pipe. The spring tempered fingers flex to permit insertion into a pipe to a desired insertion depth. The mechanical connection is accomplished by reversing the insertion motion and the mechanical leverage in the fingers forces them outwardly against the inner wall of the pipe. A seal is generated by crushing a sealing assembly by the action of setting the mechanical connection. 6 figures.

  1. Insulating polymer concrete

    DOE Patents [OSTI]

    Schorr, H. Peter (Douglaston, NY); Fontana, Jack J. (Shirley, NY); Steinberg, Meyer (Melville, NY)

    1987-01-01

    A lightweight insulating polymer concrete formed from a lightweight closed cell aggregate and a water resistance polymeric binder.

  2. Extendable pipe crawler

    DOE Patents [OSTI]

    Hapstack, Mark (North Augusta, SC)

    1991-01-01

    A pipe crawler having a front leg assembly and a back leg assembly connected together by two air cylinders, each leg assembly having four extendable legs and a pair of actuators for sliding the extendable legs radially outward to increase the range of the legs when the pipe crawler enters a section of a pipe having a larger diameter. The crawler crawls by "inchworm"-like motion, the front leg assembly and back leg assembly alternately engaging and disengaging the wall of the pipe to hold the pipe crawler as the air cylinders alternately advance the front leg assembly and bring up the rear leg assembly. The pair of actuators of each leg assembly are parallel, adjacent and opposing acting so that each slides two adjacent extendable legs radially outward.

  3. Extendable pipe crawler

    DOE Patents [OSTI]

    Hapstack, M.

    1991-05-28

    A pipe crawler is described having a front leg assembly and a back leg assembly connected together by two air cylinders, each leg assembly having four extendable legs and a pair of actuators for sliding the extendable legs radially outward to increase the range of the legs when the pipe crawler enters a section of a pipe having a larger diameter. The crawler crawls by inchworm'-like motion, the front leg assembly and back leg assembly alternately engaging and disengaging the wall of the pipe to hold the pipe crawler as the air cylinders alternately advance the front leg assembly and bring up the rear leg assembly. The pair of actuators of each leg assembly are parallel, adjacent and opposing acting so that each slides two adjacent extendable legs radially outward. 5 figures.

  4. Insulate Steam Distribution and Condensate Return Lines, Energy Tips: STEAM, Steam Tip Sheet #2 (Fact Sheet), Advanced Manufacturing Office (AMO), Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Insulate Steam Distribution and Condensate Return Lines Uninsulated steam distribution and condensate return lines are a constant source of wasted energy. The table shows typical heat loss from uninsulated steam distribution lines. Insulation can typically reduce energy losses by 90% and help ensure proper steam pressure at plant equipment. Any surface over 120°F should be insulated, including boiler surfaces, steam and condensate return piping, and fttings. Insulation frequently becomes

  5. Aerogel-Based Insulation for Industrial Steam Distribution Systems

    SciTech Connect (OSTI)

    John Williams

    2011-03-30

    Thermal losses in industrial steam distribution systems account for 977 trillion Btu/year in the US, more than 1% of total domestic energy consumption. Aspen Aerogels worked with Department of Energys Industrial Technologies Program to specify, develop, scale-up, demonstrate, and deliver Pyrogel XT, an aerogel-based pipe insulation, to market to reduce energy losses in industrial steam systems. The product developed has become Aspens best selling flexible aerogel blanket insulation and has led to over 60 new jobs. Additionally, this product has delivered more than ~0.7 TBTU of domestic energy savings to date, and could produce annual energy savings of 149 TBTU by 2030. Pyrogel XTs commercial success has been driven by its 2-4X better thermal performance, improved durability, greater resistance to corrosion under insulation (CUI), and faster installation times than incumbent insulation materials.

  6. Flexible ultrasonic pipe inspection apparatus

    DOE Patents [OSTI]

    Jenkins, C.F.; Howard, B.D.

    1994-01-01

    Pipe crawlers, pipe inspection {open_quotes}rabbits{close_quotes} and similar vehicles are widely used for inspecting the interior surfaces of piping systems, storage tanks and process vessels for damaged or flawed structural features. This paper describes the design of a flexible, modular ultrasonic pipe inspection apparatus.

  7. AutoPIPE Extract Program

    Energy Science and Technology Software Center (OSTI)

    1993-07-02

    The AutoPIPE Extract Program (APEX) provides an interface between CADAM (Computer Aided Design and Manufacturing) Release 21 drafting software and the AutoPIPE, Version 4.4, piping analysis program. APEX produces the AutoPIPE batch input file that corresponds to the piping shown in a CADAM model. The card image file contains header cards, material cards, and pipe cross section cards as well as tee, bend, valve, and flange cards. Node numbers are automatically generated. APEX processes straightmore » pipe, branch lines and ring geometries.« less

  8. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Superconducting Topological Insulators Print Wednesday, 26 January 2011 00:00 Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual

  9. Vacuum Insulation for Windows

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lin Simpson, lin.simpson@nrel.gov National Renewable Energy Laboratory Vacuum Insulation for Windows 2014 Building Technologies Office Peer Review Picture of NREL's transparent vacuum insulation for windows. The picture demonstrates that the evacuated components are transparent while providing superior insulation in a flexible structure that can be retrofitted to installed windows. 2 Project Summary New Competively Selected Award FOA 823 Initial TRL: laboratory validation and development

  10. Loose-fill insulations

    SciTech Connect (OSTI)

    1995-05-01

    Whether you are increasing the insulation levels in your current home or selecting insulation for a new home, choosing the right insulation material can be challenging. Fibrous loose-fill insulations such as cellulose, fiberglass, and rock wool are options you may wish to consider. This publication will introduce you to these materials--what they are, how they are applied, how they compare with each other, and other considerations regarding their use--so that you can decide whether loose fills are right for your home.

  11. Miniature pipe crawler tractor

    DOE Patents [OSTI]

    McKay, Mark D. (Idaho Falls, ID); Anderson, Matthew O. (Idaho Falls, ID); Ferrante, Todd A. (Westerville, OH); Willis, W. David (Idaho Falls, ID)

    2000-01-01

    A pipe crawler tractor may comprise a half tractor assembly having a first base drive wheel, a second base drive wheel, and a top drive wheel. The drive wheels are mounted in spaced-apart relation so that the top drive wheel is positioned between the first and second base drive wheels. The mounting arrangement is also such that the first and second base drive wheels contact the inside surface of the pipe at respective first and second positions and so that the top drive wheel contacts the inside surface of the pipe at a third position, the third position being substantially diametrically opposed to the first and second positions. A control system connected to the half tractor assembly controls the rotation of the first base wheel, the second base wheel, and the top drive wheel to move the half tractor assembly within the pipe.

  12. Freezable heat pipe

    DOE Patents [OSTI]

    Ernst, Donald M. (Leola, PA); Sanzi, James L. (Lancaster, PA)

    1981-02-03

    A heat pipe whose fluid can be repeatedly frozen and thawed without damage to the casing. An additional part is added to a conventional heat pipe. This addition is a simple porous structure, such as a cylinder, self-supporting and free standing, which is dimensioned with its diameter not spanning the inside transverse dimension of the casing, and with its length surpassing the depth of maximum liquid.

  13. Gas insulated transmission line with insulators having field controlling recesses

    DOE Patents [OSTI]

    Cookson, Alan H. (Pittsburgh, PA); Pederson, Bjorn O. (Chelmsford, MA)

    1984-01-01

    A gas insulated transmission line having a novel insulator for supporting an inner conductor concentrically within an outer sheath. The insulator has a recess contiguous with the periphery of one of the outer and inner conductors. The recess is disposed to a depth equal to an optimum gap for the dielectric insulating fluid used for the high voltage insulation or alternately disposed to a large depth so as to reduce the field at the critical conductor/insulator interface.

  14. Insulation Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Insulation Materials Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Blown-in fiberglass

  15. Insulation Materials | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    as rigid boards and duct insulation. Manufacturers now produce medium- and high-density fiberglass batt insulation products that have slightly higher R-values than the...

  16. Wedgethread pipe connection

    DOE Patents [OSTI]

    Watts, John D.

    2003-06-17

    Several embodiments of a wedgethread pipe connection are disclosed that have improved makeup, sealing, and non-loosening characteristics. In one embodiment, an open wedgethread is disclosed that has an included angle measured in the gap between the stab flank and the load flank to be not less than zero, so as to prevent premature wedging between mating flanks before the position of full makeup is reached, as does occur between trapped wedgethreads wherein the included angle is less than zero. The invention may be used for pipe threads large or small, as a flush joint, with collars, screwed into plates or it may even be used to reversibly connect such as solid posts to base members where a wide makeup torque range is desired. This Open wedgethread, as opposed to trapped wedgethreads, provides a threaded pipe connection that: is more cost-effective; can seal high pressure gas; can provide selectively a connection strength as high as the pipe strength; assures easy makeup to the desired position of full makeup within a wide torque range; may have a torque strength as high as the pipe torque strength; is easier to manufacture; is easier to gage; and is less subject to handling damage.

  17. Remotely operated pipe connector

    DOE Patents [OSTI]

    Josefiak, Leonard J. (Scotia, NY); Cramer, Charles E. (Guilderford, NY)

    1988-01-01

    An apparatus for remotely assembling and disassembling a Graylock type coctor between a pipe and a closure for the pipe includes a base and a receptacle on the base for the closure. The pipe is moved into position vertically above the closure by a suitable positioning device such that the flange on the pipe is immediately adjacent and concentric with the flange on the closure. A moving device then moves two semicircular collars from a position free of the closure to a position such that the interior cam groove of each collar contacts the two flanges. Finally, a tensioning device automatically allows remote tightening and loosening of a nut and bolt assembly on each side of the collar to cause a seal ring located between the flanges to be compressed and to seal the closure. Release of the pipe and the connector is accomplished in the reverse order. Preferably, the nut and bolt assembly includes an elongate shaft portion on which a removable sleeve is located.

  18. Apparatus for inspecting piping

    DOE Patents [OSTI]

    Zollingger, W. Thor (Martinez, GA); Appel, D. Keith (Aiken, SC); Park, Larry R. (Raleigh, NC)

    1995-01-01

    An inspection rabbit for inspecting piping systems having severe bends therein. The rabbit consists of a flexible, modular body containing a miniaturized eddy current inspection probe, a self-contained power supply for proper operation of the rabbit, an outer surface that allows ease of movement through piping systems and means for transmitting data generated by the inspection device. The body is preferably made of flexible polyvinyl chloride (PVC) tubing or, alternatively, silicone rubber with a shrink wrapping of polytetrafluoroethylene (TEFLON.RTM.). The body is formed to contain the power supply, preferably a plurality of batteries, and a spool of communication wire that connects to a data processing computer external to the piping system.

  19. Composite drill pipe

    DOE Patents [OSTI]

    Leslie, James C. (Fountain Valley, CA); Leslie, II, James C. (Mission Viejo, CA); Heard, James (Huntington Beach, CA); Truong, Liem (Anaheim, CA), Josephson; Marvin (Huntington Beach, CA), Neubert; Hans (Anaheim, CA)

    2008-12-02

    A composite pipe segment is formed to include tapered in wall thickness ends that are each defined by opposed frustoconical surfaces conformed for self centering receipt and intimate bonding contact within an annular space between corresponding surfaces of a coaxially nested set of metal end pieces. The distal peripheries of the nested end pieces are then welded to each other and the sandwiched and bonded portions are radially pinned. The composite segment may include imbedded conductive leads and the axial end portions of the end pieces are shaped to form a threaded joint with the next pipe assembly that includes a contact ring in one pipe assembly pierced by a pointed contact in the other to connect the corresponding leads across the joint.

  20. Apparatus for inspecting piping

    DOE Patents [OSTI]

    Zollingger, W.T.; Appel, D.K.; Park, L.R.

    1995-03-21

    An inspection rabbit is described for inspecting piping systems having severe bends therein. The rabbit consists of a flexible, modular body containing a miniaturized eddy current inspection probe, a self-contained power supply for proper operation of the rabbit, an outer surface that allows ease of movement through piping systems and means for transmitting data generated by the inspection device. The body is preferably made of flexible polyvinyl chloride (PVC) tubing or, alternatively, silicone rubber with a shrink wrapping of polytetrafluoroethylene (TEFLON{trademark}). The body is formed to contain the power supply, preferably a plurality of batteries, and a spool of communication wire that connects to a data processing computer external to the piping system. 6 figures.

  1. Heat pipes and use of heat pipes in furnace exhaust

    DOE Patents [OSTI]

    Polcyn, Adam D. (Pittsburgh, PA)

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  2. Apparatus for moving a pipe inspection probe through piping

    DOE Patents [OSTI]

    Zollinger, W. Thor (Martinez, GA); Appel, D. Keith (Aiken, SC); Lewis, Gregory W. (North Augusta, SC)

    1995-01-01

    A method and apparatus for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher.

  3. Apparatus for moving a pipe inspection probe through piping

    DOE Patents [OSTI]

    Zollinger, W.T.; Appel, D.K.; Lewis, G.W.

    1995-07-18

    A method and apparatus are disclosed for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher. 8 figs.

  4. Insulation fact sheet

    SciTech Connect (OSTI)

    1997-08-01

    Electricity bills, oil bills, gas bills - all homeowners pay for one or more of these utilities, and wish they paid less. Often many of us do not really know how to control or reduce our utility bills. We resign ourselves to high bills because we think that is the price we have to pay for a comfortable home. We encourage our children to turn off the lights and appliances, but may not recognize the benefits of insulating the attic. This publication provides facts relative to home insulation. It discusses where to insulate, what products to use, the decision making process, installation options, and sources of additional information.

  5. Heat pipe array heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY)

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  6. Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSECIBACOS. Spray foam insulation fills the nooks and crannies in the...

  7. Cooper Pairs in Insulators?!

    ScienceCinema (OSTI)

    James Valles

    2010-01-08

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions. 

  8. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly

  9. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly

  10. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly

  11. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly

  12. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly

  13. Insulator for laser housing

    DOE Patents [OSTI]

    Duncan, D.B.

    1992-12-29

    The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member. 3 figs.

  14. Black Mountain Insulation | Open Energy Information

    Open Energy Info (EERE)

    Mountain Insulation Jump to: navigation, search Name: Black Mountain Insulation Place: United Kingdom Sector: Carbon Product: UK-based manufacturer of sheeps wool insulation which...

  15. Types of Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    which saves money. Structural Insulated Panels Structural insulated panels (SIPs) are prefabricated insulated structural elements for use in building walls, ceilings, floors,...

  16. Physical properties of residential insulations

    SciTech Connect (OSTI)

    Yarbrough, D.W.

    1980-01-01

    Research to evaluate properties, test methods and operating environments for thermal insulations used in residences is an important part of the Building Thermal Envelope Systems and Insulating Materials (BTESIM) program sponsored by the US DOE. Three projects were carried out under the Insulating Materials part of BTESIM. The areas discussed are: (1) the thermal performance of mineral fiber insulating batts, (2) the design density for loose-fill insulations, and (3) the operatio of recesses light fixtures covered by loose-fill cellulosic insulation.

  17. Guidable pipe plug

    DOE Patents [OSTI]

    Glassell, Richard L. (Knoxville, TN); Babcock, Scott M. (Farragut, TN); Lewis, Benjamin E. (Farragut, TN)

    2001-01-01

    A plugging device for closing an opening defined by an end of a pipe with sealant comprises a cap, an extension, an inner seal, a guide, and at least one stop. The cap has an inner surface which defines a chamber adapted for retaining the sealant. The chamber is dimensioned slightly larger than the end so as to receive the end. The chamber and end define a gap therebetween. The extension has a distal end and is attached to the inner surface opposite the distal end. The inner seal is attached to the extension and sized larger than the opening. The guide is positioned forward of the inner seal and attached to the distal end. The guide is also dimensioned to be inserted into the opening. The stop is attached to the extender, and when the stop is disposed in the pipe, the stop is movable with respect to the conduit in one direction and also prevents misalignment of the cap with the pipe. A handle can also be included to allow the cap to be positioned robotically.

  18. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

    1988-04-05

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

  19. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

    1991-01-01

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

  20. Vacuum Insulation for Window

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3M#Pres(ge#70# 3M#Pres(ge#90# Glass# on Vacuum I nsula4on for W indow 201 Bu uildin Te echnologie Offi ffic Pe ee Rev vie Pictures of NREL's transparent vacuum insulation for windows. The pictures show that the evacuated components are transparent while providing superior insulation in a flexible structure that can be retrofitted to installed windows. Image of vacuum capsules low-e coated films and glass, after multiple sprayed layers. Lin Simpson, lin.simpson@nrel.gov Na4ona Ren newabl En nerg

  1. Vacuum Bellows, Vacuum Piping, Cryogenic Break, and Copper Joint Failure Rate Estimates for ITER Design Use

    SciTech Connect (OSTI)

    L. C. Cadwallader

    2010-06-01

    The ITER international project design teams are working to produce an engineering design in preparation for construction of the International Thermonuclear Experimental Reactor (ITER) tokamak. During the course of this work, questions have arisen in regard to safety barriers and equipment reliability as important facets of system design. The vacuum system designers have asked several questions about the reliability of vacuum bellows and vacuum piping. The vessel design team has asked about the reliability of electrical breaks and copper-copper joints used in cryogenic piping. Research into operating experiences of similar equipment has been performed to determine representative failure rates for these components. The following chapters give the research results and the findings for vacuum system bellows, power plant stainless steel piping (amended to represent vacuum system piping), cryogenic system electrical insulating breaks, and copper joints.

  2. Tips: Insulation | Department of Energy

    Office of Environmental Management (EM)

    for recommendations. Be careful how close you place insulation next to a recessed light fixture-unless it is insulation contact (IC) rated-to avoid a fire hazard. See the...

  3. High voltage variable diameter insulator

    DOE Patents [OSTI]

    Vanacek, D.L.; Pike, C.D.

    1982-07-13

    A high voltage feedthrough assembly having a tubular insulator extending between the ground plane ring and the high voltage ring. The insulator is made of Pyrex and decreases in diameter from the ground plane ring to the high voltage ring, producing equipotential lines almost perpendicular to the wall of the insulator to optimize the voltage-holding capability of the feedthrough assembly.

  4. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)

    1985-01-01

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

  5. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, J.J.; Owens, W.J.

    1985-04-30

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

  6. Emergency pipe line repair connects subsea pipe lines

    SciTech Connect (OSTI)

    Lerique, M.P.; Thiberge, P. ); Wright, N. )

    1990-11-01

    Emergency repair of any subsea line pipe must form a high-integrity, metal-to-metal seal. This paper presents a remote, diverless repair system that utilizes master flanges, a connector and a spool piece to repair line pipe in deep offshore waters.

  7. Large-bore pipe decontamination

    SciTech Connect (OSTI)

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system.

  8. Vapor spill pipe monitor

    DOE Patents [OSTI]

    Bianchini, G.M.; McRae, T.G.

    1983-06-23

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

  9. Pipe crawler with stabilizing midsection

    DOE Patents [OSTI]

    Zollinger, William T. (Martinez, GA); Treanor, Richard C. (Augusta, GA)

    1994-01-01

    A pipe crawler having a midsection that provides the stability and flexibty to allow the pipe crawler to negotiate curved and uneven segments of piping while traveling through piping systems. The pipe crawler comprises a front leg assembly, a rear leg assembly, a midsection with a gimbal at each end for connecting the midsection to the front and rear leg assemblies in a flexible manner, and an air cylinder for changing the distance between the front and rear leg assemblies. The pipe crawler moves in "inch worm" fashion with the front and rear leg assemblies alternating between an extended and a retracted position as the air cylinder moves the retracted leg assembly forward. The midsection has a plurality of legs extending radially for holding the midsection within a maximum displacement from the piping axis so that the gimbals are not pivoted to extreme angles where they might lock up or seize. When the midsection is displaced sufficiently, its legs with wheels on each end engage the interior surface of the piping and prevent further displacement. Using two gimbals divides the angle between the planes defined by the front and rear leg assemblies which also helps to prevent excessive gimbal pivoting.

  10. Pipe crawler with stabilizing midsection

    DOE Patents [OSTI]

    Zollinger, W.T.; Treanor, R.C.

    1994-12-27

    A pipe crawler is described having a midsection that provides the stability and flexibility to allow the pipe crawler to negotiate curved and uneven segments of piping while traveling through piping systems. The pipe crawler comprises a front leg assembly, a rear leg assembly, a midsection with a gimbal at each end for connecting the midsection to the front and rear leg assemblies in a flexible manner, and an air cylinder for changing the distance between the front and rear leg assemblies. The pipe crawler moves in ''inch worm'' fashion with the front and rear leg assemblies alternating between an extended and a retracted position as the air cylinder moves the retracted leg assembly forward. The midsection has a plurality of legs extending radially for holding the midsection within a maximum displacement from the piping axis so that the gimbals are not pivoted to extreme angles where they might lock up or seize. When the midsection is displaced sufficiently, its legs with wheels on each end engage the interior surface of the piping and prevent further displacement. Using two gimbals divides the angle between the planes defined by the front and rear leg assemblies which also helps to prevent excessive gimbal pivoting. 5 figures.

  11. Flexible ultrasonic pipe inspection apparatus

    DOE Patents [OSTI]

    Jenkins, Charles F. (Aiken, SC); Howard, Boyd D. (Augusta, GA)

    1998-01-01

    A flexible, modular ultrasonic pipe inspection apparatus, comprising a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present.

  12. Promethus Hot Leg Piping Concept

    SciTech Connect (OSTI)

    AM Girbik; PA Dilorenzo

    2006-01-24

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  13. Gas filled panel insulation

    DOE Patents [OSTI]

    Griffith, B.T.; Arasteh, D.K.; Selkowitz, S.E.

    1993-12-14

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation. 18 figures.

  14. Gas filled panel insulation

    DOE Patents [OSTI]

    Griffith, Brent T. (Berkeley, CA); Arasteh, Dariush K. (Oakland, CA); Selkowitz, Stephen E. (Piedmont, CA)

    1993-01-01

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation.

  15. Improved DC Gun Insulator

    SciTech Connect (OSTI)

    M.L. Neubauer, K.B. Beard, R. Sah, C. Hernandez-Garcia, G. Neil

    2009-05-01

    Many user facilities such as synchrotron light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic, creating a buildup of charge and causing eventual puncture. A novel ceramic manufacturing process is proposed. It will incorporate bulk resistivity in the region where it is needed to bleed off accumulated charge caused by highly energetic electrons. This process will be optimized to provide an appropriate gradient in bulk resistivity from the vacuum side to the air side of the HV standoff ceramic cylinder. A computer model will be used to determine the optimum cylinder dimensions and required resistivity gradient for an example RF gun application. A ceramic material example with resistivity gradient appropriate for use as a DC gun insulator will be fabricated by glazing using doping compounds and tested.

  16. High voltage variable diameter insulator

    DOE Patents [OSTI]

    Vanecek, David L. (Martinez, CA); Pike, Chester D. (Pinole, CA)

    1984-01-01

    A high voltage feedthrough assembly (10) having a tubular insulator (15) extending between the ground plane ring (16) and the high voltage ring (30). The insulator (15) is made of Pyrex and decreases in diameter from the ground plane ring (16) to the high voltage ring (30), producing equipotential lines almost perpendicular to the wall (27) of the insulator (15) to optimize the voltage-holding capability of the feedthrough assembly (10).

  17. Insulation Materials | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Insulation and Energy Efficiency Information: Home Energy: The Magazine of Residential Energy Conservation Addthis Related Articles In existing homes, cellulose (here) or other...

  18. Thermal insulations using vacuum panels

    DOE Patents [OSTI]

    Glicksman, Leon R. (Lynnfield, MA); Burke, Melissa S. (Pittsburgh, PA)

    1991-07-16

    Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

  19. Corrugated pipe adhesive applicator apparatus

    DOE Patents [OSTI]

    Shirey, Ray A. (North Grafton, MA)

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe within an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough.

  20. Corrugated pipe adhesive applicator apparatus

    DOE Patents [OSTI]

    Shirey, R.A.

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe with an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough. 4 figs.

  1. Pipe weld crown removal device

    DOE Patents [OSTI]

    Sword, Charles K. (Pleasant Hills, PA); Sette, Primo J. (West Newton, PA)

    1992-01-01

    A device is provided for grinding down the crown of a pipe weld joining aligned pipe sections so that the weld is substantially flush with the pipe sections joined by the weld. The device includes a cage assembly comprising a pair of spaced cage rings adapted to be mounted for rotation on the respective pipe sections on opposite sides of the weld, a plurality of grinding wheels, supported by the cage assembly for grinding down the crown of the weld, and a plurality of support shafts, each extending longitudinally along the joined pipe sections, parallel thereto, for individually mounting respective grinding wheels. Each end of the support shafts is mounted for rotation in a bearing assembly housed within a radially directed opening in a corresponding one of the cage rings so as to provide radial movement of the associated shaft, and thus of the associated grinding wheel, towards and away from the weld. A first drive sprocket provides rotation of the cage assembly around the pipe sections while a second drive unit, driven by a common motor, provides rotation of the grinding wheels.

  2. Automated internal pipe cutting device

    DOE Patents [OSTI]

    Godlewski, William J.; Haffke, Gary S.; Purvis, Dale; Bashar, Ronald W.; Jones, Stewart D.; Moretti, Jr., Henry; Pimentel, James

    2003-01-21

    The invention is a remotely controlled internal pipe cutting device primarily used for cutting pipes where the outside of the pipe is inaccessible at the line where the cut is to be made. The device includes an axial ram within a rotational cylinder which is enclosed in a housing. The housing is adapted for attachment to an open end of the pipe and for supporting the ram and cylinder in cantilever fashion within the pipe. A radially movable cutter, preferably a plasma arc torch, is attached to the distal end of the ram. A drive mechanism, containing motors and mechanical hardware for operating the ram and cylinder, is attached to the proximal end of the housing. The ram and cylinder provide for moving the cutter axially and circumferentially, and a cable assembly attached to a remote motor provide for the movement of the cutter radially, within the pipe. The control system can be adjusted and operated remotely to control the position and movement of the cutter to obtain the desired cut. The control system can also provide automatic standoff control for a plasma arc torch.

  3. Compact vacuum insulation

    DOE Patents [OSTI]

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

  4. Compact vacuum insulation

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  5. Piping inspection round robin

    SciTech Connect (OSTI)

    Heasler, P.G.; Doctor, S.R.

    1996-04-01

    The piping inspection round robin was conducted in 1981 at the Pacific Northwest National Laboratory (PNNL) to quantify the capability of ultrasonics for inservice inspection and to address some aspects of reliability for this type of nondestructive evaluation (NDE). The round robin measured the crack detection capabilities of seven field inspection teams who employed procedures that met or exceeded the 1977 edition through the 1978 addenda of the American Society of Mechanical Engineers (ASME) Section 11 Code requirements. Three different types of materials were employed in the study (cast stainless steel, clad ferritic, and wrought stainless steel), and two different types of flaws were implanted into the specimens (intergranular stress corrosion cracks (IGSCCs) and thermal fatigue cracks (TFCs)). When considering near-side inspection, far-side inspection, and false call rate, the overall performance was found to be best in clad ferritic, less effective in wrought stainless steel and the worst in cast stainless steel. Depth sizing performance showed little correlation with the true crack depths.

  6. Wall Insulation; BTS Technology Fact Sheet

    SciTech Connect (OSTI)

    Southface Energy Institute; Tromly, K.

    2000-11-07

    Properly sealed, moisture-protected, and insulated walls help increase comfort, reduce noise, and save on energy costs. This fact sheet addresses these topics plus advanced framing techniques, insulation types, wall sheathings, and steps for effective wall construction and insulation.

  7. Electrical wire insulation and electromagnetic coil

    DOE Patents [OSTI]

    Bich, George J. (Penn Hills, PA); Gupta, Tapan K. (Monroeville, PA)

    1984-01-01

    An electromagnetic coil for high temperature and high radiation application in which glass is used to insulate the electrical wire. A process for applying the insulation to the wire is disclosed which results in improved insulation properties.

  8. CRAD, Nuclear Facility Construction- Piping and Pipe Supports Inspection- March 29, 2012

    Broader source: Energy.gov [DOE]

    Nuclear Facility Construction - Piping and Pipe Supports Inspection Criteria, Approach and Lines of Inquiry (HSS CRAD 45-52, Rev. 0)

  9. Technology Solutions Case Study: Insulating Concrete Forms

    SciTech Connect (OSTI)

    none,

    2012-10-01

    This Pacific Northwest National Laboratory project investigated insulating concrete formsrigid foam, hollow walls that are filled with concrete for highly insulated, hurricane-resistant construction.

  10. Building America Expert Meeting: Interior Insulation Retrofit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America Expert Meeting: Interior Insulation Retrofit of Mass Masonry Wall Assemblies The Building Science Corporation team held an Expert Meeting on Interior Insulation Retrofit...

  11. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The interior bulk of a topological insulator is an insulator, but electrons (grey spheres) move swiftly on the surface as if through a metal. They are spin polarized,...

  12. Solar Decathlon Technology Spotlight: Structural Insulated Panels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Panels September 20, 2011 - 7:13am Addthis These structural insulated panels consist of foam insulation sandwiched between oriented strand boards. (Courtesy of Michael Bacchler)...

  13. Multiple layer insulation cover

    DOE Patents [OSTI]

    Farrell, James J.; Donohoe, Anthony J.

    1981-11-03

    A multiple layer insulation cover for preventing heat loss in, for example, a greenhouse, is disclosed. The cover is comprised of spaced layers of thin foil covered fabric separated from each other by air spaces. The spacing is accomplished by the inflation of spaced air bladders which are integrally formed in the cover and to which the layers of the cover are secured. The bladders are inflated after the cover has been deployed in its intended use to separate the layers of the foil material. The sizes of the material layers are selected to compensate for sagging across the width of the cover so that the desired spacing is uniformly maintained when the cover has been deployed. The bladders are deflated as the cover is stored thereby expediting the storage process and reducing the amount of storage space required.

  14. Metallization of electronic insulators

    DOE Patents [OSTI]

    Gottesfeld, Shimshon (Los Alamos, NM); Uribe, Francisco A. (Los Alamos, NM)

    1994-01-01

    An electroplated element is formed to include an insulating substrate, a conducting polymer polymerized in situ on the substrate, and a metal layer deposited on the conducting polymer. In one application a circuit board is formed by polymerizing pyrrole on an epoxy-fiberglass substrate in a single step process and then electrodepositing a metal over the resulting polypyrrole polymer. No chemical deposition of the metal is required prior to electroplating and the resulting layer of substrate-polymer-metal has excellent adhesion characteristics. The metal deposition is surprisingly smooth and uniform over the relatively high resistance film of polypyrrole. A continuous manufacturing process is obtained by filtering the solution between successive substrates to remove polymer formed in the solution, by maintaining the solution oxidizing potential within selected limits, and by adding a strong oxidant, such as KMnO.sub.4 at periodic intervals to maintain a low sheet resistivity in the resulting conducting polymer film.

  15. Heat pipe device and heat pipe fabricating process

    SciTech Connect (OSTI)

    Busch, C.H.

    1982-08-10

    An energy saving liquid to liquid heat exchanger for a dishwasher or like device discharging hot waste water comprising a hot water tank for holding the waste water from the dishwasher and having inlet and outlet pipes, a cold water tank for holding the fresh water going to a water heater and having inlet and outlet pipes, the cold water tank disposed on top of the hot water tank, a bundle of heat pipes containing low boiling refrigerant disposed inside of the two tanks so as to extract heat from the hot water tank and give it up to the cold water tank, whereby the temperature of the fresh water leaving the heat exchanger is higher than its entering temperature.

  16. Magnetic refrigeration apparatus with heat pipes

    DOE Patents [OSTI]

    Barclay, J.A.; Prenger, F.C. Jr.

    1985-10-25

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe or pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  17. Magnetic refrigeration apparatus with heat pipes

    DOE Patents [OSTI]

    Barclay, John A. (Los Alamos, NM); Prenger, Jr., F. Coyne (Madison, WI)

    1987-01-01

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe of pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  18. Flexible ultrasonic pipe inspection apparatus

    DOE Patents [OSTI]

    Jenkins, C.F.; Howard, B.D.

    1998-06-23

    A flexible, modular ultrasonic pipe inspection apparatus, comprises a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present. 7 figs.

  19. Pipe crawler with extendable legs

    DOE Patents [OSTI]

    Zollinger, William T. (3927 Almon Dr., Martinez, GA 30907)

    1992-01-01

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler.

  20. Centrally activated pipe snubbing system

    DOE Patents [OSTI]

    Cawley, William E. (Richland, WA)

    1985-01-01

    An electromechanical pipe snubbing system and an electromechanical pipe snubber. In the system, each pipe snubber, in a set of pipe snubbers, has an electromechanical mechanism to lock and unlock the snubber. A sensor, such as a seismometer, measures a quantity related to making a snubber locking or unlocking decision. A control device makes an electrical connection between a power supply and each snubber's electromechanical mechanism to simultaneously lock each snubber when the sensor measurement indicates a snubber locking condition. The control device breaks the connection to simultaneously unlock each snubber when the sensor measurement indicates a snubber unlocking condition. In the snubber, one end of the shaft slides within a bore in one end of a housing. The other end of the shaft is rotatably attached to a pipe; the other end of the housing is rotatively attached to a wall. The snubber's electromechanical mechanism locks the slidable end of the shaft to the housing and unlocks that end from the housing. The electromechanical mechanism permits remote testing and lockup status indication for each snubber.

  1. Pipe crawler with extendable legs

    DOE Patents [OSTI]

    Zollinger, W.T.

    1992-06-16

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs.

  2. "Flexible aerogel as a superior thermal insulation for high temperature superconductor cable applications"

    SciTech Connect (OSTI)

    White, Shannon O. [Aspen Aerogel, Inc.; Demko, Jonathan A [ORNL; Tomich, A. [Aspen Aerogel, Inc.

    2010-01-01

    High temperature superconducting (HTS) cables are an advanced technology that can both strengthen and improve the national electrical distribution infrastructure. HTS cables require sufficient cooling to overcome inherent low temperature heat loading. Heat loads are minimized by the use of cryogenic envelopes or cryostats. Cryostats require improvement in efficiency, reliability, and cost reduction to meet the demanding needs of HTS conductors (1G and 2G wires). Aspen Aerogels has developed a compression resistant aerogel thermal insulation package to replace compression sensitive multi-layer insulation (MLI), the incumbent thermal insulation, in flexible cryostats for HTS cables. Oak Ridge National Laboratory tested a prototype aerogel package in a lab-scale pipe apparatus to measure the rate of heat invasion. The lab-scale pipe test results of the aerogel solution will be presented and directly compared to MLI. A compatibility assessment of the aerogel material with HTS system components will also be presented. The aerogel thermal insulation solution presented will meet the demanding needs of HTS cables.

  3. Geographic Resource Map of Frozen Pipe Probabilities

    Broader source: Energy.gov [DOE]

    Presentation slide details a resource map showing the probability of frozen pipes in the geographic United States.

  4. Solar Decathlon Technology Spotlight: Structural Insulated Panels

    Broader source: Energy.gov [DOE]

    Structural insulated panels (SIPs) are prefabricated structural elements used to build walls, ceilings, floors, and roofs.

  5. Measure Guideline: Basement Insulation Basics

    SciTech Connect (OSTI)

    Aldrich, R.; Mantha, P.; Puttagunta, S.

    2012-10-01

    This guideline is intended to describe good practices for insulating basements in new and existing homes, and is intended to be a practical resources for building contractors, designers, and also to homeowners.

  6. Measure Guideline. Basement Insulation Basics

    SciTech Connect (OSTI)

    Aldrich, R.; Mantha, P.; Puttagunta, S.

    2012-10-01

    This guideline is intended to describe good practices for insulating basements in new and existing homes, and to be a practical resource for building contractors, designers, and also to homeowners.

  7. Analytical and experimental studies of heat pipe radiation cooling of hypersonic propulsion systems

    SciTech Connect (OSTI)

    Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S. ); Silverstein, C.C. )

    1992-01-01

    Preliminary, research-oriented, analytical and experimental studies were completed to assess the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This new approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from an external heat pipe nacelle. For propulsion systems using heat pipe radiation cooling (HPRC), it is possible to continue to use hydrocarbon fuels into the Mach 4 to Mach 6 speed range, thereby enhancing the economic attractiveness of commercial or military hypersonic flight. In the second-phase feasibility program recently completed, we found that heat loads produced by considering both convection and radiation heat transfer from the combustion gas can be handled with HPRC design modifications. The application of thermal insulation to ramburner and nozzle walls was also found to reduce the heat load by about one-half and to reduce peak HPRC system temperatures to below 2700{degrees}F. In addition, the operation of HPRC at cruise conditions of around Mach 4.5 and at an altitude of 90, 000 ft lowers peak hot section temperatures to around 2800{degrees}F. An HPRC heat pipe was successfully fabricated and tested at Mach 5 conditions of heat flux, heat load, and temperature. 24 refs.

  8. Analytical and experimental studies of heat pipe radiation cooling of hypersonic propulsion systems

    SciTech Connect (OSTI)

    Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S.; Silverstein, C.C.

    1992-06-01

    Preliminary, research-oriented, analytical and experimental studies were completed to assess the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This new approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from an external heat pipe nacelle. For propulsion systems using heat pipe radiation cooling (HPRC), it is possible to continue to use hydrocarbon fuels into the Mach 4 to Mach 6 speed range, thereby enhancing the economic attractiveness of commercial or military hypersonic flight. In the second-phase feasibility program recently completed, we found that heat loads produced by considering both convection and radiation heat transfer from the combustion gas can be handled with HPRC design modifications. The application of thermal insulation to ramburner and nozzle walls was also found to reduce the heat load by about one-half and to reduce peak HPRC system temperatures to below 2700{degrees}F. In addition, the operation of HPRC at cruise conditions of around Mach 4.5 and at an altitude of 90, 000 ft lowers peak hot section temperatures to around 2800{degrees}F. An HPRC heat pipe was successfully fabricated and tested at Mach 5 conditions of heat flux, heat load, and temperature. 24 refs.

  9. Variable pressure thermal insulating jacket

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Malecha, Richard F. (Naperville, IL); Chilenskas, Albert A. (Chicago, IL)

    1994-01-01

    A device for controlled insulation of a thermal device. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communcation with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket.

  10. Variable pressure thermal insulating jacket

    DOE Patents [OSTI]

    Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

    1994-09-20

    A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

  11. Fully synthetic taped insulation cables

    DOE Patents [OSTI]

    Forsyth, Eric B. (Brookhaven, NY); Muller, Albert C. (Center Moriches, NY)

    1984-01-01

    A high voltage oil-impregnated electrical cable with fully polymer taped insulation operable to 765 kV. Biaxially oriented, specially processed, polyethylene, polybutene or polypropylene tape with an embossed pattern is wound in multiple layers over a conductive core with a permeable screen around the insulation. Conventional oil which closely matches the dielectric constant of the tape is used, and the cable can be impregnated after field installation because of its excellent impregnation characteristics.

  12. Underground pipe inspection device and method

    DOE Patents [OSTI]

    Germata, Daniel Thomas (Wadsworth, IL)

    2009-02-24

    A method and apparatus for inspecting the walls of an underground pipe from inside the pipe in which an inspection apparatus having a circular planar platform having a plurality of lever arms having one end pivotably attached to one side of the platform, having a pipe inspection device connected to an opposite end, and having a system for pivoting the lever arms is inserted into the underground pipe, with the inspection apparatus oriented with the planar platform disposed perpendicular to the pipe axis. The plurality of lever arms are pivoted toward the inside wall of the pipe, contacting the inside wall with each inspection device as the apparatus is conveyed along a length of the underground pipe.

  13. Insulation for New Home Construction | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Articles Spray foam insulation fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSECIBACOS. Insulation Adding insulation in...

  14. Where to Insulate in a Home | Department of Energy

    Office of Environmental Management (EM)

    to improve your home's energy efficiency. Insulate either the attic floor or under the roof. Check with a contractor about crawl space or basement insulation. Tips: Insulation...

  15. Dual manifold heat pipe evaporator

    DOE Patents [OSTI]

    Adkins, Douglas R. (Albuquerque, NM); Rawlinson, K. Scott (Albuquerque, NM)

    1994-01-01

    An improved evaporator section for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes.

  16. Dual manifold heat pipe evaporator

    DOE Patents [OSTI]

    Adkins, D.R.; Rawlinson, K.S.

    1994-01-04

    An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

  17. Process for making ceramic insulation

    DOE Patents [OSTI]

    Akash, Akash (Salt Lake City, UT); Balakrishnan, G. Nair (Sandy, UT)

    2009-12-08

    A method is provided for producing insulation materials and insulation for high temperature applications using novel castable and powder-based ceramics. The ceramic components produced using the proposed process offers (i) a fine porosity (from nano-to micro scale); (ii) a superior strength-to-weight ratio; and (iii) flexibility in designing multilayered features offering multifunctionality which will increase the service lifetime of insulation and refractory components used in the solid oxide fuel cell, direct carbon fuel cell, furnace, metal melting, glass, chemical, paper/pulp, automobile, industrial heating, coal, and power generation industries. Further, the ceramic components made using this method may have net-shape and/or net-size advantages with minimum post machining requirements.

  18. Thermal shock resistance ceramic insulator

    DOE Patents [OSTI]

    Morgan, Chester S. (Oak Ridge, TN); Johnson, William R. (Maynardville, TN)

    1980-01-01

    Thermal shock resistant cermet insulators containing 0.1-20 volume % metal present as a dispersed phase. The insulators are prepared by a process comprising the steps of (a) providing a first solid phase mixture of a ceramic powder and a metal precursor; (b) heating the first solid phase mixture above the minimum decomposition temperature of the metal precursor for no longer than 30 minutes and to a temperature sufficiently above the decomposition temperature to cause the selective decomposition of the metal precursor to the metal to provide a second solid phase mixture comprising particles of ceramic having discrete metal particles adhering to their surfaces, said metal particles having a mean diameter no more than 1/2 the mean diameter of the ceramic particles, and (c) densifying the second solid phase mixture to provide a cermet insulator having 0.1-20 volume % metal present as a dispersed phase.

  19. Heat-Pipe Wick Characterization

    SciTech Connect (OSTI)

    JONES II,JERRY LEE

    2000-08-15

    The development of liquid metal heat-pipes for use in solar powered Stirling engines has led to an in-depth analysis of heat-pipe wick properties. To model the flow of liquid sodium through the wick its two-phase permeability measurement is of interest. The permeability will be measured by constructing a test cell made up of a wick sample sintered to a manifold. Measuring the volumetric flow rate through the wick will allow for a determination of the wick's permeability as a function of pressure. Currently, simple estimates of permeability as a function of vapor fraction of a porous media are being used as a model to calculate the two-phase permeability. The above mentioned experiment will be used to test the existing formulas validity. The plan is to make use of a known procedure for testing permeability and apply those techniques to a felt-metal wick. The results will be used to verify and/or modify the two-phase permeability estimates. With the increasing desire to replace directly illuminated engines with the much more efficient heat-pipe apparatus it is inherently clear that the usefulness of known wick properties will make wick permeability design a simpler process.

  20. High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    SciTech Connect (OSTI)

    Tarau, Calin; Walker, Kara L.; Anderson, William G.

    2009-03-16

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling converter provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling engine. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 deg. C while the heat losses caused by the addition of the VCHP are 1.8 W.

  1. Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California

    SciTech Connect (OSTI)

    Warner, J.L.; Lutz, J.D.

    2006-01-01

    Residential water heating is an important consideration in California?s building energy efficiency standard. Explicit treatment of ground-coupled hot water piping is one of several planned improvements to the standard. The properties of water, piping, insulation, backfill materials, concrete slabs, and soil, their interactions, and their variations with temperature and over time are important considerations in the required supporting analysis. Heat transfer algorithms and models devised for generalized, hot water distribution system, ground-source heat pump and ground heat exchanger, nuclear waste repository, buried oil pipeline, and underground electricity transmission cable applications can be adapted to the simulation of under-slab water piping. A numerical model that permits detailed examination of and broad variations in many inputs while employing a technique to conserve computer run time is recommended.

  2. Insulation board and process of making

    DOE Patents [OSTI]

    Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)

    1985-01-01

    Insulation board capable of bearing a load without significant loss of insulating capacity due to compression, produced by a method wherein the board is made in compliance with specified conditions of time, temperature and pressure.

  3. Piping inspection carriage having axially displaceable sensor

    DOE Patents [OSTI]

    Zollinger, W.T.; Treanor, R.C.

    1994-12-06

    A pipe inspection instrument carriage is described for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a Y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure. 4 figures.

  4. Piping inspection carriage having axially displaceable sensor

    DOE Patents [OSTI]

    Zollinger, William T. (Martinez, GA); Treanor, Richard C. (Augusta, GA)

    1994-01-01

    A pipe inspection instrument carriage for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure.

  5. Training: Mechanical Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mechanical Insulation Training: Mechanical Insulation April 16, 2014 - 6:34pm Addthis Learn about the diverse training sessions offered. The courses are taught by highly qualified instructors who have met rigorous standards. View additional plant-wide resources. Mechanical Insulation Education and Awareness E-Learning Series Availability: Online self-paced workshop. The Mechanical Insulation Education & Awareness Campaign, or MIC, is an eLearning series offered by the U.S. Department of

  6. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping Photoelectron Spins in Topological Insulators Flipping Photoelectron Spins in Topological Insulators Print Tuesday, 23 April 2013 10:00 Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the

  7. Carpe Diem: Install Insulated Roman Shades

    Broader source: Energy.gov [DOE]

    As I mentioned in yesterday's blog, I had insulated window quilts installed on most of my home's windows.

  8. Types of Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherize » Insulation » Types of Insulation Types of Insulation In existing homes, cellulose (here) or other loose-fill materials can be installed in building cavities through holes drilled (usually) on the exterior of the house. After the installation, the holes are plugged and finish materials replaced. | Photo courtesy of Cellulose Insulation Manufacturers Association. In existing homes, cellulose (here) or other loose-fill materials can be installed in building cavities through holes

  9. Downhole pipe selection for acoustic telemetry

    DOE Patents [OSTI]

    Drumheller, D.S.

    1995-12-19

    A system is described for transmitting signals along a downhole string including a plurality of serially connected tubular pipes such as drill or production pipes, a transmitter for transmitting a signal along the string and a receiver for receiving the signal placed along the string at a location spaced from said transmitting means, wherein the pipes between the transmitter and the receiver are ordered according to length of tube to minimize loss of signal from said transmitter to said receiver. 7 figs.

  10. Vacuum-insulated catalytic converter

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO)

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  11. Qualification Requirements of Guided Ultrasonic Waves for Inspection of Piping in Light Water Reactors

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Doctor, Steven R.; Bond, Leonard J.

    2013-08-01

    Guided ultrasonic waves (GUW) are being increasingly used for both NDT and monitoring of piping. GUW offers advantages over many conventional NDE technologies due to the ability to inspect large volumes of piping components without significant removal of thermal insulation or protective layers. In addition, regions rendered inaccessible to more conventional NDE technologies may be more accessible using GUW techniques. For these reasons, utilities are increasingly considering the use of GUWs for performing the inspection of piping components in nuclear power plants. GUW is a rapidly evolving technology and its usage for inspection of nuclear power plant components requires refinement and qualification to ensure it is able to achieve consistent and acceptable levels of performance. This paper will discuss potential requirements for qualification of GUW techniques for the inspection of piping components in light water reactors (LWRs). The Nuclear Regulatory Commission has adopted ASME Boiler and Pressure Vessel Code requirements in Sections V, III, and XI for nondestructive examination methods, fabrication inspections, and pre-service and in-service inspections. A Section V working group has been formed to place the methodology of GUW into the ASME Boiler and Pressure Vessel Code but no requirements for technique, equipment, or personnel exist in the Code at this time.

  12. R25 Polyisocyanurate Composite Insulation Material | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R25 Polyisocyanurate Composite Insulation Material R25 Polyisocyanurate Composite Insulation Material R25 Polyisocyanurate Composite Insulation Material R25 Polyisocyanurate Composite Insulation Material R25 Polyisocyanurate Composite Insulation Material R25 Polyisocyanurate Composite Insulation Material Lead Performer: Oak Ridge National Laboratory (ORNL) - Oak Ridge, TN Partners: -- NanoPore, Inc. - Albuquerque, NM; -- Firestone Building Products Company - Indianapolis, IN DOE Funding:

  13. Spin transport in normal metal/insulator/topological insulator coupled to ferromagnetic insulator structures

    SciTech Connect (OSTI)

    Kondo, Kenji

    2014-05-07

    In this study, we investigate the spin transport in normal metal (NM)/insulator (I)/topological insulator (TI) coupled to ferromagnetic insulator (FI) structures. In particular, we focus on the barrier thickness dependence of the spin transport inside the bulk gap of the TI with FI. The TI with FI is described by two-dimensional (2D) Dirac Hamiltonian. The energy profile of the insulator is assumed to be a square with barrier height V and thickness d along the transport-direction. This structure behaves as a tunnel device for 2D Dirac electrons. The calculation is performed for the spin conductance with changing the barrier thickness and the components of magnetization of FI layer. It is found that the spin conductance decreases with increasing the barrier thickness. Also, the spin conductance is strongly dependent on the polar angle ?, which is defined as the angle between the axis normal to the FI and the magnetization of FI layer. These results indicate that the structures are promising candidates for novel tunneling magnetoresistance devices.

  14. Heat pipe with embedded wick structure

    DOE Patents [OSTI]

    Adkins, Douglas Ray (Albuquerque, NM); Shen, David S. (Albuquerque, NM); Tuck, Melanie R. (Albuquerque, NM); Palmer, David W. (Albuquerque, NM); Grafe, V. Gerald (Corrales, NM)

    1999-01-01

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.

  15. Heat pipe with embedded wick structure

    DOE Patents [OSTI]

    Adkins, Douglas Ray (Albuquerque, NM); Shen, David S. (Albuquerque, NM); Tuck, Melanie R. (Albuquerque, NM); Palmer, David W. (Albuquerque, NM); Grafe, V. Gerald (Corrales, NM)

    1998-01-01

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.

  16. Heat pipe with embedded wick structure

    DOE Patents [OSTI]

    Adkins, D.R.; Shen, D.S.; Tuck, M.R.; Palmer, D.W.; Grafe, V.G.

    1998-06-23

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas. 7 figs.

  17. An Analytical Approach for Tail-Pipe Emissions Estimation with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Analytical Approach for Tail-Pipe Emissions Estimation with Coupled Engine and Aftertreatment System An Analytical Approach for Tail-Pipe Emissions Estimation with Coupled Engine ...

  18. NUCLEAR REACTORS; PIPES; SEISMIC EFFECTS; SUPPORTS; DYNAMIC LOADS...

    Office of Scientific and Technical Information (OSTI)

    Limit analysis of pipe clamps Flanders, H.E. Jr. 22 GENERAL STUDIES OF NUCLEAR REACTORS; PIPES; SEISMIC EFFECTS; SUPPORTS; DYNAMIC LOADS; HEAT TRANSFER; HYDRAULICS; REACTOR SAFETY;...

  19. Insulation for a Thermionic Microbattery

    SciTech Connect (OSTI)

    James P. Blanchard

    2004-09-19

    Microelectronmechanical Systems (MEMS) have not gained wide use because they lack the on-device power required by many important applications. To supply this need power, on can consider power from fossil fuels, but nuclear sources provide an intriguing option in terms of power density and lifetime. In order to make use of alpha particles, one is forced to use thermal approaches because diodes are damaged by the high energy of the alpha particles, one is forced to use thermal approaches because diodes are damaged by the high energy of the alphas. One difficulty, though, is that the surface to volume ration increases as we move to smaller scales and heat losses thus become significant at MEMS scales. Hence, efficient microscale insulation is needed to permit high overall efficiencies. This research explores concepts for one variety of microscale insulation created using MEMS fabrication techniques.

  20. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, W.Y.

    1984-07-27

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  1. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, Wayne Y.

    1987-01-01

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  2. Magnetically insulated transmission line oscillator

    DOE Patents [OSTI]

    Bacon, Larry D. (Albuquerque, NM); Ballard, William P. (Albuquerque, NM); Clark, M. Collins (Albuquerque, NM); Marder, Barry M. (Albuquerque, NM)

    1988-01-01

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields arfe produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap.

  3. Magnetically insulated transmission line oscillator

    DOE Patents [OSTI]

    Bacon, L.D.; Ballard, W.P.; Clark, M.C.; Marder, B.M.

    1987-05-19

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields are produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap. 11 figs.

  4. Insulation assembly for electric machine

    DOE Patents [OSTI]

    Rhoads, Frederick W.; Titmuss, David F.; Parish, Harold; Campbell, John D.

    2013-10-15

    An insulation assembly is provided that includes a generally annularly-shaped main body and at least two spaced-apart fingers extending radially inwards from the main body. The spaced-apart fingers define a gap between the fingers. A slot liner may be inserted within the gap. The main body may include a plurality of circumferentially distributed segments. Each one of the plurality of segments may be operatively connected to another of the plurality of segments to form the continuous main body. The slot liner may be formed as a single extruded piece defining a plurality of cavities. A plurality of conductors (extendable from the stator assembly) may be axially inserted within a respective one of the plurality of cavities. The insulation assembly electrically isolates the conductors in the electric motor from the stator stack and from other conductors.

  5. Digital X-ray Pipe Inspector Software

    Energy Science and Technology Software Center (OSTI)

    2009-10-29

    The Digital X-ray Pipe Inspector software requires a digital x-ray image of a pipe as input to the program, such as the image in Attachment A Figure 1. The image may be in a variety of software formats such as bitmap, jpeg, tiff, DICOM or DICONDE. The software allows the user to interactively select a region of interest from the image for analysis. This software is used to analyze digital x-ray images of pipes tomore » evaluate loss of wall thickness. The software specifically provides tools to analyze the image in (a) the pipe walls, (b) between the pipe walls. Traditional software uses only the information at the pipe wall while this new software also evaluates the image between the pipewalls. This makes the inspection process faster, more thorough, more efficient, and reduces expensive reshots. Attachment A Figure 2 shows a region of interest (a green box) drawn by the user around an anomaly in the pipe wall. This area is automatically analyzed by the external pipe wall tool with the result shown in Attachment A Figure 3. The edges of the pipe wall are detected and highlighted in yellow and areas where the wall thickness in less the the minimum wall threshold are shown in red. These measurements are typically made manually in other software programs, which lead to errors and inconsistency because the location of the edges are estimated by the user. Attachment A Figure 4 shows a region of interest (a green box) drawn by the user between the pipe walls. As can be seen there are intensity anomalies that correspond to wall defects. However, this information is not used directly by other software programs. In order to fully investigate these anomalies, the pipe would be reinspected in a different orientation to attempt to obtain a view of the anomaly in the pipe wall rather than the interior of the pipe. The pipe may need to be x-rayed a number of times to obtain the correct orientation. This is very costly and time consuming. The new software can perform the analysis directly on the intensity information in the original image. Figures 5 through 9 in Attachment A show wall defects in red for various percents of wall thickness loss. For example, Figure 5 show defects (in red) where the wall thickness is 95% or less than the nominal wall thickness (or a 5% or greater wall thickness loss). Wall thicknesses can be given in absolute terms as well.« less

  6. Magnetic instability of Kondo insulators

    SciTech Connect (OSTI)

    Wang, Ziqiang [Los Alamos National Lab., NM (United States)]|[Boston Univ., MA (United States). Dept. of Physics; Li, Xiao-Ping [Rutgers--the State Univ., Piscataway, NJ (United States). Serin Physics Lab.; Lee, Dung-Hai [International Business Machines Corp., Yorktown Heights, NY (United States). Thomas J. Watson Research Center

    1993-09-01

    We review a number of experiments on isoelectronic, isostructural ternary compounds CeTSn (T=Ni,Pd,Sn) and alloys CeNi{sub 1-x}(Pd,Pt){sub x}Sn, and propose a finite temperature phase diagram describing the evolution of a Kondo insulator to an antiferromagnetic Kondo state with decreasing hybridization or Kondo coupling. We then provide microscopic justifications for the phase diagram by analyzing the magnetic properties of the symmetric Kondo lattice model in two dimensions.

  7. Solar Heat-Pipe Receiver Wick Modeling

    SciTech Connect (OSTI)

    Andraka, C.E.

    1998-12-21

    Stirling-cycle engines have been identified as a promising technology for the conversion of concentrated solar energy into usable electrical power. In previous experimented work, we have demonstrated that a heat pipe receiver can significantly improve system performance-over a directly-illuminated heater head. The design and operating conditions of a heat pipe receiver differ significantly from typical laboratory heat pipes. New wick structures have been developed to exploit the characteristics of the solar generation system. Typically, these wick structures allow vapor generation within the wick. Conventional heat pipe models do not handle this enhancement yet it can more than double the performance of the wick. In this study, I develop a steady-state model of a boiling-enhanced wick for a solar heat pipe receiver. The model is used for design-point calculations and is written in FORTRAN90. Some limited comparisons have been made with actual test data.

  8. Glass heat pipe evacuated tube solar collector

    DOE Patents [OSTI]

    McConnell, Robert D. (Lakewood, CO); Vansant, James H. (Tracy, CA)

    1984-01-01

    A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

  9. etter, Specifications, and Survey Report: Removal of Overhead Yard Piping and Asbestos Insulation

    Office of Legacy Management (LM)

  10. Sampling of Insulation on Inter-Building Overhead Utility Pipes for Asbestos Content.

    Office of Legacy Management (LM)

  11. Unconventional Fermi surface in an insulating state

    SciTech Connect (OSTI)

    Harrison, Neil; Tan, B. S.; Hsu, Y. -T.; Zeng, B.; Hatnean, M. Ciomaga; Zhu, Z.; Hartstein, M.; Kiourlappou, M.; Srivastava, A.; Johannes, M. D.; Murphy, T. P.; Park, J. -H.; Balicas, L.; Lonzarich, G. G.; Balakrishnan, G.; Sebastian, Suchitra E.

    2015-07-17

    Insulators occur in more than one guise; a recent finding was a class of topological insulators, which host a conducting surface juxtaposed with an insulating bulk. Here, we report the observation of an unusual insulating state with an electrically insulating bulk that simultaneously yields bulk quantum oscillations with characteristics of an unconventional Fermi liquid. We present quantum oscillation measurements of magnetic torque in high-purity single crystals of the Kondo insulator SmB6, which reveal quantum oscillation frequencies characteristic of a large three-dimensional conduction electron Fermi surface similar to the metallic rare earth hexaborides such as PrB6 and LaB6. As a result, the quantum oscillation amplitude strongly increases at low temperatures, appearing strikingly at variance with conventional metallic behavior.

  12. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Bolster Promise of Topological Insulators Studies Bolster Promise of Topological Insulators Print Tuesday, 27 November 2012 00:00 A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are

  13. Floating insulated conductors for heating subsurface formations

    DOE Patents [OSTI]

    Burns, David; Goodwin, Charles R.

    2014-07-29

    A heating system for a subsurface formation includes a conduit located in a first opening in the subsurface formation. Three electrical conductors are located in the conduit. A return conductor is located inside the conduit. The return conductor is electrically coupled to the ends of the electrical conductors distal from the surface of the formation. Insulation is located inside the conduit. The insulation electrically insulates the three electrical conductors, the return conductor, and the conduit from each other.

  14. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel.

  15. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel.

  16. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel.

  17. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel.

  18. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel.

  19. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel.

  20. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel.

  1. Excavationless Exterior Foundation Insulation Exploratory | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Excavationless Exterior Foundation Insulation Exploratory Excavationless Exterior Foundation Insulation Exploratory This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "What emerging innovations are the key to future homes?" PDF icon issue2_excavationless_foundation.pdf More Documents & Publications Issue #2: What Emerging Innovations are the Key to Future Homes? Foundation Insulation for Existing Homes

  2. Cladding Attachment Over Thick Exterior Rigid Insulation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cladding Attachment Over Thick Exterior Rigid Insulation Peter Baker, P.Eng. BA Webinar: High Performance Enclosure Strategies: Part II, New Construction Cladding Attachment Over Thick Exterior Rigid Insulation Background  Industry trend to using exterior rigid insulation  Increased thermal value  Condensation resistance  Increased air tightness (possibly)  Increased rainwater management (possibly)  Need to develop a means to attach cladding over thick layers of exterior

  3. Reduce Pumping Costs Through Optimum Pipe Sizing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pumping Costs Through Optimum Pipe Sizing Reduce Pumping Costs Through Optimum Pipe Sizing This tip sheet discusses how to reduce pumping system costs through optimum pipe sizing. PUMPING SYSTEMS TIP SHEET #9 PDF icon Reduce Pumping Costs Through Optimum Pipe Sizing (October 2005) More Documents & Publications Select an Energy-Efficient Centrifugal Pump Effect of Intake on Compressor Performance Pump Selection Considerations

  4. Corrugated Metal Pipe Market Research | OpenEI Community

    Open Energy Info (EERE)

    Corrugated Metal Pipe Market Research Home There are currently no posts in this category. Syndicate...

  5. Basement Insulation Systems - Building America Top Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    See an example of this Top Innovation in action. Find more case studies of Building America projects across the country that demonstrate advanced basement insulation systems. View ...

  6. Connecting Thermoelectric Performance and Topological-Insulator...

    Office of Scientific and Technical Information (OSTI)

    Publisher's Accepted Manuscript: Connecting Thermoelectric Performance and Topological-Insulator Behavior: BiTe and BiTeSe from First Principles Prev Next Title: ...

  7. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is an insulator, but electrons (grey spheres) move swiftly on the surface as if through a metal. They are spin polarized, however, with their momenta (directional ribbons) and...

  8. Issue 5: Optimizing High Levels of Insulation

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "How much insulation is too much?"

  9. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First...

  10. Fabricate-on-Demand Vacuum Insulating Glazings

    Broader source: Energy.gov [DOE]

    PPG is working to design a fabricate-on-demand process to overcome the cost and supply chain issues preventing widespread adoption of vacuum insulating glazings (VIGs).

  11. How Much Insulation is Too Much?

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "How much insulation is too much?"

  12. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    states remain "topologically protected"-they can't scatter without breaking the rules of quantum mechanics. Electrons on the surface of a topological insulator can flow with...

  13. Farmers RECC- Residential Insulation Rebate Program

    Broader source: Energy.gov [DOE]

    The Farmers Rural Electric Cooperative (RECC) Button-Up Program provides free energy audits and rebates for insulation upgrades to its residential customers. Farmers RECC's energy advisor will...

  14. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spintronics The ability to shine polarized light on a topological insulator (TI) and excite spin-polarization-tailored electrons has great potential for the field of spintronics - ...

  15. Install Removable Insulation on Valves and Fittings

    Broader source: Energy.gov [DOE]

    This tip sheet on installing removable insulation on valves and fittings provides how-to advice for improving steam systems using low-cost, proven practices and technologies.

  16. Fully synthetic taped insulation cables

    DOE Patents [OSTI]

    Forsyth, E.B.; Muller, A.C.

    1983-07-15

    The present invention is a cable which, although constructed from inexpensive polyolefin tapes and using typical impregnating oils, furnishes high voltage capability up to 765 kV, and has such excellent dielectric characteristics and heat transfer properties that it is capable of operation at capacities equal to or higher than presently available cables at a given voltage. This is accomplished by using polyethylene, polybutene or polypropylene insulating tape which has been specially processed to attain properties which are not generally found in these materials, but are required for their use in impregnated electrical cables. Chief among these properties is compatibility with impregnating oil.

  17. Electrically insulating and sealing frame

    DOE Patents [OSTI]

    Guthrie, Robin J. (East Hartford, CT)

    1983-11-08

    A combination gas seal and electrical insulator having a closed frame shape interconnects a fuel cell stack and a reactant gas plenum of a fuel cell generator. The frame can be of rectangular shape including at least one slidable spline connection in each side to permit expansion or contraction consistent with that of the walls of the gas plenum and fuel cell stack. The slidable spline connections in the frame sides minimizes lateral movement between the frame side members and sealing material interposed between the frame and the fuel cell stack or between the frame and the reactant gas plenum.

  18. Improved DC Gun Insulator Assembly

    SciTech Connect (OSTI)

    Sah, R.; Dudas, A.; Neubauer, M. L.; Poelker, M.; Surles-Law, K. E.L.

    2010-05-23

    Many user facilities such as synchrotron radiation light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and often exhibit poor reliability. Two technical approaches to solving this problem will be investigated. Firstly, inverted ceramics offer solutions for reduced gradients between the electrodes and ground. An inverted design will be presented for 350 kV, with maximum gradients in the range of 5-10 MV/m. Secondly, novel ceramic manufacturing processes will be studied, in order to protect triple junction locations from emission, by applying a coating with a bulk resistivity. The processes for creating this coating will be optimized to provide protection as well as be used to coat a ceramic with an appropriate gradient in bulk resistivity from the vacuum side to the air side of an HV standoff ceramic cylinder. Example insulator designs are being computer modelled, and insulator samples are being manufactured and tested

  19. Processing of insulators and semiconductors

    DOE Patents [OSTI]

    Quick, Nathaniel R.; Joshi, Pooran C.; Duty, Chad Edward; Jellison, Jr., Gerald Earle; Angelini, Joseph Attilio

    2015-06-16

    A method is disclosed for processing an insulator material or a semiconductor material. The method includes pulsing a plasma lamp onto the material to diffuse a doping substance into the material, to activate the doping substance in the material or to metallize a large area region of the material. The method may further include pulsing a laser onto a selected region of the material to diffuse a doping substance into the material, to activate the doping substance in the material or to metallize a selected region of the material.

  20. Reliability Estimation for Double Containment Piping

    SciTech Connect (OSTI)

    L. Cadwallader; T. Pinna

    2012-08-01

    Double walled or double containment piping is considered for use in the ITER international project and other next-generation fusion device designs to provide an extra barrier for tritium gas and other radioactive materials. The extra barrier improves confinement of these materials and enhances safety of the facility. This paper describes some of the design challenges in designing double containment piping systems. There is also a brief review of a few operating experiences of double walled piping used with hazardous chemicals in different industries. This paper recommends approaches for the reliability analyst to use to quantify leakage from a double containment piping system in conceptual and more advanced designs. The paper also cites quantitative data that can be used to support such reliability analyses.

  1. Pipe diffusion at dislocations in UO2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of pipe diffusion to the overall O 2 and U 4+ diffusion is also discussed. 2014 Elsevier B.V. All rights reserved. 1. Introduction During its lifetime in-pile nuclear fuel...

  2. Heat pipe effect in porous medium

    SciTech Connect (OSTI)

    Joseph, M.

    1992-12-01

    In this thesis a parametric study of the thermal and hydrologic characteristics of the fractured porous tuffs at Yucca Mountain, Nevada was conducted. The effects of different fracture and matrix properties including permeability, thermal conductivity, specific heat, porosity, and tortuosity on heat pipe performance in the vicinity of the waste package were observed. Computer simulations were carried out using TOUGH code on a Cray YMP-2 supercomputer. None of the fracture parameters affected the heat pipe performance except the mobility of the liquid in the fracture. Matrix permeability and thermal conductivity were found to have significant effect on the heat pipe performance. The effect of mass injection was studied for liquid water and air injected at the fracture boundary. A high rate of mass injection was required to produce any effect on the heat pipe. The fracture-matrix equilibrium is influenced by the matrix permeability and the matrix thermal conductivity.

  3. Corona processing of insulating oil

    SciTech Connect (OSTI)

    Rohwein, G.J.

    1996-07-01

    It is well known that sustained corona discharge in insulating oil lowers its dielectric strength and simultaneously reduces its corona resistance. Therefore, for operating stresses in the corona regime, activity typically increases with time and, if allowed to continue, eventually leads to breakdown of the oil and failure of the component or system. It is, therefore, common practice to periodically replace oil in devices such as large power transformers and switch gear before breakdown occurs. Sealed components such as capacitors are typically replaced. Recent experiments have demonstrated that the dielectric properties of corona weakened oil can not only be restored, but actually improved by a simple regeneration process. These experiments were carried out on high voltage pulse transformer windings which were operated at high rep rates until partial discharges formed. Reprocessing the oil after each operating cycle resulted in successively longer operational periods before partial discharges appeared. In a separate experiment, a process was developed to precondition transformer oil to raise its corona inception voltage before using it to insulate a high voltage component, thus giving it a longer initial service life for a given operating stress or permitting higher stress operation for limited operating times.

  4. Dehumidifying Heat Pipes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dehumidifying Heat Pipes Dehumidifying Heat Pipes In order to make a room comfortable in hot, humid climates, an air conditioner must lower the indoor humidity level as well as the air temperature. If an air conditioner fails to lower the humidity adequately, the air will be cool, but will feel uncomfortably damp. Inappropriately sized air conditioners are prone to this problem; large units quickly cool the air, but cycle off before they can properly dehumidify it. In extremely humid climates,

  5. Low-cost exterior insulation process and structure

    DOE Patents [OSTI]

    Vohra, A.

    1999-03-02

    A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value. 2 figs.

  6. Low-cost exterior insulation process and structure

    DOE Patents [OSTI]

    Vohra, Arun (Bethesda, MD)

    1999-01-01

    A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value.

  7. Cesium heat-pipe thermostat

    SciTech Connect (OSTI)

    Wu, F.; Song, D.; Sheng, K.; Wu, J.; Yi, X.; Yu, Z.

    2013-09-11

    In this paper the authors report a newly developed Cesium Heat-Pipe Thermostat (Cs HPT) with the operation range of 400 C to 800 C. The working medium is cesium (Cs) of 99.98% purity and contains no radioisotope. A Cs filing device is developed which can prevent Cs being in contact with air. The structural material is stainless steel. A 5000 h test has been made to confirm the compatibility between cesium and stainless steel. The Cs HPT has several thermometer wells of 220mm depth with different diameters for different sizes of thermometers. The temperature uniformity of the Cs HPT is 0.06 C to 0.20 C. A precise temperature controller is used to ensure the temperature fluctuation within 0.03 C. The size of Cs HPT is 380mm320mm280mm with foot wheels for easy moving. The thermostat has been successfully used for the calibration of industrial platinum resistance thermometers and thermocouples.

  8. Insulation board and process of making

    DOE Patents [OSTI]

    Nowobilski, J.J.; Owens, W.J.

    1985-08-27

    Insulation board is described which is capable of bearing a load without significant loss of insulating capacity due to compression, produced by a method wherein the board is made in compliance with specified conditions of time, temperature and pressure. 2 figs.

  9. Uniform insulation applied-B ion diode

    DOE Patents [OSTI]

    Seidel, David B. (Albuquerque, NM); Slutz, Stephen A. (Albuquerque, NM)

    1988-01-01

    An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, the ions may be focused at a point on the z axis.

  10. Kingspan Insulated Panels: Order (2013-CE-5353)

    Broader source: Energy.gov [DOE]

    DOE ordered Kingspan Insulated Panels, Inc. to pay a $8,000 civil penalty after finding Kingspan Insulated Panels had failed to certify that any basic models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  11. Saving Energy and Money with Aerogel Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Aerogel Insulation Saving Energy and Money with Aerogel Insulation June 7, 2012 - 11:45am Addthis Aspen Aerogel's innovative insulation material works well under very cold and very hot temperatures. Here, the insulation is held over a flame. | Courtesy of Aspen Aerogels. Aspen Aerogel's innovative insulation material works well under very cold and very hot temperatures. Here, the insulation is held over a flame. | Courtesy of Aspen Aerogels. Leo Christodoulou, Ph.D. Program Manager,

  12. Adding Insulation to an Existing Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherize » Insulation » Adding Insulation to an Existing Home Adding Insulation to an Existing Home Adding insulation in an existing home saves money and improves comfort. | Photo courtesy of Dennis Schroeder, NREL. Adding insulation in an existing home saves money and improves comfort. | Photo courtesy of Dennis Schroeder, NREL. Unless your home was specially constructed for energy efficiency, you can probably reduce your energy bills by adding more insulation. Many older homes have less

  13. Memristor using a transition metal nitride insulator (Patent...

    Office of Scientific and Technical Information (OSTI)

    Patent: Memristor using a transition metal nitride insulator Citation Details In-Document Search Title: Memristor using a transition metal nitride insulator You are accessing a...

  14. Where to Insulate in a Home | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    in several southern U.S. states prohibit installing foam insulation in contact with the ground. Slab foundations with interior insulation provide more termite resistance, but...

  15. Computational Design of Axion Insulators Based on 5 d Spinel...

    Office of Scientific and Technical Information (OSTI)

    Computational Design of Axion Insulators Based on 5 d Spinel Compounds Citation Details In-Document Search Title: Computational Design of Axion Insulators Based on 5 d Spinel ...

  16. Computational Design of Axion Insulators Based on 5 d Spinel...

    Office of Scientific and Technical Information (OSTI)

    Computational Design of Axion Insulators Based on 5 d Spinel Compounds Prev Next Title: Computational Design of Axion Insulators Based on 5 d Spinel Compounds Authors: Wan, ...

  17. Graphene physics and insulator-metal transition in compressed...

    Office of Scientific and Technical Information (OSTI)

    Graphene physics and insulator-metal transition in compressed hydrogen Title: Graphene physics and insulator-metal transition in compressed hydrogen Authors: Naumov, Ivan I. ; ...

  18. Quantum Anomalous Hall Effect in 2D Organic Topological Insulators...

    Office of Scientific and Technical Information (OSTI)

    Quantum Anomalous Hall Effect in 2D Organic Topological Insulators Citation Details In-Document Search Title: Quantum Anomalous Hall Effect in 2D Organic Topological Insulators ...

  19. Aerogel-Based Insulation for High-Temperature Industrial Processes...

    Office of Scientific and Technical Information (OSTI)

    Aerogel-Based Insulation for High-Temperature Industrial Processes Citation Details In-Document Search Title: Aerogel-Based Insulation for High-Temperature Industrial Processes ...

  20. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Observation of a Macroscopically Quantum-Entangled Insulator Print Wednesday, 27 May 2009 00:00 It has recently been...

  1. Scientists Find Asymmetry in Topological Insulators - News Releases...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... But the topological insulators could be very useful for other kinds of electronics-spintronics. The electrons of topological insulators will self-polarize at opposite device edges. ...

  2. Automatic insulation resistance testing apparatus

    DOE Patents [OSTI]

    Wyant, Francis J.; Nowlen, Steven P.; Luker, Spencer M.

    2005-06-14

    An apparatus and method for automatic measurement of insulation resistances of a multi-conductor cable. In one embodiment of the invention, the apparatus comprises a power supply source, an input measuring means, an output measuring means, a plurality of input relay controlled contacts, a plurality of output relay controlled contacts, a relay controller and a computer. In another embodiment of the invention the apparatus comprises a power supply source, an input measuring means, an output measuring means, an input switching unit, an output switching unit and a control unit/data logger. Embodiments of the apparatus of the invention may also incorporate cable fire testing means. The apparatus and methods of the present invention use either voltage or current for input and output measured variables.

  3. Apparatus and method for detecting leaks in piping

    DOE Patents [OSTI]

    Trapp, Donald J. (Aiken, SC)

    1994-01-01

    A method and device for detecting the location of leaks along a wall or piping system, preferably in double-walled piping. The apparatus comprises a sniffer probe, a rigid cord such as a length of tube attached to the probe on one end and extending out of the piping with the other end, a source of pressurized air and a source of helium. The method comprises guiding the sniffer probe into the inner pipe to its distal end, purging the inner pipe with pressurized air, filling the annulus defined between the inner and outer pipe with helium, and then detecting the presence of helium within the inner pipe with the probe as is pulled back through the inner pipe. The length of the tube at the point where a leak is detected determines the location of the leak in the pipe.

  4. Apparatus and method for detecting leaks in piping

    DOE Patents [OSTI]

    Trapp, D.J.

    1994-12-27

    A method and device are disclosed for detecting the location of leaks along a wall or piping system, preferably in double-walled piping. The apparatus comprises a sniffer probe, a rigid cord such as a length of tube attached to the probe on one end and extending out of the piping with the other end, a source of pressurized air and a source of helium. The method comprises guiding the sniffer probe into the inner pipe to its distal end, purging the inner pipe with pressurized air, filling the annulus defined between the inner and outer pipe with helium, and then detecting the presence of helium within the inner pipe with the probe as is pulled back through the inner pipe. The length of the tube at the point where a leak is detected determines the location of the leak in the pipe. 2 figures.

  5. Instrumentation for monitoring buried pipe behavior during backfilling

    SciTech Connect (OSTI)

    McGrath, T.J.; Selig, E.T.; Webb, M.C.

    1999-07-01

    An extensive instrumentation plan was devised to monitor buried pipe behavior, soil behavior and pipe-soil interaction during backfilling. The emphasis of the instrumentation plan was to monitor these parameters under different installation techniques without impeding construction operations. Different types and sizes of pipe were selected for installation in trenches excavated in undisturbed in situ soil conditions. Installation variables included in situ soil conditions, trench widths, backfill material (including controlled low strength material), haunching effort, and compaction methods. A total of fourteen tests, each including reinforced concrete, corrugated steel, and corrugated HDPE, were conducted. Eleven of the installations were conducted with 900 mm inside diameter pipe and three with 1,500 mm inside diameter pipe. The pipes were buried to a cover depth of 1.2 m. Measurements of pipe shape, pipe strains, pipe-soil interface pressures, soil density, soil stresses, and soil strains were collected. Pipe shape changes were measured by a custom built profilometer. Custom designed bending beam pressure transducers were used in the steel pipe to measure interface pressures. Most of the instrumentation performed well and measured results were within the range expected. Pipe-soil interaction effects were effectively measured with the instruments selected. Pipe shape changes were a very valuable parameter for investigating pipe-soil interaction.

  6. Topological Insulator Nanowires and Nanoribbons

    SciTech Connect (OSTI)

    Kong, D.S.

    2010-06-02

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi{sub 2}Se{sub 3} material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications. Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi{sub 2}Se{sub 3} nanomaterials with a variety of morphologies. The synthesis of Bi{sub 2}Se{sub 3} nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [11-20] direction with a rectangular crosssection and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with {approx}1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers. STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitals to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states.

  7. Heat pipes for use in a magnetic field

    DOE Patents [OSTI]

    Werner, R.W.; Hoffman, M.A.

    1983-07-19

    A heat pipe configuration for use in a magnetic field environment of a fusion reactor is disclosed. Heat pipes for operation in a magnetic field when liquid metal working fluids are used are optimized by flattening of the heat pipes having an unobstructed annulus which significantly reduces the adverse side region effect of the prior known cylindrically configured heat pipes. The flattened heat pipes operating in a magnetic field can remove 2--3 times the heat as a cylindrical heat pipe of the same cross sectional area. 4 figs.

  8. Heat pipes for use in a magnetic field

    DOE Patents [OSTI]

    Werner, Richard W.; Hoffman, Myron A.

    1983-01-01

    A heat pipe configuration for use in a magnetic field environment of a fusion reactor. Heat pipes for operation in a magnetic field when liquid metal working fluids are used are optimized by flattening of the heat pipes having an unobstructed annulus which significantly reduces the adverse side region effect of the prior known cylindrically configured heat pipes. The flattened heat pipes operating in a magnetic field can remove 2--3 times the heat as a cylindrical heat pipe of the same cross sectional area.

  9. Excavationless Exterior Foundation Insulation Field Study

    SciTech Connect (OSTI)

    Schirber, T.; Mosiman, G.; Ojczyk, C.

    2014-09-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with liquid insulating foam. The team was able to excavate a continuous 4 inches wide by 4 feet to 5 feet deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  10. Excavationless Exterior Foundation Insulation Field Study

    SciTech Connect (OSTI)

    Schirber, T.; Mosiman, G.; Ojczyk, C.

    2014-10-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with a liquid insulating foam. The team was able to excavate a continuous 4" wide by 4' to 5' deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  11. Slab edge insulating form system and methods

    DOE Patents [OSTI]

    Lee, Brain E.; Barsun, Stephan K.; Bourne, Richard C.; Hoeschele, Marc A.; Springer, David A.

    2009-10-06

    A method of forming an insulated concrete foundation is provided comprising constructing a foundation frame, the frame comprising an insulating form having an opening, inserting a pocket former into the opening; placing concrete inside the foundation frame; and removing the pocket former after the placed concrete has set, wherein the concrete forms a pocket in the placed concrete that is accessible through the opening. The method may further comprise sealing the opening by placing a sealing plug or sealing material in the opening. A system for forming an insulated concrete foundation is provided comprising a plurality of interconnected insulating forms, the insulating forms having a rigid outer member protecting and encasing an insulating material, and at least one gripping lip extending outwardly from the outer member to provide a pest barrier. At least one insulating form has an opening into which a removable pocket former is inserted. The system may also provide a tension anchor positioned in the pocket former and a tendon connected to the tension anchor.

  12. Measure Guideline: Hybrid Foundation Insulation Retrofits

    SciTech Connect (OSTI)

    Ueno, K.; Lstiburek, J.

    2012-05-01

    This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a 'partial drainage' detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

  13. Measure Guideline. Hybrid Foundation Insulation Retrofits

    SciTech Connect (OSTI)

    Ueno, K.; Lstiburek, J.

    2012-05-01

    This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a partial drainage detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

  14. Silicon on insulator self-aligned transistors

    DOE Patents [OSTI]

    McCarthy, Anthony M.

    2003-11-18

    A method for fabricating thin-film single-crystal silicon-on-insulator (SOI) self-aligned transistors. Standard processing of silicon substrates is used to fabricate the transistors. Physical spaces, between the source and gate, and the drain and gate, introduced by etching the polysilicon gate material, are used to provide connecting implants (bridges) which allow the transistor to perform normally. After completion of the silicon substrate processing, the silicon wafer is bonded to an insulator (glass) substrate, and the silicon substrate is removed leaving the transistors on the insulator (glass) substrate. Transistors fabricated by this method may be utilized, for example, in flat panel displays, etc.

  15. Liquid-Filled Piping System Analysis

    Energy Science and Technology Software Center (OSTI)

    1993-07-07

    WHAM6 is used to calculate pressure and velocity transients in liquid-filled piping networks. It can be applied to multiloop complex piping networks consisting of dead ends, elbows, orifices, multiple-branch tees, changes of flow passage cross section, check valves, pumps, pressurizers or tanks, and exit valves or breaks. Hydraulic losses are considered. Transients can be initiated either by closure or opening of one or more exit valves (equivalent to system ruptures) or by a prescribed gasmore » pressure history in a pressurizer tank.« less

  16. Design of megawatt power level heat pipe reactors (Technical...

    Office of Scientific and Technical Information (OSTI)

    Design of megawatt power level heat pipe reactors Citation Details In-Document Search Title: Design of megawatt power level heat pipe reactors An important niche for nuclear energy...

  17. Ceilings and Attics: Install Insulation and Provide Ventilation

    SciTech Connect (OSTI)

    2000-02-01

    This document provides guidelines for installing insulation and managing ventilation through your attic.

  18. Methodology for evaluation of insulation-debris effects. Containment emergency sump performance-unresolved safety issue A-43

    SciTech Connect (OSTI)

    Wysocki, J.; Kolbe, R.

    1982-09-01

    The postulated failure of high energy piping within a light water reactor containment has raised safety questions related to the generation of insulation debris, the migration of such debris to the containment emergency sump screens and the potential for severe screen blockages. High, or total, screen blockages could result in impairment of the long term RHR recirculation systems. Debris considerations are an integral part of the unresolved Safety Issue A-43, Containment Emergency Sump Performance. This report develops calculational methods and debris transport models which can be used for estimating the quantities of debris that might be generated by a LOCA, the transport of such debris, methods for estimating screen blockages and attendant pressure losses. Five operating plants were analyzed using this debris evaluation methodology. These calculations show the dependency on plant containment layout, sump location and design, and types and quantities of insulation employed. 9 figures, 6 tables.

  19. Where to Insulate in a Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation » Where to Insulate in a Home Where to Insulate in a Home Examples of where to insulate. 1. In unfinished attic spaces, insulate between and over the floor joists to seal off living spaces below. If the air distribution is in the attic space, then consider insulating the rafters to move the distribution into the conditioned space. (1A) attic access door 2. In finished attic rooms with or without dormer, insulate (2A) between the studs of "knee" walls, (2B) between the studs

  20. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are they promising materials for energy-conserving electronic applications, they

  1. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are they promising materials for energy-conserving electronic applications, they

  2. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are they promising materials for energy-conserving electronic applications, they

  3. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are they promising materials for energy-conserving electronic applications, they

  4. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are they promising materials for energy-conserving electronic applications, they

  5. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are they promising materials for energy-conserving electronic applications, they

  6. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are they promising materials for energy-conserving electronic applications, they

  7. Panelized wall system with foam core insulation

    DOE Patents [OSTI]

    Kosny, Jan (Oak Ridge, TN); Gaskin, Sally (Houston, TX)

    2009-10-20

    A wall system includes a plurality of wall members, the wall members having a first metal panel, a second metal panel, and an insulating core between the first panel and the second panel. At least one of the first panel and the second panel include ridge portions. The insulating core can be a foam, such as a polyurethane foam. The foam can include at least one opacifier to improve the k-factor of the foam.

  8. Vacuum Insulation for Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vacuum Insulation for Windows Vacuum Insulation for Windows Image of vacuum capsules in water (4 mg/ml) used for dip coating. Image of vacuum capsules in water (4 mg/ml) used for dip coating. Image of vacuum capsules deposited using dip coating, demonstrating virtually no visual degradation. Image of vacuum capsules deposited using dip coating, demonstrating virtually no visual degradation. Image of vacuum capsules in water (4 mg/ml) used for dip coating. Image of vacuum capsules deposited using

  9. Measure Guideline: Internal Insulation of Masonry Walls

    SciTech Connect (OSTI)

    Straube, J. F.; Ueno, K.; Schumacher, C. J.

    2012-07-01

    This measure guideline provides recommendations for interior insulation assemblies that control interstitial condensation and durability risks; recommendations for acceptable thermal performance are also provided. An illustrated guide of high-risk exterior details (which concentrate bulk water), and recommended remediation details is provided. This is followed by a recommended methodology for risk assessment of a masonry interior insulation project: a series of steps are suggested to assess the risks associated with this retrofit, with greater certainty with added steps.

  10. Measure Guideline. Internal Insulation of Masonry Walls

    SciTech Connect (OSTI)

    Straube, J. F.; Ueno, K.; Schumacher, C. J.

    2012-07-01

    This measure guideline provides recommendations for interior insulation assemblies that control interstitial condensation and durability risks; recommendations for acceptable thermal performance are also provided. An illustrated guide of high-risk exterior details (which concentrate bulk water), and recommended remediation details is provided. This is followed by a recommended methodology for risk assessment of a masonry interior insulation project: a series of steps are suggested to assess the risks associated with this retrofit, with greater certainty with added steps.

  11. High-Performance Slab-on-Grade Foundation Insulation Retrofits

    SciTech Connect (OSTI)

    Goldberg, Louise F.; Mosiman, Garrett E.

    2015-09-01

    ?A more accurate assessment of slab-on-grade foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated).

  12. Nondestructive evaluation of new coiled tubing and pipe

    SciTech Connect (OSTI)

    Stanley, R.K.

    1996-09-01

    The nondestructive testing (NDT) and evaluation (NDE) of coiled tubing and pipe during manufacture has not previously been described. This paper outlines the NDE methods employed during the production of such material, along with flaw removal criteria. This paper describes coiled tubing and pipe up to 3.5 inches diameter for both downhole and line pipe use.

  13. Insulation for New Home Construction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for New Home Construction Insulation for New Home Construction Planning carefully for insulation results in reduced utility bills and superior comfort during the life of the home. In this house, raised heel trusses accommodate R-60 insulation. | Credit: Paul Norton, NREL. Planning carefully for insulation results in reduced utility bills and superior comfort during the life of the home. In this house, raised heel trusses accommodate R-60 insulation. | Credit: Paul Norton, NREL. State and local

  14. Passive ice freezing-releasing heat pipe

    DOE Patents [OSTI]

    Gorski, Anthony J. (Lemont, IL); Schertz, William W. (Batavia, IL)

    1982-01-01

    A heat pipe device has been developed which permits completely passive ice formation and periodic release of ice without requiring the ambient temperature to rise above the melting point of water. This passive design enables the maximum amount of cooling capacity to be stored in the tank.

  15. Characterization of radioactive contamination inside pipes with the Pipe Explorer{trademark} system. Final report

    SciTech Connect (OSTI)

    Cremer, C.D.; Kendrick, D.T.; Lowry, W.; Cramer, E.

    1997-09-30

    The Department of Energy (DOE) is currently in the process of decommissioning and dismantling many of its nuclear materials processing facilities that have been in use for several decades. Site managers throughout the DOE complex must employ the safest and most cost effective means to characterize, remediate and recycle or dispose of hundreds of miles of potentially contaminated piping and duct work. The DOE discovered that standard characterization methods were inadequate for its pipes, drains, and ducts because many of the systems are buried or encased. In response to the DOE`s need for a more specialized characterization technique, Science and Engineering Associates, Inc. (SEA) developed the Pipe Explorer{trademark} system through a DOE Office of Science and Technology (OST) contract administered through the Federal Energy Technology Center (FETC). The purpose of this report is to serve as a comprehensive overview of all phases of the Pipe Explorer{trademark} development project. The report is divided into 6 sections. Section 2 of the report provides an overview of the Pipe Explorer{trademark} system, including the operating principles of using an inverting membrane to tow sensors into pipes. The basic components of the characterization system are also described. Descriptions of the various deployment systems are given in Section 3 along with descriptions of the capabilities of the deployment systems. During the course of the development project 7 types of survey instruments were demonstrated with the Pipe Explorer{trademark} and are a part of the basic toolbox of instruments available for use with the system. These survey tools are described in Section 4 along with their typical performance specifications. The 4 demonstrations of the system are described chronologically in Section 5. The report concludes with a summary of the history, status, and future of the Pipe Explorer{trademark} system in Section 6.

  16. An Insulating Glass Knowledge Base

    SciTech Connect (OSTI)

    Michael L. Doll; Gerald Hendrickson; Gerard Lagos; Russell Pylkki; Chris Christensen; Charlie Cureija

    2005-08-01

    This report will discuss issues relevant to Insulating Glass (IG) durability performance by presenting the observations and developed conclusions in a logical sequential format. This concluding effort discusses Phase II activities and focuses on beginning to quantifying IG durability issues while continuing the approach presented in the Phase I activities (Appendix 1) which discuss a qualitative assessment of durability issues. Phase II developed a focus around two specific IG design classes previously presented in Phase I of this project. The typical box spacer and thermoplastic spacer design including their Failure Modes and Effect Analysis (FMEA) and Fault Tree diagrams were chosen to address two currently used IG design options with varying components and failure modes. The system failures occur due to failures of components or their interfaces. Efforts to begin quantifying the durability issues focused on the development and delivery of an included computer based IG durability simulation program. The focus/effort to deliver the foundation for a comprehensive IG durability simulation tool is necessary to address advancements needed to meet current and future building envelope energy performance goals. This need is based upon the current lack of IG field failure data and the lengthy field observation time necessary for this data collection. Ultimately, the simulation program is intended to be used by designers throughout the current and future industry supply chain. Its use is intended to advance IG durability as expectations grow around energy conservation and with the growth of embedded technologies as required to meet energy needs. In addition the tool has the immediate benefit of providing insight for research and improvement prioritization. Included in the simulation model presentation are elements and/or methods to address IG materials, design, process, quality, induced stress (environmental and other factors), validation, etc. In addition, acquired data is presented in support of project and model assumptions. Finally, current and suggested testing protocol and procedure for future model validation and IG physical testing are discussed.

  17. Steam bubble collapse induced water hammer in draining pipes

    SciTech Connect (OSTI)

    Griffith, P.; Silva, R.J.

    1991-08-01

    When hot steam replaces cold condensate in a horizontal or almost horizontal pipe, a steam bubble collapse induced water hammer often results. The effect of condensate drainage velocity and pipe declination on the incidence of steam bubble collapse induced water hammer is investigated experimentally. Declining the pipe more than 2.4{degrees} allows drainage velocities up to 3 ft/sec (1m/s) in a two inch (5 cm) pipe without water hammer. A semi-empirical theory allows extrapolation to other pressures, pipe sizes and inclinations. 4 refs.

  18. Method for minimizing contaminant particle effects in gas-insulated electrical apparatus

    DOE Patents [OSTI]

    Pace, M.O.; Adcock, J.L.; Christophorou, L.G.

    1984-01-01

    Electrical breakdown of a gas insulator in high voltage apparatus is prevented by placing an electrical insulative coating on contaminant particles in the gas insulator.

  19. Savings Project: Insulate Your Water Heater Tank | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulate Your Water Heater Tank Savings Project: Insulate Your Water Heater Tank Addthis Project Level medium Energy Savings $20-$45 annually Time to Complete 1.5 hours Overall Cost $30 Insulate your hot water tank to save energy and money. | Photo courtesy of iStockphoto.com/glennebo Insulate your hot water tank to save energy and money. | Photo courtesy of iStockphoto.com/glennebo Just like insulating your walls or roof, insulating your hot water tank is an easy and inexpensive way to improve

  20. #AskEnergySaver: Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation #AskEnergySaver: Insulation February 21, 2014 - 5:20pm Addthis One of the most cost-effective ways to improve your home's comfort is to add insulation to your attic. <a href="/node/366805">Learn more about insulation</a>. | Photo courtesy of Dennis Schroeder, National Renewable Energy Lab. One of the most cost-effective ways to improve your home's comfort is to add insulation to your attic. Learn more about insulation. | Photo courtesy of Dennis Schroeder,

  1. Gaseous insulators for high voltage electrical equipment

    DOE Patents [OSTI]

    Christophorou, Loucas G. (Oak Ridge, TN); James, David R. (Knoxville, TN); Pace, Marshall O. (Knoxville, TN); Pai, Robert Y. (Concord, TN)

    1981-01-01

    Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.

  2. Method of fabricating a multilayer insulation blanket

    DOE Patents [OSTI]

    Gonczy, J.D.; Niemann, R.C.; Boroski, W.N.

    1993-07-06

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  3. Multilayer insulation blanket, fabricating apparatus and method

    DOE Patents [OSTI]

    Gonczy, J.D.; Niemann, R.C.; Boroski, W.N.

    1992-09-01

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel. 7 figs.

  4. Nuclear reactor vessel fuel thermal insulating barrier

    DOE Patents [OSTI]

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  5. Method of fabricating a multilayer insulation blanket

    DOE Patents [OSTI]

    Gonczy, John D. (Oak Lawn, IL); Niemann, Ralph C. (Downers Grove, IL); Boroski, William N. (Aurora, IL)

    1993-01-01

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  6. Multilayer insulation blanket, fabricating apparatus and method

    DOE Patents [OSTI]

    Gonczy, John D. (Oak Lawn, IL); Niemann, Ralph C. (Downers Grove, IL); Boroski, William N. (Aurora, IL)

    1992-01-01

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  7. Electrical insulator assembly with oxygen permeation barrier

    DOE Patents [OSTI]

    Van Der Beck, Roland R. (Lansdale, PA); Bond, James A. (Exton, PA)

    1994-01-01

    A high-voltage electrical insulator (21) for electrically insulating a thermoelectric module (17) in a spacecraft from a niobium-1% zirconium alloy wall (11) of a heat exchanger (13) filled with liquid lithium (16) while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator (21) has a single crystal alumina layer (SxAl.sub.2 O.sub.3, sapphire) with a niobium foil layer (32) bonded thereto on the surface of the alumina crystal (26) facing the heat exchanger wall (11), and a molybdenum layer (31) bonded to the niobium layer (32) to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface.

  8. Electrical insulator assembly with oxygen permeation barrier

    DOE Patents [OSTI]

    Van Der Beck, R.R.; Bond, J.A.

    1994-03-29

    A high-voltage electrical insulator for electrically insulating a thermoelectric module in a spacecraft from a niobium-1% zirconium alloy wall of a heat exchanger filled with liquid lithium while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator has a single crystal alumina layer (SxAl[sub 2]O[sub 3], sapphire) with a niobium foil layer bonded thereto on the surface of the alumina crystal facing the heat exchanger wall, and a molybdenum layer bonded to the niobium layer to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface. 3 figures.

  9. Transient One-dimensional Pipe Flow Analyzer

    Energy Science and Technology Software Center (OSTI)

    1986-04-08

    TOPAZ-SNLL, the Transient One- dimensional Pipe flow AnalyZer code, is a user-friendly computer program for modeling the heat transfer, fluid mechanics, and thermodynamics of multi-species gas transfer in arbitrary arrangements of pipes, valves, vessels, and flow branches. Although the flow conservation equations are assumed to be one-dimensional and transient, multidimensional features of internal fluid flow and heat transfer may be accounted for using the available quasi-steady flow correlations (e.g., Moody friction factor correlation and variousmore » form loss and heat transfer correlations). Users may also model the effects of moving system boundaries such as pistons, diaphragms, and bladders. The features of fully compressible flow are modeled, including the propagation of shocks and rarefaction waves, as well as the establishment of multiple choke points along the flow path.« less

  10. Nashville Gas treads carefully to replace pipe

    SciTech Connect (OSTI)

    1997-06-01

    The private gas utility, Nashville Gas, was responsible for replacing damaged or inadequate 2- and 4-inch steel gas lines beneath Music City, USA. The line replacements required either size for size or upsizing. The first choice was directional drilling, which was quickly determined to be unpractical because of rocky soil conditions. The second option was open trenching. Undoubtedly, trenching would mean having to contend with angry residents and tourists, since gas lines ran beneath yards, mature trees, sidewalks, roadways, and railways. In addition to the negative social factors, trenching would require additional funds for substantial landscaping and pavement replacement. It at all possible, a no-dig alternative was desired. Nashville Gas found Grundomat piercing tools which create a bore, then pushes pipe back through it. These same tools can simultaneously pull in pipe. These tools were customized for the Nashville project.

  11. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, A.M.

    1996-01-30

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  12. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, A.M.

    1998-06-02

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  13. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1998-06-02

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  14. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1996-01-01

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  15. Heat pipe wick with structural enhancement

    DOE Patents [OSTI]

    Andraka, Charles E.; Adkins, Douglas R.; Moreno, James B.; Rawlinson, K. Scott; Showalter, Steven K.; Moss, Timothy A.

    2003-11-18

    Heat pipe wick structure wherein a stout sheet of perforated material overlays a high performance wick material such as stainless steel felt affixed to a substrate. The inventive structure provides a good flow path for working fluid while maintaining durability and structural stability independent of the structure (or lack of structure) associated with the wick material. In one described embodiment, a wick of randomly laid .about.8 micron thickness stainless steel fibers is sintered to a metal substrate and a perforated metal overlay.

  16. High Performance Slab-on-Grade Foundation Insulation Retrofits

    SciTech Connect (OSTI)

    Goldberg, Louise F.; Mosiman, Garrett E.

    2015-09-01

    ?A more accurate assessment of SOG foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated). The optimum insulation strategy was applied to single and multi-family residential buildings in climate zone 4 - 7. The highest site energy savings of 5% was realized for a single family home in Duluth, MN, and the lowest savings of 1.4 % for a 4-unit townhouse in Richmond, VA. SOG foundation insulation retrofit simple paybacks ranged from 18 to 47 years. There are other benefits of SOG foundation insulation resulting from the increase in the slab surface temperatures. These include increased occupant thermal comfort, and a decrease in slab surface condensation particularly around the slab perimeter.

  17. Pipe Explorer{trademark} surveying system. Innovative technology summary report

    SciTech Connect (OSTI)

    Not Available

    1999-06-01

    The US Department of Energy`s (DOE) Chicago Operations Office and the DOE`s Federal Energy Technology Center (FETC) developed a Large Scale Demonstration Project (LSDP) at the Chicago Pile-5 Research Reactor (CP-5) at Argonne National Laboratory-East (ANL). The objective of the LSDP is to demonstrate potentially beneficial decontamination and decommissioning (D and D) technologies in comparison with current baseline technologies. The Pipe Explorer{trademark} system was developed by Science and Engineering Associates, Inc. (SEA), Albuquerque, NM as a deployment method for transporting a variety of survey tools into pipes and ducts. Tools available for use with the system include alpha, beta and gamma radiation detectors; video cameras; and pipe locator beacons. Different versions of this technology have been demonstrated at three other sites; results of these demonstrations are provided in an earlier Innovative Technology Summary Report. As part of a D and D project, characterization radiological contamination inside piping systems is necessary before pipes can be recycled, remediated or disposed. This is usually done manually by surveying over the outside of the piping only, with limited effectiveness and risk of worker exposure. The pipe must be accessible to workers, and embedded pipes in concrete or in the ground would have to be excavated at high cost and risk of exposure to workers. The advantage of the Pipe Explorer is its ability to perform in-situ characterization of pipe internals.

  18. Determination of leakage areas in nuclear piping

    SciTech Connect (OSTI)

    Keim, E.

    1997-04-01

    For the design and operation of nuclear power plants the Leak-Before-Break (LBB) behavior of a piping component has to be shown. This means that the length of a crack resulting in a leak is smaller than the critical crack length and that the leak is safely detectable by a suitable monitoring system. The LBB-concept of Siemens/KWU is based on computer codes for the evaluation of critical crack lengths, crack openings, leakage areas and leakage rates, developed by Siemens/KWU. In the experience with the leak rate program is described while this paper deals with the computation of crack openings and leakage areas of longitudinal and circumferential cracks by means of fracture mechanics. The leakage areas are determined by the integration of the crack openings along the crack front, considering plasticity and geometrical effects. They are evaluated with respect to minimum values for the design of leak detection systems, and maximum values for controlling jet and reaction forces. By means of fracture mechanics LBB for subcritical cracks has to be shown and the calculation of leakage areas is the basis for quantitatively determining the discharge rate of leaking subcritical through-wall cracks. The analytical approach and its validation will be presented for two examples of complex structures. The first one is a pipe branch containing a circumferential crack and the second one is a pipe bend with a longitudinal crack.

  19. Insulator coating for high temperature alloys method for producing insulator coating for high temperature alloys

    DOE Patents [OSTI]

    Park, J.H.

    1998-06-23

    A method for fabricating an electrically insulating coating on a surface is disclosed comprising coating the surface with a metal, and reacting the metal coated surface with a nonmetal so as to create a film on the metal-coated surface. Alternatively, the invention provides for a method for producing a noncorrosive, electrically insulating coating on a surface saturated with a nonmetal comprising supplying a molten fluid, dissolving a metal in the molten fluid to create a mixture, and contacting the mixture with the saturated surface. Lastly, the invention provides an electrically insulative coating comprising an underlying structural substrate coated with an oxide or nitride compound. 2 figs.

  20. Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01

    In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

  1. Insulation for New Home Construction | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ultra-efficient home design. It is more cost-effective to add insulation during construction than to retrofit it after the house is finished. To properly insulate a new home,...

  2. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Print It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new...

  3. Insulated laser tube structure and method of making same

    DOE Patents [OSTI]

    Dittbenner, Gerald R. (4353 Findlay Way, Livermore, CA 94550)

    1999-01-01

    An insulated high temperature ceramic laser tube having substantially uniform insulation along the length of the tube is disclosed having particulate ceramic insulation positioned between the outer wall of the ceramic laser tube and the inner surface of tubular ceramic fiber insulation which surrounds the ceramic laser tube. The particulate ceramic insulation is preferably a ceramic capable of sintering to the outer surface of the ceramic laser tube and to the inner surface of the tubular ceramic fiber insulation. The addition of the particulate ceramic insulation to fill all the voids between the ceramic laser tube and the fibrous ceramic insulation permits the laser tube to be operated at a substantially uniform temperature throughout the length of the laser tube.

  4. Building America Top Innovations 2012: Basement Insulation Systems

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes research on basement insulation, which identifies the wall installation methods and materials that perform best in terms of insulation and water resistance.

  5. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or...

  6. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Wednesday, 29 March 2006 00:00 Turning a...

  7. Insulate Steam Distribution and Condensate Return Lines | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Insulate Steam Distribution and Condensate Return Lines Insulate Steam Distribution and Condensate Return Lines This tip sheet on insulating steam distribution and condensate return lines provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies. STEAM TIP SHEET #2 PDF icon Insulate Steam Distribution and Condensate Return Lines (January 2012) More Documents & Publications Use a Vent Condenser to Recover Flash Steam Energy

  8. Surprising Control over Photoelectrons from a Topological Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surprising Control over Photoelectrons from a Topological Insulator Surprising Control over Photoelectrons from a Topological Insulator Print Tuesday, 12 March 2013 00:00 Topological insulators are insulators in the bulk but metals on the surface, and the electrons that flow swiftly across their surfaces are "spin polarized." Surface-electron spin and momentum are locked, offering new ways to control electron flow and distribution in spintronic devices. A Nature Physics paper by first

  9. Gas insulated transmission line having tapered particle trapping ring

    DOE Patents [OSTI]

    Cookson, Alan H. (Pittsburgh, PA)

    1982-01-01

    A gas-insulated transmission line includes an outer sheath, an inner conductor, insulating supports and an insulating gas. A particle-trapping ring is secured to each insulating support, and it is comprised of a central portion and two tapered end portions. The ends of the particle trapping ring have a smaller diameter than the central portion of the ring, so as to enable the use of the particle trapping ring in a curved transmission line.

  10. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Print It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator that is characterized by entangled wavefunctions. The proposal has now been realized by an international collaboration led by researchers from Princeton University who studied the electronic structure of insulating alloys of bismuth and antimony by means of

  11. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Print It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator that is characterized by entangled wavefunctions. The proposal has now been realized by an international collaboration led by researchers from Princeton University who studied the electronic structure of insulating alloys of bismuth and antimony by means of

  12. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Print It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator that is characterized by entangled wavefunctions. The proposal has now been realized by an international collaboration led by researchers from Princeton University who studied the electronic structure of insulating alloys of bismuth and antimony by means of

  13. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Print It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator that is characterized by entangled wavefunctions. The proposal has now been realized by an international collaboration led by researchers from Princeton University who studied the electronic structure of insulating alloys of bismuth and antimony by means of

  14. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Print It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator that is characterized by entangled wavefunctions. The proposal has now been realized by an international collaboration led by researchers from Princeton University who studied the electronic structure of insulating alloys of bismuth and antimony by means of

  15. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Observation of a Macroscopically Quantum-Entangled Insulator Print Wednesday, 27 May 2009 00:00 It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator that is characterized by entangled wavefunctions. The proposal has now been realized by an international collaboration led by researchers from Princeton University who studied

  16. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Print It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator that is characterized by entangled wavefunctions. The proposal has now been realized by an international collaboration led by researchers from Princeton University who studied the electronic structure of insulating alloys of bismuth and antimony by means of

  17. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Print It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator that is characterized by entangled wavefunctions. The proposal has now been realized by an international collaboration led by researchers from Princeton University who studied the electronic structure of insulating alloys of bismuth and antimony by means of

  18. Feasibility of SF6 Gas-Insulated Transformers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feasibility of SF 6 Gas-Insulated Transformers Brandon Bouwman, P.E. Electrical Engineer, Generation Equipment Section Hydroelectric Design Center 14 June 2012 BUILDING STRONG ® PORTLAND DISTRICT 2 Outline  Transformer Background & Basics  Oil-filled transformers  Oil-filled transformer concerns  Gas-insulated transformers (GIT)  Gas-insulated transformer benefits  Gas-insulated transformer concerns  Risks and Unknowns  Questions? BUILDING STRONG ® PORTLAND DISTRICT

  19. Corrugated outer sheath gas-insulated transmission line

    DOE Patents [OSTI]

    Kemeny, George A. (Pittsburgh, PA); Cookson, Alan H. (Churchill Boro, PA)

    1981-01-01

    A gas-insulated transmission line includes two transmission line sections each of which are formed of a corrugated outer housing enclosing an inner high-voltage conductor disposed therein, with insulating support means supporting the inner conductor within the outer housing and an insulating gas providing electrical insulation therebetween. The outer housings in each section have smooth end sections at the longitudinal ends thereof which are joined together by joining means which provide for a sealing fixed joint.

  20. Redox chemistry and metal-insulator transitions intertwined | Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Redox chemistry and metal-insulator transitions intertwined

  1. Exterior Rigid Insulation Best Practices - Building America Top Innovation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Exterior Rigid Insulation Best Practices - Building America Top Innovation Exterior Rigid Insulation Best Practices - Building America Top Innovation Effec guid-exterior rigid insulation.jpg For years, Building America research teams have advocated using the thermal, air, and vapor properties of rigid foam sheathing insulation to improve walls. Several teams earned a 2013 Top Innovation award for their research into this technology. The NorthernSTAR team's

  2. Thermal shock resistance ceramic insulator (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: Thermal shock resistance ceramic insulator Citation Details In-Document Search Title: Thermal shock resistance ceramic insulator Thermal shock resistant cermet insulators containing 0.1-20 volume % metal present as a dispersed phase. The insulators are prepared by a process comprising the steps of (a) providing a first solid phase mixture of a ceramic powder and a metal precursor; (b) heating the first solid phase mixture above the minimum decomposition temperature of the metal precursor

  3. Foundation Insulation for Existing Homes | Department of Energy

    Energy Savers [EERE]

    Foundation Insulation for Existing Homes Foundation Insulation for Existing Homes This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado. PDF icon cq1_foundation_insulation_huelman.pdf More Documents & Publications Critical Question #1: How Do We Retrofit the Tough Buildings? Excavationless Exterior Foundation Insulation Exploratory Building America Technology Solutions for New and Existing Homes:

  4. Insulation and Air Sealing Products and Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation and Air Sealing Products and Services Insulation and Air Sealing Products and Services Insulation and Air Sealing Products and Services Use the following links to get product information and locate professional services for insulation and air sealing. Product Information Concrete Masonry Units Concrete Homes-Portland Cement Association Describes construction methods that use concrete block systems EPS Industry Alliance Information on expanded polystyrene manufacturing, use, and

  5. Cladding Attachment Over Thick Exterior Insulating Sheathing

    SciTech Connect (OSTI)

    Baker, P.; Eng, P.; Lepage, R.

    2014-01-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1.What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2.Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3.What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?

  6. Cladding Attachment Over Thick Exterior Insulating Sheathing

    SciTech Connect (OSTI)

    Baker, P.; Eng, P.; Lepage, R.

    2014-01-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1. What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2. Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3. What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?

  7. Laminated insulators having heat dissipation means

    DOE Patents [OSTI]

    Niemann, R.C.; Mataya, K.F.; Gonczy, J.D.

    1980-04-24

    A laminated body is provided with heat dissipation capabilities. The insulator body is formed by dielectric layers interleaved with heat conductive layers, and bonded by an adhesive to form a composite structure. The heat conductive layers include provision for connection to an external thermal circuit.

  8. Method and apparatus for filling thermal insulating systems

    DOE Patents [OSTI]

    Arasteh, D.K.

    1992-01-14

    A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air. 3 figs.

  9. Method and apparatus for filling thermal insulating systems

    DOE Patents [OSTI]

    Arasteh, Dariush K. (Oakland, CA)

    1992-01-01

    A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air.

  10. Robotic platform for traveling on vertical piping network

    DOE Patents [OSTI]

    Nance, Thomas A; Vrettos, Nick J; Krementz, Daniel; Marzolf, Athneal D

    2015-02-03

    This invention relates generally to robotic systems and is specifically designed for a robotic system that can navigate vertical pipes within a waste tank or similar environment. The robotic system allows a process for sampling, cleaning, inspecting and removing waste around vertical pipes by supplying a robotic platform that uses the vertical pipes to support and navigate the platform above waste material contained in the tank.

  11. Hydrogen Piping Experience in Chevron Refining | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Piping Experience in Chevron Refining Hydrogen Piping Experience in Chevron Refining Overall Perspectives: Few problems with hydrogen piping operating at ambient to at least 800F and pressures up to at least 3000psia as long as we stay within well-defined limits PDF icon hpwgw_chevronrefining_niccolls.pdf More Documents & Publications DOE Hydrogen Pipeline Working Group Workshop Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines A Review of Stress Corrosion

  12. Electrical Detector for Liquid Lithium Leaks Around Demountable Pipe Joints

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab Electrical Detector for Liquid Lithium Leaks Around Demountable Pipe Joints This system is designed to detect leaks of liquid lithium from around demountable pipe joints. Demountable pipe joints such as vacuum fittings are likely spots for a leak in any system transporting fluids. Since liquid lithium reacts with air, water, concrete and other common materials, it is important to quickly detect a leak. The system will partially contain the leak and is designed

  13. CRAD, Equipment and Piping Labeling Assessment Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment and Piping Labeling Assessment Plan CRAD, Equipment and Piping Labeling Assessment Plan Performance Objective: To verify that facility equipment and piping are labeled in a manner such that facility personnel are able to positively identify equipment they operate. To ensure that an effective labeling program is in effect to reduce operator and maintenance errors from incorrect identification of equipment, to increase training effectiveness by tracing the actual facility system as

  14. SEISMIC CAPACITY OF THREADED, BRAZED AND GROOVED PIPE JOINTS | Department

    Office of Environmental Management (EM)

    of Energy SEISMIC CAPACITY OF THREADED, BRAZED AND GROOVED PIPE JOINTS SEISMIC CAPACITY OF THREADED, BRAZED AND GROOVED PIPE JOINTS Seismic Capacity of Threaded, Brazed and Grooved Pipe Joints Brent Gutierrez, PhD, PE George Antaki, PE, F.ASME DOE NPH Conference October 25-26, 2011 PDF icon Seismic Capacity of Threaded, Brazed and Grooved Pipe Joints More Documents & Publications FY2015 Status Report: CIRFT Testing of High-Burnup Used Nuclear Fuel Rods from Pressurized Water Reactor and

  15. A pipe cleaning machine: ERIP recommendation No. 571

    SciTech Connect (OSTI)

    Bratcher, H. Jr.; Hinick, M.B.; Balsam, J.W.

    1992-06-12

    The subject invention, ``A Pipe Cleaning Machine,`` known as ``Buffy,`` is a device that strips pipeline of its coating down to the metal. The apparatus consists of a series of motor-driven metal brushes mounted on a ring structure that fits the around the pipe`s circumference. Once stripped, the pipeline may or may not be abrasive-blasted, but is then coated and wrapped, and the trench is back-filled. Present models of the Buffy can be used on pipe up to 36`` in diameter. One of the device`s unique features is its ability to operate while the pipeline remains in service.

  16. Heat pipe with improved wick structures

    DOE Patents [OSTI]

    Benson, David A. (Albuquerque, NM); Robino, Charles V. (Albuquerque, NM); Palmer, David W. (Albuquerque, NM); Kravitz, Stanley H. (Placitas, NM)

    2000-01-01

    An improved planar heat pipe wick structure having projections formed by micromachining processes. The projections form arrays of interlocking, semi-closed structures with multiple flow paths on the substrate. The projections also include overhanging caps at their tops to increase the capillary pumping action of the wick structure. The capped projections can be formed in stacked layers. Another layer of smaller, more closely spaced projections without caps can also be formed on the substrate in between the capped projections. Inexpensive materials such as Kovar can be used as substrates, and the projections can be formed by electrodepositing nickel through photoresist masks.

  17. Composite multilayer insulations for thermal protection of aerospace vehicles

    SciTech Connect (OSTI)

    Kourtides, D.A.; Pitts, W.C.

    1989-02-01

    Composite flexible multilayer insulation systems (MLI), consisting of alternating layers of metal foil and scrim cloth or insulation quilted together using ceramic thread, were evaluated for thermal performance and compared with a silica fibrous (baseline) insulation system. The systems studied included: (1) alternating layers of aluminoborosilicate (ABS) scrim cloth and stainless steel foil, with silica, ABS, or alumina insulation; (2) alternating layers of scrim cloth and aluminum foil, with silica or ABS insulation; (3) alternating layers of alumininum foil and silica or ABS insulation; and (4) alternating layers of aluminum-coated polyimide placed on the bottom of the silica insulation. The MLIs containing aluminum were the most efficient, measuring as little as half the backface temperature increase of the baseline system.

  18. High temperature insulation for ceramic matrix composites

    DOE Patents [OSTI]

    Merrill, Gary B.; Morrison, Jay Alan

    2004-01-13

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  19. Apparatus for insulating windows and the like

    DOE Patents [OSTI]

    Mitchell, Robert A. (R.D. #1, Box 462-A, Voorheesville, NY 12186)

    1984-01-01

    Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in "kit" form.

  20. High temperature insulation for ceramic matrix composites

    DOE Patents [OSTI]

    Merrill, Gary B. (Monroeville, PA); Morrison, Jay Alan (Orlando, FL)

    2000-01-01

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composite comprises a plurality of hollow oxide-based spheres of varios dimentions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substates are also provided.

  1. High temperature insulation for ceramic matrix composites

    DOE Patents [OSTI]

    Merrill, Gary B. (Monroeville, PA); Morrison, Jay Alan (Orlando, FL)

    2001-01-01

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  2. Apparatus for insulating windows and the like

    DOE Patents [OSTI]

    Mitchell, R.A.

    1984-06-19

    Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in kit'' form. 11 figs.

  3. Contaminant trap for gas-insulated apparatus

    DOE Patents [OSTI]

    Adcock, James L. (Knoxville, TN); Pace, Marshall O. (Knoxville, TN); Christophorou, Loucas G. (Oak Ridge, TN)

    1984-01-01

    A contaminant trap for a gas-insulated electrical conductor is provided. A resinous dielectric body such as Kel-F wax, grease or other sticky polymeric or oligomeric compound is disposed on the inside wall of the outer housing for the conductor. The resinous body is sufficiently sticky at ambient temperatures to immobilize contaminant particles in the insulating gas on the exposed surfaces thereof. An electric resistance heating element is disposed in the resinous body to selectively raise the temperature of the resinous body to a molten state so that the contaminant particles collected on the surface of the body sink into the body so that the surface of the resinous body is renewed to a particle-less condition and, when cooled, returns to a sticky collecting surface.

  4. Computational model of miniature pulsating heat pipes.

    SciTech Connect (OSTI)

    Martinez, Mario J.; Givler, Richard C.

    2013-01-01

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

  5. CODIFICATION OF FIBER REINFORCED COMPOSITE PIPING

    SciTech Connect (OSTI)

    Rawls, G.

    2012-10-10

    The goal of the overall project is to successfully adapt spoolable FRP currently used in the oil industry for use in hydrogen pipelines. The use of FRP materials for hydrogen service will rely on the demonstrated compatibility of these materials for pipeline service environments and operating conditions. The ability of the polymer piping to withstand degradation while in service, and development of the tools and data required for life management are imperative for successful implementation of these materials for hydrogen pipeline. The information and data provided in this report provides the technical basis for the codification for fiber reinforced piping (FRP) for hydrogen service. The DOE has invested in the evaluation of FRP for the delivery for gaseous hydrogen to support the development of a hydrogen infrastructure. The codification plan calls for detailed investigation of the following areas: System design and applicable codes and standards; Service degradation of FRP; Flaw tolerance and flaw detection; Integrity management plan; Leak detection and operational controls evaluation; Repair evaluation. The FRP codification process started with commercially available products that had extensive use in the oil and gas industry. These products have been evaluated to assure that sufficient structural integrity is available for a gaseous hydrogen environment.

  6. Excavationless Exterior Foundation Insulation Exploratory Study

    SciTech Connect (OSTI)

    Mosimann, Garrett; Wagner, Rachel; Schirber, Tom

    2013-02-01

    The key objective of this exploratory study was to investigate the feasibility of the development or adoption of technologies that would enable a large percentage of existing homes in cold climates to apply a combination 'excavationless' soil removal process with appropriate insulation and water management on the exterior of existing foundations at a low cost. Our approach was to explore existing excavation and material technologies and systems to discover whether potential successful combinations existed.

  7. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, P.R.; McLennan, G.A.

    1984-08-30

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  8. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, Paul R.; McLennan, George A.

    1985-01-01

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  9. Humidity effects on wire insulation breakdown strength.

    SciTech Connect (OSTI)

    Appelhans, Leah

    2013-08-01

    Methods for the testing of the dielectric breakdown strength of insulation on metal wires under variable humidity conditions were developed. Two methods, an ASTM method and the twisted pair method, were compared to determine if the twisted pair method could be used for determination of breakdown strength under variable humidity conditions. It was concluded that, although there were small differences in outcomes between the two testing methods, the non-standard method (twisted pair) would be appropriate to use for further testing of the effects of humidity on breakdown performance. The dielectric breakdown strength of 34G copper wire insulated with double layer Poly-Thermaleze/Polyamide-imide insulation was measured using the twisted pair method under a variety of relative humidity (RH) conditions and exposure times. Humidity at 50% RH and below was not found to affect the dielectric breakdown strength. At 80% RH the dielectric breakdown strength was significantly diminished. No effect for exposure time up to 140 hours was observed at 50 or 80%RH.

  10. Smoldering combustion hazards of thermal insulation materials

    SciTech Connect (OSTI)

    Ohlemiller, T.J.; Rogers, F.E.

    1980-07-01

    Work on the smolder ignitability in cellulosic insulation and on thermal analytical characterization of the oxidation of this material is presented. Thermal analysis (TGA and DSC) shows that both retarded and unretarded cellulosic insulation oxidizes in two overall stages, both of which are exothermic. The second stage (oxidation of the char left as a residue of the first stage) is much more energetic on a unit mass basis than the first. However, kinetics and a sufficient exothermicity make the first stage responsible for ignition in most realistic circumstances. Existing smolder retardants such as boric acid have their major effect on the kinetics of the second oxidation stage and thus produce only a rather small (20/sup 0/C) increase in smolder ignition temperature. Several simplified analogs of attic insulations have been tested to determine the variability of minimum smolder ignition temperature. These employed planar or tubular constant temperature heat sources in a thermal environment quite similar to a realistic attic application. Go/no-go tests provided the borderline (minimum) ignition temperature for each configuration. The wide range (150/sup 0/C) of minimum ignition temperatures confirmed the predominant dependence of smolder ignition on heat flow geometry. Other factors (bulk density, retardants) produced much less effect on ignitability.

  11. Aerogel: a transparent insulator for solar applications

    SciTech Connect (OSTI)

    Hunt, A.J.; Russo, R.E.; Tewari, P.H.; Lofftus, K.D.

    1985-06-01

    Aerogel is a transparent, low density, insulating material suitable for a variety of solar applications. Significant energy savings can be realized by using aerogel for a window glazing material. Other possible applications include solar collector covers, transparent insulating jackets for direct gain passive solar devices, and situations that require both transparency and good insulation. Because silica aerogel has a low density (2 to 10% solid), it has a thermal conductivity as low as 0.014 W/m/sup 0/K without evacuation, and if evacuated, lower than 0.006 W/m/sup 0/K. It provides a clear view with only slight coloring due to its weak and nearly isotropic scattering of light. This paper describes significant progress made in the past year at our laboratory in the development of aerogel. We have improved the transparency, developed new preparation methods using less toxic materials, and initiated successful experiments in drying alcogels at near ambient temperature. Optical transmission, light scattering, and electron microscopy data show that CO/sub 2/ supercritical drying of alcogels produces aerogels similar in quality to those produced by high temperature supercritical drying. These advances make the commercial production of aerogel much more feasible.

  12. Response margins of the dynamic analysis of piping systems

    SciTech Connect (OSTI)

    Johnson, J.J.; Benda, B.J.; Chuang, T.Y.; Smith, P.D.

    1984-04-01

    This report is organized as follows: Section 2 describes the three piping systems of the Zion nuclear power plant which formed the basis of the present study. The auxiliary feedwater (AFW) piping from steam generator to containment, the residual heat removal (RHR) and safety injection piping in the auxiliary building, and the reactor coolant loops (RCL) including a portion of the branch lines were analyzed. Section 3 describes the analysis methods and the analyses performed. Section 4 presents the numerical results; the principal results presented as comparisons of response calculated by best estimate time history analysis methods vs. the SRP response spectrum technique. Section 5 draws conclusions from the results. Appendix A contains a brief description of the mathematical models that defined the structures containing the three piping systems. Response from these models provided input to the piping models. Appendix B provides a detailed derivation of the pseudostatic mode approach to the multisupport time history analysis method used in this study.

  13. Enhancing metal-insulator-insulator-metal tunnel diodes via defect enhanced direct tunneling

    SciTech Connect (OSTI)

    Alimardani, Nasir; Conley, John F.

    2014-08-25

    Metal-insulator-insulator-metal tunnel diodes with dissimilar work function electrodes and nanolaminate Al{sub 2}O{sub 3}-Ta{sub 2}O{sub 5} bilayer tunnel barriers deposited by atomic layer deposition are investigated. This combination of high and low electron affinity insulators, each with different dominant conduction mechanisms (tunneling and Frenkel-Poole emission), results in improved low voltage asymmetry and non-linearity of current versus voltage behavior. These improvements are due to defect enhanced direct tunneling in which electrons transport across the Ta{sub 2}O{sub 5} via defect based conduction before tunneling directly through the Al{sub 2}O{sub 3}, effectively narrowing the tunnel barrier. Conduction through the device is dominated by tunneling, and operation is relatively insensitive to temperature.

  14. Rapid pressure cycle effects on flexible pipe

    SciTech Connect (OSTI)

    Hill, R.T.; Upchurch, J.L.; McMahan, J.M. Jr.

    1995-12-01

    The use of subsea satellite wells tied back to a central manifold unit is a field development concept currently being used by operating companies for staged production of either commingled oil or gas. Remote platform operated control systems that couple the satellite wells and manifold require that safe operating pressure cycle parameters be established for all subsea components. Because of start-up and shut-in procedures, extreme pressure variations in the form of rapid pressurization and depressurization must be considered. This paper describes the test procedures, equipment and results specific to the evaluation of high pressure non-bonded flexible pipe used for subsea production jumpers between satellite wells and manifold system. Recommendation of safe rates of pressurization and depressurization are included.

  15. Sheath insulator final test report, TFE Verification Program

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The sheath insulator in a thermionic cell has two functions. First, the sheath insulator must electrically isolate the collector form the outer containment sheath tube that is in contact with the reactor liquid metal coolant. Second, The sheath insulator must provide for high uniform thermal conductance between the collector and the reactor coolant to remove away waste heat. The goals of the sheath insulator test program were to demonstrate that suitable ceramic materials and fabrication processes were available, and to validate the performance of the sheath insulator for TFE-VP requirements. This report discusses the objectives of the test program, fabrication development, ex-reactor test program, in-reactor test program, and the insulator seal specifications.

  16. Inspection of Fusion Joints in Plastic Pipe

    SciTech Connect (OSTI)

    Connie Reichert

    2005-09-01

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost-effective method exists for assessing the quality of fusion joints in the field. Visual examination and pressure testing are current nondestructive approaches, which do not provide any assurance about the long-term pipeline performance. This project developed, demonstrated, and validated an in-situ nondestructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system includes a laser-based image-recognition system that automatically generates and interprets digital images of pipe joints and assigns them a pass/fail rating, which eliminates operator bias in evaluating joint quality. An EWI-patented process, the Weld Zone Inspection Method (WZIM) was developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation, which reveals the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and two destructive forms of testing: short-term tensile testing and long-term creep rupture testing. There appears to be a direct correlation between the WZIM and the destructive testing results. Although WZIM appears to be more sensitive than destructive testing can verify, the approach appears valid.

  17. Development and Manufacture of Cost Effective Composite Drill Pipe

    SciTech Connect (OSTI)

    James C. Leslie; James C. Leslie II; Lee Truong; James T. Heard; Steve Loya

    2006-02-20

    This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2004 through September 30, 2005 and contains the following discussions: (1) Qualification Testing; (2) Prototype Development and Testing of ''Smart Design'' Configuration; (3) Field Test Demonstration; and (4) Commercial order for SR-CDP from Torch International. The objective of this contract is to develop and demonstrate ''cost effective'' Composite Drill Pipe. It is projected that this drill pipe will weigh less than half of its steel counter part. The resultant weight reduction will provide enabling technology that will increase the lateral distance that can be reached from an offshore drilling platform and the depth of water in which drilling and production operations can be carried out. Further, composite drill pipe has the capability to carry real time signal and power transmission within the pipe walls. CDP can also accommodate much shorter drilling radius than is possible with metal drill pipe. As secondary benefits, the lighter weight drill pipe can increase the storage capability of floating off shore drilling platforms and provide substantial operational cost savings.

  18. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Wednesday, 29 March 2006 00:00 Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or magnetic fields, or applying small changes in temperature, pressure, or doping-such intriguing control of a material's electronic properties is possible by exploiting strongly interacting or "correlated" electrons.

  19. Explosion resistant insulator and method of making same

    DOE Patents [OSTI]

    Meyer, Jeffry R.; Billings, Jr., John S.; Spindle, Harvey E.; Hofmann, Charles F.

    1983-01-01

    An electrical insulator assembly and method of manufacturing same, having a generally cylindrical or conical body portion formed of a breakable cast solid insulation system and a reinforcing member having a corrugated configuration and formed of a web or mesh type reinforcing fabric. When the breakable body member has been broken, the corrugated configured reinforcing web member provides a path of escape for pressurized insulating fluid while limiting the movement of body member fragments in the direction of escape of the pressurized fluid.

  20. Experiments Provide First Direct Signatures of a Topological Insulator - a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Phase of Quantum Matter Experiments Provide First Direct Signatures of a Topological Insulator - a New Phase of Quantum Matter It has recently been proposed that insulators with large band gap and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator [1,2]. This exotic phase of matter is a subject of intense research because it is predicted to give rise to dissipationless spin currents [3], quantum entanglements and novel macroscopic behavior

  1. Operating temperatures of recessed fluorescent fixtures with thermal insulation

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Toor, I.A.

    1981-05-01

    Tests were performed to determine steady state surface temperatures for recessed fluorescent fixtures operated with and without thermal insulation on the top side of the fixture and to identify potential problems associated with the installation of thermal insulation. In addition to measuring temperatures, means were sought by which the fixtures can be thermally insulated and operated without fire hazards or damage to the fixture. (MCW)

  2. Building America Expert Meeting: Interior Insulation Retrofit of Mass

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Masonry Wall Assemblies | Department of Energy Interior Insulation Retrofit of Mass Masonry Wall Assemblies Building America Expert Meeting: Interior Insulation Retrofit of Mass Masonry Wall Assemblies The Building Science Corporation team held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011, at the Westford Regency Hotel in Westford, MA. Featured speakers included John Straube, Christopher Schumacher and Kohta Ueno of Building Science

  3. Building America Expert Meeting: Interior Insulation Retrofit of Mass

    Energy Savers [EERE]

    Masonry Wall Assemblies | Department of Energy Interior Insulation Retrofit of Mass Masonry Wall Assemblies Building America Expert Meeting: Interior Insulation Retrofit of Mass Masonry Wall Assemblies The Building Science Corporation team held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011, at the Westford Regency Hotel in Westford, MA. Featured speakers included John Straube, Christopher Schumacher and Kohta Ueno of Building Science

  4. Building America Technology Solutions for New and Existing Homes: Insulated

    Energy Savers [EERE]

    Siding Retrofit in a Cold Climate, New Paltz, New York | Department of Energy Insulated Siding Retrofit in a Cold Climate, New Paltz, New York Building America Technology Solutions for New and Existing Homes: Insulated Siding Retrofit in a Cold Climate, New Paltz, New York In this study, the U.S. Department of Energy's team Building America Partner-ship for Improved Residential Construction (BA-PIRC) worked with Kinsley Construction Company to evaluate the real-world performance of insulated

  5. Basement Insulation Systems - Building America Top Innovation | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Basement Insulation Systems - Building America Top Innovation Basement Insulation Systems - Building America Top Innovation This photo shows a framed basement wall with insulation in between the studs. Efficient and durable construction practices for basements are critical because basements can account for 10% to 30% of a home's total heat loss and provide significant risk of moisture problems due to extensive cold surfaces at the walls and slab. For this Top Innovation award,

  6. Aerogel-Based Insulation for High-Temperature Industrial Processes...

    Office of Scientific and Technical Information (OSTI)

    Aerogel-Based Insulation for High-Temperature Industrial Processes Dr. Owen Evans 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; COMPETITION; ENERGY CONSUMPTION; MARKET;...

  7. Glass fiber composition. [for use as thermal insulation

    DOE Patents [OSTI]

    Wolf, G.A.; Kupfer, M.J.

    1980-12-19

    The invention relates to a glass fiber composition useful for thermal insulation having a low melting temperature and high chemical durability.

  8. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from Princeton University who studied the electronic structure of insulating alloys of bismuth and antimony by means of angle-resolved photoemission spectroscopy (ARPES) and...

  9. Soitec SA Silicon on Insulator Technologies | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Soitec SA (Silicon on Insulator Technologies) Place: Bernin, France Zip: 38190 Product: Has an 'atomic scalpel' technology which allows extremely thin...

  10. Savings Project: Insulate and Air Seal Floors Over Unconditioned...

    Office of Environmental Management (EM)

    Blanket insulation Wire fasteners Tape measure Sharp utility knife Caulk and foam sealant Caulk gun Stepladder Straightedge Respirator or dust mask Eye protection Protective ...

  11. Heavy surface state in a possible topological Kondo insulator...

    Office of Scientific and Technical Information (OSTI)

    Heavy surface state in a possible topological Kondo insulator: Magnetothermoelectric transport on the (011) plane of SmB 6 This content will become publicly available on February...

  12. Highly Insulating Windows Volume Purchase Program Final Report

    SciTech Connect (OSTI)

    Parker, Graham B.; Mapes, Terry S.; Zalis, WJ

    2013-02-01

    This report summarizes the Highly Insulating Windows Volume Purchase Program, conduced by PNNL for DOE-BTP, including a summary of outcomes and lessons learned.

  13. Hydrogen Evolution at Si-based Metal-Insulator-Semiconductor...

    Office of Scientific and Technical Information (OSTI)

    Hydrogen Evolution at Si-based Metal-Insulator-Semiconductor Photoelectrodes Enhanced by Inversion Channel Charge Collection and Hydrogen Spillover Citation Details In-Document...

  14. Adding Insulation to an Existing Home | Department of Energy

    Office of Environmental Management (EM)

    existing home saves money and improves comfort. | Photo courtesy of Dennis Schroeder, NREL. Adding insulation in an existing home saves money and improves comfort. | Photo...

  15. A New Generation of Building Insulation by Foaming Polymer Blend...

    Broader source: Energy.gov (indexed) [DOE]

    cost) across a variety of thermal insulating applications, such as building foundations and walls, and refrigeration and heating, ventilation, and air conditioning applications. ...

  16. Large kinetic asymmetry in the metal-insulator transition nucleated...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Large kinetic asymmetry in the metal-insulator transition nucleated at localized and extended defects Citation Details In-Document Search Title: Large kinetic...

  17. Spin injection and spin transport in paramagnetic insulators...

    Office of Scientific and Technical Information (OSTI)

    These findings suggest that the compromise between the two effects determines the optimal temperature for spintronics applications utilizing magnetic insulators. Authors: Okamoto, ...

  18. Aerogel-Based Insulation for Industrial Steam Distribution Systems

    SciTech Connect (OSTI)

    None

    2009-05-01

    This factsheet describes a research project whose goal is to improve the high-temperature performance, durability, and life expectancy of aerogel insulation materials.

  19. Femtosecond NEXAFS of Photoinduced Insulator-Metal Transition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Femtosecond NEXAFS of Photoinduced Insulator-Metal Transition in VO2 Print The grand goal motivating femtosecond studies of condensed-matter dynamics is to directly measure the...

  20. Process for forming transparent aerogel insulating arrays

    SciTech Connect (OSTI)

    Tewari, P.H.; Hunt, A.J.

    1986-09-09

    This patent describes a drying process for forming transparent aerogel insulating arrays of the type utilizing the steps of hydrolyzing and condensing alkoxides to form alcogels, and subsequently removing the alcohol therefrom to form aerogels, the improvement comprising the additional step, after alcogels are formed, of substituting a solvent having a critical temperature less than the critical temperature of the alcohol for the alcohol in the alcogels, and drying the resulting gels at a supercritical temperature for the solvent, to thereby provide a transparent aerogel array within a substantially reduced drying time period.

  1. Radiation detector system having heat pipe based cooling

    DOE Patents [OSTI]

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  2. Theoretical and experimental investigation of heat pipe solar collector

    SciTech Connect (OSTI)

    Azad, E.

    2008-09-15

    Heat pipe solar collector was designed and constructed at IROST and its performance was measured on an outdoor test facility. The thermal behavior of a gravity assisted heat pipe solar collector was investigated theoretically and experimentally. A theoretical model based on effectiveness-NTU method was developed for evaluating the thermal efficiency of the collector, the inlet, outlet water temperatures and heat pipe temperature. Optimum value of evaporator length to condenser length ratio is also determined. The modelling predictions were validated using experimental data and it shows that there is a good concurrence between measured and predicted results. (author)

  3. Characterization of modified 9 Cr-1 Mo steel extruded pipe

    SciTech Connect (OSTI)

    Sikka, V.K.; Hart, M.D.

    1985-04-01

    The fabrication of hot-extruded pipe of modified 9 Cr-1 Mo steel at Cameron Iron Works is described. The report also deals with the tempering response; tensile, Charpy impact, and creep properties; and microstructure of the hot-extruded pipe. The tensile properties of the pipe are compared with the average and average -1.65 standard error of estimate curves for various product forms of several commercial heats of this alloy. The creep-rupture properties are compared with the average curve for various product forms of the commercial heats.

  4. Piping support system for liquid-metal fast-breeder reactor

    DOE Patents [OSTI]

    Brussalis, Jr., William G. (Forward Township, Washington County, PA)

    1984-01-01

    A pipe support consisting of a rigid link pivotally attached to a pipe and an anchor, adapted to generate stress or strain in the link and pipe due to pipe thermal movement, which stress or strain can oppose further pipe movement and generally provides pipe support. The pipe support can be used in multiple combinations with other pipe supports to form a support system. This support system is most useful in applications in which the pipe is normally operated at a constant elevated or depressed temperature such that desired stress or strain can be planned in advance of pipe and support installation. The support system is therefore especially useful in steam stations and in refrigeration equipment.

  5. Variably insulating portable heater/cooler

    DOE Patents [OSTI]

    Potter, Thomas F. (Denver, CO)

    1998-01-01

    A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

  6. Radiation-controlled dynamic vacuum insulation

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

    1995-01-01

    A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

  7. Material-controlled dynamic vacuum insulation

    DOE Patents [OSTI]

    Benson, David K. (14154 W. First Dr., Golden, CO 80401); Potter, Thomas F. (515 S. Magnolia La., Denver, CO 80224)

    1996-10-08

    A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

  8. Variably insulating portable heater/cooler

    DOE Patents [OSTI]

    Potter, T.F.

    1998-09-29

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  9. Material-controlled dynamic vacuum insulation

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1996-10-08

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  10. Radiation-controlled dynamic vacuum insulation

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1995-07-18

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  11. Composite drill pipe and method for forming same

    DOE Patents [OSTI]

    Leslie, James C; Leslie, II, James C; Heard, James; Truong, Liem V; Josephson, Marvin

    2012-10-16

    A lightweight and durable drill pipe string capable of short radius drilling formed using a composite pipe segment formed to include tapered wall thickness ends that are each defined by opposed frustoconical surfaces conformed for self-aligning receipt and intimate bonding contact within an annular space between corresponding surfaces of a coaxially nested set of metal end pieces and a set of nonconductive sleeves. The distal peripheries of the nested end pieces and sleeves are then welded to each other and the sandwiched and bonded portions are radially pinned. The composite segment may include imbedded conductive leads and the axial end portions of the end pieces are shaped to form a threaded joint with the next pipe assembly that includes contact rings in the opposed surfaces of the pipe joint for contact together.

  12. Solid0Core Heat-Pipe Nuclear Batterly Type Reactor

    SciTech Connect (OSTI)

    Ehud Greenspan

    2008-09-30

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP).

  13. Recycled Natural Gas Pipes Shore Up Green Building - News Feature...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recycled Natural Gas Pipes Shore Up Green Building July 17, 2009 Photo of a line of four large metal tubes coming out of the ground in a construction site with blue sky, hills and...

  14. Seismic Capacity of Threaded, Brazed, and Grooved Pipe Joints

    Office of Environmental Management (EM)

    joints * 4 tests o Brazed (copper) * 4 tests Grooved Couplings o Catalog items o ASTM A106 Grade B piping o ASTM A 536 couplings o Lateral deflections imposed well above...

  15. Heat pipe radiation cooling evaluation: Task 2 concept studies report

    SciTech Connect (OSTI)

    Silverstein, C.C.

    1991-10-01

    This report presents the result of Task 2, Concept Studies for Heat Pipe Radiation Cooling (HPRC), which was performed for Los Alamos National Laboratory under Contract 9-XT1-U9567. Studies under a prior contract defined a reference HPRC conceptual design for hypersonic aircraft engines operating at Mach 5 and an altitude of 80,000 ft. Task 2 involves the further investigation of heat pipe radiation cooling (HPRC) systems for additional design and operating conditions.

  16. Evaluation of Characterization Techniques for Iron Pipe Corrosion Products

    Office of Scientific and Technical Information (OSTI)

    and Iron Oxide Thin Films (Journal Article) | SciTech Connect Journal Article: Evaluation of Characterization Techniques for Iron Pipe Corrosion Products and Iron Oxide Thin Films Citation Details In-Document Search Title: Evaluation of Characterization Techniques for Iron Pipe Corrosion Products and Iron Oxide Thin Films A common problem faced by drinking water studies is that of properly characterizing the corrosion products (CP) in iron pipescor synthetic Fe (hydr)oxides used to simulate

  17. Development and Manufacture of Cost Effective Composite Drill Pipe

    SciTech Connect (OSTI)

    James C. Leslie; James C. Leslie, II; Lee Truong; James T. Heard

    2006-09-29

    This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2005 through September 30, 2006 and contains the following discussions: Qualification Testing; Prototype Development and Testing of ''Smart Design'' Configuration; Field Test Demonstration; Development of Ultra-Short Radius Composite Drill Pipe (USR-CDP); and Development of Smart USR-CDP.

  18. Flexible pipe crawling device having articulated two axis coupling

    DOE Patents [OSTI]

    Zollinger, William T. (Martinez, GA)

    1994-01-01

    An apparatus for moving through the linear and non-linear segments of piping systems. The apparatus comprises a front leg assembly, a rear leg assembly, a mechanism for extension and retraction of the front and rear leg assembles with respect to each other, such as an air cylinder, and a pivoting joint. One end of the flexible joint attaches to the front leg assembly and the other end to the air cylinder, which is also connected to the rear leg assembly. The air cylinder allows the front and rear leg assemblies to progress through a pipe in "inchworm" fashion, while the joint provides the flexibility necessary for the pipe crawler to negotiate non-linear piping segments. The flexible connecting joint is coupled with a spring-force suspension system that urges alignment of the front and rear leg assemblies with respect to each other. The joint and suspension system cooperate to provide a firm yet flexible connection between the front and rear leg assemblies to allow the pivoting of one with respect to the other while moving around a non-linear pipe segment, but restoring proper alignment coming out of the pipe bend.

  19. Monitoring pipe line stress due to ground displacement

    SciTech Connect (OSTI)

    Greenwood, J.H. Jr.

    1986-04-01

    Northwest Pipeline Corp. has a large-diameter natural gas pipe line system from Ignacio, Colo., to Sumas, Wash. At Douglas Pass in Colorado, large landslides required several sections of the line to be relocated outside the slide areas: 4,400 ft of new line in April 1962 and 3,200 ft in March 1963. No serious disruptions occurred for the next 16 years. Then in July 1979, some 1,200 ft had to be relocated. From 1980 to date, many landslides in the Douglas Pass area have caused new deformations, with the springs of 1983 and 1984 being the worst years. In 1980, Northwest Pipeline began engineering and geotechnical studies of the landslide problems. These led to instrumentation and pipe monitoring which indicated that pipe failure can be predicted and prevented if important slope deformations or increases in pipe stresses are detected early enough to implement some mitigating measures. Excavation of the pipe to relieve the stresses was used in most cases. The method was so successful that no pipe failure occurred in 1984 within instrumented sections, in spite of the exceptionally bad climatic conditions experienced.

  20. An investigation of corrosion in liquid-metal heat pipes

    SciTech Connect (OSTI)

    Adkins, D.R.; Rawlinson, K.S.; Andraka, C.E.; Showalter, S.K.; Moreno, J.B.; Moss, T.A.; Cordiero, P.G.

    1998-08-01

    Research is underway to develop a 75-kW heat pipe to transfer solar energy from the focus of a parabolic dish concentrator to the heater tubes of a Stirling engine. The high flux levels and high total power level encountered in this application have made it necessary to use a high-performance wick structure with fibers on the order of 4 to 8 microns in diameter. This fine wick structure is highly susceptible to corrosion damage and plugging, as dissolved contaminants plate out on the evaporator surface. Normal operation of the heat pipe also tends to concentrate contaminants in localized areas of the evaporator surface where heat fluxes are the highest. Sandia National Laboratories is conducting a systematic study to identify procedures that reduce corrosion and contamination problems in liquid-metal heat pipes. A series of heat pipes are being tested to explore different options for cleaning heat-pipe systems. Models are being developed to help understand the overall importance of operating parameters on the life of heat-pipe systems. In this paper, the authors present their efforts to reduce corrosion damage.

  1. Flexible pipe crawling device having articulated two axis coupling

    DOE Patents [OSTI]

    Zollinger, W.T.

    1994-05-10

    An apparatus is described for moving through the linear and non-linear segments of piping systems. The apparatus comprises a front leg assembly, a rear leg assembly, a mechanism for extension and retraction of the front and rear leg assembles with respect to each other, such as an air cylinder, and a pivoting joint. One end of the flexible joint attaches to the front leg assembly and the other end to the air cylinder, which is also connected to the rear leg assembly. The air cylinder allows the front and rear leg assemblies to progress through a pipe in inchworm' fashion, while the joint provides the flexibility necessary for the pipe crawler to negotiate non-linear piping segments. The flexible connecting joint is coupled with a spring-force suspension system that urges alignment of the front and rear leg assemblies with respect to each other. The joint and suspension system cooperate to provide a firm yet flexible connection between the front and rear leg assemblies to allow the pivoting of one with respect to the other while moving around a non-linear pipe segment, but restoring proper alignment coming out of the pipe bend. 4 figures.

  2. Deployment, release and recovery of ocean riser pipes

    DOE Patents [OSTI]

    Person, Abraham; Wetmore, Sherman B.; McNary, James F.

    1980-11-18

    An ocean thermal energy conversion facility includes a long pipe assembly which is supported at its upper end by the hull of the floating facility. Cold water flows to the facility from deep in the ocean. The pipe assembly comprises an elongate pipe construction and a weight connected to the lower end of the construction by a line of selected length. A floatation collar is connected to the construction at its upper end to cause the construction to have positive buoyancy and a center of buoyancy closer to the upper end of the construction than its center of mass. The weight renders the entire pipe assembly negatively buoyant. In the event that support of the pipe assembly should be lost, as by release of the assembly from the facility hull in an emergency, the assembly sinks to the ocean floor where it is moored by the weight. The pipe construction floats submerged above the ocean floor in a substantially vertical attitude which facilitates recovery of the assembly.

  3. Innovative Retrofit Insulation Strategies for Concrete Masonry Foundations

    SciTech Connect (OSTI)

    Huelman, P.; Goldberg, L.; Jacobson, R.

    2015-05-06

    This study was designed to test a new approach for foundation insulation retrofits, with the goal of demonstrating improved moisture control, improved occupant comfort, and reduced heat loss. Because conducting experimental research on existing below-grade assemblies is very difficult, most of the results are based on simulations. The retrofit approach consists of filling open concrete block cores with an insulating material and adding R-10 exterior insulation that extends 1 ft below grade. The core fill is designed to improve the R-value of the foundation wall and increase the interior wall surface temperature, but more importantly to block convection currents that could otherwise increase moisture loads on the foundation wall and interior space. The exterior insulation significantly reduces heat loss through the most exposed part of the foundation and further increases the interior wall surface temperature. This improves occupant comfort and decreases the risk of condensation. Such an insulation package avoids the full-depth excavation necessary for exterior insulation retrofits, reduces costs, and eliminates the moisture and indoor air quality risks associated with interior insulation retrofits. Retrofit costs for the proposed approach were estimated at roughly half those of a full-depth exterior insulation retrofit.

  4. Dielectrophoresis device and method having insulating ridges for manipulating particles

    DOE Patents [OSTI]

    Cummings, Eric B. (Livermore, CA); Fiechtner, Gregory J. (Livermore, CA)

    2008-03-25

    Embodiments of the present invention provide methods and devices for manipulating particles using dielectrophoresis. Insulating ridges and valleys are used to generate a spatially non-uniform electrical field. Particles may be concentrated, separated, or captured during bulk fluid flow in a channel having insulating ridges and valleys.

  5. High voltage gas insulated transmission line with continuous particle trapping

    DOE Patents [OSTI]

    Cookson, Alan H. (Pittsburgh, PA); Dale, Steinar J. (Monroeville, PA)

    1983-01-01

    This invention provides a novel high voltage gas insulated transmission line utilizing insulating supports spaced at intervals with snap-in means for supporting a continuous trapping apparatus and said trapping apparatus having perforations and cutouts to facilitate trapping of contaminating particles and system flexibility.

  6. Issue #5: How Much Insulation is Too Much? | Department of Energy

    Energy Savers [EERE]

    5: How Much Insulation is Too Much? Issue #5: How Much Insulation is Too Much? How do we define the cost-effective limit for improvements in enclosure efficiency? PDF icon issue5_enclosure_insulation.pdf PDF icon issue5_optimizing_insulation.pdf PDF icon issue5_code_cost_analy.pdf More Documents & Publications Issue 5: Optimizing High Levels of Insulation How Much Insulation is Too Much? Cost Analysis Approach for Codes

  7. Why You Might Want to Add More Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Why You Might Want to Add More Insulation Why You Might Want to Add More Insulation August 19, 2014 - 10:06am Addthis Insulation is important all year round, and by adding extra insulation you can save money and energy. | Photo courtesy of Dennis Schroeder, National Renewable Energy Lab Insulation is important all year round, and by adding extra insulation you can save money and energy. | Photo courtesy of Dennis Schroeder, National Renewable Energy Lab Elizabeth Spencer Communicator, National

  8. Pressure effects on the optical conductivity of Kondo insulators

    SciTech Connect (OSTI)

    Zhang, Sun

    2001-06-01

    The effects of pressure on the optical conductivity of Kondo insulators are studied in the framework of the slave-boson mean-field theory under the coherent potential approximation. A unified picture is presented for both the hole-type Kondo insulators [H. Okamura , Phys. Rev. B >58, R7496 (1998)] and the electron-type Kondo insulators [B. Bucher , Phys. Rev. Lett. >72, 522 (1994)]. The density of states of f electrons under the applied pressure and its variation with the concentration of the impurity doping are calculated self-consistently. The Kondo temperature and the optical conductivity are obtained, in agreement with the experiments qualitatively. The two contrasting pressure-dependent effects for the hole-type Kondo insulators and the electron-type Kondo insulators are also given as predictions for further observations.

  9. Design of Experiments Results for the Feedthru Insulator

    SciTech Connect (OSTI)

    BENAVIDES,GILBERT L.; VAN ORNUM,DAVID J.; BACA,MAUREEN R.; APPEL,PATRICIA E.

    1999-12-01

    A design of experiments (DoE) was performed at Ceramtec to improve the yield of a cermet part known as the feedthru insulator. The factors chosen to be varied in this DoE were syringe orifice size, fill condition, solvent, and surfactant. These factors were chosen because of their anticipated effect on the cermet slurry and its consequences to the feedthru insulator in succeeding fabrication operations. Response variables to the DoE were chosen to be indirect indicators of production yield for the feedthru insulator. The solvent amount used to mix the cermet slurry had the greatest overall effect on the response variables. Based upon this DoE, there is the potential to improve the yield not only for the feedthru insulator but for other cermet parts as well. This report thoroughly documents the DoE and contains additional information regarding the feedthru insulator.

  10. Gas insulated transmission line having low inductance intercalated sheath

    DOE Patents [OSTI]

    Cookson, Alan H. (Southboro, MA)

    1978-01-01

    A gas insulated transmission line including an outer sheath, an inner conductor disposed within the outer sheath, and an insulating gas between the inner conductor and the outer sheath. The outer sheath comprises an insulating tube having first and second ends, and having interior and exterior surfaces. A first electrically conducting foil is secured to the interior surface of the insulating tube, is spirally wound from one tube end to the second tube end, and has a plurality of overlapping turns. A second electrically conducting foil is secured to the exterior surface of the insulating tube, and is spirally wound in the opposite direction from the first electrically conducting foil. By winding the foils in opposite directions, the inductances within the intercalated sheath will cancel each other out.

  11. Technology Solutions Case Study: Interior Foundation Insulation Upgrade-Madison Residence

    SciTech Connect (OSTI)

    2013-10-01

    This basement insulation project included a dimple mat conveying inbound moisture to a draintile, airtight spray polyurethane foam wall and floor insulation, and radiant floor heat installation

  12. Cost-Optimized Attic Insulation Solution for Factory-Built Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimized Attic Insulation Solution for Factory-Built Homes - Building America Top Innovation Cost-Optimized Attic Insulation Solution for Factory-Built Homes - Building America ...

  13. New insulating antiferromagnetic quaternary iridates MLa10Ir4O24...

    Office of Scientific and Technical Information (OSTI)

    New insulating antiferromagnetic quaternary iridates MLa10Ir4O24 (MSr, Ba) Citation Details In-Document Search Title: New insulating antiferromagnetic quaternary iridates ...

  14. Testing of Stirling engine solar reflux heat-pipe receivers

    SciTech Connect (OSTI)

    Rawlinson, S.; Cordeiro, P.; Dudley, V.; Moss, T.

    1993-07-01

    Alkali metal heat-pipe receivers have been identified as a desirable interface to couple a Stirling-cycle engine with a parabolic dish solar concentrator. The reflux receiver provides power nearly isothermally to the engine heater heads while de-coupling the heater head design from the solar absorber surface design. The independent design of the receiver and engine heater head leads to high system efficiency. Heat pipe reflux receivers have been demonstrated at approximately 30 kW{sub t} power throughput by others. This size is suitable fm engine output powers up to 10 kW{sub e}. Several 25-kW{sub e}, Stirling-cycle engines exist, as well as designs for 75-kW{sub t} parabolic dish solar concentrators. The extension of heat pipe technology from 30 kW{sub t} to 75 kW{sub t} is not trivial. Heat pipe designs are pushed to their limits, and it is critical to understand the flux profiles expected from the dish, and the local performance of the wick structure. Sandia has developed instrumentation to monitor and control the operation of heat pipe reflux receivers to test their throughput limits, and analytical models to evaluate receiver designs. In the past 1.5 years, several heat pipe receivers have been tested on Sandia`s test bed concentrators (TBC`s) and 60-kW{sub t} solar furnace. A screen-wick heat pipe developed by Dynatherm was tested to 27.5 kW{sub t} throughput. A Cummins Power Generation (CPG)/Thermacore 30-kW{sub t} heat pipe was pushed to a throughput of 41 kW{sub t} to verify design models. A Sandia-design screen-wick and artery 75-kW{sub t} heat pipe and a CPG/Thermacore 75-kW{sub t} sintered-wick heat pipe were also limit tested on the TBC. This report reviews the design of these receivers, and compares test results with model predictions.

  15. Drapery assembly including insulated drapery liner

    DOE Patents [OSTI]

    Cukierski, Gwendolyn (Ithaca, NY)

    1983-01-01

    A drapery assembly is disclosed for covering a framed wall opening, the assembly including drapery panels hung on a horizontal traverse rod, the rod having a pair of master slides and means for displacing the master slides between open and closed positions. A pair of insulating liner panels are positioned behind the drapery, the remote side edges of the liner panels being connected with the side portions of the opening frame, and the adjacent side edges of the liner panels being connected with a pair of vertically arranged center support members adapted for sliding movement longitudinally of a horizontal track member secured to the upper horizontal portion of the opening frame. Pivotally arranged brackets connect the center support members with the master slides of the traverse rod whereby movement of the master slides to effect opening and closing of the drapery panels effects simultaneous opening and closing of the liner panels.

  16. Improved DC Gun and Insulator Assembly

    SciTech Connect (OSTI)

    Neubauer, Michael; Johnson, Rolland P

    2015-01-11

    Many user facilities such as synchrotron radiation light sources and free electron lasers rely on DC high voltage photoguns with internal field gradients as high as 10 to 15 MV/m. These high gradients often lead to field emission which poses serious problems for the photocathode used to generate the electron beam and the ceramic insulators used to bias the photocathode at high voltage. Ceramic insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic causing a buildup of charge and eventual puncture, and also because large diameter ceramics are difficult to braze reliably. The lifetimes of photo cathodes inside high current DC guns exhibiting field emission are limited to less than a hundred hours. Reducing the surface gradients on the metals reduces the field emission, which serves to maintain the required ultrahigh vacuum condition. A novel gun design with gradients around 5 MV/m and operating at 350 kV, a major improvement over existing designs, was proposed that allows for the in-situ replacement of photo cathodes in axially symmetric designs using inverted ceramics. In this project, the existing JLAB CEBAF asymmetric gun design with an inverted ceramic support was modeled and the beam dynamics characterized. An improved structure was designed that reduces the surface gradients and improves the beam optics. To minimize the surface gradients, a number of electrostatic gun designs were studied to determine the optimum configuration of the critical electrodes within the gun structure. Coating experiments were carried out to create a charge dissipative coating for cylindrical ceramics. The phase II proposal, which was not granted, included the design and fabrication of an axially symmetric DC Gun with an inverted ceramic that would operate with less than 5 MV/m at 350 kV and would be designed with an in-situ replaceable photo-cathode.

  17. A STRUCTURAL INTEGRITY ASSESSMENT OF UNDERGROUND PIPING ASSOCIATED WITH THE TRANSFER OF RADIOACTIVE WASTE

    SciTech Connect (OSTI)

    Wiersma, B

    2006-04-25

    Radioactive wastes are confined in 49 underground storage tanks at the Savannah River Site. The waste is transported between tanks via underground transfer piping. An assessment of the structural integrity of the transfer piping was performed to ensure that the present condition of the piping was sound and to provide life expectancy estimates for the piping based on anticipated service. The assessment reviewed the original design of the piping, the potential and observed degradation mechanisms, the results from past inspections of the piping, and a Fitness-For-Service evaluation for a section of piping that experienced pitting in a locally thinned area. The assessment concluded that the piping was structurally sound. Assuming that service conditions remain the same, the piping will remain functional for its intended service life.

  18. Development and Manufacture of Cost-Effective Composite Drill Pipe

    SciTech Connect (OSTI)

    James C. Leslie

    2008-12-31

    Advanced Composite Products and Technology, Inc. (ACPT) has developed composite drill pipe (CDP) that matches the structural and strength properties of steel drill pipe, but weighs less than 50 percent of its steel counterpart. Funding for the multiyear research and development of CDP was provided by the U.S. Department of Energy Office of Fossil Energy through the Natural Gas and Oil Projects Management Division at the National Energy Technology Laboratory (NETL). Composite materials made of carbon fibers and epoxy resin offer mechanical properties comparable to steel at less than half the weight. Composite drill pipe consists of a composite material tube with standard drill pipe steel box and pin connections. Unlike metal drill pipe, composite drill pipe can be easily designed, ordered, and produced to meet specific requirements for specific applications. Because it uses standard joint connectors, CDP can be used in lieu of any part of or for the entire steel drill pipe section. For low curvature extended reach, deep directional drilling, or ultra deep onshore or offshore drilling, the increased strength to weight ratio of CDP will increase the limits in all three drilling applications. Deceased weight will reduce hauling costs and increase the amount of drill pipe allowed on offshore platforms. In extreme extended reach areas and high-angle directional drilling, drilling limits are associated with both high angle (fatigue) and frictional effects resulting from the combination of high angle curvature and/or total weight. The radius of curvature for a hole as small as 40 feet (12.2 meters) or a build rate of 140 degrees per 100 feet is within the fatigue limits of specially designed CDP. Other properties that can be incorporated into the design and manufacture of composite drill pipe and make it attractive for specific applications are corrosion resistance, non-magnetic intervals, and abrasion resistance coatings. Since CDP has little or no electromagnetic force fields up to 74 kilohertz (KHz), a removable section of copper wire can be placed inside the composite pipe to short the tool joints electrically allowing electromagnetic signals inside the collar to induce and measure the same within the rock formation. By embedding a pair of wires in the composite section and using standard drill pipe box and pin ends equipped with a specially developed direct contact joint electrical interface, power can be supplied to measurement-while-drilling (MWD) and logging-while-drilling (LWD) bottom hole assemblies. Instantaneous high-speed data communications between near drill bit and the surface are obtainable utilizing this 'smart' drilling technology. The composite drill pipe developed by ACPT has been field tested successfully in several wells nationally and internationally. These tests were primarily for short radius and ultra short radius directional drilling. The CDP in most cases performed flawlessly with little or no appreciable wear. ACPT is currently marketing a complete line of composite drill collars, subs, isolators, casing, and drill pipe to meet the drilling industry's needs and tailored to replace metal for specific application requirements.

  19. Flow and evaporation in single micrometer and nanometer scale pipes

    SciTech Connect (OSTI)

    Velasco, A. E.; Yang, C.; Siwy, Z. S.; Taborek, P.; Toimil-Molares, M. E.

    2014-07-21

    We report measurements of pressure driven flow of fluids entering vacuum through a single pipe of micrometer or nanometer scale diameter. Nanopores were fabricated by etching a single ion track in polymer or mica foils. A calibrated mass spectrometer was used to measure the flow rates of nitrogen and helium through pipes with diameter ranging from 10??m to 31?nm. The flow of gaseous and liquid nitrogen was studied near 77?K, while the flow of helium was studied from the lambda point (2.18?K) to above the critical point (5.2?K). Flow rates were controlled by changing the pressure drop across the pipe in the range 031 atm. When the pressure in the pipe reached the saturated vapor pressure, an abrupt flow transition was observed. A simple viscous flow model is used to determine the position of the liquid/vapor interface in the pipe. The observed mass flow rates are consistent with no slip boundary conditions.

  20. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Wednesday, 29 August 2012 00:00 Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a

  1. Fabricate-on-Demand Vacuum Insulating Glazings | Department of Energy

    Office of Environmental Management (EM)

    Fabricate-on-Demand Vacuum Insulating Glazings Fabricate-on-Demand Vacuum Insulating Glazings 1 of 3 PPG developed and commercialized the Intercept® Spacer System that revolutionized the manufacture of double-pane insulated glazing units (IGUs) 25 years ago. Over 125 PPG-licensed Intercept® Spacer System lines are in operation in the US. Currently in use in more than 600 million residential windows, the Intercept® Spacer System is the top-selling product of its kind in North America. Image:

  2. Savings Project: Insulate and Air Seal Floors Over Unconditioned Garages |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Air Seal Floors Over Unconditioned Garages Savings Project: Insulate and Air Seal Floors Over Unconditioned Garages Addthis Project Level Easy Energy Savings Depend on energy cost, R-value increase, and airtightness of newly insulated floor compared to existing. Time to Complete 4-8 hours Overall Cost $0.60 to $1.00 PER SQUARE FOOT FOR R-30 BATTS Careful air sealing and insulation between an unconditioned garage and the conditioned space above can increase comfort,

  3. HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS

    SciTech Connect (OSTI)

    Leishear, R

    2010-05-02

    Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

  4. Energy dissipation in oscillating flow through straight and coiled pipes

    SciTech Connect (OSTI)

    Olson, J.R.; Swift, G.W.

    1996-10-01

    The energy dissipation is reported for oscillating flow in U-shaped pipes with 180{degree}, 540{degree}, and 900{degree} curves at the base of the U. Analysis permits separation of the dissipation in the straight and curved portions of the pipe. Using water, water/glycerine mixtures, liquid nitrogen, and helium gas, the dissipation was measured for fluid flow regimes (Reynolds number, quality factor, and pipe curvature) which have not previously been reported. Measured loss in the straight portion is compared to numerical solutions using a turbulent quasisteady representation of the wall shear stress. Measured loss in the curved portion is compared to simple theory. The results are applicable to thermoacoustic devices. {copyright} {ital 1996 Acoustical Society of America.}

  5. Igniter for gas discharge pipe with a flame detection system

    SciTech Connect (OSTI)

    Guerra, R.E.

    1990-03-06

    This patent describes a method of burning waste gas, using an igniter of the type having a nozzle, a main gas conduit extending to the nozzle, and an electrical spark means for creating a spark in the nozzle. It comprises: mounting the igniter to a waste gas discharge pipe with the nozzle directed across the opening of the gas discharge pipe; supplying a gaseous fuel to the main gas conduit; igniting the gaseous fuel with the electrical spark means, creating a flame for igniting the waste gas being discharged from the gas discharge pipe; providing the igniter with an auxiliary gas line extending to the vicinity of the nozzle; and supplying a second and lower volume source of waste gas to the auxiliary gas line for burning at the nozzle.

  6. Hybrid sodium heat pipe receivers for dish/Stirling systems

    SciTech Connect (OSTI)

    Laing, D.; Reusch, M.

    1997-12-31

    The design of a hybrid solar/gas heat pipe receiver for the SBP 9 kW dish/Stirling system using a United Stirling AB V160 Stirling engine and the results of on-sun testing in alternative and parallel mode will be reported. The receiver is designed to transfer a thermal power of 35 kW. The heat pipe operates at around 800 C, working fluid is sodium. Operational options are solar-only, gas augmented and gas-only mode. Also the design of a second generation hybrid heat pipe receiver currently developed under a EU-funded project, based on the experience gained with the first hybrid receiver, will be reported. This receiver is designed for the improved SPB/L. and C.-10 kW dish/Stirling system with the reworked SOLO V161 Stirling engine.

  7. Terahertz Radiation from a Pipe with Small Corrugations

    SciTech Connect (OSTI)

    Bane, K.L.F.; Stupakov, G.; /SLAC

    2012-01-26

    We have studied through analytical and numerical methods the use of a relativistic electron bunch to drive a metallic beam pipe with small corrugations for the purpose of generating terahertz radiation. For the case of a pipe with dimensions that do not change along its length, we have shown that - with reasonable parameters - one can generate a narrow-band radiation pulse with frequency {approx}1 THz, and total energy of a few milli-Joules. The pulse length tends to be on the order of tens of picoseconds. We have also shown that, if the pipe radius is tapered along its length, the generated pulse will end up with a frequency chirp; if the pulse is then made to pass through a compressor, its final length can be reduced to a few picoseconds and its peak power increased to 1 GW. We have also shown that wall losses tend to be significant and need to be included in the structure design.

  8. Investigation of guided waves propagation in pipe buried in sand

    SciTech Connect (OSTI)

    Leinov, Eli; Cawley, Peter; Lowe, Michael J.S.

    2014-02-18

    The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand using a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence.

  9. Felt-metal-wick heat-pipe solar receiver

    SciTech Connect (OSTI)

    Andraka, C.E.; Adkins, D.R.; Moss, T.A.; Cole, H.M.; Andreas, N.H.

    1994-12-31

    Reflux heat-pipe receivers have been identified as a desirable interface to couple a Stirling-cycle engine with a parabolic dish solar concentrator. The reflux receiver provides power nearly isothermally to the engine heater heads while decoupling the heater head design from the solar absorber surface design. The independent design of the receiver and engine heater head leads to higher system efficiency. Heat pipe reflux receivers have been demonstrated at approximately 65 kW{sub t} power throughput. Several 25 to 30-kW{sub e} Stirling-cycle engines are under development, and will soon be incorporated in commercial dish-Stirling systems. These engines will require reflux receivers with power throughput limits reaching 90-kW{sub t}. The extension of heat pipe technology from 60 kW{sub t} to 100 kW{sub t} is not trivial. Current heat pipe wick technology is pushed to its limits. It is necessary to develop and test advanced wick structure technologies to perform this task. Sandia has developed and begun testing a Bekaert Corporation felt metal wick structure fabricated by Porous Metal Products Inc. This wick is about 95% porous, and has liquid permeability a factor of 2 to 8 times higher than conventional technologies for a given maximum pore radius. The wick has been successfully demonstrated in a bench-scale heat pipe, and a full-scale on-sun receiver has been fabricated. This report details the wick design, characterization and installation into a heat pipe receiver, and the results of the bench-scale tests are presented. The wick performance is modeled, and the model results are compared to test results.

  10. Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes

    SciTech Connect (OSTI)

    Grin, A.; Lstiburek, J.

    2014-09-01

    The goal of this research is to provide durable and long-term water management solutions using exterior insulating sheathing as part of the water management system. It is possible to tape or seal the joints in insulating sheathing to create a drainage plane and even an air control layer. There exists the material durability component of the tape as well as the system durability component being the taped insulating sheathing as the drainage plane. This measure guideline provides best practice and product recommendations from the interviewed contractors and homebuilders who collectively have a vast amount of experience. Three significant issues were discussed with the group, which are required to make taped insulating sheathing a simple, long-term, and durable drainage plane: horizontal joints should be limited or eliminated wherever possible; where a horizontal joint exists use superior materials; and frequent installation inspection and regular trade training are required to maintain proper installation.

  11. Kingspan Insulated Panels: Proposed Penalty (2013-CE-5353)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Kingspan Insulated Panels, Inc. failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  12. Income Tax Deduction for the Installation of Building Insulation

    Broader source: Energy.gov [DOE]

    A residential taxpayer is entitled to an Indiana income tax deduction on the materials and labor used to install insulation in a taxpayer’s principal place of residence in Indiana. 

  13. Aerogel Insulation: The Materials Science of Empty Space

    Broader source: Energy.gov [DOE]

    Empty space can be good, like a blank canvas for an artist, or it can be bad, like an attic without insulation for a homeowner.  But when a technological breakthrough provides just the right amount...

  14. System for increasing corona inception voltage of insulating oils

    DOE Patents [OSTI]

    Rohwein, Gerald J. (Albuquerque, NM)

    1998-01-01

    The Corona Inception Voltage of insulating oils is increased by repetitive cycles of prestressing the oil with a voltage greater than the corona inception voltage, and either simultaneously or serially removing byproducts of corona by evacuation and heating the oil.

  15. Advanced insulated gate bipolar transistor gate drive

    DOE Patents [OSTI]

    Short, James Evans (Monongahela, PA); West, Shawn Michael (West Mifflin, PA); Fabean, Robert J. (Donora, PA)

    2009-08-04

    A gate drive for an insulated gate bipolar transistor (IGBT) includes a control and protection module coupled to a collector terminal of the IGBT, an optical communications module coupled to the control and protection module, a power supply module coupled to the control and protection module and an output power stage module with inputs coupled to the power supply module and the control and protection module, and outputs coupled to a gate terminal and an emitter terminal of the IGBT. The optical communications module is configured to send control signals to the control and protection module. The power supply module is configured to distribute inputted power to the control and protection module. The control and protection module outputs on/off, soft turn-off and/or soft turn-on signals to the output power stage module, which, in turn, supplies a current based on the signal(s) from the control and protection module for charging or discharging an input capacitance of the IGBT.

  16. Silicon on insulator achieved using electrochemical etching

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1997-01-01

    Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50.degree. C. or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense.

  17. Silicon on insulator achieved using electrochemical etching

    DOE Patents [OSTI]

    McCarthy, A.M.

    1997-10-07

    Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50 C or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense. 57 figs.

  18. Assessing Equivalent Viscous Damping Using Piping System test Results

    SciTech Connect (OSTI)

    Nie, J.; Morante, R.

    2010-07-18

    The specification of damping for nuclear piping systems subject to seismic-induced motions has been the subject of many studies and much controversy. Damping estimation based on test data can be influenced by numerous factors, consequently leading to considerable scatter in damping estimates in the literature. At present, nuclear industry recommendations and nuclear regulatory guidance are not consistent on the treatment of damping for analysis of nuclear piping systems. Therefore, there is still a need to develop a more complete and consistent technical basis for specification of appropriate damping values for use in design and analysis. This paper summarizes the results of recent damping studies conducted at Brookhaven National Laboratory.

  19. Cryogenic flexible pipes for offshore LNG-LPG production

    SciTech Connect (OSTI)

    Dumay, J.M.

    1981-01-01

    Available in long, flexible pieces (up to several miles), the high-performance Coflexip pipe comprises four basic layers: (1) an interlocked, spiraled-steel carcass to resist crushing and prevent deformation, (2) an inner thermoplastic sheath to render the line internally leakproof, (3) two cross-laid steel-wire armors to oppose the stresses induced by internal pressure, and (4) an external thermoplastic sheath to ensure water-tightness and resist corrosion. Coflexip pipe is particularly suitable for transporting cryogenic liquids such as LNG from, for example, an offshore liquefaction plant.

  20. DEVELOPMENT AND MANUFACTURE OF COST EFFECTIVE COMPOSITE DRILL PIPE

    SciTech Connect (OSTI)

    James C. Leslie; James C. Leslie II; Lee Truong; James T. Heard; Peter Manekas

    2005-03-18

    This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2003 through September 30, 2004 and contains the following discussions: (1) Direct Electrical Connection for Rotary Shoulder Tool Joints; (2) Conductors for inclusion in the pipe wall (ER/DW-CDP); (3) Qualify fibers from Zoltek; (4) Qualify resin from Bakelite; (5) First commercial order for SR-CDP from Integrated Directional Resources (SR-CDP); and (6) Preparation of papers for publication and conference presentations.

  1. Have You Looked at Your Pipes Lately? | Department of Energy

    Office of Environmental Management (EM)

    Looked at Your Pipes Lately? Have You Looked at Your Pipes Lately? March 14, 2011 - 1:27pm Addthis Elizabeth Spencer Communicator, National Renewable Energy Laboratory You know, it doesn't matter that some of you are probably already thinking about spring. It doesn't matter that the bulk of winter is over for a lot of you. I'm going to say this anyway, because sometime, someday, it might be useful. Or, well, it might not be if you live in Florida. But for the rest of you, I will repeat this

  2. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or magnetic fields, or applying small changes in temperature, pressure, or doping-such intriguing control of a material's electronic properties is possible by exploiting strongly interacting or "correlated" electrons. Now a team of researchers from the University of Kiel in Germany and the ALS has found a novel,

  3. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or magnetic fields, or applying small changes in temperature, pressure, or doping-such intriguing control of a material's electronic properties is possible by exploiting strongly interacting or "correlated" electrons. Now a team of researchers from the University of Kiel in Germany and the ALS has found a novel,

  4. Electrochemical cell with powdered electrically insulative material as a separator

    DOE Patents [OSTI]

    Mathers, James P.; Olszanski, Theodore W.; Boquist, Carl W.

    1978-01-01

    A secondary electrochemical cell includes electrodes separated by a layer of electrically insulative powder. The powder includes refractory materials selected from the oxides and nitrides of metals and metaloids. The powdered refractory material, blended with electrolyte particles, can be compacted in layers with electrode materials to form an integral electrode structure or separately assembled into the cell. The assembled cell is heated to operating temperature leaving porous layers of electrically insulative, refractory particles, containing molten electrolyte between the electrodes.

  5. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or magnetic fields, or applying small changes in temperature, pressure, or doping-such intriguing control of a material's electronic properties is possible by exploiting strongly interacting or "correlated" electrons. Now a team of researchers from the University of Kiel in Germany and the ALS has found a novel,

  6. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  7. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  8. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  9. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  10. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  11. Graphene physics and insulator-metal transition in compressed hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Journal Article) | DOE PAGES Graphene physics and insulator-metal transition in compressed hydrogen Title: Graphene physics and insulator-metal transition in compressed hydrogen Authors: Naumov, Ivan I. ; Cohen, R. E. ; Hemley, Russell J. Publication Date: 2013-07-22 OSTI Identifier: 1104286 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal Volume: 88; Journal Issue: 4; Journal ID: ISSN 1098-0121 Publisher: American Physical

  12. New classes of three-dimensional topological crystalline insulators:

    Office of Scientific and Technical Information (OSTI)

    Nonsymmorphic and magnetic (Journal Article) | SciTech Connect New classes of three-dimensional topological crystalline insulators: Nonsymmorphic and magnetic Citation Details In-Document Search This content will become publicly available on April 14, 2016 Title: New classes of three-dimensional topological crystalline insulators: Nonsymmorphic and magnetic Authors: Fang, Chen ; Fu, Liang Publication Date: 2015-04-15 OSTI Identifier: 1179956 Grant/Contract Number: SC0010526 Type: Publisher's

  13. Connecting Thermoelectric Performance and Topological-Insulator Behavior:

    Office of Scientific and Technical Information (OSTI)

    Bi₂Te₃ and Bi₂Te₂Se from First Principles (Journal Article) | DOE PAGES Publisher's Accepted Manuscript: Connecting Thermoelectric Performance and Topological-Insulator Behavior: Bi₂Te₃ and Bi₂Te₂Se from First Principles « Prev Next » Title: Connecting Thermoelectric Performance and Topological-Insulator Behavior: Bi₂Te₃ and Bi₂Te₂Se from First Principles Authors: Shi, Hongliang ; Parker, David ; Du, Mao-Hua ; Singh, David J. Publication Date: 2015-01-20 OSTI

  14. Driving and detecting ferromagnetic resonance in insulators with the spin

    Office of Scientific and Technical Information (OSTI)

    Hall effect (Journal Article) | DOE PAGES DOE PAGES Search Results Publisher's Accepted Manuscript: Driving and detecting ferromagnetic resonance in insulators with the spin Hall effect This content will become publicly available on November 5, 2016 Title: Driving and detecting ferromagnetic resonance in insulators with the spin Hall effect Authors: Sklenar, Joseph ; Zhang, Wei ; Jungfleisch, Matthias B. ; Jiang, Wanjun ; Chang, Houchen ; Pearson, John E. ; Wu, Mingzhong ; Ketterson, John B.

  15. Graphene physics and insulator-metal transition in compressed hydrogen

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | DOE PAGES Graphene physics and insulator-metal transition in compressed hydrogen Title: Graphene physics and insulator-metal transition in compressed hydrogen Authors: Naumov, Ivan I. ; Cohen, R. E. ; Hemley, Russell J. Publication Date: 2013-07-22 OSTI Identifier: 1104286 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal Volume: 88; Journal Issue: 4; Journal ID: ISSN 1098-0121 Publisher: American Physical

  16. Moderate Doping Leads to High Performance of Semiconductor/Insulator

    Office of Scientific and Technical Information (OSTI)

    Polymer Blend Transistors (Journal Article) | SciTech Connect Journal Article: Moderate Doping Leads to High Performance of Semiconductor/Insulator Polymer Blend Transistors Citation Details In-Document Search Title: Moderate Doping Leads to High Performance of Semiconductor/Insulator Polymer Blend Transistors Authors: Lu, Guanghao ; Blakesley, James ; Himmelberger, Scott ; Pingel, Patrick ; Frisch, Johannes ; Lieberwirth, Ingo ; Salzmann, Ingo ; Oehzelt, Martin ; Pietro, Riccardo Di ;

  17. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  18. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  19. Thermal shock resistance ceramic insulator (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: Thermal shock resistance ceramic insulator Citation Details In-Document Search Title: Thermal shock resistance ceramic insulator × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for sale to the

  20. Reduce Your Heating Bills with Better Insulation | Department of Energy

    Energy Savers [EERE]

    Reduce Your Heating Bills with Better Insulation Reduce Your Heating Bills with Better Insulation October 3, 2008 - 11:09am Addthis John Lippert If you pay your own energy bills, you don't need to be reminded that energy prices are escalating. Energy price projections for this coming winter are not encouraging. According to the Energy Information Administration, residential natural gas prices during the upcoming heating season (October though March) are projected to average $14.93 per Mcf, an

  1. Highly Insulating Residential Windows Using Smart Automated Shading |

    Office of Environmental Management (EM)

    Department of Energy Highly Insulating Residential Windows Using Smart Automated Shading Highly Insulating Residential Windows Using Smart Automated Shading Addthis 1 of 3 Residential Smart Window with integrated sensors, control logic and a motorized shade between glass panes. Image: Lawrence Berkeley National Laboratory 2 of 3 Residential Smart Window with integrated sensors, control logic and a motorized shade between glass panes. Image: Lawrence Berkeley National Laboratory 3 of 3

  2. Portable apparatus and method for assisting in the removal and emplacement of pipe strings in boreholes

    DOE Patents [OSTI]

    Mitchell, Brian R.

    2005-03-22

    A portable pipe installation/removal support apparatus for assisting in the installation/removal of a series of connectable pipe strings from a ground-level borehole. The support apparatus has a base, an upright extending from the base, and, in an exemplary embodiment, a pair of catch arms extending from the upright to define a catch platform. The pair of catch arms serves to hold an upper connector end of a pipe string at an operator-convenient standing elevation by releasably catching an underside of a pipe coupler connecting two pipe strings of the series of connectable pipe strings. This enables an operator to stand upright while coupling/uncoupling the series of connectable pipe strings during the installation/removal thereof from the ground-level borehole. Additionally, a process for installing and a process for removing a series of connectable pipe strings is disclosed utilizing such a support apparatus.

  3. A Model For Stress-Controlled Pipe Growth | Open Energy Information

    Open Energy Info (EERE)

    Stress-Controlled Pipe Growth Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Model For Stress-Controlled Pipe Growth Abstract The rock...

  4. Settling of loose-fill insulations due to vibration

    SciTech Connect (OSTI)

    Yarbrough, D.W.; McElroy, D.L.; Wright, J.W.

    1981-12-01

    Vibration and impact testing of loose-fill cellulosic, fiberglass, and rock wool insulations has been carried out to provide a data base for settled density tests. The ratio of final density to initial density for the three materials has been determined for repeated 19-mm (0.75-in.) drops, repeated 152-mm (6.0-in.) drops, and vibrations at frequencies from 10 to 60 Hz with displacements from 0.1 mm (0.004 in.) to 6.35 mm (0.25 in.). Repeated 19-mm or 152-mm drops increased the density ratio for rock wool insulation specimens the most, while the cellulosic insulation specimens were affected the least. Density ratios after 200 19-mm drops averaged 1.75 for loose-fill rock wool, 1.45 for loose-fill fiberglass, and 1.27 for loose-fill cellulosic insulations. Vibration tests for 7200 s at 0.1-mm displacement and 15 Hertz produced negligible changes in the densities of all three loose-fill insulations. An 1800-s vibration test at 2.5 mm (0.1 in.) and 10 Hz resulted in average density ratios of 1.05, 1.11, and 1.18 for specimens of loose-fill cellulosic, rock wool, and fiberglass insulations, respectively. Changes in either frequency of vibration, displacement, or test duration can be used to achieve a wide range of laboratory results. Efforts to correlate laboratory results with in situ density measurements are presented.

  5. Settling of loose-fill insulations due to vibration

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Wright, J.H.; McElroy, D.L.; Scanlan, T.F.

    1983-01-01

    Vibration and impact testing of loose-fill cellulosic, fiberglass, and rock wool insulations has been carried out to provide a data base for settled density tests. The ratio of final density to initial density for the three materials has been determined for repeated 19-mm (0.75-in.) drops, repeated 152-mm (6.0-in.) drops, and vibrations at frequencies from 10 to 60 Hz with displacements from 0.1 mm (0.004 in.) to 6.35 mm (0.25 in.). Repeated 19-mm or 152-mm drops increased the density ratio for rock wool insulation specimens the most, while the cellulosic insulation specimens were affected the least. Density ratios after 200 19-mm drops averaged 1.75 for loose-fill rock wool, 1.45 for loose-fill fiberglass, and 1.27 for loose-fill cellulosic insulations. Vibration tests for 7200 s at 0.1-mm displacement and 15 Hertz produced negligible changes in the densities of all three loose-fill insulations. An 1800-s vibration test at 2.5 mm (0.1 in.) and 10 Hz resulted in average density ratios of 1.05, 1.11, and 1.18 for specimens of loose-fill cellulosic, rock wool, and fiberglass insulations, respectively. Changes in either frequency of vibration, displacement, or test duration can be used to achieve a wide range of laboratory results. Efforts to correlate laboratory results with in situ density measurements are presented.

  6. External Insulation of Masonry Walls and Wood Framed Walls

    SciTech Connect (OSTI)

    Baker, P.

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1 to 1 ), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  7. Ceramic electrical insulation for electrical coils, transformers, and magnets

    DOE Patents [OSTI]

    Rice, John A. (Longmont, CO); Hazelton, Craig S. (Lafayette, CO); Fabian, Paul E. (Broomfield, CO)

    2002-01-01

    A high temperature electrical insulation is described, which is suitable for electrical windings for any number of applications. The inventive insulation comprises a cured preceramic polymer resin, which is preferably a polysiloxane resin. A method for insulating electrical windings, which are intended for use in high temperature environments, such as superconductors and the like, advantageously comprises the steps of, first, applying a preceramic polymer layer to a conductor core, to function as an insulation layer, and second, curing the preceramic polymer layer. The conductor core preferably comprises a metallic wire, which may be wound into a coil. In the preferred method, the applying step comprises a step of wrapping the conductor core with a sleeve or tape of glass or ceramic fabric which has been impregnated by a preceramic polymer resin. The inventive insulation system allows conducting coils and magnets to be fabricated using existing processing equipment, and maximizes the mechanical and thermal performance at both elevated and cryogenic temperatures. It also permits co-processing of the wire and the insulation to increase production efficiencies and reduce overall costs, while still remarkably enhancing performance.

  8. Assessment of LWR piping design loading based on plant operating experience

    SciTech Connect (OSTI)

    Svensson, P. O.

    1980-08-01

    The objective of this study has been to: (1) identify current Light Water Reactor (LWR) piping design load parameters, (2) identify significant actual LWR piping loads from plant operating experience, (3) perform a comparison of these two sets of data and determine the significance of any differences, and (4) make an evaluation of the load representation in current LWR piping design practice, in view of plant operating experience with respect to piping behavior and response to loading.

  9. Installation Of Service Connections For Sensors Or Transmitters In Buried Water Pipes

    DOE Patents [OSTI]

    Burnham, Alan K.; Cooper, John F.

    2006-02-21

    A system for installing warning units in a buried pipeline. A small hole is drilled in the ground to the pipeline. A collar is affixed to one of the pipes of the pipeline. A valve with an internal passage is connected to the collar. A hole is drilled in the pipe. A warning unit is installed in the pipe by moving the warning unit through the internal passage, the collar, and the hole in the pipe.

  10. OPS 9.18 Equipment and Piping Labeling 8/24/98 | Department of Energy

    Energy Savers [EERE]

    8 Equipment and Piping Labeling 8/24/98 OPS 9.18 Equipment and Piping Labeling 8/24/98 The objective of this surveillance is to verify that facility equipment and piping are labeled in a manner such that facility personnel are able to positively identify equipment they operate. This surveillance provides a basis for evaluating the effectiveness of the contractor's program for labeling equipment and piping and for establishing compliance with DOE requirements. Microsoft Office document icon

  11. Attic Retrofits Using Nail-Base Insulated Panels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attic Retrofits Using Nail-Base Insulated Panels Attic Retrofits Using Nail-Base Insulated Panels Photo courtesy of the Structural Insulated Panel Association. Photo courtesy of the Structural Insulated Panel Association. Lead Performer: Home Innovation Research Labs-Upper Marlboro, MD Partners: Structural Insulated Panel Association, American Chemistry Council, Forest Products Laboratory, DuPont, APA-The Engineered Wood Association, Insurance Institute for Business and Home Safety, Remodeling

  12. Large anomalous Hall effect in ferromagnetic insulator-topological insulator heterostructures

    SciTech Connect (OSTI)

    Alegria, L. D.; Petta, J. R.; Ji, H.; Cava, R. J.; Yao, N.; Clarke, J. J.

    2014-08-04

    We demonstrate the van der Waals epitaxy of the topological insulator compound Bi{sub 2}Te{sub 3} on the ferromagnetic insulator Cr{sub 2}Ge{sub 2}Te{sub 6}. The layers are oriented with (001)Bi{sub 2}Te{sub 3}||(001)Cr{sub 2}Ge{sub 2}Te{sub 6} and (110)Bi{sub 2}Te{sub 3}||(100)Cr{sub 2}Ge{sub 2}Te{sub 6}. Cross-sectional transmission electron microscopy indicates the formation of a sharp interface. At low temperatures, bilayers consisting of Bi{sub 2}Te{sub 3} on Cr{sub 2}Ge{sub 2}Te{sub 6} exhibit a large anomalous Hall effect (AHE). Tilted field studies of the AHE indicate that the easy axis lies along the c-axis of the heterostructure, consistent with magnetization measurements in bulk Cr{sub 2}Ge{sub 2}Te{sub 6}. The 61 K Curie temperature of Cr{sub 2}Ge{sub 2}Te{sub 6} and the use of near-stoichiometric materials may lead to the development of spintronic devices based on the AHE.

  13. Identification of significant problems related to light water reactor piping systems

    SciTech Connect (OSTI)

    None

    1980-07-01

    Work on the project was divided into three tasks. In Task 1, past surveys of LWR piping system problems and recent Licensee Event Report summaries are studied to identify the significant problems of LWR piping systems and the primary causes of these problems. Pipe cracking is identified as the most recurring problem and is mainly due to the vibration of pipes due to operating pump-pipe resonance, fluid-flow fluctuations, and vibration of pipe supports. Research relevant to the identified piping system problems is evaluated. Task 2 studies identify typical LWR piping systems and the current loads and load combinations used in the design of these systems. Definitions of loads are reviewed. In Task 3, a comparative study is carried out on the use of nonlinear analysis methods in the design of LWR piping systems. The study concludes that the current linear-elastic methods of analysis may not predict accurately the behavior of piping systems under seismic loads and may, under certain circumstances, result in nonconservative designs. Gaps at piping supports are found to have a significant effect on the response of the piping systems.

  14. Seismic design technology for breeder reactor structures. Volume 4. Special topics in piping and equipment

    SciTech Connect (OSTI)

    Reddy, D.P.

    1983-04-01

    This volume is divided into five chapters: experimental verification of piping systems, analytical verification of piping restraint systems, seismic analysis techniques for piping systems with multisupport input, development of floor spectra from input response spectra, and seismic analysis procedures for in-core components. (DLC)

  15. FFTF thermal-hydraulic testing results affecting piping and vessel component design in LMFBR's

    SciTech Connect (OSTI)

    Stover, R.L.; Beaver, T.R.; Chang, S.C.

    1983-01-01

    The Fast Flux Test Facility completed four years of pre-operational testing in April 1982. This paper describes thermal-hydraulic testing results from this period which impact piping and vessel component design in LMFBRs. Data discussed are piping flow oscillations, piping thermal stratification and vessel upper plenum stratification. Results from testing verified that plant design limits were met.

  16. Insulating Structural Ceramics Program, Final Report

    SciTech Connect (OSTI)

    Andrews, Mark J.; Tandon, Raj; Ott, Eric; Hind, Abi Akar; Long, Mike; Jensen, Robert; Wheat, Leonard; Cusac, Dave; Lin, H. T.; Wereszczak, Andrew A.; Ferber, Mattison K.; Lee, Sun Kun; Yoon, Hyung K.; Moreti, James; Park, Paul; Rockwood, Jill; Boyer, Carrie; Ragle, Christie; Balmer-Millar, Marilou; Aardahl, Chris; Habeger, Craig; Rappe, Ken; Tran, Diana; Koshkarian, Kent; Readey, Michael; ,

    2005-11-22

    New materials and corresponding manufacturing processes are likely candidates for diesel engine components as society and customers demand lower emission engines without sacrificing power and fuel efficiency. Strategies for improving thermal efficiency directly compete with methodologies for reducing emissions, and so the technical challenge becomes an optimization of controlling parameters to achieve both goals. Approaches being considered to increase overall thermal efficiency are to insulate certain diesel engine components in the combustion chamber, thereby increasing the brake mean effective pressure ratings (BMEP). Achieving higher BMEP rating by insulating the combustion chamber, in turn, requires advances in material technologies for engine components such as pistons, port liners, valves, and cylinder heads. A series of characterization tests were performed to establish the material properties of ceramic powder. Mechanical chacterizations were also obtained from the selected materials as a function of temperature utilizing ASTM standards: fast fracture strength, fatique resistance, corrosion resistance, thermal shock, and fracture toughness. All ceramic materials examined showed excellent wear properties and resistance to the corrosive diesel engine environments. The study concluded that the ceramics examined did not meet all of the cylinder head insert structural design requirements. Therefore we do not recommend at this time their use for this application. The potential for increased stresses and temperatures in the hot section of the diesel engine combined with the highly corrosive combustion products and residues has driven the need for expanded materials capability for hot section engine components. Corrosion and strength requirements necessitate the examination of more advanced high temperture alloys. Alloy developments and the understanding of processing, structure, and properties of supperalloy materials have been driven, in large part, by the gas turbine community over the last fifty years. Characterization of these high temperature materials has, consequently, concentrated heavily upon application conditions similiar to to that encountered in the turbine engine environment. Significantly less work has been performed on hot corrosion degradation of these materials in a diesel engine environment. This report examines both the current high temperature alloy capability and examines the capability of advanced nickle-based alloys and methods to improve production costs. Microstructures, mechanical properties, and the oxidation/corrosion behavior of commercially available silicon nitride ceramics were investigated for diesel engine valve train applications. Contact, sliding, and scratch damage mechanisms of commercially available silicon nitride ceramics were investigated as a function of microstructure. The silicon nitrides with a course microstructure showed a higher material removal rate that agrees with a higher wear volume in the sliding contact tests. The overall objective of this program is to develop catalyst materials systems for an advanced Lean-NOx aftertreatment system that will provide high NOx reduction with minimum engine fuel efficiency penalty. With Government regulations on diesel engine NOx emissions increasingly becoming more restrictive, engine manufacturers are finding it difficult to meet the regulations solely with engine design strategies (i.e. improved combustion, retarded timing, exhaust gas recirculation, etc.). Aftertreatment is the logical technical approach that will be necessary to achieve the required emission levels while at the same time minimally impacting the engine design and its associated reliability and durability concerns.

  17. Entirely passive heat pipe apparatus capable of operating against gravity

    DOE Patents [OSTI]

    Koenig, Daniel R. (Santa Fe, NM)

    1982-01-01

    The disclosure is directed to an entirely passive heat pipe apparatus capable of operating against gravity for vertical distances in the order of 3 to 7 meters and more. A return conduit into which an inert gas is introduced is used to lower the specific density of the working fluid so that it may be returned a greater vertical distance from condenser to evaporator.

  18. Logging with coiled tubing less effective than with drill pipe

    SciTech Connect (OSTI)

    Van Den Bosch, R. )

    1994-01-31

    Coiled tubing offered neither economic nor operational advantages over drill pipe for conveying logging tools in open hole shallow horizontal wells in Germany. In the past 2 years, Mobil Erdgas-Erdoel GMbH (MEEG) participated in completing eight shallow horizontal wells. These were medium-to-short radius wells at measured depths of between 850 and 2,000 m. The average horizontal section was 350 m. The logging tools were conveyed by coiled tubing or drill pipe. MEEG attempted to log five wells with coiled tubing-conveyed tools, four with 1 1/2-in. tubing. Total depth was reached reliably in only one well, the shallowest and with the shortest horizontal section. Simulation programs were unreliable for calculating the downhole forces of the coil/tool combination or predicting possible helical lockups. In wells with drill pipe-conveyed logs, the tool combination could always be pushed to total depth, and the operations were generally faster and cost less than logging with coiled tubing. Also, drill pipe allowed longer and heavier tool strings. For reliable operations, coiled tubing needs to be more rigid, rig-up/rig-down times need to be improved, and the simulation programs must be more reliable for predicting downhole lock-up.

  19. Design of megawatt power level heat pipe reactors

    SciTech Connect (OSTI)

    Mcclure, Patrick Ray; Poston, David Irvin; Dasari, Venkateswara Rao; Reid, Robert Stowers

    2015-11-12

    An important niche for nuclear energy is the need for power at remote locations removed from a reliable electrical grid. Nuclear energy has potential applications at strategic defense locations, theaters of battle, remote communities, and emergency locations. With proper safeguards, a 1 to 10-MWe (megawatt electric) mobile reactor system could provide robust, self-contained, and long-term power in any environment. Heat pipe-cooled fast-spectrum nuclear reactors have been identified as a candidate for these applications. Heat pipe reactors, using alkali metal heat pipes, are perfectly suited for mobile applications because their nature is inherently simpler, smaller, and more reliable than “traditional” reactors. The goal of this project was to develop a scalable conceptual design for a compact reactor and to identify scaling issues for compact heat pipe cooled reactors in general. Toward this goal two detailed concepts were developed, the first concept with more conventional materials and a power of about 2 MWe and a the second concept with less conventional materials and a power level of about 5 MWe. A series of more qualitative advanced designs were developed (with less detail) that show power levels can be pushed to approximately 30 MWe.

  20. Passive ice freezing-releasing heat pipe. [Patent application

    DOE Patents [OSTI]

    Gorski, A.J.; Schertz, W.W.

    1980-09-29

    A heat pipe device has been developed which permits completely passive ice formation and periodic release of ice without requiring the ambient temperature to rise above the melting point of water. This passive design enables the maximum amount of cooling capacity to be stored in the tank.

  1. Technique development for polarized pipe-to-soil potential measurements

    SciTech Connect (OSTI)

    Dabkowski, J.

    1989-12-01

    Research project PR-200-513 was undertaken with the overall objective to develop practical techniques for determining the polarized pipe-to-soil potential of a buried pipeline. The importance of this project rests with the fact that pipe-to-soil potential measurements are the most commonly used means of assessing the level of cathodic protection on buried gas transmission pipelines. In the recent past years there has been a considerable amount of effort devoted to developing methods and instruments to correct measured pipe-to-soil potentials for IR drops that may occur from currents (from the cathodic protection system or stray sources) in the soil to obtain the polarized potential. However, many of the methods or instruments available are either time-consuming, cumbersome to use in the field, applicable to only certain types of cathodic protection systems and under particular circumstances, subject to influences from stray current sources or not fully developed as of yet. Thus, there is a need to develop a practical method of determining the polarized pipe potential free of IR drop errors. Hence, the objectives of the research program conducted were: (1) to test and evaluate comparatively existing polarized potential measurement approaches, and (2) to develop new approaches to determining the polarized potential.

  2. Heat Pipe Solar Receiver Development Activities at Sandia National Laboratories

    SciTech Connect (OSTI)

    Adkins, D.R.; Andraka, C.E.; Moreno, J.B.; Moss, T.A.; Rawlinson, K.S.; Showalter, S.K.

    1999-01-08

    Over the past decade, Sandia National Laboratories has been involved in the development of receivers to transfer energy from the focus of a parabolic dish concentrator to the heater tubes of a Stirling engine. Through the isothermal evaporation and condensation of sodium. a heat-pipe receiver can efficiently transfer energy to an engine's working fluid and compensate for irregularities in the flux distribution that is delivered by the concentrator. The operation of the heat pipe is completely passive because the liquid sodium is distributed over the solar-heated surface by capillary pumping provided by a wick structure. Tests have shown that using a heat pipe can boost the system performance by twenty percent when compared to directly illuminating the engine heater tubes. Designing heat pipe solar receivers has presented several challenges. The relatively large area ({approximately}0.2 m{sup 2}) of the receiver surface makes it difficult to design a wick that can continuously provide liquid sodium to all regions of the heated surface. Selecting a wick structure with smaller pores will improve capillary pumping capabilities of the wick, but the small pores will restrict the flow of liquid and generate high pressure drops. Selecting a wick that is comprised of very tine filaments can increase the permeability of the wick and thereby reduce flow losses, however, the fine wick structure is more susceptible to corrosion and mechanical damage. This paper provides a comprehensive review of the issues encountered in the design of heat pipe solar receivers and solutions to problems that have arisen. Topics include: flow characterization in the receiver, the design of wick systems. the minimization of corrosion and dissolution of metals in sodium systems. and the prevention of mechanical failure in high porosity wick structures.

  3. Off-axis cooling of rotating devices using a crank-shaped heat pipe

    DOE Patents [OSTI]

    Jankowski, Todd A.; Prenger, F. Coyne; Waynert, Joseph A.

    2007-01-30

    The present invention is a crank-shaped heat pipe for cooling rotating machinery and a corresponding method of manufacture. The crank-shaped heat pipe comprises a sealed cylindrical tube with an enclosed inner wick structure. The crank-shaped heat pipe includes a condenser section, an adiabatic section, and an evaporator section. The crank-shape is defined by a first curve and a second curve existing in the evaporator section or the adiabatic section of the heat pipe. A working fluid within the heat pipe provides the heat transfer mechanism.

  4. Proximity-driven enhanced magnetic order at ferromagnetic-insulator-magnetic-topological-insulator interface

    SciTech Connect (OSTI)

    Li, Mingda; Zhu, Yimei; Chang, Cui -Zu; Kirby, B. J.; Jamer, Michelle E.; Cui, Wenping; Wu, Lijun; Wei, Peng; Heiman, Don; Li, Ju; Moodera, Jagadeesh S.; Katmis, Ferhat

    2015-08-17

    Magnetic exchange driven proximity effect at a magnetic-insulator–topological-insulator (MI-TI) interface provides a rich playground for novel phenomena as well as a way to realize low energy dissipation quantum devices. In this study, we report a dramatic enhancement of proximity exchange coupling in the MI/magnetic-TI EuS/Sb2–xVxTe3 hybrid heterostructure, where V doping is used to drive the TI (Sb2Te3) magnetic. We observe an artificial antiferromagneticlike structure near the MI-TI interface, which may account for the enhanced proximity coupling. The interplay between the proximity effect and doping in a hybrid heterostructure provides insights into the engineering of magnetic ordering.

  5. Proximity-driven enhanced magnetic order at ferromagnetic-insulator-magnetic-topological-insulator interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Mingda; Zhu, Yimei; Chang, Cui -Zu; Kirby, B. J.; Jamer, Michelle E.; Cui, Wenping; Wu, Lijun; Wei, Peng; Heiman, Don; Li, Ju; et al

    2015-08-17

    Magnetic exchange driven proximity effect at a magnetic-insulator–topological-insulator (MI-TI) interface provides a rich playground for novel phenomena as well as a way to realize low energy dissipation quantum devices. In this study, we report a dramatic enhancement of proximity exchange coupling in the MI/magnetic-TI EuS/Sb2–xVxTe3 hybrid heterostructure, where V doping is used to drive the TI (Sb2Te3) magnetic. We observe an artificial antiferromagneticlike structure near the MI-TI interface, which may account for the enhanced proximity coupling. The interplay between the proximity effect and doping in a hybrid heterostructure provides insights into the engineering of magnetic ordering.

  6. Supporting documentation for the 1997 revision to the DOE Insulation Fact Sheet

    SciTech Connect (OSTI)

    Stovall, T.K.

    1997-08-22

    The Department of Energy (DOE) Insulation Fact Sheet has been revised to reflect developments in energy conservation technology and the insulation market. A nationwide insulation cost survey was made by polling insulation contractors and builders, and the results are reported here. These costs, along with regional weather data, regional fuel costs, and fuel-specific system efficiencies were used to produce recommended insulation levels for new and existing houses. This report contains all of the methodology, algorithms, assumptions, references, and data resources that were used to produce the 1997 DOE Insulation Fact Sheet.

  7. Ion beam modification of topological insulator bismuth selenide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sharma, Peter Anand; Sharma, A. L. Lima; Hekmaty, Michelle A.; Hattar, Khalid Mikhiel; Stavila, Vitalie; Goeke, Ronald S.; Erickson, K.; Medlin, Douglas L.; Brahlek, M.; Oh, S.; et al

    2014-12-17

    In this study, we demonstrate chemical doping of a topological insulator Bi2Se3 using ion implantation. Ion beam-induced structural damage was characterized using grazing incidence X-ray diffraction and transmission electron microscopy. Ion damage was reversed using a simple thermal annealing step. Carrier-type conversion was achieved using ion implantation followed by an activation anneal in Bi2Se3 thin films. These two sets of experiments establish the feasibility of ion implantation for chemical modification of Bi2Se3, a prototypical topological insulator. Ion implantation can, in principle, be used for any topological insulator. The direct implantation of dopants should allow better control over carrier concentrations formore » the purposes of achieving low bulk conductivity. Ion implantation also enables the fabrication of inhomogeneously doped structures, which in turn should make possible new types of device designs.« less

  8. Spokane Wall Insulation Project: a field study of moisture damage in walls insulated without a vapor barrier

    SciTech Connect (OSTI)

    Tsongas, G.

    1985-09-01

    Considerable uncertainty has existed over whether or not the addition of wall insulation without a vapor barrier might increase the risk of moisture damage to the structure. Although it was concluded from a 1979 field study that there is no such risk in mild climates like that of Portland, Oregon (4792 degree-days), it was not clear if a problem might exist in colder climates. Thus, a second major field study was undertaken in Spokane, Washington (6835 degree-days) aimed at finding out if such a moisture problem really exists. This report describes that study and its results and conclusions. During the study the exterior walls of 103 homes were opened, of which 79 had retrofitted cellulose, rock wool, or fiberglass, and 24 were uninsulated as a control group. Field and laboratory test results are presented which, contrary to diffusion theory predictions, show the absence of moisture accumulation and consequent moisture damage caused by the addition of retrofitted wall insulation. Infrared thermography results giving the percentage of wall insulation void area for 30 of the test homes are also presented. The study strongly concludes that the addition of wall insulation without a vapor barrier does not cause moisture problems in existing homes in climates similar to that of Spokane. Future research needs are described, and the overall advisability of future retrofitting of wall insulation is discussed. 23 refs., 7 figs., 16 tabs.

  9. Composition and process for making an insulating refractory material

    DOE Patents [OSTI]

    Pearson, Alan (Murrysville, PA); Swansiger, Thomas G. (Apollo, PA)

    1998-04-28

    A composition and process for making an insulating refractory material. The composition includes calcined alumina powder, flash activated alumina powder, an organic polymeric binder and a liquid vehicle which is preferably water. Starch or modified starch may also be added. A preferred insulating refractory material made with the composition has a density of about 2.4-2.6 g/cm.sup.3 with reduced thermal conductivity, compared with tabular alumina. Of importance, the formulation has good abrasion resistance and crush strength during intermediate processing (commercial sintering) to attain full strength and refractoriness, good abrasion resistance and crush strength.

  10. Composition and process for making an insulating refractory material

    DOE Patents [OSTI]

    Pearson, A.; Swansiger, T.G.

    1998-04-28

    A composition and process are disclosed for making an insulating refractory material. The composition includes calcined alumina powder, flash activated alumina powder, an organic polymeric binder and a liquid vehicle which is preferably water. Starch or modified starch may also be added. A preferred insulating refractory material made with the composition has a density of about 2.4--2.6 g/cm{sup 3} with reduced thermal conductivity, compared with tabular alumina. Of importance, the formulation has good abrasion resistance and crush strength during intermediate processing (commercial sintering) to attain full strength and refractoriness.

  11. Fabrication of high gradient insulators by stack compression

    DOE Patents [OSTI]

    Harris, John Richardson; Sanders, Dave; Hawkins, Steven Anthony; Norona, Marcelo

    2014-04-29

    Individual layers of a high gradient insulator (HGI) are first pre-cut to their final dimensions. The pre-cut layers are then stacked to form an assembly that is subsequently pressed into an HGI unit with the desired dimension. The individual layers are stacked, and alignment is maintained, using a sacrificial alignment tube that is removed after the stack is hot pressed. The HGI's are used as high voltage vacuum insulators in energy storage and transmission structures or devices, e.g. in particle accelerators and pulsed power systems.

  12. Repeatable reference for positioning sensors and transducers in drill pipe

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe; Pixton, David S.; Hall, Jr., H. Tracy

    2005-05-03

    A drill pipe having a box end having a tapered thread, and an internal shoulder and an external face for engagement with a drill pipe pin end having a tapered mating thread, and an external shoulder and an external face adapted for data acquisition or transmission. The relative dimensions of the box and pin ends are precisely controlled so that when the tool joint is made up, a repeatable reference plane is established for transmitting power and tuning downhole sensors, transducers, and means for sending and receiving data along the drill string. When the power or data acquisition and transmission means are located in the tool joint, the dimensions of the tool joint are further proportioned to compensate for the loss of cross-sectional area in order maintain the joints ability to sustain nominal makeup torque.

  13. Sensitization and IGSCC susceptibility prediction in stainless steel pipe weldments

    SciTech Connect (OSTI)

    Atteridge, D.G.; Simmons, J.W.; Li, Ming ); Bruemmer, S.M. )

    1991-11-01

    An analytical model, based on prediction of chromium depletion, has been developed for predicting thermomechanical effects on austenitic stainless steel intergranular stress corrosion cracking (IGSCC) susceptibility. Model development and validation is based on sensitization development analysis of over 30 Type 316 and 304 stainless steel heats. The data base included analysis of deformation effects on resultant sensitization development. Continuous Cooling sensitization behavior is examined and modelled with and without strain. Gas tungsten are (GTA) girth pipe weldments are also characterized by experimental measurements of heat affected zone (HAZ) temperatures, strains and sensitization during/after each pass; pass by pass thermal histories are also predicted. The model is then used to assess pipe chemistry changes on IGSCC resistance.

  14. Impedance matched joined drill pipe for improved acoustic transmission

    DOE Patents [OSTI]

    Moss, William C.

    2000-01-01

    An impedance matched jointed drill pipe for improved acoustic transmission. A passive means and method that maximizes the amplitude and minimize the temporal dispersion of acoustic signals that are sent through a drill string, for use in a measurement while drilling telemetry system. The improvement in signal transmission is accomplished by replacing the standard joints in a drill string with joints constructed of a material that is impedance matched acoustically to the end of the drill pipe to which it is connected. Provides improvement in the measurement while drilling technique which can be utilized for well logging, directional drilling, and drilling dynamics, as well as gamma-ray spectroscopy while drilling post shot boreholes, such as utilized in drilling post shot boreholes.

  15. TSTA Piping and Flame Arrestor Operating Experience Data

    SciTech Connect (OSTI)

    Cadwallader, Lee C.; Willms, R. Scott

    2014-10-01

    The Tritium Systems Test Assembly (TSTA) was a facility dedicated to tritium handling technology and experiment research at the Los Alamos National Laboratory. The facility operated from 1984 to 2001, running a prototype fusion fuel processing loop with ~100 grams of tritium as well as small experiments. There have been several operating experience reports written on this facilitys operation and maintenance experience. This paper describes analysis of two additional components from TSTA, small diameter gas piping that handled small amounts of tritium in a nitrogen carrier gas, and the flame arrestor used in this piping system. The operating experiences and the component failure rates for these components are discussed in this paper. Comparison data from other applications are also presented.

  16. Method of manufacturing a heat pipe wick with structural enhancement

    DOE Patents [OSTI]

    Andraka, Charles E. (Albuquerque, NM); Adkins, Douglas R. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM); Rawlinson, K. Scott (Albuquerque, NM); Showalter, Steven K. (Albuquerque, NM); Moss, Timothy A. (Albuquerque, NM)

    2006-10-24

    Heat pipe wick structure wherein a stout sheet of perforated material overlays a high performance wick material such as stainless steel felt affixed to a substrate. The inventive structure provides a good flow path for working fluid while maintaining durability and structural stability independent of the structure (or lack of structure) associated with the wick material. In one described embodiment, a wick of randomly laid .about.8 micron thickness stainless steel fibers is sintered to a metal substrate and a perforated metal overlay.

  17. A LOW-COST GPR GAS PIPE & LEAK DETECTOR

    SciTech Connect (OSTI)

    David Cist; Alan Schutz

    2005-03-30

    A light-weight, easy to use ground penetrating radar (GPR) system for tracking metal/non-metal pipes has been developed. A pre-production prototype instrument has been developed whose production cost and ease of use should fit important market niches. It is a portable tool which is swept back and forth like a metal detector and which indicates when it goes over a target (metal, plastic, concrete, etc.) and how deep it is. The innovation of real time target detection frees the user from having to interpret geophysical data and instead presents targets as dots on the screen. Target depth is also interpreted automatically, relieving the user of having to do migration analysis. In this way the user can simply walk around looking for targets and, by ''connecting the dots'' on the GPS screen, locate and follow pipes in real time. This is the first tool known to locate metal and non-metal pipes in real time and map their location. This prototype design is similar to a metal detector one might use at the beach since it involves sliding a lightweight antenna back and forth over the ground surface. The antenna is affixed to the end of an extension that is either clipped to or held by the user. This allows him to walk around in any direction, either looking for or following pipes with the antenna location being constantly recorded by the positioning system. Once a target appears on the screen, the user can locate by swinging the unit to align the cursor over the dot. Leak detection was also a central part of this project, and although much effort was invested into its development, conclusive results are not available at the time of the writing of this document. Details of the efforts that were made as a part of this cooperative agreement are presented.

  18. Seismic Capacity of Threaded, Brazed, and Grooved Pipe Joints

    Office of Environmental Management (EM)

    SEISMIC CAPACITY OF THREADED, BRAZED AND GROOVED PIPE JOINTS Brent Gutierrez, PhD, PE George Antaki, PE, F.ASME DOE NPH Conference October 25-26, 2011 Motivation * Understand the behavior and failure mode of common joints under extreme lateral loads * Static and shake table tests conducted of pressurized - Threaded, - Brazed, - Mechanical joints Static Testing o Pressurized spool to 150 psi o Steady downward force applied while recording deflections o Grooved clamped mech. joints * 16 tests

  19. Corrosion/erosion pipe inspection using reverse geometry radiography

    SciTech Connect (OSTI)

    Albert, R.D.

    1996-07-01

    Measurement of corrosion in piping was studied using the Digiray Reverse Geometry X-ray{reg_sign} (RGX{reg_sign}) imaging system during a series of field tests. Sponsored by Shell, Exxon and Mobil oil companies, these were recently carried out at the Shell Martinez refinery facility. Results of the field tests as well as other RGX radiographs taken in the laboratory by Digiray will be described in this report.

  20. Distribution piping expenditures of $2. 66 billion seen for 1983

    SciTech Connect (OSTI)

    Watts, J.

    1982-12-01

    Figures for the 1982 results and 1983 projections of expenditures and pipe mileage compiled in a survey of 500 gas distribution utilities in 50 states, including the 300 largest utilities are presented. Maintenance as a percentage of total construction budget has been steady over the past 3 yrs. If housing construction picks up again by mid-year, 1983 could be a good year for gas utilities because of the convenience and cleanliness of gas heating.

  1. Self-cleaning inlet screen to an ocean riser pipe

    SciTech Connect (OSTI)

    Wetmore, S.B.; Person, A.

    1980-06-17

    A long, vertically disposed ocean water upwelling pipe, such as a cold water riser in an ocean thermal energy conversion facility, is fitted at its lower inlet end with a self-cleaning inlet screen. The screen includes a right conical frustum of loose metal netting connected at its larger upper end to the lower end of the pipe. A heavy, negatively buoyant closure is connected across the lower end of the frustum. A weight is suspended below the closure on a line which passes loosely through the closure into the interior of the screen. The line tends to stay stationary as the lower end of the pipe moves, as in response to ocean current vortex shedding and other causes, thus causing the closure to rattle on the line and to shake the netting. The included half-angle of the frustum is approximately 20 so that, on shaking of the netting, marine life accumulated on the netting becomes loose and falls free of the netting. 6 claims.

  2. Technology Solutions Case Study: Moisture Durability of Vapor Permeable Insulating Sheathing

    SciTech Connect (OSTI)

    2013-10-01

    In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

  3. NMR relaxation in the topological Kondo insulator SmB 6 (Journal...

    Office of Scientific and Technical Information (OSTI)

    NMR relaxation in the topological Kondo insulator SmB 6 Prev Next Title: NMR relaxation in the topological Kondo insulator SmB 6 Authors: Schlottmann, P. Publication Date: ...

  4. Tuning the metal-insulator crossover and magnetism in SrRuO3...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Tuning the metal-insulator crossover and magnetism in SrRuO3 by ionic gating Citation Details In-Document Search Title: Tuning the metal-insulator crossover and ...

  5. Particle trap with dielectric barrier for use in gas insulated transmission lines

    DOE Patents [OSTI]

    Dale, S.J.

    1982-06-15

    A gas-insulated transmission line includes an outer sheath, an inner conductor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping electrode is disposed within the outer sheath, and the electrode has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the apertured electrode. 7 figs.

  6. Particle trap with dielectric barrier for use in gas insulated transmission lines

    DOE Patents [OSTI]

    Dale, Steinar J. (Monroeville, PA)

    1982-01-01

    A gas-insulated transmission line includes an outer sheath, an inner conductor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping electrode is disposed within the outer sheath, and the electrode has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the apertured electrode.

  7. Thermal insulation for buildings. (Latest citations from the Compendex database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The bibliography contains citations concerning materials used for the thermal insulation of buildings. Consumer acceptance of materials and weatherproofing options are included. Insulation in new and retrofitted buildings is discussed. Residential buildings, earth sheltered structures, greenhouses, and animal houses are among the structures studied. Infrared thermal sensing of heat loss, insulation placement, multilayer partition walls, and insulating windows are briefly considered. (Contains 250 citations and includes a subject term index and title list.)

  8. Cost-Optimized Attic Insulation Solution for Factory-Built Homes- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This 2014 Top Innovation describes a dense-pack solution to increasing attic insulation R-value for manufactured homes.

  9. Cladding Attachment Over Thick Exterior Insulating Sheathing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of wood-framed walls and mass masonry wall assemblies. The location of the insulation on the exterior of the structure has many direct benefits, including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on the structure, as well as other commonly associated improvements such as increased airtightness and improved water management. For thick layers of exterior insulation (more than 1.5 in.), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location. Although the approach has proven effective, there is significant resistance to its widespread implementation due to a lack of research and understanding of the mechanisms involved in the development of the vertical displacement resistance capacity. In addition, the long-term in-service performance of the system has been questioned due to potential creep effects of the assembly under the sustained dead load of the cladding and effects of varying environmental conditions. In addition, the current International Building Code (IBC) and International Residential Code (IRC) do not have a provision that specifically allows this assembly.

  10. Heat insulating system for a fast reactor shield slab

    DOE Patents [OSTI]

    Kotora, Jr., James (LaGrange Park, IL); Groh, Edward F. (Naperville, IL); Kann, William J. (Park Ridge, IL); Burelbach, James P. (Glen Ellyn, IL)

    1986-01-01

    Improved thermal insulation for a nuclear reactor deck comprising many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

  11. System for increasing corona inception voltage of insulating oils

    DOE Patents [OSTI]

    Rohwein, G.J.

    1998-05-19

    The Corona Inception Voltage of insulating oils is increased by repetitive cycles of prestressing the oil with a voltage greater than the corona inception voltage, and either simultaneously or serially removing byproducts of corona by evacuation and heating the oil. 5 figs.

  12. Heat insulating system for a fast reactor shield slab

    DOE Patents [OSTI]

    Kotora, J. Jr.; Groh, E.F.; Kann, W.J.; Burelbach, J.P.

    1984-04-10

    Improved thermal insulation for a nuclear reactor deck comprises many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

  13. Thermal performance of various multilayer insulation systems below 80K

    SciTech Connect (OSTI)

    Boroski, W.N.; Nicol, T.H.; Schoo, C.J.

    1992-04-01

    The SSC collider dipole cryostat consists of a vacuum shell operating at room temperature, two thermal shields operating near 80K and 20K respectively, and the superconducting magnet assembly operating near 4K. The cryostat design incorporates multilayer insulation (MLI) blankets to limit radiant heat transfer into the 80K and 20K thermal shields. Also, an MLI blanket is used to impede heat transfer through residual gas conduction into the 4K superconducting magnet assembly. A measurement facility at Fermilab has been used to experimentally optimize the thermal insulation system for the dipole cryostat. Previous thermal measurements have been used to define the 80K MLI system configuration and verify system performance. With the 80K MLI system defined, the current effort has focused on experimentally defining the optimum insulation scheme for the 20K thermal shield. The SSC design specification requires that radiant heat transfer be limited to 0.093 W/m[sup 2] at an insulating vacuum of 10[sup [minus]6]torr.

  14. Analysis of multilayer insulation between 80K and 300K

    SciTech Connect (OSTI)

    Augustynowicz, S.D.; Demko, J.A.; Datskov, V.I.

    1993-07-01

    A model has been developed that can be used to determine the temperature distribution and heat transfer through a multilayer insulation (MLI) blanket. Predictions from the model were compared with a series of temperature measurements made during laboratory experiments and during a test of five superconducting magnets (dipoles) installed in a string and tested at Fermi National Accelerator Laboratory, FNAL (ER Test).

  15. Thermal performance of various multilayer insulation systems below 80K

    SciTech Connect (OSTI)

    Boroski, W.N.; Nicol, T.H.; Schoo, C.J.

    1992-04-01

    The SSC collider dipole cryostat consists of a vacuum shell operating at room temperature, two thermal shields operating near 80K and 20K respectively, and the superconducting magnet assembly operating near 4K. The cryostat design incorporates multilayer insulation (MLI) blankets to limit radiant heat transfer into the 80K and 20K thermal shields. Also, an MLI blanket is used to impede heat transfer through residual gas conduction into the 4K superconducting magnet assembly. A measurement facility at Fermilab has been used to experimentally optimize the thermal insulation system for the dipole cryostat. Previous thermal measurements have been used to define the 80K MLI system configuration and verify system performance. With the 80K MLI system defined, the current effort has focused on experimentally defining the optimum insulation scheme for the 20K thermal shield. The SSC design specification requires that radiant heat transfer be limited to 0.093 W/m{sup 2} at an insulating vacuum of 10{sup {minus}6}torr.

  16. Supporting Documentation for the 2008 Update to the Insulation Fact Sheet

    SciTech Connect (OSTI)

    Stovall, Therese K

    2008-02-01

    The Insulation Fact Sheet provides consumers for general guidance and recommended insulation levels for their home. This fact sheet has been on-line since 1995 and this update addresses new insulation materials, as well as updated costs for energy and materials.

  17. Sustainable wall construction and exterior insulation retrofit technology process and structure

    DOE Patents [OSTI]

    Vohra, Arun (Bethesda, MD)

    2000-01-01

    A low-cost process for exterior wall insulation retrofit, or new wall construction by stacking layers of fabric tube filled with insulating material against a wall and covering them with mesh and stucco provides a durable structure with good insulating value.

  18. Airflow Resistance of Loose-Fill Mineral Fiber Insulations in Retrofit Applications

    SciTech Connect (OSTI)

    Schumacher, C. J.; Fox, M. J.; Lstiburek, J.

    2015-02-01

    This report expands on Building America Report 1109 by applying the experimental apparatus and test method to dense-pack retrofit applications using mineral fiber insulation materials. Three (3) fiber glass insulation materials and one (1) stone wool insulation material were tested, and the results compared to the cellulose results from the previous study.

  19. Airflow Resistance of Loose-Fill Mineral Fiber Insulations in Retrofit Applications

    SciTech Connect (OSTI)

    Schumacher, C. J.; Fox, M. J.; Lstiburek, J.

    2015-02-01

    This report expands on Building America Report 1109 by applying the experimental apparatus and test method to dense-pack retrofit applications using mineral fiber insulation materials. Three fiber glass insulation materials and one stone wool insulation material were tested, and the results compared to the cellulose results from the previous study.

  20. Magnetic detection of underground pipe using timed-release marking droplets

    DOE Patents [OSTI]

    Powell, J.R.; Reich, M.

    1996-12-17

    A system and method are disclosed of detecting an underground pipe by injecting magnetic marking droplets into the underground pipe which coat the inside of the pipe and may be detected from aboveground by a magnetometer. The droplets include a non-adhesive cover which allows free flow through the pipe, with the cover being ablatable for the timed-release of a central core containing magnetic particles which adhere to the inside of the pipe and are detectable from aboveground. The rate of ablation of the droplet covers is selectively variable to control a free flowing incubation zone for the droplets and a subsequent deposition zone in which the magnetic particles are released for coating the pipe. 6 figs.