Powered by Deep Web Technologies
Note: This page contains sample records for the topic "worldwide hydrogen bus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

A Report on Worldwide Hydrogen Bus Demonstrations, 2002-2007 | Open Energy  

Open Energy Info (EERE)

A Report on Worldwide Hydrogen Bus Demonstrations, 2002-2007 A Report on Worldwide Hydrogen Bus Demonstrations, 2002-2007 Jump to: navigation, search Tool Summary Name: A Report on Worldwide Hydrogen Bus Demonstrations, 2002-2007 Agency/Company /Organization: US DOT Focus Area: Vehicles Topics: Analysis Tools Website: www.fuelcells.org/wp-content/uploads/2012/02/busreport.pdf From 2002-2007 > 20 cities in the US, Europe, China, Japan & Australia demonstrated buses powered by fuel cells or hydrogen-fueled internal combustion engines. The resulting report analyzes lessons learned from the demonstrations, identifies key remaining challenges for introduction of the technology, & suggests potential roles for government in supporting commercialization of fuel cell buses. How to Use This Tool This tool is most helpful when using these strategies:

2

NREL: Technology Transfer - Renewable Hydrogen Bus Teaches ...  

The bus filled up at NRELs on-site hydrogen fueling station, which dispenses hydrogen made with wind and solar energy.

3

Hydrogen Bus Technology Validation Program  

E-Print Network (OSTI)

hydrogen with compressed natural gas before dispensing theindustry. Both compressed natural gas, CNG, and hydrogen arenatural gas reformers or water electrolysers. The hydrogen must be compressed

Burke, Andy; McCaffrey, Zach; Miller, Marshall; Collier, Kirk; Mulligan, Neal

2005-01-01T23:59:59.000Z

4

Hydrogen Bus Technology Validation Program  

E-Print Network (OSTI)

of a Hydrogen Enriched CNG Production Engine Conversion,from Hydrogen Enriched CNG Production Engines, SAE 02FFL-dynamometer ...13 Figure 2. CNG Brake Thermal Efficiency (

Burke, Andy; McCaffrey, Zach; Miller, Marshall; Collier, Kirk; Mulligan, Neal

2005-01-01T23:59:59.000Z

5

Hydrogen Bus Technology Validation Program  

E-Print Network (OSTI)

to existing natural gas stations are hydrogen production andof the agencies natural gas station. While the cost of thefor example, natural gas for stations with reformers). Costs

Burke, Andy; McCaffrey, Zach; Miller, Marshall; Collier, Kirk; Mulligan, Neal

2005-01-01T23:59:59.000Z

6

Hydrogen Bus Technology Validation Program  

E-Print Network (OSTI)

day (10 buses) Natural gas reformer Purifier Storage Systemday (100 buses) Natural gas reformer Purifier Storage Systemnatural gas stations are hydrogen production and storage, a

Burke, Andy; McCaffrey, Zach; Miller, Marshall; Collier, Kirk; Mulligan, Neal

2005-01-01T23:59:59.000Z

7

SunLine Leads the Way in Demonstrating Hydrogen-Fueled Bus Technologies (Brochure)  

DOE Green Energy (OSTI)

This brochure describes SunLine Transit Agency's newest advanced technology fuel cell electric bus. SunLine is collaborating with the U.S. Department of Energy's Fuel Cell Technologies Program to evaluate the bus in revenue service. This bus represents the sixth generation of hydrogen-fueled buses that the agency has operated since 2000.

Not Available

2011-01-01T23:59:59.000Z

8

Pdc - The Worldwide Leader in Hydrogen Refueling Station Compression  

NLE Websites -- All DOE Office Websites (Extended Search)

Pdc - Pdc - The Worldwide Leader in Hydrogen Refueling Station Compression Over 185 Compressors in the Worlds 220+ Hydrogen Energy Facilities Diaphragm Compressor Technology: Benefits of Technology: - Highest duty cycle of all current technologies - Lowest power consumption of the technologies - Lowest cooling requirements Challenges: - High(er) capital cost amongst the technologies - Currently - If not run properly, susceptible to maintenance problems. - Compressor likes to "run often". Cost Constraints of All Technologies General Cost Issues Currently Facing Compressor Manufacturers: Low Volume. Take Away: Buy More, Save More. Lack of clear codes and standards for industry. Take Away: Standardize, Standardize, Standardize Cost Constraints of All Technologies

9

NREL's Hydrogen-Powered Bus Serves as Showcase for Advanced Vehicle Technologies (AVT) (Brochure)  

DOE Green Energy (OSTI)

Brochure describes the hydrogen-powered internal combustion engine (H2ICE) shuttle bus at NREL. The U.S. Department of Energy (DOE) is funding the lease of the bus from Ford to demonstrate market-ready advanced technology vehicles to visitors at NREL.

Not Available

2010-08-01T23:59:59.000Z

10

NREL Showcases Hydrogen Internal Combustion Engine Bus, Helps DOE Set Standards for Outreach (Fact Sheet)  

SciTech Connect

This fact sheet describes the National Renewable Energy Laboratory's (NREL's) accomplishments in showcasing a Ford hydrogen-powered internal combustion engine (H2ICE) bus at The Taste of Colorado festival in Denver. NREL started using its U.S. Department of Energy-funded H2ICE bus in May 2010 as the primary shuttle vehicle for VIP visitors, members of the media, and new employees. In September 2010, NREL featured the bus at The Taste of Colorado. This was the first major outreach event for the bus. NREL's educational brochure, vehicle wrap designs, and outreach efforts serve as a model for other organizations with DOE-funded H2ICE buses. Work was performed by the Hydrogen Education Group and Market Transformation Group in the Hydrogen Technologies and Systems Center.

2010-11-01T23:59:59.000Z

11

NREL Showcases Hydrogen Internal Combustion Engine Bus, Helps DOE Set Standards for Outreach (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

NLE Websites -- All DOE Office Websites (Extended Search)

557 * November 2010 557 * November 2010 NREL Showcases Hydrogen Internal Combustion Engine Bus, Helps DOE Set Standards for Outreach National Renewable Energy Laboratory (NREL) Teams: Hydrogen Education, Melanie Caton; Market Transformation, Michael Ulsh Accomplishment: NREL started using its Ford hydrogen-powered internal combustion engine (H 2 ICE) bus in May 2010 as the primary shuttle vehicle for VIP visitors, members of the media, and new employees. As the first national laboratory to receive such a bus, NREL

12

NREL: Technology Transfer - NREL's Hydrogen-Powered Bus Serves ...  

... up at NRELs on-site hydrogen fueling station, which dispenses some of the greenest hydrogen in the world made using wind and solar energy.

13

Malm Hydrogen and CNG/Hydrogen filling station and Hythane bus project  

E-Print Network (OSTI)

by Vandenborre Hydrogen Systems in Belgium, a subsidiary of Stuart Energy, Canada now owned by Hydrogenics ltd % Fig 1. Hydrogen storage pressure tanks Fig 2. Hydrogen storage The above pictures show the compressed hydrogen storage at the site. The hydrogen storage is placed closed to the electrolyser unit. The pressure

14

Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration (Report and Appendix)  

DOE Green Energy (OSTI)

This document describes the hydrogen transit bus evaluations performed by the National Renewable Energy Laboratory (NREL) and funded by the U.S. Department of Energy (DOE) and the U.S. Department of Transportation's Federal Transit Administration (FTA).

Eudy, L.; Chandler, K.

2008-05-01T23:59:59.000Z

15

Texas Hydrogen Highway Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase - Final Scientific/Technical Report  

DOE Green Energy (OSTI)

The Texas Hydrogen Highway project has showcased a hydrogen fuel cell transit bus and hydrogen fueling infrastructure that was designed and built through previous support from various public and private sector entities. The aim of this project has been to increase awareness among transit agencies and other public entities on these transportation technologies, and to place such technologies into commercial applications, such as a public transit agency. The initial project concept developed in 2004 was to show that a skid-mounted, fully-integrated, factory-built and tested hydrogen fueling station could be used to simplify the design, and lower the cost of fueling infrastructure for fuel cell vehicles. The approach was to design, engineer, build, and test the integrated fueling station at the factory then install it at a site that offered educational and technical resources and provide an opportunity to showcase both the fueling station and advanced hydrogen vehicles. The two primary technology components include: Hydrogen Fueling Station: The hydrogen fueling infrastructure was designed and built by Gas Technology Institute primarily through a funding grant from the Texas Commission on Environmental Quality. It includes hydrogen production, clean-up, compression, storage, and dispensing. The station consists of a steam methane reformer, gas clean-up system, gas compressor and 48 kilograms of hydrogen storage capacity for dispensing at 5000 psig. The station is skid-mounted for easy installation and can be relocated if needed. It includes a dispenser that is designed to provide temperaturecompensated fills using a control algorithm. The total station daily capacity is approximately 50 kilograms. Fuel Cell Bus: The transit passenger bus built by Ebus, a company located in Downey, CA, was commissioned and acquired by GTI prior to this project. It is a fuel cell plug-in hybrid electric vehicle which is ADA compliant, has air conditioning sufficient for Texas operations, and regenerative braking for battery charging. It uses a 19.3 kW Ballard PEM fuel cell, will store 12.6 kg of hydrogen at 350 Bar, and includes a 60 kWh battery storage system. The objectives of the project included the following: (a) To advance commercialization of hydrogen-powered transit buses and supporting infrastructure; (b) To provide public outreach and education by showcasing the operation of a 22-foot fuel cell hybrid shuttle bus and Texas first hydrogen fueling infrastructure; and (c) To showcase operation of zero-emissions vehicle for potential transit applications. As mentioned above, the project successfully demonstrated an early vehicle technology, the Ebus plug-in hybrid fuel cell bus, and that success has led to the acquisition of a more advanced vehicle that can take advantage of the same fueling infrastructure. Needed hydrogen station improvements have been identified that will enhance the capabilities of the fueling infrastructure to serve the new bus and to meet the transit agency needs. Over the course of this project, public officials, local government staff, and transit operators were engaged in outreach and education activities that acquainted them with the real world operation of a fuel cell bus and fueling infrastructure. Transit staff members in the Dallas/Ft. Worth region were invited to a workshop in Arlington, Texas at the North Central Texas Council of Governments to participate in a workshop on hydrogen and fuel cells, and to see the fuel cell bus in operation. The bus was trucked to the meeting for this purpose so that participants could see and ride the bus. Austin area transit staff members visited the fueling site in Austin to be briefed on the bus and to participate in a fueling demonstration. This led to further meetings to determine how a fuel cell bus and fueling station could be deployed at Capital Metro Transit. Target urban regions that expressed additional interest during the project in response to the outreach meetings and showcase events include San Antonio and Austin, Texas. In summary, the project objectives wer

Hitchcock, David

2012-06-29T23:59:59.000Z

16

Technology Validation: Fuel Cell Bus Evaluations (Poster)  

DOE Green Energy (OSTI)

Poster discusses hydrogen fuel cell transit bus evaluations conducted for the Hydrogen, Fuel Cells, & Infrastructure Technologies Program (HFCIT). It was presented at the 2006 HFCIT Program Review.

Eudy, L.

2006-05-01T23:59:59.000Z

17

Worldwide refining  

Science Conference Proceedings (OSTI)

The paper presents compiled data on operating refineries worldwide by country and by company within these countries. Data are presented on charge capacity for the following processes: vacuum distillation, thermal operations, catalytic cracking, catalytic reforming, cat-hydrocracking, cat hydrorefining, and cat hydrotreating. Data are also presented on the production capacity for the following products: alkylates and polymers, aromatics and isomers, lubricating oils, asphalt, hydrogen, and coke.

Bell, L.

1993-12-20T23:59:59.000Z

18

Clean air program: Design guidelines for bus transit systems using hydrogen as an alternative fuel. Final report, September 1997--May 1998  

SciTech Connect

Alternative fuels such as Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquified Petroleum Gas (LPG), and alcohol fuels (methanol and ethanol) are already being used in commercial vehicles and transit buses in revenue service. Hydrogen, which has better air quality characteristics as a vehicle fuel, is being used in research demonstration projects in fuel cell powered buses, as well as in internal combustion engines in automobiles and small trucks. At present, there are no facility guidelines to assist transit agencies (and others) contemplating the use of hydrogen as an alternative fuel. This document addresses the various issues involved. Hydrogen fuel properties, potential hazards, fuel requirements for specified levels of bus service, applicable codes and standards, ventilation, and electrical classification are indicated in this document. These guidelines also present various facility and bus design issues that need to be considered by a transit agency to ensure safe operations when using hydrogen as an alternative fuel. Fueling facility, garaging facility, maintenance facility requirements and safety practices are discussed. Critical fuel-related safety issues in the design of the related system on the bus are also identified. A system safety assessment and hazard resolution process is also presented. This approach may be used to select design strategies which are economical, yet ensure a specified level of safety.

Raj, P.K.; Hathaway, W.T.; Kangas, R.A.

1998-10-01T23:59:59.000Z

19

SunLine Tests HHICE Bus in Desert Climate  

DOE Green Energy (OSTI)

Fact sheet describes the demonstration of a hybrid hydrogen internal combustion engine (HHICE) bus at SunLine Transit Agency.

Not Available

2006-10-01T23:59:59.000Z

20

Technology Validation: Fuel Cell Bus Evaluations (Presentation)  

DOE Green Energy (OSTI)

This presentation by Leslie Eudy at the 2007 DOE Hydrogen Program Annual Merit Review Meeting provides information about NREL's fuel cell bus evaluations.

Eudy, L.

2007-05-18T23:59:59.000Z

Note: This page contains sample records for the topic "worldwide hydrogen bus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Technology Validation: Fuel Cell Bus Evaluations  

DOE Green Energy (OSTI)

Presentation for the 2005 U.S. Department of Energy Hydrogen Program review showing status of U.S. and international fuel cell transit bus evaluations.

Eudy, L.

2005-05-01T23:59:59.000Z

22

Fuel Cell Bus Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

ASTs UTC: demonstrating long lifetime in real UTC: demonstrating long lifetime in real-world bus operation world bus operation Ballard: developing strategies to Ballard:...

23

Worldwide refining  

Science Conference Proceedings (OSTI)

The paper consists of several tables compiling data on refinery capacities by country, by state, and by company. The capacity data are given by process as well as by final product. Processes include vacuum distillation, thermal operations, catalytic cracking, catalytic reforming, catalytic hydrocracking, catalytic hydrorefining, and catalytic hydrotreating. Products include alkylates, polymers, and dimers; aromatics and isomers; oxygenates; hydrogen; asphalts; and coke.

Williamson, M.

1994-12-19T23:59:59.000Z

24

Worldwide refining  

Science Conference Proceedings (OSTI)

Data are presented on refining capacity by country and by company within each country. Capacity data are divided into the following processes: vacuum distillation, thermal operations, catalytic cracking, catalytic reforming, catalytic hydrocracking, catalytic hydrorefining, and catalytic hydrotreating. Production capacity is divided into: alkylation/polymerization/dimerization; aromatics/isomerization; lubricants; oxygenates; hydrogen; petroleum coke; and asphalts.

NONE

1995-12-18T23:59:59.000Z

25

Final Report for the H2Fuel Bus  

DOE Green Energy (OSTI)

The H2Fuel Bus is the world's first hydrogen-fueled electric hybrid transit bus. It was a project developed through a public/private partnership involving several leading technological and industrial organizations, with primary funding by the Department of Energy (DOE). The primary goals of the project are to gain valuable information on the technical readiness and economic viability of hydrogen fueled buses and to enhance the public awareness and acceptance of emerging hydrogen technologies.

Jacobs, W.D.

1998-11-25T23:59:59.000Z

26

Hydrogen Bus Technology Validation Program  

E-Print Network (OSTI)

buses. Station 1: Steam Methane Reformer, 100 kg/day (10kg) $/yr Station 2: Steam Methane Reformer, 1000 kg/day (100

Burke, Andy; McCaffrey, Zach; Miller, Marshall; Collier, Kirk; Mulligan, Neal

2005-01-01T23:59:59.000Z

27

Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Bus Workshop Fuel Cell Bus Workshop The U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT) held a Fuel Cell Bus Workshop on June 7, 2010 in Washington, D.C. in conjunction with the DOE Hydrogen and Fuel Cell Program Annual Merit Review. The workshop plenary and breakout session brought together technical experts from industry, end users, academia, DOE national laboratories, and other government agencies to address the status and technology needs of fuel cell powered buses. Meeting Summary Joint Fuel Cell Bus Workshop Summary Report Presentations Fuel Cell Bus Workshop Overview & Purpose, Dimitrios Papageorgopoulos, DOE Users Perspective on Advanced Fuel Cell Bus Technology, Nico Bouwkamp, CaFCP and Leslie Eudy, NREL Progress and Challenges for PEM Transit Fleet Applications, Tom Madden, UTC Power, LLC

28

Laboratory Shuttle Bus Routes  

NLE Websites -- All DOE Office Websites (Extended Search)

Rear bike rack image Rear bike rack image The Laboratory provides shuttle bus services, contracted through MV Transportation Services. Routes run throughout its 200-acre facility, downtown Berkeley, local off-site facilities, UC Campus, Downtown Berkeley BART, and Rockridge BART stations. Shuttles offer free wifi onboard. Riders are asked to adhere to riding instructions. Active shuttle stops are marked with this sign: Bus sign image Shuttles run Monday through Friday, except Laboratory holidays. There is no weekend service. Special service for tours, group travel, etc. is available for a fee. All shuttles are equipped with Nextbus which uses GPS technology to enable riders to obtain real-time information on bus arrivals. Contact Bus Services at busservices@lbl.gov or 510-486-4165 to provide

29

SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: First Results Report  

DOE Green Energy (OSTI)

This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. This report provides the early data results and implementation experience of the AT fuel cell bus since it was placed in service.

Eudy, L.; Chandler, K.

2011-03-01T23:59:59.000Z

30

Downtown Minneapolis Bus Layover Study  

E-Print Network (OSTI)

;Express Bus Demand by Provider #12;2008 2030 Local 41 49 Express 72 125 Total 113 174 Maximum Layover? ·! What is our current demand for bus layover facilities? ·! How will demand increase as the region seeks;Local/ Limited (steady all day) Express (Peaked) Time of Day #of Buses Downtown Bus Layover Demand #12

Minnesota, University of

31

Bus Stop - Environment Connection: Do Characteristics of the Built Environment Correlate with Bus Stop Crime?  

E-Print Network (OSTI)

Correlate with Bus Stop Crime? Robin Liggett Anastasiawith Bus Stop Crime? Robin Liggett Anastasia Loukaitou-Correlate with Bus Stop Crime? Robin Liggett, Anestasia

Liggett, Robin S; Loukaitou-Sideris, Anastasia; Iseki, Hiroyuki

2003-01-01T23:59:59.000Z

32

The Polylith Software Bus  

E-Print Network (OSTI)

We describe a system called Polylith that helps programmers prepare and interconnect mixed-language software components for execution in heterogeneous environments. Polylith's principal benefit is that programmers are free to implement functional requirements separately from their treatment of interfacing requirements; this means that once an application has been developed for use in one execution environment (such as a distributed network) it can be adapted for reuse in other environments (such as a shared-memory multiprocessor) by automatic techniques. This flexibility is provided without loss of performance. We accomplish this by creating a new run-time organization for software. An abstract decoupling agent, called the software bus, is introduced between the system components. Heterogeneity in language and architecture is accommodated since program units are prepared to interface directly to the bus, not to other program units. Programmers specify application structure in terms of ...

James M. Purtilo

1991-01-01T23:59:59.000Z

33

SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report  

DOE Green Energy (OSTI)

SunLine Transit Agency, which provides public transit services to the Coachella Valley area of California, has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. In May 2010, SunLine began demonstrating the advanced technology (AT) fuel cell bus with a hybrid electric propulsion system, fuel cell power system, and lithium-based hybrid batteries. This report describes operations at SunLine for the AT fuel cell bus and five compressed natural gas buses. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is working with SunLine to evaluate the bus in real-world service to document the results and help determine the progress toward technology readiness. NREL has previously published three reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from February 2012 through November 2012.

Eudy, L.; Chandler, K.

2013-01-01T23:59:59.000Z

34

SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Third Results Reports  

DOE Green Energy (OSTI)

This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. NREL has previously published two reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from July 2011 through January 2012.

Eudy, L.; Chandler, K.

2012-05-01T23:59:59.000Z

35

Overview hazard analysis for the H2Fuel Bus Program  

DOE Green Energy (OSTI)

The H2Fuel Bus project is a joint development effort to produce a safe, near-zero emission, 32 passenger bus that is propelled by electric power with continuous on-board hydrogen powered battery recharging. A key initiative in the hydrogen bus development effort is a rigorous evaluation of operational safety. Westinghouse Savannah River Co., the prime contractor at the Department of Energy`s Savannah River Site, has developed a hazard analysis methodology designed to provide a systematic, comprehensive identification and evaluation of hazards. Although originally developed to support nuclear/chemical facility safety basis documentation, the SRS Methodology has widespread applicability to operations and/or systems that utilize hazardous materials and energy. This methodology was used to perform an overview hazard analysis for the H2Fuel Bus project to focus attention on those hypothetical circumstances that pose the greatest threat to the populace and property. The hazard analysis yields a listing of all known H2Fuel Bus hazards, postulated accident scenarios describing possible hazardous releases or conditions, an assessment of the scenarios in terms of frequency of occurrence and consequence, and binning in frequency-consequence space to assess the relative severity of postulated scenarios.

Hovis, G.L.

1996-06-18T23:59:59.000Z

36

2010 Worldwide Gasification Database  

DOE Data Explorer (OSTI)

The 2010 Worldwide Gasification Database describes the current world gasification industry and identifies near-term planned capacity additions. The database lists gasification projects and includes information (e.g., plant location, number and type of gasifiers, syngas capacity, feedstock, and products). The database reveals that the worldwide gasification capacity has continued to grow for the past several decades and is now at 70,817 megawatts thermal (MWth) of syngas output at 144 operating plants with a total of 412 gasifiers. [Copied from http://www.netl.doe.gov/technologies/coalpower/gasification/worlddatabase/index.html

37

Worldwide Energy and Manufacturing USA Inc formerly Worldwide Manufacturing  

Open Energy Info (EERE)

Manufacturing USA Inc formerly Worldwide Manufacturing Manufacturing USA Inc formerly Worldwide Manufacturing USA Jump to: navigation, search Name Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) Place San Bruno, California Zip 94066 Product Worldwide Manufacturing USA is an engineering company based in San Bruno, California. References Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) is a company located in San Bruno, California . References ↑ "Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)"

38

Available Alternative Fuel School Bus Products--2004  

DOE Green Energy (OSTI)

This 4-page Clean Cities fact sheet provides a list of the currently available (and soon to be available) model year 2004 alternative fuel school bus and school bus engine products. It includes information from Blue Bird Corporation, Collins Bus Corporation, Corbeil Bus, Ford Motor Company, General Motors Corporation, Thomas Built Buses, Inc., Clean Air Partners, Cummins Westport, and Deere & Company.

Not Available

2004-04-01T23:59:59.000Z

39

Fuel Cell Bus Takes a Starring Role in the BurbankBus Fleet,...  

NLE Websites -- All DOE Office Websites (Extended Search)

has partnered with Proterra, a Colorado-based bus manufacturer, to bring its first fuel cell bus to the area. The bus design features a battery-dominant plug-in hybrid...

40

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

Operation of a Solid Polymer Fuel Cell: A Parametric Model,"1991). G. Bronoel, "Hydrogen-Air Fuel Cells Without PreciousG. Abens, "Development of a Fuel Cell Power Source for Bus,"

Delucchi, Mark

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "worldwide hydrogen bus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Second Results Report and Appendices  

Science Conference Proceedings (OSTI)

This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. This is the second results report for the AT fuel cell bus since it was placed in service, and it focuses on the newest data analysis and lessons learned since the previous report. The appendices, referenced in the main report, provide the full background for the evaluation. They will be updated as new information is collected but will contain the original background material from the first report.

Eudy, L.; Chandler, K.

2011-10-01T23:59:59.000Z

42

1996 worldwide refining survey  

Science Conference Proceedings (OSTI)

Data are presented on the capacity of refineries for the following processes: vacuum distillation, coking, catalytic cracking, catalytic reforming, catalytic hydrocracking, catalytic hydrorefining, and catalytic hydrotreating. Production capacities are also noted for alkylation, polymerization/dimerization, aromatics, isomerization, lubricants, oxygenates, hydrogen, coke, sulfur, and asphalts. Country totals are given, as well as the data for individual companies within each country, state, or province.

NONE

1996-12-23T23:59:59.000Z

43

Worldwide activity in IGCC  

SciTech Connect

EPRI has pursued the development of integrated gasification-combined-cycle technology because it is the cleanest method available for making electricity from coal. Now, a decade after the establishment of the first IGCC demonstration plant, environmental regulations are encouraging the adoption of this technology in a number of countries. An unexpected innovation is the use of residual oil as an IGCC feedstock, a practice that evolved naturally as a result of market forces. Experts are hopeful that the current momentum in IGCC will trigger the introduction of the technology in developing countries, many of which rely heavily on coal and oil for power generation. Environmental regulations and a market glut of low-grade fossil fuels are spurring an unprecedented number of integrated gasification combined-cycle projects worldwide. These projects are described.

Lamarre, L.

1994-07-01T23:59:59.000Z

44

High Pressure Hydrogen Tank Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop Workshop High Pressure Hydrogen Tank Manufacturing Mark Leavitt Quantum Fuel Systems Technologies Worldwide, Inc. August 11, 2011 This presentation does not contain any proprietary, confidential, or otherwise restricted information History of Innovations... Announced breakthrough in all-composite lightweight, high capacity, low-cost fuel storage technologies. * Developed a series of robust, OEM compatible electronic control products. Developed H 2 storage system for SunLine Tran-sit Hythane® bus. Awarded patent for integrated module including in-tank regulator * Developed high efficiency H 2 fuel storage systems for DOE Future Truck programs Developed H 2 storage and metering system for Toyota's FCEV platform. First to certify 10,000 psi systems in Japan

45

Hydrogen  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Hydrogen production ...

46

On Bus-Stop Crime  

E-Print Network (OSTI)

and Martin Wachs, Crime in Public Transit Systems: AnOn Bus-Stop Crime B Y A N A S TA S I A L O U K A I T O U - Sas common settings for crime, pro v i d i n g cover for

Loukaitou-Sideris, Anastasia; Liggett, Robin

2000-01-01T23:59:59.000Z

47

Electrical system architecture having high voltage bus  

DOE Patents (OSTI)

An electrical system architecture is disclosed. The architecture has a power source configured to generate a first power, and a first bus configured to receive the first power from the power source. The architecture also has a converter configured to receive the first power from the first bus and convert the first power to a second power, wherein a voltage of the second power is greater than a voltage of the first power, and a second bus configured to receive the second power from the converter. The architecture further has a power storage device configured to receive the second power from the second bus and deliver the second power to the second bus, a propulsion motor configured to receive the second power from the second bus, and an accessory motor configured to receive the second power from the second bus.

Hoff, Brian Douglas (East Peoria, IL); Akasam, Sivaprasad (Peoria, IL)

2011-03-22T23:59:59.000Z

48

SunLine Transit Agency Hydrogen-Powered Transit Buses: Third Evaluation Report (Report and Appendices)  

Science Conference Proceedings (OSTI)

This report describes operations at SunLine Transit Agency for a protoype fuel cell bus, a prototype hydrogen hybrid interal combustion engine bus, and five new compressed natural gas buses.

Chandler, K.; Eudy, L.

2008-06-01T23:59:59.000Z

49

PinBus Interface Design  

SciTech Connect

On behalf of the U.S. Department of Energy, PNNL has explored and expanded upon a simple control interface that might have merit for the inexpensive communication of smart grid operational objectives (demand response, for example) to small electric end-use devices and appliances. The approach relies on bi-directional communication via the electrical voltage states of from one to eight shared interconnection pins. The name PinBus has been suggested and adopted for the proposed interface protocol. The protocol is defined through the presentation of state diagrams and the pins functional definitions. Both simulations and laboratory demonstrations are being conducted to demonstrate the elegance and power of the suggested approach. PinBus supports a very high degree of interoperability across its interfaces, allowing innumerable pairings of devices and communication protocols and supporting the practice of practically any smart grid use case.

Hammerstrom, Donald J.; Adgerson, Jewel D.; Sastry, Chellury; Pratt, Richard M.; Pratt, Robert G.

2009-12-30T23:59:59.000Z

50

Designing New Transit Bus Garages to be Fuel Flexible  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Designing New Transit Bus Garages to be Fuel Flexible Prepared By: Marathon Technical Services Six Venus Crescent P.O. Box 318 Heidelberg, Ontario, Canada N0B1Y0 Telephone: 519-699-9250 May 12, 2006 ______________________________________________________________________________ DESIGNING NEW TRANSIT BUS GARAGES TO BE FUEL FLEXIBLE Background Information Before discussing the building design features that are recommended for CNG and GH2 buses, it is important to understand what makes these fuels different from gasoline or diesel. The items below summarize the basic differences between the properties of gaseous and liquid fuels that influence the building design changes: 1. Natural Gas and Hydrogen are both lighter-than-air and in gaseous form at atmospheric

51

Enterprise Service Bus Implementation Profile  

Science Conference Proceedings (OSTI)

The purpose of this report is to define an implementation profile for International Electrotechnical Commission (IEC) 61968 using technologies commonly found on an Enterprise Service Bus (ESB). More specifically, this document describes how message payloads defined by parts 3 through 9 of IEC 61968 are conveyed using Web Services and the Java Message Service (JMS). The goal is to provide details that are sufficient to enable implementations of IEC 61968 to be interoperable.

2009-04-30T23:59:59.000Z

52

Joint Fuel Cell Bus Workshop Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

equipment is heavy and costly * Slow response time of the fuel cell adversely affects regenerative energy recovery potential and efficiency Barriers to full fuel cell bus...

53

Fuel Cell Bus Evaluation Results (Presentation)  

DOE Green Energy (OSTI)

Presentation on the results from the DOE fuel cell bus evaluation given at the Transportation Research Board's 87th annual meeting, January 14, 2008.

Eudy, L.

2008-01-14T23:59:59.000Z

54

A comprehensive study on IEC61850 process bus architecture and spit bus based differential protection  

Science Conference Proceedings (OSTI)

IEC61850 communication standard for digital substation automation creates a new way to think about conventional protection scheme and configuration of substation. The presence of communication link in process bus makes a revolutionary change for future ... Keywords: IEC61850, bus fault detection unit (BFDU), nonconventional instrumental transformer (NCIT), process bus, sampled measured value (SMV)

Mojaharul Islam; Hong-Hee Lee

2011-08-01T23:59:59.000Z

55

National Fuel Cell Bus Program: Accelerated Testing Evaluation Report and Appendices, Alameda-Contra Costa Transit District (AC Transit)  

DOE Green Energy (OSTI)

This is an evaluation of hydrogen fuel cell transit buses operating at AC Transit in revenue service since March 20, 2006 compared to similar diesel buses operating from the same depot. This evaluation report includes results from November 2007 through October 2008. Evaluation results include implementation experience, fueling station operation, fuel cell bus operations at Golden Gate Transit, and evaluation results at AC Transit (bus usage, availability, fuel economy, maintenance costs, and roadcalls).

Chandler, K.; Eudy, L.

2009-01-01T23:59:59.000Z

56

Alternative Fuel School Bus Information Resources  

DOE Green Energy (OSTI)

This 4-page Clean Cities fact sheet provides a list of important resources for learning more about alternative fuels in school buses. It includes information regarding Alternative Fuel School Bus Manufacturers, Alternative Fuel HD Engine Manufacturers, Alternative Fuel School Bus Operators, and Key Web Resources for Alternative Fuels.

Not Available

2004-04-01T23:59:59.000Z

57

Interprocessor bus switching system for simultaneous communication in plural bus parallel processing system  

DOE Patents (OSTI)

A bus switching apparatus and method for multiple processor computer systems comprises a plurality of bus switches interconnected by branch buses. Each processor or other module of the system is connected to a spigot of a bus switch. Each bus switch also serves as part of a backplane of a modular crate hardware package. A processor initiates communication with another processor by identifying that other processor. The bus switch to which the initiating processor is connected identifies and secures, if possible, a path to that other processor, either directly or via one or more other bus switches which operate similarly. If a particular desired path through a given bus switch is not available to be used, an alternate path is considered, identified and secured. 11 figures.

Atac, R.; Fischler, M.S.; Husby, D.E.

1991-01-15T23:59:59.000Z

58

Laboratory Shuttle Bus Routes: Instructions for Riders  

NLE Websites -- All DOE Office Websites (Extended Search)

Instructions for Riders Instructions for Riders Shuttle stops are marked with this sign: Bus sign image Tips for riders: When you see a shuttle bus approaching WAVE AT THE DRIVER so the driver knows you want to board the bus For safety reasons, shuttle bus drivers can only pick-up and drop-off passengers at designated stops. Shuttle services are for Berkeley Lab employee and guest use only. All riders are required to show ID when boarding off-site buses. Acceptable ID's are: LBNL badge, UC Berkeley student and faculty ID badge, DOE badge, or UCOP badge. Guests are required to present a visitor bus pass, email, or permission from Lab host, written on official letterhead. See Site Access for more information. As you board, tell the driver the building number of your destination. The driver will be able to assist you with directions.

59

Shuttle Bus and Couriers | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Shuttle Bus and Couriers Shuttle Bus and Couriers Shuttle Bus and Couriers Shuttle Bus Route and Schedule The DOE Shuttle Buses follow the same schedules between the two main Headquarters locations, Forrestal and Germantown. The buses start their routes at each Headquarters facility at the same times, see the schedule below. The subsequent stops at the other facilities are relative to the departure time of each route. Headquarters employees are reminded of the statutory provisions that authorize and limit the use of the shuttle bus service. Specific authority for the use of appropriated funds to pay for transportation for official purposes is contained in section 1344(a)(1) of Title 31, U.S. Code. Use of this transportation for any other purpose is inappropriate and against the

60

Laboratory Shuttle Bus Routes: Instructions for Bicyclists  

NLE Websites -- All DOE Office Websites (Extended Search)

Instructions for Bicyclists Instructions for Bicyclists Front bike rack image Rear bike rack image Front bike rack Rear bike rack Bicyclists are required to wear helmets while riding at the Berkeley Lab. LBNL buses are equipped with bicycle racks in the front and rear of the bus. Use bicycle rack at your own risk. Berkeley Lab does not assume liability for damage to your bicycle. If you experience difficulties, or notice the bicycle rack is not working properly, please notify the bus operator and/or contact the bus supervisor at 486-4165 or email busservices@lbl.gov and/or post your comments with specific information on the Operations Suggestion box. Loading a bicycle on the bus: Prepare your bicycle for loading by: removing water bottles, pumps and other loose items that could fall off while the bus is in motion.

Note: This page contains sample records for the topic "worldwide hydrogen bus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Orion Bus Industries | Open Energy Information  

Open Energy Info (EERE)

Bus Industries Bus Industries Jump to: navigation, search Name Orion Bus Industries Place Ontario, Canada Information About Partnership with NREL Partnership with NREL Yes Partnership Type Other Relationship Partnering Center within NREL Transportation Technologies and Systems Partnership Year 2001 Link to project description http://www.nrel.gov/news/press/2002/3002_hybird_buses.html LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Orion Bus Industries is a company located in Ontario, Canada. References Retrieved from "http://en.openei.org/w/index.php?title=Orion_Bus_Industries&oldid=381704" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages Printable version Permanent link Browse properties

62

Alternative Fuels Data Center: School Bus Idle Reduction Regulations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus Idle School Bus Idle Reduction Regulations to someone by E-mail Share Alternative Fuels Data Center: School Bus Idle Reduction Regulations on Facebook Tweet about Alternative Fuels Data Center: School Bus Idle Reduction Regulations on Twitter Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Regulations on Google Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Regulations on Delicious Rank Alternative Fuels Data Center: School Bus Idle Reduction Regulations on Digg Find More places to share Alternative Fuels Data Center: School Bus Idle Reduction Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Idle Reduction Regulations School bus drivers must turn off bus engines as soon as possible at loading

63

Alternative Fuels Data Center: School Bus Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus Idle School Bus Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: School Bus Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Idle Reduction Requirement School bus operators must turn off the bus engine immediately after

64

Alternative Fuels Data Center: Clean School Bus USA  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus USA School Bus USA to someone by E-mail Share Alternative Fuels Data Center: Clean School Bus USA on Facebook Tweet about Alternative Fuels Data Center: Clean School Bus USA on Twitter Bookmark Alternative Fuels Data Center: Clean School Bus USA on Google Bookmark Alternative Fuels Data Center: Clean School Bus USA on Delicious Rank Alternative Fuels Data Center: Clean School Bus USA on Digg Find More places to share Alternative Fuels Data Center: Clean School Bus USA on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Clean School Bus USA Clean School Bus USA is a public-private partnership that focuses on reducing children's exposure to harmful diesel exhaust by limiting school bus idling, implementing pollution reduction technologies, improving route

65

NREL: Hydrogen and Fuel Cells Research - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 December 14, 2010 Hydrogen Bus Lets Lab Visitors Glimpse Future The hydrogen bus uses the same basic technology as a conventional gasoline-powered engine but runs on renewable hydrogen. October 25, 2010 New Report Identifies Ways to Reduce Cost of Fuel Cell Power Plants A new report by the National Renewable Energy Laboratory details technical and cost gap analyses of molten carbonate fuel cell and phosphoric acid fuel cell stationary fuel cell power plants and identifies pathways for reducing costs. October 18, 2010 NREL's Hydrogen-Powered Bus Serves as Showcase for Advanced Vehicle Technologies NREL uses its hydrogen-powered internal combustion engine bus as the primary shuttle vehicle for VIP visitors, members of the media, and new employees. The U.S. Department of Energy funded the lease for the bus to

66

Gaia Worldwide | Open Energy Information  

Open Energy Info (EERE)

Worldwide Worldwide Jump to: navigation, search Logo: Gaia Worldwide Name Gaia Worldwide Address PO Box 400848 Place Cambridge, Massachusetts Zip 02140 Region Greater Boston Area Number of employees 1-10 Year founded 2005 Phone number +1 (617) 312-3866 Notes Provider of Executive Search and headhunting services to solar and directly related industries. Coordinates 42.3906856°, -71.1299976° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3906856,"lon":-71.1299976,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

67

Ultralight Stainless Steel Urban Bus Concept  

DOE Green Energy (OSTI)

While stainless steel buses are certainly not new, this study reveals opportunities for substantial improvements in structural performance.The objective of this project was to investigate the mass saving potential of ultra-high strength stainless steel as applied to the structure of a full size urban transit bus.The resulting design for a low floor,hybrid bus has an empty weight less than half that of a conventional transit bus.The reduced curb weight allows for a greater payload,without exceeding legal axle limits. A combination of finite element modeling and dynamic testing of scale models was used to predict structural performance.

J. Bruce Emmons; Leonard J. Blessing

2001-05-14T23:59:59.000Z

68

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section III. Hydrogen Storage  

E-Print Network (OSTI)

. Hydrogen Storage #12;Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 200 #12 square inch (psi) 7.5 wt % and 8.5 wt% Type IV composite hydrogen storage tanks of specified sizes for DOE Future Truck and Nevada hydrogen bus programs · Demonstrate 10,000 psi storage tanks Approach

69

Worldwide Energy Efficiency Action through Capacity Building...  

Open Energy Info (EERE)

Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and...

70

Dynamic Worldwide Solar Energy | Open Energy Information  

Open Energy Info (EERE)

Dynamic Worldwide Solar Energy Jump to: navigation, search Name Dynamic Worldwide Solar Energy Sector Solar Product US-based solar developer and financer. References Dynamic...

71

Lessons Learned from Microgrid Demonstrations Worldwide  

NLE Websites -- All DOE Office Websites (Extended Search)

Lessons Learned from Microgrid Demonstrations Worldwide Title Lessons Learned from Microgrid Demonstrations Worldwide Publication Type Report LBNL Report Number LBNL-5825E Year of...

72

Alternative Fuels Data Center: School Bus Idle Reduction Policy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus Idle School Bus Idle Reduction Policy to someone by E-mail Share Alternative Fuels Data Center: School Bus Idle Reduction Policy on Facebook Tweet about Alternative Fuels Data Center: School Bus Idle Reduction Policy on Twitter Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Policy on Google Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Policy on Delicious Rank Alternative Fuels Data Center: School Bus Idle Reduction Policy on Digg Find More places to share Alternative Fuels Data Center: School Bus Idle Reduction Policy on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Idle Reduction Policy School bus drivers or drivers of other vehicles that the school district

73

Fuel Cell Bus Takes a Starring Role in the Burbank Bus Fleet  

Fuel Cell Technologies Publication and Product Library (EERE)

This fact sheet reports on the City of Burbank, California's fuel cell bus demonstration project and the U.S. Department of Energy's involvement.

74

Overview of Fuel Cell Electric Bus Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview of Fuel Cell Overview of Fuel Cell Electric Bus Development Leslie Eudy, National Renewable Energy Laboratory September 12, 2013 2 Why Fuel Cells for Transit Buses? * Reduce transit bus emissions * Improve fuel efficiency * Improve vehicle performance * Consumer Acceptance * Transit industry is excellent test-bed for new technologies o Centrally fueled and maintained o Fixed routes with urban stop-go duty cycle o Professional operators and mechanics o Federal Capital Funding Support o High Visibility & High Impact 3 FCEB Development Timeline since 2000 California Air Resources Board Transit Rule Early demonstrations of single prototypes DOE begins funding NREL technology validation for FCEBs First multiple bus fleet demonstrations in California FTA initiates National Fuel Cell Bus Program and

75

Building Energy Software Tools Directory: BUS++  

NLE Websites -- All DOE Office Websites (Extended Search)

BUS++ BUS++ New generation platform for building energy, ventilation, noise level and indoor air quality simulations. A network assumption is adopted, and BUS++ allows both steady-state and dynamic simulations on a desired level of accuracy. BUS++ includes modern solution routines and has passed the most commonly used rigorous air flow and heat transfer test cases. However, only a limited number of special applications are completed. Keywords energy performance, ventilation, air flow, indoor air quality, noise level Validation/Testing N/A Expertise Required Special expertise needed for utilizing all potential calculation features. Common knowledge of building components needed for using special applications with graphical user interfaces. Users 20 users in VTT Building Technology and other companies in Finland.

76

Status & Direction for Onboard Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Economy Manufacturing for the Hydrogen Economy Status & Direction for Onboard Hydrogen Storage Andy Abele Quantum Fuel Systems Technologies Worldwide, Inc. July 2005 This...

77

Worldwide fallout from Operation Castle  

Science Conference Proceedings (OSTI)

A worldwide network of gummed-film stations was established to monitor fallout following Operation Castle. Although meteorological data were poor, a general connection of tropospheric flow patterns with observed fallout was evident. There was a tendency for debris to remain in tropical latitudes, with incursions into the temperate regions associated with meterological disturbances of the predominately zonal flow. As the season advanced, such incursions became more evident. Outside of the tropics, the southwestern United States received the greatest total fallout, about five times that received in Japan. The total world-wide fallout up to July 1, 1954, from the Castle series outside of the immediate test areas, is estimated to be about (censored) of the total fission activity produced. The maximum fallout on any day at an individual station in the United States, corrected to sampling day, was 200,000 d/m/sq. ft. It is concluded that the probability of early fallout in inhabited regions would be reduced by holding Pacific test series in the winter months.

List, R.J.

1984-08-31T23:59:59.000Z

78

Alternative Fuels Data Center: Low Emissions School Bus Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emissions School Low Emissions School Bus Grants to someone by E-mail Share Alternative Fuels Data Center: Low Emissions School Bus Grants on Facebook Tweet about Alternative Fuels Data Center: Low Emissions School Bus Grants on Twitter Bookmark Alternative Fuels Data Center: Low Emissions School Bus Grants on Google Bookmark Alternative Fuels Data Center: Low Emissions School Bus Grants on Delicious Rank Alternative Fuels Data Center: Low Emissions School Bus Grants on Digg Find More places to share Alternative Fuels Data Center: Low Emissions School Bus Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emissions School Bus Grants The Lower-Emission School Bus Program (Program) provides grant funding for

79

Clean Cities: Natural Gas Transit and School Bus Users Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Transit and School Bus Transit and School Bus Users Group to someone by E-mail Share Clean Cities: Natural Gas Transit and School Bus Users Group on Facebook Tweet about Clean Cities: Natural Gas Transit and School Bus Users Group on Twitter Bookmark Clean Cities: Natural Gas Transit and School Bus Users Group on Google Bookmark Clean Cities: Natural Gas Transit and School Bus Users Group on Delicious Rank Clean Cities: Natural Gas Transit and School Bus Users Group on Digg Find More places to share Clean Cities: Natural Gas Transit and School Bus Users Group on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group

80

Alternative Fuels Data Center: School Bus Retrofit Reimbursement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus Retrofit School Bus Retrofit Reimbursement to someone by E-mail Share Alternative Fuels Data Center: School Bus Retrofit Reimbursement on Facebook Tweet about Alternative Fuels Data Center: School Bus Retrofit Reimbursement on Twitter Bookmark Alternative Fuels Data Center: School Bus Retrofit Reimbursement on Google Bookmark Alternative Fuels Data Center: School Bus Retrofit Reimbursement on Delicious Rank Alternative Fuels Data Center: School Bus Retrofit Reimbursement on Digg Find More places to share Alternative Fuels Data Center: School Bus Retrofit Reimbursement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Retrofit Reimbursement The Illinois Department of Education will reimburse any qualifying school

Note: This page contains sample records for the topic "worldwide hydrogen bus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Alternative Fuels Data Center: Alternative Fuel School Bus Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus Conversion Research to someone by E-mail School Bus Conversion Research to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Google Bookmark Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Delicious Rank Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel School Bus Conversion Research

82

Alternative Fuels Data Center: Zero Emissions Bus Implementation Plan  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Zero Emissions Bus Zero Emissions Bus Implementation Plan to someone by E-mail Share Alternative Fuels Data Center: Zero Emissions Bus Implementation Plan on Facebook Tweet about Alternative Fuels Data Center: Zero Emissions Bus Implementation Plan on Twitter Bookmark Alternative Fuels Data Center: Zero Emissions Bus Implementation Plan on Google Bookmark Alternative Fuels Data Center: Zero Emissions Bus Implementation Plan on Delicious Rank Alternative Fuels Data Center: Zero Emissions Bus Implementation Plan on Digg Find More places to share Alternative Fuels Data Center: Zero Emissions Bus Implementation Plan on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Zero Emissions Bus Implementation Plan As part of a state effort to identify strategies to expand the availability

83

Alternative Fuels Data Center: Clean School Bus Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean School Bus Clean School Bus Requirements to someone by E-mail Share Alternative Fuels Data Center: Clean School Bus Requirements on Facebook Tweet about Alternative Fuels Data Center: Clean School Bus Requirements on Twitter Bookmark Alternative Fuels Data Center: Clean School Bus Requirements on Google Bookmark Alternative Fuels Data Center: Clean School Bus Requirements on Delicious Rank Alternative Fuels Data Center: Clean School Bus Requirements on Digg Find More places to share Alternative Fuels Data Center: Clean School Bus Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Clean School Bus Requirements Full-size school buses equipped with an engine from Model Year (MY) 1993 or older may not be used to transport school children in Rhode Island.

84

Alternative Fuels Data Center: School Bus Retrofit Grant Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus Retrofit School Bus Retrofit Grant Program to someone by E-mail Share Alternative Fuels Data Center: School Bus Retrofit Grant Program on Facebook Tweet about Alternative Fuels Data Center: School Bus Retrofit Grant Program on Twitter Bookmark Alternative Fuels Data Center: School Bus Retrofit Grant Program on Google Bookmark Alternative Fuels Data Center: School Bus Retrofit Grant Program on Delicious Rank Alternative Fuels Data Center: School Bus Retrofit Grant Program on Digg Find More places to share Alternative Fuels Data Center: School Bus Retrofit Grant Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Retrofit Grant Program The Ohio Environmental Protection Agency (EPA) administers the Clean Diesel

85

Alternative Fuels Data Center: School Bus Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus Idle School Bus Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: School Bus Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Idle Reduction Requirement The Mississippi State Department of Education requires public school

86

Alternative Fuels Data Center: School Bus Pilot Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus Pilot School Bus Pilot Program to someone by E-mail Share Alternative Fuels Data Center: School Bus Pilot Program on Facebook Tweet about Alternative Fuels Data Center: School Bus Pilot Program on Twitter Bookmark Alternative Fuels Data Center: School Bus Pilot Program on Google Bookmark Alternative Fuels Data Center: School Bus Pilot Program on Delicious Rank Alternative Fuels Data Center: School Bus Pilot Program on Digg Find More places to share Alternative Fuels Data Center: School Bus Pilot Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Pilot Program The Vermont Department of Motor Vehicles will approve up to three participants for a pilot program to operate Type II school buses that are

87

Alternative Fuels Data Center: School Bus Emissions Reduction Funding  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus Emissions School Bus Emissions Reduction Funding to someone by E-mail Share Alternative Fuels Data Center: School Bus Emissions Reduction Funding on Facebook Tweet about Alternative Fuels Data Center: School Bus Emissions Reduction Funding on Twitter Bookmark Alternative Fuels Data Center: School Bus Emissions Reduction Funding on Google Bookmark Alternative Fuels Data Center: School Bus Emissions Reduction Funding on Delicious Rank Alternative Fuels Data Center: School Bus Emissions Reduction Funding on Digg Find More places to share Alternative Fuels Data Center: School Bus Emissions Reduction Funding on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Emissions Reduction Funding The New York State Energy Research and Development Authority (NYSERDA)

88

Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

National Fuel Cell Bus National Fuel Cell Bus Program (NFCBP) to someone by E-mail Share Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Facebook Tweet about Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Twitter Bookmark Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Google Bookmark Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Delicious Rank Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Digg Find More places to share Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type National Fuel Cell Bus Program (NFCBP) The goal of the NFCBP is to facilitate the development of commercially

89

Alternative Fuels Data Center: School Bus Idle Reduction Pilot Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus Idle School Bus Idle Reduction Pilot Program to someone by E-mail Share Alternative Fuels Data Center: School Bus Idle Reduction Pilot Program on Facebook Tweet about Alternative Fuels Data Center: School Bus Idle Reduction Pilot Program on Twitter Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Pilot Program on Google Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Pilot Program on Delicious Rank Alternative Fuels Data Center: School Bus Idle Reduction Pilot Program on Digg Find More places to share Alternative Fuels Data Center: School Bus Idle Reduction Pilot Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Idle Reduction Pilot Program As part of the Children's Environmental Health Project, the Arizona

90

Alternative Fuels Data Center: School Bus Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus Idle School Bus Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: School Bus Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: School Bus Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Idle Reduction Requirement All local boards of education in North Carolina have adopted idle reduction

91

BP and Hydrogen Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

BP and Hydrogen Pipelines BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P. Yoho, P.E. i l i * Green corporate philosophy and senior management commitment * Reduced greenhouse gas emissions nine years ahead of target * Alternatives to oil are a big part of BP' including natural gas, LNG, solar and hydrogen * Hydrogen Bus Project won Australia' prestigious environmental award * UK partnership opened the first hydrogen demonstration refueling station * Two hydrogen pipelines in Houston area BP Env ronmenta Comm tment s portfolio, s most BP' * li l " li i i * i l pl i i * Li l li l * " i i l i 2 i i ll i i l pl ifi i * 8" ly idl i i l s Hydrogen Pipelines Two nes, on y a brand new 12 ne s act ve Connect Houston area chem ca ant w th a ref nery nes come off a p

92

DOE HQ Shuttle Bus Route and Schedule  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shuttle Bus Route and Schedule Shuttle Bus Route and Schedule The DOE Shuttle Buses follow the same schedules between the two main Headquarters locations, Forrestal and Germantown. The buses start their routes at each Headquarters facility at the same times, see the schedule below. The subsequent stops at the other facilities are relative to the departure time of each route. Headquarters employees are reminded of the statutory provisions that authorize and limit the use of the shuttle bus service. Specific authority for the use of appropriated funds to pay for transportation for official purposes is contained in section 1344(a)(1) of Title 31, U.S. Code. Use of this transportation for any other purpose is

93

Alternative Fuels Data Center: Alternative Fuel School Bus Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel School Bus Incentive to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel School Bus Incentive on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel School Bus Incentive on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel School Bus Incentive on Google Bookmark Alternative Fuels Data Center: Alternative Fuel School Bus Incentive on Delicious Rank Alternative Fuels Data Center: Alternative Fuel School Bus Incentive on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel School Bus Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel School Bus Incentive Any county that uses compressed natural gas (CNG) for the operation of any

94

Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Joint Fuel Cell Bus Joint Fuel Cell Bus Workshop to someone by E-mail Share Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Facebook Tweet about Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Twitter Bookmark Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Google Bookmark Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Delicious Rank Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Digg Find More places to share Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings Webinars

95

Alternative Fuels Data Center: Alternative Fuel School Bus Regulations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel School Bus Regulations to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel School Bus Regulations on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel School Bus Regulations on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel School Bus Regulations on Google Bookmark Alternative Fuels Data Center: Alternative Fuel School Bus Regulations on Delicious Rank Alternative Fuels Data Center: Alternative Fuel School Bus Regulations on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel School Bus Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel School Bus Regulations The Virginia Board of Education may not unreasonably limit the authority of

96

Alternative Fuels Data Center: School Bus Emissions Reduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emissions Emissions Reduction to someone by E-mail Share Alternative Fuels Data Center: School Bus Emissions Reduction on Facebook Tweet about Alternative Fuels Data Center: School Bus Emissions Reduction on Twitter Bookmark Alternative Fuels Data Center: School Bus Emissions Reduction on Google Bookmark Alternative Fuels Data Center: School Bus Emissions Reduction on Delicious Rank Alternative Fuels Data Center: School Bus Emissions Reduction on Digg Find More places to share Alternative Fuels Data Center: School Bus Emissions Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Emissions Reduction Each full-sized school bus with a Model Year (MY) 1994 or newer engine that transports children in the state must be equipped with specific emissions

97

Clean Cities: Natural Gas Transit (and School Bus) Users Group...  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Transit (and School Bus) Users Group Meeting Archives to someone by E-mail Share Clean Cities: Natural Gas Transit (and School Bus) Users Group Meeting Archives on...

98

Alternative Fuels Data Center: School Bus Retrofit Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Retrofit Retrofit Program to someone by E-mail Share Alternative Fuels Data Center: School Bus Retrofit Program on Facebook Tweet about Alternative Fuels Data Center: School Bus Retrofit Program on Twitter Bookmark Alternative Fuels Data Center: School Bus Retrofit Program on Google Bookmark Alternative Fuels Data Center: School Bus Retrofit Program on Delicious Rank Alternative Fuels Data Center: School Bus Retrofit Program on Digg Find More places to share Alternative Fuels Data Center: School Bus Retrofit Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Retrofit Program The goals of the Connecticut Clean School Bus Program are to: 1) establish grants for municipalities and local and regional school boards to reimburse

99

Alternative Fuels Data Center: School Bus Idle Reduction Strategies  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus Idle School Bus Idle Reduction Strategies to someone by E-mail Share Alternative Fuels Data Center: School Bus Idle Reduction Strategies on Facebook Tweet about Alternative Fuels Data Center: School Bus Idle Reduction Strategies on Twitter Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Strategies on Google Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Strategies on Delicious Rank Alternative Fuels Data Center: School Bus Idle Reduction Strategies on Digg Find More places to share Alternative Fuels Data Center: School Bus Idle Reduction Strategies on AddThis.com... More in this section... Idle Reduction Benefits & Considerations Heavy-Duty Vehicles Medium-Duty Vehicles Light-Duty Vehicles School Buses Laws & Incentives Research & Development

100

3 One-Line Diagram and Bus/Branch Model  

E-Print Network (OSTI)

One-line diagram and bus/branch model Ohms law Losses Kirchoffs law Power flow calculations (different model idealizations) Reference bus Power System & LMP Fundamentals WEM 301 2008 ISO New England Inc.

Eugene Litvinov Director; Marginal Loss Pricing; Market System; Major Components; Line Line; Line Line

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "worldwide hydrogen bus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Analysis of a diesel-electric hybrid urban bus system  

DOE Green Energy (OSTI)

A hybrid bus powered by a diesel engine and a battery pack has been analyzed over an idealized bus-driving cycle in Chicago. Three hybrid configurations, two parallel and one series, have been evaluated. The results indicate that the fuel economy of a hybrid bus, taking into account the regenerative braking, is comparable with that of a conventional diesel bus. Life-cycle costs are slightly higher because of the added weight and cost of the battery.

Marr, W.W.; Sekar, R.R. [Argonne National Lab., IL (United States); Ahlheim, M.C. [Regional Transportation Authority, Chicago, IL (United States)

1993-08-01T23:59:59.000Z

102

July 4, 1997 The Stanford InfoBus and  

E-Print Network (OSTI)

July 4, 1997 1 of 30 The Stanford InfoBus and Its Service Layers Augmenting the Internet Project Computer Science Department Stanford University, CA 94305 The Stanford InfoBus is a prototype service layers pro­ vided by the Stanford InfoBus: protocols for managing items and collections (DLIOP

Gravano, Luis

103

Energy DataBus (Fact Sheet)  

SciTech Connect

NREL has developed the Energy DataBus, an open-sourced software that collects massive amounts of energy-related data at second-to-second intervals; stores it in a massive, scalable database; and turns it into useful information.

2013-07-01T23:59:59.000Z

104

Alternative Fuels Data Center: Low Emission or Alternative Fuel Bus  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission or Low Emission or Alternative Fuel Bus Acquisition Requirement to someone by E-mail Share Alternative Fuels Data Center: Low Emission or Alternative Fuel Bus Acquisition Requirement on Facebook Tweet about Alternative Fuels Data Center: Low Emission or Alternative Fuel Bus Acquisition Requirement on Twitter Bookmark Alternative Fuels Data Center: Low Emission or Alternative Fuel Bus Acquisition Requirement on Google Bookmark Alternative Fuels Data Center: Low Emission or Alternative Fuel Bus Acquisition Requirement on Delicious Rank Alternative Fuels Data Center: Low Emission or Alternative Fuel Bus Acquisition Requirement on Digg Find More places to share Alternative Fuels Data Center: Low Emission or Alternative Fuel Bus Acquisition Requirement on AddThis.com...

105

Quantum Fuel Systems Technologies Worldwide Inc Quantum Technologies | Open  

Open Energy Info (EERE)

Fuel Systems Technologies Worldwide Inc Quantum Technologies Fuel Systems Technologies Worldwide Inc Quantum Technologies Jump to: navigation, search Name Quantum Fuel Systems Technologies Worldwide Inc (Quantum Technologies) Place Irvine, California Zip CA 92614 Sector Hydro, Hydrogen, Solar, Vehicles, Wind energy Product A California-based company with new energy activities in powertrains for hybrid vehicles, gas and hydrogen storage equipment manufacturing, and wind and solar energy. Coordinates 41.837752°, -79.268594° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.837752,"lon":-79.268594,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

106

Technology Validation: Fuel Cell Bus Evaluations - DOE Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

of FCEB design. Using fuel cells in a transit application can help accelerate the learning curve for the technology because of the high mileage accumulated in short periods...

107

STATEMENT OF CONSIDERATIONS REQUEST BY CHEVRONTEXACO WORLDWIDE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CHEVRONTEXACO WORLDWIDE POWER & GASIFICATION FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER SUBCONTRACT QZ001 UNDER DOE COOPERATIVE AGREEMENT NO....

108

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network (OSTI)

500/kW Anode tail gas Hydrogen Engine Gen-Set ICE/GeneratorFuel Cell Deployment and Hydrogen Infrastructure, WorldwideOffice (2005), Florida Hydrogen Business Partnership,

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

109

Substation Bus Ampacity Uprating: Feasibility Study  

Science Conference Proceedings (OSTI)

The continuous increase in demand for electric power has pushed some of the components in the Con Edison system to their design limits. These limits, established in the past, were often selected with general and conservative assumptions. Consequently, Con Edison requested the Electric Power Research Institute (EPRI) to investigate the possibility of raising the rating of their 3,000A substation bus to a higher value.The first step in the investigation was to conduct a feasibility study ...

2013-04-24T23:59:59.000Z

110

Big Green Bus: A Vehicle for Change | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Bus: A Vehicle for Change Green Bus: A Vehicle for Change Big Green Bus: A Vehicle for Change July 1, 2010 - 3:35pm Addthis The Big Green Bus rolled into Washington, D.C., and parked outside the Department of Energy offices Monday to showcase its clean energy features. | Photo Courtesy of Joshua Delung | The Big Green Bus rolled into Washington, D.C., and parked outside the Department of Energy offices Monday to showcase its clean energy features. | Photo Courtesy of Joshua Delung | Joshua DeLung Twelve Dartmouth College students stopped at the U.S. Department of Energy Monday in a Big Green Bus, a 1989 MCI coach with an engine modified to run on waste vegetable oil. The students' goals are to promote alternative fuels and sustainable living with the slogan "Vehicle for Change" on this sixth-annual cross-country educational tour.

111

NREL: Energy Analysis - The Energy DataBus  

NLE Websites -- All DOE Office Websites (Extended Search)

Bookmark and Share Bookmark and Share The Energy DataBus Register for a Demo Screen capture of the Energy DataBus's dashboards. Register for free download and install at your organization. As part of its ongoing mission to advance renewable energy and energy efficiency technologies, the National Renewable Energy Laboratory (NREL) has created the Energy DataBus-a system for organizations to store and process their energy data (or any time-series data). This is a special system that allows NREL to conduct energy informatics (EI) research and development, while delivering this research to the industry in the form of plug-ins to DataBus. Organizations that have DataBus can use these plug-ins for their own energy data research. DataBus is part of NREL's portfolio of EI projects and was developed to be

112

Bus Rapid Transit Planning Guide | Open Energy Information  

Open Energy Info (EERE)

Bus Rapid Transit Planning Guide Bus Rapid Transit Planning Guide Jump to: navigation, search Tool Summary Name: Bus Rapid Transit Planning Guide Agency/Company /Organization: Institute for Transportation & Development Policy Focus Area: Public Transit & Infrastructure Topics: Best Practices Resource Type: Reports, Journal Articles, & Tools Website: www.itdp.org/microsites/bus-rapid-transit-planning-guide/ The Bus Rapid Transit Planning Guide is the most comprehensive resource for planning a bus rapid transit (BRT) system, beginning with project preparation all the way through to implementation. How to Use This Tool This tool is most helpful when using these strategies: Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

113

Big Green Bus: A Vehicle for Change | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Big Green Bus: A Vehicle for Change Big Green Bus: A Vehicle for Change Big Green Bus: A Vehicle for Change July 1, 2010 - 3:35pm Addthis The Big Green Bus rolled into Washington, D.C., and parked outside the Department of Energy offices Monday to showcase its clean energy features. | Photo Courtesy of Joshua Delung | The Big Green Bus rolled into Washington, D.C., and parked outside the Department of Energy offices Monday to showcase its clean energy features. | Photo Courtesy of Joshua Delung | Joshua DeLung Twelve Dartmouth College students stopped at the U.S. Department of Energy Monday in a Big Green Bus, a 1989 MCI coach with an engine modified to run on waste vegetable oil. The students' goals are to promote alternative fuels and sustainable living with the slogan "Vehicle for

114

NREL Energy DataBus/Resources | Open Energy Information  

Open Energy Info (EERE)

Databus Factsheet Energydatabusfacthseet.pdf Read more about the Energy Databus Retrieved from "http:en.openei.orgwindex.php?titleNRELEnergyDataBusResources&oldid662041...

115

A technology perspective on worldwide privacy regulations  

Science Conference Proceedings (OSTI)

In this paper we provide an overview of the worldwide privacy regulatory landscape from a technology perspective. We focus on data-centric definitions of personal information and then examine how these differ across different regulatory frameworks, such ...

D. A. Chapin; A. C. Nelson; B. S. Gerber

2009-03-01T23:59:59.000Z

116

On-board hydrogen storage system using metal hydride  

DOE Green Energy (OSTI)

A hydrogen powered hybrid electric bus has been developed for demonstration in normal city bus service in the City of Augusta, Georgia, USA. The development team, called H2Fuel Bus Team, consists of representatives from government, industry and research institutions. The bus uses hydrogen to fuel an internal combustion engine which drives an electric generator. The generator charges a set of batteries which runs the electric bus. The hydrogen fuel and the hybrid concept combine to achieve the goal of near-zero emission and high fuel efficiency. The hydrogen fuel is stored in a solid form using an on-board metal hydride storage system. The system was designed for a hydrogen capacity of 25 kg. It uses the engine coolant for heat to generate a discharge pressure higher than 6 atm. The operation conditions are temperature from ambient to 70 degrees C, hydrogen discharge rate to 6 kg/hr, and refueling time 1.5 hours. Preliminary tests showed that the performance of the on-board storage system exceeded the design requirements. Long term tests have been planned to begin in 2 months. This paper discusses the design and performance of the on-board hydrogen storage system.

Heung, L.K.

1997-07-01T23:59:59.000Z

117

Study on Electric Control System for a Full Hybrid Bus  

Science Conference Proceedings (OSTI)

For efficient and reliable operation of a novel hybrid powertrain assembled in the bus, a set of control strategy combined with the structural characteristics was researched. Based on the identification of the driver's intension, this paper presented ... Keywords: full hybrid bus, eletric control system, stretegy, fuel economy

Zhiguo Kong, Hongxiu Wang

2013-07-01T23:59:59.000Z

118

Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary Evaluation Results  

DOE Green Energy (OSTI)

This report provides preliminary results from a National Renewable Energy Laboratory evaluation of a protoptye fuel cell transit bus operating at Connecticut Transit in Hartford. Included are descriptions of the planned fuel cell bus demonstration and equipment; early results and agency experience are also provided.

Chandler, K.; Eudy, L.

2008-10-01T23:59:59.000Z

119

Global Bus Rapid Transit (BRT) Database | Open Energy Information  

Open Energy Info (EERE)

Global Bus Rapid Transit (BRT) Database Global Bus Rapid Transit (BRT) Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Bus Rapid Transit (BRT) Database Agency/Company /Organization: EMBARQ Complexity/Ease of Use: Not Available Website: www.brtdata.org/ Equivalent URI: cleanenergysolutions.org/content/global-bus-rapid-transit-brt-database Language: English Related Tools European Green Cars Initiative Guidelines and Toolkits for Urban Transport Development in Medium Sized Cities in India Making Car Sharing and Car Clubs Work: Final Report ... further results Find Another Tool FIND TRANSPORTATION TOOLS This tool provides public access to current data about bus rapid transit systems around the world, including data for the design, performance, and cost of these systems. The database can be filtered by location or

120

Users Perspective on Advanced Fuel Cell Bus Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Users Perspective on Advanced Fuel Cell Bus Technology Lesl lie Eud dy - NREL Nico Bouwkamp - CaFCP DOE/FTA FCB Workshop DOE/FTA FCB Workshop June 7, 2010 - Transit Agencies FCB Demonstrations Transit Agencies FCB Demonstrations Reasons for participation Reasons for participation - Government regulations to reduce emissions - Public pressure Public pressure - Agency desire to be 'green' - Funding opportunity Funding opportunity - Learn about the newest technology 2 - Challenges: Performance Challenges: Performance Bus should match conventional bus performance Bus should match conventional bus performance - Operate 7 days/week, up to 20 hr/day - Complete day of service with one tank of fuel Complete day of service with one tank of fuel - Keep up with duty-cycle

Note: This page contains sample records for the topic "worldwide hydrogen bus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A Model for the Bus System in Cuernevaca (Mexico)  

E-Print Network (OSTI)

The bus transportation system in Cuernevaca, Mexico, has certain distinguished, innovative features and has been the subject of an intriguing, recent study by M. Krbalek and P. Seba. Krbalek and Seba analyzed the statistics of bus arrivals on Line 4 close to the city center. They studied, in particular, the bus spacing distribution and also the bus number variance measuring the fluctuations of the total number of buses arriving at a fixed location during a time interval T. Quite remarkably, it was found that these two statistics are well modeled by the Gaussian Unitary Ensemble (GUE) of random matrix theory. Our goal in this paper is to provide a plausible explanation of these observations, and to this end we introduce a microscopic model for the bus line that leads simply and directly to GUE.

Jinho Baik; Alexei Borodin; Percy Deift; Toufic Suidan

2005-10-19T23:59:59.000Z

122

Bus industry market study. Report -- Task 3.2: Fuel cell/battery powered bus system  

DOE Green Energy (OSTI)

In support of the commercialization of fuel cells for transportation, Georgetown University, as a part of the DOE/DOT Fuel Cell Transit Bus Program, conducted a market study to determine the inventory of passenger buses in service as of December, 1991, the number of buses delivered in 1991 and an estimate of the number of buses to be delivered in 1992. Short term and long term market projections of deliveries were also made. Data was collected according to type of bus and the field was divided into the following categories which are defined in the report: transit buses, school buses, commercial non-transit buses, and intercity buses. The findings of this study presented with various tables of data collected from identified sources as well as narrative analysis based upon interviews conducted during the survey.

Zalbowitz, M.

1992-06-02T23:59:59.000Z

123

Equipment and services for worldwide applications  

DOE Green Energy (OSTI)

The report presents a digest of geothermal energy technology. The worldwide distribution of geothermal resources is described, and the degree to which various countries are exploiting their resources estimated. Detailed information about US technologies is presented, from exploration through applications to cost factors. (ACR)

Not Available

1985-01-01T23:59:59.000Z

124

Bus bar electrical feedthrough for electrorefiner system  

SciTech Connect

A bus bar electrical feedthrough for an electrorefiner system may include a retaining plate, electrical isolator, and/or contact block. The retaining plate may include a central opening. The electrical isolator may include a top portion, a base portion, and a slot extending through the top and base portions. The top portion of the electrical isolator may be configured to extend through the central opening of the retaining plate. The contact block may include an upper section, a lower section, and a ridge separating the upper and lower sections. The upper section of the contact block may be configured to extend through the slot of the electrical isolator and the central opening of the retaining plate. Accordingly, relatively high electrical currents may be transferred into a glovebox or hot-cell facility at a relatively low cost and higher amperage capacity without sacrificing atmosphere integrity.

Williamson, Mark; Wiedmeyer, Stanley G; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

2013-12-03T23:59:59.000Z

125

DOE HQ Shuttle Bus Schedule and Route | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE HQ Shuttle Bus Schedule and Route DOE HQ Shuttle Bus Schedule and Route DOE HQ Shuttle Bus Schedule and Route The DOE Shuttle Buses follow the same schedules between the two main Headquarters locations, Forrestal and Germantown. The buses start their routes at each Headquarters facility at the same times, see the schedule below. The subsequent stops at the other facilities are relative to the departure time of each route. Headquarters employees are reminded of the statutory provisions that authorize and limit the use of the shuttle bus service. Specific authority for the use of appropriated funds to pay for transportation for official purposes is contained in section 1344(a)(1) of Title 31, U.S. Code. Use of this transportation for any other purpose is inappropriate and against the law.

126

Planned Changes to the LBNL Shuttle Bus System  

NLE Websites -- All DOE Office Websites (Extended Search)

Planned Changes to the LBNL Shuttle Bus System Planned Changes to the LBNL Shuttle Bus System Speaker(s): Steve Black Date: December 5, 2006 - 12:00pm Location: 90-3122 BACKGROUND: Several recent issues of Today At Berkeley Lab, including for today, December 1, have called our attention to the planned changes to the Lab's shuttle bus system. If you have not yet viewed the description of the planned new system and the maps showing the new routes it is advisable for you to do so as the changes are significant, not just a "fine tuning". Several EETD staff members and shuttle bus riders have expressed serious concerns about the changes, which has prompted us to set up this special seminar. DESCRIPTION: Steve Black, who is fairly new to the Lab, has responsibility for a number of Laboratory support services

127

Sustainable transport at MIT : improving area bus services  

E-Print Network (OSTI)

Everyday each member of the MIT community makes a decision about how they will travel to school or work. Using the Commuter Habit Survey and information regarding local bus services as guides, this report analyzes the ...

Beasley, Aimee K

2009-01-01T23:59:59.000Z

128

Lessons Learned: Battery-Electric Transit-Bus Opportunity Charging  

Science Conference Proceedings (OSTI)

This document details the results of a study of battery-electric bus opportunity charging. This document is an interim report pending conclusion of further experiments with at least one other rapid-charging system and battery type.

1999-12-10T23:59:59.000Z

129

Nuclear Maintenance Applications Center: Isolated Phase Bus Maintenance Guide  

Science Conference Proceedings (OSTI)

This report provides information on design, operating experience, and maintenance practices associated with the isophase bus system. The information is meant to be useful for system engineers, component engineers, maintenance personnel, and their supervision in understanding and maintaining this system. This document is an update to Isolated Phase Bus Maintenance Guide (EPRI report TR-112784), and the scope has been expanded to include boundary components, such as potential transformers (PTs) and current...

2007-12-20T23:59:59.000Z

130

COMPRESSED NATURAL GAS DEMONSTRATION BUS 7. Author{s)  

E-Print Network (OSTI)

A demonstration compressed natural gas (CNG) bus has been operating on The University of Texas at Austin shuttle system since 1992. This CNG vehicle, provided by the Blue Bird Company, was an opportunity for the University to evaluate the effectiveness of a CNG bus for shuttle operations. Three basic operating comparisons were made: 1) fuel consumption, 2) tire wear, and 3) vehicle performance. The bus was equipped with a data logger, Which was downloaded regularly, for trip reports. Tire wear was monitored regularly, and performance tests were conducted at the Natural Gas Vehicle Technology Center. Overall, the data suggest that fuel costs for the CNG bus are comparable to those for University diesel buses. This is a result of the lower fuel price for natural gas. Actual natural gas fuel consumption was higher for the CNG buses than for the diesel buses. Due to weight differences, tire wear was much less on the CNG buses. Finally, after installation of a closed-loop system, the CNG bus out-performed the diesel bus on acceleration, grade climbing ability, and speed.

Cheng-ming Wu; Ron Matthews; Mark Euritt

1994-01-01T23:59:59.000Z

131

DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT  

DOE Green Energy (OSTI)

The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Their strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis (FMEA, referred to by Air Products as a ''HAZOP'' analysis) with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operational in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation Institute's test track facility near the University Park airport. After modification and optimization of the system on the bus, operation on the campus shuttle route began in early June 2002. However, the work and challenges continued as it has been difficult to maintain operability of the shuttle bus due to fuel and component difficulties. In late June 2002, the pump head itself developed operational problems (loss of smooth function) leading to excessive stress on the magnetic coupling and excessive current draw to operate. A new pump head was installed on the system to alleviate this problem and the shuttle bus operated successfully on DME blends from 10-25 vol% on the shuttle bus loop until September 30, 2002. During the period of operation on the campus loop, the bus was pulled from service, operated at the PTI test track and real-time emissions measurements were obtained using an on-board emissions analyzer from Clean Air Technologies International, Inc. Particulate emissions reductions of 60% and 80% were observed at DME blend ratios of 12 vol.% and 25 vol.%, respectively, as the bus was operated over the Orange County driving cycle. Increases in NOx, CO and HC emissions were observed, however. In summary, the conversion of the shuttle bus was successfully accomplished, particulate emissions reductions were observed, but there were operational challenges in the field. Nonetheless, they were able to demonstrate reliable operation of the shuttle bus on DME-diesel blends.

Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

2003-04-01T23:59:59.000Z

132

A worldwide perspective on actinide burning  

SciTech Connect

Worldwide interest has been evident over the past few years in reexamining the merits of recovering the actinides from spent light-water reactor (LWR) fuel and transmuting them in fast reactors to reduce hazards in geologic repositories. This paper will summarize some of the recent activities in this field. Several countries are embarked on programs of reprocessing and vitrification of present wastes, from which removal of the actinides is largely precluded. The United States is assessing the ideas related to the fast reactor program and the potential application to defense wastes. 18 refs., 2 figs.

Burch, W.D.

1991-01-01T23:59:59.000Z

133

Detroit Commuter Hydrogen Project  

Science Conference Proceedings (OSTI)

This project was undertaken to demonstrate the viability of using hydrogen as a fuel in an internal combustion engine vehicle for use as a part of a mass transit system. The advantages of hydrogen as a fuel include renew-ability, minimal environmental impact on air quality and the environment, and potential to reduce dependence on foreign energy sources for the transportation sector. Recognizing the potential for the hydrogen fuel concept, the Southeast Michigan Congress of Governments (SEMCOG) determined to consider it in the study of a proposed regional mass transit rail system for southeast Michigan. SEMCOG wanted to evaluate the feasibility of using hydrogen fueled internal combustion engine (H2ICE) vehicles in shuttle buses to connect the Detroit Metro Airport to a proposed, nearby rail station. Shuttle buses are in current use on the airport for passenger parking and inter-terminal transport. This duty cycle is well suited to the application of hydrogen fuel at this time because of the ability to re-fuel vehicles at a single nearby facility, overcoming the challenge of restricted fuel availability in the undeveloped hydrogen fuel infrastructure. A cooperative agreement between SEMCOG and the DOE was initiated and two H2ICE buses were placed in regular passenger service on March 29, 2009 and operated for six months in regular passenger service. The buses were developed and built by the Ford Motor Company. Wayne County Airport Authority provided the location for the demonstration with the airport transportation contractor, Metro Cars Inc. operating the buses. The buses were built on Ford E450 chassis and incorporated a modified a 6.8L V-10 engine with specially designed supercharger, fuel rails and injectors among other sophisticated control systems. Up to 30 kg of on-board gaseous hydrogen were stored in a modular six tank, 350 bar (5000 psi) system to provide a 150 mile driving range. The bus chassis and body were configured to carry nine passengers with luggage. By collecting fuel use data for the two H2ICE buses, with both written driver logs and onboard telemetry devices, and for two conventional propane-gasoline powered buses in the same service, comparisons of operating efficiency and maintenance requirements were completed. Public opinion about the concept of hydrogen fuel was sampled with a rider survey throughout the demonstration. The demonstration was very effective in adding to the understanding of the application of hydrogen as a transportation fuel. The two 9 passenger H2ICE buses accumulated nearly 50,000 miles and carried 14,285 passengers. Data indicated the H2ICE bus fuel economy to be 9.4 miles/ gallon of gasoline equivalent (m/GGE) compared to the 10 passenger propane-gasoline bus average of 9.8 m/GGE over 32,400 miles. The 23- passenger bus averaged 7.4 m/GGE over 40,700 miles. Rider feedback from 1050 on-board survey cards was overwhelmingly positive with 99.6% indicating they would ride again on a hydrogen powered vehicle. Minimal maintenance was required for theses buses during the demonstration project, but a longer duration demonstration would be required to more adequately assess this aspect of the concept.

Brooks, Jerry; Prebo, Brendan

2010-07-31T23:59:59.000Z

134

Hydrogen and fuel cell research | Open Energy Information  

Open Energy Info (EERE)

Hydrogen and fuel cell research Hydrogen and fuel cell research Jump to: navigation, search Tool Summary Name: Hydrogen and fuel cell research Agency/Company /Organization: National Renewable Energy Laboratory Focus Area: Fuels & Efficiency Topics: Potentials & Scenarios Resource Type: Website Website: www.nrel.gov/hydrogen/proj_fc_bus_eval.html This webside contributes to the growing role that advanced technologies play in addressing the nation's energy challenges. Their projects focus on hydrogen production, delivery, and storage; fuel cells; technology validation; safety, codes, and standards; analysis; education; and manufacturing. References Retrieved from "http://en.openei.org/w/index.php?title=Hydrogen_and_fuel_cell_research&oldid=515025" Categories: Transportation Toolkits

135

Analysis of U.S. School Bus Populations and Alternative Fuel Potential  

DOE Green Energy (OSTI)

This Clean Cities final report provides information concerning different school bus types, school bus populations, school bus miles and fuel use, school bus emissions, alternative fuel school buses, and potential for alternative fuel school bus use through 2010. It is intended to provide general information concerning the size of the school bus market in the U.S., as well as to provide some quantification of the potential for alternative fuel use in school buses in the U.S., and what that might mean for petroleum displacement and emissions reductions.

Laughlin, M.

2004-04-01T23:59:59.000Z

136

Berkeley Lab: Special Bus/Shuttle Service Reservations  

NLE Websites -- All DOE Office Websites (Extended Search)

Special Service Special Service Buses and/or Vans are available for special service by reservation. Costs are: $136.50 required 2 hour minimum $68.25 per vehicle each additional hour Bus image Bus image Buses accommodate: 41 passengers (26 Seated plus 15 Standing) (and up to 2 wheelchair passengers) Vans accommodate: 15 passengers To arrange special service shuttle transportation: Fill out the request form below A valid project id is required for special service requests Complete the form and click on the "send" button The request for special bus service will be sent to busservices@lbl.gov and reviewed. A confirmation will be sent back via email to the requestor regarding the status. For additional information contact: Kori Porter at 486-5112 or email busservices@lbl.gov.

137

Switching surge test results ehv substation bus configurations  

SciTech Connect

The industry has been actively engaged in, and has presented many results of, ehv switching surge test programs associated with transmission line designs. It would seem equally important that similar efforts be staged relative to ehv switching surge capabilities of the terminal equipment as it would normally be found in its variety of configurations. Toward this end, a series of switching surge test programs on a number of substation bus configurations was conducted. Particular emphasis was placed on the determination of switching surge characteristics of the air gaps found in ehv substation bus designs. The test data are presented with pertinent data evaluations in an attempt to provide a more refined basis for the application of final judgments to bus designs for 345, 500, and 750 kV substations.

Hertig, G.E.; Kelly, W.B.

1966-08-01T23:59:59.000Z

138

Application Layer Definition and Analyses of Controller Area Network Bus for Wire Harness Assembly Machine  

Science Conference Proceedings (OSTI)

With the feature of multi-master bus access, nondestructive contention-based arbitration and flexible configuration, Controller Area Network (CAN) bus is applied into the control system of Wire Harness Assembly Machine (WHAM). To accomplish desired goal, ...

Hui Guo; Ying Jiang

2006-11-01T23:59:59.000Z

139

World Biofuels Assessment; Worldwide Biomass Potential: Technology Characterizations (Milestone Report)  

DOE Green Energy (OSTI)

Milestone report prepared by NREL to estimate the worldwide potential to produce and transport ethanol and other biofuels.

Bain, R. L.

2007-12-01T23:59:59.000Z

140

CMS centres worldwide: A new collaborative infrastructure  

Science Conference Proceedings (OSTI)

The CMS Experiment at the LHC is establishing a global network of inter-connected 'CMS Centres' for controls, operations and monitoring. These support: (1) CMS data quality monitoring, detector calibrations, and analysis; and (2) computing operations for the processing, storage and distribution of CMS data. We describe the infrastructure, computing, software, and communications systems required to create an effective and affordable CMS Centre. We present our highly successful operations experiences with the major CMS Centres at CERN, Fermilab, and DESY during the LHC first beam data-taking and cosmic ray commissioning work. The status of the various centres already operating or under construction in Asia, Europe, Russia, South America, and the USA is also described. We emphasise the collaborative communications aspects. For example, virtual co-location of experts in CMS Centres Worldwide is achieved using high-quality permanently-running 'telepresence' video links. Generic Web-based tools have been developed and deployed for monitoring, control, display management and outreach.

Taylor, Lucas; /Northeastern U.; Gottschalk, Erik; /Fermilab

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "worldwide hydrogen bus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

SunLine Begins Extended Testing of Hybrid Fuel Cell Bus  

DOE Green Energy (OSTI)

Fact sheet describing the fuel cell hybrid bus demonstration being managed by SunLIne Transit Agency.

Not Available

2008-06-01T23:59:59.000Z

142

Hydrogen Electrolyzer R&D  

Science Conference Proceedings (OSTI)

Worldwide, significant RD investments continue in key areas towards realizing a hydrogen economy. Growing concerns over carbon dioxide (CO2) emissions and dependence on imported fossil fuels are the biggest drivers for investments in the hydrogen energy carrier option, where the primary application is fuel for transportation. While plug-in hybrids and all electric vehicles are near-term solutions, hydrogen represents a renewable fuel energy carrier with long-term potential either as a range extender or a...

2008-05-27T23:59:59.000Z

143

BUSpec: A framework for generation of verification aids for standard bus protocol specifications  

Science Conference Proceedings (OSTI)

A typical verification intellectual property (VIP) of a bus protocol such as ARM advanced micro-controller bus architecture (AMBA) or PCI consists of a set of assertions and associated verification aids such as test-benches, design-ware models and coverage ... Keywords: Assertion-based verification, Bus functional models, Protocol validation, Verification intellectual property

Bhaskar Pal; Ansuman Banerjee; Pallab Dasgupta; P. P. Chakrabarti

2007-04-01T23:59:59.000Z

144

Plug-in Hybrid Electric Bus Demonstration: Long Island, New York  

Science Conference Proceedings (OSTI)

Initiated in 2003, this plug-in hybrid electric vehicle (PHEV) bus program has three major phases: Odyne/EPRI Design and Build Phases coupled with Odyne/Long Island Power Authority (LIPA) Demonstration Phase. This interim report describes completion of an initial demonstration with Long Island Bus (LI Bus) Mass Transit Authority (MTA).

2008-10-21T23:59:59.000Z

145

Steady State Analysis of an induction generator infinite bus system  

E-Print Network (OSTI)

analysis of grid connected wind energy conver- sion systems employing induction generators, one1 Steady State Analysis of an induction generator infinite bus system Rajesh G Kavasseri Department of Electrical and Computer Engineering North Dakota State University, Fargo, ND 58105 - 5285, USA (email: rajesh

Kavasseri, Rajesh

146

Development of the bus joint for the ITER Central Solenoid  

SciTech Connect

The terminations of the Central Solenoid (CS) modules are connected to the bus extensions by joints located outside the CS in the gap between the CS and Torodial Field (TF) assemblies. These joints have very strict space limitations. Low resistance is a common requirement for all ITER joints. In addition, the CS bus joints will experience and must be designed to withstand significant variation in the magnetic field of several tenths of a Tesla per second during initiation of plasma. The joint resistance is specified to be less than 4 nOhm. The joints also have to be soldered in the field and designed with the possibility to be installed and dismantled in order to allow cold testing in the cold test facility. We have developed coaxial joints that meet these requirements and have demonstrated the feasibility to fabricate and assemble them in the vertical configuration. We introduced a coupling cylinder with superconducting strands soldered to the surface of the cable that can be installed in the ITER assembly hall and at the Cold Test Facility. This cylinder serves as a transition area between the CS module and the bus extension. We made two racetrack samples and tested four bus joints in our Joint Test Apparatus. Resistance of the bus joints was measured by a decay method and by a microvoltmeter; the value of the current was measured by the Hall probes. This measurement method was verified in the previous tests. The resistance of the joints varied insignificantly from 1.5 to 2 nOhm. One of the challenges associated with a soldered joint is the inability to use corrosive chemicals that are difficult to clean. This paper describes our development work on cable preparation, chrome removal, compaction, soldering, and final assembly and presents the test results.

Martovetsky, Nicolai N [ORNL] [ORNL; Irick, David Kim [ORNL] [ORNL; Kenney, Steven J [ORNL] [ORNL

2013-01-01T23:59:59.000Z

147

Production of Hydrogen from Peanut Shells  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of Hydrogen from Peanut Shells Production of Hydrogen from Peanut Shells The goal of this project is the production of renewable hydrogen from agricultural residues, in the near-term time frame (~three years) and at a comparable cost to existing methane reforming technologies. The hydrogen produced will be blended with CNG and used to power a bus in Albany, GA. Our strategy is to produce hydrogen from biomass pyrolysis oils in conjunction with high value co-products. Activated carbon can be made from agricultural residues in a two- stage process: (1) slow pyrolysis of biomass to produce charcoal, and (2) high temperature processing to form activated carbon. The vapor by-products from the first step can be steam reformed into hydrogen. NREL has developed the technology for bio-

148

Hydrogen-Powered Buses Brochure … 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

Powered by Powered by Hydrogen EERE Information Center 1-877-EERE-INFO (1-877-337-3463) eere.energy.gov/informationcenter Prepared by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. October 2010 Source: NREL, Dennis Schroeder Source: NREL, Dennis Schroeder Hydrogen-Powered Buses Showcase Advanced Vehicle Technologies Visitors to federal facilities across the country may now have the opportunity to tour the sites in a hydrogen- powered shuttle bus. The U.S. Department of Energy (DOE) is supporting the demonstration of hydrogen-powered vehicles and hydrogen infrastructure at federal facilities across the country. Nine facilities will receive fourteen hydrogen- powered buses to demonstrate this market-ready advanced technology. Produced by Ford Motor Company, the

149

Laboratory Shuttle Bus Routes: Potter St./JBEI Shuttle Bus Routes  

NLE Websites -- All DOE Office Websites (Extended Search)

Combined Routes & Schedules Blue Route Orange Route Rockridge Route Potter St./JBEI Route Combined Routes & Schedules Blue Route Orange Route Rockridge Route Potter St./JBEI Route Potter St./JBEI Map Scroll down or click here for schedule ↓ Printable Map | Printable Schedule Potter St/JBEI Route Potter St./JBEI Schedule Bus Service @ lbl.gov email link LBNL - POTTER ST/JBEI START - LBL STOP 65 CORY HALL SHATTUCK BART JCAP POTTER CFO JBEI SHATTUCK BART CORY HALL Depart on the 08's and 38's Depart on the 10's and 40's Depart on the 15's and 45's Depart on the 28's and 58's Depart on the 00's and 30's Depart on the 05's and 35's Depart on the 08's and 35's Depart on the 20's and 50's Depart on the 25's and 55's 1 8:08 AM 8:10 AM 8:15 AM 8:28 AM 8:30 AM 8:35 AM 8:38 AM 8:50 AM 8:55 AM 2 8:38 AM 8:40 AM 8:45 AM 8:58 AM 9:00 AM 9:05 AM 9:08 AM 9:20 AM 9:25 AM

150

Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid and Zero Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Google Bookmark Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Delicious Rank Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Digg Find More places to share Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on AddThis.com...

151

Alternative Fuels Data Center: Alternative Fuel School Bus Grant and Loan  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel School Bus Grant and Loan Program to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel School Bus Grant and Loan Program on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel School Bus Grant and Loan Program on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel School Bus Grant and Loan Program on Google Bookmark Alternative Fuels Data Center: Alternative Fuel School Bus Grant and Loan Program on Delicious Rank Alternative Fuels Data Center: Alternative Fuel School Bus Grant and Loan Program on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel School Bus Grant and Loan Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

152

South Africa-GTZ Bus Rapid Transit Johannesburg | Open Energy Information  

Open Energy Info (EERE)

Africa-GTZ Bus Rapid Transit Johannesburg Africa-GTZ Bus Rapid Transit Johannesburg Jump to: navigation, search Logo: South Africa-GTZ Bus Rapid Transit Johannesburg Name South Africa-GTZ Bus Rapid Transit Johannesburg Agency/Company /Organization GTZ Partner City of Johannesburg Sector Energy Focus Area Transportation Topics Implementation, Policies/deployment programs, Background analysis Website http://www.gtz.de/en/themen/um Program Start 2006 Country South Africa UN Region Southern Africa References GTZ's Contribution to the Johannesburg Rea Vaya Bus Rapid Transit (BRT) Project [1] Sustainable Urban Transport Project [2] Johannesburg started planning a Bus Rapid Transit (BRT) system in November 2006. For the city of Johannesburg and on behalf of KfW Entwicklungsbank, GTZ is working to create a network of bus routes totalling 120 kilometres

153

Worldwide Energy Efficiency Action through Capacity Building and Training  

Open Energy Info (EERE)

Worldwide Energy Efficiency Action through Capacity Building and Training Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Name Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Agency/Company /Organization National Renewable Energy Laboratory, The International Partnership for Energy Efficiency Cooperation Sector Energy Focus Area Energy Efficiency Topics Background analysis Resource Type Training materials Website http://www.nrel.gov/ce/ipeec/w Country Mexico, India UN Region Northern America References Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT)[1] Abstract Included are training materials for the Worldwide Energy Efficiency Action through Capacity Building & Training (WEACT) Workshop in Mexico City, 28-30 September 2010.

154

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section V. Integrated Hydrogen and Fuel Cell  

E-Print Network (OSTI)

refineries HC hydrocarbon RFG reformulated gasoline NA North American NNA non-North American FG flared gas CNG compressed natural gas LNG liquefied natural gas LPG liquefied petroleum gas (propane) Et compressed hydrogen. The 40-foot buses will be built on a Van Hool (from Belgium) bus platform in a hybrid

155

NPP Multi-Biome: Gridded Estimates for Selected Regions Worldwide...  

NLE Websites -- All DOE Office Websites (Extended Search)

Change Information Data Set: NPP Multi-Biome: Gridded Estimates for Selected Regions Worldwide, 1989-2001, Revision2 Effective Date of Revision: September 22, 2004 Data Set...

156

World-Wide Progress Review on Superconductor Development  

Science Conference Proceedings (OSTI)

Oct 19, 2010 ... Recent Developments in High Temperature Superconductivity: World-Wide ... Superconductivity Efforts at the US Department of Energy (DOE):...

157

NETL: News Release - Worldwide Carbon Capture and Storage Projects...  

NLE Websites -- All DOE Office Websites (Extended Search)

3, 2009 Worldwide Carbon Capture and Storage Projects on the Increase International Efforts to Reduce Greenhouse Gas Emissions Through Carbon Capture and Storage Showcased with DOE...

158

NREL Energy DataBus/Contact | Open Energy Information  

Open Energy Info (EERE)

Contact Contact < NREL Energy DataBus Jump to: navigation, search View the Databus Partners NREL's Energy Databus NREL's Energy DataBus is used for tracking and analyzing energy use on its own campus. The system is applicable to other facilities-including anything from a single building to a large military base or college campus-or for other energy data management needs. Managing and minimizing energy consumption on a large campus is usually a difficult task for facility managers: There may be hundreds of energy meters spread across a campus, and the meter data are often recorded by hand. Even when data are captured electronically, there may be measurement issues or time periods that may not coincide. Making sense of this limited and often confusing data can be a challenge that makes the assessment of

159

Fuel Cell Technologies Program Record 12012: Fuel Cell Bus Targets  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Program Record Fuel Cell Technologies Program Record Record #: 12012 Date: March 2, 2012 Title: Fuel Cell Bus Targets Originator: Jacob Spendelow and Dimitrios Papageorgopoulos Approved by: Sunita Satyapal * Date: September 12, 2012 Item: Performance, cost, and durability targets for fuel cell transit buses are presented in Table 1. These market-driven targets represent technical requirements needed to compete with alternative technologies. They do not represent expectations for the status of the technology in future years. Table 1. Performance, cost, and durability targets for fuel cell transit buses. Units 2012 Status 2016 Target Ultimate Target Bus Lifetime years/miles 5/100,000 1 12/500,000 12/500,000 Power Plant Lifetime 2,3 hours 12,000 18,000 25,000

160

NREL Energy DataBus/Partners | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » NREL Energy DataBus/Partners < NREL Energy DataBus Jump to: navigation, search Energy Databus Commercial Partners Buffalo.png Buffalo Software offers Databus Support and Maintenance contracts, Installation of Databus and also offers feature development for new custom databus features. We have some committers on the NREL Energy Databus project and can easily customize and help make the Energy Databus meet your company's needs. We also offer training on Databus as well as certification to ensure your devices work with Databus. Buffalo Software (303) 517-8902 Magpie.jpg

Note: This page contains sample records for the topic "worldwide hydrogen bus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

RTD Biodiesel (B20) Transit Bus Evaluation: Interim Review Summary  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

RTD Biodiesel (B20) Transit RTD Biodiesel (B20) Transit Bus Evaluation: Interim Review Summary K. Proc, R. Barnitt, and R.L. McCormick Technical Report NREL/TP-540-38364 August 2005 RTD Biodiesel (B20) Transit Bus Evaluation: Interim Review Summary K. Proc, R. Barnitt, and R.L. McCormick Prepared under Task No. FC05.9400 Technical Report NREL/TP-540-38364 August 2005 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

162

The systems edge of the Parameterized Linear Array with a Reconfigurable Pipelined Bus System (LARPBS(p)) optical bus parallel computing model  

Science Conference Proceedings (OSTI)

This paper is about exploring the various systems related aspects pertinent in the recent Parameterized Linear Array with a Reconfigurable Pipelined Bus System (LARPBS(p)) model. The two principal features of the LARPBS(p) model is, firstly, its bridging ... Keywords: Optical bus, Parallel computing model

Brian J. D'Auriol

2009-05-01T23:59:59.000Z

163

Distribution Operations Guide to Enterprise Service Bus Suites  

Science Conference Proceedings (OSTI)

Enterprise integration is often the last crosscutting issue considered when a firm implements a large information system. Organizations frequently find that after a period of time they are in possession of what can be described as Accidental Architecture, often the result of the evolution of systems and point-to-point integration. These ramshackle systems become increasingly unwieldy and expensive to maintain. To avoid these problems, the implementation and use of an Enterprise Service Bus (ESB) is a cri...

2010-11-15T23:59:59.000Z

164

urbino worldwide campus applied computer scienceComputer Architecture  

E-Print Network (OSTI)

urbino worldwide campus applied computer scienceComputer Architecture alessandro bogliolo isti information science and technology institute 1/16 05.03 Pipeline hazards 05 CPU 05.03 Pipeline hazards;urbino worldwide campus applied computer scienceComputer Architecture alessandro bogliolo isti

Bogliolo, Alessandro

165

Worldwide Carbon Capture and Storage Projects on the Increase | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Worldwide Carbon Capture and Storage Projects on the Increase Worldwide Carbon Capture and Storage Projects on the Increase Worldwide Carbon Capture and Storage Projects on the Increase November 13, 2009 - 12:00pm Addthis Washington, D.C. -- Worldwide efforts to fund and establish carbon capture and storage (CCS) projects have accelerated, according to a new Department of Energy (DOE) online database, indicating ongoing positive momentum toward achieving the G-8 goal for launching 20 CCS demonstrations by 2010. The database, a project of the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL), reveals 192 proposed and active CCS projects worldwide. The projects are located in 20 countries across five continents. The 192 projects globally include 38 capture, 46 storage, and 108 for capture and storage. While most of the projects are still in the

166

Redesigned CCS Website Offers Wealth of Information on Worldwide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Redesigned CCS Website Offers Wealth of Information on Worldwide Redesigned CCS Website Offers Wealth of Information on Worldwide Technology, Projects Redesigned CCS Website Offers Wealth of Information on Worldwide Technology, Projects June 28, 2011 - 1:00pm Addthis Washington, DC - A wealth of information about worldwide carbon capture and storage (CCS) technologies and projects is available on the newly launched, updated and redesigned National Carbon Sequestration Database and Geographic Information System (NATCARB) website. NATCARB is an interactive virtual encyclopedia of key CCS information, including locations and information on field projects, a map of all publically announced worldwide CCS projects and their status; and the complete latest edition of NETL's assessment of carbon storage resource potential in the United States and portions of Canada.

167

Hydrogen Sensor  

NLE Websites -- All DOE Office Websites (Extended Search)

sensor for detectingquantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces...

168

FTA-Characteristics of Bus Rapid Transit for Decision-Making | Open Energy  

Open Energy Info (EERE)

FTA-Characteristics of Bus Rapid Transit for Decision-Making FTA-Characteristics of Bus Rapid Transit for Decision-Making Jump to: navigation, search Tool Summary LAUNCH TOOL Name: FTA-Characteristics of Bus Rapid Transit for Decision-Making Agency/Company /Organization: Federal Transit Administration, United States Department of Transportation Focus Area: Transportation Resource Type: Publications, Guide/manual User Interface: Other Website: www.nbrti.org/docs/pdf/Characteristics_BRT_Decision-Making.pdf Cost: Free Language: English FTA-Characteristics of Bus Rapid Transit for Decision-Making Screenshot References: FTA-Characteristics of Bus Rapid Transit for Decision-Making[1] "The Characteristics of Bus Rapid Transit for Decision-Making (CBRT) report was prepared to provide transportation planners and decision makers with

169

Testing and Evaluation of Batteries for a Fuel Cell Powered Hybrid Bus  

SciTech Connect

Argonne National Laboratory conducted performance characterization and life-cycle tests on various batteries to qualify them for use in a fuel cell/battery hybrid bus. On this bus, methanol-fueled, phosphoric acid fuel cells provide routine power needs, while batteries are used to store energy recovered during bus braking and to produce short-duration power during acceleration. Argonne carried out evaluation and endurance testing on several lead-acid and nickel/cadmium batteries selected by the bus developer as potential candidates for the bus application. Argonne conducted over 10,000 hours of testing, simulating more than 80,000 miles of fuel cell bus operation, for the nickel/cadmium battery, which was ultimately selected for use in the three hybrid buses built under the direction of H-Power Corp.

Miller, J.F.; Webster, C.E.; Tummillo, A.F.; DeLuca, W.H.

1997-05-01T23:59:59.000Z

170

Harmonization and Sharing of Data from International Fuel Cell Bus Demonstrations (Presentation)  

DOE Green Energy (OSTI)

This presentation, which was given by NREL's Leslie Eudy at the 2006 Fuel Cell Seminar, provides information on international fuel cell bus demonstrations.

Eudy, L.

2006-11-15T23:59:59.000Z

171

Hydrogen Publications  

Science Conference Proceedings (OSTI)

Thermophysical Properties of Hydrogen. ... These articles, of interest to the hydrogen community, can be viewed by clicking on the title. ...

172

Properties Hydrogen  

Science Conference Proceedings (OSTI)

Thermophysical Properties of Hydrogen. PROPERTIES, ... For information on a PC database that includes hydrogen property information click here. ...

173

Hydrogen Technology Research at SRNL  

DOE Green Energy (OSTI)

The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

Danko, E.

2011-02-13T23:59:59.000Z

174

Cloud Climatology for Land Stations Worldwide, 1971-1996 (NDP...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Climatology for Land Stations Worldwide, 1971-2009 (NDP-026D) PDF Original Documentation File (2003) PDF Documentation Update (2012) data Data (NDP-026D) (Original date of...

175

NPP Boreal Forest: Consistent Worldwide Site Estimates, 1977...  

NLE Websites -- All DOE Office Websites (Extended Search)

Consistent Worldwide Site Estimates, 1977-1994 Data Citation Cite this data set as follows: Gower, S. T., O. Krankina, R. J. Olson, M. Apps, S. Linder, and C. Wang. 2001. NPP...

176

NPP Tropical Forest: Consistent Worldwide Site Estimates, 1967...  

NLE Websites -- All DOE Office Websites (Extended Search)

Consistent Worldwide Site Estimates, 1967-1999 Data Citation Cite this data set as follows: Clark, D. A., S. Brown, D. W. Kicklighter, J. Q. Chambers, J. R. Thomlinson, J. Ni, and...

177

Worldwide Trends in Energy Use and Efficiency: Key Insights from  

Open Energy Info (EERE)

Worldwide Trends in Energy Use and Efficiency: Key Insights from Worldwide Trends in Energy Use and Efficiency: Key Insights from International Energy Agency (IEA) Indicator Analysis in Support of the Group of Eight (G8) Plan of Action Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Worldwide Trends in Energy Use and Efficiency: Key Insights from International Energy Agency (IEA) Indicator Analysis in Support of the Group of Eight (G8) Plan of Action Focus Area: Power Plant Efficiency Topics: Potentials & Scenarios Website: www.iea.org/papers/2008/indicators_2008.pdf Equivalent URI: cleanenergysolutions.org/content/worldwide-trends-energy-use-and-effic Language: English Policies: "Regulations,Deployment Programs" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property.

178

Worldwide Trends in Energy Use and Efficiency: Key Insights from...  

Open Energy Info (EERE)

Worldwide Trends in Energy Use and Efficiency: Key Insights from International Energy Agency (IEA) Indicator Analysis in Support of the Group of Eight (G8) Plan of Action Jump to:...

179

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

University of Chicago team. On-board hydrogen storage is critical to the development of future high energy efficiency transportation technologies, such as hydrogen-powered fuel...

180

Hydrogen Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

Mark Paster Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells and Infrastructure Technology Program Hydrogen Production and Delivery Team Hydrogen Delivery Goal Hydrogen Delivery Goal Liquid H 2 & Chem. Carriers Gaseous Pipeline Truck Hydrides Liquid H 2 - Truck - Rail Other Carriers Onsite reforming Develop Develop hydrogen fuel hydrogen fuel delivery delivery technologies that technologies that enable the introduction and enable the introduction and long long - - term viability of term viability of hydrogen as an energy hydrogen as an energy carrier for transportation carrier for transportation and stationary power. and stationary power. Delivery Options * End Game - Pipelines - Other as needed * Breakthrough Hydrogen Carriers * Truck: HP Gas & Liquid Hydrogen

Note: This page contains sample records for the topic "worldwide hydrogen bus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NREL Energy DataBus | Open Energy Information  

Open Energy Info (EERE)

NREL Energy DataBus NREL Energy DataBus (Redirected from Databus) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NREL's Energy Databus Agency/Company /Organization: NREL Sector: Energy Resource Type: Dataset, Online calculator User Interface: Website Website: www.nrel.gov/analysis/databus/index.html Country: United States Web Application Link: www.nrel.gov/analysis/databus/index.html Cost: Free OpenEI Keyword(s): Featured UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

182

NREL Energy DataBus | Open Energy Information  

Open Energy Info (EERE)

NREL Energy DataBus NREL Energy DataBus Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NREL's Energy Databus Agency/Company /Organization: NREL Sector: Energy Resource Type: Dataset, Online calculator User Interface: Website Website: www.nrel.gov/analysis/databus/index.html Country: United States Web Application Link: www.nrel.gov/analysis/databus/index.html Cost: Free OpenEI Keyword(s): Featured UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

183

The Design of Micro-Satellite AOCS Software Architecture Based on Software Bus  

Science Conference Proceedings (OSTI)

A new attitude and orbit control system (AOCS) software architecture is presented in this paper by using the concept of software bus. According to the analysis of the function flow and data flow of AOCS, its software components are partitioned clearly ... Keywords: AOCS software architecture, software bus, software components

Chen Jian; Yan Ruidong; Sun Zhaowei; Xu Guodong

2012-10-01T23:59:59.000Z

184

Study on Energy-Saving Control Strategy of Idling Stop System for City Bus  

Science Conference Proceedings (OSTI)

Fuel economy of city bus is poor, because the urban traffic is congested, the city bus is constantly in the idle condition resulting in fuel consumption is increasing. In order to improve the vehicle fuel economy and protect environment, the energy consumption ... Keywords: idling stop, energy-saving, control strategy, regenerative braking

Daxing Huang; Ren He

2010-06-01T23:59:59.000Z

185

Modeling shared cache and bus in multi-cores for timing analysis  

Science Conference Proceedings (OSTI)

Timing analysis of concurrent programs running on multi-core platforms is currently an important problem. The key to solving this problem is to accurately model the timing effects of shared resources in multi-cores, namely shared cache and bus. In this ... Keywords: WCET, multi-core, shared bus, shared cache

Sudipta Chattopadhyay; Abhik Roychoudhury; Tulika Mitra

2010-06-01T23:59:59.000Z

186

Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation plug-in hybrid electric vehicle (PHEV) school bus equipped with a 6.4L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. A Bluebird 7.2L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity. PHEV fuel savings in charge-depleting (CD) mode ranged from slightly more than 30% to a little over 50%. However, the larger fuel savings lasted over a shorter driving distance, as the fully charged PHEV school bus would initially operate in CD mode for some distance, then in a transitional mode, and finally in a charge-sustaining (CS) mode for continued driving. The test results indicate that a PHEV school bus can achieve significant fuel savings during CD operation relative to a conventional bus. In CS mode, the tested bus showed small fuel savings and somewhat higher nitrogen oxide (NOx) emissions than the baseline comparison bus.

Barnitt, R.; Gonder, J.

2011-04-01T23:59:59.000Z

187

Analysis of the impact of bus implemented EDCs on on-chip SSN  

Science Conference Proceedings (OSTI)

In this paper we analyze the impact of error detecting codes, implemented on an on-chip bus, on the on-chip simultaneous switching noise (SSN). First, we analyze in detail how SSN is impacted by different bus transitions, pointing out its dependency ...

Daniele Rossi; Carlo Steiner; Cecilia Metra

2006-03-01T23:59:59.000Z

188

Ground Source Heat Pump Air Conditioner Monitoring Control System Design Based on CAN Bus  

Science Conference Proceedings (OSTI)

Based on CAN bus technology, chooses ST's ARM Cortex-M3 core, new generation STM32 embedded enhanced processor STM32F103 as main control chip, designs the overall structure of system, CAN functional block diagram, CAN communication software and so on. ... Keywords: CAN bus embedded STM32F103

Tong Gang; Li Ping

2010-06-01T23:59:59.000Z

189

UNDP-GEF Fuel Cell Bus Programme: Update | Open Energy Information  

Open Energy Info (EERE)

UNDP-GEF Fuel Cell Bus Programme: Update UNDP-GEF Fuel Cell Bus Programme: Update Jump to: navigation, search Tool Summary Name: UNDP-GEF Fuel Cell Bus Programme: Update Agency/Company /Organization: United Nations Development Programme, Global Environment Facility Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.thegef.org/gef/sites/thegef.org/files/documents/GEF.C.28.Inf_.12.p The Global Environment Facility (GEF) and the United Nations Development Programme launched a fuel cell bus deployment program to support commercial demonstrations of buses and fueling infrastructure in large bus markets in developing countries. The program's objective was to reduce the long-term greenhouse gas emissions from the transport sector in GEF program countries. How to Use This Tool This tool is most helpful when using these strategies:

190

Solar Storm Closely Watched Worldwide | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storm Closely Watched Worldwide Storm Closely Watched Worldwide Solar Storm Closely Watched Worldwide March 9, 2012 - 10:14am Addthis While this week's solar storm captures the interest of scientists, researchers and people around the world, the Energy Department works with others to monitor the storm's potential impact on the nation's electrical grid. | Image credit: NOAA. While this week's solar storm captures the interest of scientists, researchers and people around the world, the Energy Department works with others to monitor the storm's potential impact on the nation's electrical grid. | Image credit: NOAA. Kenneth Friedman Senior Policy Advisor in the Office of Electricity Delivery and Energy Reliability The solar storm that is capturing the interest of scientists, researchers and people around the world is a geomagnetic disturbance from the sun.

191

STATEMENT OF CONSIDERATIONS REQUEST BY CHEVRONTEXACO WORLDWIDE POWER & GASIFICATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CHEVRONTEXACO WORLDWIDE POWER & GASIFICATION CHEVRONTEXACO WORLDWIDE POWER & GASIFICATION FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER SUBCONTRACT QZ001 UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-99FT40675; W(A)-03-001, CH-1127 The Petitioner, ChevronTexaco Worldwide Power & Gasification (ChevronTexaco) is a subcontractor to Research Triangle Institute (RTI) under the subject cost plus fixed fee agreement for the performance of work entitled, Novel Technologies for Gaseous Containment Control. The purpose of the agreement is to prove the feasibility of synthesis gas clean up techniques, including the warm synthesis gas process based on the RVS-1 sorbent developed by the Department of Energy and RTI and, for reverse selective membrane technology developed by Dupont and Air Liquide, Membrane Dupont Air Liquide (MEDAL) and RTI.

192

Solar Storm Closely Watched Worldwide | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Storm Closely Watched Worldwide Solar Storm Closely Watched Worldwide Solar Storm Closely Watched Worldwide March 9, 2012 - 10:14am Addthis While this week's solar storm captures the interest of scientists, researchers and people around the world, the Energy Department works with others to monitor the storm's potential impact on the nation's electrical grid. | Image credit: NOAA. While this week's solar storm captures the interest of scientists, researchers and people around the world, the Energy Department works with others to monitor the storm's potential impact on the nation's electrical grid. | Image credit: NOAA. Kenneth Friedman Senior Policy Advisor in the Office of Electricity Delivery and Energy Reliability The solar storm that is capturing the interest of scientists, researchers

193

Hydrogen Highways  

E-Print Network (OSTI)

Joan Ogden, The Hope for Hydrogen, Issues in Science andand James S. Cannon. The Hydrogen Energy Transition: MovingHydrogen Highways BY TIMOTHY LIPMAN H 2 T H E S TAT E O F C

Lipman, Timothy

2005-01-01T23:59:59.000Z

194

NREL Energy DataBus/Nonprofit Partners | Open Energy Information  

Open Energy Info (EERE)

Nonprofit Partners Nonprofit Partners < NREL Energy DataBus Jump to: navigation, search Energy Databus Non-Profit Partners Nrellogo.jpg The National Renewable Energy Laboratory is the founder of the Energy Databus. NREL is located in Golden, Colorado. Become a Databus partner If you would like to register as a Databus partner, please send email to with the following information: Organization Name Organization Website Phone Contact Email Contact Name of Contact Description of what you support To be approved as a Databus partner, you must fill in a description that tells the community about what you are in the stages of developing that will work with Databus or what services/support you offer on or around Databus including products that might work with Databus through the Databus

195

TL5002 Provides DDR Bus Termination Power Supply  

E-Print Network (OSTI)

Double data rate (DDR) bus termination power requirements bring new challenges to the power supply by requiring voltage tracking of a reference supply, requiring both sourcing and sinking current, and maintaining a high efficiency over a wide current range. This paper address these issues while presenting an example DDR design of 12 A of output current with voltage outputs between 0.9 V and 1.25 V. Issues and their solutions are provided for the power supply operating as a tradition buck power stage in the sourcing mode as well as for operating as a synchronous boost regulator in the sinking mode. Regulation and control loop characteristics of the examples are presented for both current sinking and sourcing modes of operation. Transient load response is also presented showing output voltage variation, as the current is transitioned from sourcing to sinking.

Robert Kollman; John Betten; Bang S. Lee

2001-01-01T23:59:59.000Z

196

Hydrogen Production  

Office of Scientific and Technical Information (OSTI)

Hydrogen Production Hydrogen Research in DOE Databases Energy Citations Database Information Bridge Science.gov WorldWideScience.org Increase your H2IQ More information Making...

197

Hydrogen sensor  

DOE Patents (OSTI)

A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

2010-11-23T23:59:59.000Z

198

Google Sky, WorldWide Telescope & Celestia in the  

E-Print Network (OSTI)

Google Sky, WorldWide Telescope & Celestia in the Undergraduate Non-Science Major Classroom & Lab of Public Outreach Dept.Astronomy & Astrophysics University of Chicago Sky #12;Google Sky, World interactive labs and self-directed modules that utilize new, emerging, software tools, specifically Google Sky

Collar, Juan I.

199

Hydrogen Storage Technologies Hydrogen Delivery  

E-Print Network (OSTI)

Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This.................................................................................. 13 6. Hydrogen Storage and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, nonbinding, and nonlegal

200

The Overall Energy Balance of the Hydrogen Bus in Berkeley, CA  

E-Print Network (OSTI)

cell buses are being tested in several cities in California as a clean, environmentally stations 8 millions Methane 30 coal/biomass gasification plants 8 millions Coal/sludge 10 nuclear water in the U.S. came from coal, with nuclear power being a distant second at 20.2 percent, and natural gas

Patzek, Tadeusz W.

Note: This page contains sample records for the topic "worldwide hydrogen bus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Heisenberg Spin Bus as a Robust Transmission Line for Perfect State Transfer  

E-Print Network (OSTI)

We study the protocol known as quantum state transfer for a strongly coupled antiferromagnetic spin chain or ring (acting as a spin bus), with weakly coupled external qubits. By treating the weak coupling as a perturbation, we find that perfect state transfer (PST) is possible when second order terms are included in the expansion. We also show that PST is robust against variations in the couplings along the spin bus and between the bus and the qubits. As evidence of the quantum interference which mediates PST, we show that the optimal time for PST can be smaller with larger qubit separations, for an even-size chain or ring.

Sangchul Oh; Lian-Ao Wu; Yun-Pil Shim; Mark Friesen; Xuedong Hu

2011-02-03T23:59:59.000Z

202

Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Third Evaluation Report and Appendices  

DOE Green Energy (OSTI)

This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The prototype fuel cell bus was manufactured by Van Hool and ISE Corp. and features an electric hybrid drive system with a UTC Power PureMotion 120 Fuel Cell Power System and ZEBRA batteries for energy storage. The fuel cell bus started operation in April 2007, and evaluation results through October 2009 are provided in this report.

Chandler, K.; Eudy, L.

2010-01-01T23:59:59.000Z

203

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Quality Issues for Fuel Cell Vehicles Hydrogen Quality Issues for Fuel Cell Vehicles Introduction Developing and implementing fuel quality specifications for hydrogen are prerequisites to the widespread deployment of hydrogen-fueled fuel cell vehicles. Several organizations are addressing this fuel quality issue, including the International Standards Organization (ISO), the Society of Automotive Engineers (SAE), the California Fuel Cell Partnership (CaFCP), and the New Energy and Industrial Technology Development Organization (NEDO)/Japan Automobile Research Institute (JARI). All of their activities, however, have focused on the deleterious effects of specific contaminants on the automotive fuel cell or on-board hydrogen storage systems. While it is possible for the energy industry to provide extremely pure hydrogen, such hydrogen could entail excessive costs. The objective of our task is to develop a process whereby the hydrogen quality requirements may be determined based on life-cycle costs of the complete hydrogen fuel cell vehicle "system." To accomplish this objective, the influence of different contaminants and their concentrations in fuel hydrogen on the life-cycle costs of hydrogen production, purification, use in fuel cells, and hydrogen analysis and quality verification are being assessed.

204

Early Argonne reactor lit the way for worldwide nuclear industry -  

NLE Websites -- All DOE Office Websites (Extended Search)

Early Argonne reactor lit the way for worldwide Early Argonne reactor lit the way for worldwide nuclear industry About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

205

Ubiquitous Indoor Localization and Worldwide Automatic Construction of Floor Plans  

E-Print Network (OSTI)

Although GPS has been considered a ubiquitous outdoor localization technology, we are still far from a similar technology for indoor environments. While a number of technologies have been proposed for indoor localization, they are isolated efforts that are way from a true ubiquitous localization system. A ubiquitous indoor positioning system is envisioned to be deployed on a large scale worldwide, with minimum overhead, to work with heterogeneous devices, and to allow users to roam seamlessly from indoor to outdoor environments. Such a system will enable a wide set of applications including worldwide seamless direction finding between indoor locations, enhancing first responders' safety by providing anywhere localization and floor plans, and providing a richer environment for location-aware social networking applications. We describe an architecture for the ubiquitous indoor positioning system (IPS) and the challenges that have to be addressed to materialize it. We then focus on the feasibility of automating ...

Youssef, Moustafa; Elkhouly, Reem; Lotfy, Amal

2012-01-01T23:59:59.000Z

206

The Wheels on the Bus Go Round and Round... | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Wheels on the Bus Go Round and Round... The Wheels on the Bus Go Round and Round... The Wheels on the Bus Go Round and Round... March 9, 2010 - 5:30am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program I have a love/hate relationship with buses. I love that they save me gasoline, are more efficient than driving a car, and reduce my greenhouse gas emissions. However, I hate them when they're running late! But there is one category of buses that I'm particularly fond of - those that run on alternative fuels. In fact, alternative fuel and advanced technology transit buses offer a number of health, environmental, and social benefits. As anyone who has walked behind a traditional diesel bus knows, the plume of black smoke from its tailpipe is both unpleasant and unhealthy. That

207

Secretary Bodman Tours LNG Powered City Bus in Seoul | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LNG Powered City Bus in Seoul LNG Powered City Bus in Seoul Secretary Bodman Tours LNG Powered City Bus in Seoul December 13, 2006 - 9:46am Addthis Joins Secretary Gutierrez to Highlight Cooperation in Developing and Deploying Clean Energy Technologies SEOUL, KOREA - U.S. Secretary of Energy Samuel W. Bodman today joined U.S. Commerce Secretary Carlos Gutierrez in Seoul, Korea to view a city bus and industrial equipment powered by liquefied natural gas (LNG) built with U.S. technology. Secretaries Bodman and Gutierrez and senior Korean government officials highlighted the importance of diversifying to clean and efficient energy sources to increase global energy security. "South Korea and the United States are allies in advancing the use of cleaner, safer, and healthier clean energy technologies," Secretary Bodman

208

TRB-Transit Cooperative Research Program (TCRP): Case Studies in Bus Rapid  

Open Energy Info (EERE)

TRB-Transit Cooperative Research Program (TCRP): Case Studies in Bus Rapid TRB-Transit Cooperative Research Program (TCRP): Case Studies in Bus Rapid Transit Jump to: navigation, search Tool Summary LAUNCH TOOL Name: TRB-Transit Cooperative Research Program (TCRP): Case Studies in Bus Rapid Transit Agency/Company /Organization: Transportation Research Board Focus Area: Transportation Resource Type: Publications, Lessons learned/best practices, Case studies/examples Website: www.trb.org/Main/Public/Blurbs/152921.aspx Country: United States, Australia, United Kingdom, France, Colombia, Brazil, Ecuador Cost: Free Northern America, Australia and New Zealand, Northern Europe, Western Europe, South America, South America, South America Language: English TRB-Transit Cooperative Research Program (TCRP): Case Studies in Bus Rapid Transit Screenshot

209

The Energy DataBus (Fact Sheet), NREL (National Renewable Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

for particular sites and applications. Free Software for Open-Source Development The Energy DataBus uses open-source software, which not only saves the high cost of licensed...

210

The Wheels on the Bus Go Round and Round... | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Wheels on the Bus Go Round and Round... The Wheels on the Bus Go Round and Round... The Wheels on the Bus Go Round and Round... March 9, 2010 - 5:30am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program I have a love/hate relationship with buses. I love that they save me gasoline, are more efficient than driving a car, and reduce my greenhouse gas emissions. However, I hate them when they're running late! But there is one category of buses that I'm particularly fond of - those that run on alternative fuels. In fact, alternative fuel and advanced technology transit buses offer a number of health, environmental, and social benefits. As anyone who has walked behind a traditional diesel bus knows, the plume of black smoke from its tailpipe is both unpleasant and unhealthy. That

211

Hanford's 200 West Pump and Treat System Garners Worldwide Attention |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

200 West Pump and Treat System Garners Worldwide 200 West Pump and Treat System Garners Worldwide Attention Hanford's 200 West Pump and Treat System Garners Worldwide Attention August 27, 2013 - 12:00pm Addthis The award recognized CH2M HILL for its excellence in the international water industry. CH2M HILL’s Water Business Group's International Client Sector Director Peter Nicol accepted the award from Global Water Awards Speaker and former Mexican President Vicente Fox. The award recognized CH2M HILL for its excellence in the international water industry. CH2M HILL's Water Business Group's International Client Sector Director Peter Nicol accepted the award from Global Water Awards Speaker and former Mexican President Vicente Fox. The 200 West Pump and Treat System design and construction teams utilized energy efficient and sustainable design elements, including recycled steal. This photo shows the system’s processing equipment. Approximately 539 tons, or 5 percent, of the steel used in construction was recycled.

212

Code for Hydrogen Hydrogen Pipeline  

E-Print Network (OSTI)

#12;2 Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August development · Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development · B31.12 Status & Structure · Hydrogen Pipeline issues · Research Needs · Where Do We Go From Here? #12;4 Code

213

DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT  

DOE Green Energy (OSTI)

The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. Within the Combustion Laboratory of the Penn State Energy Institute, they have installed and equipped a Navistar V-8 direct-injection turbodiesel engine for measurement of gaseous and particulate emissions and examination of the impact of fuel composition on diesel combustion. They have also reconfigured a high-pressure viscometer for studies of the viscosity, bulk modulus (compressibility) and miscibility of blends of diesel fuel, dimethyl ether and lubricity additives. The results include baseline emissions, performance and combustion measurements on the Navistar engine for operation on a federal low sulfur diesel fuel (300 ppm S). Most recently, they have examined blends of an oxygenated fuel additive (a liquid fuel called CETANER{trademark}) produced by Air Products, for comparison with dimethyl ether blended at the same weight of oxygen addition, 2 wt.%. While they have not operated the engine on DME yet, they are now preparing to do so. A fuel system for delivery of DME/Diesel blends has been configured and initial investigations at low DME blend ratios (around 5-10 vol%) will begin shortly. They have also performed viscosity measurements on diesel fuel, DME and 50-50 blends of DME in diesel. These tests have verified that DME has a much lower viscosity than the diesel fuel and that the viscosity of the blended fuel is also much lower than the diesel base fuel. This has implications for the injection and atomization of the DME/diesel blends.

Elana M. Chapman; Shirish Bhide; Andre L. Boehman; David Klinikowski

2003-04-01T23:59:59.000Z

214

Dept. of Energy/Dept. of Transportation Gas Turbine Transit Bus Demonstration Program: program plan  

SciTech Connect

This document is the program plan for a cooperative project of the Urban Mass Transportation Administration (UMTA) of the Department of Transportation and the Division of Transportation Energy Conservation (TEC) of the Department of Energy to test and evaluate the use of gas-turbine engines in transit buses. UMTA is responsible for furnishing buses from UMTA grantees, technical direction for bus/engine integration, and coordination of operational use of buses in selected cities. TEC is responsible for providing gas turbines, data acquisition/reduction services, and management for the complete project. The project will be carried out in three phases. In Phase I, prototype turbine engines will be used. One turbine-powered bus and diesel-powered bus will be tested at a test facility to obtain baseline data. Five turbine-powered buses will be evaluated in revenue service in one city. In Phase II, preproduction turbine engines will be used. One turbine-powered bus and diesel-powered bus will be baseline tested and ten turbine-powered buses will be evaluated in two cities. In Phase III, production gas turbine engines will be used. Only the turbine-powered bus will run baseline tests in this phase. Ten turbine-powered buses will be evaluated in two cities.

1978-04-01T23:59:59.000Z

215

Data collection plan for Phase 2 Alternative Fuels Bus Data Collection Program. Final report  

DOE Green Energy (OSTI)

This document constitutes the plan for collecting and reporting data associated with a special set of transit bus demonstrations to be conducted under the Urban Bus Program of the Alternative Motor Fuels Act (AMFA) of 1988. This program, called the Phase 2 Bus Data Collection Program, serves as an adjunct to the Phase I Bus Data Collection Program, collecting detailed data on just a few buses to augment and enhance the Phase 1 data in fulfilling the urban bus requirements of AMFA. Demonstrations will be conducted at a few transit system locations throughout the US and will use alternative fuels and associated technologies to reduce undesirable transit bus exhaust emissions. Several organizations will be involved in the data collection; NREL will manage the program, analyze and store vehicle data, and make these data available through the Alternative Fuels Data Center. This information will enable transit agencies, equipment manufacturers, fuel suppliers, and government policy makers to make informed decisions about buying and using alternative fuels.

Krenelka, T. [Battelle Columbus Labs., OH (United States)

1993-07-01T23:59:59.000Z

216

Analysis of the University of Texas at Austin compressed natural gas demonstration bus. Interim research report  

Science Conference Proceedings (OSTI)

A demonstration compressed natural gas (CNG) bus has been operating on The University of Texas at Austin shuttle system since 1992. This CNG vehicle, provided by the Blue Bird Company, was an opportunity for the University to evaluate the effectiveness of a CNG bus for shuttle operations. Three basic operating comparisons were made: (1) fuel consumption, (2) tire wear, and (3) vehicle performance. The bus was equipped with a data logger, which was downloaded regularly, for trip reports. Tire wear was monitored regularly, and performance tests were conducted at the Natural Gas Vehicle Technology Center. Overall, the data suggest that fuel costs for the CNG bus are comparable to those for University diesel buses. This is a result of the lower fuel price for natural gas. Actual natural gas fuel consumption was higher for the CNG buses than for the diesel buses. Due to weight differences, tire wear was much less on the CNG buses. Finally, after installation of a closed-loop system, the CNG bus out-performed the diesel bus on acceleration, grade climbing ability, and speed.

Wu, C.M.; Matthews, R.; Euritt, M.

1994-06-01T23:59:59.000Z

217

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Center Working With Argonne Contact TTRDC Thermochemical Cycles for Hydrogen Production Argonne researchers are studying thermochemical cycles to determine their potential...

218

Hydrogen: Fueling the Future  

DOE Green Energy (OSTI)

As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen storage will be highlighted in this seminar.

Leisch, Jennifer

2007-02-27T23:59:59.000Z

219

Worldwide status of energy standards for buildings: Appendices  

SciTech Connect

This informal survey was designed to gain information about the worldwide status of energy efficiency standards for buildings, particularly non-residential buildings such as offices, schools, and hotels. The project has three goals: 1. To understand and learn from the experience of countries with existing building energy standards; 2. To locate areas where these lessons might be applied and energy standards might be effectively proposed and developed; and 3. To share the information gathered with all participating countries. These appendices include the survey cover letter, the survey, and the details of selected energy standards in 35 countries, thus providing supporting material for the authors` article of the same title.

Janda, K.B.; Busch, J.F.

1993-02-01T23:59:59.000Z

220

Worldwide reliability surveys of high voltage circuit breakers  

Science Conference Proceedings (OSTI)

This article reports on the results of two CIGRE 13.06 Working Group worldwide surveys of the reliability of high voltage circuit breakers, 63 kV and above. The first inquiry included 78,000 breaker-years of ``in service data`` from 102 utilities in 22 countries during the years 1974--1977 and included all interrupting technologies. The second inquiry included 70,708 breaker-years from 132 utilities in 22 countries for the years 1988--1991 and only included single-pressure SF6 breakers, because this is what most utilities are now buying. Thirty-one US utilities submitted data.

Heising, C.R.

1995-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "worldwide hydrogen bus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Hydrogen Storage  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

222

Hydrogen Fuel  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These...

223

Hydrogen Radialysis  

INL scientists have invented a process of forming chemical compositions, such as a hydrides which can provide a source of hydrogen. The process exposes the chemical composition decaying radio-nuclides which provide the energy to with a hydrogen source ...

224

Hydrogen Safety  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

225

Hydrogen wishes  

Science Conference Proceedings (OSTI)

Hydrogen Wishes, presented at MIT's Center for Advanced Visual Studies, explores the themes of wishes and peace. It dramatizes the intimacy and power of transforming one's breath and vocalized wishes into a floating sphere, a bubble charged with hydrogen. ...

Winslow Burleson; Paul Nemirovsky; Dan Overholt

2003-07-01T23:59:59.000Z

226

Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production DELIVERY FUEL CELLS STORAGE PRODUCTION TECHNOLOGY VALIDATION CODES & STANDARDS SYSTEMS INTEGRATION ANALYSES SAFETY EDUCATION RESEARCH & DEVELOPMENT Economy...

227

Hydrogen Storage  

Science Conference Proceedings (OSTI)

Oct 10, 2012 ... Energy Storage: Materials, Systems and Applications: Hydrogen Storage Program Organizers: Zhenguo "Gary" Yang, Pacific Northwest...

228

Hydrogen Storage  

Science Conference Proceedings (OSTI)

Applied Neutron Scattering in Engineering and Materials Science Research: Hydrogen Storage Sponsored by: Metallurgical Society of the Canadian Institute of...

229

HYDROGEN TECHNOLOGY RESEARCH AT THE SAVANNAH RIVER NATIONAL LABORATORY, CENTER FOR HYDROGEN RESEARCH, AND THE HYDROGEN TECHNOLOGY RESEARCH LABORATORY  

DOE Green Energy (OSTI)

The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. Many of SRNL's programs support dual-use applications. SRNL has participated in projects to convert public transit and utility vehicles for operation on hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

Danko, E

2007-02-26T23:59:59.000Z

230

Research, development and demonstration of a fuel cell/battery powered bus system. Phase 1, Final report  

DOE Green Energy (OSTI)

Purpose of the Phase I effort was to demonstrate feasibility of the fuel cell/battery system for powering a small bus (under 30 ft or 9 m) on an urban bus route. A brassboard powerplant was specified, designed, fabricated, and tested to demonstrate feasibility in the laboratory. The proof-of-concept bus, with a powerplant scaled up from the brassboard, will be demonstrated under Phase II.

NONE

1990-02-28T23:59:59.000Z

231

Worldwide Overview of Lessons Learned from Decommissioning Projects  

Science Conference Proceedings (OSTI)

With an increasing number of radioactive facilities and reactors now reaching the end of their useful life and being taken out of service, there is a growing emphasis worldwide on the safe and efficient decommissioning of such plants. There is a wealth of experience already gained in decommissioning projects for all kinds of nuclear facilities. It is now possible to compare and discuss progress and accomplishments worldwide. In particular, rather than on the factual descriptions of projects, technologies and case histories, it is important to focus on lessons learned: in this way, the return of experience is felt to effectively contribute to progress. Key issues - inevitably based on a subjective ranking - are presented in this paper. Through the exchange of lessons learned, it is possible to achieve full awareness of the need for resources for and constraints of safe and cost-effective decommissioning. What remains now is the identification of specific, remaining issues that may hinder or delay the smooth progress of decommissioning. To this end, lessons learned provide the necessary background information; this paper tries to make extensive use of practical experience gained by the international community.

Laraia, Michele [IAEA, Vienna (Austria)

2008-01-15T23:59:59.000Z

232

Worldwide health effects of the Fukushima Daiichi nuclear accident  

E-Print Network (OSTI)

This study quantifies worldwide health effects of the Fukushima Daiichi nuclear accident on 11 March 2011. Effects are quantified with a 3-D global atmospheric model driven by emission estimates and evaluated against daily worldwide Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) measurements and observed deposition rates. Inhalation exposure, ground-level external exposure, and atmospheric external exposure pathways of radioactive iodine-131, cesium-137, and cesium-134 released from Fukushima are accounted for using a linear no-threshold (LNT) model of human exposure. Exposure due to ingestion of contaminated food and water is estimated by extrapolation. We estimate an additional 130 (151100) cancer-related mortalities and 180 (241800) cancer-related morbidities incorporating uncertainties associated with the exposuredose and doseresponse models used in the study. We also discuss the LNT models uncertainty at low doses. Sensitivities to emission rates, gas to particulate I-131 partitioning, and the mandatory evacuation radius around the plant are also explored, and may increase upper bound mortalities and morbidities in the ranges above to 1300 and 2500, respectively. Radiation exposure to workers at the plant is projected to result in 2 to 12 morbidities. An additional 600 mortalities have been reported due to non-radiological causes such as mandatory evacuations. Lastly, a hypothetical accident at the Diablo Canyon Power Plant in

John E. Ten Hoeve A; Mark Z. Jacobson B

2012-01-01T23:59:59.000Z

233

SAVANNAH RIVER NATIONAL LABORATORY HYDROGEN TECHNOLOGY RESEARCH  

DOE Green Energy (OSTI)

The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

Danko, E

2008-02-08T23:59:59.000Z

234

Hydrogenation apparatus  

DOE Patents (OSTI)

Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

Friedman, J.; Oberg, C.L.; Russell, L.H.

1981-06-23T23:59:59.000Z

235

DOE Hydrogen and Fuel Cells Program: News Archives - 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 January February March April May June July August September October November December January 10 Questions for a Materials Scientist: Brian Larsen DOE Fuel Cell Bus Analysis Finds Fuel Economy to be up to Two Times Higher than Diesel DOE Hydrogen and Fuel Cells Program Releases 2012 Annual Progress Report Rescheduled for January 17: DOE Webinar on Wind-to-Hydrogen Cost Modeling and Project Findings February Automotive Fuel Cell Cost and Durability Target Request For Information Issued Energy Department Announces New Investment to Advance Cost-Competitive Hydrogen Fuel Fueling the Next Generation of Vehicle Technology Webinar February 22: Hydrogen Refueling Protocols March Energy Department Study Examines Potential to Reduce Transportation Petroleum Use and Carbon Emissions

236

Research helps safeguard nuclear workers worldwide - Argonne's Historical  

NLE Websites -- All DOE Office Websites (Extended Search)

Research helps safeguard nuclear workers Research helps safeguard nuclear workers worldwide About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

237

Affordable Digital Planetariums with WorldWide Telescope  

E-Print Network (OSTI)

Digital planetariums can provide a broader range of educational experiences than the more classical planetariums that use star-balls. This is because of their ability to project images, content from current research and the 3D distribution of the stars and galaxies. While there are hundreds of planetariums in the country the reason that few of these are full digital is the cost. In collaboration with Microsoft Research (MSR) we have developed a way to digitize existing planetariums for approximately \\$40,000 using software freely available. We describe here how off the shelf equipment, together with MSR's WorldWide Telescope client can provide a rich and truly interactive experience. This will enable students and the public to pan though multi-wavelength full-sky scientific data sets, explore 3d visualizations of our Solar System (including trajectories of millions of minor planets), near-by stars, and the SDSS galaxy catalog.

Rosenfield, Philip; Fay, Jonathan; Carey, Larry; Sayres, Conor; Tofflemire, Benjamin

2010-01-01T23:59:59.000Z

238

Wired World-Wide Web Interactive Remote Event Display  

Science Conference Proceedings (OSTI)

WIRED (World-Wide Web Interactive Remote Event Display) is a framework, written in the Java{trademark} language, for building High Energy Physics event displays. An event display based on the WIRED framework enables users of a HEP collaboration to visualize and analyze events remotely using ordinary WWW browsers, on any type of machine. In addition, event displays using WIRED may provide the general public with access to the research of high energy physics. The recent introduction of the object-oriented Java{trademark} language enables the transfer of machine independent code across the Internet, to be safely executed by a Java enhanced WWW browser. We have employed this technology to create a remote event display in WWW. The combined Java-WWW technology hence assures a world wide availability of such an event display, an always up-to-date program and a platform independent implementation, which is easy to use and to install.

De Groot, Nicolo

2003-05-07T23:59:59.000Z

239

Hydrogen Safety  

Science Conference Proceedings (OSTI)

... ASHRAE 62.1, 7 air changes per hour, 100 ... I, Division II, Group B: testing and research laboratory; ... Planning Guidance for Hydrogen Projects as a ...

2012-10-09T23:59:59.000Z

240

Study on Intelligent Control Strategy of Battery-Electric Bus Based on the Fuzzy Comprehensive Evaluation Method  

Science Conference Proceedings (OSTI)

How to use the lithium-ion power battery effectively, how to improve the discharging efficiency and the cycle-life of the power battery is a hotspot of research in battery-electric vehicle(BEV) field. The fuzzy comprehensive evaluation method is used ... Keywords: battery-electric bus, CAN-bus, control strategy, fuzzy comprehensive evaluation method

Lin Cheng; Zhou Hui; Sun Fengchun; Nan Jinrui

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "worldwide hydrogen bus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy Basics: Hydrogen Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Hydrogen Fuel Hydrogen...

242

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Jump to: navigation, search TODO: Add description Related Links List of Companies in Hydrogen Sector List of Hydrogen Incentives Hydrogen Energy Data Book Retrieved from...

243

Geological problems in radioactive waste isolation - second worldwide review  

Science Conference Proceedings (OSTI)

The first world wide review of the geological problems in radioactive waste isolation was published by Lawrence Berkeley National Laboratory in 1991. This review was a compilation of reports that had been submitted to a workshop held in conjunction with the 28th International Geological Congress that took place July 9-19, 1989 in Washington, D.C. Reports from 15 countries were presented at the workshop and four countries provided reports after the workshop, so that material from 19 different countries was included in the first review. It was apparent from the widespread interest in this first review that the problem of providing a permanent and reliable method of isolating radioactive waste from the biosphere is a topic of great concern among the more advanced, as well as the developing, nations of the world. This is especially the case in connection with high-level waste (HLW) after its removal from nuclear power plants. The general concensus is that an adequate isolation can be accomplished by selecting an appropriate geologic setting and carefully designing the underground system with its engineered barriers. This document contains the Second Worldwide Review of Geological Problems in Radioactive Waste Isolation, dated September 1996.

Witherspoon, P.A. [ed.

1996-09-01T23:59:59.000Z

244

Hydrogen production  

SciTech Connect

The production of hydrogen by reacting an ash containing material with water and at least one halogen selected from the group consisting of chlorine, bromine and iodine to form reaction products including carbon dioxide and a corresponding hydrogen halide is claimed. The hydrogen halide is decomposed to separately release the hydrogen and the halogen. The halogen is recovered for reaction with additional carbonaceous materials and water, and the hydrogen is recovered as a salable product. In a preferred embodiment the carbonaceous material, water and halogen are reacted at an elevated temperature. In accordance with another embodiment, a continuous method for the production of hydrogen is provided wherein the carbonaceous material, water and at least one selected halogen are reacted in one zone, and the hydrogen halide produced from the reaction is decomposed in a second zone, preferably by electrolytic decomposition, to release the hydrogen for recovery and the halogen for recycle to the first zone. There also is provided a method for recovering any halogen which reacts with or is retained in the ash constituents of the carbonaceous material.

Darnell, A.J.; Parkins, W.E.

1978-08-08T23:59:59.000Z

245

Hydrogen Bibliography  

DOE Green Energy (OSTI)

The Hydrogen Bibliography is a compilation of research reports that are the result of research funded over the last fifteen years. In addition, other documents have been added. All cited reports are contained in the National Renewable Energy Laboratory (NREL) Hydrogen Program Library.

Not Available

1991-12-01T23:59:59.000Z

246

Optimal partitioned fault-tolerant bus layout for reducing power in nanometer designs  

Science Conference Proceedings (OSTI)

As technology scales down to nanometer dimensions, coupling capacitances between adjacent bus wires grow rapidly, and have a significant impact on power consumption and signal integrity of an integrated circuit. As buses are major components of a design, ... Keywords: coupling capacitance, fault-tolerant, low power, reliability

Shanq-Jang Ruan; Edwin Naroska; Chun-Chih Chen

2006-04-01T23:59:59.000Z

247

Orbital disc insulator for SF.sub.6 gas-insulated bus  

DOE Patents (OSTI)

An insulator for supporting a high voltage conductor within a gas-filled grounded housing consists of radially spaced insulation rings fitted to the exterior of the bus and the interior of the grounded housing respectively, and the spaced rings are connected by trefoil type rings which are integrally formed with the spaced insulation rings.

Bacvarov, Dosio C. (Greensburg, PA); Gomarac, Nicholas G. (West Newton, PA)

1977-01-01T23:59:59.000Z

248

IAC-09.C3.2.8 A REDUNDANT POWER BUS FOR  

E-Print Network (OSTI)

. The idea behind the proposed Power Bus is to have power conversion (from solar panels) and power storage") which contain, each: a solar panel; energy storage batteries with the corresponding power converters in a distributed way. For instance: i) accumulating the power from all solar panels towards the load(s); ii

249

SunLine Transit Agency Fuel Cell Transit Bus: Fourth Evaluation Report (Report and Appendices)  

DOE Green Energy (OSTI)

This report describes operations at SunLine Transit Agency for a prototype fuel cell bus and five new compressed natural gas (CNG) buses. This is the fourth evaluation report for this site, and it describes results and experiences from April 2008 through October 2008. These results are an addition to those provided in the previous three evaluation reports.

Chandler, K.; Eudy, L.

2009-01-01T23:59:59.000Z

250

High voltage bus and auxiliary heater control system for an electric or hybrid vehicle  

DOE Green Energy (OSTI)

A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

Murty, Balarama Vempaty (West Bloomfield, MI)

2000-01-01T23:59:59.000Z

251

SunLine Transit Agency Fuel Cell Transit Bus: Fifth Evaluation Report (Report and Appendices)  

DOE Green Energy (OSTI)

This report describes operations at SunLine Transit Agency for a prototype fuel cell bus and five compressed natural gas (CNG) buses. This is the fifth evaluation report for this site, and it describes results and experiences from October 2008 through June 2009. These results are an addition to those provided in the previous four evaluation reports.

Eudy, L.; Chandler, K.

2009-08-01T23:59:59.000Z

252

Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and Appendices  

DOE Green Energy (OSTI)

This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The evaluation period in this report (January 2008 through February 2009) has been chosen to coincide with a UTC Power propulsion system changeout that occurred on January 15, 2008.

Chandler, K.; Eudy, L.

2009-05-01T23:59:59.000Z

253

Bus application of oxygen-enrichment technology and diesel-electric hybrid systems  

DOE Green Energy (OSTI)

The amendments to the Clean Air Act (CAA) mandate very strict limits on particulate, smoke, and other emissions from city buses. The use of alternative fuels, such as compressed natural gas (CNG) or methanol, can help transit operators, such as the Chicago Transit Authority (CTA), meet the mandated limits. However, the capital investment needed to convert the fueling infrastructure and buses is large, as is the expense of training personnel. If a {open_quotes}clean diesel{close_quotes} bus can be implemented with the help of oxygen-enrichment technology or a diesel-electric hybrid system, this large investment could be postponed for many years. The Regional Transportation Authority (RTA) initiated this project to evaluate the possibility of applying these technologies to CTA buses. Argonne National Laboratory (ANL) conducted a limited number of engine tests and computer analyses and concluded that both concepts are practical and will help in a {open_quotes}clean diesel{close_quotes} bus that can meet the mandated limits of the CAA amendments. The oxygen enrichment of combustion air depends on the availability of a compact and economical membrane separator. Because the technology for this critical component is still under development, it is recommended that an actual bus demonstration be delayed until prototype membranes are available. The hybrid propulsion system is ready for the demonstration phase, and it is recommended that the CTA and RTA commence planning for a bus demonstration.

Sekar, R.R.; Marr, W.W.

1993-10-01T23:59:59.000Z

254

Fuzzy Approach to Critical Bus Ranking under Normal and Line Outage Contingencies  

E-Print Network (OSTI)

Identification of critical or weak buses for a given operating condition is an important task in the load dispatch centre. It has become more vital in view of the threat of voltage instability leading to voltage collapse. This paper presents a fuzzy approach for ranking critical buses in a power system under normal and network contingencies based on Line Flow index and voltage profiles at load buses. The Line Flow index determines the maximum load that is possible to be connected to a bus in order to maintain stability before the system reaches its bifurcation point. Line Flow index (LF index) along with voltage profiles at the load buses are represented in Fuzzy Set notation. Further they are evaluated using fuzzy rules to compute Criticality Index. Based on this index, critical buses are ranked. The bus with highest rank is the weakest bus as it can withstand a small amount of load before causing voltage collapse. The proposed method is tested on Five Bus Test System.

Shankar, Shobha

2011-01-01T23:59:59.000Z

255

Optimized Parameter Matching Method of Plug-in Series Hybrid Electric Bus  

Science Conference Proceedings (OSTI)

This research attempts to deal with the coupling-influence among different powertrain parameters in the parameter matching process of Plug-in Series Hybrid Electric Bus(PSHEB), the research target is a PSHEB (with no gearbox) which is currently under ... Keywords: Plug-in, hybrid electric vehicle, parameter matching, Matlab simulation

Kai Xu, Bin Qiu

2012-12-01T23:59:59.000Z

256

Bus Research and Testing Program Heavy-duty Chassis Dynamometer and Emissions Testing Facility  

E-Print Network (OSTI)

Bus Research and Testing Program Heavy-duty Chassis Dynamometer and Emissions Testing Facility, hydrocarbons and carbon dioxide from transit buses and heavy-duty vehicles when they are tested on simulated includes a heavy-duty chassis dynamometer, required for conducting these tests, as well as a heavy

Lee, Dongwon

257

Investigating the electric power distribution system (EPDS) bus voltage in the presence of distributed generation (DG)  

Science Conference Proceedings (OSTI)

This paper investigates the Electric Power Distribution System (EPDS) bus voltage in the presence of Distributed Generation (DG). Distribution Company's (Discos) planner endeavor to develop new planning strategies for their network in order to serve ... Keywords: PSCAD, distributed generation, electric power distribution system, islanding, power quality, voltage stability

Hasham Khan; Mohammad Ahmad Choudhry; Tahir Mahmood; Aamir Hanif

2006-04-01T23:59:59.000Z

258

Extensions to wireless M-Bus protocol for smart metering and smart grid application  

Science Conference Proceedings (OSTI)

Smart metering and smart grid applications are rapidly finding their place in the market in order to improve the provisioning process efficiency of electricity, gas, water and heat. The usage of communication technologies is a major stepping stone for ... Keywords: optimization, smart grid, smart metering, wireless M-Bus

Axel Sikora; Pancra Villalonga; Klaus Landwehr

2012-08-01T23:59:59.000Z

259

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Systems Modeling and Analysis Hydrogen Storage Systems Modeling and Analysis Several different approaches are being pursued to develop on-board hydrogen storage systems for light-duty vehicle applications. The different approaches have different characteristics, such as: the thermal energy and temperature of charge and discharge kinetics of the physical and chemical process steps involved requirements for the materials and energy interfaces between the storage system and the fuel supply system on one hand, and the fuel user on the other Other storage system design and operating parameters influence the projected system costs as well. Argonne researchers are developing thermodynamic, kinetic, and engineering models of the various hydrogen storage systems to understand the characteristics of storage systems based on these approaches and to evaluate their potential to meet the DOE targets for on-board applications. The DOE targets for 2015 include a system gravimetric capacity of 1.8 kWh/kg (5.5 wt%) and a system volumetric capacity of 1.3 kWh/L (40 g/L). We then use these models to identify significant component and performance issues, and evaluate alternative system configurations and design and operating parameters.

260

Hydrogen: Helpful Links & Contacts  

Science Conference Proceedings (OSTI)

Helpful Links & Contacts. Helpful Links. Hydrogen Information, Website. ... Contacts for Commercial Hydrogen Measurement. ...

2013-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "worldwide hydrogen bus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Geological challenges in radioactive waste isolation: Third worldwide review  

SciTech Connect

The broad range of activities on radioactive waste isolation that are summarized in Table 1.1 provides a comprehensive picture of the operations that must be carried out in working with this problem. A comparison of these activities with those published in the two previous reviews shows the important progress that is being made in developing and applying the various technologies that have evolved over the past 20 years. There are two basic challenges in perfecting a system of radioactive waste isolation: choosing an appropriate geologic barrier and designing an effective engineered barrier. One of the most important developments that is evident in a large number of the reports in this review is the recognition that a URL provides an excellent facility for investigating and characterizing a rock mass. Moreover, a URL, once developed, provides a convenient facility for two or more countries to conduct joint investigations. This review describes a number of cooperative projects that have been organized in Europe to take advantage of this kind of a facility in conducting research underground. Another critical development is the design of the waste canister (and its accessory equipment) for the engineered barrier. This design problem has been given considerable attention in a number of countries for several years, and some impressive results are described and illustrated in this review. The role of the public as a stakeholder in radioactive waste isolation has not always been fully appreciated. Solutions to the technical problems in characterizing a specific site have generally been obtained without difficulty, but procedures in the past in some countries did not always keep the public and local officials informed of the results. It will be noted in the following chapters that this procedure has caused some problems, especially when approval for a major component in a project was needed. It has been learned that a better way to handle this problem is to keep all stakeholders fully informed of project plans and hold periodic meetings to brief the public, especially in the vicinity of the selected site. This procedure has now been widely adopted and represents one of the most important developments in the Third Worldwide Review.

Witherspoon Editor, P.A.; Bodvarsson Editor, G.S.

2001-12-01T23:59:59.000Z

262

Hydrogen ICE  

NLE Websites -- All DOE Office Websites (Extended Search)

Chevrolet Silverado 1500HD Hydrogen ICE 1 Conversion Vehicle Specifications Engine: 6.0 L V8 Fuel Capacity: 10.5 GGE Nominal Tank Pressure: 5,000 psi Seatbelt Positions: Five...

263

Hydrogen Production  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

264

Measurements for Hydrogen Storage Materials  

Science Conference Proceedings (OSTI)

Measurements for Hydrogen Storage Materials. Summary: ... Hydrogen is promoted as petroleum replacement in the Hydrogen Economy. ...

2013-07-02T23:59:59.000Z

265

Storing Hydrogen  

DOE Green Energy (OSTI)

Researchers have been studying mesoporous materials for almost two decades with a view to using them as hosts for small molecules and scaffolds for molding organic compounds into new hybrid materials and nanoparticles. Their use as potential storage systems for large quantities of hydrogen has also been mooted. Such systems that might hold large quantities of hydrogen safely and in a very compact volume would have enormous potential for powering fuel cell vehicles, for instance. A sponge-like form of silicon dioxide, the stuff of sand particles and computer chips, can soak up and store other compounds including hydrogen. Studies carried out at the XOR/BESSRC 11-ID-B beamline at the APS have revealed that the nanoscopic properties of the hydrogenrich compound ammonia borane help it store hydrogen more efficiently than usual. The material may have potential for addressing the storage issues associated with a future hydrogen economy. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

Kim, Hyun Jeong; Karkamkar, Abhijeet J.; Autrey, Thomas; Chupas, Peter; Proffen, Thomas E.

2010-05-31T23:59:59.000Z

266

Here is your MEDEX Identification Card WORLDWIDE 24-HOURS A DAY  

E-Print Network (OSTI)

of Medical Records Continuous Updates to Family, Employer and Home Physician Hotel Arrangements 1977, MEDEX has been assisting travelers worldwide by utilizing highly trained, multilingual

Quigg, Chris

267

The potential for bus rapid transit to promote transit oriented development : an analysis of BRTOD in Ottawa, Brisbane, and Pittsburgh  

E-Print Network (OSTI)

This thesis explores the conditions under which bus rapid transit (BRT) can promote transit oriented development (TOD). At a time when cities throughout the U.S. are searching for methods to reduce road congestion and limit ...

Judy, Meredith H. (Meredith Hampton)

2007-01-01T23:59:59.000Z

268

Hydrogen Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

A A H2A: Hydrogen Analysis Margaret K. Mann DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. H2A Charter * H2A mission: Improve the transparency and consistency of approach to analysis, improve the understanding of the differences among analyses, and seek better validation from industry. * H2A was supported by the HFCIT Program H2A History * First H2A meeting February 2003 * Primary goal: bring consistency & transparency to hydrogen analysis * Current effort is not designed to pick winners - R&D portfolio analysis - Tool for providing R&D direction * Current stage: production & delivery analysis - consistent cost methodology & critical cost analyses * Possible subsequent stages: transition analysis, end-point

269

All Other Editions Are Obsolete U.S. Department of Energy Shuttle Bus Passenger List  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

511.1 511.1 (02-94) All Other Editions Are Obsolete U.S. Department of Energy Shuttle Bus Passenger List Date: Time: Bus Number: Driver's Signature: The U.S. Department of Energy (DOE) Shuttle operates Express between the Germantown Building and the Washington Office (Forrestal Building). ICC regulations prohibits en-route stops. The information being collected below is for the purpose of identifying individuals utilizing DOE Shuttle service. It is not retrievable by a personal identifier and is, therefore, not being kept in a Privacy Act system of records. Official Government Travelers I certify that travel on this trip is for Official Government business. (Please print all information) Name: (First/Last) Office Symbol or Agency Duty Station 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

270

Multilevel-Dc-Bus Inverter For Providing Sinusoidal And Pwm Electrical Machine Voltages  

DOE Patents (OSTI)

A circuit for controlling an ac machine comprises a full bridge network of commutation switches which are connected to supply current for a corresponding voltage phase to the stator windings, a plurality of diodes, each in parallel connection to a respective one of the commutation switches, a plurality of dc source connections providing a multi-level dc bus for the full bridge network of commutation switches to produce sinusoidal voltages or PWM signals, and a controller connected for control of said dc source connections and said full bridge network of commutation switches to output substantially sinusoidal voltages to the stator windings. With the invention, the number of semiconductor switches is reduced to m+3 for a multi-level dc bus having m levels. A method of machine control is also disclosed.

Su, Gui-Jia (Knoxville, TN)

2005-11-29T23:59:59.000Z

271

SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report  

NLE Websites -- All DOE Office Websites (Extended Search)

SunLine Transit Agency SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report L. Eudy and K. Chandler Technical Report NREL/TP-5600-57560 January 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report L. Eudy and K. Chandler Prepared under Task No. HT12.8210 Technical Report NREL/TP-5600-57560 January 2013 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

272

{open_quotes}Secure Bus{close_quotes} disturbance-free power at the utility substation level  

Science Conference Proceedings (OSTI)

Over the last 18 months Public Service Company of New Mexico (PNM), El Camino Real Engineering, Inc. (CRE), Los Alamos National Laboratory (LANL) and Sandia National Laboratories (SNL) have worked on the development of disturbance-free power at the medium voltage substation level. The work resulted in the Secure Bus concept, a system in which a medium voltage bus in a substation is immune to power outages and voltage sags on the utility source. The Secure Bus voltage is also immune to voltage sags resulting from faults on any distribution feeder connected to the bus. The Secure Bus concept originated from work conducted to improve power quality for large high-tech manufacturing facilities, in particular for large semiconductor manufacturing plants. For the demands on quality power of a modern facility conventional equipment is not adequate for protecting the end user. For example, the operation of conventional vacuum breakers during short circuit conditions on a feeder circuit, requiring 3 to 5 cycles for breaker opening, does not allow for fast enough current interruption to avoid a voltage dip on the main bus. A sever voltage sag could result in a shut down of sensitive equipment being supplied by the other feeder circuits, which are connected to the main bus. The circumvent the problem, a fast breaker was introduced which interrupts the short circuit before the current causes a significant voltage disturbance. To make the bus immune also to power disturbances caused by power outages, energy storage is introduced to provide the necessary energy back-up in case the primary source is not available.

Boenig, H.J. [Los Alamos National Lab., NM (United States); Jones, W.H. [El Camino Real Engineering, Inc., Corrales, NM (United States)

1996-12-01T23:59:59.000Z

273

FCT Hydrogen Production: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts to someone by E-mail Share FCT Hydrogen Production: Contacts on Facebook Tweet about FCT Hydrogen Production: Contacts on Twitter Bookmark FCT Hydrogen Production:...

274

Hydrogen Technologies Group  

DOE Green Energy (OSTI)

The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

Not Available

2008-03-01T23:59:59.000Z

275

Hydrogen Transition Infrastructure Analysis  

DOE Green Energy (OSTI)

Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

Melendez, M.; Milbrandt, A.

2005-05-01T23:59:59.000Z

276

The Transition to Hydrogen  

E-Print Network (OSTI)

Prospects for Building a Hydrogen Energy Infrastructure,and James S. Cannon. The Hydrogen Energy Transition: Movingof Energy, National Hydrogen Energy Roadmap, November 2002.

Ogden, Joan

2005-01-01T23:59:59.000Z

277

Hydrogen SRNL Connection  

hydrogen storage. Why is Savannah River National Laboratory conducting hydrogen research and development? ... Both the Department of Energys hydrogen ...

278

FCT Hydrogen Storage: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts to someone by E-mail Share FCT Hydrogen Storage: Contacts on Facebook Tweet about FCT Hydrogen Storage: Contacts on Twitter Bookmark FCT Hydrogen Storage: Contacts on...

279

National Hydrogen Energy Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen Energy Roadmap...

280

National Hydrogen Energy Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

NATIONAL HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen...

Note: This page contains sample records for the topic "worldwide hydrogen bus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

High voltage bus and auxiliary heater control system for an electric or hybrid vehicle  

DOE Patents (OSTI)

A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

Murty, Balarama Vempaty (West Bloomfield, MI)

2000-01-01T23:59:59.000Z

282

St. Louis Metro Biodiesel (B20) Transit Bus Evaluation: 12-Month Final Report  

DOE Green Energy (OSTI)

The St. Louis Metro Bodiesel Transit Bus Evaluation project is being conducted under a Cooperative Research and Development Agreement between NREL and the National Biodiesel Board to evaluate the extended in-use performance of buses operating on B20 fuel. The objective of this research project is to compare B20 and ultra-low sulfur diesel buses in terms of fuel economy, veicles maintenance, engine performance, component wear, and lube oil performance.

Barnitt, R.; McCormick, R. L.; Lammert, M.

2008-07-01T23:59:59.000Z

283

Set up DataBus as a system service? | OpenEI Community  

Open Energy Info (EERE)

Set up DataBus as a system service? Set up DataBus as a system service? Home > Groups > Databus What is the recommended way to configure a system service for DataBus? My old-skool approach would be to write a script in /etc/init.d/ . Are there specific recommendations or requirements for the start & stop commmands? thanks, Submitted by Hopcroft on 6 August, 2013 - 14:33 1 answer Points: 0 The start command would be just like the runProduction.sh script found in databus/webapp directory though you probably want to log the pid. echo $! > pid.file and the stop script can use the pid to kill {pid} using the pid from that file. The webservers are stateless so killing them is is not a big deal...there is nothing they need to cleanup. Deanhiller on 7 August, 2013 - 06:14 Groups Menu You must login in order to post into this group.

284

Set up DataBus as a system service? | OpenEI Community  

Open Energy Info (EERE)

Set up DataBus as a system service? Set up DataBus as a system service? Home > Groups > Databus What is the recommended way to configure a system service for DataBus? My old-skool approach would be to write a script in /etc/init.d/ . Are there specific recommendations or requirements for the start & stop commmands? thanks, Submitted by Hopcroft on 6 August, 2013 - 14:33 1 answer Points: 0 The start command would be just like the runProduction.sh script found in databus/webapp directory though you probably want to log the pid. echo $! > pid.file and the stop script can use the pid to kill {pid} using the pid from that file. The webservers are stateless so killing them is is not a big deal...there is nothing they need to cleanup. Deanhiller on 7 August, 2013 - 06:14 Groups Menu You must login in order to post into this group.

285

The effect of magnetic field on optimal design of a rigid-bus substation  

SciTech Connect

Substation rigid-bus design involves electrical, mechanical, and structural considerations. In order to integrate these considerations into one document, IEEE in cooperation with ANSI has issued a comprehensive guide for design of substation rigid-bus systems. The design process based on this guide involves substantial manual effort to integrate all types of calculations. This is particularly evident when the computations have to be repeated several times in order to arrive at a more economic design. In an earlier paper the authors presented a mathematical model and computer program which automates the design process. Recently there has been concern expressed about the possible biological effects of low level magnetic fields. In view of this, a new design constraint taking into account the limits imposed on the magnitude of the magnetic field can be added to the design guidelines. In this paper the authors introduce such a constraint and they show how the magnitude of allowable magnetic field at a specified distance from the station buses affects the optimal design of a rigid bus substation.

Anders, G.J.; Ford, G.L.; Horrocks, D.J. (Ontario Hydro, Toronto, Ontario (Canada))

1994-07-01T23:59:59.000Z

286

Hydrogen Generation From Electrolysis  

SciTech Connect

Small-scale (100-500 kg H2/day) electrolysis is an important step in increasing the use of hydrogen as fuel. Until there is a large population of hydrogen fueled vehicles, the smaller production systems will be the most cost-effective. Performing conceptual designs and analyses in this size range enables identification of issues and/or opportunities for improvement in approach on the path to 1500 kg H2/day and larger systems. The objectives of this program are to establish the possible pathways to cost effective larger Proton Exchange Membrane (PEM) water electrolysis systems and to identify areas where future research and development efforts have the opportunity for the greatest impact in terms of capital cost reduction and efficiency improvements. System design and analysis was conducted to determine the overall electrolysis system component architecture and develop a life cycle cost estimate. A design trade study identified subsystem components and configurations based on the trade-offs between system efficiency, cost and lifetime. Laboratory testing of components was conducted to optimize performance and decrease cost, and this data was used as input to modeling of system performance and cost. PEM electrolysis has historically been burdened by high capital costs and lower efficiency than required for large-scale hydrogen production. This was known going into the program and solutions to these issues were the focus of the work. The program provided insights to significant cost reduction and efficiency improvement opportunities for PEM electrolysis. The work performed revealed many improvement ideas that when utilized together can make significant progress towards the technical and cost targets of the DOE program. The cell stack capital cost requires reduction to approximately 25% of todays technology. The pathway to achieve this is through part count reduction, use of thinner membranes, and catalyst loading reduction. Large-scale power supplies are available today that perform in a range of efficiencies, >95%, that are suitable for the overall operational goals. The balance of plant scales well both operationally and in terms of cost becoming a smaller portion of the overall cost equation as the systems get larger. Capital cost reduction of the cell stack power supplies is achievable by modifying the system configuration to have the cell stacks in electrical series driving up the DC bus voltage, thereby allowing the use of large-scale DC power supply technologies. The single power supply approach reduces cost. Elements of the cell stack cost reduction and efficiency improvement work performed in the early stage of the program is being continued in subsequent DOE sponsored programs and through internal investment by Proton. The results of the trade study of the 100 kg H2/day system have established a conceptual platform for design and development of a next generation electrolyzer for Proton. The advancements started by this program have the possibility of being realized in systems for the developing fueling markets in 2010 period.

Steven Cohen; Stephen Porter; Oscar Chow; David Henderson

2009-03-06T23:59:59.000Z

287

Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Objectives - Develop and verify: On-board hydrogen storage systems achieving: 1.5 kWhkg (4.5 wt%), 1.2 kWhL, and 6kWh by 2005 2 kWhkg (6 wt%), 1.5 kWhL, and 4kWh by...

288

DOE Hydrogen Analysis Repository: Distributed Hydrogen Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

government interests, a variety of vendors, and numerous utilities. Keywords: Hydrogen production, natural gas, costs Purpose Assess progress toward the 2005 DOE Hydrogen...

289

DOE Hydrogen Analysis Repository: Hydrogen Futures Simulation...  

NLE Websites -- All DOE Office Websites (Extended Search)

hydrogen scenarios will affect carbon and other environmental effluents and U.S. oil import requirements Outputs: Delivered hydrogen costs (cost per gallon of gas...

290

DOE Hydrogen Analysis Repository: Hydrogen Refueling Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Refueling Infrastructure Cost Analysis Project Summary Full Title: Hydrogen Refueling Infrastructure Cost Analysis Project ID: 273 Principal Investigator: Marc Melaina...

291

DOE Hydrogen Analysis Repository: Hydrogen Infrastructure Market...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Infrastructure Market Readiness Analysis Project Summary Full Title: Hydrogen Infrastructure Market Readiness Analysis Project ID: 268 Principal Investigator: Marc Melaina...

292

DOE Hydrogen Analysis Repository: Electrolytic Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

by Principal Investigator Projects by Date U.S. Department of Energy Electrolytic Hydrogen Production Project Summary Full Title: Summary of Electrolytic Hydrogen Production:...

293

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network (OSTI)

and Renewable Energy, Worldwide Web, http://www.eere.energy.gov/state_state and regional levels, and our assessment of the technological status of hydrogen and renewable energyStates are funding demonstration projects for hydrogen pro- duction from renewable energy

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

294

Hydrogen Internal Combustion Engine Two Wheeler with on-board Metal Hydride Storage  

E-Print Network (OSTI)

in India and China as compared to worldwide averages (Tables 1, 2). While the growth rate of renewable. The eventual goal is to fuel the vehicle with domestically produced renewable hydrogen. Renewable hydrogen can of renewable energy sources is very limited and needs to be aggressively increased. This will help combat

295

Hydrogen Technology Validation  

Fuel Cell Technologies Publication and Product Library (EERE)

This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

296

Hydrogen Analysis Group  

DOE Green Energy (OSTI)

NREL factsheet that describes the general activites of the Hydrogen Analysis Group within NREL's Hydrogen Technologies and Systems Center.

Not Available

2008-03-01T23:59:59.000Z

297

HYDROGEN TECHNOLOGY RESEARCH AT THE SAVANNAH RIVER NATIONAL LABORATORY  

DOE Green Energy (OSTI)

The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

Danko, E

2009-03-02T23:59:59.000Z

298

Development of a Physics of Failure Model and Quantitative Assessment of the Fire Fatality Risk of Compressed Natural Gas Bus Cylinders.  

E-Print Network (OSTI)

??Title of Dissertation: DEVELOPMENT OF A PHYSICS OF FAILURE MODEL AND QUANTITATIVE ASSESSMENT OF THE FIRE FATALITY RISKS OF COMPRESSED NATURAL GAS BUS CYLINDERS The (more)

Chamberlain, Samuel Seamore

2004-01-01T23:59:59.000Z

299

Hydrogen Sensor Testing, Hydrogen Technologies (Fact Sheet)  

DOE Green Energy (OSTI)

Factsheet describing the hydrogen sensor testing laboratory at the National Renewable Energy Laboratory.

Not Available

2008-11-01T23:59:59.000Z

300

Nuclear Hydrogen Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Nuclear Research Advanced Nuclear Research Office of Nuclear Energy, Science and Technology FY 2003 Programmatic Overview Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Office of Nuclear Energy, Science and Technology Henderson/2003 Hydrogen Initiative.ppt 2 Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Program Goal * Demonstrate the economic commercial-scale production of hydrogen using nuclear energy by 2015 Need for Nuclear Hydrogen * Hydrogen offers significant promise for reduced environmental impact of energy use, specifically in the transportation sector * The use of domestic energy sources to produce hydrogen reduces U.S. dependence on foreign oil and enhances national security * Existing hydrogen production methods are either inefficient or produce

Note: This page contains sample records for the topic "worldwide hydrogen bus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hydrogen Storage Technologies: Long-Term Commercialization Approach with First Products First  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Technologies Long-term commercialization approach with first products first Hydrogen and Fuel Cell Technologies Manufacturing R&D Workshop Washington, DC Glenn Rambach August 11, 2011 Potential market area for fuel cells (or other power plants). Defined by peak power vs. cost per unit power capacity (W vs. $/kW) for typical applications currently satisfied by legacy technologies. Auto Transit bus 2-cycle scooter Portable generator Wheelchair Fork lift Telecom backup Strategic portable Educational device Retail A Less difficult Less difficult (smaller units) (cost tolerant market) Auto Transit bus 2-cycle scooter Portable generator Wheelchair Fork lift Telecom backup Strategic portable Educational device Retail A Range of application size and specific cost that all can be commercially satisfied

302

Hydrogen as a fuel  

SciTech Connect

A panel of the Committee on Advanced Energy Storage Systems of the Assembly of Engineering has examined the status and problems of hydrogen manufacturing methods, hydrogen transmission and distribution networks, and hydrogen storage systems. This examination, culminating at a time when rapidly changing conditions are having noticeable impact on fuel and energy availability and prices, was undertaken with a view to determining suitable criteria for establishing the pace, timing, and technical content of appropriate federally sponsored hydrogen R and D programs. The increasing urgency to develop new sources and forms of fuel and energy may well impact on the scale and timing of potential future hydrogen uses. The findings of the panel are presented. Chapters are devoted to hydrogen sources, hydrogen as a feedstock, hydrogen transport and storage, hydrogen as a heating fuel, automotive uses of hydrogen, aircraft use of hydrogen, the fuel cell in hydrogen energy systems, hydrogen research and development evaluation, and international hydrogen programs.

1979-01-01T23:59:59.000Z

303

Provisionally Corrected Surface Wind Data, Worldwide Ocean-Atmosphere Surface Fields, and Sahellan Rainfall Variability  

Science Conference Proceedings (OSTI)

Worldwide ship datasets of sea surface temperature (SST), sea level pressure (SLP), and surface vector wind are analyzed for a July-September composite of five Sabelian wet years (1950, 1952, 1953, 1954, 1958) minus five Sahelian dry years (1972, ...

M. Neil Ward

1992-05-01T23:59:59.000Z

304

Life Cycle Inventory of Biodiesel and Petroleum Diesel for Use in an Urban Bus  

NLE Websites -- All DOE Office Websites (Extended Search)

SR-580-24089 UC Category 1503 SR-580-24089 UC Category 1503 Life Cycle Inventory of Biodiesel and Petroleum Diesel for Use in an Urban Bus A Joint Study Sponsored by: U.S. Department of Agriculture and U.S. Department of Energy Final Report May 1998 NOTICE NOTICE: This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees,

305

Compressed Natural Gas (CNG) Transit Bus Experience Survey: April 2009--April 2010  

Science Conference Proceedings (OSTI)

This survey was commissioned by the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) to collect and analyze experiential data and information from a cross-section of U.S. transit agencies with varying degrees of compressed natural gas (CNG) bus and station experience. This information will be used to assist DOE and NREL in determining areas of success and areas where further technical or other assistance might be required, and to assist them in focusing on areas judged by the CNG transit community as priority items.

Adams, R.; Horne, D. B.

2010-09-01T23:59:59.000Z

306

Monitor Worldwide  

NLE Websites -- All DOE Office Websites (Extended Search)

NRC guidance on the need for integration of performance assessment and data collection NUREG-1573 Monitor Scientific Monitoring Monitoring * Two distinct situations - A proposed...

307

DOE Hydrogen and Fuel Cells Program: Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Search help Home > Hydrogen Storage Printable Version Hydrogen Storage Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell power...

308

FCT Hydrogen Storage: The 'National Hydrogen Storage Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

The 'National Hydrogen Storage Project' to someone by E-mail Share FCT Hydrogen Storage: The 'National Hydrogen Storage Project' on Facebook Tweet about FCT Hydrogen Storage: The...

309

Hydrogen from Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U.S. Department of Energy DOE Workshop on Hydrogen Separations and Purification Technologies September 8, 2004 Presentation Outline ƒ Hydrogen Initiatives ƒ Hydrogen from Coal Central Production Goal ƒ Why Coal ƒ Why Hydrogen Separation Membranes ƒ Coal-based Synthesis Gas Characteristics ƒ Technical Barriers ƒ Targets ƒ Future Plans 2 3 Hydrogen from Coal Program Hydrogen from Coal Program FutureGen FutureGen Hydrogen Fuel Initiative Hydrogen Fuel Initiative Gasification Fuel Cells Turbines Gasification Fuel Cells Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Supports the Hydrogen Fuel Initiative and FutureGen * The Hydrogen Fuel Initiative is a $1.2 billion RD&D program to develop hydrogen

310

Introduction to hydrogen energy  

SciTech Connect

The book comprises the following papers: primary energy sources suitable for hydrogen production, thermochemical and electrolytic production of hydrogen from water, hydrogen storage and transmission methods, hydrogen-oxygen utilization devices, residential and industrial utilization of energy, industrial utilization of hydrogen, use of hydrogen as a fuel for transportation, an assessment of hydrogen-fueled navy ships, mechanisms and strategies of market penetration for hydrogen, and fossil/hydrogen energy mix and population control. A separate abstract was prepared for each paper for ERDA Energy Research Abstracts (ERA). (LK)

Veziroglu, T.N. (ed.)

1975-01-01T23:59:59.000Z

311

Advanced Hydrogen Turbine Development  

DOE Green Energy (OSTI)

Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

Joesph Fadok

2008-01-01T23:59:59.000Z

312

Mechanochemical hydrogenation of coal  

DOE Patents (OSTI)

Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

Yang, Ralph T. (Tonawanda, NY); Smol, Robert (East Patchogue, NY); Farber, Gerald (Elmont, NY); Naphtali, Leonard M. (Washington, DC)

1981-01-01T23:59:59.000Z

313

Statistical Characterization of School Bus Drive Cycles Collected via Onboard Logging Systems  

Science Conference Proceedings (OSTI)

In an effort to characterize the dynamics typical of school bus operation, National Renewable Energy Laboratory (NREL) researchers set out to gather in-use duty cycle data from school bus fleets operating across the country. Employing a combination of Isaac Instruments GPS/CAN data loggers in conjunction with existing onboard telemetric systems resulted in the capture of operating information for more than 200 individual vehicles in three geographically unique domestic locations. In total, over 1,500 individual operational route shifts from Washington, New York, and Colorado were collected. Upon completing the collection of in-use field data using either NREL-installed data acquisition devices or existing onboard telemetry systems, large-scale duty-cycle statistical analyses were performed to examine underlying vehicle dynamics trends within the data and to explore vehicle operation variations between fleet locations. Based on the results of these analyses, high, low, and average vehicle dynamics requirements were determined, resulting in the selection of representative standard chassis dynamometer test cycles for each condition. In this paper, the methodology and accompanying results of the large-scale duty-cycle statistical analysis are presented, including graphical and tabular representations of a number of relationships between key duty-cycle metrics observed within the larger data set. In addition to presenting the results of this analysis, conclusions are drawn and presented regarding potential applications of advanced vehicle technology as it relates specifically to school buses.

Duran, A.; Walkowicz, K.

2013-10-01T23:59:59.000Z

314

FCT Hydrogen Production: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Hydrogen Production: Basics on Facebook Tweet about FCT Hydrogen Production: Basics on Twitter Bookmark FCT Hydrogen Production: Basics on Google Bookmark FCT Hydrogen Production: Basics on Delicious Rank FCT Hydrogen Production: Basics on Digg Find More places to share FCT Hydrogen Production: Basics on AddThis.com... Home Basics Central Versus Distributed Production Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of hydrogen production in photobioreactor Hydrogen, chemical symbol "H", is the simplest element on earth. An atom of hydrogen has only one proton and one electron. Hydrogen gas is a diatomic

315

Energy Basics: Hydrogen Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Hydrogen Fuel Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal,...

316

NREL: Learning - Hydrogen Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Basics Hydrogen is a clean-burning fuel, and when combined with oxygen in a fuel cell, it produces heat and electricity with only water vapor as a by-product. But hydrogen...

317

Solar Hydrogen Conversion Background  

E-Print Network (OSTI)

Solar Hydrogen Conversion Background: The photoelectrochemical production of hydrogen has drawn properties In order to develop better materials for solar energy applications, in-depth photoelectrochemical simulated solar irradiance. Hydrogen production experiments are conducted in a sealed aluminum cell

Raftery, Dan

318

The Hype About Hydrogen  

E-Print Network (OSTI)

Review: The Hype About Hydrogen By Joseph J. Romm ReviewedJ. Romm. The Hype About Hydrogen. Washington, DC: IslandEmissions. The Hype About Hydrogen describes in detail what

Mirza, Umar Karim

2006-01-01T23:59:59.000Z

319

FCT Hydrogen Storage: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Share FCT Hydrogen Storage: Basics on Facebook Tweet about FCT Hydrogen Storage: Basics on Twitter Bookmark FCT Hydrogen Storage: Basics on Google...

320

Hydrogen (H2)  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen (H2) Hydrogen (H2) Historical Records from Ice Cores Deuterium Record from Dome C, Antarctica Continuous Measurements Advanced Global Atmospheric Gases Experiment (AGAGE,...

Note: This page contains sample records for the topic "worldwide hydrogen bus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Hydrogen Program Overview  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to the DOE Hydrogen Program. It describes the program mission and answers the question: Why Hydrogen?

322

Hydrogen and Infrastructure Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Infrastructure Costs Hydrogen Infrastructure Market Readiness Workshop Washington D.C. February 17, 2011 Fred Joseck U.S. Department of...

323

Hydrogen Permeability and Integrity of Hydrogen  

E-Print Network (OSTI)

- Materials Solutions for Hydrogen Delivery in Pipelines - Natural Gas Pipelines for Hydrogen Use #12;3 OAK embrittlement of pipeline steels under high gaseous pressures relevant to hydrogen gas transmission pipeline behavior as function of pressure and temperature - Effects of steel composition, microstructure

324

www.hydrogenics.com Hydrogenics Corporation  

E-Print Network (OSTI)

integration capabilities · Control and load profile software Hydrogen Energy Storage and Power Systems · Off Power ...Powering Change #12;www.hydrogenics.com Hydrogenics Profile Designer and manufacturer-grid renewable power · On-grid community or residential power · Grid incentives for load control · Renewable

325

FCT Hydrogen Delivery: Hydrogen Delivery R&D Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Delivery R&D Activities to someone by E-mail Share FCT Hydrogen Delivery: Hydrogen Delivery R&D Activities on Facebook Tweet about FCT Hydrogen Delivery: Hydrogen Delivery...

326

The year open (energy) data went worldwide | OpenEI Community  

Open Energy Info (EERE)

The year open (energy) data went worldwide The year open (energy) data went worldwide Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(1992) Super contributor 9 March, 2010 - 10:39 imported OpenEI When we say that OpenEI is a Linked Data system, what does it really mean to you? In short, it means that OpenEI data can easily be connected to other data on the Web (in a standardized way). Okay, but what does that really mean to you? None other than the founder of the Web himself, Tim Berners-Lee, provided some examples to answer that question at a recent TED talk: TED 2010 Video: The year open data went worldwide And if you missed his talk from last year, it provides even more information on the importance of Linked Data: TED 2009 Video: Tim Berners-Lee on the next Web

327

US Navy mobility fuels: Worldwide survey and analysis of both commercial and Navy fuels. Final report  

SciTech Connect

Quality and worldwide availability of distillate fuels have become increasing concerns to the U.S. Department of Defense. In response to these concerns, the David Taylor Research Center (DTRC) has conducted a worldwide survey of such fuels through a contract with the National Institute for Petroleum and Energy Research (NIPER). Representative fuels were collected at both Navy and commercial ports around the world through a NIPER subcontract to ABS Worldwide Technical Services (ABSTECH). The collected fuels were Naval Distillate Fuel (MIL-F-16884H, NATO F-76), Marine Gas Oil (MGO), Heavy Marine Gas Oil (HMGO), and Marine Diesel Fuel (MDF) for the Navy; Automotive/Truck Diesel for the Army; and Aviation Turbine Fuel (MIL-T-5624L, NATO JP-5) for the Naval Air Propulsion Center. The Navy F-76 fuel samples were characterized at NIPER by 44 different fuel property analyses.

Woodward, P.W.; Shay, J.Y.

1989-07-01T23:59:59.000Z

328

Hydrogen Pipeline Discussion  

NLE Websites -- All DOE Office Websites (Extended Search)

praxair.com praxair.com Copyright © 2003, Praxair Technology, Inc. All rights reserved. Hydrogen Pipeline Discussion BY Robert Zawierucha, Kang Xu and Gary Koeppel PRAXAIR TECHNOLOGY CENTER TONAWANDA, NEW YORK DOE Hydrogen Pipeline Workshop Augusta, GA August 2005 2 Introduction Regulatory and technical groups that impact hydrogen and hydrogen systems ASME, DOE, DOT etc, Compressed Gas Association activities ASTM TG G1.06.08 Hydrogen pipelines and CGA-5.6 Selected experience and guidance Summary and recommendations 3 CGA Publications Pertinent to Hydrogen G-5: Hydrogen G-5.3: Commodity Specification for Hydrogen G-5.4: Standard for Hydrogen Piping at Consumer Locations G-5.5: Hydrogen Vent Systems G-5.6: Hydrogen Pipeline Systems (IGC Doc 121/04/E) G-5.7: Carbon Monoxide and Syngas

329

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

<-- Back to Hydrogen Gateway <-- Back to Hydrogen Gateway Technical Reference for Hydrogen Compatibility of Materials KIA FCEV SUNRISE MG 7955 6 7.jpg Guidance on materials selection for hydrogen service is needed to support the deployment of hydrogen as a fuel as well as the development of codes and standards for stationary hydrogen use, hydrogen vehicles, refueling stations, and hydrogen transportation. Materials property measurement is needed on deformation, fracture and fatigue of metals in environments relevant to this hydrogen economy infrastructure. The identification of hydrogen-affected material properties such as strength, fracture resistance and fatigue resistance are high priorities to ensure the safe design of load-bearing structures. To support the needs of the hydrogen community, Sandia National

330

On 271 miles of Twin Cities-area roadways, bus drivers are allowed to operate their vehi-  

E-Print Network (OSTI)

Ferguson continued on page 2 Bus continued on page 3 Conference continued on page 2 Public-private of research at Reason Foundation, titled "P3s-- Public Private Partnerships? Or Peripatetic Pain in the Pants resources through the use of public-private partner- ships (P3s or PPPs) has become increasingly attractive

Minnesota, University of

331

Adaptive fuzzy regulation of the DC-bus capacitor voltage in a wind energy conversion system (WECS)  

Science Conference Proceedings (OSTI)

This paper proposes a new voltage regulator of the DC-bus capacitor of a variable speed wind power generation system based on adaptive fuzzy system. The change in the fuzzy rule base is done using a variable-structure direct adaptive control algorithm ... Keywords: Adaptive control, Fuzzy systems, Wind energy conversion systems

A. L. Elshafei; M. A. Azzouz

2011-05-01T23:59:59.000Z

332

The Pet-Fish problem on the World-Wide Web  

E-Print Network (OSTI)

We identify the presence of Pet-Fish problem situations and the corresponding Guppy effect of concept theory on the World-Wide Web. For this purpose, we introduce absolute weights for words expressing concepts and relative weights between words expressing concepts, and the notion of 'meaning bound' between two words expressing concepts, making explicit use of the conceptual structure of the World-Wide Web. The Pet-Fish problem occurs whenever there are exemplars - in the case of Pet and Fish these can be Guppy or Goldfish - for which the meaning bound with respect to the conjunction is stronger than the meaning bounds with respect to the individual concepts.

Aerts, Diederik; D'Hooghe, Bart; Sozzo, Sandro

2010-01-01T23:59:59.000Z

333

DOE Permitting Hydrogen Facilities: Hydrogen Fueling Stations  

NLE Websites -- All DOE Office Websites (Extended Search)

Stations Stations Public-use hydrogen fueling stations are very much like gasoline ones. In fact, sometimes, hydrogen and gasoline cars can be fueled at the same station. These stations offer self-service pumps, convenience stores, and other services in high-traffic locations. Photo of a Shell fueling station showing the site convenience store and hydrogen and gasoline fuel pumps. This fueling station in Washington, D.C., provides drivers with both hydrogen and gasoline fuels Many future hydrogen fueling stations will be expansions of existing fueling stations. These facilities will offer hydrogen pumps in addition to gasoline or natural gas pumps. Other hydrogen fueling stations will be "standalone" operations. These stations will be designed and constructed to

334

Initiators of coal hydrogenation  

Science Conference Proceedings (OSTI)

The initiators examined include cyclic and linear silico-organic compounds, the effects of which on the hydrogenation process are studied. The substances not only localize the active radicals before these are stabilised by hydrogen, but actually activate the destruction reaction of the coal substance and in this way generate atomic hydrogen: radical polymerization inhibitors thus convert to activators and hydrogen transfer. (8 refs.)

Krichko, A.A.; Dembovskaya, E.A.; Gorlov, E.G.

1983-01-01T23:59:59.000Z

335

Facilities/Staff Hydrogen  

Science Conference Proceedings (OSTI)

Thermophysical Properties of Hydrogen. FACILITIES and STAFF. The Thermophysical Properties Division is the Nation's ...

336

Hydrogen & Our Energy Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Program Hydrogen Program www.hydrogen.energy.gov Hydrogen & Our Energy Future  | HydrOgEn & Our EnErgy FuturE U.S. Department of Energy Hydrogen Program www.hydrogen.energy.gov u.S. department of Energy |  www.hydrogen.energy.gov Hydrogen & Our Energy Future Contents Introduction ................................................... p.1 Hydrogen - An Overview ................................... p.3 Production ..................................................... p.5 Delivery ....................................................... p.15 Storage ........................................................ p.19 Application and Use ........................................ p.25 Safety, Codes and Standards ............................... p.33

337

Manifold, bus support and coupling arrangement for solid oxide fuel cells  

DOE Patents (OSTI)

Individual, tubular solid oxide fuel cells (SOFCs) are assembled into bundles called a module within a housing, with a plurality of modules arranged end-to-end in a linear, stacked configuration called a string. A common set of piping comprised of a suitable high temperature resistant material (1) provides fuel and air to each module housing, (2) serves as electrically conducting buses, and (3) provides structural support for a string of SOFC modules. Ceramic collars are used to connect fuel and air inlet piping to each of the electrodes in an SOFC module and provide (1) electrical insulation for the current carrying bus bars and gas manifolds, (2) damping for the fuel and air inlet piping, and (3) proper spacing between the fuel and air inlet piping to prevent contact between these tubes and possible damage to the SOFC. 11 figs.

Parry, G.W.

1988-04-21T23:59:59.000Z

338

Microsoft Word - CX-MalinBusFY13_WEB.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2012 9, 2012 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Bob Trismen Project Manager - TEP-CSB-1 Proposed Action: Malin Substation relay equipment replacements PP&A Project No.: 2504 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.7 Electronic equipment Location: Klamath County, Oregon Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA plans to replace bus differential relays and associated electronic equipment inside an existing building at the BPA Malin Substation. The replacements are scheduled to be completed in January 2013. Findings: BPA has determined that the proposed action complies with Section 1021.410 and

339

Composition for absorbing hydrogen  

DOE Patents (OSTI)

A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

Heung, L.K.; Wicks, G.G.; Enz, G.L.

1995-05-02T23:59:59.000Z

340

Composition for absorbing hydrogen  

DOE Patents (OSTI)

A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

Heung, Leung K. (Aiken, SC); Wicks, George G. (Aiken, SC); Enz, Glenn L. (N. Augusta, SC)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "worldwide hydrogen bus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Functional description for the Worldwide Port System (WPS) Regional Integrated Cargo Database (ICDB)  

Science Conference Proceedings (OSTI)

This Functional Description for the Worldwide Port System (WPS) Regional Integrated Cargo Database (ICDB) documents the purpose of and requirements for the ICDB in order to ensure a mutual understanding between the development group and the user group of the system. This Functional Description defines ICDB and provides a clear statement of the initial operational capability to be developed.

Truett, L.F.; Rollow, J.P.; Shipe, P.C. [Oak Ridge National Lab., TN (United States); Faby, E.Z.; Fluker, J.; Hancock, W.R.; Grubb, J.W.; Russell, D.L. [Univ. of Tennessee, Knoxville, TN (United States); Ferguson, R.A. [SAIC, Oak Ridge, TN (United States)

1995-12-15T23:59:59.000Z

342

Determination of Applicability of EDF Steam Generator Monitoring Algorithm to Pressurized Water Reactors Worldwide  

Science Conference Proceedings (OSTI)

This report documents work undertaken by the Electric Power Research Institute (EPRI) and Electricit de France (EDF) to determine the applicability of an EDF technique that estimates the level of deposit buildup on the steam generator's (SG's) tube support plates (TSPs) to plants worldwide.

2010-12-23T23:59:59.000Z

343

The Indian Ocean: The Region of Highest Skill Worldwide in Decadal Climate Prediction  

Science Conference Proceedings (OSTI)

The Indian Ocean stands out as the region where the state-of-the-art decadal climate predictions of sea surface temperature (SST) perform the best worldwide for forecast times ranging from the second to the ninth year, according to correlation and ...

Virginie Guemas; Susanna Corti; J. Garca-Serrano; F. J. Doblas-Reyes; Magdalena Balmaseda; Linus Magnusson

2013-02-01T23:59:59.000Z

344

FCT Hydrogen Storage: Hydrogen Storage R&D Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage R&D Activities Hydrogen Storage R&D Activities to someone by E-mail Share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Facebook Tweet about FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Twitter Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Google Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Delicious Rank FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Digg Find More places to share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on AddThis.com... Home Basics Current Technology DOE R&D Activities National Hydrogen Storage Compressed/Liquid Hydrogen Tanks Testing and Analysis Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards

345

Onboard Plasmatron Hydrogen Production for Improved Vehicles  

SciTech Connect

A plasmatron fuel reformer has been developed for onboard hydrogen generation for vehicular applications. These applications include hydrogen addition to spark-ignition internal combustion engines, NOx trap and diesel particulate filter (DPF) regeneration, and emissions reduction from spark ignition internal combustion engines First, a thermal plasmatron fuel reformer was developed. This plasmatron used an electric arc with relatively high power to reform fuels such as gasoline, diesel and biofuels at an oxygen to carbon ratio close to 1. The draw back of this device was that it has a high electric consumption and limited electrode lifetime due to the high temperature electric arc. A second generation plasmatron fuel reformer was developed. It used a low-current high-voltage electric discharge with a completely new electrode continuation. This design uses two cylindrical electrodes with a rotating discharge that produced low temperature volumetric cold plasma., The lifetime of the electrodes was no longer an issue and the device was tested on several fuels such as gasoline, diesel, and biofuels at different flow rates and different oxygen to carbon ratios. Hydrogen concentration and yields were measured for both the thermal and non-thermal plasmatron reformers for homogeneous (non-catalytic) and catalytic reforming of several fuels. The technology was licensed to an industrial auto part supplier (ArvinMeritor) and is being implemented for some of the applications listed above. The Plasmatron reformer has been successfully tested on a bus for NOx trap regeneration. The successful development of the plasmatron reformer and its implementation in commercial applications including transportation will bring several benefits to the nation. These benefits include the reduction of NOx emissions, improving engine efficiency and reducing the nation's oil consumption. The objective of this program has been to develop attractive applications of plasmatron fuel reformer technology for onboard applications in internal combustion engine vehicles using diesel, gasoline and biofuels. This included the reduction of NOx and particulate matter emissions from diesel engines using plasmatron reformer generated hydrogen-rich gas, conversion of ethanol and bio-oils into hydrogen rich gas, and the development of new concepts for the use of plasmatron fuel reformers for enablement of HCCI engines.

Daniel R. Cohn; Leslie Bromberg; Kamal Hadidi

2005-12-31T23:59:59.000Z

346

Onboard Plasmatron Hydrogen Production for Improved Vehicles  

DOE Green Energy (OSTI)

A plasmatron fuel reformer has been developed for onboard hydrogen generation for vehicular applications. These applications include hydrogen addition to spark-ignition internal combustion engines, NOx trap and diesel particulate filter (DPF) regeneration, and emissions reduction from spark ignition internal combustion engines First, a thermal plasmatron fuel reformer was developed. This plasmatron used an electric arc with relatively high power to reform fuels such as gasoline, diesel and biofuels at an oxygen to carbon ratio close to 1. The draw back of this device was that it has a high electric consumption and limited electrode lifetime due to the high temperature electric arc. A second generation plasmatron fuel reformer was developed. It used a low-current high-voltage electric discharge with a completely new electrode continuation. This design uses two cylindrical electrodes with a rotating discharge that produced low temperature volumetric cold plasma., The lifetime of the electrodes was no longer an issue and the device was tested on several fuels such as gasoline, diesel, and biofuels at different flow rates and different oxygen to carbon ratios. Hydrogen concentration and yields were measured for both the thermal and non-thermal plasmatron reformers for homogeneous (non-catalytic) and catalytic reforming of several fuels. The technology was licensed to an industrial auto part supplier (ArvinMeritor) and is being implemented for some of the applications listed above. The Plasmatron reformer has been successfully tested on a bus for NOx trap regeneration. The successful development of the plasmatron reformer and its implementation in commercial applications including transportation will bring several benefits to the nation. These benefits include the reduction of NOx emissions, improving engine efficiency and reducing the nation's oil consumption. The objective of this program has been to develop attractive applications of plasmatron fuel reformer technology for onboard applications in internal combustion engine vehicles using diesel, gasoline and biofuels. This included the reduction of NOx and particulate matter emissions from diesel engines using plasmatron reformer generated hydrogen-rich gas, conversion of ethanol and bio-oils into hydrogen rich gas, and the development of new concepts for the use of plasmatron fuel reformers for enablement of HCCI engines.

Daniel R. Cohn; Leslie Bromberg; Kamal Hadidi

2005-12-31T23:59:59.000Z

347

DOE Hydrogen Analysis Repository: Hydrogen Modeling Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Projects Modeling Projects Below are models grouped by topic. These models are used to analyze hydrogen technology, infrastructure, and other areas related to the development and use of hydrogen. Cross-Cutting Distributed Energy Resources Customer Adoption Model (DER_CAM) Hydrogen Deployment System (HyDS) Model and Analysis Hydrogen Technology Assessment and Selection Model (HyTASM) Renewable Energy Power System Modular Simulator (RPM-Sim) Stranded Biogas Decision Tool for Fuel Cell Co-Production Energy Infrastructure All Modular Industry Growth Assessment (AMIGA) Model Building Energy Optimization (BEopt) Distributed Energy Resources Customer Adoption Model (DER_CAM) Hydrogen Deployment System (HyDS) Model and Analysis Hydrogen Technology Assessment and Selection Model (HyTASM)

348

DOE Hydrogen and Fuel Cells Program: Hydrogen Analysis Resource Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production Hydrogen Production Hydrogen Delivery Hydrogen Storage Hydrogen Manufacturing Fuel Cells Applications/Technology Validation Safety Codes and Standards Education Basic Research Systems Analysis Analysis Repository H2A Analysis Hydrogen Analysis Resource Center Scenario Analysis Well-to-Wheels Analysis Systems Integration U.S. Department of Energy Search help Home > Systems Analysis > Hydrogen Analysis Resource Center Printable Version Hydrogen Analysis Resource Center The Hydrogen Analysis Resource Center provides consistent and transparent data that can serve as the basis for hydrogen-related calculations, modeling, and other analytical activities. This new site features the Hydrogen Data Book with data pertinent to hydrogen infrastructure analysis; links to external databases related to

349

DOE Hydrogen Analysis Repository: Hydrogen Production from Renewables...  

NLE Websites -- All DOE Office Websites (Extended Search)

at the 1998 DOE Hydrogen Program Review. Keywords: Technoeconomic analysis; hydrogen production; costs; hydrogen storage; renewable Purpose To determine technical and economic...

350

Hydrogen Program Contacts; DOE Hydrogen Program FY 2008 Annual...  

NLE Websites -- All DOE Office Websites (Extended Search)

1 FY 2008 Annual Progress Report DOE Hydrogen Program JoAnn Milliken, DOE Hydrogen Program Manager and Chief Engineer Office of Hydrogen, Fuel Cells and Infrastructure Technologies...

351

DOE Hydrogen Analysis Repository: Distributed Hydrogen Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects by Date U.S. Department of Energy Distributed Hydrogen Production via Steam Methane Reforming Project Summary Full Title: Well-to-Wheels Case Study: Distributed...

352

DOE Hydrogen Analysis Repository: Centralized Hydrogen Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass feedstock price Units: million Btu Supporting Information: LHV Description: Electricity price Units: kWh Description: Hydrogen fill pressure Units: psi Description:...

353

DOE Hydrogen Analysis Repository: Hydrogen Analysis Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

of the Transition to Hydrogen Fuel Cell Vehicles Biofuels in Light-Duty Vehicles Biogas Resources Characterization Biomass Integrated Gasification Combined-Cycle Power...

354

DOE Hydrogen Analysis Repository: Hydrogen Deployment System...  

NLE Websites -- All DOE Office Websites (Extended Search)

routine to determine the layout of a least-cost infrastructure. Keywords: Hydrogen production; electrolysis; costs; fuel cells Purpose Initially, electrolytic H2 production...

355

DOE Hydrogen Analysis Repository: Hydrogen Infrastructure Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure Costs Project Summary Full Title: Fuel Choice for Fuel Cell Vehicles: Hydrogen Infrastructure Costs Previous Title(s): Guidance for Transportation Technologies: Fuel...

356

DOE Hydrogen Analysis Repository: Hydrogen Technology Assessment...  

NLE Websites -- All DOE Office Websites (Extended Search)

of hydrogen fueling systems for transportation: An application of perspective-based scenario analysis using the analytic hierarchy process Project ID: 121 Principal...

357

DOE Hydrogen Analysis Repository: Centralized Hydrogen Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Gasification with Sequestration Project Summary Full Title: Well-to-Wheels Case Study: Centralized Hydrogen Production from Coal Gasification with Sequestration Project ID:...

358

DOE Hydrogen Analysis Repository: Hydrogen Pathways Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

- 2020 ProductsDeliverables Description: FY 2012 Progress Report Publication Title: FY 2012 DOE Hydrogen Program Annual Progress Report ArticleAbstract Title: Effects of...

359

DOE Hydrogen Analysis Repository: Hydrogen Transition Analysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

Period of Performance Start: June 2005 End: May 2008 Project Description Type of Project: Model Category: Hydrogen Fuel Pathways Objectives: Use agent-based modeling to provide...

360

DOE Hydrogen Analysis Repository: Hydrogen Vehicle Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas. ProductsDeliverables Description: Report Publication Title:...

Note: This page contains sample records for the topic "worldwide hydrogen bus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

DOE Hydrogen Analysis Repository: Hydrogen Passenger Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

estimated the cost of both gasoline and methanol onboard fuel processors, as well as the cost of stationary hydrogen fueling system components including steam methane reformers,...

362

Basic Research Needs for the Hydrogen Economy. Report of the Basic Energy Sciences Workshop on Hydrogen Production, Storage and Use, May 13-15, 2003  

DOE Green Energy (OSTI)

The coupled challenges of a doubling in the world's energy needs by the year 2050 and the increasing demands for ''clean'' energy sources that do not add more carbon dioxide and other pollutants to the environment have resulted in increased attention worldwide to the possibilities of a ''hydrogen economy'' as a long-term solution for a secure energy future.

Dresselhaus, M; Crabtree, G.; Buchanan, M.; Mallouk, T.; Mets, L.; Taylor, K.; Jena, P.; DiSalvo, F.; Zawodzinski, T.; Kung, H.; Anderson, I.S.; Britt, P.; Curtiss, L.; Keller, J.; Kumar, R.; Kwok, W.; Taylor, J.; Allgood, J.; Campbell, B.; Talamini, K.

2004-02-01T23:59:59.000Z

363

Hydrogen in semiconductors and insulators  

E-Print Network (OSTI)

the electronic level of hydrogen (thick red bar) was notdescribing the behavior of hydrogen atoms as impuritiesenergy of interstitial hydrogen as a function of Fermi level

Van de Walle, Chris G.

2007-01-01T23:59:59.000Z

364

Liquid Hydrogen Absorber for MICE  

E-Print Network (OSTI)

REFERENCES Figure 5: Liquid hydrogen absorber and test6: Cooling time of liquid hydrogen absorber. Eight CernoxLIQUID HYDROGEN ABSORBER FOR MICE S. Ishimoto, S. Suzuki, M.

Ishimoto, S.

2010-01-01T23:59:59.000Z

365

Worldwide transportation/energy demand, 1975-2000. Revised Variflex model projections  

SciTech Connect

The salient features of the transportation-energy relationships that characterize the world of 1975 are reviewed, and worldwide (34 countries) long-range transportation demand by mode to the year 2000 is reviewed. A worldwide model is used to estimate future energy demand for transportation. Projections made by the forecasting model indicate that in the year 2000, every region will be more dependent on petroleum for the transportation sector than it was in 1975. This report is intended to highlight certain trends and to suggest areas for further investigation. Forecast methodology and model output are described in detail in the appendices. The report is one of a series addressing transportation energy consumption; it supplants and replaces an earlier version published in October 1978 (ORNL/Sub-78/13536/1).

Ayres, R.U.; Ayres, L.W.

1980-03-01T23:59:59.000Z

366

Building bus rapid transit into the existing public transit system : competition and integration of BRT and the Urban Rail Transit in cities in China  

E-Print Network (OSTI)

BRT is a new type of bus transit with high speed and capacity. With its advantages and benefits, BRT is getting popular in the world, including China. Since BRT and urban rail transit (URT) are both rapid public transports, ...

Zhan, Yun, M.C.P. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

367

Development of an ultra-safe, ultra-low emissions natural gas-fueled bus. Phase 1: Systems design -- Final report  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) contracted with Southwest Research Institute (SwRI) to develop an ultra-safe, ultra-low emissions natural gas-fueled school bus. To develop the bus, SwRI teamed with Blue Bird, Incorporated, a school bus manufacturer, Deere Power Systems Group, an engine manufacturer, and CNG Cylinder Company, a supplier of compressed natural gas storage and handling systems. The primary focus of work for Phase 1 was the design of the component systems, i.e. vehicle, engine, and fuel storage systems. The bus chassis prototype is expected to be completed by the middle of July, 1995. A complete prototype vehicle body and chassis should be delivered to SwRI by the beginning of December, 1995. This prototype vehicle will include the new compressed natural gas cylinders and associated fuel storage system hardware which has been designed by CNG Cylinder Company.

Kubesh, J. [Southwest Research Inst., San Antonio, TX (United States)

1995-05-01T23:59:59.000Z

368

FCT Hydrogen Production: Hydrogen Production R&D Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production R&D Hydrogen Production R&D Activities to someone by E-mail Share FCT Hydrogen Production: Hydrogen Production R&D Activities on Facebook Tweet about FCT Hydrogen Production: Hydrogen Production R&D Activities on Twitter Bookmark FCT Hydrogen Production: Hydrogen Production R&D Activities on Google Bookmark FCT Hydrogen Production: Hydrogen Production R&D Activities on Delicious Rank FCT Hydrogen Production: Hydrogen Production R&D Activities on Digg Find More places to share FCT Hydrogen Production: Hydrogen Production R&D Activities on AddThis.com... Home Basics Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts

369

10 CFR 830 Major Modification Determination for the ATR Diesel Bus (E-3) and Switchgear Replacement  

SciTech Connect

Near term replacement of aging and obsolescent original ATR equipment has become important to ensure ATR capability in support of NEs long term national missions. To that end, a mission needs statement has been prepared for a non-major system acquisition which is comprised of three interdependent subprojects. The first project, subject of this determination, will replace the existent diesel-electrical bus (E-3) and associated switchgear. More specifically, INL proposes transitioning ATR to 100% commercial power with appropriate emergency backup to include: Provide commercial power as the normal source of power to the ATR loads currently supplied by diesel-electric power. Provide backup power to the critical ATR loads in the event of a loss of commercial power. Replace obsolescent critical ATR power distribution equipment, e.g., switchgear, transformers, motor control centers, distribution panels. Completion of this and two other age-related projects (primary coolant pump and motor replacement and emergency firewater injection system replacement) will resolve major age related operational issues plus make a significant contribution in sustaining the ATR safety and reliability profile. The major modification criteria evaluation of the project pre-conceptual design identified several issues make the project a major modification: 1. Evaluation Criteria #2 (Footprint change). The addition of a new PC-4 structure to the ATR Facility to house safety-related SSCs requires careful attention to maintaining adherence to applicable engineering and nuclear safety design criteria (e.g., structural qualification, fire suppression) to ensure no adverse impacts to the safety-related functions of the housed equipment. 2. Evaluation Criteria #3 (Change of existing process). The change to the strategy for providing continuous reliable power to the safety-related emergency coolant pumps requires careful attention and analysis to ensure it meets a project primary object to maintain or reduce CDF and does not negatively affect the efficacy of the currently approved strategy. 3. Evaluation Criteria #5 (Create the need for new or revised safety SSCs). The change to the strategy for providing continuous reliable power to the safety-related emergency coolant pumps, based on the pre-conceptual design, will require the addition of two quick start diesel generators, their associated power coordination/distribution controls, and a UPS to the list of safety-related SSCs. Similarly to item 1 above, the addition of these active SSCs to the list of safety-related SSCs and replacement of the E-3 bus requires careful attention to maintaining adherence to applicable engineering and nuclear safety design criteria (e.g., seismic qualification, isolation of redundant trains from common fault failures) to ensure no adverse impacts to the safety-related functions.

Noel Duckwtiz

2011-05-01T23:59:59.000Z

370

President's Hydrogen Fuel Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

commercialization decision in 2015 leads to beginning of mass-produced hydrogen fuel cell cars by 2020. FY2006 Hydrogen Fuel Initiative Budget Request 13% 28% 12% 15% 22% 3% 6% 1%...

371

Hydrogen Posture Plan  

Fuel Cell Technologies Publication and Product Library (EERE)

The Hydrogen Posture Plan, published in December 2006, outlines a coordinated plan for activities under the Hydrogen Fuel Initiative, both at the Department of Energy and the Department of Transportat

372

Hydrogen & Our Energy Future  

Fuel Cell Technologies Publication and Product Library (EERE)

Hydrogen & Our Energy Future (40 pages) expands on DOE's series of one-page fact sheets to provide an in-depth look at hydrogen and fuel cell technologies. It provides additional information on the sc

373

Hydrogen Fuel Quality (Presentation)  

DOE Green Energy (OSTI)

Jim Ohi of NREL's presentation on Hydrogen Fuel Quality at the 2007 DOE Hydrogen Program Annual Merit Review and Peer Evaluation on May 15-18, 2007 in Arlington, Virginia.

Ohi, J.

2007-05-17T23:59:59.000Z

374

Audit of Bus Service Subsidies at the Idaho National Engineering Laboratory, WR-B-97-02  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AUDIT OF BUS SERVICE SUBSIDIES AT THE IDAHO NATIONAL ENGINEERING LABORATORY The Office of Inspector General wants to make the distribution of its reports as customer friendly and cost-effective as possible. Therefore, this report will be available electronically through the Internet five to seven days after publication at the following alternative addresses: Department of Energy Headquarters Gopher gopher.hr.doe.gov Department of Energy Headquarters Anonymous FTP vm1.hqadmin.doe.gov

375

Corrosion and Hydrogen Damage  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Advanced Materials and Reservoir Engineering for Extreme Oil & Gas Environments: Corrosion and Hydrogen Damage Sponsored by: TMS...

376

Hydrogen Assisted Cracking  

Science Conference Proceedings (OSTI)

Environmentally Assisted Cracking (EAC): Laboratory Research and Field Experiences: Hydrogen Assisted Cracking Program Organizers: Suresh Divi, TIMET

377

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

hydrogen (which would not have to be stored, and which would be distributed locady only). Filling station

Delucchi, Mark

1992-01-01T23:59:59.000Z

378

Flash hydrogenation of coal  

DOE Patents (OSTI)

A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

Manowitz, Bernard (Brightwaters, NY); Steinberg, Meyer (Huntington Station, NY); Sheehan, Thomas V. (Hampton Bays, NY); Winsche, Warren E. (Bellport, NY); Raseman, Chad J. (Setauket, NY)

1976-01-01T23:59:59.000Z

379

Purification of Hydrogen  

DOE Patents (OSTI)

Disclosed is a process for purifying hydrogen containing various gaseous impurities by passing the hydrogen over a large surface of uranium metal at a temperature above the decomposition temperature of uranium hydride, and below the decomposition temperature of the compounds formed by the combination of the uranium with the impurities in the hydrogen.

Newton, A.S.

1950-07-31T23:59:59.000Z

380

Liquid metal hydrogen barriers  

DOE Patents (OSTI)

Hydrogen barriers which comprise liquid metals in which the solubility of hydrogen is low and which have good thermal conductivities at operating temperatures of interest. Such barriers are useful in nuclear fuel elements containing a metal hydride moderator which has a substantial hydrogen dissociation pressure at reactor operating temperatures.

Grover, George M. (Los Alamos, NM); Frank, Thurman G. (Los Alamos, NM); Keddy, Edward S. (Los Alamos, NM)

1976-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "worldwide hydrogen bus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Sensitive hydrogen leak detector  

DOE Patents (OSTI)

A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

Myneni, Ganapati Rao (Yorktown, VA)

1999-01-01T23:59:59.000Z

382

The Energy DataBus: NREL's Open-Source Application for Large-Scale Energy Data Collection and Analysis  

DOE Data Explorer (OSTI)

NRELs Energy DataBus is used for tracking and analyzing energy use on its own campus. The system is applicable to other facilitiesincluding anything from a single building to a large military base or college campusor for other energy data management needs. Managing and minimizing energy consumption on a large campus is usually a difficult task for facility managers: There may be hundreds of energy meters spread across a campus, and the meter data are often recorded by hand. Even when data are captured electronically, there may be measurement issues or time periods that may not coincide. Making sense of this limited and often confusing data can be a challenge that makes the assessment of building performance a struggle for many facility managers. The Energy DataBus software was developed by NREL to address these issues on its own campus, but with an eye toward offering its software solutions to other facilities. Key features include the software's ability to store large amounts of data collected at high frequenciesNREL collects some of its energy data every secondand rich functionality to integrate this wide variety of data into a single database [copied from http://en.openei.org/wiki/NREL_Energy_DataBus].

383

The Bumpy Road to Hydrogen  

E-Print Network (OSTI)

battery- powered electric vehicles, approaches the breadth and magnitude of hydrogens public good benefits. What History

Sperling, Dan; Ogden, Joan M

2006-01-01T23:59:59.000Z

384

Atomic Data for Hydrogen (H )  

Science Conference Proceedings (OSTI)

... Hydrogen (H) Homepage - Introduction Finding list Select element by name. Select element by atomic number. ... Atomic Data for Hydrogen (H). ...

385

Strong Lines of Hydrogen ( H )  

Science Conference Proceedings (OSTI)

... Hydrogen (H) Homepage - Introduction Finding list Select element by name. Select element by atomic number. ... Strong Lines of Hydrogen ( H ). ...

386

Manifold, bus support and coupling arrangement for solid oxide fuel cells  

DOE Patents (OSTI)

Individual, tubular solid oxide fuel cells (SOFCs) are assembled into bundles called a module within a housing, with a plurality of modules arranged end-to-end in a linear, stacked configuration called a string. A common set of piping comprised of a suitable high temperture resistant material (1) provides fuel and air to each module housing, (2) serves as electrically conducting buses, and (3) provides structural support for a string of SOFC modules. The piping thus forms a manfold for directing fuel and air to each module in a string and makes electrical contact with the module's anode and cathode to conduct the DC power generated by the SOFC. The piping also provides structureal support for each individual module and maintains each string of modules as a structurally integral unit for ensuring high strength in a large 3-dimensional array of SOFC modules. Ceramic collars are used to connect fuel and air inlet piping to each of the electrodes in an SOFC module and provide (1) electrical insulation for the current carrying bus bars and gas manifolds, (2) damping for the fuel and air inlet piping, and (3) proper spacing between the fuel and air inlet piping to prevent contact between these tubes and possible damage to the SOFC.

Parry, Gareth W. (East Windsor, CT)

1989-01-01T23:59:59.000Z

387

Hydrogen energy assessment  

SciTech Connect

The purpose of this assessment is to define the near term and long term prospects for the use of hydrogen as an energy delivery medium. Possible applications of hydrogen are defined along with the associated technologies required for implementation. A major focus in the near term is on industrial uses of hydrogen for special applications. The major source of hydrogen in the near term is expected to be from coal, with hydrogen from electric sources supplying a smaller fraction. A number of potential applications for hydrogen in the long term are identified and the level of demand estimated. The results of a cost benefit study for R and D work on coal gasification to hydrogen and electrolytic production of hydrogen are presented in order to aid in defining approximate levels of R and D funding. A considerable amount of data is presented on the cost of producing hydrogen from various energy resources. A key conclusion of the study is that in time hydrogen is likely to play a role in the energy system; however, hydrogen is not yet competitive for most applications when compared to the cost of energy from petroleum and natural gas.

Salzano, F J; Braun, C [eds.

1977-09-01T23:59:59.000Z

388

Hydrogen Use and Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

USE AND SAFETY USE AND SAFETY The lightest and most common element in the universe, hydrogen has been safely used for decades in industrial applications. Currently, over 9 million tons of hydrogen are produced in the U.S. each year and 3.2 trillion cubic feet are used to make many common products. They include glass, margarine, soap, vitamins, peanut butter, toothpaste and almost all metal products. Hydrogen has been used as a fuel since the 1950s by the National Aeronautics & Space Administration (NASA) in the U.S. space program. Hydrogen - A Safe, Clean Fuel for Vehicles Hydrogen has another use - one that can help our nation reduce its consumption of fossil fuels. Hydrogen can be used to power fuel cell vehicles. When combined with oxygen in a fuel cell, hydrogen generates electricity used

389

Use in combustion processes for a new type of gaseous fuel based on hydrogen  

Science Conference Proceedings (OSTI)

The paper approaches a very actual problem worldwide, concerning the replacing, in combustion processes, of classical fossil fuels by clean energy sources, in order to reduce the greenhouse effect gases, as well as for fossil fuels' saving. The experiments ... Keywords: burner, clean energy, energy saving, flame, greenhouse effect gases, hydrogen

Lucian Paunescu; Gheorghe Surugiu; Ion Melinte; Corneliu Dica; Paul Dan Stanescu; Gheorghe Iorga; Horia Necula

2007-05-01T23:59:59.000Z

390

Evaluation and Prediction of Unconventional Gas Resources in Underexplored Basins Worldwide  

E-Print Network (OSTI)

As gas production from conventional gas reservoirs in the United States decreases, industry is turning more attention to the exploration and development of unconventional gas resources (UGR). This trend is expanding quickly worldwide. Unlike North America where development of UGRs and technology is now mature and routine, many countries are just beginning to develop unconventional gas resources. Rogner (1996) estimated that the unconventional gas in place, including coalbed methane, shale gas and tight-sand gas, exceeds 30,000 Tcf worldwide. As part of a research team, I helped to develop a software package called Unconventional Gas Resource Advisory (UGRA) System which includes the Formation Analog Selection Tool (FAST) and Basin Analog Investigations (BASIN) to objectively and rapidly identify and rank mature North American formations and basins that may be analogous to nascent international target basins. Based on BASIN and FAST results, the relationship between mature and underexplored basins is easily accessed. To quantify the unconventional resource potential in typical gas basins, I revised and used a computer model called the Petroleum Resources Investigation Summary and Evaluation (PRISE) (Old, 2008). This research is based on the resource triangle concept, which implies that all natural resources, including oil and gas, are distributed log-normally. In this work, I describe a methodology to estimate values of technically recoverable resources (TRR) for unconventional gas reservoirs by combining estimates of production, reserves, reserves growth, and undiscovered resources from a variety of sources into a logical distribution. I have also investigated mature North American unconventional gas resources, and predict unconventional resources in underexplored basins worldwide for case study. Based on the results of testing BASIN and PRISE, we conclude that our evaluation of 24 North American basins supports the premise that basins analysis can be used to estimate UGRs.

Cheng, Kun

2012-05-01T23:59:59.000Z

391

DOE Hydrogen Analysis Repository: Hydrogen Production by  

NLE Websites -- All DOE Office Websites (Extended Search)

Production by Photovoltaic-powered Electrolysis Production by Photovoltaic-powered Electrolysis Project Summary Full Title: Production of Hydrogen by Photovoltaic-powered Electrolysis Project ID: 91 Principal Investigator: D.L. Block Keywords: Hydrogen production; electrolysis; photovoltaic (PV) Purpose To evaluate hydrogen production from photovoltaic (PV)-powered electrolysis. Performer Principal Investigator: D.L. Block Organization: Florida Solar Energy Center Address: 1679 Clearlake Road Cocoa, FL 32922 Telephone: 321-638-1001 Email: block@fsec.ucf.edu Sponsor(s) Name: Michael Ashworth Organization: Florida Energy Office Name: Neil Rossmeissl Organization: DOE/Advanced Utilities Concepts Division Name: H.T. Everett Organization: NASA/Kennedy Space Center Project Description Type of Project: Analysis Category: Hydrogen Fuel Pathways

392

DOE Hydrogen Analysis Repository: Hydrogen Fueling Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

considered.) 4. Gaseous hydrogen generated at the refueling station from natural gas by steam methane reforming, stored as a compressed gas at 5000 psi and dispensed to the vehicle...

393

DOE Hydrogen Analysis Repository: Hydrogen Analysis Projects...  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Early Market Transition of Fuel Cell Vehicles Macro-System Model Stranded Biogas Decision Tool for Fuel Cell Co-Production Water for Hydrogen Pathways 2010 A Portfolio...

394

Why Hydrogen? Hydrogen from Diverse Domestic Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

& RELIABILITY ZERONEAR ZERO ZERONEAR ZERO EMISSIONS EMISSIONS Why Hydrogen? Biomass Hydro Wind Solar Coal Nuclear Natural Gas Oil S e q u e s t r a t i o n Biomass Hydro Wind...

395

Worldwide estimates and bibliography of net primary productivity derived from pre-1982 publications  

SciTech Connect

An extensive compilation of more than 700 field estimates of net primary productivity of natural and agricultural ecosystems worldwide was synthesized in Germany in the 1970s and early 1980s. Although the Osnabrueck data set has not been updated since the 1980s, it represents a wealth of information for use in model development and validation. This report documents the development of this data set, its contents, and its recent availability on the Internet from the Oak Ridge National Laboratory Distributed Active Archive Center for Biogeochemical Dynamics. Caution is advised in using these data, which necessarily include assumptions and conversions that may not be universally applicable to all sites.

Esser, G. [Justus-Liebig-Univ., Giessen (Germany). Inst. for Plant Ecology] [Justus-Liebig-Univ., Giessen (Germany). Inst. for Plant Ecology; Lieth, H.F.H. [Univ. of Osnabrueck (Germany). Systems Research Group] [Univ. of Osnabrueck (Germany). Systems Research Group; Scurlock, J.M.O.; Olson, R.J. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States)

1997-10-01T23:59:59.000Z

396

Hydrogen Filling Station  

SciTech Connect

Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water Districts land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

2010-02-24T23:59:59.000Z

397

Hydrogen Filling Station  

Science Conference Proceedings (OSTI)

Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water Districts land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

2010-02-24T23:59:59.000Z

398

Ultrafine hydrogen storage powders  

DOE Patents (OSTI)

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

2000-06-13T23:59:59.000Z

399

System/subsystem specifications for the Worldwide Port System (WPS) Regional Integrated Cargo Database (ICDB)  

SciTech Connect

A system is being developed by the Military Traffic Management Command (MTMC) to provide data integration and worldwide management and tracking of surface cargo movements. The Integrated Cargo Database (ICDB) will be a data repository for the WPS terminal-level system, will be a primary source of queries and cargo traffic reports, will receive data from and provide data to other MTMC and non-MTMC systems, will provide capabilities for processing Advance Transportation Control and Movement Documents (ATCMDs), and will process and distribute manifests. This System/Subsystem Specifications for the Worldwide Port System Regional ICDB documents the system/subsystem functions, provides details of the system/subsystem analysis in order to provide a communication link between developers and operational personnel, and identifies interfaces with other systems and subsystems. It must be noted that this report is being produced near the end of the initial development phase of ICDB, while formal software testing is being done. Following the initial implementation of the ICDB system, maintenance contractors will be in charge of making changes and enhancing software modules. Formal testing and user reviews may indicate the need for additional software units or changes to existing ones. This report describes the software units that are components of this ICDB system as of August 1995.

Rollow, J.P.; Shipe, P.C.; Truett, L.F. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States); Faby, E.Z.; Fluker, J.; Grubb, J.; Hancock, B.R. [Univ. of Tennessee, Knoxville, TN (United States)] [Univ. of Tennessee, Knoxville, TN (United States); Ferguson, R.A. [Science Applications International Corp., Oak Ridge, TN (United States)] [Science Applications International Corp., Oak Ridge, TN (United States)

1995-11-20T23:59:59.000Z

400

Analysis of hydrogen isotope mixtures  

DOE Patents (OSTI)

Disclosed are an apparatus and a method for determining concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

Villa-Aleman, E.

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "worldwide hydrogen bus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Analysis of hydrogen isotope mixtures  

DOE Patents (OSTI)

An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

Villa-Aleman, Eliel (Aiken, SC)

1994-01-01T23:59:59.000Z

402

Hydrogen Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes and Standards Codes and Standards James Ohi National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401 Background The development and promulgation of codes and standards are essential if hydrogen is to become a significant energy carrier and fuel because codes and standards are critical to establishing a market-receptive environment for commercializing hydrogen-based products and systems. The Hydrogen, Fuel Cells, and Infrastructure Technologies Program of the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL), with the help of the National Hydrogen Association (NHA) and other key stakeholders, are coordinating a collaborative national effort by government and industry to prepare, review, and promulgate hydrogen codes and standards needed to expedite hydrogen infrastructure development. The

403

President's Hydrogen Fuel Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Fuel Initiative Hydrogen Fuel Initiative Workshop on Manufacturing R&D for the Hydrogen Economy Washington, DC July 13, 2005 JoAnn Milliken DOE Hydrogen Program Planning U.S. Energy Dependence is Driven By Transportation * The U.S. imports 55% of its oil; expected to grow to 68% by 2025 under the status quo. * Transportation accounts for 2/3 of the 20 million barrels of oil our nation uses each day. * Gasoline hybrid electric vehicles will help in the near -mid term; a replacement for petroleum is needed for the long-term. 0 2 4 6 8 10 12 14 16 18 20 22 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 Million barrels per day Marine Rail Actual Projection Cars Air Light Trucks Heavy Vehicles U.S. Production Off-Road Projection Hydrogen Provides a Solution Producing hydrogen from domestic resources, including renewable, nuclear, and coal

404

Hydrogen Based Bacteria  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Based Bacteria Hydrogen Based Bacteria Name: Ellen Location: N/A Country: N/A Date: N/A Question: i was in my Biology class and a very respectable someone mentioned something about the discovery of a hydrogen based bacteria. my teacher wasnt aware of this study, and assigned me to find out about it. so i thought i would Email you and see if you people knew anything about it. Awaiting your repsonse Replies: I'm not quite sure what you mean by hydrogen based bacteria but I will take a stab that you mean bacteria that use hydrogen for energy. Some bacteria are chemolithotrophs which mean that they are autrophs but don't use the sun as their energy source; they get their energy from chemical sources. There are bacteria that use hydrogen as their energy source. They are diverse as a group and are all facultative. The overall chemical reaction looks like this:

405

Hydrogen Permeation Resistant Coatings  

DOE Green Energy (OSTI)

As the National Hydrogen Economy continues to develop and evolve the need for structural materials that can resist hydrogen assisted degradation will become critical. To date austenitic stainless steel materials have been shown to be mildly susceptible to hydrogen attack which results in lower mechanical and fracture strengths. As a result, hydrogen permeation barrier coatings may be applied to these ferrous alloys to retard hydrogen ingress. Hydrogen is known to be very mobile in materials of construction. In this study, the permeation resistance of bare stainless steel samples and coated stainless steel samples was tested. The permeation resistance was measured using a modular permeation rig using a pressure rise technique. The coating microstructure and permeation results will be discussed in this document as will some additional testing.

KORINKO, PAUL; ADAMS, THAD; CREECH, GREGGORY

2005-06-15T23:59:59.000Z

406

Hydrogenation of carbonaceous materials  

DOE Patents (OSTI)

A method for reacting pulverized coal with heated hydrogen-rich gas to form hydrocarbon liquids suitable for conversion to fuels wherein the reaction involves injection of pulverized coal entrained in a minimum amount of gas and mixing the entrained coal at ambient temperature with a separate source of heated hydrogen. In accordance with the present invention, the hydrogen is heated by reacting a small portion of the hydrogen-rich gas with oxygen in a first reaction zone to form a gas stream having a temperature in excess of about 1000.degree. C. and comprising a major amount of hydrogen and a minor amount of water vapor. The coal particles then are reacted with the hydrogen in a second reaction zone downstream of the first reaction zone. The products of reaction may be rapidly quenched as they exit the second reaction zone and are subsequently collected.

Friedman, Joseph (Encino, CA); Oberg, Carl L. (Canoga Park, CA); Russell, Larry H. (Agoura, CA)

1980-01-01T23:59:59.000Z

407

Assisting Transit Agencies with Natural Gas Bus Technologies; Natural Gas Trasit Users Group (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and and infrastructure research, development, and deployment through its FreedomCAR and Vehicle Technologies Program to help the United States reduce its dependence on imported petro- leum and to pave the way to a future transportation network based on hydrogen. Natural gas vehicles can also reduce emissions of regulated pollutants compared with vehicles powered by conventional fuels such as gasoline

408

HYDROGEN ISOTOPE TARGETS  

DOE Patents (OSTI)

The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

Ashley, R.W.

1958-08-12T23:59:59.000Z

409

OpenEI - hydrogen  

Open Energy Info (EERE)

biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Tue, 14 Dec 2010...

410

Thin film hydrogen sensor  

DOE Green Energy (OSTI)

A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

411

Hydrogen Compatibility of Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Compatibility of Materials Compatibility of Materials August 13, 2013 DOE EERE Fuel Cell Technologies Office Webinar Chris San Marchi Sandia National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000 SAND2013-6278P 2 Webinar Objectives * Provide context for hydrogen embrittlement and hydrogen compatibility of materials - Distinguish embrittlement, compatibility and suitability - Examples of hydrogen embrittlement * Historical perspective - Previous work on hydrogen compatibility - Motivation of "Materials Guide" * Identify the landscape of materials compatibility documents

412

Hydrogen Generation by Electrolysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Engineered Solutions. Better Engineered Solutions. What Listening Generates. Better Engineered Solutions. What Listening Generates. Hydrogen Generation by Electrolysis September 2004 Steve Cohen Hydrogen Generation by Electrolysis September 2004 Steve Cohen NREL H 2 Electrolysis - Utility Integration Workshop NREL H 2 Electrolysis - Utility Integration Workshop 2 Hydrogen Generation by Electrolysis Hydrogen Generation by Electrolysis  Intro to Teledyne Energy Systems  H 2 Generator Basics & Major Subsystems  H 2 Generating & Storage System Overview  Electrolysis System Efficiency & Economics  Focus for Attaining DOE H 2 Production Cost Goals 3 Teledyne Energy Systems Locations - ISO 9001 Teledyne Energy Systems Locations - ISO 9001 Hunt Valley, Maryland  State-of-the-art thermoelectric,

413

Initiators of coal hydrogenation  

Science Conference Proceedings (OSTI)

The results are given of an investigation of the influence of additions of certain organosilicon compounds of cyclic and linear nature on the coal hydrogenation process.

Krichko, A.A.; Dembovskaya, E.A.; Gorlov, E.G.

1983-01-01T23:59:59.000Z

414

Hydrogen Compatibility of Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

materials data related to hydrogen embrittlement - Modeled after existing metals handbooks - Data culled from open literature * Peer-reviewed scientific articles * Public...

415

Enabling the Hydrogen Economy  

Science Conference Proceedings (OSTI)

... Act of 2002 to develop research and standards for gas pipeline integrity, safety ... for materials used in hydrogen systems (eg, pipelines) developed in ...

2010-10-05T23:59:59.000Z

416

FCT Hydrogen Delivery: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

distributed production facilities have relatively low delivery costs, but the hydrogen production costs are likely to be higher-lower volume production means higher equipment...

417

The Transition to Hydrogen  

E-Print Network (OSTI)

energy costs, energy alternatives, and the role of hydrogenenergy in profound ways. But hydrogen also poses the greatest challenges of any alternative

Ogden, Joan M

2005-01-01T23:59:59.000Z

418

Sustainable hydrogen production  

SciTech Connect

This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

Block, D.L.; Linkous, C.; Muradov, N.

1996-01-01T23:59:59.000Z

419

Hydrogen permeation resistant barrier  

DOE Patents (OSTI)

A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

McGuire, J.C.; Brehm, W.F.

1980-02-08T23:59:59.000Z

420

Hydrogen production from biomass .  

E-Print Network (OSTI)

??Biomass energy encompasses a broad category of energy derived from plants and animals as well as the residual materials from each. Hydrogen gas is an (more)

Hahn, John J.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "worldwide hydrogen bus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Hydrogen MOS Quality Boulder  

Science Conference Proceedings (OSTI)

... b. The recommendations of the FSS based on its December 2008 review of the proposed method of sale for hydrogen engine fuel are: ...

2011-10-24T23:59:59.000Z

422

Optimized hydrogen piston engines  

DOE Green Energy (OSTI)

Hydrogen piston engines can be simultaneously optimized for improved thermal efficiency and for extremely low emissions. Using these engines in constant-speed, constant-load systems such as series hybrid-electric automobiles or home cogeneration systems can result in significantly improved energy efficiency. For the same electrical energy produced, the emissions from such engines can be comparable to those from natural gas-fired steam power plants. These hydrogen-fueled high-efficiency, low-emission (HELE) engines are a mechanical equivalent of hydrogen fuel cells. HELE engines could facilitate the transition to a hydrogen fuel cell economy using near-term technology.

Smith, J.R.

1994-05-10T23:59:59.000Z

423

Renewable Hydrogen (Presentation)  

DOE Green Energy (OSTI)

Presentation about the United State's dependence on oil, how energy solutions are challenging, and why hydrogen should be considered as a long-term alternative for transportation fuel.

Remick, R. J.

2009-11-16T23:59:59.000Z

424

Hydrogen Fuel Cells  

Fuel Cell Technologies Publication and Product Library (EERE)

The fuel cell an energy conversion device that can efficiently capture and use the power of hydrogen is the key to making it happen.

425

Hydrogen Safety Knowledge Tools  

Science Conference Proceedings (OSTI)

With hydrogen gaining acceptance as an energy carrier for fuel cell vehicles and stationary fuel cell applications, a new community of hydrogen users is emerging and continues to grow. With this growth has come the need to spread the word about safe practices for handling, storing, and using hydrogen. Like all energy forms, hydrogen can be used safely through proper procedures and engineering techniques. However, hydrogen involves a degree of risk that must be respected, and the importance of avoiding complacency or haste in the safe conduct and performance of projects involving hydrogen cannot be overstated. To encourage and promote the safe use of hydrogen, Pacific Northwest National Laboratory (PNNL) has developed and continues to enhance two software tools in support of the U.S. Department of Energy's Fuel Cell Technologies Program: the Hydrogen Safety Best Practices online manual (www.H2BestPractices.org) and the Hydrogen Incident Reporting and Lessons Learned database (www.H2Incidents.org).

Fassbender, Linda L.

2011-01-31T23:59:59.000Z

426

The Transition to Hydrogen  

E-Print Network (OSTI)

optimistic hydrogen-demand scenarios, natural gas use woulddemand Model Presidents H 2 initiative (100% of ?eet) (50% of ?eet) (21% of ?eet) Natural gas

Ogden, Joan

2005-01-01T23:59:59.000Z

427

HYDROGEN SEPARATION MEMBRANES  

DOE Green Energy (OSTI)

A likely membrane for future testing of high-temperature hydrogen separation from a gasification product stream was targeted as an inorganic analog of a dense-metal membrane, where the hydrogen would dissolve into and diffuse through the membrane structure. An amorphous membrane such as zinc sulfide appeared to be promising. Previously, ZnS film coating tests had been performed using an electron-beam vacuum coating instrument, with zinc films successfully applied to glass substrates. The coatings appeared relatively stable in air and in a simple simulated gasification atmosphere at elevated temperature. Because the electron-beam coating instrument suffered irreparable breakdown, several alternative methods were tested in an effort to produce a nitrogen-impermeable, hydrogen-permeable membrane on porous sintered steel substrates. None of the preparation methods proved successful in sealing the porous substrate against nitrogen gas. To provide a nitrogen-impermeable ZnS material to test for hydrogen permeability, two ZnS infrared sample windows were purchased. These relatively thick ''membranes'' did not show measurable permeation of hydrogen, either due to lack of absorption or a negligible permeation rate due to their thickness. To determine if hydrogen was indeed adsorbed, thermogravimetric and differential thermal analyses tests were performed on samples of ZnS powder. A significant uptake of hydrogen gas occurred, corresponding to a maximum of 1 mole H{sub 2} per 1 mole ZnS at a temperature of 175 C. The hydrogen remained in the material at ambient temperature in a hydrogen atmosphere, but approximately 50% would be removed in argon. Reheating in a hydrogen atmosphere resulted in no additional hydrogen uptake. Differential scanning calorimetry indicated that the hydrogen uptake was probably due to the formation of a zinc-sulfur-hydrogen species resulting in the formation of hydrogen sulfide. The zinc sulfide was found to be unstable above approximately 200 C, probably with the reduction to metallic zinc with the evolution of hydrogen sulfide. The work has shown that ZnS is not a viable candidate for a high-temperature hydrogen separation membrane.

Donald P. McCollor; John P. Kay

1999-08-01T23:59:59.000Z

428

Hydrogen Compatible Materials Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop November 3 rd , 2010 Research, Engineering, and Applications Center for Hydrogen Sandia National Laboratory, Livermore, CA Introduction: On November 3 rd , 2010, Sandia...

429

Hydrogen permeation resistant barrier  

DOE Patents (OSTI)

A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

McGuire, Joseph C. (Richland, WA); Brehm, William F. (Richland, WA)

1982-01-01T23:59:59.000Z

430

Hydrogen and Fuel Cells R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquids --Hydrogen Storage Materials --Hydrogen Storage Systems Modeling and Analysis --Thermochemical Hydrogen * Fuel Cells --Polymer Electrolyte --Modeling & Analysis --Fuel...

431

California Hydrogen Infrastructure Project | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Infrastructure Project Jump to: navigation, search Name California Hydrogen Infrastructure Project Place California Sector Hydro, Hydrogen Product String representation...

432

Alternative Fuels Data Center: Hydrogen  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen to someone by E-mail Share Alternative Fuels Data Center: Hydrogen on Facebook Tweet about Alternative Fuels Data Center: Hydrogen on Twitter Bookmark Alternative Fuels Data Center: Hydrogen on Google Bookmark Alternative Fuels Data Center: Hydrogen on Delicious Rank Alternative Fuels Data Center: Hydrogen on Digg Find More places to share Alternative Fuels Data Center: Hydrogen on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Vehicles Laws & Incentives Hydrogen Hydrogen is a potentially emissions-free alternative fuel that can be produced from diverse domestic energy sources. Research is under way to make hydrogen vehicles practical for widespread use.

433

FCT Hydrogen Production: Current Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Technology to Current Technology to someone by E-mail Share FCT Hydrogen Production: Current Technology on Facebook Tweet about FCT Hydrogen Production: Current Technology on Twitter Bookmark FCT Hydrogen Production: Current Technology on Google Bookmark FCT Hydrogen Production: Current Technology on Delicious Rank FCT Hydrogen Production: Current Technology on Digg Find More places to share FCT Hydrogen Production: Current Technology on AddThis.com... Home Basics Current Technology Thermal Processes Electrolytic Processes Photolytic Processes R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology The development of clean, sustainable, and cost-competitive hydrogen

434

Enhancing hydrogen spillover and storage  

DOE Patents (OSTI)

Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

Yang, Ralph T. (Ann Arbor, MI); Li, Yingwel (Ann Arbor, MI); Lachawiec, Jr., Anthony J. (Ann Arbor, MI)

2011-05-31T23:59:59.000Z

435

Enhancing hydrogen spillover and storage  

DOE Patents (OSTI)

Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

2013-02-12T23:59:59.000Z

436

Combination moisture and hydrogen getter  

DOE Patents (OSTI)

A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

Harrah, Larry A. (Albuquerque, NM); Mead, Keith E. (Peralta, NM); Smith, Henry M. (Overland Park, KS)

1983-01-01T23:59:59.000Z

437

Florida Hydrogen Initiative  

SciTech Connect

The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

Block, David L

2013-06-30T23:59:59.000Z

438

Hydrogen Car Co | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name Hydrogen Car Co Place Los Angeles, California Zip 90036 Sector Hydro, Hydrogen Product The Hydrogen Car Company produces hydrogen internal combustion...

439

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network (OSTI)

E. Hydrogen Supply: Cost Estimate for Hydrogen Pathways -costs are compared with cost estimates of similar stationsHydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping

Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

2006-01-01T23:59:59.000Z

440

An Integrated Hydrogen Vision for California  

E-Print Network (OSTI)

An Integrated Hydrogen Vision for California White Paper/High Efficiency Generation Of Hydrogen Fuels Using NuclearU.S. Department of Energy Hydrogen Fuel Cells and Hydrogen

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "worldwide hydrogen bus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Hydrogen refueling station costs in Shanghai  

E-Print Network (OSTI)

of Hydrogen Energy 32 (2007) 4089 4100 Table 4 Storage andHydrogen Energy 32 (2007) 4089 4100 Hydrogen tube-trailer Compressed hydrogen storage

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

442

Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants  

Science Conference Proceedings (OSTI)

Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design.

Woo, H.H.; Lu, S.C.

1981-09-15T23:59:59.000Z

443

Plutonium Discharge Rates and Spent Nuclear Fuel Inventory Estimates for Nuclear Reactors Worldwide  

Science Conference Proceedings (OSTI)

This report presents a preliminary survey and analysis of the five primary types of commercial nuclear power reactors currently in use around the world. Plutonium mass discharge rates from the reactors spent fuel at reload are estimated based on a simple methodology that is able to use limited reactor burnup and operational characteristics collected from a variety of public domain sources. Selected commercial reactor operating and nuclear core characteristics are also given for each reactor type. In addition to the worldwide commercial reactors survey, a materials test reactor survey was conducted to identify reactors of this type with a significant core power rating. Over 100 material or research reactors with a core power rating >1 MW fall into this category. Fuel characteristics and spent fuel inventories for these material test reactors are also provided herein.

Brian K. Castle; Shauna A. Hoiland; Richard A. Rankin; James W. Sterbentz

2012-09-01T23:59:59.000Z

444

DOE Hydrogen and Fuel Cells Program: Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production Hydrogen Production Hydrogen Delivery Hydrogen Storage Hydrogen Manufacturing Fuel Cells Applications/Technology Validation Safety Codes and Standards Education Basic Research Systems Analysis Systems Integration U.S. Department of Energy Search help Home > Hydrogen Production Printable Version Hydrogen Production Hydrogen can be produced from diverse domestic feedstocks using a variety of process technologies. Hydrogen-containing compounds such as fossil fuels, biomass or even water can be a source of hydrogen. Thermochemical processes can be used to produce hydrogen from biomass and from fossil fuels such as coal, natural gas and petroleum. Power generated from sunlight, wind and nuclear sources can be used to produce hydrogen electrolytically. Sunlight alone can also drive photolytic production of

445

Ovonic Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC |  

Open Energy Info (EERE)

Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Jump to: navigation, search Name Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) Place Rochester Hills, Michigan Zip 48309 Sector Hydro, Hydrogen, Vehicles Product It commercializes hydrogen storage technology based on metal-hydrides for portable and stationary power systems as well as fuel-cell vehicles. References Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) is a company located in Rochester Hills, Michigan . References

446

Process for exchanging hydrogen isotopes between gaseous hydrogen and water  

DOE Patents (OSTI)

A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

Hindin, Saul G. (Mendham, NJ); Roberts, George W. (Westfield, NJ)

1980-08-12T23:59:59.000Z

447

Tests for Hydrogen Cyanide and Hydrogen Sulfide  

SciTech Connect

A potential source of dangerous concentrations of hydrogen cyanide exists in the plating room of the Machine Shop where open plating baths containing cyanide salts are maintained and where solid cyanide salts are stored. Also the use of hydrogen sulfide in certain steps of the waste disposal process has lead to noticeable and sometimes objectionable concentrations of this gas in the air of the "WD" Building. In view of the toxic properties of these two gases, it was desirable to set up suitable tests to determine the actual concentrations present in the air of the respective working areas.

Joy, E. F.

1949-08-24T23:59:59.000Z

448

Make Your Mark in the 2011 Hydrogen Student Design Contest | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Make Your Mark in the 2011 Hydrogen Student Design Contest Make Your Mark in the 2011 Hydrogen Student Design Contest Make Your Mark in the 2011 Hydrogen Student Design Contest October 8, 2010 - 2:46pm Addthis Editor's Note: The Registration Deadline has been extended to November 1st. This year, the 2010-2011 Hydrogen Student Design Contest is challenging undergraduate and graduate students worldwide to plan and design a residential hydrogen fueling system for a home, apartment complex, dorm or other single residential building. As a part of their entry, teams will develop a technical design; conduct an economic analysis; and develop business, marketing and public education plans for their systems. The grand-prize-winning team will receive an expenses-paid trip to present their winning entry to thousands of industry professionals in a keynote

449

Make Your Mark in the 2011 Hydrogen Student Design Contest | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Make Your Mark in the 2011 Hydrogen Student Design Contest Make Your Mark in the 2011 Hydrogen Student Design Contest Make Your Mark in the 2011 Hydrogen Student Design Contest October 8, 2010 - 2:46pm Addthis Editor's Note: The Registration Deadline has been extended to November 1st. This year, the 2010-2011 Hydrogen Student Design Contest is challenging undergraduate and graduate students worldwide to plan and design a residential hydrogen fueling system for a home, apartment complex, dorm or other single residential building. As a part of their entry, teams will develop a technical design; conduct an economic analysis; and develop business, marketing and public education plans for their systems. The grand-prize-winning team will receive an expenses-paid trip to present their winning entry to thousands of industry professionals in a keynote

450

Thick film hydrogen sensor  

DOE Green Energy (OSTI)

A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

Hoffheins, Barbara S. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

1995-01-01T23:59:59.000Z

451

Hydrogen Conference: Workshop Proceedings  

Science Conference Proceedings (OSTI)

Hydrogen is currently a major chemical/fuel with long-term energy system benefits that may impact the industry's physical and economic well-being. EPRI's recent hydrogen conference concluded that to be competitive, the production cost must take into account environmental and end-use efficiency benefits.

1989-10-20T23:59:59.000Z

452

Hydrogen Fuel Cell Engines  

E-Print Network (OSTI)

#12;#12;Hydrogen Fuel Cell Engines MODULE 11:GLOSSARY AND CONVERSIONS CONTENTS 11.1 GLOSSARY Cell Engines MODULE 11:GLOSSARY AND CONVERSIONS OBJECTIVES This module is for reference only. Hydrogen MODULE 11: GLOSSARY AND CONVERSIONS PAGE 11-1 11.1 Glossary This glossary covers words, phrases

453

NATIONAL HYDROGEN ENERGY ROADMAP  

E-Print Network (OSTI)

and replaced by coal gasification with carbon sequestration and, to a lesser extent, by biomass gasification. By 2050, biomass and wind, combined, provide 35% of hydrogen supplies. Hydrogen production from nuclear.energy.gov/hydrogenandfuelcells/posture_plan04.html. sequestration sites opt for more coal gasification while those with ample wind or biomass

454

DOE Hydrogen Analysis Repository: Hydrogen from Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen from Renewable Energy Project Summary Full Title: H2 Production Infrastructure Analysis - Task 3: Hydrogen From Renewable Energy Sources: Pathway to 10 Quads for...

455

DOE Hydrogen Analysis Repository: Transition to Hydrogen Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transition to Hydrogen Transportation Fuel Transition to Hydrogen Transportation Fuel Project Summary Full Title: A Smooth Transition to Hydrogen Transportation Fuel Project ID: 87 Principal Investigator: Gene Berry Brief Description: This project contrasts the options of decentralized production using the existing energy distribution network, and centralized production of hydrogen with a large-scale infrastructure. Keywords: Infrastructure; costs; hydrogen production Purpose The case for hydrogen-powered transportation requires an assessment of present and prospective methods for producing, storing, and delivering hydrogen. This project examines one potential pathway: on-site production of hydrogen to fuel light-duty vehicles. Performer Principal Investigator: Gene Berry Organization: Lawrence Livermore National Laboratory (LLNL)

456

DOE Hydrogen Analysis Repository: Production of Hydrogen byPhotovolta...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolysis Project ID: 132 Principal Investigator: DL Block Purpose Compare the cost of hydrogen produced using photo electric chemical systems to the cost of hydrogen...

457

Controlled Hydrogen Fleet and Infrastructure Analysis - DOE Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

conditions, using multiple sites, varying climates, and a variety of hydrogen sources. Analyze detailed fuel cell and hydrogen data from * vehicles and infrastructure to...

458

DOE Hydrogen Analysis Repository: Impact of Hydrogen Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Energy Markets Project ID: 99 Principal Investigator: Harry Vidas Keywords: Hydrogen production; hydrogen supply; infrastructure; costs Purpose This project addresses the...

459

DOE Hydrogen Program Record 5030: Hydrogen Baseline Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

kg of hydrogen) .56 Production unit energy efficiency 70% Compression electricity consumption (kWhrkg of hydrogen) 2.9 Total system energy efficiency 65% Feedstock and Utility...

460

NMR Studies of Molecular Hydrogen in Hydrogenated Amorphous Silicon  

DOE Green Energy (OSTI)

Using NMR, the concentrations of molecular hydrogen have been measured directly in hydrogenated amorphous silicon made by the hot wire chemical vapor deposition (HWCVD) technique.

Su, T.; Chen, S.; Taylor, P. C.; Crandall, R. S.; Mahan, A. H.

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "worldwide hydrogen bus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Hydrogen Embrittlement in Vanadium-based Hydrogen Separation ...  

Science Conference Proceedings (OSTI)

One of the important materials that face a challenge to overcome the hydrogen embrittlement is vanadium-based hydrogen separation membranes for an...

462

NREL: Hydrogen and Fuel Cells Research - Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Storing hydrogen for renewable energy technologies can be challenging, especially for intermittent resources such as solar and wind. Whether for stationary,...

463

Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Pilot Plant and Hydrogen ICE Vehicle Testing Jim Francfort (INEEL) Don Karner (ETA) 2004 Fuel Cell Seminar - San Antonio Session 5B - Hydrogen DOE - Advanced Vehicle Testing...

464

DOE Hydrogen Analysis Repository: The Hydrogen Economy: Opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

for the potential penetration of hydrogen into the economy and associated impacts on oil imports and CO2 gas emissions; Address the problem of how hydrogen might be...

465

NREL: Hydrogen and Fuel Cells Research - Hydrogen Production and Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production and Delivery Hydrogen Production and Delivery Most of the hydrogen in the United States is produced by steam reforming of natural gas. For the near term, this production method will continue to dominate. Researchers at NREL are developing advanced processes to produce hydrogen economically from sustainable resources. NREL's hydrogen production and delivery R&D efforts, which are led by Huyen Dinh, focus on the following topics: Biological Water Splitting Fermentation Conversion of Biomass and Wastes Photoelectrochemical Water Splitting Solar Thermal Water Splitting Renewable Electrolysis Hydrogen Dispenser Hose Reliability Hydrogen Production and Delivery Pathway Analysis. Biological Water Splitting Certain photosynthetic microbes use light energy to produce hydrogen from

466

Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural...  

NLE Websites -- All DOE Office Websites (Extended Search)

2009 Hydrogen Resource Assessment Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power Anelia Milbrandt and Margaret Mann National Renewable Energy Laboratory 1617...

467

NREL: Learning - Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Hydrogen Storage On the one hand, hydrogen's great asset as a renewable energy carrier is that it is storable and transportable. On the other hand, its very low natural density requires storage volumes that are impractical for vehicles and many other uses. Current practice is to compress the gas in pressurized tanks, but this still provides only limited driving range for vehicles and is bulkier than desirable for other uses as well. Liquefying the hydrogen more than doubles the fuel density, but uses up substantial amounts of energy to lower the temperature sufficiently (-253°C at atmospheric pressure), requires expensive insulated tanks to maintain that temperature, and still falls short of desired driving range. One possible way to store hydrogen at higher density is in the spaces within the crystalline

468

Hydrogen Threshold Cost Calculation  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Record (Offices of Fuel Cell Technologies) Program Record (Offices of Fuel Cell Technologies) Record #: 11007 Date: March 25, 2011 Title: Hydrogen Threshold Cost Calculation Originator: Mark Ruth & Fred Joseck Approved by: Sunita Satyapal Date: March 24, 2011 Description: The hydrogen threshold cost is defined as the hydrogen cost in the range of $2.00-$4.00/gge (2007$) which represents the cost at which hydrogen fuel cell electric vehicles (FCEVs) are projected to become competitive on a cost per mile basis with the competing vehicles [gasoline in hybrid-electric vehicles (HEVs)] in 2020. This record documents the methodology and assumptions used to calculate that threshold cost. Principles: The cost threshold analysis is a "top-down" analysis of the cost at which hydrogen would be

469

Hydrogen Storage- Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

- - Overview George Thomas, Hydrogen Consultant to SNL * and Jay Keller, Hydrogen Program Manager Sandia National Laboratories H 2 Delivery and Infrastructure Workshop May 7-8, 2003 * Most of this presentation has been extracted from George Thomas' invited BES Hydrogen Workshop presentation (May 13-14, 2003) Sandia National Laboratories 4/14/03 2 Sandia National Laboratories From George Thomas, BES workshop 5/13/03 H 2 storage is a critical enabling technology for H 2 use as an energy carrier The low volumetric density of gaseous fuels requires a storage method which compacts the fuel. Hence, hydrogen storage systems are inherently more complex than liquid fuels. Storage technologies are needed in all aspects of hydrogen utilization. production distribution utilization

470

Electrochemical Hydrogen Compression (EHC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Hydrogen Compression (EHC) Pinakin Patel and Ludwig Lipp Presentation at DOE Hydrogen Compression, Storage and Dispensing Workshop at ANL Argonne, IL March 20, 2013 2 * Experience with all fuel cells - MCFC, SOFC, PEM, PAFC, etc. * Excellent progress in commercialization of MCFC technology (>300 MW installed + backlog, >50 MW per year production rate, 11 MW single site unit in Korea, >1.5 billion kWh produced) * Unique internal reforming technology for high efficiency fuel cells FCE Overview $- $2,000 $4,000 $6,000 $8,000 $10,000 2003 2007 2011 mid-term Product cost per kW 3 H 2 Peak and Back- up Power Fuel Cell Cars DFC ® Power Plant (Electricity + Hydrogen) Solid State Hydrogen Separator (EHS) Solid State Hydrogen

471

Hydrogen in compound semiconductors  

DOE Green Energy (OSTI)

Progress in the understanding of hydrogen and its interactions in III/V and II/VI compound semiconductors is reviewed. Donor, acceptor and deep level passivation is well established in III/V compounds based on electrical measurements and on spectroscopic studies. The hydrogen donor levels in GaAs and GaP are estimated to lie near E{sub v}+0.5 eV and E{sub v}+0.3 eV, respectively. Arsenic acceptors have been passivated by hydrogen in CdTe and the very first nitrogen-hydrogen local vibrational model spectra in ZnSe have been reported. This long awaited result may lead to an explanation for the poor activation of nitrogen acceptors in ZnSe grown by techniques which involve high concentrations of hydrogen.

Haller, E.E.

1993-05-01T23:59:59.000Z

472

Hydrogen Fuel Quality  

DOE Green Energy (OSTI)

For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

Rockward, Tommy [Los Alamos National Laboratory

2012-07-16T23:59:59.000Z

473

Hydrogen Purity Standard  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Gas Association Compressed Gas Association Roger A. Smith Technical Director April 26, 2004 Hydrogen Purity Standard Compressed Gas Association 2 Compressed Gas Association ‹ 150 Members „ Industrial Gas Companies „ Equipment Manufacturers „ Other Gas Industry Associations „ Other SDOs ‹ Manufacturers, Fillers, Distributors, and Transporters of Industrial and Medical Gases Compressed Gas Association 3 Hydrogen Activities ‹ Committees „ Hydrogen Fuel Technology „ Bulk Distribution Equipment „ Hazardous Materials Codes „ Gas Specifications „ Cylinders, Valves & PRD's ‹ International „ Europe (EIGA) „ Japan (JIGA) „ Asia (AIGA) „ United Nations Compressed Gas Association 4 Hydrogen Purity Standard ‹ Draft hydrogen purity standard for stationary fuel cells and ICE's in 10 months

474

FCT Hydrogen Storage: Current Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Technology to someone Current Technology to someone by E-mail Share FCT Hydrogen Storage: Current Technology on Facebook Tweet about FCT Hydrogen Storage: Current Technology on Twitter Bookmark FCT Hydrogen Storage: Current Technology on Google Bookmark FCT Hydrogen Storage: Current Technology on Delicious Rank FCT Hydrogen Storage: Current Technology on Digg Find More places to share FCT Hydrogen Storage: Current Technology on AddThis.com... Home Basics Current Technology Gaseous and Liquid Hydrogen Storage Materials-Based Hydrogen Storage Hydrogen Storage Challenges Status of Hydrogen Storage Technologies DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology

475

Hydrogen Delivery Liquefaction and Compression  

NLE Websites -- All DOE Office Websites (Extended Search)

to Praxair Hydrogen Liquefaction Hydrogen Compression 3 Praxair at a Glance The largest industrial gas company in North and South America Only U.S. Hydrogen Supplier in All Sizes...

476

The Bumpy Road to Hydrogen  

E-Print Network (OSTI)

It appears to us that hydrogen is a highly promising option0616 The Bumpy Road to Hydrogen Daniel Sperling Joan OgdenThe Bumpy Road to Hydrogen 1 Daniel Sperling and Joan Ogden

Sperling, Dan; Ogden, Joan M

2006-01-01T23:59:59.000Z

477

Renewable Resources for Hydrogen (Presentation)  

Science Conference Proceedings (OSTI)

This presentation provides an overview of renewable resources for hydrogen. It was presented at the National Hydrogen Association Hydrogen Conference & Expo in Long Beach, CA, May 3-6, 2010.

Jalalzadeh-Azar, A. A.

2010-05-03T23:59:59.000Z

478

Hydrogen Data Book from the Hydrogen Analysis Resource Center  

DOE Data Explorer (OSTI)

The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). Its made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

479

Clean air program: Design guidelines for bus transit systems using liquefied petroleum gas (LPG) as an alternative fuel. Final report, July 1995-April 1996  

Science Conference Proceedings (OSTI)

The Federal Transit Administration (FTA) has initiated the development of `Design Guidelines for Bus Transit Systems Using Alternative Fuels.` This report provides design guidelines for the safe uses of Liquefied Petroleum Gas (LPG). It forms a part of the series of individual monographs being published by the FTA on (the guidelines for the safe use of) Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG) and alcohol fuels (Methanol and Ethanol). Each report in this series describes for the subject fuel the important fuel properties, guidelines for the design and operation of bus fueling, storage and maintenance facilities, issues on personnel training and emergency preparedness.

Raj, P.K.; Hathaway, W.T.; Kangas, R.

1996-09-01T23:59:59.000Z

480

Transcript: NU-BAYU: Google Bus Visits NU, October 6, 2008 Sherry: Hi, my name is Sherry Minton. I work with NUIT Communications, and I'm here with  

E-Print Network (OSTI)

Transcript: NU-BAYU: Google Bus Visits NU, October 6, 2008 Sherry: Hi, my name is Sherry Minton. I work with NUIT Communications, and I'm here with Miriam Schneider of Google, and the Google Bus has arrived on campus, and Miriam, tell us what you do at Google and why you're here. Miriam: Sure. So I am

Shull, Kenneth R.

Note: This page contains sample records for the topic "worldwide hydrogen bus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Hydrogen Energy | Open Energy Information  

Open Energy Info (EERE)

reduce carbon emissions through low-carbon hydrogen fuel for electricity generation and carbon sequestration technologies. References Hydrogen Energy1 LinkedIn Connections...

482

Hydrogen and Fuel Cell Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen is the simplest element on Earth. A hydrogen atom consists of only one proton and one electron. It is also the most plentiful element in the universe.

483

Chromatographic hydrogen isotope separation  

DOE Patents (OSTI)

Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

Aldridge, Frederick T. (Livermore, CA)

1981-01-01T23:59:59.000Z

484

Hydrogen Production: Overview of Technology Options  

NLE Websites -- All DOE Office Websites (Extended Search)

Table of Contents Producing Hydrogen...1 Hydrogen Production Technologies ...3 Challenges and Research Needs...4 Technology...

485

Flammability Limits of Hydrogen-Air Mixtures  

Science Conference Proceedings (OSTI)

Technical Paper / Safety and Technology of Nuclear Hydrogen Production, Control, and Management / Hydrogen Safety and Recombiners

H. Cheikhravat; N. Chaumeix; A. Bentaib; C.-E. Paillard

486

Hydrogen Technical Analysis -- Dissemination of Information  

DOE Green Energy (OSTI)

SENTECH is a small energy and environmental consulting firm providing technical, analytical, and communications solutions to technology management issues. The activities proposed by SENTECH focused on gathering and developing communications materials and information, and various dissemination activities to present the benefits of hydrogen energy to a broad audience while at the same time establishing permanent communications channels to enable continued two-way dialog with these audiences in future years. Effective communications and information dissemination is critical to the acceptance of new technology. Hydrogen technologies face the additional challenge of safety preconceptions formed primarily as a result of the crash of the Hindenburg. Effective communications play a key role in all aspects of human interaction, and will help to overcome the perceptual barriers, whether of safety, economics, or benefits. As originally proposed SENTECH identified three distinct information dissemination activities to address three distinct but important audiences; these formed the basis for the task structure used in phases 1 and 2. The tasks were: (1) Print information--Brochures that target the certain segment of the population and will be distributed via relevant technical conferences and traditional distribution channels. (2) Face-to-face meetings--With industries identified to have a stake in hydrogen energy. The three industry audiences are architect/engineering firms, renewable energy firms, and energy companies that have not made a commitment to hydrogen (3) Educational Forums--The final audience is students--the future engineers, technicians, and energy consumers. SENTECH will expand on its previous educational work in this area. The communications activities proposed by SENTECH and completed as a result of this cooperative agreement was designed to compliment the research and development work funded by the DOE by presenting the technical achievements and validations of hydrogen energy technologies to non-traditional audiences. These activities were also designed to raise the visibility of the DOE Hydrogen Program to new audiences and to help the program continue to advance its mission and vision. We believe that the work conducted under this cooperative agreement was successful at meeting the objectives presented and funded over the period of performance. During Phase 1, SENTECHs activities resulted in the development and distribution of two glossy brochures that target the on-site distributed generation and public transit markets for hydrogen energy technologies; face-to-face industry outreach meetings with various firms with an interest in hydrogen energy, but who may not have made a commitment to be involved; and implementation of two educational forums on hydrogen for students - the future engineers, technicians, and energy consumers. The educational forums were conducted with in-kind cost-shared contributions from NHA and Dr. Robert Reeves, Professor Emeritus, Rensealler During Phase 2, SENTECH activities initially were focused on the development of additional brochures and the development of a series of training modules. This set of information dissemination activities built on the experience demonstrated in our phase one activities, and focused the effort within two critical issue areas facing the development of hydrogen as an energy carrier--effective communications and information dissemination on codes and standards. SENTECH joined with the National Fire Protection Association (NFPA) to scope out the training modules and identified a series of 12 that could be used to train a variety of audiences. The NFPA is an international nonprofit corporation, which has developed a reputation as a worldwide leader in providing fire, electrical, and life safety to the public since 1896. Its membership totals more than 75,000 individuals from around the world and in more than 80 national trade and professional organizations.

George Kervitsky, Jr.

2006-03-20T23:59:59.000Z

487

Hawaii hydrogen power park Hawaii Hydrogen Power Park  

E-Print Network (OSTI)

energy source. (Barrier V-Renewable Integration) Hydrogen storage & distribution system. (Barrier V fueled vehicle hydrogen dispensing system. Demonstrate hydrogen as an energy carrier. Investigate Electrolyzer ValveManifold Water High Pressure H2 Storage Fuel Cell AC Power H2 Compressor Hydrogen Supply O2

488

Questions and Issues on Hydrogen Pipeline Transmission of Hydrogen  

E-Print Network (OSTI)

Questions and Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Pipeline Inventory Breakdown by gases 0 500 1000 1500 2000 2500 3000 3500 KM N2 2956 km O2 3447 km H2 1736

489

The European nuclear power industry: Restructuring for combined strength and worldwide leadership  

Science Conference Proceedings (OSTI)

The European nuclear power industry is being restructured from an industry drawn along national lines to a European-wide industry. This, in part, reflects growth of the European Economic Community, but it also reflects changes in the international nuclear power industry. The objectives of the participants, beyond better integration of the nuclear industry in Western Europe, are to (1) obtain European leadership of the worldwide commercial nuclear power industry, (2) improve medium- and long-term safety of Eastern Europe and the former Soviet Union (FSU) power reactors, and (3) reduce domestic concerns about nuclear power. The activities to achieve these goals include (1) formation of Nuclear Power International (a joint venture of the German and French nuclear power plant vendors for design and construction of nuclear power plants), (2) formation of a utility group to forge agreement throughout Europe on what the requirements are for the next generation of nuclear power plants, and (3) agreement by regulators in multiple European countries to harmonize regulations. This is to be achieved before the end of the decade. These changes would allow a single design of nuclear power plant to be built anywhere in Europe. The creation of European-wide rules (utility requirements, engineering standards, and national regulations) would create strong economic and political forces for other European countries (Eastern Europe and FSU) to meet these standards.

Forsberg, C.W.; Norman, R.E.; Reich, W.J.; Hill, L.J.

1993-06-18T23:59:59.000Z

490

Developing a tight gas sand advisor for completion and stimulation in tight gas reservoirs worldwide  

E-Print Network (OSTI)

As the demand for energy worldwide increases, the oil and gas industry will need to increase recovery from unconventional gas reservoirs (UGR). UGRs include Tight Gas Sand (TGS), coalbed methane and gas shales. To economically produce UGRs, one must have adequate product price and one must use the most current technology. TGS reservoirs require stimulation as a part of the completion, so improvement of completion practices is very important. We did a thorough literature review to extract knowledge and experience about completion and stimulation technologies used in TGS reservoirs. We developed the principal design and two modules of a computer program called Tight Gas Sand Advisor (TGS Advisor), which can be used to assist engineers in making decisions while completing and stimulating TGS reservoirs. The modules include Perforation Selection and Proppant Selection. Based on input well/reservoir parameters these subroutines provide unambiguous recommendations concerning which perforation strategy(s) and what proppant(s) are applicable for a given well. The most crucial parameters from completion best-practices analyses and consultations with experts are built into TGS Advisor's logic, which mimics human expert's decision-making process. TGS Advisor's recommended procedures for successful completions will facilitate TGS development and improve economical performance of TGS reservoirs.

Bogatchev, Kirill Y

2007-12-01T23:59:59.000Z

491

Developing a tight gas sand advisor for completion and stimulation in tight gas reservoirs worldwide  

E-Print Network (OSTI)

As the demand for energy worldwide increases, the oil and gas industry will need to increase recovery from unconventional gas reservoirs (UGR). UGRs include Tight Gas Sand (TGS), coalbed methane and gas shales. To economically produce UGRs, one must have adequate product price and one must use the most current technology. TGS reservoirs require stimulation as a part of the completion, so improvement of completion practices is very important. We did a thorough literature review to extract knowledge and experience about completion and stimulation technologies used in TGS reservoirs. We developed the principal design and two modules of a computer program called Tight Gas Sand Advisor (TGS Advisor), which can be used to assist engineers in making decisions while completing and stimulating TGS reservoirs. The modules include Perforation Selection and Proppant Selection. Based on input well/reservoir parameters these subroutines provide unambiguous recommendations concerning which perforation strategy(s) and what proppant(s) are applicable for a given well. The most crucial parameters from completion best-practices analyses and consultations with experts are built into TGS Advisors logic, which mimics human experts decision-making process. TGS Advisors recommended procedures for successful completions will facilitate TGS development and improve economical performance of TGS reservoirs.

Bogatchev, Kirill Y.

2007-12-01T23:59:59.000Z

492

Science Fiction as a Worldwide Phenomenon: A Study of International Creation, Consumption and Dissemination  

E-Print Network (OSTI)

This paper examines the international nature of science fiction. The focus of this research is to determine whether science fiction is primarily English speaking and Western or global; being created and consumed by people in non-Western, non-English speaking countries? Science fiction's international presence was found in three ways, by network analysis, by examining a online retailer and with a survey. Condor, a program developed by GalaxyAdvisors was used to determine if science fiction is being talked about by non-English speakers. An analysis of the international Amazon.com websites was done to discover if it was being consumed worldwide. A survey was also conducted to see if people had experience with science fiction. All three research methods revealed similar results. Science fiction was found to be international, with science fiction creators originating in different countries and writing in a host of different languages. English and non-English science fiction was being created and consumed all over ...

Wells, Elysia

2013-01-01T23:59:59.000Z

493

Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel  

SciTech Connect

The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

Cowell, B.S.; Fisher, S.E.

1999-02-01T23:59:59.000Z

494

Oil demand continues to grow in the U.S. and worldwide  

SciTech Connect

Rising oil consumption is challenging the Organization of Petroleum Exporting Countries production quota--but not the group`s ability to meet demand. In the second half of 1995, the oil market will continue to need more oil from OPEC members than the group claims to be willing to produce with its quota at 24.52 million b/d. If the quota really limited supply, ingredients would be in place for a significant price hike. Growth in a non-OPEC production intensities temptations on OPEC members to cheat on quotas and has become a key factor in the market. OPEC producers have seen that if they don`t meet incremental demand at the current price, other producers will. OPEC eventually will have to raise its quota or acknowledge that the artificial production limit lacks meaning. At present, the only real limit to supply is production capacity, which remains in excess relative to demand and which has demonstrated its ability to grow both within and outside of OPEC when prices rise. The paper discusses worldwide trends, pressures on OPEC, world crude prices, US prices, natural gas prices, US energy demand, natural gas use, gas supply, US demand for petroleum products, imports, and inventories.

Tippee, B.; Beck, R.J.

1995-07-31T23:59:59.000Z

495

Proceedings of the 23rd Seismic Research Symposium: Worldwide Monitoring of Nuclear Explosions  

Science Conference Proceedings (OSTI)

These proceedings contain papers prepared for the 23rd Seismic Research Review: Worldwide Monitoring of Nuclear Explosions, held 2-5 October, 2001 in Jackson Hole, Wyoming. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Warren, N. Jill [Editor; Chavez, Francesca C. [Editor

2001-10-02T23:59:59.000Z

496

Fiber optic hydrogen sensor  

DOE Green Energy (OSTI)

This report covers the development of fiber optic hydrogen and temperature sensors for monitoring dissolved hydrogen gas in transformer oil. The concentration of hydrogen gas is a measure of the corona and spark discharge within the transformer and reflects the state of health of the transformer. Key features of the instrument include use of palladium alloys to enhance hydrogen sensitivity, a microprocessor controlled instrument with RS-232, liquid crystal readout, and 4-20 ma. current loop interfaces. Calibration data for both sensors can be down loaded to the instrument through the RS-232 interface. This project was supported by the Technology Transfer Initiative in collaboration with J. W. Harley, Inc. through the mechanism of a cooperative research and development agreement (CRADA).

Butler, M.A.; Sanchez, R.; Dulleck, G.R.

1996-05-01T23:59:59.000Z

497

hydrogen | OpenEI  

Open Energy Info (EERE)

hydrogen hydrogen Dataset Summary Description Technical Reference for Hydrogen Compatibility of Materials Source Sandia National Laboratories Date Released June 03