Powered by Deep Web Technologies
Note: This page contains sample records for the topic "world total installed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

GHPGHPGHPGHPGHPsPayforThemselvessPayforThemselvessPayforThemselvessPayforThemselvessPayforThemselves The world's largest installation of geothermal heat  

E-Print Network (OSTI)

ThemselvessPayforThemselvessPayforThemselvessPayforThemselvessPayforThemselves The world's largest installation of geothermal heat pumps has proven that this technology can deliver big savings resulting from the retrofit. Geothermal heat pumps (GHPs) were installed in a comprehensive energy their qualifications to build and finance successful GHP-centered projects. (Geothermal heat pumps are also known

Oak Ridge National Laboratory

2

Feasibility Studies to Improve Plant Availability and Reduce Total Installed Cost in Integrated Gasification Combined Cycle Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Feasibility Studies to Improve Plant Feasibility Studies to Improve Plant Availability and Reduce Total Installed Cost in Integrated Gasification Combined Cycle Plants Background Gasification provides the means to turn coal and other carbonaceous solid, liquid and gaseous feedstocks as diverse as refinery residues, biomass, and black liquor into synthesis gas and valuable byproducts that can be used to produce low-emissions power, clean-burning fuels and a wide range of commercial products to support

3

Accumulated CFC-11 in polyurethane foam insulation: an estimate of the total amount in district heating installations in Sweden  

Science Journals Connector (OSTI)

In rigid polyurethane foam used for thermal insulation, CFC-11 has been the main blowing agent for many years, but is now subject to phase-out regulations. During ageing of this foam, air diffuses into it and blowing agents leak into the atmosphere, resulting in a decreased insulating capacity. Determinations of the cell gas composition and the total content of CFC-11 in foam from district heating installations of different ages are reported in this paper. The total amount of CFC-11 in old district heating schemes in Sweden is estimated at 2000 tonnes. The amount in refrigeration equipment in Sweden is about twice as large.

M. Svanstrom

1996-01-01T23:59:59.000Z

4

AEO2011: World Total Coal Flows By Importing Regions and Exporting  

Open Energy Info (EERE)

Total Coal Flows By Importing Regions and Exporting Total Coal Flows By Importing Regions and Exporting Countries Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 144, and contains only the reference case. The dataset uses million short tons. The data is broken down into total coal exports to Europe, Asia and America. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO coal EIA Data application/vnd.ms-excel icon AEO2011: World Total Coal Flows By Importing Regions and Exporting Countries - Reference Case (xls, 104 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

5

From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the World’s First nuclear power plant  

Science Journals Connector (OSTI)

Successful commissioning in the 1954 of the World’s First nuclear power plant constructed at the Institute for Physics ... center for training Soviet and foreign specialists on nuclear power plants, the personnel...

V. I. Rachkov; S. G. Kalyakin; O. F. Kukharchuk; Yu. I. Orlov…

2014-05-01T23:59:59.000Z

6

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

7

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

8

Global relationships of total alkalinity with salinity and temperature in surface waters of the world's oceans  

E-Print Network (OSTI)

Global relationships of total alkalinity with salinity and temperature in surface waters, R. A. Feely, and R. M. Key (2006), Global relationships of total alkalinity with salinity 35)2 + d (SST Ã? 20) + e (SST Ã? 20)2 fits surface total alkalinity (AT) data for each of five

9

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

10

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

11

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

12

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

13

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

14

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

15

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

16

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

17

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

18

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

19

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

20

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

Note: This page contains sample records for the topic "world total installed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

22

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

23

Estimating SCR installation costs  

SciTech Connect

The EUCG surveyed 72 separate US installations of selective catalytic reduction (SCR) systems at coal-fired units totalling 41 GW of capacity to identify the systems' major cost drivers. The results, summarized in this article, provide excellent first-order estimates and guidance for utilities considering installing the downstream emissions-control technology. 4 figs., 1 tab.

Marano, M.; Sharp, G. [American Electric Power (United States)

2006-01-15T23:59:59.000Z

24

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

25

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

26

Preliminary Technical Results of World Bank Gasifier Monitorings  

Science Journals Connector (OSTI)

Through the World Bank/UNDP Gasifier Monitoring Programme, a number of gasification installations...

M. S. Mendis; H. E. M. Stassen; H. N. Stiles

1988-01-01T23:59:59.000Z

27

Developer Installed Treatment Plants  

E-Print Network (OSTI)

-installed treatment plants. These treatment plants are more commonly known as package wastewater treatment plants. 1

unknown authors

2008-01-01T23:59:59.000Z

28

Telecommunications Frontier Client Installation  

E-Print Network (OSTI)

Telecommunications Frontier Client Installation 1. Fax the completed form to 979.847.1111. 2 Signature Date Telecommunications Office Use Only Service Due Date: Installation Cost: Billed To: Print Form

29

Installation and Acceptance Stage  

Directives, Delegations, and Requirements

This chapter addresses activities required to install the software, data bases, or data that comprise the software product onto the hardware platform at sites of operation.

1997-05-21T23:59:59.000Z

30

Solar installer's training program  

SciTech Connect

Instructions are given for the installation of solar domestic water heating systems, space heating systems, and pool heating systems. The basic procedures for installing any solar heating system are presented with reference to solar domestic hot water systems, and the space and pool systems are taught on that basis. (LEW)

Schmidt, W.J.; Philbin, J.

1981-01-01T23:59:59.000Z

31

Installed Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

Geothermal Capacity Geothermal Capacity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Installed Geothermal Capacity International Market Map of U.S. Geothermal Power Plants List of U.S. Geothermal Power Plants Throughout the world geothermal energy is looked at as a potential source of renewable base-load power. As of 2005 there was 8,933 MW of installed power capacity within 24 countries. The International Geothermal Association (IGA) reported 55,709 GWh per year of geothermal electricity. The generation from 2005 to 2010 increased to 67,246 GWh, representing a 20% increase in the 5 year period. The IGA has projected that by 2015 the new installed capacity will reach 18,500 MW, nearly 10,000 MW greater than 2005. [1] Countries with the greatest increase in installed capacity (MW) between

32

HVAC Installed Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HVAC Installed Performance HVAC Installed Performance ESI, Tim Hanes Context * The building envelope has historically been the focus in residential homes. * The largest consumer of energy in residential homes is typically the HVAC system. * Testing the performance of the HVAC system has not been pursued to its full potential. Technical Approach * Currently very little performance testing is being done to the HVAC system. * The only way to know if a HVAC system is operating correctly is to measure the Btu/h. * This should be done at the equipment and at the the system. Recommended Guidance * Training of HVAC technicians, installers, and salespeople is a must. * If only the technician is trained than implementing the change will not happen. * Public awareness of proper installation and its

33

HVAC Installed Performance  

Energy.gov (U.S. Department of Energy (DOE))

This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question HVAC proper installation energy savings: over-promising or under-delivering?"

34

Property:InstalledCapacity | Open Energy Information  

Open Energy Info (EERE)

InstalledCapacity InstalledCapacity Jump to: navigation, search Property Name InstalledCapacity Property Type Quantity Description Installed Capacity (MW) or also known as Total Generator Nameplate Capacity (Rated Power) Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

35

Tracking the Sun III; The Installed Cost of Photovoltaics in the United States from 1998-2009  

E-Print Network (OSTI)

from 1998-2009 Tracking the Sun III: The Installed Cost ofSystems MW Total Tracking the Sun III: The Installed Cost ofthrough 2009. Tracking the Sun III: The Installed Cost of

Barbose, Galen

2011-01-01T23:59:59.000Z

36

Summary World Solar Energy Data (from World on the Edge) | OpenEI  

Open Energy Info (EERE)

Solar Energy Data (from World on the Edge) Solar Energy Data (from World on the Edge) Dataset Summary Description This dataset presents summary information related to world solar energy. It is part of a supporting dataset for the book World On the Edge: How to Prevent Environmental and Economic Collapse by Lester R. Brown, available from the Earth Policy Institute. This solar energy dataset includes the following: World solar PV production (1975 - 2009); Annual solar PV production by country (1995 - 2009); Solar PV production in the US (1976 - 2009); World cumulative solar PV installations (1998 - 2009); Annual solar PV installations in selected countries and the world (1998 - 2009); Cumulative solar PV installations in the US (1998 - 2009) and EU (1998 - 2009); World installed concentrating solar thermal power capacity (1980 - 2009); solar water and space heating area in selected countries (2008) and top ten countries (2008).

37

Telecommunications Keyless Entry Hardware Install  

E-Print Network (OSTI)

Telecommunications Keyless Entry Hardware Install 1. Fax completed form to 979.847.1111. 2. If you Telecommunications Office Use Only Service Due Date: Installation Cost: Billed To: Print Form #12;

38

Installation Guide 1. PREFACE .................................................................................................................................................... 3  

E-Print Network (OSTI)

AoC Installation Guide #12;Contents 1. PREFACE....................................................................................................................................................... 4 3.2 AOC............................................................................................................................................................. 4 3.3 AOC ADMIN

Natvig, Lasse

39

Spain Installed Wind Capacity Website | Open Energy Information  

Open Energy Info (EERE)

Spain Installed Wind Capacity Website Spain Installed Wind Capacity Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy Topics: Market Analysis Website: www.gwec.net/index.php?id=131 Equivalent URI: cleanenergysolutions.org/content/spain-installed-wind-capacity-website Language: English Policies: Regulations Regulations: Feed-in Tariffs This website presents an overview of total installed wind energy capacity in Spain per year from 2000 to 2010. The page also presents the main market developments from 2010; a policy summary; a discussion of the revision in feed-in tariffs in 2010; and a future market outlook. References Retrieved from "http://en.openei.org/w/index.php?title=Spain_Installed_Wind_Capacity_Website&oldid=514562"

40

HTAR Client Configuration and Installation  

NLE Websites -- All DOE Office Websites (Extended Search)

Configuration and Installation Configuration and Installation HTAR Configuration and Installation HTAR is an archival utility similar to gnu-tar that allows for the archiving and extraction of local files into and out of HPSS. Configuration Instructions This distribution has default configuration settings which will work for most environments. If you want to use the default values (recommended) you can skip to the section labeled INSTALLATION INSTRUCTIONS. In certain environments, for example if your installation is on a machine which has more than one network interface, you may want to change some of these default settings. To help with this, an interactive Configure script is provided. To use it do $ ./Configure prior to installing. Configure will provide a description of the options

Note: This page contains sample records for the topic "world total installed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Installing a Light Source 'Racetrack' | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Installing a Light Source 'Racetrack' Installing a Light Source 'Racetrack' Installing a Light Source 'Racetrack' March 22, 2011 - 10:42am Addthis Brookhaven National Lab's NSLS II Construction Site | Photo Courtesy of Brookhaven National Lab Brookhaven National Lab's NSLS II Construction Site | Photo Courtesy of Brookhaven National Lab Kendra Snyder This month, workers at Brookhaven National Laboratory's National Synchrotron Light Source II (NSLS-II), the half-mile electron racetrack for one of the world's most advanced light sources, will begin filling the facility's steel and concrete shell. In 2015, NSLS-II will open its doors - and its ultra-bright beams of x-ray, infrared and ultraviolet light - to thousands of researchers around the world, enabling the detailed exploration of everything from

42

Installing a Light Source 'Racetrack' | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Installing a Light Source 'Racetrack' Installing a Light Source 'Racetrack' Installing a Light Source 'Racetrack' March 22, 2011 - 10:42am Addthis Brookhaven National Lab's NSLS II Construction Site | Photo Courtesy of Brookhaven National Lab Brookhaven National Lab's NSLS II Construction Site | Photo Courtesy of Brookhaven National Lab Kendra Snyder This month, workers at Brookhaven National Laboratory's National Synchrotron Light Source II (NSLS-II), the half-mile electron racetrack for one of the world's most advanced light sources, will begin filling the facility's steel and concrete shell. In 2015, NSLS-II will open its doors - and its ultra-bright beams of x-ray, infrared and ultraviolet light - to thousands of researchers around the world, enabling the detailed exploration of everything from

43

Portland Advancing Green Image With Solar Installs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portland Advancing Green Image With Solar Installs Portland Advancing Green Image With Solar Installs Portland Advancing Green Image With Solar Installs February 22, 2010 - 12:10pm Addthis Laura Smoyer checks the net-metering device in her home, which now uses the sun for about 38 percent of its total energy use. | Department of Energy Photo | Laura Smoyer checks the net-metering device in her home, which now uses the sun for about 38 percent of its total energy use. | Department of Energy Photo | Joshua DeLung A quick Web search reveals that many sources consider Portland, Ore., to be one of the most green-minded cities in the United States. But large upfront costs have been a barrier for citizens looking to install solar power systems in the past. Now, a neighborhood solar initiative is helping communities organize to get solar discounts, meaning the city could become

44

Portland Advancing Green Image With Solar Installs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portland Advancing Green Image With Solar Installs Portland Advancing Green Image With Solar Installs Portland Advancing Green Image With Solar Installs February 22, 2010 - 12:10pm Addthis Laura Smoyer checks the net-metering device in her home, which now uses the sun for about 38 percent of its total energy use. | Department of Energy Photo | Laura Smoyer checks the net-metering device in her home, which now uses the sun for about 38 percent of its total energy use. | Department of Energy Photo | Joshua DeLung A quick Web search reveals that many sources consider Portland, Ore., to be one of the most green-minded cities in the United States. But large upfront costs have been a barrier for citizens looking to install solar power systems in the past. Now, a neighborhood solar initiative is helping communities organize to get solar discounts, meaning the city could become

45

Magnet Girder Assembly and Installation  

ScienceCinema (OSTI)

It takes teamwork to assemble and install magnet girders for the storage ring of the National Synchrotron Light Source II. NSLS-II is now under construction at Brookhaven Lab.

None

2013-07-17T23:59:59.000Z

46

Solar Installation Labor Market Analysis  

SciTech Connect

The potential economic benefits of the growing renewable energy sector have led to increased federal, state, and local investments in solar industries, including federal grants for expanded workforce training for U.S. solar installers. However, there remain gaps in the data required to understand the size and composition of the workforce needed to meet the demand for solar power. Through primary research on the U.S. solar installation employer base, this report seeks to address that gap, improving policymakers and other solar stakeholders understanding of both the evolving needs of these employers and the economic opportunity associated with solar market development. Included are labor market data covering current U.S. employment, expected industry growth, and employer skill preferences for solar installation-related occupations. This study offers an in-depth look at the solar installation sectors. A study published by the Solar Foundation in October 2011 provides a census of labor data across the entire solar value chain.

Friedman, B.; Jordan, P.; Carrese, J.

2011-12-01T23:59:59.000Z

47

Foldtrack Installation in C-110  

Energy.gov (U.S. Department of Energy (DOE))

Crews successfully installed a new and improved version of the Foldtrack into tank C-110, a single-shell tank with about 17,200 gallons of waste remaining.

48

installed capacity | OpenEI  

Open Energy Info (EERE)

installed capacity installed capacity Dataset Summary Description Estimates for each of the 50 states and the entire United States show Source Wind Powering America Date Released February 04th, 2010 (4 years ago) Date Updated April 13th, 2011 (3 years ago) Keywords annual generation installed capacity usa wind Data application/vnd.ms-excel icon Wind potential data (xls, 102.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Work of the U.S. Federal Government. Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments

49

Solar Installation Labor Market Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Installation Labor Installation Labor Market Analysis Barry Friedman National Renewable Energy Laboratory Philip Jordan Green LMI Consulting John Carrese San Francisco Bay Area Center of Excellence Technical Report NREL/TP-6A20-49339 December 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Solar Installation Labor Market Analysis Barry Friedman National Renewable Energy Laboratory Philip Jordan Green LMI Consulting John Carrese San Francisco Bay Area Center of Excellence

50

Departments of Energy, Defense Partner to Install Fuel Cell Backup Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Departments of Energy, Defense Partner to Install Fuel Cell Backup Departments of Energy, Defense Partner to Install Fuel Cell Backup Power Units at Eight Military Installations Departments of Energy, Defense Partner to Install Fuel Cell Backup Power Units at Eight Military Installations July 19, 2011 - 4:56pm Addthis The U.S. Department of Energy (DOE) today announced that as part of an interagency partnership with the U.S. Department of Defense (DOD) to strengthen American energy security and develop new clean energy technologies, DOD will be installing and operating 18 fuel cell backup power systems at eight military installations across the country. The Departments will test how the fuel cells perform in real world operations, identify any technical improvements manufacturers could make to enhance performance, and highlight the benefits of fuel cells for emergency backup

51

Departments of Energy, Defense Partner to Install Fuel Cell Backup Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Departments of Energy, Defense Partner to Install Fuel Cell Backup Departments of Energy, Defense Partner to Install Fuel Cell Backup Power Units at Eight Military Installations Departments of Energy, Defense Partner to Install Fuel Cell Backup Power Units at Eight Military Installations July 19, 2011 - 11:46am Addthis Washington, D.C. - The U.S. Department of Energy (DOE) today announced that as part of an interagency partnership with the U.S. Department of Defense (DOD) to strengthen American energy security and develop new clean energy technologies, DOD will be installing and operating 18 fuel cell backup power systems at eight military installations across the country. The Departments will test how the fuel cells perform in real world operations, identify any technical improvements manufacturers could make to enhance

52

Departments of Energy, Defense Partner to Install Fuel Cell Backup Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy, Defense Partner to Install Fuel Cell Backup Energy, Defense Partner to Install Fuel Cell Backup Power Units at Eight Military Installations Departments of Energy, Defense Partner to Install Fuel Cell Backup Power Units at Eight Military Installations July 19, 2011 - 11:46am Addthis Washington, D.C. - The U.S. Department of Energy (DOE) today announced that as part of an interagency partnership with the U.S. Department of Defense (DOD) to strengthen American energy security and develop new clean energy technologies, DOD will be installing and operating 18 fuel cell backup power systems at eight military installations across the country. The Departments will test how the fuel cells perform in real world operations, identify any technical improvements manufacturers could make to enhance performance, and highlight the benefits of fuel cells for emergency backup

53

Departments of Energy, Defense Partner to Install Fuel Cell Backup Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Departments of Energy, Defense Partner to Install Fuel Cell Backup Departments of Energy, Defense Partner to Install Fuel Cell Backup Power Units at Eight Military Installations Departments of Energy, Defense Partner to Install Fuel Cell Backup Power Units at Eight Military Installations July 19, 2011 - 4:56pm Addthis The U.S. Department of Energy (DOE) today announced that as part of an interagency partnership with the U.S. Department of Defense (DOD) to strengthen American energy security and develop new clean energy technologies, DOD will be installing and operating 18 fuel cell backup power systems at eight military installations across the country. The Departments will test how the fuel cells perform in real world operations, identify any technical improvements manufacturers could make to enhance performance, and highlight the benefits of fuel cells for emergency backup

54

Process Improvement at Army Installations  

E-Print Network (OSTI)

and pressed, and the cans are then placed on a conveyor belt. On this conveyor belt, which constitutes one of the production bottlenecks, a plastic cap and starter cap is installed in each can. The final steps for each can include installing the lid... each fuse. Load and Packout When the cans arrive at the Load and Packout building, they are manually removed and loaded on to both sides of a conveyor belt. The conveyor transports the cans to the tape and stencil machine where they are hand...

Northrup, J.; Smith, E. D.; Lin, M.; Baird, J.

55

STATE OF CALIFORNIA INSTALLATION CERTIFICATE  

E-Print Network (OSTI)

ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-MECH-25-HERS Refrigerant Charge Verification ­ Standard to refrigerant charge verification for compliance, a MECH-24 Certificate (instead of this MECH-25 Certificate) should be used to demonstrate compliance with the refrigerant charge verification requirement. TMAH

56

STATE OF CALIFORNIA INSTALLATION CERTIFICATE  

E-Print Network (OSTI)

ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-MECH-26-HERS Refrigerant Charge Verification ­ Alternate are specified in Reference Residential Appendix RA3.2. If refrigerant charge verification is requiredR-MECH-26-HERS Refrigerant Charge Verification ­ Alternate Measurement Procedure (Page 2 of 3) Site

57

TOTAL Full-TOTAL Full-  

E-Print Network (OSTI)

Conducting - Orchestral 6 . . 6 5 1 . 6 5 . . 5 Conducting - Wind Ensemble 3 . . 3 2 . . 2 . 1 . 1 Early- X TOTAL Full- Part- X TOTAL Alternative Energy 6 . . 6 11 . . 11 13 2 . 15 Biomedical Engineering 52 English 71 . 4 75 70 . 4 74 72 . 3 75 Geosciences 9 . 1 10 15 . . 15 19 . . 19 History 37 1 2 40 28 3 3 34

Portman, Douglas

58

ADA Requirements for Workplace Charging Installation  

Energy.gov (U.S. Department of Energy (DOE))

Best Practices for installing PEV charging stations in compliance with the Americans with Disabilities Act.

59

world | OpenEI  

Open Energy Info (EERE)

world world Dataset Summary Description Total annual carbon dioxide emissions by country, 2005 to 2009 (million metric tons). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords carbon dioxide emissions EIA world Data text/csv icon total_carbon_dioxide_emissions_from_the_consumption_of_energy_2005_2009million_metric_tons.csv (csv, 12.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2005 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote

60

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

Note: This page contains sample records for the topic "world total installed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

SunShot Initiative: Installation and Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Installation and Performance to Installation and Performance to someone by E-mail Share SunShot Initiative: Installation and Performance on Facebook Tweet about SunShot Initiative: Installation and Performance on Twitter Bookmark SunShot Initiative: Installation and Performance on Google Bookmark SunShot Initiative: Installation and Performance on Delicious Rank SunShot Initiative: Installation and Performance on Digg Find More places to share SunShot Initiative: Installation and Performance on AddThis.com... Concentrating Solar Power Photovoltaics Systems Integration Balance of Systems Reducing Non-Hardware Costs Lowering Barriers Fostering Growth Installation and Performance Photo of a group of men moving a rectangular solar panel. Energy Secretary Steven Chu watches members of the Solar Instructor

62

Tracking the Sun II: The Installed Cost of Photovoltaics in the U.S. from 1998-2008  

E-Print Network (OSTI)

2008 BACK PAGE Tracking the Sun II: The Installed Cost of10-100 kW >100 kW Tracking the Sun II: The Installed Cost ofSystems MW Total Tracking the Sun II: The Installed Cost of

Barbose, Galen L

2010-01-01T23:59:59.000Z

63

Automated solar collector installation design  

DOE Patents (OSTI)

Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre-defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives.

Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

2014-08-26T23:59:59.000Z

64

Total Isomerization Process - A flexible alternative for meeting the lead phase-down  

SciTech Connect

The EPA has recently decided to reduce the maximum lead in gasoline to 0.1 gram per gallon by January 1, 1986. One of the most economical means of adding back the lost octane is to isomerize light straight run naphtha (LSR). Union Carbide Corporation's Total Isomerization Process (TIP) offers a quick, low-cost highly flexible approach to isomerization. During the past 15 years, refiners around the world have discovered numerous ways to adapt the rugged, halide-free TIP technologies to their particular needs. These many applications have permitted refining companies to install isomerization both quickly and inexpensively.

Holcombe, T.C.; Mackler, S.E.; Sager, T.C.

1985-01-01T23:59:59.000Z

65

NSTAR (Electric) - Small Business Direct Install Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NSTAR (Electric) - Small Business Direct Install Program NSTAR (Electric) - Small Business Direct Install Program NSTAR (Electric) - Small Business Direct Install Program < Back Eligibility Commercial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Other Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Up to 70% of the total project cost Provider NSTAR The NSTAR Small Business Solutions Program offers incentives for business customers whose average monthly demand is 300 kW or less. The first step of the program is a free energy audit to identify potential energy saving

66

ACS Installation During SM3B Introduction  

E-Print Network (OSTI)

ACS Installation During SM3B Introduction: · Installed during SM3B in March 2002 · Powerful 3rd · Over-voltage Protection kit installed · Optical Control Electronics connected · New Outer Blanket Layer, and coronagraph ­ Solar Blind Channel (SBC) : HST's most sensitive ultraviolet photon-counting detector 115-180 nm

Sirianni, Marco

67

ATLAS Installation Guide R. Clint Whaley  

E-Print Network (OSTI)

ATLAS Installation Guide R. Clint Whaley November 2, 2007 Abstract This note provides a brief overview of ATLAS, and describes how to install it. It includes extensive discussion of common configure to configure and build the ATLAS package, this note also describes how an installer can confirm

Whaley, R. Clint

68

Environmental Assessment Kotzebue Wind Installation Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment \ Kotzebue Wind Installation Project Kotzebue, Alaska U. S. Department of Energy Golden Field Office 16 17 Cole Boulevard Golden, Colorado May 1998 Environmental Assessment Kotzebue Wind Installation Project Kotzebue, Alaska U. S . Department of Energy Golden Field Office 1617 Cole Boulevard Golden, Colorado May 1998 Finding of No Significant Impact Environmental Assessment Kotzebue Wind Installation Project Kotzebue, Alaska F'INDING OF NO SIGNIFICANT IMPACT for KOTZEBUE WIND INSTALLATION PROJECT KOTZEBUE, ALASKA AGENCY: Department of Energy, Golden Field Office ACTION: Finding of No Significant Impact SUMMARY: The DOE is proposing to provide financial .assistance to the Kotzebue Electric Association to expand its existing wind installation near Kotzebue, Alaska.

69

Energy and the Evolution of World-Systems: Fueling Power and Environmental Degradation, 1800-2008  

E-Print Network (OSTI)

the world’s total energy consumption. In the semiperiphery,of India, whose 2008 total energy consumption of 626531.1000s) % of Total Energy Consumption, pc % of Total Power %

Lawrence, Kirk Steven

2011-01-01T23:59:59.000Z

70

EIA - International Energy Outlook 2007-Low World Oil Price Projections  

Gasoline and Diesel Fuel Update (EIA)

Low World Oil Price Case Projections (1990-2030) Low World Oil Price Case Projections (1990-2030) International Energy Outlook 2007 Low World Oil Price Projections Tables (1990-2030) Formats Table Data Titles (1 to 12 complete) Low World Oil Price Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Low World Oil Price Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table E1 World Total Energy Consumption by Region, Low World Oil Price Case Table E1. World Total Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table E2 World Total Energy Consumption by Region and Fuel, Low World Oil Price Case Table E2. World Total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

71

U.S. Continues to Lead the World in Wind Power Growth | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31, 2007 - 1:25pm 31, 2007 - 1:25pm Addthis DOE Report Shows Growing U.S. Wind Power Market WASHINGTON, DC - The U.S. Department of Energy (DOE) today released its first Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006, which provides a detailed and comprehensive overview of development and trends in the U.S. wind power market. Most notably, the Report concludes that U.S. wind power capacity increased by 27 percent in 2006; and that the U.S. had the fastest growing wind power capacity in the world in 2005 and 2006. More than 61 percent of the U.S.'s total wind capacity - over 7,300 Megawatts (MW) - has been installed since President Bush took office in 2001. "As we work to implement President Bush's Advanced Energy Initiative by increasing the use of home-grown, clean, affordable and renewable energy,

72

Help Your Employer Install Electric Vehicle Charging | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Help Your Employer Install Electric Vehicle Charging Help Your Employer Install Electric Vehicle Charging Help Your Employer Install Electric Vehicle Charging Educate your employer...

73

Dilmaya's World  

E-Print Network (OSTI)

burning on a funeral pyre. I had never lived for more than a day or in a world without toilets or toilet papers, where there was no central heating and no window glass to keep out the cold Himalayan winds. * * * Short of finding the very... infancy to puberty in a remote Himalayan village. So Dilmaya allowed this, as well as encouraging our love for her sons and husband. All this was achieved while she looked after us physically and stretched her mind and body to the limits...

Alan, Macfarlane

2014-08-27T23:59:59.000Z

74

5 World Oil Trends WORLD OIL TRENDS  

E-Print Network (OSTI)

5 World Oil Trends Chapter 1 WORLD OIL TRENDS INTRODUCTION In considering the outlook for California's petroleum supplies, it is important to give attention to expecta- tions of what the world oil market. Will world oil demand increase and, if so, by how much? How will world oil prices be affected

75

Install Removable Insulation on Valves and Fittings  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on installing removable insulation on valves and fittings provides how-to advice for improving steam systems using low-cost, proven practices and technologies.

76

Install Electric Vehicle Charging at Work  

Energy.gov (U.S. Department of Energy (DOE))

Employers who install workplace charging for plug-in electric vehicles (PEVs) demonstrate leadership, show a willingness to adopt advanced technology, and increase consumer exposure and access to...

77

Installation and Performance | Department of Energy  

Energy Savers (EERE)

Installation and Performance Photo of a group of men moving a rectangular solar panel. DOE partners with the solar industry to help reduce labor costs and maximize system...

78

Dynamically installed anchors for floating offshore structures.  

E-Print Network (OSTI)

??The gradual depletion of shallow water hydrocarbon deposits has forced the offshore oil and gas industry to develop reserves in deeper waters. Dynamically installed anchors… (more)

Richardson, Mark Damian

2008-01-01T23:59:59.000Z

79

Install an Automatic Blowdown-Control System  

Energy.gov (U.S. Department of Energy (DOE))

This steam tip sheet on installing automatic blowdown controls provide how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

80

EM, County Install Sewer Line for Development  

Energy.gov (U.S. Department of Energy (DOE))

Crews are installing a sewer line in the Portsmouth site to connect EM’s sewer treatment facility to the Pike County Manufacturing Center, which is being developed.

Note: This page contains sample records for the topic "world total installed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hawaii Well Construction & Pump Installation Standards | Open...  

Open Energy Info (EERE)

and pump installation standards in Hawaii. Author State of Hawaii Commission on Water Resource Management Published State of Hawaii, 22004 DOI Not Provided Check for DOI...

82

Hawaii Well Construction & Pump Installation Standards Webpage...  

Open Energy Info (EERE)

Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Well Construction & Pump Installation Standards Webpage Abstract This webpage provides...

83

WINDExchange: U.S. Installed Wind Capacity  

Wind Powering America (EERE)

The animation shows the progress of installed wind capacity between 1999 and 2013. The Energy Department's annual Wind Technologies Market Report provides information about wind...

84

World energy consumption  

SciTech Connect

Historical and projected world energy consumption information is displayed. The information is presented by region and fuel type, and includes a world total. Measurements are in quadrillion Btu. Sources of the information contained in the table are: (1) history--Energy Information Administration (EIA), International Energy Annual 1992, DOE/EIA-0219(92); (2) projections--EIA, World Energy Projections System, 1994. Country amounts include an adjustment to account for electricity trade. Regions or country groups are shown as follows: (1) Organization for Economic Cooperation and Development (OECD), US (not including US territories), which are included in other (ECD), Canada, Japan, OECD Europe, United Kingdom, France, Germany, Italy, Netherlands, other Europe, and other OECD; (2) Eurasia--China, former Soviet Union, eastern Europe; (3) rest of world--Organization of Petroleum Exporting Countries (OPEC) and other countries not included in any other group. Fuel types include oil, natural gas, coal, nuclear, and other. Other includes hydroelectricity, geothermal, solar, biomass, wind, and other renewable sources.

NONE

1995-12-01T23:59:59.000Z

85

Systems study of drilling for installation of geothermal heat pumps  

SciTech Connect

Geothermal, or ground-source, heat pumps (GHP) are much more efficient than air-source units such as conventional air conditioners. A major obstacle to their use is the relatively high initial cost of installing the heat-exchange loops into the ground. In an effort to identify drivers which influence installation cost, a number of site visits were made during 1996 to assess the state-of-the-art in drilling for GHP loop installation. As an aid to quantifying the effect of various drilling-process improvements, we constructed a spread-sheet based on estimated time and material costs for all the activities required in a typical loop-field installation. By substituting different (improved) values into specific activity costs, the effect on total project costs can be easily seen. This report contains brief descriptions of the site visits, key points learned during the visits, copies of the spread-sheet, recommendations for further work, and sample results from sensitivity analysis using the spread-sheet.

Finger, J.T.; Sullivan, W.N.; Jacobson, R.D.; Pierce, K.G.

1997-09-01T23:59:59.000Z

86

A DISTRIBUTED AUTOMATION SYSTEM FOR ELECTROPHYSICAL INSTALLATIONS  

E-Print Network (OSTI)

A DISTRIBUTED AUTOMATION SYSTEM FOR ELECTROPHYSICAL INSTALLATIONS V.R. Kozak Budker Institute There was designed a set of devices for automation systems of physical installations. On this basis approach. KEY WORDS Automation, systems, applications, CANBUS, embedded, controller. 1. Introduction Budker

Kozak, Victor R.

87

Photovoltaic Installations at Williams College Ruth Aronoff  

E-Print Network (OSTI)

generation using solar power. Photovoltaic (PV) panel installations are a simple way for the College facilities, it is now evaluating in detail the environmental impact of these actions. In addition to making1 Photovoltaic Installations at Williams College Ruth Aronoff Williams Luce Project SUMMARY

Aalberts, Daniel P.

88

Arduino Tool: For Interactive Artwork Installations  

E-Print Network (OSTI)

The emergence of the digital media and computational tools has widened the doors for creativity. The cutting edge in the digital arts and role of new technologies can be explored for the possible creativity. This gives an opportunity to involve arts with technologies to make creative works. The interactive artworks are often installed in the places where multiple people can interact with the installation, which allows the art to achieve its purpose by allowing the people to observe and involve with the installation. The level of engagement of the audience depends on the various factors such as aesthetic satisfaction, how the audience constructs meaning, pleasure and enjoyment. The method to evaluate these experiences is challenging as it depends on integration between the artificial life and real life by means of human computer interaction. This research investigates "How Adriano fits for creative and interactive artwork installations?" using an artwork installation in the campus of NTNU (Norwegian University...

Shaikh, Murtaza Hussain

2012-01-01T23:59:59.000Z

89

Energy Information Administration (EIA) - High World Oil Price Case  

Gasoline and Diesel Fuel Update (EIA)

High World Oil Price Case Projections Tables (1990-2030) High World Oil Price Case Projections Tables (1990-2030) International Energy Outlook 2007 High World Oil Price Case Projections Tables (1990-2030) Formats Data Table Titles (1 to 12 complete) High World Oil Price Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. High World Oil Price Case Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table D1 World Total Primary Energy Consumption by Region Table D1. World Total Primary Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table D2 World Total Energy Consumption by Region and Fuel Table D2. World total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

90

Energy Conservation Installation Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Conservation Installation Credit Energy Conservation Installation Credit Energy Conservation Installation Credit < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate 500 per individual; up to 1,000 for a married couple filing jointly Program Info State Montana Program Type Personal Tax Credit Rebate Amount 25% of cost of capital investment Provider Montana Department of Revenue Individual taxpayers may claim a credit against their tax liability for up to 25% of the costs of investment for energy conservation purposes in a

91

Structural considerations for solar installers : an approach for small, simplified solar installations or retrofits.  

SciTech Connect

Structural Considerations for Solar Installers provides a comprehensive outline of structural considerations associated with simplified solar installations and recommends a set of best practices installers can follow when assessing such considerations. Information in the manual comes from engineering and solar experts as well as case studies. The objectives of the manual are to ensure safety and structural durability for rooftop solar installations and to potentially accelerate the permitting process by identifying and remedying structural issues prior to installation. The purpose of this document is to provide tools and guidelines for installers to help ensure that residential photovoltaic (PV) power systems are properly specified and installed with respect to the continuing structural integrity of the building.

Richards, Elizabeth H.; Schindel, Kay (City of Madison, WI); Bosiljevac, Tom; Dwyer, Stephen F.; Lindau, William (Lindau Companies, Inc., Hudson, WI); Harper, Alan (City of Madison, WI)

2011-12-01T23:59:59.000Z

92

World Air Transport Sustainability Analysis  

E-Print Network (OSTI)

Statement · Develop a quantitative model to assess the carbon footprint of world aviation, including and fraction of total fuel provided in future. For example: Fuel type Relative GHG Intensity Relative SOx Intensity Relative PM Intensity Relative HC/VOC Intensity 2010 Usage 2020 Usage 2030 Usage 2040 Usage 2050

93

Solar hot water system installed at Las Vegas, Nevada. Final report  

SciTech Connect

The solar hot water system installed at LaQuinta Motor Inn Inc., at Las Vegas, Nevada is described. The Inn is a three-story building with a flat roof for installation of the solar panels. The system consists of 1200 square feet of liquid flat plate collectors, a 2500 gallon insulated vertical steel storage tank, two heat exchangers and pumps and controls. The system was designed to supply approximately 74 percent of the total hot water load.

None

1981-01-01T23:59:59.000Z

94

File:Install.pdf | Open Energy Information  

Open Energy Info (EERE)

Install.pdf Install.pdf Jump to: navigation, search File File history File usage File:Install.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 86 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 13:48, 1 November 2012 Thumbnail for version as of 13:48, 1 November 2012 1,275 × 1,650 (86 KB) Dklein2012 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage There are no pages that link to this file. Retrieved from "http://en.openei.org/w/index.php?title=File:Install.pdf&oldid=53281

95

Performance of Installed Cooking Exhaust Devices  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance of Installed Cooking Exhaust Devices Performance of Installed Cooking Exhaust Devices Brett C. Singer, William W. Delp, Michael G. Apte, Philip N. Price Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, California, 94720 November 2011 Direct funding for this research was provided by the California Energy Commission through Contracts 500-05-026 and 500-08-061. Institutional support is provided to LBNL by the U.S. Department of Energy, Office of Science under Contract DE-AC02-05CH11231. LBNL-5265E-r1(3) Singer et al., Performance of Installed Cooking Exhaust Devices LBNL-5265E-r1(3) Performance of Installed Cooking Exhaust Devices Brett C. Singer 1

96

Structural Code Considerations for Solar Rooftop Installations.  

SciTech Connect

Residential rooftop solar panel installations are limited in part by the high cost of structural related code requirements for field installation. Permitting solar installations is difficult because there is a belief among residential permitting authorities that typical residential rooftops may be structurally inadequate to support the additional load associated with a photovoltaic (PV) solar installation. Typical engineering methods utilized to calculate stresses on a roof structure involve simplifying assumptions that render a complex non-linear structure to a basic determinate beam. This method of analysis neglects the composite action of the entire roof structure, yielding a conservative analysis based on a rafter or top chord of a truss. Consequently, the analysis can result in an overly conservative structural analysis. A literature review was conducted to gain a better understanding of the conservative nature of the regulations and codes governing residential construction and the associated structural system calculations.

Dwyer, Stephen F.; Dwyer, Brian P.; Sanchez, Alfred

2014-12-01T23:59:59.000Z

97

Cryogenic UHV installation for scanning tunneling microscopy  

Science Journals Connector (OSTI)

In this work we describe a helium cryostat with an ultrahigh vacuum chamber for placing the STM [H. By means of this installation it is possible to perform sample treatmentin situ (breaking, annealing, ion etchin...

V. S. Edelman; I. N. Khlyustikov

1996-01-01T23:59:59.000Z

98

Peoples Gas – Single Family Direct Install (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

Owners of single-family homes, condos, townhomes and two-flats may be eligible for a free installation of new programmable thermostats, pipe insulation, showerheads, and faucet aerators through...

99

A REVIEW OF PREVIOUS USGS WORLD ENERGY ASSESSMENTS1  

E-Print Network (OSTI)

of world undiscovered conventional natural-gas resources and identified (discovered) natural-gas reserves-145-97 (October, 1997), entitled "Changing perceptions of world oil and gas resources as shown........................................................RV-1 World Gas Resources Were Viewed as Less Exploited Than Those of Oil............RV-2 Total World

Laughlin, Robert B.

100

CATEGORICAL EXCLUSION FOR INSTALLING A PHOTOVOLTAIC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-PNSO-0657 -PNSO-0657 CATEGORICAL EXCLUSION FOR INSTALLING A PHOTOVOLTAIC POWER GENERATION ARRAY AND ELECTRIC CAR CHARGING STATIONS, ENVIRONMENTAL MOLECULAR SCIENCES LABORATORY, PACIFIC NORTHWEST SITE OFFICE, RICHLAND, WASHINGTON Proposed Action The U.S. Department of Energy (DOE), Pacific Northwest Site Office (PNSO) proposes to install a photovoltaic power generation array and electric car charging stations. Location of Action The proposed action would occur in a landscaped infiltration swale located immediately

Note: This page contains sample records for the topic "world total installed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Tracking the Sun: The Installed Cost of Photovoltaics in the U.S. from  

NLE Websites -- All DOE Office Websites (Extended Search)

Sun: The Installed Cost of Photovoltaics in the U.S. from Sun: The Installed Cost of Photovoltaics in the U.S. from 1998-2007 Title Tracking the Sun: The Installed Cost of Photovoltaics in the U.S. from 1998-2007 Publication Type Report Refereed Designation Unknown Year of Publication 2009 Authors Wiser, Ryan H., Galen L. Barbose, and Carla Peterman Pagination 42 Date Published 02/2009 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department, photovoltaics, power system economics, renewable energy Abstract As installations of grid-connected solar photovoltaic (PV) systems have grown, so too has the desire to track the installed cost of these systems over time, by system characteristics, by system location, and by component. This report helps to fill this need by summarizing trends in the installed cost of grid-connected PV systems in the United States from 1998 through 2007. The report is based on an analysis of installed cost data from nearly 37,000 residential and non-residential PV systems, totaling 363 MW of capacity, and representing 76% of all grid-connected PV capacity installed in the U.S. through 2007.

102

Tracking the Sun III The Installed Cost of Photovoltaics in the U.S. from  

NLE Websites -- All DOE Office Websites (Extended Search)

Tracking the Sun III The Installed Cost of Photovoltaics in the U.S. from Tracking the Sun III The Installed Cost of Photovoltaics in the U.S. from 1998-2009 Title Tracking the Sun III The Installed Cost of Photovoltaics in the U.S. from 1998-2009 Publication Type Report Refereed Designation Unknown Year of Publication 2010 Authors Barbose, Galen L., Naïm Darghouth, and Ryan H. Wiser Pagination 54 Date Published 12/2010 Publisher LBNL City Berkeley Keywords distributed energy resources (der), electricity markets and policy group, energy analysis and environmental impacts department, energy markets, photovoltaics Abstract As the deployment of grid-connected solar photovoltaic (PV) systems has increased, so too has the desire to track the installed cost of these systems over time and by location, customer type, system characteristics, and component. This report helps to fill this need by summarizing trends in the installed cost1 of grid-connected PV systems in the United States from 1998 through 2009 (updating two previous reports with data through 2007 and 2008, respectively), and providing preliminary cost trends for systems installed in 2010. The analysis is based on installed cost data for approximately 78,000 residential and non-residential PV systems, totaling 874 megawatts (MW) and representing 70% of all grid-connected PV capacity installed in the United States through 2009.

103

SolarTotal | Open Energy Information  

Open Energy Info (EERE)

SolarTotal SolarTotal Jump to: navigation, search Name SolarTotal Place Bemmel, Netherlands Zip 6681 LN Sector Solar Product The company sells and installs PV solar instalations Coordinates 51.894112°, 5.89881° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.894112,"lon":5.89881,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

104

Barge Truck Total  

Annual Energy Outlook 2012 (EIA)

Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

105

World Energy Use: ISO Standards that Can Help | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

World Energy Use: ISO Standards that Can Help This one-page flyer shows total world energy consumption of marketed energy by economic sector as well as a list of ISO standards...

106

SunShot Initiative Installs Solar Energy System | Department...  

Office of Environmental Management (EM)

SunShot Initiative Installs Solar Energy System SunShot Initiative Installs Solar Energy System Addthis 1 of 10 SunShot Initiative team members install a solar energy system on a...

107

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)  

U.S. Energy Information Administration (EIA) Indexed Site

Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," " 1985-2010 (Megawatts)" "Year","Coal",,,,"Petroleum and Natural Gas",,,,"Total 1" ,,,"Flue Gas","Total 2",,,"Flue Gas","Total 2",,,"Flue Gas","Total 2" ,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization" ,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)"

108

Alternative Fuels Data Center: Installation of Alternative Fuel Components  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Installation of Installation of Alternative Fuel Components in Vehicles to someone by E-mail Share Alternative Fuels Data Center: Installation of Alternative Fuel Components in Vehicles on Facebook Tweet about Alternative Fuels Data Center: Installation of Alternative Fuel Components in Vehicles on Twitter Bookmark Alternative Fuels Data Center: Installation of Alternative Fuel Components in Vehicles on Google Bookmark Alternative Fuels Data Center: Installation of Alternative Fuel Components in Vehicles on Delicious Rank Alternative Fuels Data Center: Installation of Alternative Fuel Components in Vehicles on Digg Find More places to share Alternative Fuels Data Center: Installation of Alternative Fuel Components in Vehicles on AddThis.com... More in this section... Federal

109

Utah Underground Storage Tank Installation Permit | Open Energy...  

Open Energy Info (EERE)

Underground Storage Tank Installation Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Utah Underground Storage Tank Installation Permit Form Type...

110

High-performance computer system installed at Los Alamos National...  

NLE Websites -- All DOE Office Websites (Extended Search)

High-performance computer system installed at Lab High-performance computer system installed at Los Alamos National Laboratory New high-performance computer system, called Wolf,...

111

Utility Scale Renewable Energy Development Near DOD Installations...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Scale Renewable Energy Development Near DOD Installations: Making the Case for Land Use Compatitbility Utility Scale Renewable Energy Development Near DOD Installations:...

112

H2-Assisted NOx Traps: Test Cell Results Vehicle Installations...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

H2-Assisted NOx Traps: Test Cell Results Vehicle Installations H2-Assisted NOx Traps: Test Cell Results Vehicle Installations 2003 DEER Conference Presentation: ArvinMeritor...

113

Obama Administration Announces Plans to Install New Solar Panels...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plans to Install New Solar Panels on the White House Residence Obama Administration Announces Plans to Install New Solar Panels on the White House Residence October 5, 2010 -...

114

Tracking the Sun II The Installed Cost of Photovoltaics in the U.S. from  

NLE Websites -- All DOE Office Websites (Extended Search)

Tracking the Sun II The Installed Cost of Photovoltaics in the U.S. from Tracking the Sun II The Installed Cost of Photovoltaics in the U.S. from 1998-2008 Title Tracking the Sun II The Installed Cost of Photovoltaics in the U.S. from 1998-2008 Publication Type Report Refereed Designation Unknown Year of Publication 2009 Authors Wiser, Ryan H., Galen L. Barbose, Carla Peterman, and Naïm Darghouth Pagination 150 Date Published 10/2009 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department, photovoltaics, power system economics, renewable energy Abstract As the deployment of grid-connected solar photovoltaic (PV) systems has increased, so too has the desire to track the installed cost of these systems over time and by location, customer type, system characteristics, and component. This report helps to fill this need by summarizing trends in the installed cost of grid-connected PV systems in the United States from 1998 through 2008 (updating a previous report with data through 2007). The analysis is based on installed cost data from more than 52,000 residential and non-residential PV systems, totaling 566 MW and representing 71% of all grid-connected PV capacity installed in the U.S. through 2008.

115

Energy Department Launches SunShot Prize Competition to Install Solar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SunShot Prize Competition to Install SunShot Prize Competition to Install Solar Energy Systems at a Fraction of Today's Price Energy Department Launches SunShot Prize Competition to Install Solar Energy Systems at a Fraction of Today's Price September 12, 2012 - 2:27pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Energy Department's SunShot Initiative, which is working to make solar energy competitive with other forms of energy without subsidy by the end of the decade, the Energy Department today announced the start of a new competition to make it faster, easier, and cheaper to install rooftop solar energy systems. The SunShot Prize makes a total of $10 million in cash awards available to the first three teams that repeatedly demonstrate the non-hardware costs, or price to plug

116

The decline of the world’s energy intensity  

Science Journals Connector (OSTI)

Energy intensity of the total primary energy supply (TPES), total final energy consumption (TFC) and LOSSES in the conversion from TPES to TFC were analyzed for the World, OECD and Rest of the World (ROW) countries. LOSSES increased significantly for all groups of countries due to the increase of electricity production from coal in the period studied (1971–2008). Electricity share final consumption almost doubled, increasing from 8.8% to 17.2% in the period studied. However the energy intensity of LOSSES remained practically constant, which reflects the fact that the efficiency of electricity generation from coal (the main source of electricity) remained practically constant in that period. Despite the attractiveness of end-use devices running on electricity such as computers, which is typical of modern societies, the CO2 emissions are bound to increase unless coal is replaced by less carbon emitting sources such as natural gas, renewables and nuclear energy.

José Goldemberg; Luiz Tadêo Siqueira Prado

2011-01-01T23:59:59.000Z

117

HOCL Installation Guide Chen WANG, Thierry PRIOL  

E-Print Network (OSTI)

Chemical Language) is a chemical programming language. Compu- tations can be seen as chemical reactions which are controlled by a set of chemical rules. We have an HOCL compiler developed in JAVA. This manual shows you how to install Java SDK in your machine. HOCL compiler is developed under Java platform, so

Boyer, Edmond

118

Installing Small Wind Turbines Seminar and Workshop  

E-Print Network (OSTI)

Seminar and Workshop Installing Small Wind Turbines Seminar and Workshop Location: Murdoch January 2011 Details for Registration and Payment: Mr Daniel Jones, National Small Wind Turbine Test: The National Small Wind Turbine Centre at Murdoch University is holding a Small Wind Turbine short training

119

Factors Affecting PMU Installation Costs (October 2014)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy investigated the major cost factors that affected PMU installation costs for the synchrophasor projects funded through the Recovery Act Smart Grid Programs. The data was compiled through interviews with the nine projects that deployed production grade synchrophasor systems.

120

Standard hydrogen monitoring system equipment installation instructions  

SciTech Connect

This document provides the technical specifications for the equipment fabrication, installation, and sitework construction for the Standard Hydrogen Monitoring System. The Standard Hydrogen Monitoring System is designed to remove gases from waste tank vapor space and exhaust headers for continual monitoring and remote sample analysis.

Schneider, T.C.

1996-09-27T23:59:59.000Z

Note: This page contains sample records for the topic "world total installed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

IEA HPP Annex 36 Installation/Quality  

E-Print Network (OSTI)

compiled and reviewed last week during meeting at EdF 10-11 October 2013 Submit final report to IEA HPP Ex#12;IEA HPP Annex 36 ­ Quality Installation/Quality Maintenance Van D. Baxter Oak Ridge National), USA 3 10-11 October 2013 EdF, France 4 12 May 2014 Workshop at IEA Heat Pump conference, Montreal

Oak Ridge National Laboratory

122

Offshore Wind Turbines and Their Installation  

Science Journals Connector (OSTI)

Offshore winds tend to be higher, more constant and not disturbed by rough terrain, so there is a large potential for utilizing wind energy near to the sea. Compared with the wind energy converters onland, wind turbine components offshore will subject ... Keywords: renewable energy, wind power generation, offshore wind turbines, offshore installation

Liwei Li; Jianxing Ren

2010-01-01T23:59:59.000Z

123

Performance of Installed Cooking Exhaust Devices  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance of Installed Cooking Exhaust Devices Performance of Installed Cooking Exhaust Devices Title Performance of Installed Cooking Exhaust Devices Publication Type Journal Article Refereed Designation Refereed LBNL Report Number LBNL-5265E Year of Publication 2012 Authors Singer, Brett C., William W. Delp, Michael G. Apte, and Phillip N. Price Journal Indoor Air Volume 22 Issue 3 Pagination 224-234 Date Published 06/2012 Keywords carbon monoxide, natural gas burners, nitrogen dioxide, range hood, task ventilation, unvented combustion, indoor environment group, Range Hood Test Facility Abstract The performance metrics of airflow, sound, and combustion product capture efficiency (CE) were measured for a convenience sample of fifteen cooking exhaust devices, as installed in residences. Results were analyzed to quantify the impact of various device- and installation-dependent parameters on CE. Measured maximum airflows were 70% or lower than values noted on product literature for 10 of the devices. Above-the-cooktop devices with flat bottom surfaces (no capture hood) - including exhaust fan/microwave combination appliances - were found to have much lower CE at similar flow rates, compared to devices with capture hoods. For almost all exhaust devices and especially for rear-mounted downdraft exhaust and microwaves, CE was substantially higher for back compared with front burner use. Flow rate, and the extent to which the exhaust device extends over the burners that are in use, also had a large effect on CE. A flow rate of 95 liters per second (200 cubic feet per minute) was necessary, but not sufficient, to attain capture efficiency in excess of 75% for the front burners. A-weighted sound levels in kitchens exceeded 57 dB when operating at the highest fan setting for all 14 devices evaluated for sound performance.

124

NETL: News Release - 99.99% Clean...DOE Signs Agreement to Install Advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

99.99% Clean...DOE Signs Agreement to Install Advanced Pollution Control Device on S. Dakota Power Plant 99.99% Clean...DOE Signs Agreement to Install Advanced Pollution Control Device on S. Dakota Power Plant Leading-Edge System Virtually Eliminates Emissions of Microscopic Ash Particles - Otter Tail's Big Stone Power Plant - South Dakota's Big Stone Plant will soon get an environmental upgrade that will virtually eliminate particulate emissions. Photo: Otter Tail Power Co. MILBANK, SD - By this fall South Dakota will likely host one of the world's cleanest coal plants in terms of the tiny specks of fly ash emitted from its smokestack. A cooperative agreement signed between the U.S. Department of Energy and the Otter Tail Power Company paves the way for installation of a new type of pollution control device on the 450-megawatt Big Stone Power Plant in Milbank, South Dakota.

125

Total isomerization process -- the flexible approach for upgrading light straight run gasoline  

SciTech Connect

The EPA's recent decision to reduce the maximum lead level in gasoline to 0.1 gram per gallon by January 1, 1986, will leave the U.S. refining industry in an octane ''crunch.'' This government action comes at a critical time as refined product margins are slim or non-existent and funds for capital expenditure are scarce. One of the most economical means of adding back the lost octane is to isomerize light straight run (LSR), but many refiners will not have the time or the capital to install a new unit. The Total Isomerization Process (TIP) offers a highly flexible approach to coping with the octane problem. During the past 15 years, refiners around the world have adapted TIP to their particular needs and managed to implement isomerization capacity both quickly and inexpensively.

Mackler, S.E.; Holcombe, T.C.

1985-03-01T23:59:59.000Z

126

International Energy Outlook 2006 - World Coal Markets  

Gasoline and Diesel Fuel Update (EIA)

Coal Markets Coal Markets International Energy Outlook 2006 Chapter 5: World Coal Markets In the IEO2006 reference case, world coal consumption nearly doubles from 2003 to 2030, with the non-OECD countries accounting for 81 percent of the increase. Coal’s share of total world energy consumption increases from 24 percent in 2003 to 27 percent in 2030. Figure 48. World Coal Consumption by Region, 1980-2030 (Billion Short Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 49. Coal Share of World energy Consumption by Sector 2003, 2015, and 2030 (Percent). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Table 10. World Recoverable Coal Reserves (Billion Short Tons) Printer friendly version

127

Alternative Fuels Data Center: Installing New E85 Equipment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Installing New E85 Installing New E85 Equipment to someone by E-mail Share Alternative Fuels Data Center: Installing New E85 Equipment on Facebook Tweet about Alternative Fuels Data Center: Installing New E85 Equipment on Twitter Bookmark Alternative Fuels Data Center: Installing New E85 Equipment on Google Bookmark Alternative Fuels Data Center: Installing New E85 Equipment on Delicious Rank Alternative Fuels Data Center: Installing New E85 Equipment on Digg Find More places to share Alternative Fuels Data Center: Installing New E85 Equipment on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Business Case Equipment Options Equipment Installation Codes, Standards, & Safety Vehicles Laws & Incentives

128

World Energy Resources  

Science Journals Connector (OSTI)

World Energy Resources ... Coal reserves are by far the largest proved energy sources we have, said Parker. ...

1954-05-17T23:59:59.000Z

129

Solar total energy project Shenandoah  

SciTech Connect

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

130

Variations of Total Domination  

Science Journals Connector (OSTI)

The study of locating–dominating sets in graphs was pioneered by Slater [186, 187...], and this concept was later extended to total domination in graphs. A locating–total dominating set, abbreviated LTD-set, in G

Michael A. Henning; Anders Yeo

2013-01-01T23:59:59.000Z

131

International Energy Outlook 2006 - World Oil Markets  

Gasoline and Diesel Fuel Update (EIA)

Oil Markets Oil Markets International Energy Outlook 2006 Chapter 3: World Oil Markets In the IEO2006 reference case, world oil demand increases by 47 percent from 2003 to 2030. Non-OECD Asia, including China and India, accounts for 43 percent of the increase. In the IEO2006 reference case, world oil demand grows from 80 million barrels per day in 2003 to 98 million barrels per day in 2015 and 118 million barrels per day in 2030. Demand increases strongly despite world oil prices that are 35 percent higher in 2025 than in last year’s outlook. Much of the growth in oil consumption is projected for the nations of non-OECD Asia, where strong economic growth is expected. Non-OECD Asia (including China and India) accounts for 43 percent of the total increase in world oil use over the projection period.

132

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

133

Choosing and Installing Geothermal Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Choosing and Installing Geothermal Heat Pumps Choosing and Installing Geothermal Heat Pumps Choosing and Installing Geothermal Heat Pumps June 24, 2012 - 3:55pm Addthis These geothermal heating and cooling units installed in the basement of a new home are tied to a complex array of underground coils to keep indoor temperatures comfortable. | Photo courtesy of ©iStockphoto/BanksPhotos These geothermal heating and cooling units installed in the basement of a new home are tied to a complex array of underground coils to keep indoor temperatures comfortable. | Photo courtesy of ©iStockphoto/BanksPhotos What does this mean for me? Installing a geothermal heat pump is not a do-it-yourself job. When you hire a contractor to install your geothermal heat pump, ask for and check references of installations that are several years old.

134

Choosing and Installing Geothermal Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Choosing and Installing Geothermal Heat Pumps Choosing and Installing Geothermal Heat Pumps Choosing and Installing Geothermal Heat Pumps June 24, 2012 - 3:55pm Addthis These geothermal heating and cooling units installed in the basement of a new home are tied to a complex array of underground coils to keep indoor temperatures comfortable. | Photo courtesy of ©iStockphoto/BanksPhotos These geothermal heating and cooling units installed in the basement of a new home are tied to a complex array of underground coils to keep indoor temperatures comfortable. | Photo courtesy of ©iStockphoto/BanksPhotos What does this mean for me? Installing a geothermal heat pump is not a do-it-yourself job. When you hire a contractor to install your geothermal heat pump, ask for and check references of installations that are several years old.

135

Energy Department Launches SunShot Prize Competition to Install...  

NLE Websites -- All DOE Office Websites (Extended Search)

SunShot Prize Competition to Install Solar Energy Systems at a Fraction of Today's Price Energy Department Launches SunShot Prize Competition to Install Solar Energy Systems at a...

136

Helping Ensure High-Quality Installation of Solar Power Technologies...  

Energy Savers (EERE)

Ensure High-Quality Installation of Solar Power Technologies Helping Ensure High-Quality Installation of Solar Power Technologies April 15, 2013 - 12:00am Addthis The Midwest...

137

Energy Saving "Cool Roofs" Installed at Y-12 | National Nuclear...  

National Nuclear Security Administration (NNSA)

Home Field Offices Welcome to the NNSA Production Office NPO News Releases Energy Saving "Cool Roofs" Installed at Y-12 Energy Saving "Cool Roofs" Installed at Y-12 The...

138

Energy Saving 'Cool Roofs' Installed at Y-12 | National Nuclear...  

National Nuclear Security Administration (NNSA)

Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog Energy Saving 'Cool Roofs' Installed at Y-12 Energy Saving 'Cool Roofs' Installed at Y-12...

139

Performance of Installed Cooking Exhaust Devices  

SciTech Connect

The performance metrics of airflow, sound, and combustion product capture efficiency (CE) were measured for a convenience sample of fifteen cooking exhaust devices, as installed in residences. Results were analyzed to quantify the impact of various device- and installation-dependent parameters on CE. Measured maximum airflows were 70% or lower than values noted on product literature for 10 of the devices. Above-the-cooktop devices with flat bottom surfaces (no capture hood) – including exhaust fan/microwave combination appliances – were found to have much lower CE at similar flow rates, compared to devices with capture hoods. For almost all exhaust devices and especially for rear-mounted downdraft exhaust and microwaves, CE was substantially higher for back compared with front burner use. Flow rate, and the extent to which the exhaust device extends over the burners that are in use, also had a large effect on CE. A flow rate of 95 liters per second (200 cubic feet per minute) was necessary, but not sufficient, to attain capture efficiency in excess of 75% for the front burners. A-weighted sound levels in kitchens exceeded 57 dB when operating at the highest fan setting for all 14 devices evaluated for sound performance.

Singer, Brett C.; Delp, William W.; Apte, Michael G.; Price, Philip N.

2011-11-01T23:59:59.000Z

140

Installation of a Low Flow Unit at the Abiquiu Hydroelectric Facility  

SciTech Connect

Final Technical Report for the Recovery Act Project for the Installation of a Low Flow Unit at the Abiquiu Hydroelectric Facility. The Abiquiu hydroelectric facility existed with two each 6.9 MW vertical flow Francis turbine-generators. This project installed a new 3.1 MW horizontal flow low flow turbine-generator. The total plant flow range to capture energy and generate power increased from between 250 and 1,300 cfs to between 75 and 1,550 cfs. Fifty full time equivalent (FTE) construction jobs were created for this project - 50% (or 25 FTE) were credited to ARRA funding due to the ARRA 50% project cost match. The Abiquiu facility has increased capacity, increased efficiency and provides for an improved aquatic environment owing to installed dissolved oxygen capabilities during traditional low flow periods in the Rio Chama. A new powerhouse addition was constructed to house the new turbine-generator equipment.

Jack Q. Richardson

2012-06-28T23:59:59.000Z

Note: This page contains sample records for the topic "world total installed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

RMP Standard PreInstalled Software Page 1 of 2  

E-Print Network (OSTI)

RMP Standard PreInstalled Software Page 1 of 2 Standard Software PreInstalled with RMP Windows@lmu.edu or 310-338-7777 RMP Standard PreInstalled Software Page 2 of 2 · Photo Booth EndNote Apple DVD Player

Dahlquist, Kam D.

142

Jute in the world, worlds of jute  

Science Journals Connector (OSTI)

This paper is in two parts. The first sketches out the reach of jute round the world from ancient times to the present, and, through examples ranging from Brazil to Bangladesh and from Cote d'Ivoire to the USA, makes the case that jute has played such a significant role that it deserves a place in world history alongside other great commodities like spices, sugar, tea, cotton, coal, and oil, that have shaped global history. The second part of the paper opens up the worlds of jute - from peasants who grew the jute, to male and female workers in Calcutta and Dundee, to the factory owners and managers - and makes comparisons between jute settings in different countries. A key issue explored is the interplay between the economic and ideological forces inherent in the manufacturing and marketing of jute products and the local cultures and traditions of workers and peasants within which the drama of jute was played out.

Gordon T. Stewart

2014-01-01T23:59:59.000Z

143

World Elephant Centre:.  

E-Print Network (OSTI)

??The World Elephant Centre tackles two problems of our time, in a global relevance framework. In fact, it is not only a typical case of… (more)

Rota, M.

2014-01-01T23:59:59.000Z

144

World Wide Chemistry  

Science Journals Connector (OSTI)

World Wide Chemistry ... Plutonium has been produced for the first time at Britain's Atomic Energy Research Establishment at Harwell. ... Indian Ore Reserves ...

G. ABRAHAMSON; RAFFAELE SANSONE

1949-04-11T23:59:59.000Z

145

CNTA_Well_Installation_Report.book  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Security Administration Nuclear Security Administration Nevada Site Office Environmental Restoration Division Nevada Environmental Restoration Project Well Installation Report for Corrective Action Unit 443, Central Nevada Test Area Nye County, Nevada Revision No.: 0 January 2006 Approved for public release; further dissemination unlimited. DOE/NV--1102 Uncontrolled When Printed Available for public sale, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Phone: 800.553.6847 Fax: 703.605.6900 Email: orders@ntis.gov Online ordering: http://www.ntis.gov/ordering.htm Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:

146

Neutron scattering instrumentation at reactor based installations  

Science Journals Connector (OSTI)

During the past decade neutron scattering techniques have been applied to an increasingly wide range of scientific problems. Concurrently a number of substantial improvements of neutron scattering instrumentation have occurred to stimulate this trend. In this article several such developments which have occurred at reactor?based installations are described. Individual spectrometer components which are discussed in some detail include: neutron?optical devices such as guide tubes supermirrors and multilayer systems; neutronmonochromators with optimum reflectivity mosaic and focusing characteristics; position?sensitive detectors of several types; and equipment required for neutronpolarizationanalysis. Several novel spectrometers which have enhanced the role of neutron scattering during the past ten years are also described. These include spectrometers for small?angle scattering backscattering and neutron spin echo. An extensive bibliography is included which covers both early and more recent developments.

Roger Pynn

1984-01-01T23:59:59.000Z

147

Sleeve installations speed pipeline defect repair  

SciTech Connect

Repairing defects in pipelines can be a major challenge for pipeline companies or contractors. To reduce cost and eliminate unscheduled shut downs, pipeline operating companies have adopted ``in-service`` repair methods to restore overall integrity of the pipeline without taking it out of service. Interprovincial Pipe Line Co. has undertaken an aggressive approach to this ``in-service`` repair method by using a developed sleeving system for repairing leaking and non-leaking defects. A structural reinforcement sleeve consists of two non-fillet welded collars (one on each side of the defect) and a full encirclement sleeve welded on top of these collars. The annular space between the pipe and sleeve is filled with a hardenable, non-shrinking epoxy. Three different pressure vessel sleeves can be used for repairing certain defects. They can be used in combination with the pre-stressed sleeve or for independent repairs. This paper reviews the performance and installation of these sleeves.

Friedrich, J.; Smith, J.

1995-12-01T23:59:59.000Z

148

Total Space Heat-  

Annual Energy Outlook 2012 (EIA)

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

149

PV Installation Labor Market Analysis and PV JEDI Tool Developments (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

PV Installation Labor Market Analysis PV Installation Labor Market Analysis and PV JEDI Tool Developments Barry Friedman NREL Strategic Energy Analysis Center May 16, 2012 World Renewable Energy Forum Denver, Colorado NREL/PR-6A20-55130 NATIONAL RENEWABLE ENERGY LABORATORY Disclaimer 2 DISCLAIMER AGREEMENT These information ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy LLC ("Alliance") for the U.S. Department of Energy (the "DOE"). It is recognized that disclosure of these Data is provided under the following conditions and warnings: (1) these Data have been prepared for reference purposes only; (2) these Data consist of forecasts, estimates or assumptions made on a best-

150

Electric Vehicle Grid Integration for Sustainable Military Installations (Presentation), National Renewable Energy Laboratory (NREL)  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Grid Integration for Electric Vehicle Grid Integration for Sustainable Military Installations NDIA Joint Service Power Expo Mike Simpson Mike.Simpson@NREL.gov 5 May 2011 NREL/PR-5400-51519 NATIONAL RENEWABLE ENERGY LABORATORY Agenda 2 1. NREL Transportation Research 2. Net Zero Energy Installations (NZEI) 3. Fort Carson as a Case Study - Vehicles On-Site - Utility Operations - Vehicle Charge Management 4. Full Fleet Simulation 5. Continuing Work NATIONAL RENEWABLE ENERGY LABORATORY NREL is the only national laboratory solely dedicated to advancing renewable energy and energy efficiency. Our employees are committed to building a cleaner, sustainable world. Photo Credits: NREL 3 NATIONAL RENEWABLE ENERGY LABORATORY What is Electric Vehicle Grid Integration (EVGI)? 4 Cross Cutting Enablers Grid / Renewables

151

1 - Mapping virtual worlds  

Science Journals Connector (OSTI)

Abstract Virtual worlds are many and varied. In investigating the scope of virtual communities, it is important to understand social and theoretical issues that impact online participants. Such issues as gender, ontology, socio-technological integration, and corporeal interface all impact exploration of virtual worlds.

Woody Evans

2011-01-01T23:59:59.000Z

152

World Power Conference  

Science Journals Connector (OSTI)

... A TWO-DAY meeting of the International Executive Council of the World Power Conference has been held at Stockholm. Nineteen countries were represented : Australia, Austria, Belgium, ... of the International Executive Council and of the British National Committee of the World Power Conference, who presided ; Mr. Harold Hobson, vice-chairman of the British National Committee ...

1948-06-26T23:59:59.000Z

153

World Power Conference  

Science Journals Connector (OSTI)

... THE theme of the Canadian Sectional Meeting of the World Power Conference, to be held in Montreal during September 7-11, 1958, will be "Economic ... other application forms, can be obtained from the Secretary, British National Committee, World Power Conference, 201 Grand Buildings, Trafalgar Square, London, W.C.2. At the meeting ...

1958-05-03T23:59:59.000Z

154

Peak Population: Timing and Influences of Peak Energy on the World and the United States  

E-Print Network (OSTI)

Peak energy is the notion that the world’s total production of usable energy will reach a maximum value and then begin an inexorable decline. Ninety-two percent of the world’s energy is currently derived from the non-renewable sources (oil, coal...

Warner, Kevin 1987-

2012-11-28T23:59:59.000Z

155

Total OECD Oil Stocks*  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: The most recent data show OECD inventories remaining at very low levels. EIA expects inventories to remain low through the coming year. This increases the potential for price volatility through the rest of the winter, and into the next gasoline season. Inventories are a good measure of the supply/demand balance that affects prices. A large over-supply (production greater than demand) will put downward pressure on prices, while under-supply will push prices upward. As global oil production changed relative to demand, the world moved from a period of over-supply in 1998 to one of under-supply in 1999 and 2000. OECD inventories illustrate the changes in the world petroleum balance. OECD inventories rose to high levels during 1997 and 1998 when production exceeded demand and prices dropped to around $10 per barrel in

156

Total OECD Oil Stocks*  

Gasoline and Diesel Fuel Update (EIA)

The most recent data show OECD inventories remaining at very low The most recent data show OECD inventories remaining at very low levels. EIA expects inventories to remain low through the coming year. This increases the potential for price volatility through the winter, and even extending to the next gasoline season. Inventories are a good measure of the supply/demand balance that effects prices. A large over-supply (production greater than demand) will put downward pressure on prices, while under-supply will push prices upward. As global oil production changed relative to demand, the world moved from a period of over-supply in 1998 to one of under-supply in 1999 and 2000. OECD inventories illustrate the changes in the world petroleum balance. OECD inventories rose to high levels during 1997 and 1998 when production exceeded demand and prices dropped to around $10 per barrel in

157

Total OECD Oil Stocks*  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: The most recent data show OECD inventories remaining at very low levels. EIA expects inventories to remain low through the coming year. This increases the potential for price volatility through the winter, and even extending to the next gasoline season. Inventories are a good measure of the supply/demand balance that effects prices. A large over-supply (production greater than demand) will put downward pressure on prices, while under-supply will push prices upward. As global oil production changed relative to demand, the world moved from a period of over-supply in 1998 to one of under-supply in 1999 and 2000. OECD inventories illustrate the changes in the world petroleum balance. OECD inventories rose to high levels during 1997 and 1998 when production exceeded demand and prices dropped to around $10 per barrel in

158

Total OECD Oil Stocks*  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: As global production changed relative to demand, the world moved from a period of "over supply" in 1998 to one of "under supply" in 1999 and 2000. Inventories are a good means of seeing the imbalance between petroleum production and demand. For example, when production exceeds demand, inventories rise. A large over supply will put downward pressure on prices, while under supply will cause prices to rise. OECD inventories illustrate the changes in the world petroleum balance. OECD inventories rose to high levels during 1997 and 1998 when production exceeded demand and prices dropped to around $10 per barrel in December 1998. However, when demand exceeded production in 1999 and early 2000, inventories fell to the low levels seen above, and prices rose to $35 per

159

Installation considerations for IGBT AC drives  

SciTech Connect

In the last four years, Adjustable Speed ac Drive (ASD) manufacturers have migrated from Bipolar Junction Transistor (BJT) semiconductors to Insulated Gate Bipolar Transistors (IGBTs) as the preferred Output switching device. The advantage of IGBTs over BJTs is that device rise and fall time switching capability is 5 - 10 times faster, resulting in lower device switching loss and a more efficient drive. However, for a similar motor cable length as the BJT drive, the faster output voltage risetime of the IGBT drive may increase the dielectric voltage stress on the motor and cable due to a phenomenon called reflected wave. Faster output dv/dt transitions of IGBT drives also increase the possibility for phenomenon such as increased Common Mode (CM) electrical noise, Electromagnetic Interference (EMI) problems and increased capacitive cable charging current problems. Also, recent experience suggests any Pulse Width Modulated (PWM) drive with a steep fronted output voltage wave form may increase motor shaft voltage and lead to a bearing current phenomenon known as fluting. This paper provides a basic understanding of these issues, as well as solutions, to insure a successful drive system installation.

Skibinski, G.L.

1997-06-01T23:59:59.000Z

160

Gasket and snap ring installation tool  

DOE Patents (OSTI)

A tool for installing a gasket and a snap ring including a shaft, a first plate attached to the forward end of the shaft, a second plate slidably carried by the shaft, a spring disposed about the shaft between the first and second plates, and a sleeve that is free to slide over the shaft and engage the second plate. The first plate has a loading surface with a loading groove for receiving a snap ring and a shoulder for holding a gasket. A plurality of openings are formed through the first plate, communicating with the loading groove and approximately equally spaced about the groove. A plurality of rods are attached to the second plate, each rod slidable in one of the openings. In use, the loaded tool is inserted into a hollow pipe or pipe fitting having an internal flange and an internal seating groove, such that the gasket is positioned against the flange and the ring is in the approximate plane of the seating groove. The sleeve is pushed against the second plate, sliding the second plate towards the first plate, compressing the spring and sliding the rods forwards in the openings. The rods engage the snap ring and urge the ring from the loading groove into the seating groove.

Southerland, Jr., James M. (Aiken, SC); Barringer, Jr., Curtis N. (Orangeburg, SC)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "world total installed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

Wind Powering America (EERE)

  Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 006 Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 U.S. Wind Power Capacity Increased by 7% in 006 . . . . . . . . . . . . . . . .4 The United States Leads the World in Annual Capacity Growth . . . . . . . .4 Texas, Washington, and California Lead the U.S. in Annual Capacity Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 GE Wind Is the Dominant Turbine Manufacturer, with Siemens Gaining Market Share . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Average Turbine Size Continues to Increase . . . . . . . . . . . . . . . . . . . . . . .7 Developer Consolidation Accelerates . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Innovation and Competition in Non-Utility Wind Financing Persists . . . .9

162

Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in the United States  

Energy.gov (U.S. Department of Energy (DOE))

For the United States to ensure that the substantial rollout of offshore wind energy projects envisioned by the DOE is carried out in an efficient and cost-effective manner, it is important to observe the current and emerging practices in the international offshore wind energy industry. In this manner, the United States can draw from the experience already gained around the world, combined with experience from the sizeable U.S. land-based wind industry, to develop a strong offshore wind sector. The work detailed in this report will support that learning curve by enabling optimization of the cost-effectiveness of installation, operation, and maintenance activities for offshore wind farms.

163

Installing and Maintaining a Home Solar Electric System | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Installing and Maintaining a Home Solar Electric System Installing and Maintaining a Home Solar Electric System Installing and Maintaining a Home Solar Electric System July 2, 2012 - 8:21pm Addthis When choosing a contractor, ask about their work record, experience, and licenses, and get more than one bid for the installation of your PV system. | Photo courtesy of Dennis Schroeder, NREL. When choosing a contractor, ask about their work record, experience, and licenses, and get more than one bid for the installation of your PV system. | Photo courtesy of Dennis Schroeder, NREL. How does it work? Making sure your home solar electric or PV system is sized, sited, and installed correctly is essential for maximizing its energy performance. As with any mechanical or electrical appliance, PV systems require routine, periodic maintenance.

164

Installing and Maintaining a Small Wind Electric System | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Installing and Maintaining a Small Wind Electric System Installing and Maintaining a Small Wind Electric System Installing and Maintaining a Small Wind Electric System July 2, 2012 - 8:22pm Addthis Installing and Maintaining a Small Wind Electric System What does this mean for me? When installing a wind system, the location of the system, the energy budget for the site, the size of the system, and the height of the tower are important elements to consider. Deciding whether to connect the system to the electric grid or not is also an important decision. If you went through the planning steps to evaluate whether a small wind electric system will work at your location, you will already have a general idea about: The amount of wind at your site The zoning requirements and covenants in your area The economics, payback, and incentives of installing a wind system

165

Solar Industry At Work: Streamlining Home Solar Installation | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Industry At Work: Streamlining Home Solar Installation Solar Industry At Work: Streamlining Home Solar Installation Solar Industry At Work: Streamlining Home Solar Installation June 12, 2012 - 11:59am Addthis Sunrun is a home solar installation company based in San Francisco. | Photo by Francis Fine Art Photography. Sunrun is a home solar installation company based in San Francisco. | Photo by Francis Fine Art Photography. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs What are the key facts? Tillie Peterson works at Sunrun a home solar installation company based in San Francisco. As Director of Operations, Tillie works to get solar panels up and running for homeowners as simply and quickly as possible. Our Solar Industry At Work Series shares the personal success of

166

Installing and Maintaining a Home Solar Electric System | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Installing and Maintaining a Home Solar Electric System Installing and Maintaining a Home Solar Electric System Installing and Maintaining a Home Solar Electric System July 2, 2012 - 8:21pm Addthis When choosing a contractor, ask about their work record, experience, and licenses, and get more than one bid for the installation of your PV system. | Photo courtesy of Dennis Schroeder, NREL. When choosing a contractor, ask about their work record, experience, and licenses, and get more than one bid for the installation of your PV system. | Photo courtesy of Dennis Schroeder, NREL. How does it work? Making sure your home solar electric or PV system is sized, sited, and installed correctly is essential for maximizing its energy performance. As with any mechanical or electrical appliance, PV systems require routine, periodic maintenance.

167

Property:Incentive/InstallReqs | Open Energy Information  

Open Energy Info (EERE)

InstallReqs InstallReqs Jump to: navigation, search Property Name Incentive/InstallReqs Property Type Text Description Installation Requirements. Pages using the property "Incentive/InstallReqs" Showing 25 pages using this property. (previous 25) (next 25) A AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) + Self-installed measures with a rebate level greater than $1,000 and all applications over $20,000, and 5% of remaining applicants will be inspected. Funds can be reserved for a period of 180 days as long as the application includes an expected date of project completion. Customer must have an active account in WV with either Wheeling Power Company, American Electric Power or Appalachian Power Company.

168

Rhode Island Stormwater Design and Installation Standards Manual (Rhode  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island Stormwater Design and Installation Standards Manual Rhode Island Stormwater Design and Installation Standards Manual (Rhode Island) Rhode Island Stormwater Design and Installation Standards Manual (Rhode Island) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Rhode Island Program Type Environmental Regulations

169

DoD Energy Innovation on Military Installations  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

LPG Other Test Bed Focus 4 Smart Secure Installation Energy Management * Microgrids * Energy Storage * Ancillary Service Markets Efficient Integrated Buildings * Design,...

170

PNNL Reports Distributed Wind Installations Down, Exports Up...  

Energy Savers (EERE)

soon to be published by DOE's Pacific Northwest National Laboratory, U.S. wind turbines in distributed applications reached a cumulative installed capacity of 842 MW at...

171

High-performance computer system installed at Los Alamos National...  

NLE Websites -- All DOE Office Websites (Extended Search)

High-performance computer system installed at Los Alamos National Laboratory Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:January 2015 All...

172

Focus Series: Maine—Residential Direct Install Program  

Energy.gov (U.S. Department of Energy (DOE))

Better Buildings Neighborhood Program Focus Series: Maine—Residential Direct Install Program: Residential Air Sealing Program Drives Maine Home Energy Savings Through the Roof.

173

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet recommends installing waste heat recovery systems for fuel-fired furnaces to increase the energy efficiency of process heating systems.

174

H2-Assisted NOx Traps: Test Cell Results Vehicle Installations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sam Crane August 28, 2003 H 2 -Assisted NOx Traps: Test Cell Results Vehicle Installations 2 Project Objectives * Determine Advantages of H 2 Assisted NO x Trap Regeneration *...

175

Installer Issues: Integrating Distributed Wind into Local Communities (Presentation)  

SciTech Connect

A presentation for the WindPower 2006 Conference in Pittsburgh, PA, regarding the issues facing installer of small wind electric systems.

Green, J.

2006-06-01T23:59:59.000Z

176

Reviewing Post-Installation and Annual Reports for Federal ESPC...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Post-Installation and Annual Reports for Federal ESPC Projects The purpose of this document is to provide a framework for implementing uniform and consistent reviews of...

177

Project examples Install new HVAC, electrical, fire protection,  

E-Print Network (OSTI)

Project examples Install new HVAC, electrical, fire protection, and plumbing systems in Mechanical. · Totransformthisspaceandincreaseaccessibility, anelevatorisrequired.Currently,Blakelydoesnot haveone. Replace HVAC and electrical system

Blanchette, Robert A.

178

INSTALLATION, COMMISSIONING AND TROUBLE SHOOTING OF VARIABLE FREQUENCY DRIVE.  

E-Print Network (OSTI)

??In this thesis, the installation of variable frequency drive on board a ship is introduced briefly. In this particular study the variable frequency drive was… (more)

Kuituniemi, Santtu

2013-01-01T23:59:59.000Z

179

DOE-DOD Emergency Backup Power Fuel Cell Installations  

Fuel Cell Technologies Publication and Product Library (EERE)

Ths fact sheet describes a collaboration between the departments of Energy and Defense to install and operate 18 fuel cell backup power systems across the United States.

180

NREL Job Task Analysis: Retrofit Installer Technician | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

51671.pdf More Documents & Publications NREL Job Task Analysis: Retrofit Installer Technician (Revised) NREL Job Task Analysis: Energy Auditor trainingselfassessment.xlsx...

Note: This page contains sample records for the topic "world total installed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NREL Job Task Analysis: Retrofit Installer Technician (Revised...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

installerjta04112012.pdf More Documents & Publications NREL Job Task Analysis: Retrofit Installer Technician NREL Job Task Analysis: Energy Auditor trainingselfassessment.xlsx...

182

The world energy supply  

Science Journals Connector (OSTI)

The pattern of the world's energy supply has undergone dramatic changes over the last century, and particularly over the last twenty years. The growth in the world's population and the ever-greater demand for energy will lead to the global environment being subjected to considerable strain. The world will require a new type of energy system, one that is technically feasible, but which will face many difficulties in gaining social and economic acceptance. The world's future energy supply will depend upon the rational exploitation of resources and the development of high technical standards in the fields of reliability and safety. The required social changes will include a change to more energy-conserving life styles and a strengthening of international co-operation in long-term energy and environmental research and development.

L.H.Th. Rietjens

1991-01-01T23:59:59.000Z

183

the World Wide Web  

NLE Websites -- All DOE Office Websites (Extended Search)

technical report has been made electronically available on the World Wide Web through a contribution from Walter L. Warnick In honor of Enrico Fermi Leader of the first nuclear...

184

Pleonastic possible worlds  

Science Journals Connector (OSTI)

The role of possible worlds in philosophy is hard to overestimate. Nevertheless, their nature and existence is very controversial. This is particularly serious, since their standard applications depend on ther...

Alexander Steinberg

2013-07-01T23:59:59.000Z

185

The world's largest landfill  

Science Journals Connector (OSTI)

The world's largest landfill ... GeoChip-Based Analysis of Microbial Functional Gene Diversity in a Landfill Leachate-Contaminated Aquifer ... GeoChip-Based Analysis of Microbial Functional Gene Diversity in a Landfill Leachate-Contaminated Aquifer ...

Joseph M. Suflita; Charles P. Gerba; Robert K. Ham; Anna C. Palmisano; William L. Rathje; Joseph A. Robinson

1992-08-01T23:59:59.000Z

186

NPS Board of Advisors Installation Update  

E-Print Network (OSTI)

/Locks Enclave Sidewalks King Hall Signage Fitness Ctr Solar Thermal Hot Water, B220 Del Monte Café (MWR) Joint Services in Place (FIP): $3.76M · Completed P204, P197, Spanagel/Root Hall Renov. Contract Execution (Award): 148 Contract Actions totaling $18.29M · NSAM: $15.66M / NPS: $2.29M / NRL: $0.33M Production Division

187

WorldLens: exploring world events through media  

E-Print Network (OSTI)

The goal of WorldLens is to provide a visual answer to the question: "what is happening in the world?" This thesis entails the design and development of a system that provides an exploratory view into world events across ...

Speiser, Jonathan Eliezer

2014-01-01T23:59:59.000Z

188

21 briefing pages total  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

briefing pages total p. 1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law effective first day of first pay period on or after March 11, 2009 (March 15 for most executive branch employees) Number of affected employees unclear p. 4 Next Steps

189

Issue #3: HVAC Proper Installation Energy Savings: Over-Promising or Under-Delivering?  

Office of Energy Efficiency and Renewable Energy (EERE)

What energy savings are realistically achievable by following quality installation standards for installation, operation, and maintenance of residential HVAC?

190

Wall Sculpture by Ellsworth Kelly Installed on Dartmouth Campus  

E-Print Network (OSTI)

Wall Sculpture by Ellsworth Kelly Installed on Dartmouth Campus Dartmouth Panels will be dedicated District, a wall sculpture by renowned abstract artist Ellsworth Kelly has been installed on the eastern façade of the Hopkins Center for the Arts, facing the Visual Arts Center. Kelly was in attendance

Shepherd, Simon

191

Net Zero Energy Military Installations: A Guide to  

E-Print Network (OSTI)

Net Zero Energy Military Installations: A Guide to Assessment and Planning Samuel Booth, John;Technical Report Net Zero Energy Military NREL/TP-7A2-48876 Installations: A Guide to August 2010 Assessment .......................................................................................................................................1 1 Introduction: Net Zero Energy In DoD Context

192

Study Guide for Photovoltaic System Installers and Sample Examination Questions  

Energy.gov (U.S. Department of Energy (DOE))

This study guide presents some of the basic cognitive material that individuals who install and maintain PV systems should understand. This information is intended primarily as a study guide to help better prepare for the NABCEP PV installer examination but does not provide all of the information needed for completing the certification examination.

193

SynFlo: an interactive installation introducing synthetic biology concepts  

Science Journals Connector (OSTI)

SynFlo is an interactive installation that utilizes tangible interaction to help illustrate core concepts of synthetic biology through outreach programs. This playful installation allows users to create useful virtual life forms from standardized genetic ... Keywords: E. chromi, microsoft surface, sifteo cubes, synthetic biology, tangible user interfaces

Kimberly Chang; Wendy Xu; Nicole Francisco; Consuelo Valdes; Robert Kincaid; Orit Shaer

2012-11-01T23:59:59.000Z

194

Targeting Net Zero Energy for Military Installations (Presentation)  

SciTech Connect

Targeting Net Zero Energy for Military Installations in Kaneohe Bay, Hawaii. A net zero energy installation (NZEI) is one that produces as much energy from on-site renewable sources as it consumes. NZEI assessment provides a systematic approach to energy projects.

Burman, K.

2012-05-01T23:59:59.000Z

195

Lessons Learned During HVAC Installation Dept. of Computer Science  

E-Print Network (OSTI)

Lessons Learned During HVAC Installation Ian Watson AI-CBR Dept. of Computer Science University of HVAC equipment. It has been developed as an adjunct to an existing system that uses case-based reasoning to reuse previous HVAC installation specifications and designs. The system described lets

Watson, Ian

196

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

197

Summary Max Total Units  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Max Total Units Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water Refrig Voltage Cond Unit IF-CU Combos 2 4 5 28 References Refrig Voltage C-U type Compressor HP R-404A 208/1/60 Hermetic SA 2.5 R-507 230/1/60 Hermetic MA 2.5 208/3/60 SemiHerm SA 1.5 230/3/60 SemiHerm MA 1.5 SemiHerm HA 1.5 1000lb, remote rack systems, fresh water Refrig/system Voltage Combos 12 2 24 References Refrig/system Voltage IF only

198

Total Precipitable Water  

SciTech Connect

The simulation was performed on 64K cores of Intrepid, running at 0.25 simulated-years-per-day and taking 25 million core-hours. This is the first simulation using both the CAM5 physics and the highly scalable spectral element dynamical core. The animation of Total Precipitable Water clearly shows hurricanes developing in the Atlantic and Pacific.

None

2012-01-01T23:59:59.000Z

199

Total Sustainability Humber College  

E-Print Network (OSTI)

1 Total Sustainability Management Humber College November, 2012 SUSTAINABILITY SYMPOSIUM Green An Impending Global Disaster #12;3 Sustainability is NOT Climate Remediation #12;Our Premises "We cannot, you cannot improve it" (Lord Kelvin) "First rule of sustainability is to align with natural forces

Thompson, Michael

200

THE TOTAL PETROLEUM SYSTEM--THE NATURAL FLUID NETWORK THAT CONSTRAINS THE  

E-Print Network (OSTI)

Chapter PS THE TOTAL PETROLEUM SYSTEM--THE NATURAL FLUID NETWORK THAT CONSTRAINS THE ASSESSMENT Survey Click here or on this symbol in the toolbar to return. U.S. GEOLOGICAL SURVEY WORLD PETROLEUM.................................................................................................................PS-2 Total Petroleum System

Laughlin, Robert B.

Note: This page contains sample records for the topic "world total installed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy: world needs and reserves  

Science Journals Connector (OSTI)

Energy: world needs and reserves ... Lippencott takes stock of the world energy reserves and the demand the US places on these reserves. ...

W. T. Lippincott

1974-01-01T23:59:59.000Z

202

Sunergy World | Open Energy Information  

Open Energy Info (EERE)

Sunergy World Jump to: navigation, search Name: Sunergy World Place: Boise, Idaho Zip: 83707 Sector: Solar, Wind energy Product: Idaho-based wind and solar project developer....

203

ARRA Program Celebrates Milestone 600,000 Smart Meter Installations |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARRA Program Celebrates Milestone 600,000 Smart Meter Installations ARRA Program Celebrates Milestone 600,000 Smart Meter Installations ARRA Program Celebrates Milestone 600,000 Smart Meter Installations April 17, 2012 - 3:09pm Addthis On April 11, 2012, DOE Recovery Act funding recipient Sacramento Municipal Utility District (SMUD) celebrated a major milestone in the development of a regional smart grid in California: the installation of over 600,000 smart meters. For the event, Congresswoman Doris Matsui (D-Sacramento) visited SMUD's customer service center and praised the program for implementing a system "that will be more efficient, more reliable, and better for consumers." SMUD's meter installations are nearly complete, with only a few thousand remaining. In addition to smart meters, SMUD's grid modernization efforts will include automated distribution systems, a

204

Solar, Wind, Hydropower: Home Renewable Energy Installations | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar, Wind, Hydropower: Home Renewable Energy Installations Solar, Wind, Hydropower: Home Renewable Energy Installations Solar, Wind, Hydropower: Home Renewable Energy Installations April 17, 2013 - 1:44pm Addthis This Lakewood, Colorado home was built in 1956. Brent and Mo Nelson upgraded the home with multiple solar technologies including; daylighting, passive solar and active solar. They also have an 80 gallon solar hot water heater. | Photo by Dennis Schroeder, National Renewable Energy Laboratory. This Lakewood, Colorado home was built in 1956. Brent and Mo Nelson upgraded the home with multiple solar technologies including; daylighting, passive solar and active solar. They also have an 80 gallon solar hot water heater. | Photo by Dennis Schroeder, National Renewable Energy Laboratory. Homeowner Andrea Mitchel, with installer Joe Guasti, proudly shows off small wind turbine installed in Oak Hills, CA. | Photo by Karin Sinclair, National Renewable Energy Laboratory.

205

V-053: Adobe Shockwave player installs Xtras without prompting | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Adobe Shockwave player installs Xtras without prompting 3: Adobe Shockwave player installs Xtras without prompting V-053: Adobe Shockwave player installs Xtras without prompting December 24, 2012 - 12:15am Addthis PROBLEM: Adobe Shockwave player installs Xtras without prompting PLATFORM: Adobe Shockwave Player ABSTRACT: A vulnerability was reported in Adobe Shockwave. REFERENCE LINKS: Vulnerability Note VU#519137 SecurityTracker Alert ID: 1027903 Bugtraq ID: 56972 CVE-2012-6271 IMPACT ASSESSMENT: Medium DISCUSSION: Adobe Shockwave Player through 11.6.8.638 allows remote attackers to trigger installation of arbitrary signed Xtras via a Shockwave movie that contains an Xtra URL, as demonstrated by a URL for an outdated Xtra. IMPACT: By convincing a user to view a specially crafted Shockwave content, an attacker may be able to execute arbitrary code with the privileges of the

206

Would You Consider Installing a Cool Roof? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Would You Consider Installing a Cool Roof? Would You Consider Installing a Cool Roof? Would You Consider Installing a Cool Roof? August 12, 2010 - 7:30am Addthis On Monday, Erin discussed cool roof technologies and how they can improve the comfort of buildings while reducing energy costs. Would you consider installing a cool roof? Why or why not? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Would You Consider Driving a Vehicle that Can Run on Biodiesel? Would You Consider Installing a Cool Roof? Tips: Energy-Efficient Roofs How Do You Save Water When Caring for Your Lawn?

207

Permit for Charging Equipment Installation: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compliance with the following permit will allow the installation and operation of electric vehicle charging equipment at a Compliance with the following permit will allow the installation and operation of electric vehicle charging equipment at a residence in the City, State jurisdiction. This permit addresses one of the following situations: Only an additional branch circuit would be added at the residence A hard-wired charging station would be installed at the residence. The attached requirements for wiring the charging station are taken directly out of the 2011 edition of the National Electrical Code (NEC) NFPA 70, Article 625 Electric Vehicle Charging System. This article does not provide all of the information necessary for the installation of electric vehicle charging equipment. Please refer to the current edition of the electrical code adopted by the local jurisdiction for additional installation requirements. Reference to the 2011 NEC may be

208

Secretary Chu Announces Two Million Smart Grid Meters Installed Nationwide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Two Million Smart Grid Meters Installed Two Million Smart Grid Meters Installed Nationwide Secretary Chu Announces Two Million Smart Grid Meters Installed Nationwide August 31, 2010 - 12:00am Addthis Columbus, OH - At an event today at Battelle headquarters in Columbus, Ohio, U.S. Energy Secretary Steven Chu announced that two million smart grid meters have been installed across the country, helping to reduce energy costs for families and businesses. As a result of funding from the Recovery Act, smart grid technology is speeding the modernization of the nation's electrical grid, helping to reduce the amount of time needed to respond to energy disruptions and enable consumers to monitor their energy consumption and costs. So far, more than 180,000 smart meters have been installed in Ohio. "As a result of an unprecedented investment from the Recovery Act, smart

209

ENERGY CONTENT OF WORLD TRADE  

E-Print Network (OSTI)

This paper constructs a comprehensive dataset of oil and total energy embedded in world trade of manufacturing goods for 73 countries from 1978 to 2000. Applying the data to debates on the dependency on foreign energy sources makes clear that achieving complete energy independence in the foreseeable future is unlikely to be feasible and may not be desirable. Applying it to the discussion of environmental Kuznets curves (EKCs) highlights an important distinction between production and consumption of energy. Richer countries use relatively less energy in their industrial production yet still consume relatively large amounts of energy indirectly. A further investigation largely excludes structural shifts of production in and out of the manufacturing sector as an explanation for the downward-sloping portion of the EKC. Country-level analyses add caveats but show tentative support for the cross-country conclusions.

Gernot Wagner

210

FISCAL YEAR 1997 WELL INSTALLATION, PLUGGING AND ABANDONMENT, AND REDEVELOPMENT SUMMARY REPORT Y-12 PLANT, OAK RIDGE, TENNESSEE  

SciTech Connect

This report summarizes the well installation, plugging and abandonment and redevelopment activities conducted during the federal fiscal year (FY) 1997 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. No new groundwater monitoring wells were installed during FY 1997. However, 13 temporary piezometers were installed around the Upper East Fork Poplar Creek (UEFPC) in the Y-12 Plant. An additional 36 temporary piezometers, also reported in this document, were installed in FY 1996 and, subsequently, assigned GW-series identification. A total of 21 monitoring wells at the Y-12 Plant were decommissioned in FY 1997. Three existing monitoring wells underwent redevelopment during FY 1997. All well installation and development (including redevelopment) was conducted following industry-standard methods and approved procedures in the Environmental Surveillance Procedures Quality Control Program (Energy Systems 1988), the {ital Resource Conservation and Recovery Act (RCRA) Groundwater Monitoring Technical Enforcement Guidance Document} (EPA 19?6), and {ital Guidelines for Installation of Monitoring Wells at the Y-12 Plant} (Geraghty & Miller 1985). All wells were plugged and abandoned in accordance with the Monitoring Well Plugging and Abandonment Plan for the U.S. Department of Energy, Y-12 Plant, Oak Ridge, Tennessee (HSW, Inc. 1991). Health and safety monitoring and field screening of drilling returns and development waters were conducted in accordance with approved Lockheed Martin Energy Systems, Inc. (Energy Systems) guidelines.

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION

1997-09-01T23:59:59.000Z

211

Install, both Arduino and AmaSeis software programs: Installing Arduino and drivers: Setting up AmaSeis  

E-Print Network (OSTI)

Install, both Arduino and AmaSeis software programs: Installing Arduino and drivers: Setting up Ama the Arduino drivers. Take note of the assigned com port number, and set up AmaSeis to that number. 3. Some computers will require the following. Keep in mind, Arduino, does not need to run or be involved. You just

Barrash, Warren

212

Total isomerization gains flexibility  

SciTech Connect

Isomerization extends refinery flexibility to meet changing markets. TIP (Total Isomerization Process) allows conversion of paraffin fractions in the gasoline boiling region including straight run naptha, light reformate, aromatic unit raffinate, and hydrocrackate. The hysomer isomerization is compared to catalytic reforming. Isomerization routes are graphed. Cost estimates and suggestions on the use of other feedstocks are given. TIP can maximize gas production, reduce crude runs, and complement cat reforming. In four examples, TIP reduces reformer severity and increases reformer yield.

Symoniak, M.F.; Holcombe, T.C.

1983-05-01T23:59:59.000Z

213

INSTALLATION MAG~NiX.ILRI DIVI8ION, CAN.fAN,CONN.  

Office of Legacy Management (LM)

INSTALLATION INSTALLATION MAG~NiX.ILRI DIVI8ION, CAN.fAN,CONN. .PERI,jD Aiq~+ 1, i950 TO: August 31, 195 .:\,.:. ,,., WORK SHEET FOR: I b WSIGNOR I. v DowChemical Go. Velasco, Texas ., Azlterprise Meetala cc Brooklyn, New York Meili $Worthin&m Hatboro, ?'a. LOT NO. '... I [ATERIAL SYnB,fJL KEASURED' NET WT. 100,007~ ( 4;020 I ! 19 ~, ANALYBIS % METAL/100 r, Noi. 23) METAL CONTENT INSTRUCTIONS: This sheet% will be Used.ln.preDarlng Haterlal Balance. 'The totals from the various ltams listed above ~111 be Inserted on the Material Balance Summary Sheet. Shipments ~111 he llated on this Work'Sheet separately With the-ConsIgnor and Consignee of each Shipment noted; Copies Of thls sheet ~111 accompany the naterlal Balance Summary Sheet at the end of the'month.

214

NETL: 2010 World Gasification Database Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Gasification Systems > 2010 World Gasification Database Home > Technologies > Coal & Power Systems > Gasification Systems > 2010 World Gasification Database Gasification Systems 2010 Worldwide Gasification Database Archive DOE/NETL 2010 Worldwide Gasification Database Worldwide Gasification Database Analysis The 2010 Worldwide Gasification Database describes the current world gasification industry and identifies near-term planned capacity additions. The database lists gasification projects and includes information (e.g., plant location, number and type of gasifiers, syngas capacity, feedstock, and products). The database reveals that the worldwide gasification capacity has continued to grow for the past several decades and is now at 70,817 megawatts thermal (MWth) of syngas output at 144 operating plants with a total of 412 gasifiers.

215

Arabelle: The most powerful steam turbine in the world  

SciTech Connect

On the 30th of August 1996 at the CHOOZ power station in the Ardennes, the first 1,500 MW turbine was started up under nuclear steam and connected to the grid. It will reach full power in the spring of 1997, followed shortly afterwards by a second identical machine. This turbine, known as ARABELLE, is currently the most powerful in the world, with a single line rotating at 1,500 rpm. It has been entirely designed, manufactured and installed by the teams of GEC ALSTHOM, within the framework of the Electricite de France N4 PWR program. It represents a new type of nuclear turbine, the fruit of much research and development work which started in the 1980s. It benefits from GEC ALSTHOM's considerable experience in the field of nuclear turbines: 143 machines with a total power output of 100,000 MW and more than ten million hours of operation. It should be remembered that the first 1,000 MW unit for a PWR plant was connected at Fessenheim in 1977, and since then the different EDF plants have been equipped with 58 GEC ALSTHOM turbines, ranging from 1,000 MW to 1,350 MW, this providing the company with a vast amount of information. The process which led to a new design for ARABELLE was based on: Feedback of service experience from previous machines; this provides precious learning material with a view to improving the performance of operating equipment. Research and development work resulting in significant technical advances which could then be integrated into the design of a new generation of turbines. Taking account of the major concerns of the customer-user: Electricite de France (EDF): Improved reliability and operating availability, increased efficiency, reduced investment and maintenance costs.

Lamarque, F.; Deloroix, V.

1998-07-01T23:59:59.000Z

216

NEW WORLD FOR BIOFUELS  

Science Journals Connector (OSTI)

NEW WORLD FOR BIOFUELS ... SOME $170 BILLION in new technology development projects, infrastructure equipment and construction, and biofuel refineries will result from the ethanol production standards contained in energy legislation enacted into law late last year, said biotechnology industry advocates in an end-of-year briefing. ...

JEFF JOHNSON

2008-01-07T23:59:59.000Z

217

World Power Conference  

Science Journals Connector (OSTI)

... . J. T. BAKKER, chairman of the Netherlands National Committee of the World Power Conference, has agreed to become acting chairman of the International Executive Council of the ... , has agreed to become acting chairman of the International Executive Council of the Conference during the War. Correspondence intended for the International Executive Council should be addressed to ...

1939-11-04T23:59:59.000Z

218

The World Power Conference  

Science Journals Connector (OSTI)

... WE have received from the Central Office of the World Power Conference, Kingsway, London, the annual report for 1937. Dr. William F. Durand is ... president and Sir Harold Hartley is the chairman of the International Executive Council. The first conference was held in London in 1924, the second in Berlin in 1930 and the ...

1938-08-13T23:59:59.000Z

219

better world Scientists and  

E-Print Network (OSTI)

hazardous waste, control air pollution and promote environmental health. Because these fields are complex, environmental, mathematical and physical sciences. And Oregon State University is a great place to start building that experience. Here, you can study with world-renowned faculty, participate in groundbreaking

Escher, Christine

220

World Energy Outlook 2008  

U.S. Energy Information Administration (EIA) Indexed Site

OECD/IEA - OECD/IEA - 2008 © OECD/IEA - 2008 © OECD/IEA - 2008 To Cover... To Cover To Cover ... ... Transport Energy and CO 2 Where are we going? What are the dangers? How do we change direction? Primarily reporting on: IEA WEO 2008 IEA ETP 2008 On-going work with IEA's Mobility Model One or two detours to talk about modelling © OECD/IEA - 2008 0 2 000 4 000 6 000 8 000 10 000 12 000 14 000 16 000 18 000 1980 1990 2000 2010 2020 2030 Mtoe Other renewables Hydro Nuclear Biomass Gas Coal Oil World energy demand expands by 45% between now and 2030 - an average rate of increase of 1.6% per year - with coal accounting for more than a third of the overall rise Where are we headed? World Energy Outlook 2008 Where are we headed? World Energy Outlook Where are we headed? World Energy Outlook

Note: This page contains sample records for the topic "world total installed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Around the World  

Science Journals Connector (OSTI)

...billion-dollar mission later in the decade—a constellation of spacecraft to investigate how Earth's atmosphere absorbs solar wind energy—would require a budget boost if it is to be in service by the next solar maximum in 2024. Around the world...

2012-08-17T23:59:59.000Z

222

Solar hot water system installed at Mobile, Alabama. Final report  

SciTech Connect

This final report describes the solar energy hot water system installed at LaQuinta Motor Inn Inc., at Mobile, Alabama. The building is a 122 unit motel. The system consists of six rows of ten collectors and three rows of eleven collectors (1990 square feet) mounted on the roof. Griswald flow control valves were installed to regulate the flow to each row. Two Heliotrope electronic thermometers with a combined capability of measuring the temperatures of 22 different locations were installed for monitoring purposes. Engineering drawings, component specifications, and operator instructions are included.

None

1980-10-01T23:59:59.000Z

223

Once the World's Fastest Supercomputer; Central to  

NLE Websites -- All DOE Office Websites (Extended Search)

End of the road for Roadrunner End of the road for Roadrunner March 29, 2013 Once the World's Fastest Supercomputer; Central to the Success of Stockpile Stewardship LOS ALAMOS, N. M., March 29, 2013-Roadrunner, the first supercomputer to break the once-elusive petaflop barrier-one million billion calculations per second-will be decommissioned on Sunday, March 31. During its five operational years, Roadrunner, part of the National Nuclear Security Administration's Advanced Simulation and Computing (ASC) program to provide key computer simulations for the Stockpile Stewardship Program, was a workhorse system providing computing power for stewardship of the U.S. nuclear deterrent, and in its early shakedown phase, a wide variety of unclassified science. The IBM system achieved petaflop speed in 2008, shortly after installation at Los Alamos National Laboratory.

224

Tracking the Sun IV: An Historical Summary of the Installed Cost of Photovoltaics in the United States from 1998 to 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

Tracking Tracking the Sun IV Tracking the Sun IV An Historical Summary of the Installed Cost of Photovoltaics in the United States from 1998 to 2010 Photovoltaics in the United States from 1998 to 2010 Galen Barbose, Naïm Darghouth, Ryan Wiser, and Joachim Seel g y Lawrence Berkeley National Laboratory - Report Summary - p y September 2011 Environmental Energy Technologies Division * Energy Analysis Department Thanks to the U.S. DOE's Solar Energy Technologies Program and the Clean Energy States Alliance for supporting this work Project Overview Objective: Using project-level data, evaluate trends in the installed cost of grid-connected PV systems throughout the United States: g y g * Changes in total system installed cost and component-level costs over time * Variation in total installed cost by system size

225

Total Light Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Management Light Management Why is saving Energy Important World Electricity Consumption (2007) Top 20 Countries 0 500 1000 1500 2000 2500 3000 3500 4000 4500 U n i t e d S t a t e s C h i n a J a p a n R u s s i a I n d i a G e r m a n y C a n a d a A f r i c a F r a n c e B r a z i l K o r e a , S o u t h U n i t e d K i n g d o m I t a l y S p a i n A u s t r a l i a T a i w a n S o u t h A f r i c a M e x i c o S a u d i A r a b i a I r a n Billion kWh Source: US DOE Energy Information Administration Lighting Control Strategies 4 5 6 Occupancy/Vacancy Sensing * The greatest energy savings achieved with any lighting fixture is when the lights are shut off * Minimize wasted light by providing occupancy sensing or vacancy sensing 7 8 Daylight Harvesting * Most commercial space has enough natural light flowing into it, and the amount of artificial light being generated can be unnecessary * Cut back on the production of artificial lighting by

226

Total Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

227

Determination of Total Solids in Biomass and Total Dissolved...  

NLE Websites -- All DOE Office Websites (Extended Search)

Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples Laboratory Analytical Procedure (LAP) Issue Date: 3312008 A. Sluiter, B. Hames, D. Hyman, C. Payne,...

228

Hawaii Marine Base Installs Solar Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hawaii Marine Base Installs Solar Roofs Hawaii Marine Base Installs Solar Roofs Hawaii Marine Base Installs Solar Roofs April 2, 2010 - 2:42pm Addthis Lorelei Laird Writer, Energy Empowers What does this project do? Marine Corps Base Hawaii replaced roofs on two buildings with polyvinyl chloride membrane 'cool' roofs and solar panels. The new roofs saves $20,000 a year in energy costs. Built on the end of the Mokapu Peninsula on Oahu's northeast coast, the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay gets plenty of sunlight. But harnessing that sunlight to create renewable electricity was considered too expensive to be practical - until 2008. That's when MCBH took advantage of planned maintenance funding to help offset the high cost of installing photovoltaic panels on the base. As a military entity, MCBH can't directly take advantage of federal or state

229

Energy Department Completes Cool Roof Installation on DC Headquarters  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completes Cool Roof Installation on DC Completes Cool Roof Installation on DC Headquarters Building to Save Money by Saving Energy Energy Department Completes Cool Roof Installation on DC Headquarters Building to Save Money by Saving Energy December 14, 2010 - 12:00am Addthis Washington - Secretary Steven Chu today announced the completion of a new cool roof installation on the Department of Energy's Headquarters West Building. There was no incremental cost to adding the cool roof as part of the roof replacement project and it will save taxpayers $2,000 every year in building energy costs. Cool roofs use lighter-colored roofing surfaces or special coatings to reflect more of the sun's heat, helping improve building efficiency, reduce cooling costs and offset carbon emissions. The cool roof and increased insulation at the facility were

230

Energy Secretary Chu Announces Five Million Smart Meters Installed  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces Five Million Smart Meters Installed Announces Five Million Smart Meters Installed Nationwide as Part of Grid Modernization Effort Energy Secretary Chu Announces Five Million Smart Meters Installed Nationwide as Part of Grid Modernization Effort June 13, 2011 - 12:00am Addthis Washington, DC - At a White House Grid Modernization event today, U.S. Department of Energy Secretary Steven Chu announced that more than five million smart meters have been installed nationwide as part of Recovery Act-funded efforts to accelerate modernization of the Nation's electric grid. Smart meters will provide utility companies with greater information about how much electricity is being used throughout their service areas. They will also give consumers access to real-time information about their energy consumption, allowing them to make well-informed decisions about how

231

Newly Installed Alaska North Slope Well Will Test Innovative Hydrate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Newly Installed Alaska North Slope Well Will Test Innovative Newly Installed Alaska North Slope Well Will Test Innovative Hydrate Production Technologies Newly Installed Alaska North Slope Well Will Test Innovative Hydrate Production Technologies May 17, 2011 - 1:00pm Addthis Washington, DC - A fully instrumented well that will test innovative technologies for producing methane gas from hydrate deposits has been safely installed on the North Slope of Alaska. As a result, the "Iġnik Sikumi" (Iñupiaq for "fire in the ice") gas hydrate field trial well will be available for field experiments as early as winter 2011-12. The well, the result of a partnership between ConocoPhillips and the Office of Fossil Energy's (FE) National Energy Technology Laboratory, will test a technology that involves injecting carbon dioxide (CO2) into sandstone

232

Property:Project Installed Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Installed Capacity (MW) Installed Capacity (MW) Jump to: navigation, search Property Name Project Installed Capacity (MW) Property Type String Pages using the property "Project Installed Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 0 + MHK Projects/ADM 5 + 1 + MHK Projects/AWS II + 1 + MHK Projects/Admirality Inlet Tidal Energy Project + 22 + MHK Projects/Agucadoura + 2 + MHK Projects/Alaska 18 + 10 + MHK Projects/Alaska 36 + 10 + MHK Projects/Algiers Cutoff Project + 16 + MHK Projects/Algiers Light Project + 0 + MHK Projects/Anconia Point Project + 0 + MHK Projects/Ashley Point Project + 0 + MHK Projects/Astoria Tidal Energy + 300 + MHK Projects/Avondale Bend Project + 0 + MHK Projects/Bar Field Bend + 0 +

233

Oklahoma Tribe to Install Solar Roof | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oklahoma Tribe to Install Solar Roof Oklahoma Tribe to Install Solar Roof Oklahoma Tribe to Install Solar Roof March 22, 2010 - 6:10pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What does this project do? The new fully functioning roof and solar energy production plant will save the tribe about $20,000 a year. The Delaware Nation, a federally-recognized tribe of about 1,400 people in Anadarko, Okla., will install solar panel roofs on two tribal government buildings as part of a larger effort to become more sustainable and bring new jobs to an area struggling with high unemployment. "It's the start of a green initiative," says Theda McPheron-Keel, president of Wind Hollow Foundation, a nonprofit organization aimed at helping American Indians improve their lives. "It provides economic

234

Home Solar Installations: Things to Consider | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Solar Installations: Things to Consider Home Solar Installations: Things to Consider Home Solar Installations: Things to Consider May 29, 2013 - 3:18pm Addthis Home solar systems can save you energy and money. | Photo courtesy of Dennis Schroeder, NREL 22168. Home solar systems can save you energy and money. | Photo courtesy of Dennis Schroeder, NREL 22168. Erin Connealy Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Read these considerations for installing a home solar electric system to evaluate whether it is a good choice for your home. Well, it's that time of year! Days are getting longer and the weather is getting warmer. How can you take advantage of longer sunlight hours? Dinner on your porch might be one good solution, but an even better one might be

235

Property:EZFeed/InstalledCapacity | Open Energy Information  

Open Energy Info (EERE)

InstalledCapacity InstalledCapacity Jump to: navigation, search Property Name EZFeed/InstalledCapacity Property Type String Description EZFeed Installed Capacity property Subproperties This property has the following 6079 subproperties: 2 2003 Climate Change Fuel Cell Buy-Down Program (Federal) 3 30% Business Tax Credit for Solar (Vermont) 4 401 Certification (Vermont) A AEP (Central and North) - CitySmart Program (Texas) AEP (Central and North) - Residential Energy Efficiency Programs (Texas) AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) AEP Appalachian Power - Residential Home Retrofit Program (West Virginia)

236

Oklahoma Tribe to Install Solar Roof | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oklahoma Tribe to Install Solar Roof Oklahoma Tribe to Install Solar Roof Oklahoma Tribe to Install Solar Roof March 22, 2010 - 6:10pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What does this project do? The new fully functioning roof and solar energy production plant will save the tribe about $20,000 a year. The Delaware Nation, a federally-recognized tribe of about 1,400 people in Anadarko, Okla., will install solar panel roofs on two tribal government buildings as part of a larger effort to become more sustainable and bring new jobs to an area struggling with high unemployment. "It's the start of a green initiative," says Theda McPheron-Keel, president of Wind Hollow Foundation, a nonprofit organization aimed at helping American Indians improve their lives. "It provides economic

237

Carpe Diem: Install Insulated Roman Shades | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carpe Diem: Install Insulated Roman Shades Carpe Diem: Install Insulated Roman Shades Carpe Diem: Install Insulated Roman Shades March 16, 2010 - 11:44am Addthis John Lippert As I mentioned in yesterday's blog, I had insulated window quilts installed on most of my home's windows. I should have bought window quilts for all of our windows, but I refrained from doing so on two downstairs windows to save money (which, in the long run, I didn't). There were window shades already there; they didn't do much from a thermal perspective, but they did provide privacy and room darkening. Well, they need to be replaced now, and I'm looking again at high efficiency thermal window shades. This time I'm considering thermal Roman shades. About a dozen years ago my wife and I went on the Tour of Solar Homes, the local component of the annual National Solar Tour sponsored by the American

238

Hawaii Marine Base Installs Solar Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marine Base Installs Solar Roofs Marine Base Installs Solar Roofs Hawaii Marine Base Installs Solar Roofs April 2, 2010 - 2:42pm Addthis Lorelei Laird Writer, Energy Empowers What does this project do? Marine Corps Base Hawaii replaced roofs on two buildings with polyvinyl chloride membrane 'cool' roofs and solar panels. The new roofs saves $20,000 a year in energy costs. Built on the end of the Mokapu Peninsula on Oahu's northeast coast, the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay gets plenty of sunlight. But harnessing that sunlight to create renewable electricity was considered too expensive to be practical - until 2008. That's when MCBH took advantage of planned maintenance funding to help offset the high cost of installing photovoltaic panels on the base. As a military entity, MCBH can't directly take advantage of federal or state

239

Home Solar Installations: Things to Consider | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Solar Installations: Things to Consider Home Solar Installations: Things to Consider Home Solar Installations: Things to Consider May 29, 2013 - 3:18pm Addthis Home solar systems can save you energy and money. | Photo courtesy of Dennis Schroeder, NREL 22168. Home solar systems can save you energy and money. | Photo courtesy of Dennis Schroeder, NREL 22168. Erin Connealy Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Read these considerations for installing a home solar electric system to evaluate whether it is a good choice for your home. Well, it's that time of year! Days are getting longer and the weather is getting warmer. How can you take advantage of longer sunlight hours? Dinner on your porch might be one good solution, but an even better one might be

240

Defense Energy Support Center: Installation Energy Commodity Business Unit  

Energy.gov (U.S. Department of Energy (DOE))

Presentation—given at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meeting—discusses the Defense Energy Support Center's (DESC's) Installation Energy Commodity Business Unit (CBU) including its intent, commitment, pilot project, lessons learned, and impending barriers.

Note: This page contains sample records for the topic "world total installed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Microsoft Word - LSN_FiberInstall_CX.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- TEP-TPP-4 Proposed Action: Lightspeed Network's Fiber Installation near Pilot Butte Substation Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.7 Fiber...

242

Installing a Subsurface Drip Irrigation System for Row Crops  

E-Print Network (OSTI)

This publication describes the components of a subsurface drip irrigation system and the procedure for installing such a system. Each step is outlined and illustrated. Steps include tape injection, trenching, connecting drip lines, back-filling...

Enciso, Juan

2004-09-07T23:59:59.000Z

243

Video Installation Design: Appropriation and Assemblage As Projection Surface Geometry  

E-Print Network (OSTI)

This area of research focuses on the use of video projections in the context of fine art. Emphasis is placed on creating a unique video installation work that incorporates assemblage and appropriation as a means to develop multiple complex...

Weaver, Timothy A.

2010-07-14T23:59:59.000Z

244

North Shore Gas – Single Family Direct Install (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

Owners of single-family homes, condos, townhomes and two-flats may be eligible for a free installation of new programmable thermostats, pipe insulation, showerheads, and faucet aerators through...

245

Construction and installation of public comfort art : "Art as sanctuary"  

E-Print Network (OSTI)

This paper illustrates the construction and installation of a public piece of art, hidden within which is an enclosed and private meditation space. In making the piece, the artist was influenced by the works of others as ...

Longo, Sheila A. (Sheila Ann)

2005-01-01T23:59:59.000Z

246

Gamesa Installs 2-MW Wind Turbine at NWTC  

Energy.gov (U.S. Department of Energy (DOE))

In October, the Department of Energy (DOE) National Renewable Laboratory (NREL) worked with Gamesa Wind US to complete the installation of Gamesa's G97-2 MW Class IIIA turbine at NREL's National Wind Technology Center.

247

Capturing and Applying Lessons Learned During Engineering Equipment Installation  

Science Journals Connector (OSTI)

This paper describes the implementation of a knowledge management tool to capture and reuse the lessons learned from the installation of engineering equipment. It has been developed as an adjunct to an existin...

Ian Watson

2004-01-01T23:59:59.000Z

248

Capturing and Applying Lessons Learned During Engineering Equipment Installation  

Science Journals Connector (OSTI)

This paper describes the implementation of a knowledge management tool to capture and reuse the lessons learned from the installation of engineering equipment. It has been developed as an adjunct to an exist-i...

Ian Watson

2004-01-01T23:59:59.000Z

249

Consider Installing a Condensing Economizer | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a Condensing Economizer Consider Installing a Condensing Economizer This tip sheet summarizes the benefits of condensing economizers and is part of a series of tip sheets on how to...

250

Design and Installation of a Disposal Cell Cover Field Test ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

through March 3, 2011, Phoenix, Arizona. C.H. Benson, W.J. Waugh, W.H. Albright, G.M. Smith, R.P. Bush Design and Installation of a Disposal Cell Cover Field Test More Documents...

251

Vet's company installing solar across Massachusetts | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vet's company installing solar across Massachusetts Vet's company installing solar across Massachusetts Vet's company installing solar across Massachusetts February 25, 2010 - 4:09pm Addthis Dan Leary, a U.S. Army veteran, is president of Nexamp Inc., a clean energy company that specializes in solar installation. Dan founded the company in 2006 and has witnessed its impressive growth from six employees to 65 and counting as of July 2010. The small company recently reached a significant milestone - it was awarded one of the largest solar contracts in Massachusetts. Dan served in the military for seven years, reaching the rank of captain in the Army. He says his idea for a clean energy company came in 2005 when he was pursuing his M.B.A while serving in Kuwait. "For my final project, I wrote a business plan for a clean energy

252

Net Zero Energy Military Installations: A Guide to Assessment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

joint initiative to address military energy use by identifying specific actions to reduce energy demand and increase use of renewable energy on DoD installations. 48876.pdf More...

253

NETL - World CO2 Emissions - Projected Trends Tool | Open Energy  

Open Energy Info (EERE)

NETL - World CO2 Emissions - Projected Trends Tool NETL - World CO2 Emissions - Projected Trends Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NETL - World CO2 Emissions - Projected Trends Tool Agency/Company /Organization: National Energy Technology Laboratory Sector: Energy Topics: GHG inventory Resource Type: Software/modeling tools Website: www.netl.doe.gov/energy-analyses/refshelf/results.asp?ptype=Models/Too References: NETL - World CO2 Emissions - Projected Trends Tool [1] NETL - World CO2 Emissions - Projected Trends Tool This interactive tool enables the user to look at both total and power sector CO2 emissions from the use of coal, oil, or natural gas, over the period 1990 to 2030. One can use the tool to compare five of the larger CO2 emitters to each other or to overall world emissions. The data are from the

254

EIA - International Energy Outlook 2009-World Energy Demand and Economic  

Gasoline and Diesel Fuel Update (EIA)

World Energy and Economic Outlook World Energy and Economic Outlook International Energy Outlook 2009 Chapter 1 - World Energy Demand and Economic Outlook In the IEO2009 projections, total world consumption of marketed energy is projected to increase by 44 percent from 2006 to 2030. The largest projected increase in energy demand is for the non-OECD economies. Figure 10. World Marketed Energy Consumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 11. World Marketed Energy Consumption: OECD and Non-OECD, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 12. Marketed Energy Use by Region, 1990-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

255

EIA - International Energy Outlook 2007 - World Energy and Economic Outlook  

Gasoline and Diesel Fuel Update (EIA)

World Energy and Economic Outlook World Energy and Economic Outlook International Energy Outlook 2007 Chapter 1 - World Energy and Economic Outlook In the IEO2007 reference case, total world consumption of marketed energy is projected to increase by 57 percent from 2004 to 2030. The largest projected increase in energy demand is for the non-OECD region. Figure 8. World Marketed Energy Consumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 9. World Marketed Energy Use; OECD and Non-OECD, 2004-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 10. Marketed Energy Use in the NON-OECD Economies by Region, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

256

EIA - International Energy Outlook 2008-World Energy Demand and Economic  

Gasoline and Diesel Fuel Update (EIA)

World Energy and Economic Outlook World Energy and Economic Outlook International Energy Outlook 2008 Chapter 1 - World Energy Demand and Economic Outlook In the IEO2008 projections, total world consumption of marketed energy is projected to increase by 50 percent from 2005 to 2030. The largest projected increase in energy demand is for the non-OECD economies. Figure 9. World Marketed EnergyConsumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 10. World Marketed Energy Consumption: OECD and Non-OECD, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 11. Marketed Energy Use in the Non-OECD Economies by Region, 1990-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

257

Regional Shares of World Carbon Emissions, 1997 and 2020  

Gasoline and Diesel Fuel Update (EIA)

Shares of World Carbon Emissions, 1997 and 2020 Shares of World Carbon Emissions, 1997 and 2020 Source: EIA, International Energy Outlook 2000 Previous slide Back to first slide View graphic version Notes: By country, the world's dominant coal consumers-the United States and China-were also the top two contributors to world carbon emissions in 1997, at 24 percent and 13 percent of the world total, respectively. By 2020, however, the U.S. share of world carbon emissions is projected to decline to 20 percent, with China's share increasing to 21 percent. The substantial increase in carbon emissions in China over the period is attributable to expectations of strong economic growth and the country's continuing heavy reliance on fossil fuels, especially coal which remains the country's primary source of energy.

258

Installation of a high-precision Kirsten Hacker  

E-Print Network (OSTI)

Installation of a high-precision BPM in BC3 Kirsten Hacker 20-03-07 #12;BPM installed in BC2=T3*c dE/E=D/R16 EBPM T1 T2 T3 ~300mm 3um position resolution -> 1e-5 Energy resoution!!! BPM BPM #12;BPM for the Bunch Compressors beam stripline vacuumstripline vacuumStripline Vacuum Beam beam tapering

259

Total Marketed Production ..............  

Gasoline and Diesel Fuel Update (EIA)

billion cubic feet per day) billion cubic feet per day) Total Marketed Production .............. 68.95 69.77 70.45 71.64 71.91 71.70 71.46 71.57 72.61 72.68 72.41 72.62 70.21 71.66 72.58 Alaska ......................................... 1.04 0.91 0.79 0.96 1.00 0.85 0.77 0.93 0.97 0.83 0.75 0.91 0.93 0.88 0.87 Federal GOM (a) ......................... 3.93 3.64 3.44 3.82 3.83 3.77 3.73 3.50 3.71 3.67 3.63 3.46 3.71 3.70 3.62 Lower 48 States (excl GOM) ...... 63.97 65.21 66.21 66.86 67.08 67.08 66.96 67.14 67.92 68.18 68.02 68.24 65.58 67.07 68.09 Total Dry Gas Production .............. 65.46 66.21 66.69 67.79 68.03 67.83 67.61 67.71 68.69 68.76 68.50 68.70 66.55 67.79 68.66 Gross Imports ................................ 8.48 7.60 7.80 7.95 8.27 7.59 7.96 7.91 7.89 7.17 7.61 7.73 7.96 7.93 7.60 Pipeline ........................................

260

Secretary Chu's Remarks at the World Renewable Energy Forum Press  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chu's Remarks at the World Renewable Energy Forum Press Chu's Remarks at the World Renewable Energy Forum Press Availability - As Prepared for Delivery Secretary Chu's Remarks at the World Renewable Energy Forum Press Availability - As Prepared for Delivery May 16, 2012 - 12:45pm Addthis I want to thank Tom Clark from the Metro Denver Economic Development Corporation and Andrew Oliver from RES Americas for joining us. Renewable energy representatives from across the country are gathered in Denver this week because Colorado is helping to lead the way in clean energy. The state is among the leaders in installed solar capacity. It has had a renewable portfolio standard in place for many years. And it's a hub for clean energy manufacturers from GE to Vestas. Today, we want to talk about the importance of Congress taking action to

Note: This page contains sample records for the topic "world total installed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

262

GEAR Tech-21 Hello World  

E-Print Network (OSTI)

GEAR Tech-21 Hello World Throughout the activity, look for and record the definitions - Important Terms #12;GEAR Tech-21 Hello World Share what you did! What did you learn? Process what

Farritor, Shane

263

Our World Argonne's  

NLE Websites -- All DOE Office Websites (Extended Search)

At Argonne National Laboratory, we passionately pursue At Argonne National Laboratory, we passionately pursue energy-efficient technologies and renewable energy innovations that contribute to a better, cleaner future for all. Energy to Renew Our World Argonne's Research in Energy Efficiency and Renewable Energy As we begin our journey into the 21st century, the U.S. Department of Energy's (DOE) Argonne National Laboratory continues to make significant contributions to the nation's health and well being by delivering achievements in energy technology development and deployment. We are working toward technological

264

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

265

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

266

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

267

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

268

New England Breeze Solar and Wind Installers | Open Energy Information  

Open Energy Info (EERE)

Breeze Solar and Wind Installers Breeze Solar and Wind Installers Jump to: navigation, search Logo: New England Breeze Solar and Wind Installers Name New England Breeze Solar and Wind Installers Place Hudson, Massachusetts Zip 01749 Sector Renewable energy, Services, Solar, Wind energy Product Solar Panel and Wind Turbine Installation Year founded 2006 Number of employees 1-10 Phone number 978-567-9463 Website http://www.NewEnglandBreeze.co Coordinates 42.3917598°, -71.5661769° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3917598,"lon":-71.5661769,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

Stakeholder Engagement and Outreach: U.S. Installed Wind Capacity  

Wind Powering America (EERE)

Education Education Printable Version Bookmark and Share Learn About Wind About Wind Power Locating Wind Power Getting Wind Power Installed Wind Capacity Wind for Schools Project Collegiate Wind Competition School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Installed Wind Capacity This page has maps of the United States that show installed wind capacity by state and its progression. This map shows the installed wind capacity in megawatts. As of September 30, 2012, 51,630 MW have been installed. Alaska, 16 MW; Hawaii, 112 MW; Washington, 2,699 MW; Oregon, 3,153 MW; California, 4,570 MW; Nevada, 152; Idaho, 675 MW; Utah, 325 MW; Arizona, 238 MW; Montana, 395 MW; Wyoming, 1,410 MW; Colorado, 1,805 MW; New Mexico, 778 MW; North Dakota, 1,469 MW; South Dakota, 784 MW; Nebraska, 337 MW; Kansas, 1,877 MW; Oklahoma, 2,400 MW; Texas, 10,929 MW; Minnesota, 2,717 MW; Iowa, 4,536 MW; Missouri, 459 MW; Wisconsin, 636 MW; Illinois, 3,055 MW; Tennessee, 29 MW; Michigan, 515 MW; Indiana, 1,343 MW; Ohio, 420 MW; West Virginia, 583 MW; Pennsylvania, 1,029 MW; Maryland, 120 MW; Delaware, 2 MW; New Jersey, 9 MW; New York, 1,418 MW; Vermont, 46 MW; New Hampshire, 125 MW; Massachusetts, 64 MW; Rhode Island, 3 MW; Maine, 397 MW.

270

GEAR Tech-21 Hello World  

E-Print Network (OSTI)

GEAR Tech-21 Hello World 1 Established Goals Activity Outline Activity Timeline Equipment Needs and predictions that are based on data. At a Glance #12;GEAR Tech-21 Hello World 2 Key Knowledge and Skills;GEAR Tech-21 Hello World 3 Before the Session You must complete this activity before working with your

Farritor, Shane

271

First installation of an electrical submersible pump in a subsea well  

SciTech Connect

As offshore oil fields are being developed towards deeper and deeper waters, new technologies are required to curb capital expenditures. In Brazil, where oil consumption is increasing and huge oil fields lie in high water depths, the issue is particularly pressing. Earlier and higher oil production from those oil fields could be attained by the use of Electrical Submersible Pumps (ESP), so far restricted to dry completions. Also longer distances from well to platform would be made practical. For the initial phase of this development, Petrobras worked together with Tronic, Reda, Pirelli, Lasalle, Sade-Vigesa and Cooper. As a result, first-in-the-world ESP installation in a subsea well has been successfully achieved on October/1994 in RJS-221, located at Carapeba Field, Campos Basin, Brazil.

Mendonca, J.E.; Hodge, R.C.; Izetti, R. [Petrobras, Rio de Janeiro (Brazil); Nicholson, A.; Dwiggins, J.L.; Morrison, D.; Cia, M.; Alfano, P.P.

1995-12-31T23:59:59.000Z

272

Installing and Operating an Efficient Swimming Pool Pump | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Installing and Operating an Efficient Swimming Pool Pump Installing and Operating an Efficient Swimming Pool Pump Installing and Operating an Efficient Swimming Pool Pump May 29, 2012 - 7:54pm Addthis Photo courtesy iStockphoto.com Photo courtesy iStockphoto.com What does this mean for me? Use the smallest size pump possible for your swimming pool. Reduce the time your pool pump operates to save money while still keeping your pool clean. You can save energy and maintain a comfortable swimming pool temperature by using a smaller, higher efficiency pump and by operating it less. In a study of 120 pools by the Center for Energy Conservation at Florida Atlantic University, some pool owners saved as much as 75% of their original pumping bill when they used these energy conservation measures (see table below). Table 1. Savings from Pump Conservation Measures

273

Nevada manufacturer installing geothermal power plant | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant August 26, 2010 - 4:45pm Addthis Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Joshua DeLung Chemetall supplies materials for lithium-ion batteries for electric vehicles $28.4 million in Recovery Act funding going toward geothermal plant Plant expected to produce 4 MW of electrical power, employ 25 full-time workers Chemetall produces lithium carbonate to customers in a wide range of industries, including for batteries used in electric vehicles, and now the

274

Ohio Town Installing 'Green' Traffic Signals | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ohio Town Installing 'Green' Traffic Signals Ohio Town Installing 'Green' Traffic Signals Ohio Town Installing 'Green' Traffic Signals January 20, 2010 - 3:57pm Addthis Elyria, Ohio, is getting a little greener. Mayor William M. Grace recently confirmed that staff will replace traditional traffic lights with 288 energy-efficient LEDs (light-emitting diodes), saving the town energy and money. "We are definitely doing this, we are going to switch out all the traffic lights in town," Elyria's mayor says. Replacing light bulbs with LEDs will mean substantial savings. That's because these small, solid bulbs can last up to 10 times longer than traditional lights and require considerably less energy. "This gives us the opportunity to change, we expect to realize considerable savings," the mayor says.

275

NREL: Technology Transfer - White Earth Nation Installs Turbines: A Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

White Earth Nation Installs Turbines: A Wind Powering America Success Story White Earth Nation Installs Turbines: A Wind Powering America Success Story February 11, 2013 Almost 8 years after taking the initial steps to harness the wind, the White Earth Nation recently completed the installation of two small wind turbines that will help offset energy costs for Minnesota's largest and most populous Native American reservation. Mike Triplett, economic development planner with the White Earth Development Office, believes that the project represents a unique opportunity for tribal entities in the United States. He noted that tribes don't qualify for tax-based incentives. "And as for working with investors, we never found that to be a viable option," Triplett said. "So we've relied heavily on grants." Funded through nearly $1.8 million in congressional appropriations along

276

Install renewable energy systems | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Install renewable energy systems Install renewable energy systems Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager Save energy Stamp out energy waste Find cost-effective investments Engage occupants Purchase energy-saving products Put computers to sleep Get help from an expert Take a comprehensive approach Install renewable energy systems

277

Light weight underground pipe or cable installing device  

SciTech Connect

This invention pertains to a light weight underground pipe or cable installing device adapted for use in a narrow and deep operating trench. More particularly this underground pipe installing device employs a pair of laterally movable gates positioned adjacent the bottom of the operating trench where the earth is more solid to securely clamp the device in the operating trench to enable it to withstand the forces exerted as the actuating rod is forced through the earth from the so-called operating trench to the target trench. To accommodate the laterally movable gates positioned adjacent the bottom of the narrow pipe installing device, a pair of top operated double-acting rod clamping jaws, operated by a hydraulic cylinder positioned above the actuating rod are employed.

Schosek, W. O.

1985-01-08T23:59:59.000Z

278

Pasadena Water and Power - Solar Power Installation Rebate | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pasadena Water and Power - Solar Power Installation Rebate Pasadena Water and Power - Solar Power Installation Rebate Pasadena Water and Power - Solar Power Installation Rebate < Back Eligibility Commercial Institutional Local Government Nonprofit Residential State Government Savings Category Solar Buying & Making Electricity Program Info State California Program Type Utility Rebate Program Rebate Amount Systems up to 30 kW have the option of receiving an expected performance based buydown (EPBB) or a performance based incentive (PBI). Systems larger than 30 kW are only eligible for the PBI. EPBB (effective 6/1/12): Residential: $1.40/watt AC Commercial and all PPAs: $0.85/watt AC Non-profits and Government: $1.60/watt AC Income-qualified residential: $4.00/watt PBI (effective 6/1/12): Residential: $0.212/kWh Commercial and all PPAs: $0.129/kWh

279

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... havior of the ratio of total quanta to total energy (Q : W) within the spectral region of photosynthetic ..... For blue-green waters, where hRmax lies.

2000-01-02T23:59:59.000Z

280

Estimates of energy consumption by building type and end use at U.S. Army installations  

SciTech Connect

This report discusses the use of LBNL`s End-use Disaggregation Alogrithm (EDA) to 12 US Army installations nationwide in order to obtain annual estimates of electricity use for all major building types and end uses. The building types include barrack, dining hall, gymnasium, administration, vehicle maintenance, hospital, residential, warehouse, and misc. Up to 8 electric end uses for each type were considered: space cooling, ventilation (air handling units, fans, chilled and hot water pumps), cooking, misc./plugs, refrigeration, exterior and interior lighting, and process loads. Through building simulations, we also obtained estimates of natural gas space heating energy use. Average electricity use for these 12 installations and Fort Hood are: HVAC, misc., and indoor lighting end uses consumed the most electricity (28, 27, and 26% of total[3.8, 3.5, and 3.3 kWh/ft{sup 2}]). Refrigeration, street lighting, exterior lighting, and cooking consumed 7, 7, 3, and 2% of total (0.9, 0.9, 0.4, and 0.3 kWh/ft{sup 2})

Konopacki, S.J.; Akbari, H.

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "world total installed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

A Creepy World  

E-Print Network (OSTI)

Using the mechanics of creep in material sciences as a metaphor, we present a general framework to understand the evolution of financial, economic and social systems and to construct scenarios for the future. In a nutshell, highly non-linear out-of-equilibrium systems subjected to exogenous perturbations tend to exhibit a long phase of slow apparent stable evolution, which are nothing but slow maturations towards instabilities, failures and changes of regimes. With examples from history where a small event had a cataclysmic consequence, we propose a novel view of the current state of the world via the logical scenarios that derive, avoiding the traps of an illusionary stability and simple linear extrapolation. The endogenous scenarios are "muddling along", "managing through" and "blood red abyss". The exogenous scenarios are "painful adjustment" and "golden east".

Sornette, Didier

2014-01-01T23:59:59.000Z

282

World nuclear outlook 1995  

SciTech Connect

As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed for the Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries.

NONE

1995-09-29T23:59:59.000Z

283

RFAR installation for Buildings 703, 712, 747, 748 and 1163  

SciTech Connect

This document is to certify the installation and testing of the Radio Fire Alarm Reporting box (RFAR). The Hanford Fire Dept. will be notified of troubles via RFAR. The document outlines prerequisites, necessary equipment, and the fire alarm system test to insure the system is operating correctly.

Ferry, M.

1995-12-31T23:59:59.000Z

284

Sun N1 Grid Engine 6.1 Installation Guide  

E-Print Network (OSTI)

Sun N1 Grid Engine 6.1 Installation Guide Sun Microsystems, Inc. 4150 Network Circle Santa Clara, CA 95054 U.S.A. Part No: 820­0697 May 2007 #12;Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved. Sun Microsystems, Inc. has intellectual

285

Decidability Results for Dynamic Installation of Compensation Handlers  

E-Print Network (OSTI)

that in a simple -like calculus with static compen- sations the termination of a process is decidable Zavattaro Focus Team, University of Bologna & INRIA, Italy Abstract. Dynamic compensation installation compensations, showing that process termination is decidable for parallel and replacing compensations while

Paris-Sud XI, Université de

286

Evaluation of Trenchless Installation Technology for Radioactive Wastewater Piping Applications  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Environmental Management (EM) cleanup mission at Oak Ridge National Laboratory (ORNL) includes dispositioning facilities, contaminated legacy materials/waste, and contamination sources and remediation of soil under facilities, groundwater, and surface water to support final Records of Decision (RODs). The Integrated Facilities Disposition Project (IFDP) is a roughly $15B project for completion of the EM mission at Oak Ridge, with a project duration of up to 35 years. The IFDP Mission Need Statement - Critical Decision-0 (CD-0) - was approved by DOE in July 2007, and the IFDP Alternative Selection and Cost Range - Critical Decision-1 (CD-1) - was approved in November 2008. The IFDP scope includes reconfiguration of waste collection and treatment systems as needed to complete the IFDP remediation and decontamination and decommissioning (D&D) missions in a safe and cost-effective manner while maintaining compliance with all governing regulations and bodies and preserving the support of continuing operations at ORNL. A step in the CD-1 approval process included an external technical review (ETR) of technical approaches proposed in the CD-1 document related to the facility reconfiguration for the ORNL radioactive waste and liquid low-level waste management systems. The ETR team recommended that the IFDP team consider the use of trenchless technologies for installing pipelines underground in and around contaminated sites as part of the alternatives evaluations required in support of the CD-2 process. The team specifically recommended evaluating trenchless technologies for installing new pipes in existing underground pipelines as an alternative to conventional open trench installation methods. Potential benefits could include reduction in project costs, less costly underground piping, fewer disruptions of ongoing and surface activities, and lower risk for workers. While trenchless technologies have been used extensively in the sanitary sewer and natural gas pipeline industries, they have been used far less in contaminated environments. Although trenchless technologies have been used at ORNL in limited applications to install new potable water and gas lines, the technologies have not been used in radioactive applications. This study evaluates the technical risks, benefits, and economics for installing gravity drained and pressurized piping using trenchless technologies compared to conventional installation methods for radioactive applications under ORNL geological conditions. A range of trenchless installation technologies was reviewed for this report for general applicability for replacing existing contaminated piping and/or installing new pipelines in potentially contaminated areas. Installation methods that were determined to have potential for use in typical ORNL contaminated environments were then evaluated in more detail for three specific ORNL applications. Each feasible alternative was evaluated against the baseline conventional open trench installation method using weighted criteria in the areas of environment, safety, and health (ES&H); project cost and schedule; and technical operability. The formulation of alternatives for evaluation, the development of selection criteria, and the scoring of alternatives were performed by ORNL staff with input from vendors and consultants. A description of the evaluation methodology and the evaluation results are documented in the following sections of this report.

Robinson, Sharon M [ORNL; Jubin, Robert Thomas [ORNL; Patton, Bradley D [ORNL; Sullivan, Nicholas M [ORNL; Bugbee, Kathy P [ORNL

2009-09-01T23:59:59.000Z

287

Electricity production and cooling energy savings from installation of a  

NLE Websites -- All DOE Office Websites (Extended Search)

production and cooling energy savings from installation of a production and cooling energy savings from installation of a building-integrated photovoltaic roof on an office building Title Electricity production and cooling energy savings from installation of a building-integrated photovoltaic roof on an office building Publication Type Journal Article Year of Publication 2013 Authors Ban-Weiss, George, Craig P. Wray, William W. Delp, Peter Ly, Hashem Akbari, and Ronnen M. Levinson Journal Energy and Buildings Volume 56 Pagination 210 - 220 ISSN 0378-7788 Keywords Advanced Technology Demonstration, building design, Building heat transfer, cool roof, energy efficiency, Energy Performance of Buildings, energy savings, Energy Usage, energy use, Heat Island Abstract Reflective roofs can reduce demand for air conditioning and warming of the atmosphere. Roofs can also host photovoltaic (PV) modules that convert sunlight to electricity. In this study we assess the effects of installing a building integrated photovoltaic (BIPV) roof on an office building in Yuma, AZ. The system consists of thin film PV laminated to a white membrane, which lies above a layer of insulation. The solar absorptance of the roof decreased to 0.38 from 0.75 after installation of the BIPV, lowering summertime daily mean roof upper surface temperatures by about 5 °C. Summertime daily heat influx through the roof deck fell to ±0.1 kWh/m2from 0.3-1.0 kWh/m2. However, summertime daily heat flux from the ventilated attic into the conditioned space was minimally affected by the BIPV, suggesting that the roof was decoupled from the conditioned space. Daily PV energy production was about 25% of building electrical energy use in the summer. For this building the primary benefit of the BIPV appeared to be its capacity to generate electricity and not its ability to reduce heat flows into the building. Building energy simulations were used to estimate the cooling energy savings and heating energy penalties for more typical buildings.

288

FORSCOM installation characterization and ranking for water efficiency improvement  

SciTech Connect

On March 11, 1994, President Clinton signed Executive Order 12902-Energy Efficiency and Water Conservation at Federal Facilities. Section 302 of the Executive Order calls for energy and water prioritization surveys of federal facilities to be conducted. The surveys will be used to establish priorities for conducting comprehensive facility audits. In response to the requirements of the Executive Order, the U.S. Army Forces Command (FORSCOM) has tasked Pacific Northwest Laboratory (PNL) to initiate a broad study of the water savings potential at each of its major installations. This report provides an assessment of the water, sewer, energy (for hot water production and pumping), and associated cost savings potential at ten of the major FORSCOM installations. This assessment is meant to be a {open_quotes}first pass{close_quotes} estimate of the water savings potential, to assist FORSCOM in prioritizing installations for detailed water audits and potential water efficient retrofits. In addition, the end uses (toilets, sinks, showerheads, irrigation, etc.) with the greatest water savings potential are identified at each installation. This report is organized in the following manner. Following this Introduction, Section 2 provides important background information pertaining to the water analysis. Section 3 describes the methodology employed in the analysis, and Section 4 summarizes the study results. Section 5 prioritizes the installations based on both water/sewer savings and cost associated with water, sewer, and energy savings. Section 6 provides recommendations on where to start detailed water audits, as well as other recommendations. References are listed in Section 7. The appendices provide specific information on the analysis results and methodology, along with a discussion of special issues.

Fitzpatrick, Q.K.; McMordie, K.L.; Di Massa, F.V. [and others

1995-05-01T23:59:59.000Z

289

the World Wide Web  

Office of Scientific and Technical Information (OSTI)

technical report has been made technical report has been made electronically available on the World Wide Web through a contribution from Walter L. Warnick In honor of Enrico Fermi Leader of the first nuclear reactor, Nobel Prize winner, and visionary technologist Dr. Warnick is delighted to be the first sponsor for posting a Department of Energy technical report and making it broadly available Office of Scientific and Technical Information Office of Science U.S. Department of Energy September 2008 osti.gov U N I T E D S T A T E S A T O M I C E N E R G Y C O M M I S S I O N AECD-3269 EXPERIMENTAL PRODUCTION OF A DNERGENT CHAIN REACTION BY E. Fermi January 4, 1952 [TIS Issuance ate] [chicago University] - T e c h n i c a l I n f o r m a t i o n S e r v i c e , O a k Ridge, T e n n e s s e e r ABSTRACTS Description of the construction and operation of the chain

290

EA-1655: Berkeley Lab Laser Accelerator (BELLA) Laser Acquisition, Installation and Use for Research and Development  

Energy.gov (U.S. Department of Energy (DOE))

Berkeley Lab Laser Accelerator (BELLA) Laser Acquisition, Installation and Use for Research and Development

291

Building a World of Difference  

Energy.gov (U.S. Department of Energy (DOE))

Waste?to?Energy Roadmapping Workshop Building a World of Difference Presentation by Patricia Scanlan, Director of Residuals Treatment Technologies, Black & Veatch

292

NETL's New Supercomputer Ranks Among the World's Top 100 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NETL's New Supercomputer Ranks Among the World's Top 100 NETL's New Supercomputer Ranks Among the World's Top 100 NETL's New Supercomputer Ranks Among the World's Top 100 January 15, 2013 - 12:00pm Addthis Washington, DC - One of the world's fastest, most energy-efficient supercomputers - expected to help energy researchers discover new materials, optimize designs and better predict operational characteristics - is up and running at the Office of Fossil Energy's National Energy Technology Laboratory (NETL) in Morgantown, W.Va. NETL's new supercomputer, installed at the Simulation-Based Engineering User Center, is a powerful and energy-efficient modeling tool. The High-Performance Computer for Energy and the Environment (HPCEE) is not only on the TOP500 list as one of the top 100 supercomputers in the world--currently ranked at 55--but it is also one of the most energy

293

Mujeres Hombres Total Hombres Total 16 5 21 0 10  

E-Print Network (OSTI)

Julio de 2011 Tipo de Discapacidad Sexo CENTRO 5-Distribución del estudiantado con discapacidad por centro, tipo de discapacidad, sexo y totales. #12;

Autonoma de Madrid, Universidad

294

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... ment of the total energy and vice versa. From a measurement of spectral irradi- ance ... unit energy (for the wavelength region specified).

2000-01-02T23:59:59.000Z

295

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

49.2 49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat Pump................................ 53.5 3.5 12.9 12.7 8.6 5.5 4.2 6.2 With a Heat Pump..................................... 12.3 0.4 2.2 2.9 2.5 1.5 1.0 1.8 Window/Wall Units........................................ 28.9 27.5 0.5 Q 0.3 Q Q Q 1 Unit......................................................... 14.5 13.5 0.3 Q Q Q N Q 2 Units.......................................................

296

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0 For One Housing Unit................................... 42.9 1.5 Q 3.1 6.0 For Two Housing Units................................. 1.8 Q N Q Q Steam or Hot Water System............................. 8.2 1.9 Q Q 0.2 For One Housing Unit................................... 5.1 0.8 Q N Q For Two Housing Units.................................

297

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing Unit................................... 42.9 15.5 11.0 4.5 For Two Housing Units................................. 1.8 0.7 0.6 Q Steam or Hot Water System............................. 8.2 1.6 1.2 0.4 For One Housing Unit................................... 5.1 1.1 0.9 Q For Two Housing Units.................................

298

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump........................................... 53.5 8.7 3.2 5.5 With a Heat Pump............................................... 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit................................................................... 14.5 2.9 0.5 2.4 2 Units.................................................................

299

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

300

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Personal Computers Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.0 2.6 1.0 1.3 2 to 15 Hours............................................................. 29.1 10.3 5.9 1.6 2.9 16 to 40 Hours........................................................... 13.5 4.1 2.3 0.6 1.2 41 to 167 Hours.........................................................

Note: This page contains sample records for the topic "world total installed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

,171 ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269 999 775 510 West North Central................................. 7.9 2,281 1,930 1,566 940 796 646 South.......................................................... 40.7 2,161 1,551 1,295 856 615 513 South Atlantic......................................... 21.7 2,243 1,607 1,359 896 642 543 East South Central.................................

302

Total.........................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

..... ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less than 2 Hours......................................................... 13.6 0.7 0.9 0.9 1.4 2 to 15 Hours................................................................. 29.1 1.7 2.1 1.9 3.4 16 to 40 Hours............................................................... 13.5 0.9 0.9 0.9 1.8 41 to 167 Hours.............................................................

303

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a Week....................................... 4.1 0.7 0.3 0.4 No Hot Meals Cooked........................................... 0.9 0.2 Q Q Conventional Oven Use an Oven......................................................... 109.6 23.7 7.5 16.2 More Than Once a Day..................................... 8.9 1.7 0.4 1.3 Once a Day.......................................................

304

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump.............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................... 12.3 9.0 6.7 1.4 0.9 Window/Wall Units..................................................... 28.9 8.0 3.4 1.7 2.9 1 Unit......................................................................

305

Total....................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5 Persons......................................................... 7.9 0.8 0.4 1.0 1.1 1.2 1.1 1.5 0.9 6 or More Persons........................................... 4.1 0.5 0.3 0.3 0.6 0.5 0.7 0.8 0.4 2005 Annual Household Income Category Less than $9,999............................................. 9.9 1.9 1.1 1.3 0.9 1.7 1.3 1.1 0.5 $10,000 to $14,999..........................................

306

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.4 3.4 5.0 2.9 2 to 15 Hours............................................................. 29.1 5.2 7.0 10.3 6.6 16 to 40 Hours........................................................... 13.5 3.1 2.8 4.1 3.4 41 to 167 Hours.........................................................

307

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.9 0.9 2.0 2 to 15 Hours............................................................. 29.1 6.6 2.0 4.6 16 to 40 Hours........................................................... 13.5 3.4 0.9 2.5 41 to 167 Hours......................................................... 6.3

308

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

33.0 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump.................................. 53.5 12.4 3.1 1.3 1.8 5.7 0.6 With a Heat Pump....................................... 12.3 1.7 0.6 Q 0.3 0.6 Q Window/Wall Units....................................... 28.9 12.4 2.9 1.0 2.5 5.6 0.4 1 Unit.......................................................... 14.5 7.3 1.2 0.5 1.4 3.9 0.2 2 Units.........................................................

309

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week..................................................... 3.9 1.7 0.6 0.9 0.8 Less Than Once a Week.............................................. 4.1 2.2 0.6 0.8 0.5 No Hot Meals Cooked................................................... 0.9 0.4 Q Q Q Conventional Oven Use an Oven................................................................. 109.6 46.2 18.8

310

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

311

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat Pump............................................. 53.5 16.2 10.6 5.6 With a Heat Pump................................................. 12.3 1.1 0.8 0.4 Window/Wall Units.................................................. 28.9 6.6 4.9 1.7 1 Unit..................................................................... 14.5 4.1 2.9 1.2 2 Units...................................................................

312

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump.............................................. 53.5 5.5 16.2 23.2 8.7 With a Heat Pump................................................... 12.3 0.5 1.1 9.0 1.7 Window/Wall Units..................................................... 28.9 10.7 6.6 8.0 3.6 1 Unit......................................................................

313

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 3.4 2.5 0.9 2 to 15 Hours............................................................. 29.1 7.0 4.8 2.3 16 to 40 Hours........................................................... 13.5 2.8 2.1 0.7 41 to 167 Hours......................................................... 6.3

314

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.2 15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing Unit.............................. 3.3 2.9 Q Q Q N For Two Housing Units............................. 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace........................... 2.8 2.4 Q Q Q 0.2 Other Equipment......................................... 0.3 0.2 Q N Q N Wood..............................................................

315

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................. Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units...................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit....................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units.....................................................

316

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a Week....................................... 4.1 1.1 0.7 0.4 No Hot Meals Cooked........................................... 0.9 Q Q N Conventional Oven Use an Oven......................................................... 109.6 25.3 17.6 7.7 More Than Once a Day..................................... 8.9 1.3 0.8 0.5 Once a Day.......................................................

317

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2 1.3 1.2 5.0 0.3 1.1 Number of Laptop PCs 1.......................................................... 22.5 2.2 4.6 4.5 2.9 8.3 1.4 4.0 2.......................................................... 4.0 Q 0.4 0.6 0.4 2.4 Q 0.5 3 or More............................................. 0.7 Q Q Q Q 0.4 Q Q Type of Monitor Used on Most-Used PC Desk-top

318

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs 1.......................................................... 22.5 4.7 4.6 7.7 5.4 2.......................................................... 4.0 0.6 0.9 1.5 1.1 3 or More............................................. 0.7 Q Q Q 0.3 Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 7.9 11.4 15.4 10.2 Flat-panel LCD.................................

319

Total................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central Warm-Air Furnace........................ 44.7 7.5 10.8 9.3 5.6 11.4 4.6 12.0 For One Housing Unit........................... 42.9 6.9 10.3 9.1 5.4 11.3 4.1 11.0 For Two Housing Units......................... 1.8 0.6 0.6 Q Q Q 0.4 0.9 Steam or Hot Water System..................... 8.2 2.4 2.5 1.0 1.0 1.3 1.5 3.6 For One Housing Unit...........................

320

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

Note: This page contains sample records for the topic "world total installed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1 16.2 11.0 11.4 For One Housing Unit................................... 42.9 5.6 15.5 10.7 11.1 For Two Housing Units................................. 1.8 0.5 0.7 Q 0.3 Steam or Hot Water System............................. 8.2 4.9 1.6 1.0 0.6 For One Housing Unit................................... 5.1 3.2 1.1 0.4

322

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.6 0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat Pump........................................... 53.5 5.5 4.8 0.7 With a Heat Pump............................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................. 28.9 10.7 7.6 3.1 1 Unit................................................................... 14.5 4.3 2.9 1.4 2 Units.................................................................

323

Total.......................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs 1.................................................................. 22.5 5.4 1.5 3.9 2.................................................................. 4.0 1.1 0.3 0.8 3 or More..................................................... 0.7 0.3 Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)...........................

324

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.7 1.8 2.9 3.2 2 to 15 Hours............................................................. 29.1 11.9 5.1 6.5 5.7 16 to 40 Hours........................................................... 13.5 5.5 2.5 3.3 2.2 41 to 167 Hours.........................................................

325

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7 19.8 8.6 12.8 3.6 For One Housing Unit................................... 42.9 18.8 8.3 12.3 3.5 For Two Housing Units................................. 1.8 1.0 0.3 0.4 Q Steam or Hot Water System............................. 8.2 4.4 2.1 1.4 0.3 For One Housing Unit................................... 5.1 2.1 1.6 1.0

326

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.1 15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing Unit................................... 42.9 5.6 4.9 0.7 For Two Housing Units................................. 1.8 0.5 0.4 Q Steam or Hot Water System............................. 8.2 4.9 3.6 1.3 For One Housing Unit................................... 5.1 3.2 2.2 1.0 For Two Housing Units.................................

327

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.7 0.5 0.2 Million U.S. Housing Units Home Electronics Usage Indicators Table HC12.12 Home Electronics Usage Indicators by Midwest Census Region,...

328

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 1.8 1.2 0.5 Table HC11.10 Home Appliances Usage Indicators by Northeast Census Region, 2005 Million U.S. Housing Units Home Appliances...

329

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 2.8 1.1 0.7 Q 0.4 Million U.S. Housing Units Home Electronics Usage Indicators Table HC13.12 Home Electronics Usage Indicators by South Census Region,...

330

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 3.1 1.0 2.2 Table HC14.10 Home Appliances Usage Indicators by West Census Region, 2005 Million U.S. Housing Units Home Appliances...

331

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

States New York Florida Texas California Million U.S. Housing Units Home Electronics Usage Indicators Table HC15.12 Home Electronics Usage Indicators by Four Most Populated...

332

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 2.7 3.5 2.2 1.3 3.5 1.3 3.8 Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line Eligible for Federal...

333

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 13.2 3.4 2.0 1.4 Table HC12.10 Home Appliances Usage Indicators by Midwest Census Region, 2005 Million U.S. Housing Units Home Appliances...

334

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Census Region Northeast Midwest South West Million U.S. Housing Units Home Electronics Usage Indicators Table HC10.12 Home Electronics Usage Indicators by U.S. Census Region, 2005...

335

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(as Self-Reported) City Town Suburbs Rural Million U.S. Housing Units Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location,...

336

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 4.4 2.5 3.0 3.4 Table HC8.10 Home Appliances Usage Indicators by UrbanRural Location, 2005 Million U.S. Housing Units UrbanRural...

337

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.6 Q 0.5 Million U.S. Housing Units Home Electronics Usage Indicators Table HC14.12 Home Electronics Usage Indicators by West Census Region, 2005...

338

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 13.2 4.9 2.3 1.1 1.5 Table HC13.10 Home Appliances Usage Indicators by South Census Region, 2005 Million U.S. Housing Units South Census Region...

339

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 51.9 7.0 4.8 2.2 Not Asked (Mobile Homes or Apartment in Buildings with 5 or More Units)... 23.7...

340

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

Housing Units Living Space Characteristics Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Single-Family Units Detached...

Note: This page contains sample records for the topic "world total installed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment... 1.2 Q Q N Q Have Main Space Heating Equipment... 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating...

342

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

343

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

344

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a Week....................................... 4.1 0.6 0.4 Q No Hot Meals Cooked........................................... 0.9 0.3 Q Q Conventional Oven Use an Oven......................................................... 109.6 20.3 14.9 5.4 More Than Once a Day..................................... 8.9 1.4 1.2 0.3 Once a Day.......................................................

345

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

47.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs 1.......................................................... 22.5 9.1 3.6 6.0 3.8 2.......................................................... 4.0 1.5 0.6 1.3 0.7 3 or More............................................. 0.7 0.3 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 17.7 7.5 10.2 9.6 Flat-panel LCD.................................

346

Total........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351 West North Central........................... 7.9 1.4 913 789 329 751 745 337 South................................................... 40.7 7.8 881 752 572 942 873 797 South Atlantic................................... 21.7 4.9 875 707 522 1,035 934 926 East South Central........................... 6.9 0.7 Q Q Q 852 826 432 West South Central..........................

347

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs 1.......................................................... 22.5 7.7 4.3 1.1 2.4 2.......................................................... 4.0 1.5 0.9 Q 0.4 3 or More............................................. 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 15.4 7.9 2.8 4.8 Flat-panel LCD.................................

348

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1 0.6 0.5 0.6 0.4 1.4 Less Than Once a Week............................ 4.1 1.3 1.0 0.9 0.5 0.4 0.7 1.4 No Hot Meals Cooked................................ 0.9 0.5 Q Q Q Q 0.2 0.5 Conventional Oven Use an Oven.............................................. 109.6 26.1 28.5 20.2 12.9 21.8 16.3 37.8 More Than Once a Day..........................

349

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump.................................. 53.5 3.6 2.3 5.5 5.8 9.5 10.1 10.3 6.4 With a Heat Pump....................................... 12.3 Q 0.3 0.6 1.0 1.7 3.1 3.6 1.7 Window/Wall Units....................................... 28.9 7.3 3.2 4.5 3.7 4.8 3.0 1.9 0.7 1 Unit..........................................................

350

Total..............................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North Central.................. 17.7 14.5 2,864 2,217 1,490 2,514 1,715 1,408 907 839 553 West North Central................. 7.9 6.4 2,729 2,289 1,924 1,806 1,510 1,085 1,299 1,113 1,059 South.......................................... 40.7 33.0 2,707 1,849 1,563 1,605 1,350 954 1,064 970 685 South Atlantic......................... 21.7 16.8 2,945 1,996 1,695 1,573 1,359 909 1,044 955

351

Total.................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

... ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat Pump.............................................. 53.5 5.5 4.8 0.7 With a Heat Pump................................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................... 28.9 10.7 7.6 3.1 1 Unit.......................................................................

352

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump............................................. 53.5 21.2 9.7 13.7 8.9 With a Heat Pump................................................. 12.3 4.6 1.2 2.8 3.6 Window/Wall Units.................................................. 28.9 13.4 5.6 3.9 6.1 1 Unit.....................................................................

353

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump............................................. 53.5 8.7 3.2 5.5 With a Heat Pump................................................. 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit..................................................................... 14.5 2.9 0.5 2.4 2 Units...................................................................

354

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

78.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat Pump.................................. 53.5 41.1 34.8 2.1 0.5 1.2 2.6 With a Heat Pump....................................... 12.3 10.6 9.1 0.4 Q 0.3 0.6 Window/Wall Units....................................... 28.9 16.5 12.0 1.3 1.0 0.4 1.7 1 Unit.......................................................... 14.5 7.2 5.4 0.5 0.2 Q 0.9 2 Units.........................................................

355

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................. 12.3 9.0 6.7 1.4 0.9 Window/Wall Units.................................................. 28.9 8.0 3.4 1.7 2.9 1 Unit.....................................................................

356

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One Housing Unit................................... 42.9 11.1 3.8 7.3 For Two Housing Units................................. 1.8 0.3 Q Q Steam or Hot Water System............................. 8.2 0.6 0.3 0.3 For One Housing Unit................................... 5.1 0.4 0.2 0.1 For Two Housing Units.................................

357

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................ Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit...................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units....................................................

358

Idle Operating Total Stream Day  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 11 10 1 1,293,200 1,265,200 28,000 1,361,700 1,329,700 32,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0 ................................................................................................................................................................................................................................................................................................ Delaware......................................

359

Liberty in the Modern World  

Science Journals Connector (OSTI)

... and the main interest of the book to the scientist lies in the interpretation of liberty and its significance in the world to-day, given by a cultured legal mind. ... day, given by a cultured legal mind. In addresses on sources of tolerance, on liberty, on the contribution of an independent judiciary and on the debt of the world ...

R. BRIGHTMAN

1955-09-17T23:59:59.000Z

360

The visually pervasive augmented world  

Science Journals Connector (OSTI)

In this paper, we describe several existing Augmented Reality projects that illustrate critical yet currently disparate applications of Augmented Reality. This paper then describes a partially implemented system (the Visually Pervasive Augmented World) ... Keywords: augmented world, mobile services, ubiquitous computing, user creativity

Paul Sassaman; Eric Becker; Fillia Makedon

2013-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "world total installed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

WORLD PRODUCTION AND TRADE IN  

E-Print Network (OSTI)

WORLD PRODUCTION AND TRADE IN FISH MEAL AND OIL UNITED STATES DEPARTMENT OF THE INTERIOR · FISH ON OF FISH MEAL AND OIL , ESPECIALLY DUR ING 1953 TO 1959, THE PRI NC IPAL MARKET S FOR THE PRODUCTS- DICATE WHAT IS INCLUDED BESIDES FISHMEAL AND FISH BODY OIL. #12;WORLD PRODUCTION AND TRADE IN FISH MEAL

362

Pantex installs new high explosives equipment | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

high explosives equipment | National Nuclear Security high explosives equipment | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Pantex installs new high explosives equipment Pantex installs new high explosives equipment Posted By Office of Public Affairs Joel Ramos works with the lathe. Big jobs are nothing new for the Projects Division at Pantex, and the

363

Microsoft Word - Final_NineCanyon_CommunicationTowerInstall_CX  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2013 1, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Kelly Gardner, PMP Project Manager, TEP-TPP-1 Proposed Action: Nine Canyon Substation Communication Tower Addition: 331800 McNary Sub Bus Tie Relay Replacements and 310427 McNary-Badger Canyon Transfer Trip Install Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6 - Additions and modifications to transmission facilities Location: Kennewick, Benton County, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to install a 60-foot communications tower and associated communication equipment at the Benton County Public Utility District's Nine Canyon Substation in Benton County, Washington. The upgrade would involve replacing the

364

Pantex installs new high explosives equipment | National Nuclear Security  

National Nuclear Security Administration (NNSA)

high explosives equipment | National Nuclear Security high explosives equipment | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Pantex installs new high explosives equipment Pantex installs new high explosives equipment Posted By Office of Public Affairs Joel Ramos works with the lathe. Big jobs are nothing new for the Projects Division at Pantex, and the

365

Idaho National Engineering Laboratory installation roadmap document. Revision 1  

SciTech Connect

The roadmapping process was initiated by the US Department of Energy`s office of Environmental Restoration and Waste Management (EM) to improve its Five-Year Plan and budget allocation process. Roadmap documents will provide the technical baseline for this planning process and help EM develop more effective strategies and program plans for achieving its long-term goals. This document is a composite of roadmap assumptions and issues developed for the Idaho National Engineering Laboratory (INEL) by US Department of Energy Idaho Field Office and subcontractor personnel. The installation roadmap discusses activities, issues, and installation commitments that affect waste management and environmental restoration activities at the INEL. The High-Level Waste, Land Disposal Restriction, and Environmental Restoration Roadmaps are also included.

Not Available

1993-05-30T23:59:59.000Z

366

Safety assessment of discharge chute isolation barrier preparation and installation  

SciTech Connect

This analysis examines activities associated with the installation of isolation barriers in the K Basins at the Hanford Reservation. This revision adds evaluation of barrier drops on stored fuel and basin floor, identifies fuel which will be moved and addresses criticality issues with sludge. The safety assessment is made for the activities for the preparation and installation of the discharge chute isolation barriers. The safety assessment includes a hazard assessment and comparisons of potential accidents/events to those addressed by the current safety basis documentation. No significant hazards were identified. An evaluation against the USQ evaluation questions was made and the determination made that the activities do not represent a USQ. Hazard categorization techniques were used to provide a basis for readiness review classifications.

Meichle, R.H.

1994-10-21T23:59:59.000Z

367

Site selection for the installation of autonomous desalination systems (ADS)  

Science Journals Connector (OSTI)

The geographic location of a final site where an ADS unit can be installed has a strong influence on the success of that project. If the desalination unit is not located in the most favorable position, the competitive advantages of the process can be wiped out. Considerable care must be exercised in selecting the unit site, and many different factors must be considered. The aim of this work is to present amethodology to identify and select themost favorable sites to install ADS units. Collection of the basic data and evaluation are the essential steps for the identification of sites. The favorable sites can be screened based on the criteria developed in this work for the purpose of selecting the best apparent site. Scoring of the various criteria, when combined with the weighting system, establishes an overall ranked score for each site. A detailed description of the selection methodology will be presented.

F. Banat; V. Subiela; H. Qiblawey

2007-01-01T23:59:59.000Z

368

Interface and installation guide: SAFT-UT utilities  

SciTech Connect

This document is one in a set of three reference documents pertaining to the SAFT-UT Utilities. The GUIDE TO SAFT-UT PRINCIPLES AND CONVENTIONS provides the user with an overall background for practical implementation of SAFT-UT and the associated software utilities. The REFERENCE MANUAL describes in detail each utility available to the user. This document, the INTERFACE AND INSTALLATION GUIDE, describes the steps necessary to install the SAFT utilities and Real-Time Processor on a VAX class computer running the VMS operating system. It also describes in detail the method for adaptation of user data files and the user's data collection system to the SAFT-UT Utility set.

Hall, T.E.

1987-10-01T23:59:59.000Z

369

New BPM installed in BC2 Jan Hauschildt  

E-Print Network (OSTI)

New BPM installed in BC2 Compact! Thanks to: Jan Hauschildt Dirk Noelle Silke Vilcins Holger 30 40 time (ns) Volts chicane BPM scope traces for 12-16 MV/m gradient Scope in tunnel ~ 150 um resolution => 5*10-4 resolution #12;-20 -15 -10 -5 0 0.9 1 1.1 1.2 1.3 1.4 1.5 BPM slope phase (deg

370

Open PV Project: Unlocking PV Installation Data (Brochure)  

SciTech Connect

This brochure summarizes the Open PV Project, a collaborative effort of government, industry, and the public to compile a comprehensive database of PV installations in the United States. The brochure outlines the purpose and history of the project as well as the main capabilities and benefits of the online Open PV tool. The brochure also introduces how features of the tool are used, and it describes the sources and characteristics of Open PV's data and data collection processes.

Not Available

2012-04-01T23:59:59.000Z

371

CSP'960H/CSP-960S Installation Guide  

E-Print Network (OSTI)

CSP'960H/CSP-960S Installation Guide 4-634-979-01 TM Read First! 1^00 - 3lG - 755; #12;CSP-960H/CSP CSP-960H only) J Sony CDU926S CD-R Drive Unit User's Guide Use this manual as a guide to help you. If all the items are not found, please contact your Sony dealer before proceeding. G CSP-960H/960S CD

Kleinfeld, David

372

Solar heating system installed at Jackson, Tennessee. Final report  

SciTech Connect

The solar energy heating system installed at the Coca-Cola Bottling Works in Jackson, Tennessee is described. The system consists of 9480 square feet of Owens-Illinois evacuated tubular solar collectors with attached specular cylindrical reflectors and will provide space heating for the 70,000 square foot production building in the winter, and hot water for the bottle washing equipment the remainder of the year. Component specifications and engineering drawings are included. (WHK)

None

1980-10-01T23:59:59.000Z

373

The World Energy Projection System  

Gasoline and Diesel Fuel Update (EIA)

World Energy Projection System World Energy Projection System May 1998 Continuing with this release, annual updates to the model will be available. Check this space for scheduled future releases. Note: If you are familiar with the model and just wish to download the latest version, click HERE. The World Energy Projection System The projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO) are derived from the World Energy Projection System (WEPS). WEPS is an integrated set of personal computer-based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the

374

Installed Geothermal Capacity/Data | Open Energy Information  

Open Energy Info (EERE)

Installed Geothermal Capacity/Data Installed Geothermal Capacity/Data < Installed Geothermal Capacity Jump to: navigation, search Download a CSV file of the table below: CSV FacilityType Owner Developer EnergyPurchaser Place GeneratingCapacity NumberOfUnits CommercialOnlineDate HeatRate WindTurbineManufacturer FacilityStatus Aidlin Geothermal Facility Geothermal Steam Power Plant Calpine Geysers Geothermal Area 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW 2 1989 Amedee Geothermal Facility Binary Cycle Power Plant Amedee Geothermal Venture Honey Lake, California 1.6 MW1,600 kW 1,600,000 W 1,600,000,000 mW 0.0016 GW 1.6e-6 TW 2 1988 BLM Geothermal Facility Double Flash Coso Operating Co. Coso Junction, California, 90 MW90,000 kW 90,000,000 W

375

Design and installation manual for thermal energy storage  

SciTech Connect

The purpose of this manual is to provide information on the design and installation of thermal energy storage in active solar systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating and cooling systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-Chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to latent heat storage include properties of phase-change materials, sizing the storage unit, insulating the storage unit, available systems, and cost. Topics relevant to heating domestic water include safety, single- and dual-tank systems, domestic water heating with air- and liquid-based space heating systems, and stand alone domestics hot water systems. Several appendices present common problems with storage systems and their solutions, heat transfer fluid properties, economic insulation thickness, heat exchanger sizing, and sample specifications for heat exchangers, wooden rock bins, steel tanks, concrete tanks, and fiberglass-reinforced plastic tanks.

Cole, R L; Nield, K J; Rohde, R R; Wolosewicz, R M

1980-01-01T23:59:59.000Z

376

Empirically Derived Strength of Residential Roof Structures for Solar Installations.  

SciTech Connect

Engineering certification for the installation of solar photovoltaic (PV) modules on wood roofs is often denied because existing wood roofs do not meet structural design codes. This work is intended to show that many roofs are actually sufficiently strong given the conservatism in codes, documented allowable strengths, roof structure system effects, and beam composite action produced by joist-sheathing interaction. This report provides results from a testing program to provide actual load carrying capacity of residential rooftops. The results reveal that the actual load carrying capacity of structural members and systems tested are significantly stronger than allowable loads provided by the International Residential Code (IRC 2009) and the national structural code found in Minimum Design Loads for Buildings and Other Structures (ASCE 7-10). Engineering analysis of residential rooftops typically ignores the system affects and beam composite action in determining rooftop stresses given a potential PV installation. This extreme conservatism combined with conservatism in codes and published allowable stress values for roof building materials (NDS 2012) lead to the perception that well built homes may not have adequate load bearing capacity to enable a rooftop PV installation. However, based on the test results presented in this report of residential rooftop structural systems, the actual load bearing capacity is several times higher than published values (NDS 2012).

Dwyer, Stephen F.; Sanchez, Alfred; Campos, Ivan A.; Gerstle, Walter H.

2014-12-01T23:59:59.000Z

377

Environmental assessment: Kotzebue Wind Installation Project, Kotzebue, Alaska  

SciTech Connect

The DOE is proposing to provide financial assistance to the Kotzebue Electric Association to expand its existing wind installation near Kotzebue, Alaska. Like many rural Alaska towns, Kotzebue uses diesel-powered generators to produce its electricity, the high cost of which is currently subsidized by the Alaska State government. In an effort to provide a cost effective and clean source of electricity, reduce dependence on diesel fuel, and reduce air pollutants, the DOE is proposing to fund an experimental wind installation to test commercially available wind turbines under Arctic conditions. The results would provide valuable information to other Alaska communities experiencing similar dependence on diesel-powered generators. The environmental assessment for the proposed wind installation assessed impacts to biological resources, land use, electromagnetic interference, coastal zone, air quality, cultural resources, and noise. It was determined that the project does not constitute a major Federal action significantly affecting the quality of the human environment. Therefore, the preparation of an environmental impact statement is not required, and DOE has issued a Finding of No Significant Impact.

NONE

1998-05-01T23:59:59.000Z

378

Toward a defense-dominated world  

SciTech Connect

Maintaining the large-scale peace in a defense-dominated world necessarily will require not only passive but also active defenses against large-scale aggression that are technically feasible, practical and easy to employ -- and robust against perversion into support of aggression. Such peace maintenance tool-sets will feature means for effectively rebuking aggression as well as providing timely and very widely available seaming of aggression underway anywhere. This report discusses the technology base which currently exists to provide world-wide, high-quality imagery at moderate (5--10 meter) spatial resolution or imagery of 1% of the Earth`s land surface at high ({le} 1 meter) resolution no less frequently than daily, at a total cost of the order of $1 B, with operational capability in the later `90s. Such systems could provide timely warning of aggressive actions anywhere. Similarly, space-based means of defeating aggression conducted with even quite short-range ballistic missiles anywhere in the world could be brought into existence by the end of the `90s for a total cost of about $10 B, and small high-altitude, long flight-duration robotic aircraft carrying high-performance sensors and interceptor missilery could provide both seaming and active defenses against attacks conducted with very short range ballistic missiles, as well as attacks launched with air-breathing threats such as bombers and cruise missiles, for a cost per defended area of the order of $10/km{sup 2}. It appears that all of the associated sensors can find apt dual-use as high-performance systems for monitoring physical aspects of the human environment.

Wood, L.

1993-08-01T23:59:59.000Z

379

total energy | OpenEI  

Open Energy Info (EERE)

total energy total energy Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

380

Experimental Evaluation of Installed Cooking Exhaust Fan Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Experimental Evaluation of Installed Cooking Exhaust Fan Performance Experimental Evaluation of Installed Cooking Exhaust Fan Performance Title Experimental Evaluation of Installed Cooking Exhaust Fan Performance Publication Type Report LBNL Report Number LBNL-4183E Year of Publication 2010 Authors Singer, Brett C., William W. Delp, and Michael G. Apte Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords airflow & pollutant transport group, cooktop, energy analysis and environmental impacts department, gas burners, indoor air quality, indoor environment department, kitchen, nitrogen dioxide, oven, pollutant emissions, range hood, residential, source control, task ventilation, technology, sustainability and impact assessment group Abstract The installed performance of cooking exhaust fans was evaluated through residential field experiments conducted on a sample of 15 devices varying in design and other characteristics. The sample included two rear downdraft systems, two under-cabinet microwave over range (MOR) units, three different installations of an under-cabinet model with grease screens across the bottom and no capture hood, two devices with grease screens covering the bottom of a large capture hood (one under-cabinet, one wall-mount chimney), four under-cabinet open hoods, and two open hoods with chimney mounts over islands. Performance assessment included measurement of airflow and sound levels across fan settings and experiments to quantify the contemporaneous capture efficiency for the exhaust generated by natural gas cooking burners. Capture efficiency is defined as the fraction of generated pollutants that are removed through the exhaust and thus not available for inhalation of household occupants. Capture efficiency (CE) was assessed for various configurations of burner use (e.g. single front, single back, combination of one front and one back, oven) and fan speed setting. Measured airflow rates were substantially lower than the levels noted in product literature for many of the units. This shortfall was observed for several units costing in excess of $1000. Capture efficiency varied widely (from <5% to roughly 100%) across devices and across conditions for some devices. As expected, higher capture efficiencies were achieved with higher fan settings and the associated higher air flow rates. In most cases, capture efficiencies were substantially higher for rear burners than for front burners. The best and most consistent performance was observed for open hoods that covered all cooktop burners and operated at higher airflow rates. The lowest capture efficiencies were measured when a front burner was used with a rear backdraft system or with lowest fan setting for above the range systems that do not cover the front burners.

Note: This page contains sample records for the topic "world total installed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Visualization of World Energy Supply | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Visualization of World Energy Supply Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Visualization of World Energy Supply Agency/Company /Organization: Organisation for Economic Co-Operation and Development (OECD) Sector: Energy Resource Type: Software/modeling tools User Interface: Website Website: en.openei.org/wiki/Visualization_of_World_Energy_Supply Cost: Free OpenEI Keyword(s): Community Generated Language: English References: OECD[1] Motion chart visualization of the world energy supply from the Organisation for Economic Co-operation and Development (OECD). The default view shows how much percent of energy produced is renewable energy and how much total energy is produced by each country.

382

EIA - International Energy Outlook 2009-World Energy Demand and Economic  

Gasoline and Diesel Fuel Update (EIA)

Liquid Fuels Liquid Fuels International Energy Outlook 2009 Chapter 2 - Liquid Fuels World liquids consumption in the IEO2009 reference case increases from 85 million barrels per day in 2006 to 107 million barrels per day in 2030. Unconventional liquids, at 13.4 million barrels per day, make up 12.6 percent of total liquids production in 2030. Figure 25. World Liquids Consumption by Region and Country Group, 2006 and 2030 (million barrels per day). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 26. World Liquids Supply in Three Cases, 2006 and 2030 (million barrels per day). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 27. World Production of Unconventional Liquid Fuels, 2006-2030 (million barrels per day). Need help, contact the National Energy Information Center at 202-586-8800.

383

Install the E-print Network toolbar -- Energy, science, and technology for  

Office of Scientific and Technical Information (OSTI)

Browser Toolbar The E-print Network offers a browser toolbar for easy access to e-print searches and discipline pages. EPN browser toolbar Two installation options are available for the EPN browser toolbar: Internet Explorer - Download and install the toolbar using the Softomate ActiveX Web installer Please select "Install ActiveX Control" when prompted by your browser. Install toolbar for Internet Explorer Can't see the toolbar after installing? Note: Browser security settings at some organizations may prevent installation or use of the toolbar in Internet Explorer. Try installing the toolbar in the FireFox browser, using the button below. Minimum System Requirements: Windows XP/Vista Internet Explorer 6 or Firefox 2 FireFox - Install toolbar for FireFox

384

world bank | OpenEI  

Open Energy Info (EERE)

world bank world bank Dataset Summary Description No description given. Source World Bank Date Released Unknown Date Updated Unknown Keywords coal energy imports energy production energy use fossil fuels Fuel global Hydroelectric international nuclear oil renewables statistical statistics world bank Data application/zip icon Data in XML Format (zip, 1 MiB) application/zip icon Data in Excel Format (zip, 1.3 MiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 1970 - 2007 License License Other or unspecified, see optional comment below Comment Summary of Usage Terms ---------------------- You are free to copy, distribute, adapt, display or include the data in other products for commercial and noncommercial purposes at no cost subject to certain limitations summarized below. You must include attribution for the data you use in the manner indicated in the metadata included with the data. You must not claim or imply that The World Bank endorses your use of the data by or use The World Bank's logo(s) or trademark(s) in conjunction with such use. Other parties may have ownership interests in some of the materials contained on The World Bank Web site. For example, we maintain a list of some specific data within the Datasets that you may not redistribute or reuse without first contacting the original content provider, as well as information regarding how to contact the original content provider. Before incorporating any data in other products, please check the list: Terms of use: Restricted Data. The World Bank makes no warranties with respect to the data and you agree The World Bank shall not be liable to you in connection with your use of the data. Links ----- Summary of Terms: http://data.worldbank.org/summary-terms-of-use Detailed Usage Terms: http://www.worldbank.org/terms-datasets

385

Real-world data modeling  

Science Journals Connector (OSTI)

Capturing the value in real-world data requires more than fitting trivial models or visually exploring the data. Rather, we must efficiently isolate driving variables, confirm or reject potential outliers and build models which are both accurate and ...

Mark Kotanchek

2010-07-01T23:59:59.000Z

386

World energy projections to 2030  

Science Journals Connector (OSTI)

This paper provides a description of the international energy projections elaborated with the POLES energy model for the purpose of analysing, in other papers of this issue, the impacts of technological change at world level and to 2030. Section 2 describes the key exogenous hypotheses on population and economic growth used for this projection, as well as the main resulting changes for the world energy system and in terms of CO2 emissions. In Section 3, the dynamics of the energy systems are further analysed for four main world regions, while Section 4 is dedicated to the identification of the key uncertainties and of their possible impacts on future energy development. Finally, the last section presents the key messages of this outlook, which shows a rapidly growing world economy and energy consumption with increasing oil and gas prices, although this last feature remains subject to uncertainties on resource endowment estimates.

Patrick Criqui; Nikolaos Kouvaritakis

2000-01-01T23:59:59.000Z

387

Figure 4. World Oil Prices  

U.S. Energy Information Administration (EIA) Indexed Site

4. World Oil Prices" " (2007 dollars per barrel)" ,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028,2029,2030...

388

Total Sky Imager (TSI) Handbook  

SciTech Connect

The total sky imager (TSI) provides time series of hemispheric sky images during daylight hours and retrievals of fractional sky cover for periods when the solar elevation is greater than 10 degrees.

Morris, VR

2005-06-01T23:59:59.000Z

389

Presented at Solar World Congress, Beijing, September 18 22 2007 PARABOLOIDAL DISH SOLAR CONCENTRATORS FOR MULTI-MEGAWATT  

E-Print Network (OSTI)

MWe of installed capacity in California, operating continuously for 20 years. After a long periodPresented at Solar World Congress, Beijing, September 18 ­ 22 2007 PARABOLOIDAL DISH SOLAR ,AUSTRALIA AUSTRALIA keith.lovegrove@anu.edu.au ABSTRACT Large scale solar thermal electric power generation

390

World Year of Physics 2005  

NLE Websites -- All DOE Office Websites (Extended Search)

IMAGE: World Year of Physics 2005 nameplate Berkeley Lab logo Berkeley Lab Celebrates World Year of Physics 2005 Berkeley Lab Web Search Berkeley Lab Phone Book Berkeley Lab A-Z Index Berkeley Lab Privacy and Security Notice IMAGE: World Year of Physics 2005 nameplate Berkeley Lab logo Berkeley Lab Celebrates World Year of Physics 2005 Berkeley Lab Web Search Berkeley Lab Phone Book Berkeley Lab A-Z Index Berkeley Lab Privacy and Security Notice IMAGE: World of Physics graphic Symposia page link Special Events page link Lectures page link Education page link The World Year of Physics is a worldwide celebration of physics and its importance in our everyday lives. Physics not only plays an important role in the development of science and technology but also has a tremendous impact on our society. WYP aims to raise the worldwide awareness of physics and physical science. The United Nations has declared 2005 to be the International Year of Physics. This declaration coincides with the 100th anniversary of physicist

391

Oil/gas separator for installation at burning wells  

DOE Patents (OSTI)

An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

Alonso, C.T.; Bender, D.A.; Bowman, B.R.; Burnham, A.K.; Chesnut, D.A.; Comfort, W.J. III; Guymon, L.G.; Henning, C.D.; Pedersen, K.B.; Sefcik, J.A.; Smith, J.A.; Strauch, M.S.

1993-03-09T23:59:59.000Z

392

Oil/gas separator for installation at burning wells  

SciTech Connect

An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait`s oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

Alonso, C.T.; Bender, D.A.; Bowman, B.R. [and others

1991-12-31T23:59:59.000Z

393

World electric power plants database  

SciTech Connect

This global database provides records for 104,000 generating units in over 220 countries. These units include installed and projected facilities, central stations and distributed plants operated by utilities, independent power companies and commercial and self-generators. Each record includes information on: geographic location and operating company; technology, fuel and boiler; generator manufacturers; steam conditions; unit capacity and age; turbine/engine; architect/engineer and constructor; and pollution control equipment. The database is issued quarterly.

NONE

2006-06-15T23:59:59.000Z

394

New World Record Achieved in Solar Cell Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

World Record Achieved in Solar Cell Technology World Record Achieved in Solar Cell Technology New World Record Achieved in Solar Cell Technology December 5, 2006 - 9:34am Addthis New Solar Cell Breaks the "40 Percent Efficient" Sunlight-to-Electricity Barrier WASHINGTON, DC - U.S. Department of Energy (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner today announced that with DOE funding, a concentrator solar cell produced by Boeing-Spectrolab has recently achieved a world-record conversion efficiency of 40.7 percent, establishing a new milestone in sunlight-to-electricity performance. This breakthrough may lead to systems with an installation cost of only $3 per watt, producing electricity at a cost of 8-10 cents per kilowatt/hour, making solar electricity a more cost-competitive and integral part of our nation's

395

Fact #733: June 25, 2012 World's Top Petroleum-Producing Countries...  

Energy Savers (EERE)

2011, total world petroleum production was 84.7 million barrels per day. Saudi Arabia, Russia and the United States were by far the top petroleum producing countries with 11.1,...

396

Fact #643: October 4, 2010 Four Cylinder Engine Installations Continue to Rise  

Energy.gov (U.S. Department of Energy (DOE))

The share of 4 cylinder engines installed in light vehicles has been increasing since 2004. Beginning in 2006, cars have shown an increase in 4 cylinder engine installations while 8 cylinder engine...

397

Warming of the world ocean, 19552003 S. Levitus, J. Antonov, and T. Boyer  

E-Print Network (OSTI)

) additional historical data for earlier years. During 1955­1998 world ocean heat content (0­3000 m) increased unit area of Earth's total surface area). Citation: Levitus, S., J. Antonov, and T. Boyer (2005 (5-year) estimates for the 1955­1959 through 1994­1998 period for the upper 3000 m of the world ocean

398

Simulating environmental changes due to marine hydrokinetic energy installations.  

SciTech Connect

Marine hydrokinetic (MHK) projects will extract energy from ocean currents and tides, thereby altering water velocities and currents in the site's waterway. These hydrodynamics changes can potentially affect the ecosystem, both near the MHK installation and in surrounding (i.e., far field) regions. In both marine and freshwater environments, devices will remove energy (momentum) from the system, potentially altering water quality and sediment dynamics. In estuaries, tidal ranges and residence times could change (either increasing or decreasing depending on system flow properties and where the effects are being measured). Effects will be proportional to the number and size of structures installed, with large MHK projects having the greatest potential effects and requiring the most in-depth analyses. This work implements modification to an existing flow, sediment dynamics, and water-quality code (SNL-EFDC) to qualify, quantify, and visualize the influence of MHK-device momentum/energy extraction at a representative site. New algorithms simulate changes to system fluid dynamics due to removal of momentum and reflect commensurate changes in turbulent kinetic energy and its dissipation rate. A generic model is developed to demonstrate corresponding changes to erosion, sediment dynamics, and water quality. Also, bed-slope effects on sediment erosion and bedload velocity are incorporated to better understand scour potential.

Jones, Craig A. (Sea Engineering Inc., Santa Cruz, CA); James, Scott Carlton; Roberts, Jesse Daniel (Sandia National Laboratories, Albuquerque, NM); Seetho, Eddy

2010-08-01T23:59:59.000Z

399

Troll Phase 1, installation of large spools before pipelay  

SciTech Connect

Development of the Troll Phase 1 project required landfall--towards a gas conditioning plant on the Norwegian west coast--of both 36-in. wet gas fed (or import) pipelines and 40-inch dry gas export pipelines. The very uneven seabed necessitated both the driving of a 3.5 km long subsea tunnel system and extensive route preparations. The lateral separation of 142 to 163 m between subsea tunnel pipeline risers and offshore pipeline laydown was bridged by fabricating four large--147 to 186 tons--spools. These spools were installed gas-filled in unique single lifts using special sea fastening and guidance systems. The odd-shaped 3-D spool configurations were fabricated to match an extensively prepared seabed. The spools were installed after tunnel pipeline riser completion but before pipeline laydown to minimize the duration of underwater activities late in the season. Special support structures were fabricated to support hyperbaric welding and pipeline laydown operations. Accurate pipeline laydown facilitated simple and quick lift, shift and alignment operations, and all (seven) automated hyperbaric welds with the Pipeline Repair Systems (PRS) were completed on schedule without the use of pup-pieces. Diver support during these activities constituted a significant operation in itself.

Buchan, S. [Rockwater AS, Stavanger (Norway); Kuhlmann, J.H. [A/S Norske Shell, Bergen (Norway)

1996-12-01T23:59:59.000Z

400

Residential Windows and Window Coverings: A Detailed View of the Installed Base and User Behavior  

Energy.gov (U.S. Department of Energy (DOE))

Includes information about the installed base of residential windows and window coverings, and the operation of window coverings by households.

Note: This page contains sample records for the topic "world total installed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

U.S. Installation, Operation, and Performance Standards for Microturbine Generator Sets, August 2000  

Energy.gov (U.S. Department of Energy (DOE))

Report detailing the various codes and standards that are applicable for the installation, operation, and performance of microturbines.

402

ClearWorld Now | Open Energy Information  

Open Energy Info (EERE)

ClearWorld Now Place: Beijing, China Zip: 100027 Product: China-based operational investment arm of ClearWorld Energy Ltd. References: ClearWorld Now1 This article is a stub....

403

THE LOW-TEMPERATURE THRESHOLD FOR PINK SALMON EGGS IN RELATION TO A PROPOSED HYDROELECTRIC INSTALLATION  

E-Print Network (OSTI)

THE LOW-TEMPERATURE THRESHOLD FOR PINK SALMON EGGS IN RELATION TO A PROPOSED HYDROELECTRIC INSTALLATION JACK E. BAILEY' AND DALE R. EVANS' ABSTRACT A proposed hydroelectric installation in southeastern hydroelectric installation could result in temperatures as low as 4.5 0 C during spawning and initial incubation

404

Supersonic Air Jets Preserve Tree Roots in Underground Pipeline Installation1  

E-Print Network (OSTI)

Supersonic Air Jets Preserve Tree Roots in Underground Pipeline Installation1 Rob Gross 2 trenching operations for pipeline installation. Although mechanical soil excavation using heavy equipment are routinely installed, repaired, and replaced underground. During soil excavation, tree and other plant roots

Standiford, Richard B.

405

PIBASE.ligands installation guide. ver 200905 Fred P. Davis, HHMI-JFRC  

E-Print Network (OSTI)

SQL interface, a software package is also available that enables a web interface to the database. The database Web interface To install the web interface to the PIBASE.ligands database, you must first have a working PIBASE web server installed. Once you have the PIBASE web interface installed, download the PIBASE

Eddy, Sean

406

AN EXAMINATION OF BICYCLE COUNTS AND SPEEDS ASSOCIATED WITH THE INSTALLATION OF BIKE LANES  

E-Print Network (OSTI)

AN EXAMINATION OF BICYCLE COUNTS AND SPEEDS ASSOCIATED WITH THE INSTALLATION OF BIKE LANES IN ST An Examination of Bicycle Counts and Speeds Associated with the Installation of Bike Lanes in St. Petersburg It is assumed that installation of bicycle facilities will result in an increase in the number of bicyclists

North Carolina at Chapel Hill, University of

407

Installation of the Monitoring Site at the Los Alamos Canyon Low-Head Weir  

SciTech Connect

The Cerro Grande fire of 2000 had an enormously adverse impact on and around Los Alamos National Laboratory (LANL). Immediately there were concerns about the potential for enhanced runoff/offsite transport of contaminant-laden sediments because of watershed damage. In response to this concern, the U.S. Army Corps of Engineers installed a low-head weir in Los Alamos Canyon near the White Rock ''Y.'' However, the occurrence of fractured basalt at the surface and ponding of runoff behind the weir enhance the possibility of downward migration of contaminants. Therefore, three boreholes were drilled on the south bank of the channel by LANL to provide a means of monitoring the impact of the Cerro Grande fire and of the weir on water quality beneath the canyon. The boreholes and associated instrumentation are referred to as the Los Alamos Weir Site (LAWS). The three boreholes include a vertical hole and two angled holes (one at approximately 45{sup o} and one at approximately 30{sup o}). Since the basalt is highly fractured, the holes would not stay open. Plans called for inserting flexible liners into all holes. However, using liners in such unstable ground was problematic and, in the angled holes, required deployment through scalloped or perforated polyvinyl chloride (PVC) shield. The vertical hole (LAWS-01), drilled to a total depth of 281.5 ft below ground surface (bgs), was completed as a 278-ft deep monitoring well with four screens: one targeting shallow perched water encountered at 80 ft, two in what may correspond to the upper perched zone at regional groundwater characterization well R-9i (1/4 mi. to the west), and one in what may correspond to the lower perched zone at R-9i. A Water FLUTe{trademark} system deployed in the well isolates the screened intervals; associated transducers and sampling ports permit monitoring head and water quality in the screened intervals. The second hole (LAWS-02), drilled at an angle of 43{sup o} from horizontal, is 156 ft long and bottoms at a depth of 106 ft bgs. The shallow perched water seen at LAWS-01 (at 80 ft) was not encountered. A scalloped PVC shield was installed to keep the hole open while permitting flexible liners to contact the borehole wall. It was initially instrumented with a color-reactive liner to locate water-producing fractures. That was later replaced by an absorbent liner to collect water from the vadose zone. The third hole (LAWS-03), drilled at an angle of 34{sup o} from horizontal, initially had a length of 136 ft and bottomed at a depth of 76 ft bgs. However, the PVC shield rotated during installation such that scallops were at the top and rock debris repeatedly fell in, preventing liner insertion. While pulling the scalloped PVC to replace it with a perforated PVC shield that did not require orientation, the scalloped PVC broke and only 85 ft was recovered. The hole was blocked at that position and could not be drilled out with the equipment available. Thus, LAWS-03 was completed at a length of 85 ft and a depth of 40 ft bgs. An absorbent liner was installed at the outset in preparation for the 2002 summer monsoon season. The entire monitoring site is enclosed inside a locked, 8-ft-high chainlink fence for security. The liners used in the angled boreholes carry electrical wire pairs to detect soil-moisture changes. Surface-water data are provided by stream gages above and below the weir site. Depth of ponding behind the weir is provided by a gage installed just behind the structure.

W.J.Stone; D.L.Newell

2002-08-01T23:59:59.000Z

408

World Wide Web Information Servers  

NLE Websites -- All DOE Office Websites (Extended Search)

World Wide Web Information Servers World Wide Web Information Servers Lawrence Berkeley Laboratory recently announced a gopher and World Wide Web site. To get to the web site, telnet to www.lbl.gov, login: www. Access is provided to LBL's gopher, library catalog, and publication list. The Center is funding the implementation of a WWW network node for on-line access to publications, databases, and documents full of hypermedia links to other documents or information systems from the Energy & Environment Division. Full implementation is expected by May 1994, and will include access to a variety of information from all the research programs and centers. The technology transfer project calls for this newsletter to be published on WWW using the Mosaic interface under development at the National Center

409

The World Energy Projection System  

Gasoline and Diesel Fuel Update (EIA)

wepstitle.gif (8166 bytes) wepstitle.gif (8166 bytes) Continuing with this release, annual updates to the model will be available. Check this space for scheduled future releases. Note: If you are familiar with the model and just wish to download the latest version, click HERE. The World Energy Projection System The projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO) are derived from the World Energy Projection System (WEPS). WEPS is an integrated set of personal computer-based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the

410

The World Energy Projection System  

Gasoline and Diesel Fuel Update (EIA)

Continuing with this release, annual updates to the model will be Continuing with this release, annual updates to the model will be available. Check this space for scheduled future releases. Note: If you are familiar with the model and just wish to download the latest version, click HERE. The World Energy Projection System The projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO) are derived from the World Energy Projection System (WEPS). WEPS is an integrated set of personal computer-based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the

411

Bioclimatic and physical characterization of the world’s islands  

Science Journals Connector (OSTI)

...Quaternary climate-change velocity on species endemism...Rubel F ( 2006 ) World map of the Koppen-Geiger...calcu-lated as polygon mass centroids...previously and their mass centroids were...from an island's mass centroid to...aspect or predominant wind directions (4...

Patrick Weigelt; Walter Jetz; Holger Kreft

2013-01-01T23:59:59.000Z

412

Solar World USA not SolarWorld AG | Open Energy Information  

Open Energy Info (EERE)

World USA not SolarWorld AG World USA not SolarWorld AG Jump to: navigation, search Name Solar World USA (not SolarWorld AG) Place Colorado Springs, Colorado Zip 80907 Sector Solar Product Solar World manufactures solar powered products for educational, consumer, electronic and custom OEM markets. References Solar World USA (not SolarWorld AG)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar World USA (not SolarWorld AG) is a company located in Colorado Springs, Colorado . References ↑ "Solar World USA (not SolarWorld AG)" Retrieved from "http://en.openei.org/w/index.php?title=Solar_World_USA_not_SolarWorld_AG&oldid=351350" Categories: Clean Energy Organizations

413

Solar space heating installed at Kansas City, Kansas. Final report  

SciTech Connect

The solar energy system was constructed with the new 48,800 square feet warehouse to heat the warehouse area of about 39,000 square feet while the auxiliary energy system heats the office area of about 9800 square feet. The building is divided into 20 equal units, and each has its own solar system. The modular design permits the flexibility of combining multiple units to form offices or warehouses of various size floor areas as required by a tenant. Each unit has 20 collectors which are mounted in a single row. The collectors, manufactured by Solaron Corporation, are double glazed flat plate collectors with a gross area of 7800 ft/sup 2/. Air is heated either through the collectors or by the electric resistance duct coils. No freeze protection or storage is required for this system. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

Not Available

1981-05-01T23:59:59.000Z

414

Installation for a nuclear power station with staggered swimming pools  

SciTech Connect

In an installation for a nuclear power station comprising a ''reactor building'' with a first swimming pool for handling of fuel units and a fuel building with a second swimming pool for the transfer, storage and deactivation of the units, the second swimming pool is located at a lower level than that of the first and is connected to the first by an intermediate auxiliary chamber filled with water and located under the first swimming pool. The auxiliary chamber is connected by a vertical pipeline to the first swimming pool and by a horizontal connecting pipeline to the second swimming pool. Each of the pipelines is provided with a shut-off valve, with interlocking means which prevents the simultaneous opening of the two valves. There is negligible dead space around a conveyor basket for fuel units when it is in the vertical or horizontal pipelines.

Gigou, R.

1982-12-28T23:59:59.000Z

415

Retrofit SCADA installation combines SCADA and process control functions  

SciTech Connect

When Gulf States Utilities Company`s (now part of Entergy Operations, Inc.) River Bend Nuclear Plant, decided to add a closed cooling water system for the plant service water, a new SCADA system was required. Previously the normal service water system shared common cooling towers and flume with the plant`s circulating water system. Closing the system required a new cooling tower with pumps and heat exchangers to be constructed in a remote location. Existing equipment in the area was controlled via a multichannel tone SCADA system that did not have sufficient spare capacity for control of the new components. This paper will discuss how a new SCADA system was designed and installed, that also included process control. It will also address the operational experience to date.

Moffitt, T.O. [Entergy Operations, Inc., St. Francisville, LA (United States)

1995-09-01T23:59:59.000Z

416

Information handbook on independent spent fuel storage installations  

SciTech Connect

In this information handbook, the staff of the U.S. Nuclear Regulatory Commission describes (1) background information regarding the licensing and history of independent spent fuel storage installations (ISFSIs), (2) a discussion of the licensing process, (3) a description of all currently approved or certified models of dry cask storage systems (DCSSs), and (4) a description of sites currently storing spent fuel in an ISFSI. Storage of spent fuel at ISFSIs must be in accordance with the provisions of 10 CFR Part 72. The staff has provided this handbook for information purposes only. The accuracy of any information herein is not guaranteed. For verification or for more details, the reader should refer to the respective docket files for each DCSS and ISFSI site. The information in this handbook is current as of September 1, 1996.

Raddatz, M.G.; Waters, M.D.

1996-12-01T23:59:59.000Z

417

Microsoft Word - CX-Ashe-CGSFiberInstallation_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2011 5, 2011 REPLY TO ATTN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum Debbie Ruckwardt Electrical Engineer - TEP-CSB-1 Proposed Action: Installing fiber optic cables between Bonneville Power Administration's (BPA) Ashe Substation and Energy Northwest's Columbia Generating Station (CGS). Budget Information: Work Order # 00261540 PP&A Project No.: PP&A 1864 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance activities...for structures, rights of way, infrastructures such as roads, equipment... routine maintenance activities, corrective....are required to maintain...infrastructures...in a condition suitable for a facility to be used for its designed purpose. Location: The project takes place between BPA's Ashe Substation and Energy Northwest's

418

Fact #643: October 4, 2010 Four Cylinder Engine Installations...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

showing the share of diesel vehicle sales in western Europe for the countries France, Germany, Italy, and the United Kingdom from 1999 to 2009. The total amount includes the...

419

California Solar Initiative (CSI) Thermal Program Metering Installation Guide Purpose: The purpose of this metering installation guide is to provide participating eligible contractors  

E-Print Network (OSTI)

1 California Solar Initiative (CSI) Thermal Program Metering Installation Guide Purpose: The purpose of this metering installation guide is to provide participating eligible contractors in the CSI-Thermal to the mixing valve. Place the hot sensor on the pipe between the solar tank and the backup water heater. #12

420

Safety of Hydrogen Systems Installed in Outdoor Enclosures  

SciTech Connect

The Hydrogen Safety Panel brings a broad cross-section of expertise from the industrial, government, and academic sectors to help advise the U.S. Department of Energy’s (DOE) Fuel Cell Technologies Office through its work in hydrogen safety, codes, and standards. The Panel’s initiatives in reviewing safety plans, conducting safety evaluations, identifying safety-related technical data gaps, and supporting safety knowledge tools and databases cover the gamut from research and development to demonstration and deployment. The Panel’s recent work has focused on the safe deployment of hydrogen and fuel cell systems in support of DOE efforts to accelerate fuel cell commercialization in early market applications: vehicle refueling, material handling equipment, backup power for warehouses and telecommunication sites, and portable power devices. This paper resulted from observations and considerations stemming from the Panel’s work on early market applications. This paper focuses on hydrogen system components that are installed in outdoor enclosures. These enclosures might alternatively be called “cabinets,” but for simplicity, they are all referred to as “enclosures” in this paper. These enclosures can provide a space where a flammable mixture of hydrogen and air might accumulate, creating the potential for a fire or explosion should an ignition occur. If the enclosure is large enough for a person to enter, and ventilation is inadequate, the hydrogen concentration could be high enough to asphyxiate a person who entered the space. Manufacturers, users, and government authorities rely on requirements described in codes to guide safe design and installation of such systems. Except for small enclosures used for hydrogen gas cylinders (gas cabinets), fuel cell power systems, and the enclosures that most people would describe as buildings, there are no hydrogen safety requirements for these enclosures, leaving gaps that must be addressed. This paper proposes that a technical basis be developed to enable code bodies to write requirements for the range of enclosures from the smallest to the largest.

Barilo, Nick F.

2013-11-06T23:59:59.000Z

Note: This page contains sample records for the topic "world total installed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Tracking the Sun: The Installed Cost of Photovoltaics in the U.S. from 1998-2007  

E-Print Network (OSTI)

The Installed Cost of Photovoltaics in the U.S. from 1998-The Installed Cost of Photovoltaics in the U.S. from 1998-The Installed Cost of Photovoltaics in the U.S. from 1998-

Wiser, Ryan

2009-01-01T23:59:59.000Z

422

Tracking the Sun III; The Installed Cost of Photovoltaics in the United States from 1998-2009  

E-Print Network (OSTI)

The Installed Cost of Photovoltaics in the U.S. from 1998-The Installed Cost of Photovoltaics in the U.S. from 1998-The Installed Cost of Photovoltaics in the U.S. from 1998-

Barbose, Galen

2011-01-01T23:59:59.000Z

423

Tracking the Sun II: The Installed Cost of Photovoltaics in the U.S. from 1998-2008  

E-Print Network (OSTI)

The Installed Cost of Photovoltaics in the U.S. from 1998-The Installed Cost of Photovoltaics in the U.S. from 1998-The Installed Cost of Photovoltaics in the U.S. from 1998-

Barbose, Galen L

2010-01-01T23:59:59.000Z

424

International Energy Outlook 2001 - Environmental Issues and World Energy  

Gasoline and Diesel Fuel Update (EIA)

Environmental Issues and World Energy Use Environmental Issues and World Energy Use picture of a printer Printer Friendly Version (PDF) In the coming decades, global environmental issues could significantly affect patterns of energy use around the world. Any future efforts to limit carbon emissions are likely to alter the composition of total energy-related carbon emissions by energy source. This chapter examines the link between energy use and the environment worldwide, with particular emphasis on the International Energy Outlook 2001 (IEO2001) projections for energy consumption and associated carbon dioxide emissions over the next 20 years. Regulations to reduce regional energy-related emissions of sulfur dioxide and nitrogen oxides, which are linked to several environmental problems, are also discussed (see

425

World Energy Consumption by Fuel Type, 1970-2020  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: Natural gas is projected to be the fastest-growing component of primary world energy consumption, more than doubling between 1997 and 2020. Gas accounts for the largest increment in electricity generation (41 percent of the total increment of energy used for electricity generation). Combined-cycle gas turbine power plants offer some of the highest commercially available plant efficiencies, and natural gas is environmentally attractive because it emits less sulfur dioxide, carbon dioxide, and particulate matter than does oil or coal. In the IEO2000 projection, world natural gas consumption reaches the level of coal by 2005, and by 2020 gas use exceeds coal by 29 percent. Oil currently provides a larger share of world energy consumption than any other energy source and is expected to remain in that position

426

3D World Building System  

SciTech Connect

This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

None

2013-10-30T23:59:59.000Z

427

3D World Building System  

ScienceCinema (OSTI)

This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

None

2014-02-26T23:59:59.000Z

428

Curating the CIA World Factbook   

E-Print Network (OSTI)

in danger of losing this history. This paper investigates the issues involved in capturing the history of an evolving database and its application to the CIA World Factbook. In particular it shows that there is substantial added value to be gained...

Buneman, Peter; Müller, Heiko; Rusbridge, Chris

2009-01-01T23:59:59.000Z

429

World Oil: Market or Mayhem?  

E-Print Network (OSTI)

The world oil market is regarded by many as a puzzle. Why are oil prices so volatile? What is OPEC and what does OPEC do? Where are oil prices headed in the long run? Is “peak oil” a genuine concern? Why did oil prices ...

Smith, James L.

2008-01-01T23:59:59.000Z

430

Performance Period Total Fee Paid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Period Period Total Fee Paid 4/29/2012 - 9/30/2012 $418,348 10/1/2012 - 9/30/2013 $0 10/1/2013 - 9/30/2014 $0 10/1/2014 - 9/30/2015 $0 10/1/2015 - 9/30/2016 $0 Cumulative Fee Paid $418,348 Contract Type: Cost Plus Award Fee Contract Period: $116,769,139 November 2011 - September 2016 $475,395 $0 Fee Information Total Estimated Contract Cost $1,141,623 $1,140,948 $1,140,948 $5,039,862 $1,140,948 Maximum Fee $5,039,862 Minimum Fee Fee Available Portage, Inc. DE-DT0002936 EM Contractor Fee Site: MOAB Uranium Mill Tailings - MOAB, UT Contract Name: MOAB Uranium Mill Tailings Remedial Action Contract September 2013 Contractor: Contract Number:

431

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings*",54068,51570,45773,6746,34910,1161,3725,779 "Building Floorspace" "(Square Feet)" "1,001 to 5,000",6272,5718,4824,986,3767,50,22,54 "5,001 to 10,000",7299,6667,5728,1240,4341,61,169,45 "10,001 to 25,000",10829,10350,8544,1495,6442,154,553,"Q"

432

ARM - Measurement - Total cloud water  

NLE Websites -- All DOE Office Websites (Extended Search)

cloud water cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments NCEPGFS : National Centers for Environment Prediction Global Forecast System Field Campaign Instruments CSI : Cloud Spectrometer and Impactor PDI : Phase Doppler Interferometer

433

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",61707,58693,49779,6496,37150,3058,5343,1913 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6750,5836,4878,757,3838,231,109,162 "5,001 to 10,000 ..............",7940,7166,5369,1044,4073,288,160,109 "10,001 to 25,000 .............",10534,9773,7783,1312,5712,358,633,232

434

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",64783,62060,51342,5556,37918,4004,4950,2403 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6038,4826,678,3932,206,76,124 "5,001 to 10,000 ..............",6585,6090,4974,739,3829,192,238,248 "10,001 to 25,000 .............",11535,11229,8618,1197,6525,454,506,289

435

The FPGA Hello World Example Martin Schoeberl  

E-Print Network (OSTI)

The FPGA Hello World Example Martin Schoeberl martin@jopdesign.com August 4, 2006 1 Introduction `Hello World' example. What is the `Hello World' program in hardware, in an FPGA? The smallest project entity. In our case hello world 3. In the next dialog box the VHDL source files can be added

Schoeberl, Martin

436

Using the World Wide Web at the Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

at the Lab at the Lab Browser information Web browser installation at the Lab Berkeley Lab (LBNL) policy about publishing Web pages Publishing web pages at Berkeley Lab (LBNL) Return to Top Return to Top Web Publishing, Publishing Tools, etc. w3.org: Many HTML converters (tools that create HTML from other formats) TableMaker (web interface to making Netscape-style tables) Colors in webpages CGIs, forms FrameShop (web interface to making frames for Netscape, etc.) The LaTeX2HTML package RosettaMan(reverse compile man pages from formatted form to a number of source formats, including HTML) wget: GNU web mirroring package web "mirroring" via DNS Yahoo's HTML Validators, checkers page HTML Standards, Documentation, the World Wide Web project Graphics Files Icons Imagemaps

437

Rocky Flats CAAS System Recalibrated, Retested, and Analyzed to Install in the Criticality Experiments Facility at the Nevada Test Site  

E-Print Network (OSTI)

transferred from LLNL to NSTec for installation at the CEFSecurity Technologies (NSTec) is a great example of thetransferred from LLNL to NSTec for installation at the CEF

2009-01-01T23:59:59.000Z

438

Annual and Seasonal Global Variation in Total Ozone and Layer-Mean Ozone,  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Trace Gases » Ozone » Total Ozone and Layer-Mean Ozone Atmospheric Trace Gases » Ozone » Total Ozone and Layer-Mean Ozone Annual and Seasonal Global Variation in Total Ozone and Layer-Mean Ozone, 1958-1987 (1991) DOI: 10.3334/CDIAC/atg.ndp023 data Data Investigators J. K. Angell, J. Korshover, and W. G. Planet Description For 1958 through 1987, this data base presents total ozone variations and layer mean ozone variations expressed as percent deviations from the 1958 to 1977 mean. The total ozone variations were derived from mean monthly ozone values published in Ozone Data for the World by the Atmospheric Environment Service in cooperation with the World Meteorological Organization. The layer mean ozone variations are derived from ozonesonde and Umkehr observations. The data records include year, seasonal and annual

439

Long Term World Oil Supply  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: The following pages summarize a recent EIA presentation on estimates of the world conventional oil resource base and the year when production from it will peak and then begin to decline. A version of this presentation was given by former EIA Administrator Jay Hakes to the April 18, 2000 meeting of the American Association of Petroleum Geologists in New Orleans, Louisiana. Specific information about this presentation may be obtained from John Wood (john.wood@eia.doe.gov), Gary Long (gary.long@eia.doe.gov) or David Morehouse (david.morehouse@eia.doe.gov). Long Term World Oil Supply http://www.eia.doe.gov/pub/oil_gas/petroleum/presentations/2000/long_term_supply/sld001.htm [8/10/2000 4:56:23 PM] Slide 2 of 20 http://www.eia.doe.gov/pub/oil_gas/petroleum/presentations/2000/long_term_supply/sld002.htm [8/10/2000 4:56:24 PM]

440

THE WORLD'S Biggest Fan Collection  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WORLD'S Biggest Fan Collection WORLD'S Biggest Fan Collection If you only know the Big Ass Fan Company as the preeminent designer and manufacturer of high volume, low speed fans for factories and cows, it's time you get to know us better. While we continue to lead the way in industrial and agricultural air movement, we've also refined these designs to bring the same innovation and benefits of our famous fans to circulate an ocean of air in sound-sensitive commercial spaces and homes. And when our customers said they wanted something for smaller spaces, we listened - and we think you'll like the results. We've got you covered - ceiling to floor, wall to door! Features  New patented airfoil system uses 10 Powerfoil airfoils, winglets and patent-pending AirFence(tm) technology to increase

Note: This page contains sample records for the topic "world total installed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

World Bank | Open Energy Information  

Open Energy Info (EERE)

Bank Bank Jump to: navigation, search Logo: World Bank Name World Bank Address 1818 H Street, NW Place Washington, District of Columbia Zip 20433 Number of employees 10,000+"+" is not declared as a valid unit of measurement for this property. Year founded 1944 Phone number (202) 473-1000 Coordinates 38.899458°, -77.042447° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.899458,"lon":-77.042447,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

442

Photovoltaics Design and Installation Manual | Open Energy Information  

Open Energy Info (EERE)

Photovoltaics Design and Installation Manual Photovoltaics Design and Installation Manual Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Photovoltaics Design and Installation Manual Agency/Company /Organization: Solar Energy International Sector: Energy Focus Area: Renewable Energy, Solar, - Solar PV Resource Type: Training materials User Interface: Other Website: www.solarenergy.org/bookstore/photovoltaics-design-installation-manual Cost: Paid Language: "English, Spanish; Castilian" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

443

Tracking benefits for solar collectors installed in Bangalore  

Science Journals Connector (OSTI)

The amount of energy that can be extracted from the solar radiation by solar collectors or photovoltaic systems depends mainly on the installation angle of the collector (tilt angle) and the tracking method used to follow the Sun. In this paper the optimum tilt angle for Bangalore ( 12 ° 5 8 ? ) has been calculated under various tracking conditions. For a fixed tilt angle collector facing south the optimum tilt angle is estimated to be between 15° and 17° and is not very sensitive to radiation data type. Fixed tilt angle collectors and collectors tilted on a monthly basis produced only marginal benefit ( horizontal orientation. However for continuously tracked systems benefits are as high as 35%. At least three sets of solar radiation data are available for Bangalore from different sources. It has been shown that they have considerable differences in their direct and diffuse content. All these data have been used to quantify tracking benefits to understand their sensitivity. Limited amount of available in-house data indicates higher diffuse fraction in solar radiation than predicted by historic data and satellite models. Hence the benefits due to tilting are reduced.

Pascal Fahl; Ganapathisubbu S

2011-01-01T23:59:59.000Z

444

Modular Integrated Monitoring System (MIMS) field test installations  

SciTech Connect

The MIMS program is funded by the Department of Energy under the Office of Nonproliferation and National Security. The program objective is to develop cost effective, modular, multi-sensor monitoring systems. Both in-plant and ground based sensors are envisioned. It is also desirable to develop sensors/systems that can be fielded/deployed in a rapid fashion. A MIMS architecture was selected to allow modular integration of sensors and systems and is based on LonWorks technology, commercially developed by Echelon Corporation. The first MIMS fieldable hardware was demonstrated at Lawrence Livermore National Laboratory. The field test, known within the DOE as the Item Tracking and Transparency (IT&I) demonstration, involved the collaboration and cooperation of five DOE laboratories (Sandia (SNL), Lawrence Livermore (LLNL), Pacific Northwest (PNL), Los Alamos (LANL), and Oak Ridge (ORNL)). The IT&T demonstration involved the monitoring of special nuclear material as it was transported around the facility utilizing sensors from the participating labs. The scenario was programmed to ignore normal activity in the facility until entry into the room where the material was stored. A second demonstration, which involved three separate scenarios, was conducted at Idaho National Engineering Laboratory (INEL). The participants included representatives from SNL, LLNL, PNL, and INEL. DOE has selected INEL as the long term testbed for MIMS developed sensors, systems, and scenarios. This paper will describe the installation, intended purpose, and results of the field demonstrations at LLNL and INEL under the MIMS program.

Martinez, R.L.; Waymire, D.R. [Sandia National Labs., Albuquerque, NM (United States); Fuess, D.A. [Lawrence Livermore National Lab., CA (United States)] [and others

1995-07-01T23:59:59.000Z

445

Installation of the MAXIMUM microscope at the ALS  

SciTech Connect

The MAXIMUM scanning x-ray microscope, developed at the Synchrotron Radiation Center (SRC) at the University of Wisconsin, Madison was implemented on the Advanced Light Source in August of 1995. The microscope`s initial operation at SRC successfully demonstrated the use of multilayer coated Schwarzschild objective for focusing 130 eV x-rays to a spot size of better than 0.1 micron with an electron energy resolution of 250meV. The performance of the microscope was severely limited, because of the relatively low brightness of SRC, which limits the available flux at the focus of the microscope. The high brightness of the ALS is expected to increase the usable flux at the sample by a factor of 1,000. The authors will report on the installation of the microscope on bending magnet beamline 6.3.2 at the ALS and the initial measurement of optical performance on the new source, and preliminary experiments with surface chemistry of HF etched Si will be described.

Ng, W.; Perera, R.C.C.; Underwood, J.H. [Lawrence Berkeley Lab., CA (United States); Singh, S.; Solak, H.; Cerrina, F. [Univ. of Wisconsin, Stoughton, WI (United States). Center for X-ray Lithography

1995-10-01T23:59:59.000Z

446

Electrification of offshore petroleum installations with offshore wind integration  

Science Journals Connector (OSTI)

Electric power supply to oil and gas platforms is conventionally provided by gas turbines located on the platforms. As these gas turbines emit considerable amounts of CO2 and NOx, it is desirable to find alternative solutions. One alternative is to feed the platforms from the onshore power system via subsea power cables, which already have been implemented on some platforms in the Norwegian part of the North Sea. The paper studies a cluster of petroleum installations in this geographic area, connected to the Norwegian onshore power system through an HVDC voltage link. In the study, an offshore wind farm is also connected to the offshore AC power system. The main focus is investigation of transient stability in the offshore power system, and several fault cases have been studied for different levels of wind power generation. Simulations show that faults on the offshore converter platform can be critical due to the dependency of the reactive power delivered by the HVDC link to the offshore AC system. However, it is shown that local wind power production matching the offshore power demand will improve both voltage- and frequency-stability. Further on, it is indicated that offshore reactive power injections or alternative wind farm control topologies could improve voltage stability offshore.

Jorun I. Marvik; Eirik V. Øyslebø; Magnus Korpås

2013-01-01T23:59:59.000Z

447

Solar installer training: Home Builders Institute Job Corps  

SciTech Connect

The instructors describe the solar installation training program operated since 1979 by the Home Builders Institute, the Educational Arm of the National Association of Home Builders for the US Department of Labor, Job Corps in San Diego, CA. The authors are the original instructors and have developed the program since its inception by a co-operative effort between the Solar Energy Industries Association, NAHB and US DOL. Case studies of a few of the 605 students who have gone to work over the years after the training are included. It is one of the most successful programs under the elaborate Student Performance Monitoring Information System used by all Job Corps programs. Job Corps is a federally funded residential job training program for low income persons 16--24 years of age. Discussion details the curriculum and methods used in the program including classroom, shop and community service projects. Solar technologies including all types of hot water heating, swimming pool and spa as well as photovoltaics are included.

Hansen, K.; Mann, R. [San Diego Job Corps Center, Imperial Beach, CA (United States). Home Builders Inst.

1996-10-01T23:59:59.000Z

448

Status and plans for Linac4 installation and commissioning  

E-Print Network (OSTI)

Linac4 is a normal conducting 160 MeV H? linear accelerator presently being installed and progressively commissioned at CERN. It will replace the ageing 50 MeV Linac2 as injector of the PS Booster (PSB), increasing at the same time its brightness by a factor of two thanks to the higher injection energy. This will be the first step of a program to increase the beam brightness in the LHC injectors for the needs of the High-Luminosity LHC project. After a series of beam measurements on a dedicated test stand the 3 MeV Linac4 front-end, including ion source, RFQ and a beam chopping line, has been recommissioned at its final position in the Linac4 tunnel. Commissioning of the following section, the Drift Tube Linac, is starting. Beam commissioning will take place in steps of increasing energy, to reach the final 160 MeV in 2015. An extended beam measurement phase including testing of stripping equipment for the PSB and a year-long test run to assess and improve Linac4 reliability will take place in 2016, prior to...

Vretenar, M; Arnaudon, L; Baudrenghien, P; Bellodi, G; Broere, J; Brunner, O; Comblin, J F; Coupard, J; Dimov, V A; Fuchs, J F; Funken, A; Gerigk, F; Granemann Souza, E; Hanke, K; Hansen, J; Yarmohammadi Satri, M; Kozsar, I; Lallement, J B; Lenardon, F; Lettry, J; Lombardi, A M; Maglioni, C; Midtun, O; Mikulec, B; Nisbet, D; Paoluzzi, M; Raich, U; Ramberger, S; Roncarolo, F; Rossi, C; Sanchez Alvarez, J L; Scrivens, R; Tan, J; Valerio-Lizarraga, C A; Vollaire, J; Wegner, R; Weisz, S; Zocca, F

2014-01-01T23:59:59.000Z

449

Total Adjusted Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

450

Grantee Total Number of Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grantee Grantee Total Number of Homes Weatherized through November 2011 [Recovery Act] Total Number of Homes Weatherized through November 2011 (Calendar Year 2009 - November 2011) [Recovery Act + Annual Program Funding] Alabama 6,704 7,867 1 Alaska 443 2,363 American Samoa 304 410 Arizona 6,354 7,518 Arkansas 5,231 6,949 California 41,649 50,002 Colorado 12,782 19,210 Connecticut 8,940 10,009 2 Delaware** 54 54 District of Columbia 962 1,399 Florida 18,953 20,075 Georgia 13,449 14,739 Guam 574 589 Hawaii 604 1,083 Idaho** 4,470 6,614 Illinois 35,530 44,493 Indiana** 18,768 21,689 Iowa 8,794 10,202 Kansas 6,339 7,638 Kentucky 7,639 10,902 Louisiana 4,698 6,946 Maine 5,130 6,664 Maryland 8,108 9,015 Massachusetts 17,687 21,645 Michigan 29,293 37,137 Minnesota 18,224 22,711 Mississippi 5,937 6,888 Missouri 17,334 20,319 Montana 3,310 6,860 Navajo Nation

451

NETL: News Release - Department of Energy Announces World's First "Hybrid"  

NLE Websites -- All DOE Office Websites (Extended Search)

April 17, 2000 April 17, 2000 Department of Energy Announces World's First "Hybrid" Fuel Cell-Turbine Built in Pittsburgh, Super-Clean Technology to be Sited in California Secretary of Energy Bill Richardson today announced that a revolutionary new type of fuel cell power plant has been built and will begin a cross-country trip to its test installation in Irvine, Calif. Siemens Westinghouse 220-Kilowatt Fuel Cell-Turbine Hybrid - The Siemens Westinghouse 220-kilowatt power system is the first in the world to combine a solid oxide fuel cell and a microturbine in an innovative "hybrid" configuration. It is the latest innovation in the Department of Energy's fuel cell research program. The new power plant, the first in the world to combine a state-of-the-art fuel cell with a gas turbine, is one of the cleanest and

452

Solar in the Real World: Tour of Solar Homes Begins in October | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in the Real World: Tour of Solar Homes Begins in October in the Real World: Tour of Solar Homes Begins in October Solar in the Real World: Tour of Solar Homes Begins in October September 28, 2009 - 12:26pm Addthis John Lippert The National Solar Tour takes place annually during the first Saturday in October in conjunction with National Energy Awareness Month. Last year close to 140,000 attendees visited some 5,000 solar buildings in 3,000 participating communities. Find the tour nearest you. Initially, the tour began about 20 years ago when a solar retailer and installer in California organized some of its customers and got them to agree to open up their homes once a year to the general public. The owners enjoyed showing off their solar homes to the public, the public was eager to learn about solar technologies, and the solar company drummed up

453

Obama Administration Announces Plans to Install New Solar Panels on the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces Plans to Install New Solar Panels on Announces Plans to Install New Solar Panels on the White House Residence Obama Administration Announces Plans to Install New Solar Panels on the White House Residence October 5, 2010 - 12:00am Addthis WASHINGTON - U.S. Energy Secretary Steven Chu and Council of Environmental Quality (CEQ) Chair Nancy Sutley today announced plans to install solar panels and a solar hot water heater on the roof of the White House Residence. These two solar installations will be part of a Department of Energy demonstration project showing that American solar technologies are available, reliable, and ready for installation in homes throughout the country. Secretary Chu and Chair Sutley made the announcement during CEQ's 2010 GreenGov Symposium, which is bringing together leaders from Federal,

454

This Flash transmits the second installment under this project. Additional insta  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

This Flash transmits the second installment under this project. Additional installments This Flash transmits the second installment under this project. Additional installments will follow as they are completed. There are two significant chapter revisions in this installment: 6.1, Competition; and 35.1, Scientific and Technical Information. There are also five primarily editorial chapter revisions in this installment, though the revisions include some updated materials as well: 17.2, Cost Participation; 17.4 Program Opportunity Notices; 17.5 Program Research and Development Notices; 22.1, Labor Standards for Construction; and 47.1, Transportation - Air Charter. Finally, three chapters have been removed. Chapter 45, Government Property, was removed because the coverage was obsolete. Chapter 70.1, Cost Participation, was removed because it was duplicative of 17.2 and inappropriate in

455

Sundance, Skiing and Solar: Park City to Install New PV System | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sundance, Skiing and Solar: Park City to Install New PV System Sundance, Skiing and Solar: Park City to Install New PV System Sundance, Skiing and Solar: Park City to Install New PV System October 25, 2010 - 10:49am Addthis Park City, UT has completed several green projects recently. The town is installing a solar energy system on top of the Marsac Building at the end of the month. | Photo courtesy of Park City | Park City, UT has completed several green projects recently. The town is installing a solar energy system on top of the Marsac Building at the end of the month. | Photo courtesy of Park City | Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy What does this project do? 80-panel solar energy system to be installed at Park City's Marsac Building. Recovery Act-funded system to generate up to 15% of the building's

456

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

457

Building America Expert Meeting: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces  

Energy.gov (U.S. Department of Energy (DOE))

This report describes a Building America expert meeting hosted on July 28, 2011, by the Partnership for Advanced Residential Retrofit team. The purpose of this meeting was to identify installation practices that provide the best installed efficiency for residential gas furnaces, explain how AFUE and field efficiency can differ, and investigate the impact of installation practices on the efficiency and long-term durability of the furnace.

458

Total quality management implementation guidelines  

SciTech Connect

These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

Not Available

1993-12-01T23:59:59.000Z

459

Microsoft Word - NO-MM-827 New Orleans Emergency Generator Installation (900 building).docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MM-827 MM-827 Title: New Orleans Emergency Generator Installation (900 Building) Description: Subcontractor shall provide all labor, tools, materials, equipment, and supervision required to relocate the New Orleans emergency generator at the 900 building, to install a new Automatic Transfer Switch, and to provide generator status alarms. Tasks includes construction of a new concrete slab foundation, relocation of the existing portable generator from the trailer to the foundation, electrical installation of the generator, installation of fencing around the generator, and miscellaneous architectural work. Some of the existing equipment and components being dismantled, removed or demolished have been designated for government salvage. Regulatory Requirements: NEPA Implementing Procedures (10 CFR 1021)

460

Determining the return of energy efficiency investments in domestic and deployed military installations .  

E-Print Network (OSTI)

??The purpose of this research is to determine the return on energy efficiency investments in domestic installations and military forward operating bases. This research considers… (more)

Gammache, Nathan J.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "world total installed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

E-Print Network 3.0 - alcohol tank installed Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

AND ENVIRONMENTAL SCIENCES Summary: inspection. Risers should be installed on all new tanks and can even be retrofitted for existing tanks. All... that the septic tank needs...

462

Toroid field coil shear key installation study, DOE task No. 22  

SciTech Connect

Concepts for fitting and installation of the scissor keys, triangular keys, and truss keys in the ITER Toroidal Field (TF) Coil Assembly were developed and evaluated. In addition, the process of remote removal and replacement of a failed TF coil was considered. Two concepts were addressed: central solenoid installed last (Naka Option 1) and central solenoid installed first (Naka Option 2). In addition, a third concept was developed which utilized the favorable features of both concepts. A time line for installation was estimated for the Naka Option 1 concept.

Jones, C.E.; Meier, R.W.; Yuen, J.L.

1995-01-09T23:59:59.000Z

463

E-Print Network 3.0 - avoid radar installations Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

to 9o differences in flow directions. 1. INTRODUCTION We installed the first HF radar at Coal Oil... Evaluating radial component current measurements from CODAR high frequency...

464

Experience in the installation of a microprocessor system for controlling converter units of the Vyborg substation  

Science Journals Connector (OSTI)

The experience in the installation of modern digital systems for controlling converter units at the Vyborg converter substation on the basis of advanced microprocessor devices...

K. B. Gusakovskii; E. Yu. Zmaznov; S. V. Katantsev…

2006-01-01T23:59:59.000Z

465

H.A.R. 19-105 - Accommodation and Installation of Utilities on...  

Open Energy Info (EERE)

Accommodation and Installation of Utilities on State Highways and Federal Aid County Highways Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

466

E-Print Network 3.0 - air conditioning installations Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Las Vegas, Nevada, to develop, design, procure, install, and operate an on-site hydrogen generation Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel...

467

Solar heating and cooling system installed at Leavenworth, Kansas. Final report  

SciTech Connect

The solar heating and cooling system installed at the headquarters of Citizens Mutual Savings Association in Leavenworth, Kansas, is described in detail. The project is part of the U.S. Department of Energy's solar demonstration program and became operational in March, 1979. The designer was TEC, Inc. Consulting Engineers, Kansas City, Missouri and contractor was Norris Brothers, Inc., Lawrence, Kansas. The solar system is expected to furnish 90 percent of the overall heating load, 70 percent of the cooling load and 100 percent of the domestic hot water load. The building has two floors with a total of 12,000 square feet gross area. The system has 120 flat-plate liquid solar panels with a net area of 2200 square feet. Five, 3-ton Arkla solar assisted absorption units provide the cooling, in conjunction with a 3000 gallon chilled water storage tank. Two, 3000 gallon storage tanks are provided with one designated for summer use, whereas both tanks are utilized during winter.

Not Available

1980-06-01T23:59:59.000Z

468

Effects of installing economizers in boilers used in space heating applications  

SciTech Connect

This paper discusses how the performance of a boiler can be improved by adding an economizer to preheat the boiler's feedwater. An energy analysis was applied to a boiler and then to both a boiler and an economizer (water pre-heater) to evaluate the benefits of heat recovery. Exergy rates calculated for both the boiler and the economizer determined that the temperature of the stack gases had primary effects on the performance of a boiler. The results from this study showed that 57% of the heat rejected at the boiler's stack could be recovered by installing an economizer to preheat the feedwater. As a result, the average cost savings that would be realized for a 36,400 kg/h (80,000 lbm/h) boiler averages US$8 per hour. The cost savings to steam production averaged US$0.20 per 455 kg (1,000 lbm) of steam and the ration between the cost savings to stack temperature averaged $0.02 per C (1.8 F). For this case, the fuel and the cost savings realized from using an economizer were averaged at 3.8% and 3.7%, respectively. These results translated to total cost savings, for an eight-day period considered, of US$940.

Gonzalez, M.A.; Medina, M.A.; Schruben, D.L.

1999-07-01T23:59:59.000Z

469

Design and Installation of a Disposal Cell Cover Field Test  

SciTech Connect

The U.S. Department of Energy’s Office of Legacy Management (LM) initiated a cover assessment project in September 2007 to evaluate an inexpensive approach to enhancing the hydrological performance of final covers for disposal cells. The objective is to accelerate and enhance natural processes that are transforming existing conventional covers, which rely on low-conductivity earthen barriers, into water balance covers, that store water in soil and release it as soil evaporation and plant transpiration. A low conductivity cover could be modified by deliberately blending the upper layers of the cover profile and planting native shrubs. A test facility was constructed at the Grand Junction, Colorado, Disposal Site to evaluate the proposed methodology. The test cover was constructed in two identical sections, each including a large drainage lysimeter. The test cover was constructed with the same design and using the same materials as the existing disposal cell in order to allow for a direct comparison of performance. One test section will be renovated using the proposed method; the other is a control. LM is using the lysimeters to evaluate the effectiveness of the renovation treatment by monitoring hydrologic conditions within the cover profile as well as all water entering and leaving the system. This paper describes the historical experience of final covers employing earthen barrier layers, the design and operation of the lysimeter test facility, testing conducted to characterize the as-built engineering and edaphic properties of the lysimeter soils, the calibration of instruments installed at the test facility, and monitoring data collected since the lysimeters were constructed.

Benson, C.H. [University of Wisconsin–Madison, Madison, Wisconsin; Waugh, W.J. [S.M. Stoller Corporation, Grand Junction, Colorado; Albright, W.H. [Desert Research Institute, Reno, Nevada; Smith, G.M. [Geo-Smith Engineering, Grand Junction, Colorado; Bush, R.P. [U.S. Department of Energy, Grand Junction, Colorado

2011-02-27T23:59:59.000Z

470

Total Heart Transplant: A Modern Overview  

E-Print Network (OSTI)

use of the total artificial heart. New England Journal ofJ. (1997). Artificial heart transplants. British medicala total artificial heart as a bridge to transplantation. New

Lingampalli, Nithya

2014-01-01T23:59:59.000Z

471

Equilibrium pricing in electricity markets with wind power.  

E-Print Network (OSTI)

?? Estimates from the World Wind Energy Association assert that world total wind power installed capacity climbed from 18 Gigawatt (GW) to 152 GW from… (more)

Rubin, Ofir David

2010-01-01T23:59:59.000Z

472

Equilibrium pricing in electricity markets with wind power.  

E-Print Network (OSTI)

??Estimates from the World Wind Energy Association assert that world total wind power installed capacity climbed from 18 Gigawatt (GW) to 152 GW from 2000… (more)

Rubin, Ofir David

2010-01-01T23:59:59.000Z

473

Next Generation Lunch: Revealing the World’s First 3D Printed Car (text version)  

Energy.gov (U.S. Department of Energy (DOE))

Below is the text version for the Next Generation Lunch: Revealing the World’s First 3D Printed Car Video.

474

Energy Secretary Moniz Dedicates World’s Largest Concentrating Solar Power Project  

Energy.gov (U.S. Department of Energy (DOE))

Energy Secretary Ernest Moniz will participate today in the opening of the Ivanpah Solar Energy Generating System, the world’s largest concentrating solar power (CSP) plant.

475

World Holdings of Avian Tissues from Panama  

Science Journals Connector (OSTI)

The avifauna of Panama may be better documented than that of ... , the world holdings of avian tissue from Panama are grossly inadequate. A compilation of the world holdings of avian tissue from Panama is present...

Sievert Rohwer; Robert C. Faucett

2005-01-01T23:59:59.000Z

476

PV World Co Ltd | Open Energy Information  

Open Energy Info (EERE)

PV World Co Ltd Place: Singapore Product: Singapore-based PV module manufacturer. References: PV World Co Ltd1 This article is a stub. You can help OpenEI by expanding it. PV...

477

World frontiers beckon oil finders  

SciTech Connect

This paper discusses the international aspects of the petroleum industry. Most who work in the industry agree that the possibilities for huge are found largely in international regions. Something that is helping fuel that possibility is the way countries are increasingly opening their doors to US oil industry involvement. Listed in this paper is a partial list of the reported projects now underway around the world involving US companies. It is not intended to be comprehensive, but rather an indication of how work continues despite a general lull atmosphere for the oil industry. These include Albania, Bulgaria, Congo, Czechoslovakia, Dominican Republic, Ethiopia, Ireland, Malta, Madagascar, Mongolia, Mozambique, Nigeria, Panama, Paraquay, and Senegal.

Not Available

1991-09-01T23:59:59.000Z

478

Total Imports of Residual Fuel  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. Total 5,752 5,180 7,707 9,056 6,880 6,008 1936-2013 PAD District 1 1,677 1,689 2,008 3,074 2,135 2,814 1981-2013 Connecticut 1995-2009 Delaware 1995-2012 Florida 359 410 439 392 704 824 1995-2013 Georgia 324 354 434 364 298 391 1995-2013 Maine 65 1995-2013 Maryland 1995-2013 Massachusetts 1995-2012 New Hampshire 1995-2010 New Jersey 903 756 948 1,148 1,008 1,206 1995-2013 New York 21 15 14 771 8 180 1995-2013 North Carolina 1995-2011 Pennsylvania 1995-2013 Rhode Island 1995-2013 South Carolina 150 137 194 209 1995-2013 Vermont 5 4 4 5 4 4 1995-2013 Virginia 32 200 113 1995-2013 PAD District 2 217 183 235 207 247 179 1981-2013 Illinois 1995-2013

479

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

480

Natural Gas Total Liquids Extracted  

U.S. Energy Information Administration (EIA) Indexed Site

Thousand Barrels) Thousand Barrels) Data Series: Natural Gas Processed Total Liquids Extracted NGPL Production, Gaseous Equivalent Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 658,291 673,677 720,612 749,095 792,481 873,563 1983-2012 Alabama 13,381 11,753 11,667 13,065 1983-2010 Alaska 22,419 20,779 19,542 17,798 18,314 18,339 1983-2012 Arkansas 126 103 125 160 212 336 1983-2012 California 11,388 11,179 11,042 10,400 9,831 9,923 1983-2012 Colorado 27,447 37,804 47,705 57,924 1983-2010 Florida 103 16 1983-2008 Illinois 38 33 24 231 705 0 1983-2012

Note: This page contains sample records for the topic "world total installed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Kyoto-Related Fossil-Fuel CO2 Emission Totals  

NLE Websites -- All DOE Office Websites (Extended Search)

Kyoto-Related Emissions Kyoto-Related Emissions Kyoto-Related Fossil-Fuel CO2 Emission Totals DOI: 10.3334/CDIAC/ffe.007_V2012 world map Kyoto-Related Fossil-Fuel CO2 Emission Totals Year Annex B Countries Non Annex B Countries Fossil-Fuel CO2 Emissions (million metric tonnes C) Bunkers (million metric tonnes C) Fossil-Fuel CO2 Emissions (million metric tonnes C) Bunkers (million metric tonnes C) 1990 3894 90 2111 46 1991 3801 94 2299 38 1992 3750 109 2263 44 1993 3685 107 2339 48 1994 3656 107 2469 54 1995 3681 110 2570 59 1996 3704 111 2657 72 1997 3727 114 2737 74 1998 3746 118 2698 82 1999 3678 124 2718 90 2000 3725 130 2821 90 2001 3781 120 2936 92 2002 3764 128 3013 94 2003 3853 123 3347 98 2004 3888 135 3683 107 2005 3933 142 3926 106

482

Neal Lane: Science in a Flat World  

SciTech Connect

Lane discusses the changes that have taken place in the world since World War II that have made it "flatter," referring to Thomas L. Friedman's book, The World is Flat. Friedman's main premise is that inexpensive telecommunications is bringing about unhampered international competition, the demise of economic stability, and a trend toward outsourcing services, such as computer programming, engineering and science research.

Neal Lane

2006-09-12T23:59:59.000Z

483

Neal Lane: Science in a Flat World  

ScienceCinema (OSTI)

Lane discusses the changes that have taken place in the world since World War II that have made it "flatter," referring to Thomas L. Friedman's book, The World is Flat. Friedman's main premise is that inexpensive telecommunications is bringing about unhampered international competition, the demise of economic stability, and a trend toward outsourcing services, such as computer programming, engineering and science research.

Neal Lane

2010-09-01T23:59:59.000Z

484

Total Petroleum Systems and Assessment Units (AU)  

E-Print Network (OSTI)

Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Surface water Groundwater X X X X X X X X AU 00000003 Oil/ Gas X X X X X X X X Total X X X X X X X Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Total undiscovered petroleum (MMBO or BCFG) Water per oil

Torgersen, Christian

485

Locating and total dominating sets in trees  

Science Journals Connector (OSTI)

A set S of vertices in a graph G = ( V , E ) is a total dominating set of G if every vertex of V is adjacent to a vertex in S. We consider total dominating sets of minimum cardinality which have the additional property that distinct vertices of V are totally dominated by distinct subsets of the total dominating set.

Teresa W. Haynes; Michael A. Henning; Jamie Howard

2006-01-01T23:59:59.000Z

486

Lessons Learned from Net Zero Energy Assessments and Renewable Energy Projects at Military Installations  

Energy.gov (U.S. Department of Energy (DOE))

Report highlights the increase in resources, project speed, and scale required to achieve the U.S. Department of Defense (DoD) energy efficiency and renewable energy goals. It also summarizes the net zero energy installation assessment (NZEI) process and the lessons learned from NZEI assessments and large-scale renewable energy projects implementations at DoD installations.

487

Planning and Installation Guide: North Carolina Compressed Natural Gas Fueling Stations  

E-Print Network (OSTI)

1 Planning and Installation Guide: North Carolina Compressed Natural Gas Fueling Stations Introduction Are you considering installing a compressed natural gas (CNG) fueling station for your fleet of important items to consider when planning for a CNG station. Natural gas infrastructure, which is commonly

488

Harmonic filters influences regarding the power quality on high frequency electrothermal installation with electromagnetic induction  

Science Journals Connector (OSTI)

This paper presents a study regarding the functioning of a melting/hardening electrothermal installation with electromagnetic induction from the point of view of generated harmonics in the power distribution. The authors made simulations in scope of ... Keywords: electrothermal installation, harmonic, passive filters, static converter

Raluca Rob; Ioan Sora; Caius Panoiu; Manuela Panoiu

2010-01-01T23:59:59.000Z

489

Researches regarding the electric energy quality on high requency electrothermal installation with electromagnetic induction  

Science Journals Connector (OSTI)

This paper presents a study regarding the functioning of a melting/hardening electrothermal installation with electromagnetic induction from the point of view of generated harmonics in the power distribution. The authors made simulations in scope of ... Keywords: electrothermal installation, harmonic, passive filters, static converter

Raluca Rob; Ioan Sora; Caius Panoiu; Manuela Panoiu

2009-10-01T23:59:59.000Z

490

Fact #839: September 22, 2014 World Petroleum Consumption Continues to Rise despite Declines from the United States and Europe  

Energy.gov (U.S. Department of Energy (DOE))

From 1980 to 2013, overall world petroleum consumption has increased from 63 to 90 million barrels per day. Overall consumption is the total of the individual countries/regions shown below....

491

Kuwait: World Oil Report 1991  

SciTech Connect

This paper reports that the major event in Kuwait today is the ongoing effort to control blowouts stemming from Iraqi demolition of oil wells and producing facilities last February. A total of 732 wells---about two- thirds of all wells in Kuwait---were blown up. All but 80 caught on fire.

Not Available

1991-08-01T23:59:59.000Z

492

International Energy Outlook 2000 - Environmental Issues and World Energy  

Gasoline and Diesel Fuel Update (EIA)

In the coming decades, global environmental issues could significantly affect patterns of energy use around the world. Any future efforts to limit carbon emissions are likely to alter the composition of total energy-related carbon emissions by energy source. In the coming decades, global environmental issues could significantly affect patterns of energy use around the world. Any future efforts to limit carbon emissions are likely to alter the composition of total energy-related carbon emissions by energy source. The importance of carbon dioxide emissions as an environmental issue of international concern has grown substantially since 1992, when the United Nations Framework Convention on Climate Change was adopted because of increasing concern over rising atmospheric concentrations of greenhouse gases and their possible adverse effects on the global climate system. World energy use has emerged at the center of the issue. The two major anthropogenic (human-caused) sources of carbon dioxide emissions worldwide are the combustion of fossil fuels and land-use changes

493

Locating-total domination in graphs  

Science Journals Connector (OSTI)

In this paper, we continue the study of locating-total domination in graphs. A set S of vertices in a graph G is a total dominating set in G if every vertex of G is adjacent to a vertex in S . We consider total dominating sets S which have the additional property that distinct vertices in V ( G ) ? S are totally dominated by distinct subsets of the total dominating set. Such a set S is called a locating-total dominating set in G , and the locating-total domination number of G is the minimum cardinality of a locating-total dominating set in G . We obtain new lower and upper bounds on the locating-total domination number of a graph. Interpolation results are established, and the locating-total domination number in special families of graphs, including cubic graphs and grid graphs, is investigated.

Michael A. Henning; Nader Jafari Rad

2012-01-01T23:59:59.000Z

494

T-729: Mozilla Code Installation Through Holding Down Enter | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Mozilla Code Installation Through Holding Down Enter 9: Mozilla Code Installation Through Holding Down Enter T-729: Mozilla Code Installation Through Holding Down Enter September 29, 2011 - 8:30am Addthis PROBLEM: Mozilla Code Installation Through Holding Down Enter. PLATFORM: Versions prior to the following are vulnerable: Firefox 7.0 Firefox 3.6.23 Thunderbird 7.0 SeaMonkey 2.4 ABSTRACT: Attackers can exploit this issue by enticing an unsuspecting victim into viewing and interacting with a malicious Web page. An attacker may be able to exploit this issue to bypass a confirmation dialog and install an arbitrary add-on. This may aid in further attacks. reference LINKS: Mozilla Foundation Security Advisory 2011-40 Firefox Security Advisories CVE-2011-2372 CVE-2011-3001 IMPACT ASSESSMENT: High Discussion: If a user holds down the Enter key--as part of a game or test, perhaps--a

495

IEA World Energy Outlook | Open Energy Information  

Open Energy Info (EERE)

IEA World Energy Outlook IEA World Energy Outlook Jump to: navigation, search Tool Summary Name: IEA World Energy Outlook Agency/Company /Organization: International Energy Agency Sector: Energy Focus Area: Conventional Energy, Energy Efficiency, Renewable Energy Topics: Market analysis, Technology characterizations References: World Energy Outlook[1] The 2010 "edition of the World Energy Outlook - the International Energy Agency's flagship publication and leading source of analysis of global energy trends - presents updated projections of energy demand, production, trade and investment, fuel by fuel and region by region to 2035. WEO-2010 includes, for the first time, the result of a new scenario that takes account of the recent commitments that governments have made to

496

Technical Analysis of Installed Micro-Combined Heat and Power Fuel-Cell System  

SciTech Connect

Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a technical analysis of 5 kWe CHP-FCSs installed in different locations in the U.S. At some sites as many as five 5 kWe system is used to provide up to 25kWe of power. Systems in this power range are considered “micro”-CHP-FCS. To better assess performance of micro-CHP-FCS and understand their benefits, the U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe PBI high temperature PEM fuel cells (CE5 models) in the commercial markets of California and Oregon. Pacific Northwest National Laboratory evaluated these systems in terms of their economics, operations, and technical performance. These units were monitored from September 2011 until June 2013. During this time, about 190,000 hours of data were collected and more than 17 billion data points were analyzed. Beginning in July 2013, ten of these systems were gradually replaced with ungraded systems (M5 models) containing phosphoric acid fuel cell technology. The new units were monitored until June 2014 until they went offline because ClearEdge was bought by Doosan at the time and the new manufacturer did not continue to support data collection and maintenance of these units. During these two phases, data was collected at once per second and data analysis techniques were applied to understand behavior of these systems. The results of this analysis indicate that systems installed in the second phase of this demonstration performed much better in terms of availability, consistency in generation, and reliability. The average net electrical power output increased from 4.1 to 4.9 kWe, net heat recovery from 4.7 to 5.4 kWth, and system availability improved from 94% to 95%. The average net system electric efficiency, average net heat recovery efficiency, and overall net efficiency of the system increased respectively from 33% to 36%, from 38% to 41%, and from 71% to 76%. The temperature of water sent to sit however reduced by about 16% from 51?C to 43 ?C. This was a control strategy and the temperature can be controlled depending on building heat demands. More importantly, the number of shutdowns and maintenance events required to keep the systems running at the manufacturer’s rated performance specifications were substantially reduced by about 76% (for 8 to 10 units running over a one-year period). From July 2012 to June 2013, there were eight CE5 units in operation and a total of 134 scheduled and unscheduled shutdowns took place. From July 2013 to June 2014, between two to ten units were in operation and only 32 shutdowns were reported (all unscheduled). In summary, the number of shutdowns reduced from 10 shutdowns per month on average for eight CE5units to an average of 2.7 shutdowns per month for M5 units (between two to ten units).

Brooks, Kriston P.; Makhmalbaf, Atefe

2014-10-31T23:59:59.000Z

497

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

498

DevelpingWorld_flyer.ai  

NLE Websites -- All DOE Office Websites (Extended Search)

Cookstoves for Darfur, Ethiopia Cookstoves for Darfur, Ethiopia Billions of people around the world cook their meals on rudimentary stoves fueled by burning wood or other biomass, resulting in smoke and carbon emissions that both damage human health and pollute the environment. For women living in refugee camps in Darfur, the problem is compounded because they often walk miles to gather rewood, exposing them to violence. To address these issues, Berkeley Lab scientist Ashok Gadgil designed the Berkeley-Darfur stove, which uses up to three times less wood than the traditional three-stone stoves and prevents up to two tons of carbon dioxide emissions annually. The Darfur Stoves Project was established to produce and distribute the stoves and has support from the Blum Center for

499

Annual World Oil Demand Growth  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Following relatively small increases of 1.3 million barrels per day in 1999 and 0.9 million barrels per day in 2000, EIA is estimating world demand may grow by 1.6 million barrels per day in 2001. Of this increase, about 3/5 comes from non-OECD countries, while U.S. oil demand growth represents more than half of the growth projected in OECD countries. Demand in Asia grew steadily during most of the 1990s, with 1991-1997 average growth per year at just above 0.8 million barrels per day. However, in 1998, demand dropped by 0.3 million barrels per day as a result of the Asian economic crisis that year. Since 1998, annual growth in oil demand has rebounded, but has not yet reached the average growth seen during 1991-1997. In the Former Soviet Union, oil demand plummeted during most of the

500

World Energy | Open Energy Information  

Open Energy Info (EERE)

Energy Energy Name World Energy Address 2 Constitution Center Place Boston, Massachusetts Zip 02129 Sector Biofuels Product Provider of biodiesel and biofuels Website http://www.worldenergy.com/ Coordinates 42.3598°, -71.0603° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3598,"lon":-71.0603,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}