Powered by Deep Web Technologies
Note: This page contains sample records for the topic "world steam coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Coal: evolving supply and demand in world seaborne steam coal trade. [1975 to 1985; forecasting to 1995  

SciTech Connect

This paper describes the evolution of world seaborne steam coal trade since 1975. It highlights current trends and the historic and present sources of supply and demand and discusses selected factors that may affect future world trade patterns. It concludes with a general discussion on the prospects for United States participation in the growing world markets for steam coal. Worldwide seaborne steam coal trade is linked very closely to the generation of electricity and industrial use of process heat in cement and other manufacturing plants. The main factors that influence this trade are: economic growth, electricity demand, indigenous coal production (and degree of protection from lower cost coal imports), and the delivered costs of coal relative to other substitutable fuels. It may be of interest to know how these factors have changed seaborne steam coal trade in the past twelve years. In 1970, the total world use of steam coal was about two billion short tons. International trade in steam coal was only 80 million tons or about 4% of the total. Seaborne trade accounted for about 30% of international trade, or about 25 million tons. In 1982, the latest year for which good statistics are available, total world use of steam coal was about 3.6 billion tons. Seaborne steam coal trade was 110 million tons which is about 3% of the total and 37% of the international trade. 11 figs., 2 tabs.

Yancik, J.

1986-01-01T23:59:59.000Z

2

AEO2011: World Steam Coal Flows By Importing Regions and Exporting  

Open Energy Info (EERE)

Steam Coal Flows By Importing Regions and Exporting Steam Coal Flows By Importing Regions and Exporting Countries Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 142, and contains only the reference case. The dataset uses million short tons. The data is broken down into steam coal exports to Europe, Asia and America. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Coal flows countries EIA exporting importing Data application/vnd.ms-excel icon AEO2011: World Steam Coal Flows By Importing Regions and Exporting Countries- Reference Case (xls, 103.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

3

Catalytic steam gasification of coals  

Science Journals Connector (OSTI)

Catalytic steam gasification of coals ... Steam–Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ... Steam–Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ...

P. Pereira; G. A. Somorjai; H. Heinemann

1992-07-01T23:59:59.000Z

4

Steam Coal Import Costs - EIA  

Gasoline and Diesel Fuel Update (EIA)

Steam Coal Import Costs for Selected Countries Steam Coal Import Costs for Selected Countries U.S. Dollars per Metric Ton1 (Average Unit Value, CIF2) Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Belgium 46.96 39.34 39.76 66.29 70.83 70.95 82.81 150.58 NA Denmark 40.78 31.65 50.27 56.29 61.84 59.15 75.20 113.34 NA Finland 40.83 37.08 39.99 58.45 62.80 67.65 72.64 134.21 NA France 45.36 42.59 42.63 64.08 75.23 72.92 84.49 135.53 NA Germany 41.46 36.80 39.00 61.22 72.48 70.12 81.49 138.84 NA Ireland3 45.25 47.88 50.08 80.90 74.91 101.78 125.15 143.08 NA Italy 44.83 41.25 42.45 63.54 73.20 69.16 86.00 143.68 NA Japan 37.95 36.95 34.93 51.48 62.73 63.33 70.92 125.42 NA Netherlands 40.09 35.81 37.27 55.09 68.86 68.57 79.12 133.50 NA

5

Steam Plant Replaces Outdated Coal-Fired System | Department...  

Office of Environmental Management (EM)

Steam Plant Replaces Outdated Coal-Fired System September 1, 2012 - 12:00pm Addthis A new natural gas-fired steam plant will replace an older coal-fired steam plant shown here. The...

6

World Class Boilers and Steam Distribution System  

E-Print Network (OSTI)

WORLD CLASS BOILERS AND STEAM DISTRIBUTION SYSTEM Vernon P. Portell, Ph.D. Manager Armstrong Service, Inc. ABSTRACT categorizing, measuring, and comparing subjects which are of interest to us is the way we identify the "World class" is a... of information can also be obtained through an independent firm that provides third-party assessment of steam systems. One of these third parties, Armstrong Energy Certification, Inc., has used data gleaned from decades of industrial experience...

Portell, V. P.

7

The Global Steam Coal Market and Supply Curve  

Science Journals Connector (OSTI)

The modern steam coal trade is only about three decades old. ... market difficulties. In order to understand the coal market one needs to understand the global ... . In the chapter the author considers the economic

Dr. Lars Schernikau

2010-01-01T23:59:59.000Z

8

Underground coal gasification using oxygen and steam  

SciTech Connect

In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

Yang, L.H.; Zhang, X.; Liu, S. [China University of Mining & Technology, Xuzhou (China)

2009-07-01T23:59:59.000Z

9

International Energy Outlook 2006 - World Coal Markets  

Gasoline and Diesel Fuel Update (EIA)

Coal Markets Coal Markets International Energy Outlook 2006 Chapter 5: World Coal Markets In the IEO2006 reference case, world coal consumption nearly doubles from 2003 to 2030, with the non-OECD countries accounting for 81 percent of the increase. CoalÂ’s share of total world energy consumption increases from 24 percent in 2003 to 27 percent in 2030. Figure 48. World Coal Consumption by Region, 1980-2030 (Billion Short Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 49. Coal Share of World energy Consumption by Sector 2003, 2015, and 2030 (Percent). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Table 10. World Recoverable Coal Reserves (Billion Short Tons) Printer friendly version

10

Method for increasing steam decomposition in a coal gasification process  

DOE Patents (OSTI)

The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water-splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

Wilson, Marvin W. (Fairview, WV)

1988-01-01T23:59:59.000Z

11

Method for increasing steam decomposition in a coal gasification process  

DOE Patents (OSTI)

The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water- splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

Wilson, M.W.

1987-03-23T23:59:59.000Z

12

Syngas Production from Coal through Microwave Plasma Gasification: Influence of Oxygen, Steam, and Coal Particle Size  

Science Journals Connector (OSTI)

Syngas Production from Coal through Microwave Plasma Gasification: Influence of Oxygen, Steam, and Coal Particle Size ... Plasma gasification is widely applied because of its clean syngas production performance and high chemical reactivity accelerated by the free radicals produced by plasma. ... The syngas composition produced from plasma gasification at same conditions is affected by the physicochemical properties of coals. ...

Sang Jun Yoon; Jae Goo Lee

2011-11-23T23:59:59.000Z

13

Steam Plant Conversion Eliminating Campus Coal Use  

E-Print Network (OSTI)

high-efficiency NG/fuel oil boilers · Slight reduction in steam production capacity · Requires: Building heating Domestic hot water Lab sterilization UT's Steam Plant #12;· Powered by 5 boilers: 2 emissions standard (Boiler MACT): · For existing boilers w/ heat input capacity of 10 MMBtu/hr or greater

Dai, Pengcheng

14

Table 9. U.S. Steam Coal Exports  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Steam Coal Exports U.S. Steam Coal Exports (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 9. U.S. Steam Coal Exports (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Continent and Country of Destination April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change North America Total 1,619,502 1,246,181 2,153,814 2,865,683 3,065,683 -6.5 Canada* 797,861 599,752 841,061 1,397,613 1,280,803 9.1 Dominican Republic 51,698 160,672 124,720 212,370 312,741 -32.1 Honduras - 41,664 34,161 41,664 68,124 -38.8 Jamaica 25 36,311 - 36,336 33,585 8.2 Mexico 717,687 407,422 1,116,653 1,125,109 1,331,754 -15.5 Other** 52,231 360 37,219 52,591 38,676 36.0 South America Total 853,693 806,347

15

Table 14. Steam Coal Exports by Customs District  

U.S. Energy Information Administration (EIA) Indexed Site

Steam Coal Exports by Customs District Steam Coal Exports by Customs District (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 14. Steam Coal Exports by Customs District (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Customs District April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change Eastern Total 4,951,041 5,566,950 6,554,494 10,517,991 11,407,664 -7.8 Baltimore, MD 1,275,530 831,976 1,715,016 2,107,506 2,852,092 -26.1 Boston, MA 7 - 12 7 24 -70.8 Buffalo, NY 1,180 1,516 2,826 2,696 5,257 -48.7 New York City, NY 3,088 2,664 2,168 5,752 6,106 -5.8 Norfolk, VA 3,578,715 4,697,769 4,760,354 8,276,484 8,443,756 -2.0 Ogdensburg, NY 36,894 3,610 3,090 40,504 6,838 492.3 Philadelphia, PA

16

Kinetics of steam gasification of bituminous coals in terms of their use for underground coal gasification  

Science Journals Connector (OSTI)

Abstract The kinetics of steam gasification was examined for bituminous coals of a low coal rank. The examined coals can be the raw material for underground coal gasification. Measurements were carried out under isothermal conditions at a high pressure of 4 MPa and temperatures of 800, 900, 950, and 1000 °C. Yields of gasification products such as carbon monoxide and carbon dioxide, hydrogen and methane were calculated based on the kinetic curves of formation reactions of these products. Also carbon conversion degrees are presented. Moreover, calculations were made of the kinetic parameters of carbon monoxide and hydrogen formation reaction in the coal gasification process. The parameters obtained during the examinations enable a preliminary assessment of coal for the process of underground coal gasification.

Stanis?aw Porada; Grzegorz Czerski; Tadeusz Dziok; Przemys?aw Grzywacz; Dorota Makowska

2015-01-01T23:59:59.000Z

17

Annual prospects for world coal trade 1985: with projections to 1995  

SciTech Connect

The Energy Information Administration (EIA) projects US and world coal trade to 1995, and annually updates the projections in the Annual Energy Outlook. The current projections assume that world coal trade will expand between now and 1995 in response to increasing demand for steam coal. US coal exports rose rapidly between 1979 and 1981, from 66 million short tons to 113 million short tons, partly as a result of labor problems in Poland and Australia. After declining slightly to 106 million short tons in 1982, US coal exports decreased sharply to 78 million short tons in 1983 due to increased supplies of Polish coal in Western Europe and Australian coal in Asia. Moreover, the continued strength of the US dollar made US coal more expensive overseas. US coal exports rose slightly in 1984, to 81 million short tons. Exports of US coal in 1985 are projected to be approximately 71 million short tons. As a high-cost supplier of export coal, the United States has been the ''swing supplier'' because of its ability to ship large amounts of coal on short notice. The United States is likely to maintain a significant share of the world market as a reliable supplier of high-quality coal. EIA projections of US coal exports and world coal trade for 1990 and 1995 are provided in a mid-demand (or base) case as well as in two other cases, a low-demand case and a high-demand case, that reflect uncertainties in the projections. EIA estimates of import coal demand for 1990 and 1995 were developed using key energy supply and demand information for the principal coal-importing countries in Western Europe and Asia, and evaluating that information in the context of estimated trends in economic growth and energy use. 3 figs., 26 tabs.

Tukenmez, E.; Tuck, N.

1985-05-01T23:59:59.000Z

18

Modification of sub-bituminous coal by steam treatment: Caking and coking properties  

Science Journals Connector (OSTI)

A Chinese sub-bituminous Shenfu (SF) coal was steam treated under atmospheric pressure and the caking and coking properties of the treated coals were evaluated by caking indexes (GRI) and crucible coking characterizations. The results show that steam treatment can obviously increase the GRI of SF coal. When the steam treated coals were used in the coal blends instead of SF raw coal, the micro-strength index (MSI) and particle coke strength after reaction (PSR) of the coke increased, and particle coke reactivity index (PRI) decreased, which are beneficial for metallurgical coke to increase the gas permeability in blast furnace. The quality of the coke obtained from 8% of 200 °C steam treated SF coal in coal blends gets to that of the coke obtained from the standard coal blends, in which there was no SF coal addition in the coal blends. The removal of oxygen groups, especially hydroxyl group thus favoring the breakage of the coal macromolecules and allowing the treated coal formation of much more amount of hydrocarbons, may be responsible for the modified results. The mechanism of the steam treatment was proposed based on the elemental analysis, thermo gravimetric (TG) and FTIR spectrometer characterizations of the steam treated coal.

Hengfu Shui; Haiping Li; Hongtao Chang; Zhicai Wang; Zhi Gao; Zhiping Lei; Shibiao Ren

2011-01-01T23:59:59.000Z

19

Role of coal in the world and Asia  

SciTech Connect

This paper examines the changing role of coal in the world and in Asia. Particular attention is given to the rapidly growing demand for coal in electricity generation, the importance of China as a producer and consumer of coal, and the growing environmental challenge to coal. Attention is given to the increasing importance of low sulfur coal and Clean Coal Technologies in reducing the environmental impacts of coal burning.

Johnson, C.J.; Li, B.

1994-10-01T23:59:59.000Z

20

World Coal Resources and their Future Potential [and Discussion  

Science Journals Connector (OSTI)

30 May 1974 research-article World Coal Resources and their Future Potential...inferences from the published figures of world coal resources which are based on a variety...procedures, there can be no doubt that coal is the world's most abundant fossil fuel...

1974-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "world steam coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Workers Demolish Coal-fired Steam Plant at EM's Portsmouth Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workers Demolish Coal-fired Steam Plant at EM's Portsmouth Site Workers Demolish Coal-fired Steam Plant at EM's Portsmouth Site Workers Demolish Coal-fired Steam Plant at EM's Portsmouth Site September 18, 2013 - 12:00pm Addthis A high-pressure water cannon is used to control dust for the demolition of the X-600 Steam Plant. A high-pressure water cannon is used to control dust for the demolition of the X-600 Steam Plant. One of three large smoke stacks comes down during the demolition. One of three large smoke stacks comes down during the demolition. A high-pressure water cannon is used to control dust for the demolition of the X-600 Steam Plant. One of three large smoke stacks comes down during the demolition. PIKETON, Ohio - Towering above most nearby buildings, the X-600 Coal-fired Steam Plant had been part of the Portsmouth Gaseous Diffusion

22

Workers Demolish Coal-fired Steam Plant at EM's Portsmouth Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workers Demolish Coal-fired Steam Plant at EM's Portsmouth Site Workers Demolish Coal-fired Steam Plant at EM's Portsmouth Site Workers Demolish Coal-fired Steam Plant at EM's Portsmouth Site September 18, 2013 - 12:00pm Addthis A high-pressure water cannon is used to control dust for the demolition of the X-600 Steam Plant. A high-pressure water cannon is used to control dust for the demolition of the X-600 Steam Plant. One of three large smoke stacks comes down during the demolition. One of three large smoke stacks comes down during the demolition. A high-pressure water cannon is used to control dust for the demolition of the X-600 Steam Plant. One of three large smoke stacks comes down during the demolition. PIKETON, Ohio - Towering above most nearby buildings, the X-600 Coal-fired Steam Plant had been part of the Portsmouth Gaseous Diffusion

23

Steam Turbine Materials for Ultrasupercritical Coal Power Plants  

SciTech Connect

The Ultrasupercritical (USC) Steam Turbine Materials Development Program is sponsored and funded by the U.S. Department of Energy and the Ohio Coal Development Office, through grants to Energy Industries of Ohio (EIO), a non-profit organization contracted to manage and direct the project. The program is co-funded by the General Electric Company, Alstom Power, Siemens Power Generation (formerly Siemens Westinghouse), and the Electric Power Research Institute, each organization having subcontracted with EIO and contributing teams of personnel to perform the requisite research. The program is focused on identifying, evaluating, and qualifying advanced alloys for utilization in coal-fired power plants that need to withstand steam turbine operating conditions up to 760°C (1400°F) and 35 MPa (5000 psi). For these conditions, components exposed to the highest temperatures and stresses will need to be constructed from nickel-based alloys with higher elevated temperature strength than the highchromium ferritic steels currently used in todayâ??s high-temperature steam turbines. In addition to the strength requirements, these alloys must also be weldable and resistant to environmental effects such as steam oxidation and solid particle erosion. In the present project, candidate materials with the required creep strength at desired temperatures have been identified. Coatings that can resist oxidation and solid particle erosion have also been identified. The ability to perform dissimilar welds between nickel base alloys and ferritic steels have been demonstrated, and the properties of the welds have been evaluated. Results of this three-year study that was completed in 2009 are described in this final report. Additional work is being planned and will commence in 2009. The specific objectives of the future studies will include conducting more detailed evaluations of the weld-ability, mechanical properties and repair-ability of the selected candidate alloys for rotors, casings and valves, and to perform scale-up studies to establish a design basis for commercial scale components. A supplemental program funded by the Ohio Coal Development Office will undertake supporting tasks such as testing and trials using existing atmospheric, vacuum and developmental pressure furnaces to define specific metal casting techniques needed for producing commercial scale components.

Viswanathan, R.; Hawk, J.; Schwant, R.; Saha, D.; Totemeier, T.; Goodstine, S.; McNally, M.; Allen, D. B.; Purgert, Robert

2009-06-30T23:59:59.000Z

24

Effect of steam partial pressure on gasification rate and gas composition of product gas from catalytic steam gasification of HyperCoal  

SciTech Connect

HyperCoal was produced from coal by a solvent extraction method. The effect of the partial pressure of steam on the gasification rate and gas composition at temperatures of 600, 650, 700, and 750{sup o}C was examined. The gasification rate decreased with decreasing steam partial pressure. The reaction order with respect to steam partial pressure was between 0.2 and 0.5. The activation energy for the K{sub 2}CO{sub 3}-catalyzed HyperCoal gasification was independent of the steam partial pressure and was about 108 kJ/mol. The gas composition changed with steam partial pressure and H{sub 2} and CO{sub 2} decreased and CO increased with decreasing steam partial pressure. By changing the partial pressure of the steam, the H{sub 2}/CO ratio of the synthesis gas can be controlled. 18 refs., 7 figs., 2 tabs.

Atul Sharma; Ikuo Saito; Toshimasa Takanohashi [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan). Advanced Fuel Group

2009-09-15T23:59:59.000Z

25

The methods of steam coals usage for coke production  

SciTech Connect

Nowadays, high volatile bituminous coals are broadly used for metallurgical coke production in Russia. The share of such coals in the coking blend is variable from 20 to 40% by weight. There are some large coal deposits in Kuznetskii basin which have coals with low caking tendency. The low caking properties of such coals limit of its application in the coking process. At the same time the usage of low caking coals for coke production would allow flexibility of the feedstock for coke production. Preliminary tests, carried out in COAL-C's lab has shown some differences in coal properties with dependence on the size distribution. That is why the separation of the well-caking fraction from petrographically heterogeneous coals and its further usage in coking process may be promising. Another way for low caking coals application in the coke industry is briquettes production from such coals. This method has been known for a very long time. It may be divided into two possible directions. First is a direct coking of briquettes from the low caking coals. Another way is by adding briquettes to coal blends in defined proportion and combined coking. The possibility of application of coal beneficiation methods mentioned above was investigated in present work.

Korobetskii, I.A.; Ismagilov, M.S.; Nazimov, S.A.; Sladkova, I.L.; Shudrikov, E.S.

1998-07-01T23:59:59.000Z

26

Catalytic steam gasification reactivity of HyperCoals produced from different rank of coals at 600-775{degree}C  

SciTech Connect

HyperCoal is a clean coal with ash content <0.05 wt %. HyperCoals were prepared from a brown coal, a sub-bituminous coal, and a bituminous raw coal by solvent extraction method. Catalytic steam gasification of these HyperCoals was carried out with K{sub 2}CO{sub 3} at 775, 700, 650, and 600 {degree}C, and their rates were compared. HyperCoals produced from low-rank coals were more reactive than those produced from the high-rank coals. XRD measurements were carried out to understand the difference in gasification reactivity of HyperCoals. Arrhenius plot of ln (k) vs 1/T in the temperature range 600-825{degree}C was a curve rather than a straight line. The point of change was observed at 700{degree}C for HyperCoals from low-rank coals and at 775{degree}C for HyperCoals from high-rank coals. Using HyperCoal produced from low-rank coals as feedstock, steam gasification of coal may be possible at temperatures less than 650{degree}C. 22 refs., 6 figs., 2 tabs.

Atul Sharma; Ikuo Saito; Toshimasa Takanohashi [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan). Advanced Fuel Group, Energy Technology Research Institute

2008-11-15T23:59:59.000Z

27

Coal-gasification/MHD/steam-turbine combined-cycle (GMS) power generation  

SciTech Connect

The coal-gasification/MHD/steam-turbine combined cycle (GMS) refers to magnetohydrodynamic (MHD) systems in which coal gasification is used to supply a clean fuel (free of mineral matter and sulfur) for combustion in an MHD electrical power plant. Advantages of a clean-fuel system include the elimination of mineral matter or slag from all components other than the coal gasifier and gas cleanup system; reduced wear and corrosion on components; and increased seed recovery resulting from reduced exposure of seed to mineral matter or slag. Efficiencies in some specific GMS power plants are shown to be higher than for a comparably sized coal-burning MHD power plant. The use of energy from the MHD exhaust gas to gasify coal (rather than the typical approach of burning part of the coal) results in these higher efficiencies.

Lytle, J.M.; Marchant, D.D.

1980-11-01T23:59:59.000Z

28

Coal: world energy security. The Clearwater clean coal conference  

SciTech Connect

Topics covered include: oxy-fuel (overview, demonstrations, experimental studies, burner developments, emissions, fundamental and advanced concepts); post-combustion CO{sub 2} capture; coal conversion to chemicals and fuels; advanced materials; hydrogen production from opportunity fuels; mercury abatement options for power plants; and carbon capture and storage in volume 1. Subjects covered in volume 2 include: advanced modelling; advanced concepts for emission control; gasification technology; biomass; low NOx technology; computer simulations; multi emissions control; chemical looping; and options for improving efficiency and reducing emissions.

Sakkestad, B. (ed.)

2009-07-01T23:59:59.000Z

29

Air and steam coal partial gasification in an atmospheric fluidized bed  

SciTech Connect

Using the mixture of air and steam as gasification medium, three different rank coal partial gasification studies were carried out in a bench-scale atmospheric fluidized bed with the various operating parameters. The effects of air/coal (Fa/Fc) ratio, steam/coal (Fs/Fc) ratio, bed temperature, and coal rank on the fuel gas compositions and the high heating value (HHV) were reported in this paper. The results show that there is an optimal Fa/Fc ratio and Fs/Fc ratio for coal partial gasification. A rise of bed temperature favors the semigasification reaction of coal, but the concentrations of carbon monoxide and methane and the HHV decrease with the rise of bed temperature, except hydrogen. In addition, the gas HHVs are between 2.2 and 3.4 MJ/Nm{sup 3}. The gas yield and carbon conversion increase with Fa/Fc ratio, Fs/Fc ratio, and bed temperature, while they decrease with the rise of the rank of coal. 7 refs., 9 figs., 2 tabs.

Hongcang Zhou; Baosheng Jing; Zhaoping Zhong; Yaji Huang; Rui Xiao [Nanjing University of Information Science & Technology, Nanjing (China). Department of Environmental Science & Engineering

2005-08-01T23:59:59.000Z

30

Advanced steam parameters for pulverized coal fired boilers  

SciTech Connect

After the enormous efforts made in the eighties towards minimization of pollutant concentration in flue gases from power stations, public attention today has turned increasingly toward CO{sub 2} emissions from fossil fuel fired plants. This interest has, in turn, renewed interest in increasing the efficiency of thermal power plants, as this approach is by far the most practical means of reducing the specific CO{sub 2} emission rate. The Rankine steam cycle is the workhorse of the power industry. However, the steam power cycle is often regarded as having reached a maximum practical efficiency, and development effort has shifted to indirect fired cycles. In reality, Rankine cycle efficiencies equivalent to the combined Brayton/Rankine cycles are possible, and may be economically practical. The development work which would allow such steam cycle efficiencies to be realized has been limited in recent years, due to low growth rates, falling energy prices, and tying up of investment funds in environmental control equipment. This paper presents a short survey of the application for advanced steam parameters in power generation and discusses critical areas in more detail. A program undertaken by a consortium of European manufacturers and EC governments for the advancement of steam cycle efficiency is described.

Heiermann, G.; Husemann, R.U.; Kather, A.; Knizia, M.; Hougaard, P.

1996-12-31T23:59:59.000Z

31

Reaction of aromatic compounds and coal-derived liquids with steam over alumina supported nickel catalysts  

SciTech Connect

The objective of this research program has been to explore and define the potential of steam reforming to produce light gases from coal-derived liquids. This was achieved through a study of the reaction of a model aromatic compound and of a coal-derived liquid with steam over an alumina supported nickel catalyst. The reaction of steam with benzene and SRC-II liquids over an alumina supported nickel-catalyst has been investigated in a plug flow reactor. The primary process variables investigated were reactor pressure and temperature, contact time, and steam/carbon ratio. A proposed reaction network was also developed to explain the data obtained in this study. The empirical rate equation for the benzene steam reforming reaction at 973 K, 300 psig, and a steam/carbon ratio of approximately 3 was r/sub C6H6/ = 1.92 x 10 TP/sub C6H6/. The activation energy was 88 KJ/mol, or 21 kcal/mol in the temperature range 748-973 K. A correlation was developed to predict product yields and hydrocarbon conversion over the range of process variables investigated. A second correlation was developed to predict the yields and conversion beyond the range of variables investigated.

Chen, I.E.

1985-01-01T23:59:59.000Z

32

Table 10. Average Price of U.S. Steam Coal Exports  

U.S. Energy Information Administration (EIA) Indexed Site

Average Price of U.S. Steam Coal Exports Average Price of U.S. Steam Coal Exports (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 10. Average Price of U.S. Steam Coal Exports (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Continent and Country of Destination April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change North America Total 65.10 63.67 73.81 64.48 78.90 -18.3 Canada* 59.34 55.22 63.02 57.57 73.63 -21.8 Dominican Republic 78.47 74.41 73.89 75.40 76.61 -1.6 Honduras - 54.58 54.43 54.58 54.43 0.3 Jamaica 480.00 54.43 - 54.72 55.42 -1.3 Mexico 69.42 73.33 82.64 70.83 86.44 -18.1 Other** 80.33 389.30 70.37 82.45 76.10 8.3 South America Total 79.44 77.85 70.55

33

Hydrogen production by high-temperature steam gasification of biomass and coal  

SciTech Connect

High-temperature steam gasification of paper, yellow pine woodchips, and Pittsburgh bituminous coal was investigated in a batch-type flow reactor at temperatures in the range of 700 to 1,200{sup o}C at two different ratios of steam to feedstock molar ratios. Hydrogen yield of 54.7% for paper, 60.2% for woodchips, and 57.8% for coal was achieved on a dry basis, with a steam flow rate of 6.3 g/min at steam temperature of 1,200{sup o}C. Yield of both the hydrogen and carbon monoxide increased while carbon dioxide and methane decreased with the increase in gasification temperature. A 10-fold reduction in tar residue was obtained at high-temperature steam gasification, compared to low temperatures. Steam and gasification temperature affects the composition of the syngas produced. Higher steam-to-feedstock molar ratio had negligible effect on the amount of hydrogen produced in the syngas in the fixed-batch type of reactor. Gasification temperature can be used to control the amounts of hydrogen or methane produced from the gasification process. This also provides mean to control the ratio of hydrogen to CO in the syngas, which can then be processed to produce liquid hydrocarbon fuel since the liquid fuel production requires an optimum ratio between hydrogen and CO. The syngas produced can be further processed to produce pure hydrogen. Biomass fuels are good source of renewable fuels to produce hydrogen or liquid fuels using controlled steam gasification.

Kriengsak, S.N.; Buczynski, R.; Gmurczyk, J.; Gupta, A.K. [University of Maryland, College Park, MD (United States). Dept. of Mechanical Engineering

2009-04-15T23:59:59.000Z

34

Steam gasification of Indonesian subbituminous coal with calcium carbonate as a catalyst raw material  

Science Journals Connector (OSTI)

Abstract The effect of Ca catalysts prepared from CaCO3 on the steam gasification of Indonesian subbituminous coal at 700–800 °C is examined. The char obtained by pyrolyzing the coal with 0.59 wt.% of Ca (dry basis) showed conversions in steam gasification at 750 and 800 °C of around 70 and 90 wt.% (dry ash and catalyst free basis), which were 2 and 1.5 times larger than those of the coal without the Ca catalyst, respectively. The activity of this Ca catalyst was as high as that prepared using an aqueous solution of Ca(OH)2. The TPD and XRD measurements demonstrated that the Ca catalyst from CaCO3 was initially present in the ion-exchanged form, and as a finely dispersed calcium species after pyrolysis. These results confirm that CaCO3 is effective as a catalyst raw material in the steam gasification of subbituminous coal, even at low catalyst loadings.

Kenji Murakami; Masahiko Sato; Naoto Tsubouchi; Yasuo Ohtsuka; Katsuyasu Sugawara

2015-01-01T23:59:59.000Z

35

Integrated catalytic coal devolatilization and steam gasification process  

SciTech Connect

Hydrocarbon liquids and a methane-containing gas are produced from carbonaceous feed solids by contacting the solids with a mixture of gases containing carbon monoxide and hydrogen in a devolatilization zone at a relatively low temperature in the presence of a carbon-alkali metal catalyst. The devolatilization zone effluent is treated to condense out hydrocarbon liquids and at least a portion of the remaining methane-rich gas is steam reformed to produce the carbon monoxide and hydrogen with which the carbonaceous feed solids are contacted in the devolatilization zone. The char produced in the devolatilization zone is reacted with steam in a gasification zone under gasification conditions in the presence of a carbon-alkali metal catalyst and the resultant raw product gas is treated to recover a methane-containing gas.

Ryan, D.F.; Wesselhoft, R.D.

1981-09-29T23:59:59.000Z

36

Arabelle: The most powerful steam turbine in the world  

SciTech Connect

On the 30th of August 1996 at the CHOOZ power station in the Ardennes, the first 1,500 MW turbine was started up under nuclear steam and connected to the grid. It will reach full power in the spring of 1997, followed shortly afterwards by a second identical machine. This turbine, known as ARABELLE, is currently the most powerful in the world, with a single line rotating at 1,500 rpm. It has been entirely designed, manufactured and installed by the teams of GEC ALSTHOM, within the framework of the Electricite de France N4 PWR program. It represents a new type of nuclear turbine, the fruit of much research and development work which started in the 1980s. It benefits from GEC ALSTHOM's considerable experience in the field of nuclear turbines: 143 machines with a total power output of 100,000 MW and more than ten million hours of operation. It should be remembered that the first 1,000 MW unit for a PWR plant was connected at Fessenheim in 1977, and since then the different EDF plants have been equipped with 58 GEC ALSTHOM turbines, ranging from 1,000 MW to 1,350 MW, this providing the company with a vast amount of information. The process which led to a new design for ARABELLE was based on: Feedback of service experience from previous machines; this provides precious learning material with a view to improving the performance of operating equipment. Research and development work resulting in significant technical advances which could then be integrated into the design of a new generation of turbines. Taking account of the major concerns of the customer-user: Electricite de France (EDF): Improved reliability and operating availability, increased efficiency, reduced investment and maintenance costs.

Lamarque, F.; Deloroix, V.

1998-07-01T23:59:59.000Z

37

Chapter 3 - Coal-fired Power Plants  

Science Journals Connector (OSTI)

Abstract Coal provides around 40% of the world’s electricity, more than any other source. Most modern coal-fired power stations burn pulverized coal in a boiler to raise steam for a steam turbine. High efficiency is achieved by using supercritical boilers made of advanced alloys that produce high steam temperatures, and large, high-efficiency steam turbines. Alternative types of coal-fired power plants include fluidized bed boilers that can burn a variety of poor fuels, as well as coal gasifiers that allow coal to be turned into a combustible gas that can be burned in a gas turbine. Emissions from coal plants include sulfur dioxide, nitrogen oxide, and trace metals, all of which must be controlled. Capturing carbon dioxide from a coal plant is also under consideration. This can be achieved using post-combustion capture, a pre-combustion gasification process, or by burning coal in oxygen instead of air.

Paul Breeze

2014-01-01T23:59:59.000Z

38

The 2006-2011 world outlook for coal mining  

SciTech Connect

This study covers the world outlook for coal mining across more than 200 countries. For each year reported, estimates are given for the latent demand, or potential industry earnings (P.I.E.), for the country in question (in millions of U.S. dollars), the percent share the country is of the region and of the globe. These comparative benchmarks allow the reader to quickly gauge a country against others. Using econometric models which project fundamental economic dynamics within each country and across countries, latent demand estimates are created. This report does not discuss the specific players in the market serving the latent demand, nor specific details at the product level. The study, therefore, is strategic in nature, taking an aggregate and long-run view, irrespective of the players or products involved. This study does not report actual sales data. This study gives, however, estimates for the worldwide latent demand, or the P.I.E., for coal mining. It also shows how the P.I.E. is divided across the world's regional and national markets. For each country, estimates are given of how the P.I.E. grows over time (positive or negative growth).

Park, P.M. [INSEAD, Fontainebleau (France)

2006-10-15T23:59:59.000Z

39

3 - High temperature materials issues in the design and operation of coal-fired steam turbines and plant  

Science Journals Connector (OSTI)

Abstract: The basic design of steam plant is outlined, and it is emphasised how the increase in steam temperatures has required high steam pressures. High efficiency requires the use of feedheating, and reheating operation at high pressure and temperature has implications for superheaters. Critical issues are creep strength, resistance to fireside attack and oxide spallation from steam side surfaces. Coal-fired plant is increasingly required to operate in a two shift manner and to compensate for the effects of the intermittency of wind energy; the implications are summarised. Operation at steam temperatures in excess of 600 °C will require the use of even stronger austenitics. In 700 °C plants, precipitation-hardened nickel-based alloys will be required for superheaters.

F. Starr

2014-01-01T23:59:59.000Z

40

EIA - Future role of the United States in world coal trade  

Gasoline and Diesel Fuel Update (EIA)

Future role of the United States in world coal trade Future role of the United States in world coal trade International Energy Outlook 2010 Future role of the United States in world coal trade U.S. coal exports increased each year from 2002 to 2008 at an average annual rate of 12.8 percent, to 82 million tons in 2008. Some analysts have viewed the sharp increase in U.S. exports as an indication of the growing importance of the United States as a world coal supplier. There has also been speculation that China's growing demand for coal will support this trend in the future. However, U.S. coal is a relatively high-cost supply source when shipped to Asian markets, and in the long term U.S. coal will be competing in the Chinese market with lower cost suppliers, notably Australia and Indonesia among others. U.S. exports compete most strongly in European markets and then only when less expensive options are unavailable. In IEO2010, the United States remains a marginal coal supplier over the long term, responding to short-term disruptions or spikes in demand rather than significantly expanding its market share of world coal trade.

Note: This page contains sample records for the topic "world steam coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Coal - prices tumble as the glut continues  

SciTech Connect

The oil price collapse was the major event affecting coal markets around the world in 1986. The 8% expansion in international coal trade in 1985 was halted, and prices fell considerably. World coking coal trade declined and import and export prices fell due to a decrease in steel production and the use of oil, rather than pulverized coal, in blast furnaces. However steam coal trade increased by about 5 million mt because of various institutional constraints to utilities switching from coal burning to oil burning. The article covers coal trade and production in the following countries: Australia; Canada; China; Colombia; Western Europe; Japan; Poland; South Africa; and the USSR.

Lee, H.M.

1987-03-01T23:59:59.000Z

42

Coal export financing: how it is done and who does it. (From the series, Market Guide for Steam Coal Exports from Appalachia)  

SciTech Connect

This publication, part of the series titled Market Guide for Steam Coal Exports from Appalachia provides information on export markets, contracts, and related matters for producers and others involved in mining, selling, and shipping Appalachian coal to foreign buyers. It also includes information on the financial institutions that provide export finance and how they are used. Senior officers of more than 40 banks ranged from the largest money center bank and a major foreign bank in New York City to small banks in Appalachia.

Kanter, L.E.; McSweeny, J.J.

1982-11-01T23:59:59.000Z

43

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

A "Bed" for Burning Coal A "Bed" for Burning Coal Clean Coal 101 Lesson 4: A "Bed" for Burning Coal? It was a wet, chilly day in Washington DC in 1979 when a few scientists and engineers joined with government and college officials on the campus of Georgetown University to celebrate the completion of one of the world's most advanced coal combustors. It was a small coal burner by today's standards, but large enough to provide heat and steam for much of the university campus. But the new boiler built beside the campus tennis courts was unlike most other boilers in the world. A Fluidized Bed Boiler A Fluidized Bed Boiler In a fluidized bed boiler, upward blowing jets of air suspend burning coal, allowing it to mix with limestone that absorbs sulfur pollutants.

44

Steam-Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture  

SciTech Connect

We present experimental results of coal gasification with and without the addition of calcium oxide and potassium hydroxide as dual-functioning catalyst–capture agents. Using two different coal types and temperatures between 700 and 900 °C, we studied the effect of these catalyst–capture agents on (1) the syngas composition, (2) CO{sub 2} and H{sub 2}S capture, and (3) the steam–coal gasification kinetic rate. The syngas composition from the gasifier was roughly 20% methane, 70% hydrogen, and 10% other species when a CaO/C molar ratio of 0.5 was added. We demonstrated significantly enhanced steam–coal gasification kinetic rates when adding small amounts of potassium hydroxide to coal when operating a CaO–CaCO{sub 3} chemical looping gasification reactor. For example, the steam–coal gasification kinetic rate increased 250% when dry mixing calcium oxide at a Ca/C molar ratio of 0.5 with a sub-bituminous coal, and the kinetic rate increased 1000% when aqueously mixing calcium oxide at a Ca/C molar ratio of 0.5 along with potassium hydroxide at a K/C molar ratio of 0.06. In addition, we conducted multi-cycle studies in which CaCO{sub 3} was calcined by heating to 900 °C to regenerate the CaO, which was then reused in repeated CaO–CaCO{sub 3} cycles. The increased steam–coal gasification kinetics rates for both CaO and CaO + KOH persisted even when the material was reused in six cycles of gasification and calcination. The ability of CaO to capture carbon dioxide decreased roughly 2–4% per CaO–CaCO{sub 3} cycle. We also discuss an important application of this combined gasifier–calciner to electricity generation and selling the purge stream as a precalcined feedstock to a cement kiln. In this scenario, the amount of purge stream required is fixed not by the degradation in the capture ability but rather by the requirements at the cement kiln on the amount of CaSO{sub 4} and ash in the precalcined feedstock.

Siefert, Nicholas S.; Shekhawat, Dushyant; Litster, Shawn; Berry, David, A

2013-08-01T23:59:59.000Z

45

,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 7.2;" 2 Relative Standard Errors for Table 7.2;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related","All"

46

,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"  

U.S. Energy Information Administration (EIA) Indexed Site

Relative Standard Errors for Table 7.1;" Relative Standard Errors for Table 7.1;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related","All"

47

Study of Chemical Structure Changes of Chinese Lignite upon Drying in Superheated Steam, Microwave, and Hot Air  

Science Journals Connector (OSTI)

Study of Chemical Structure Changes of Chinese Lignite upon Drying in Superheated Steam, Microwave, and Hot Air ... An estimated 45% of the world’s coal reserves consist of low-rank coals. ... A range of samples varying from lignites to bituminous coals were used at 30-180°. ...

Arash Tahmasebi; Jianglong Yu; Yanna Han; Fengkui Yin; Sankar Bhattacharya; David Stokie

2012-05-29T23:59:59.000Z

48

Interaction of iron-copper mixed metal oxide oxygen carriers with simulated synthesis gas derived from steam gasification of coal  

SciTech Connect

The objective of this work was to prepare supported bimetallic Fe–Cu oxygen carriers and to evaluate their performance for the chemical-looping combustion (CLC) process with simulated synthesis gas derived from steam gasification of coal/air. Ten-cycle CLC tests were conducted with Fe–Cu oxygen carriers in an atmospheric thermogravimetric analyzer utilizing simulated synthesis gas derived from the steam gasification of Polish Janina coal and Illinois #6 coal as fuel. The effect of temperature on reaction rates, chemical stability, and oxygen transport capacity were determined. Fractional reduction, fractional oxidation, and global rates of reactions were calculated from the thermogravimetric analysis (TGA) data. The supports greatly affected reaction performance. Data showed that reaction rates and oxygen capacities were stable during the 10-cycle TGA tests for most Fe–Cu/support oxygen carriers. Bimetallic Fe–Cu/support oxygen carriers showed higher reduction rates than Fe-support oxygen carriers. The carriers containing higher Cu content showed better stabilities and better reduction rates. An increase in temperature from 800 °C to 900 °C did not have a significant effect on either the oxygen capacity or the reduction rates with synthesis gas derived from Janina coal. Oxidation reaction was significantly faster than reduction reaction for all supported Fe–Cu oxygen carriers. Carriers with higher Cu content had lower oxidation rates. Ten-cycle TGA data indicated that these oxygen carriers had stable performances at 800–900 °C and might be successfully used up to 900 °C for coal CLC reaction in the presence of steam.

Siriwardane, Ranjani V. [U.S. DOE; Ksepko, Ewelina; Tian, Hanging [URS

2013-01-01T23:59:59.000Z

49

NETL: News Release - World's First Coal Mine Methane Fuel Cell Powers Up in  

NLE Websites -- All DOE Office Websites (Extended Search)

22, 2003 22, 2003 World's First Coal Mine Methane Fuel Cell Powers Up in Ohio New Technology Mitigates Coal Mine Methane Emissions, Produces Electricity HOPEDALE, OH - In a novel pairing of old and new, FuelCell Energy of Danbury, Conn., has begun operating the world's first fuel cell powered by coal mine methane. Funded by the Department of Energy, the demonstration harnesses the power of a pollutant - methane emissions from coal mines - to produce electricity in a new, 21st Century fuel cell. MORE INFO Remarks by DOE's James Slutz FuelCell Energy Web Site "We believe this technology can reduce coal mine methane emissions significantly while producing clean, efficient, and reliable high-quality power," Secretary of Energy Spencer Abraham said. "This has the dual

50

Improving Process Performances in Coal Gasification for Power and Synfuel Production  

Science Journals Connector (OSTI)

The basic idea is to thermally couple a gasifier, fed with coal and steam, and a combustor where coal is burnt with air, thus overcoming the need of expensive pure oxygen as a feedstock. ... Considering the world’s insatiable appetite for energy and oil, the only reasonable large-scale conventional source left in the medium term will have to be coal. ...

M. Sudiro; A. Bertucco; F. Ruggeri; M. Fontana

2008-09-17T23:59:59.000Z

51

Planning the future of Botswana's coal  

Science Journals Connector (OSTI)

Botswana has vast proven deposits of steam coal, which, for a long time, the government has wanted to develop but without much success. The main objectives of this study are: to forecast possible coal exports from Botswana and the land routes for these exports; to determine the competitiveness of Botswana's coal in world steam coal trade; to make recommendations on the appropriate policy for the exploitation of this coal. To accomplish these objectives, we construct a model of the global steam coal trade and apply this model to forecast the likely optimal size of mine, timing of capacity, and choice of export port for the years 2005 and 2010 from a 2000 base forecast year. The results of our regional analysis suggest that Botswana's coal exports are competitive in Asia and Western Europe. These results are shown to be least sensitive to changes in rail transportation costs and marginal supply costs but more sensitive to changes in capital costs for mine development.

Khaulani Fichani; Walter C. Labys

2006-01-01T23:59:59.000Z

52

Process development studies in coal gasification. Volume II. Reaction of aromatic compounds with steam. Final report, August 1, 1979-November 30, 1983  

SciTech Connect

The objective of this research has been to explore and define the potential of steam reforming to produce light gases from coal-derived liquids. This was achieved through a study of the reaction of a model aromatic compound and of a coal-derived liquid with steam over an alumina supported nickel catalyst. The reaction of steam with benzene and SRC-II liquids over an alumina supported nickel catalyst has been investigated in a plug flow reactor. The primary process variables investigated were reactor pressure and temperature, contact time, and steam/carbon ratio. A proposed reaction network was also developed to explain the data obtained in this study. The effect of process variables on the conversion and product distribution when steam reforming the SRC-II coal-derived liquid was similar to that observed for benzene-steam reforming. The results indicated that a high yield of methane is favored at high pressures, low temperatures, and low steam-to-carbon ratios; and that a high yield of hydrogen is favored at low pressures and high steam-to-carbon ratios. The empirical rate equation for the benzene steam reforming reaction at 973 K, 300 psig, and a steam/carbon ratio of approximately 3 was r/sub C/sub 6/H/sub 6// = 1.92 x 10/sup -3/ P/sub C/sub 6/H/sub 6//. The activation energy was 88 KJ/mol, or 21 kcal/mol in the temperature range 748-973 K. A correlation was developed to predict product yields and hydrocarbon conversion over the range of process variables investigated. A second correlation was developed to predict the yields and conversion beyond the range of variables investigated. A reaction network for aromatic steam reforming was proposed. 87 refs., 47 figs., 3 tabs.

Oblad, A.G.

1984-12-12T23:59:59.000Z

53

AEO2011: World Metallurgical Coal Flows By Importing Regions and Exporting  

Open Energy Info (EERE)

Metallurgical Coal Flows By Importing Regions and Exporting Metallurgical Coal Flows By Importing Regions and Exporting Countries Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 143, and contains only the reference case. The dataset uses million short tons. The data is broken down into Metallurgical coal exports to Europe, Asia and America. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO coal EIA Data application/vnd.ms-excel icon AEO2011: World Metallurgical Coal Flows By Importing Regions and Exporting Countries- Reference Case (xls, 103.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

54

AEO2011: World Total Coal Flows By Importing Regions and Exporting  

Open Energy Info (EERE)

Total Coal Flows By Importing Regions and Exporting Total Coal Flows By Importing Regions and Exporting Countries Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 144, and contains only the reference case. The dataset uses million short tons. The data is broken down into total coal exports to Europe, Asia and America. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO coal EIA Data application/vnd.ms-excel icon AEO2011: World Total Coal Flows By Importing Regions and Exporting Countries - Reference Case (xls, 104 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

55

Successful so far, coal lobby's campaign may run out of steam  

SciTech Connect

The anti-coal lobby has mounted a highly successful campaign that has brought the permitting, financing, and construction of new conventional coal-fired plants to a virtual halt. But the coal lobby is not yet ready to concede defeat. With powerful constituents in coal-mining and coal-burning states and influential utilities, mining companies, and railroads, it continues to fight for its survival using any and all gimmicks and scare tactics in the book. The battle is being waged in courtrooms, public forums, media campaigns, and especially in Congress. The problem with the coal lobby is that it refuses to admit that coal combustion to generate electricity is among the chief sources of U.S. greenhouse gas emissions; unless they address this issue honestly, effectively, and immediately, their efforts are going to win few converts in the courts of law or public opinion.

NONE

2009-05-15T23:59:59.000Z

56

Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants  

SciTech Connect

The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions. The nickel based Alloy 282 is selected for this project because it is one of the leading candidate materials for the high temperature/pressure section of an A-USC steam turbine. The methods developed in the project are expected to be applicable to other metal alloys in similar steam/oxidation environments. The major developments are: ? failure mechanism and microstructural characterization ? atomistic and first principles modeling of crack tip oxygen embrittlement ? modeling of gamma prime microstructures and mesoscale microstructure-defect interactions ? microstructure and damage-based creep prediction ? multi-scale crack growth modeling considering oxidation, viscoplasticity and fatigue The technology developed in this project is expected to enable more accurate prediction of long service life of advanced alloys for A-USC power plants, and provide faster and more effective materials design, development, and implementation than current state-of-the-art computational and experimental methods. This document is a final technical report for the project, covering efforts conducted from January 2011 to January 2014.

Shen, Chen

2014-01-20T23:59:59.000Z

57

Market integration in the international coal industry: A cointegration approach  

SciTech Connect

The purpose of this paper is to test the hypothesis of the existence of a single economic market for the international coal industry, separated for coking and steam coal, and to investigate market integration over time. This has been conducted by applying cointegration and error-correction models on quarterly price series data in Europe and Japan over the time period 1980-2000. Both the coking and the steam coal markets show evidence of global market integration, as demonstrated by the stable long-run cointegrating relationship between the respective price series in different world regions. This supports the hypothesis of a globally integrated market. However, when analyzing market integration over time it is not possible to confirm cointegration in the 1990s for steam coal. Thus, compared to the coking coal market, the steam coal market looks somewhat less global in scope.

Warell, L. [University of Lulea, Lulea (Sweden). Dept. of Business Administration & Social Science

2006-07-01T23:59:59.000Z

58

Characterization of Coal Combustion and Steam Temperature with Respect to Staged-Air Angle in a 600 MWe Down-Fired Boiler  

Science Journals Connector (OSTI)

Characterization of Coal Combustion and Steam Temperature with Respect to Staged-Air Angle in a 600 MWe Down-Fired Boiler ... The explanation behind this phenomenon is the combined effects of (i) the drop in the overall gas temperatures and (ii) the enhancement in the mixing of staged air with the ignited coal/air mixture in the primary combustion zone after the angle reduction. ... In order to reduce the oil consumption during the start up and low load operation of the W-shaped flame pulverized coal-fired utility boiler, tiny-oil technol. is introduced to the cyclone burner based on the design concept of staged ignition. ...

Min Kuang; Zhengqi Li; Zhongqian Ling; Zhuofu Chen; Danyan Yuan

2014-05-20T23:59:59.000Z

59

Reduction of iron oxide as an oxygen carrier by coal pyrolysis and steam char gasification intermediate products  

SciTech Connect

The feasibility of the reduction of oxygen carrier Fe{sub 2}O{sub 3} in chemical-looping combustion using solid fuel (lignite) provided a gasifying agent like steam was introduced into the reactor was investigated with a fixed-bed reactor. The X-ray diffractometer and scanning electron microscope were used for the characterization of the Fe{sub 2}O{sub 3} and its reduction residue. Results strongly supported the feasibility of Fe{sub 2}O{sub 3} reduction by lignite and obtaining pure CO{sub 2} from the off-gases. Fe{sub 2}O{sub 3} can be fully converted to Fe{sub 3}O{sub 4} by pyrolysis and gasification intermediates primarily H{sub 2} and CO, which was confirmed by both the off-gas concentrations and X-ray diffractometer analysis. A 0.75 g portion of Fe{sub 2}O{sub 3} can be completely reduced to Fe{sub 3}O{sub 4} by the volatile matter released from 0.1 g coal, and Fe{sub 2}O{sub 3} can be fully reduced to Fe{sub 3}O{sub 4} by steam char gasification products provided that the molar ratio of carbon in char to Fe{sub 2}O{sub 3} is 1:6. The purity of CO{sub 2} in the outlet gases was higher than 85% when Fe{sub 2}O{sub 3} was reduced by intermediate products during coal pyrolysis, and the purity of CO{sub 2} in the off-gases was higher than 95% when Fe{sub 2}O{sub 3} was reduced by intermediate products resulting from steam char gasification, making CO{sub 2} sequestration disposal desirable for high purity CO{sub 2}. The char gasification reaction rate was slow compared with the reactivity of the iron oxide with the char gasified intermediates, indicating that char gasification was the rate-limiting step in the reduction process. In the steam char gasification process, the times it took to reach 90% carbon conversion for K-10-char and Ca-10-char were 15 and 30 min, respectively, at 1123 K, but the time for the raw char was 50 min at 1173 K. 40 refs., 15 figs., 3 tabs.

Jing-biao Yang; Ning-sheng Cai; Zhen-shan Li [Tsinghua University, Beijing (China). Key Laboratory of Thermal Science and Power Engineering of Ministry of Education

2007-12-15T23:59:59.000Z

60

Coal flows | OpenEI  

Open Energy Info (EERE)

Coal flows Coal flows Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 142, and contains only the reference case. The dataset uses million short tons. The data is broken down into steam coal exports to Europe, Asia and America. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Coal flows countries EIA exporting importing Data application/vnd.ms-excel icon AEO2011: World Steam Coal Flows By Importing Regions and Exporting Countries- Reference Case (xls, 103.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License

Note: This page contains sample records for the topic "world steam coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Laboratory Study on Gasification Reactivity of Coals and Petcokes in CO2/Steam at High Temperatures  

Science Journals Connector (OSTI)

A diffusion term associated with the carbon structure may be needed for modelling the gasification behaviors of the petcoke-like materials. ... Gasification technology is used to convert feedstocks, not only coal but also petcoke and other carbonaceous materials, to fuel gas or syngas,(1, 2) which can be used to generate electricity and heat or to synthesize liquid fuel and chemicals. ... It is certain that petcoke, derived from oil refinery coke units or other cracking processes, has a much lower gasification reactivity than coal chars, especially at low temperatures. ...

Liwei Ren; Jianli Yang; Feng Gao; Jinding Yan

2013-07-30T23:59:59.000Z

62

Designing an ultrasupercritical steam turbine  

SciTech Connect

Carbon emissions produced by the combustion of coal may be collected and stored in the future, but a better approach is to reduce the carbon produced through efficient combustion technologies. Increasing the efficiency of new plants using ultrasupercritical (USC) technology will net less carbon released per megawatt-hour using the world's abundant coal reserves while producing electricity at the lowest possible cost. The article shows how increasing the steam turbine operating conditions for a new USC project in the USA and quantify the potential CO{sub 2} reduction this advanced design makes possible. 7 figs., 3 tabs.

Klotz, H.; Davis, K.; Pickering, E. [Alstom (Germany)

2009-07-15T23:59:59.000Z

63

Numerical study of the partial oxidation of a coal particle in steam and dry air atmospheres  

Science Journals Connector (OSTI)

......and oxygen on particle combustion rate are approximately...modelling of particle combustion, studies on the in...coupled with a simple chemistry) on the influences...and velocity of the coal char particle, and...establishment of the combustion or gasification regimes......

M. Kestel; P. Nikrityuk; O. Hennig; C. Hasse

2012-02-01T23:59:59.000Z

64

Steam–Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture  

Science Journals Connector (OSTI)

These two coals represent the two main types of non-lignite coals currently used in the U.S.: a medium-sulfur eastern bituminous coal and a low-sulfur western sub-bituminous coal. ... At a commercial scale, this would likely mean that there could be a roughly 3-fold decrease in the size of the gasifier compared to the case of dry mixing coal and the regenerated calcium oxide. ...

Nicholas S. Siefert; Dushyant Shekhawat; Shawn Litster; David A. Berry

2013-03-03T23:59:59.000Z

65

Steam Oxidation of Advanced Steam Turbine Alloys  

SciTech Connect

Power generation from coal using ultra supercritical steam results in improved fuel efficiency and decreased greenhouse gas emissions. Results of ongoing research into the oxidation of candidate nickel-base alloys for ultra supercritical steam turbines are presented. Exposure conditions range from moist air at atmospheric pressure (650°C to 800°C) to steam at 34.5 MPa (650°C to 760°C). Parabolic scale growth coupled with internal oxidation and reactive evaporation of chromia are the primary corrosion mechanisms.

Holcomb, Gordon R.

2008-01-01T23:59:59.000Z

66

Southern Coal finds value in the met market  

SciTech Connect

The Justice family launches a new coal company (Southern Coal Corp.) to serve metallurgical and steam coal markets. 1 tab., 3 photos.

Fiscor, S.

2009-11-15T23:59:59.000Z

67

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2003-10-20T23:59:59.000Z

68

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2003-08-04T23:59:59.000Z

69

Coal Export Financing: methods and trends (from the series Market Guides for Steam-Coal Exports from Appalachia). Report for January 1982-December 1983  

SciTech Connect

The new 1984 version of Coal Export Financing is published as a joint effort of the ARC and the U.S. Department of Commerce. It was updated to include information on new trends and developments that have occurred since late 1982 in coal-export financing as a result of the intense price competition from other coal-exporting nations. This includes new information on developments under the Export Trading Company Act of 1982, reverse investments, and barter/countertrade. Information previously provided on political and commercial risk insurance and on governmental assistance has been expanded to reflect the increasing importance of these areas. Any information on banks providing coal-export financing services has been updated, as well as expanded to encompass the entire United States, rather than just the Appalachian region.

Not Available

1984-05-01T23:59:59.000Z

70

An evaluation of integrated-gasification-combined-cycle and pulverized-coal-fired steam plants: Volume 1, Base case studies: Final report  

SciTech Connect

An evaluation of the performance and costs for a Texaco-based integrated gasification combined cycle (IGCC) power plant as compared to a conventional pulverized coal-fired steam (PCFS) power plant with flue gas desulfurization (FGD) is provided. A general set of groundrules was used within which each plant design was optimized. The study incorporated numerous sensitivity cases along with up-to-date operating and cost data obtained through participation of equipment vendors and process developers. Consequently, the IGCC designs presented in this study use the most recent data available from Texaco's ongoing international coal gasification development program and General Electric's continuing gas turbine development efforts. The Texaco-based IGCC has advantages over the conventional PCFS technology with regard to environmental emissions and natural resource requirements. SO/sub 2/, NOx, and particulate emissions are lower. Land area and water requirements are less for IGCC concepts. Coal consumption is less due to the higher plant thermal efficiency attainable in the IGCC plant. The IGCC plant also has the capability to be designed in several different configurations, with and without the use of natural gas or oil as a backup fuel. This capability may prove to be particularly advantageous in certain utility planning and operation scenarios. 107 figs., 114 tabs.

Pietruszkiewicz, J.; Milkavich, R.J.; Booras, G.S.; Thomas, G.O.; Doss, H.

1988-09-01T23:59:59.000Z

71

Steam Gasification of Coal at Low?Medium (600?800 °C) Temperature with Simultaneous CO2 Capture in a Bubbling Fluidized Bed at Atmospheric Pressure. 2. Results and Recommendations for Scaling Up  

Science Journals Connector (OSTI)

Steam Gasification of Coal at Low?Medium (600?800 °C) Temperature with Simultaneous CO2 Capture in a Bubbling Fluidized Bed at Atmospheric Pressure. ... Once the existence of segregation in the bed of the gasifier with the particles' sizes used for coal and for the CaO in the preliminary tests are confirmed and analyzed, the particle size of the coal was increased to 0.4?2.0 ... In general small differences in d. readily lead to segregation while quite differently sized particles are fairly easily mixed. ...

Jose Corella; Jose M. Toledo; Gregorio Molina

2008-02-15T23:59:59.000Z

72

Steam reforming analyzed  

SciTech Connect

This paper reports that maximum steam reformer operation without excessive coking reactions requires careful control of thermodynamic and kinetic conditions. Regardless of the syngas-based feedstock composition, carbon formation problems can be avoided while increasing reformer CO or H{sub 2} production. Steam reforming technology is best understood via: Primary steam reformer developments, Kinetics of methane steam reforming, Simulation of an industrial steam/CO{sub 2} reformer, Example conditions (steam/CO{sub 2} reforming), Thermodynamic approach (minimum to steam ratio). Hydrogen and carbon monoxide are two of the most important building blocks in the chemical industry. Hydrogen is mainly used in ammonia and methanol synthesis and petroleum refining. Carbon monoxide is used to produce pains, plastics, foams, pesticides and insecticides, to name a few. Production of H{sub 2} and CO is usually carried out by the following processes: Steam reforming (primary and secondary) of hydrocarbons, Partial oxidation of hydrocarbons, Coal gasification. Coal gasification and partial oxidation do not use catalysts and depend on partial combustion of the feedstock to internally supply reaction heat. Secondary (autothermal) reforming is a type of steam reforming that also uses the heat of partial combustion but afterwards uses a catalyst of promote the production of hydrogen and CO.

Wagner, E.S. (KTI Corp., San Dimas, CA (US)); Froment, G.F. (Ghent Rijksuniversiteit (Belgium))

1992-07-01T23:59:59.000Z

73

Introduction of clean coal technology in Japan  

SciTech Connect

Coal is an abundant resource, found throughout the world, and inexpensive and constant in price. For this reason, coal is expected to play a role as one of the energy supply sources in the world. The most critical issues to promote utilization of coal are to decrease the environmental load. In this report, the history, outline and recent developments of the clean coal technology in Japan, mainly the thermal power generation technology are discussed. As recent topics, here outlined first is the technology against global warming such as the improvement of steam condition for steam turbines, improvement of power generation efficiency by introducing combined generation, carbon neutral combined combustion of biomass, and carbon dioxide capture and storage (CCS) technology. Also introduced are outlines of Japanese superiority in application technology against NOx and SO{sub 2} which create acid rain, development status of the technical improvement in the handling method for coal which is a rather difficult solid-state resource, and utilization of coal ash.

Takashi Kiga [Japan Coal Energy Center (JCOAL), Tokyo (Japan). R and D Department

2008-01-15T23:59:59.000Z

74

Steam gasification of coal at low-medium (600-800{sup o}C) temperature with simultaneous CO{sub 2} capture in fluidized bed at atmospheric pressure: The effect of inorganic species. 1. Literature review and comments  

SciTech Connect

This paper addresses the H{sub 2} production with simultaneous CO{sub 2} capture by steam gasification of coal in a fluidized bed, at low/medium temperatures (600-800{sup o}C) and atmospheric pressure. This work is mainly aimed at reviewing the effects of the inorganic species present in the matrix of the coal or added to the gasifier bed. The most promising species seems to be the calcined limestone (CaO), which intervenes in the overall gasification reaction network in at least five different types of reactions. The effectiveness of the CaO for CO{sub 2} capture in the coal gasifier is, therefore, affected/influenced by the other four simultaneous or competitive types of reactions in the gasifier. The effects of the temperature in the gasifier and of the (CaO/coal) ratio fed to the gasifier are finally reviewed and discussed in detail.

Corella, J.; Toledo, J.M.; Molina, G. [Universidad Complutense de Madrid, Madrid (Spain). Dept. for Chemical Engineering

2006-08-30T23:59:59.000Z

75

High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests  

SciTech Connect

As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

Duffy, T.; Schneider, P.

1996-01-01T23:59:59.000Z

76

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2003-01-20T23:59:59.000Z

77

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2002-10-15T23:59:59.000Z

78

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), and up to 5500 psi with emphasis upon 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally-acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national perspective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan

2002-04-15T23:59:59.000Z

79

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2002-07-15T23:59:59.000Z

80

The concept of new-generation steam turbines for the coal power engineering of Russia. Part 2. Substantiating the long-term strength of the steam turbine’s high-temperature rotors  

Science Journals Connector (OSTI)

The possibility of constructing a K-660-30 two-cylinder steam turbine for ultrasupercritical steam conditions with reheating, the ... is substantiated. It is shown that this turbine can be constructed using the a...

A. G. Kostyuk; V. G. Gribin; A. D. Trukhnii

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "world steam coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

High-Temperature Air/Steam-Blown Gasification of Coal in a Pressurized Spout-Fluid Bed  

Science Journals Connector (OSTI)

7-10 However, in the MEET system a pebble bed slagging entrained-flow gasifier was used that had to be operated at very high temperatures (1350?1550 °C), which required excessive energy input to maintain such a high gasification temperature when compared with fluidized bed gasifiers, such as spout-fluid bed gasifiers which used medium temperatures (800?1100 °C) to convert coal to fuel gas. ... The typical size distribution is shown in Table 2, where is specific surface-equivalent diameter. ...

Rui Xiao; Mingyao Zhang; Baosheng Jin; Yaji Huang; Hongcang Zhou

2006-02-10T23:59:59.000Z

82

Catalytic aspects of high-temperature methanation of synthesis gas from coal or steam reforming of natural gas  

SciTech Connect

Pilot and catalyst tests showed that the Haldor Topsoe A/S MCR-2X catalyst allows methanation from 250/sup 0/ to well above 700/sup 0/C. Catalyst regeneration by oxidation and reduction after 4700 hr of operation restored > 50% of the original activity. The Topsoe recycle methanation process would give an over-all conversion of 95% in three adiabatic reactors, according to a comparison with results to be expected from the use of a steam reforming catalyst. The Topsoe catalyst maintained a high total surface area and mechanical strength during sintering at 400/sup 0/-800/sup 0/C for 140-170 hr in a comparison with nickel/..cap alpha..-alumina and nickel/ceramic catalyst. Prevention of carbon formation was also demonstrated in the pilot test. In general, it appeared that the use of a nickel catalyst for methanation is limited to a minimum operating temperature because of the risk of nickel carbonyl formation and catalyst deactivation and to a maximum-operating temperature because of sintering, and in some cases, carbon formation.

Pedersen, K.; Skov, A.; Rostrup-Nielsen, J.R.

1980-01-01T23:59:59.000Z

83

The concept of new-generation steam turbines for coal power engineering of Russia. Part 1. Economic and technical substantiation of the concept  

Science Journals Connector (OSTI)

Development of the concept of designing modern steam turbines and its application to turbines for ultrasupercritical steam conditions are considered. The results from predraft designing of a turbine for ultras...

A. G. Kostyuk; V. G. Gribin; A. D. Trukhnii

2010-12-01T23:59:59.000Z

84

WCI Case for Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

with the steam cycle of coal-fired power plants offers the potential to convert 40% of solar energy into electricity. This compares to 13% for large-scale photovoltaic systems,...

85

Blackout: coal, climate and the last energy crisis  

SciTech Connect

Coal fuels more than 30 per cent of UK electricity production, and about 50 per cent in the US, providing a significant portion of total energy output. China and India's recent ferocious economic growth has been based almost entirely on coal-generated electricity. Coal currently looks like a solution to many of our fast-growing energy problems. However, while coal advocates are urging us full steam ahead, the increasing reliance on this dirtiest of all fossil fuels has crucial implications for energy policy, pollution levels, the global climate, world economy and geopolitics. Drawbacks to a coal-based energy strategy include: Scarcity - new studies suggest that the peak of world coal production may actually be less than two decades away; Cost - the quality of produced coal is declining, while the expense of transportation is rising, leading to spiralling costs and increasing shortages; and, Climate impacts - our ability to deal with the historic challenge of climate change may hinge on reducing coal consumption in future years.

Heinberg, R. [Post Carbon Institute in California, CA (United States)

2009-07-15T23:59:59.000Z

86

International Energy Outlook - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2004 Coal Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2025. Coal continues to dominate fuel markets in developing Asia. Figure 52. World Coal Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 53. Coal Share of World Energy Consumption by Sector, 2001 and 2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 54. Coal Share of Regional Energy Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data World coal consumption has been in a period of generally slow growth since

87

Computational Modeling of Combined Steam Pyrolysis and Hydrogasification of Ethanol  

E-Print Network (OSTI)

JL, Kinetics of Coal Gasification, New York, John Wiley &applications to technical gasification processes- A review.kinetics of steam gasification for a transport gasifier.

Singh, S; Park, C S; Norbeck, J N

2005-01-01T23:59:59.000Z

88

Theoretical principles of use of coal fractions with different densities for combustion  

SciTech Connect

It is reasonable to complement the conventional preparation of steam coal involving the removal of ash components and pyritic sulfur by the isolation of the lightest organic fractions, which possess enhanced performance characteristics. These fractions are smoothly saleable both on the domestic and world markets for effective pulverized-coal combustion via new combustion technologies. Heavier (inertinite) fractions of the coal preparation concentrate marketed at lower prices can be considered appropriate fuel for burning in circulating fluidized-bed combustion systems. 13 refs., 5 figs., 4 tabs.

S.G. Gagarin; A.M. Gyul'maliev [Institute for Fossil Fuels, Moscow (Russian Federation)

2009-02-15T23:59:59.000Z

89

World Energy Resources  

Science Journals Connector (OSTI)

World Energy Resources ... Coal reserves are by far the largest proved energy sources we have, said Parker. ...

1954-05-17T23:59:59.000Z

90

Coal-Fuelled Combined Cycle Power Plants  

Science Journals Connector (OSTI)

Combined cycle power plant, when used as a generic ... which converts heat into mechanical energy in a combined gas and steam turbine process. Combined cycle processes with coal gasification or coal combustion .....

Dr. Hartmut Spliethoff

2010-01-01T23:59:59.000Z

91

Hydrogen production with coal using a pulverization device  

DOE Patents (OSTI)

A method for producing hydrogen from coal is described wherein high temperature steam is brought into contact with coal in a pulverizer or fluid energy mill for effecting a steam-carbon reaction to provide for the generation of gaseous hydrogen. The high temperature steam is utilized to drive the coal particles into violent particle-to-particle contact for comminuting the particulates and thereby increasing the surface area of the coal particles for enhancing the productivity of the hydrogen.

Paulson, Leland E. (Morgantown, WV)

1989-01-01T23:59:59.000Z

92

Energy & Environmental Benefits from Steam & Electricity Cogeneration  

E-Print Network (OSTI)

the electricity required by TEX and sells excess power to wholesale customers in the region. It provides a large portion of TEX steam requirements, with sufficient reliability such that TEX decommissioned its coal-fired powerhouse and reduced operations...

Ratheal, R.

2004-01-01T23:59:59.000Z

93

HS_Coal_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Coal Fossil Energy Study Guide: Coal Coal is the most plentiful fuel in the fossil family. The United States has more coal reserves than any other country in the world. In fact, one-fourth of all known coal in the world is in the United States, with large deposits located in 38 states. The United States has almost as much energ y in coal that can be mined as the rest of the world has in oil that can be pumped from the ground. TYPES OF COAL Coal is a black rock made up of large amounts of carbon. Like all fossil fuels, coal can be burned to release energy. Coal contains elements such as hydrogen, oxygen, and nitrogen; has various amounts of minerals; and is itself considered to be a mineral of organic origin. Due to the variety of materials buried over time in the

94

Experience, Engagement and Social Interaction at a Steam Locomotive  

E-Print Network (OSTI)

of two interactive stations (figure 2) where visitors can add coal and water to the steam engine at station 1 and regulate the steam pressure in the engine at station 2, as well as a number of visualExperience, Engagement and Social Interaction at a Steam Locomotive Multimodal Interactive Museum

Hornecker, Eva

95

Combined cycle power plant incorporating coal gasification  

DOE Patents (OSTI)

A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

Liljedahl, Gregory N. (Tariffville, CT); Moffat, Bruce K. (Simsbury, CT)

1981-01-01T23:59:59.000Z

96

Waste biomass from production process co-firing with coal in a steam boiler to reduce fossil fuel consumption: A case study  

Science Journals Connector (OSTI)

Abstract Waste biomass is always generated during the production process in industries. The ordinary way to get rid of the waste biomass is to send them to landfill or burn it in the open field. The waste may potentially be used for co-firing with coal to save fossil fuel consumption and also reduce net carbon emissions. In this case study, the bio-waste from a Nicotiana Tabacum (NT) pre-treatment plant is used as the biomass to co-fire with coal. The samples of NT wastes were analysed. It was found that the wastes were of the relatively high energy content which were suitable for co-firing with coal. To investigate the potential and benefits for adding NT wastes to a Fluidised Bed Combustion (FBC) boiler in the plant, detailed modelling and simulation are carried out using the European Coal Liquefaction Process Simulation and Evaluation (ECLIPSE) process simulation package. The feedstock blending ratios of NT waste to coal studied in this work are varied from 0% to 30%. The results show that the addition of NT wastes may decrease the emissions of CO2 and \\{SOx\\} without reducing the boiler performance.

Hongyan Gu; Kai Zhang; Yaodong Wang; Ye Huang; Neil Hewitt; Anthony P Roskilly

2013-01-01T23:59:59.000Z

97

Superheated steam power plant with steam to steam reheater. [LMFBR  

SciTech Connect

A desuperheater is disposed in a steam supply line supplying superheated steam to a shell and tube reheater.

Silvestri, G.J.

1981-06-23T23:59:59.000Z

98

MS_Coal_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COAL-OUR MOST ABUNDANT FUEL COAL-OUR MOST ABUNDANT FUEL America has more coal than any other fossil fuel resource. Th e United States also has more coal reserves than any other single country in the world. In fact, 1/4 of all the known coal in the world is in the United States. Th e United States has more energy in coal that can be mined than the rest of the world has in oil that can be pumped from the ground. Currently, coal is mined in 25 of the 50 states. Coal is used primarily in the United States to generate electricity. In fact, it is burned in power plants to produce nearly half of the electricity we use. A stove uses about half a ton of coal a year. A water heater uses about two tons of coal a year. And a refrigerator, that's another half-ton a year. Even though you

99

Hydrogen production from the steam-iron process with direct reduction of iron oxide by chemical looping combustion of coal char  

SciTech Connect

Experimental results performed with a fluidized-bed reactor supported the feasibility of the three processes including direct reduction of iron oxide by char, H{sub 2} production by the steam-iron process, and the oxidation of Fe{sub 3}O{sub 4} resulting from the steam-iron process to the original Fe{sub 2}O{sub 3} by air. Chars resulting from a Chinese lignite loaded with K{sub 2}CO{sub 3} were used successfully as a reducing material, leading to the reduction of Fe{sub 2}O{sub 3} to FeO and Fe for the steam-iron process, which was confirmed by both the off-gases concentrations and X-ray diffractometer analysis. The reduction of Fe{sub 2}O{sub 3} by K-10-char at 1073 K is desirable from the perspective of the carbon conversion rate and high concentration of CO{sub 2}. The carbon in char was completely converted to CO{sub 2} when the mass ratio of Fe{sub 2}O{sub 3}/K-10-char was increased to 10/0.3. The oxidation rate of K-10-char by Fe{sub 2}O{sub 3} without a gasifying agent was comparable to the K-10-char steam gasification rate. The fractions of FeO and Fe in the reduced residue were 43 and 57%, respectively, in the case of 3 g of Fe{sub 2}O{sub 3} and 0.5 g of K-10-char, which was verified by the total H{sub 2} yield equaling 1000 mL/g K-10-char from the steam-iron process. The time that it took to achieve complete oxidation of Fe{sub 3}O{sub 4} to Fe{sub 2}O{sub 3} by air with an 8.7% O{sub 2} concentration at 1073 K was about 15 min. 53 refs., 19 figs., 5 tabs.

Jing-biao Yang; Ning-sheng Cai; Zhen-shan Li [Tsinghua University, Beijing (China). Key Laboratory of Thermal Science and Power Engineering of Ministry of Education

2008-07-15T23:59:59.000Z

100

Sustainable Coal Use | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Coal Use Sustainable Coal Use Coal is a vital energy resource, not only for the United States, but also for many developed and developing economies around the world....

Note: This page contains sample records for the topic "world steam coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

4 - Coal resources and reserves  

Science Journals Connector (OSTI)

Abstract: Coal resources still make up a significant proportion of the world’s energy supplies. Coal resources are estimated to be 860 billion tonnes. These resources are geographically well distributed and current production provides fuel for 29% of the world’s primary energy consumption. The classification of coal resources and reserves has been redefined in recent years, with the standards and codes of practice adopted by the principal coal-producing countries being equated on a global basis. Details of the principal classifications are given, together with their international equivalents. Reporting of resources and reserves plus methods of calculation are also given, together with recent assessments of global coal reserves.

L.P. Thomas

2013-01-01T23:59:59.000Z

102

Consensus Coal Production Forecast for  

E-Print Network (OSTI)

Rate Forecasts 19 5. EIA Forecast: Regional Coal Production 22 6. Wood Mackenzie Forecast: W.V. Steam to data currently published by the Energy Information Administration (EIA), coal production in the state in this report calls for state production to decline by 11.3 percent in 2009 to 140.2 million tons. During

Mohaghegh, Shahab

103

A Methodology for Estimating the Parameters of Steam Turbine Generator Shaft Systems for Subsynchronous Resonance Studies .  

E-Print Network (OSTI)

??The increase of coal and nuclear power steam turbines over the past few decades combined with transmission line series capacitors creates a potential drawback known… (more)

Sambarapu, Krishna

2012-01-01T23:59:59.000Z

104

Kinetic models comparison for steam gasification of different nature fuel chars  

Science Journals Connector (OSTI)

The reactivity in steam of five different types of solid fuels (two coals, two types of biomass and a petcoke) has been studied. The fuel chars...

J. Fermoso; B. Arias; C. Pevida; M. G. Plaza…

2008-03-01T23:59:59.000Z

105

Natural radioactivity of Zambian coal and coal ash  

Science Journals Connector (OSTI)

226Ra and232Th specific activities in coal from Maamba Collieries in Zambia have been...?1..., respectively. These values are nearly two and a half times larger than the world average for coal an...

P. Hayumbu; M. B. Zaman; S. S. Munsanje

1995-11-01T23:59:59.000Z

106

Energy Savings By Recovery of Condensate From Steam Heating System  

E-Print Network (OSTI)

and reduces steam supply, saving 4061 tons of industrial water per year. The total saved steam amounts to 25.~ of the total amount of steM supply. The total saved cost is 39616 yuan per year; the total saved amount of coal is 329.9 tons per year... and reduces steam supply, saving 4061 tons of industrial water per year. The total saved steam amounts to 25.~ of the total amount of steM supply. The total saved cost is 39616 yuan per year; the total saved amount of coal is 329.9 tons per year...

Cheng, W. S.; Zhi, C. S.

107

Changes in char structure during the gasification of a Victorian brown coal in steam and oxygen at 800{degree}C  

SciTech Connect

Char structure is an important factor influencing its reactivity during gasification. This study aims to investigate the changes in char structure during the gasification of brown coal. A Victorian brown coal was gasified in a fluidized-bed/fixed-bed reactor at 800{degree}C in atmospheres containing 15% H{sub 2}O, 2000 ppm O{sub 2}, or 15% H{sub 2}O and 2000 ppm O{sub 2}, respectively. Although the char gasification in 2000 ppm O{sub 2} was mainly rate-limited by the external diffusion of O{sub 2}, the char-H{sub 2}O reaction was mainly rate-limited by the chemical reactions. The structural features of char at different levels of char gasification conversion were examined with FT-Raman spectroscopy. Our results show that the chars from the gasification in the mixture of 2000 ppm O{sub 2} and 15% H{sub 2}O had almost the same features as the chars from the gasification in 15% H{sub 2}O alone when the same levels of char conversion were achieved. Both the thermal decomposition of char and the char gasification reactions could result in changes in char structure during gasification. 29 refs., 5 figs., 1 tab.

Xin Guo; Hui Ling Tay; Shu Zhang; Chun-Zhu Li [Monash University, Vic. (Australia). Department of Chemical Engineering

2008-11-15T23:59:59.000Z

108

The Asia-Pacific coal technology conference  

SciTech Connect

The Asia-Pacific coal technology conference was held in Honolulu, Hawaii, November 14--16, 1989. Topics discussed included the following: Expanded Horizons for US Coal Technology and Coal Trade; Future Coal-Fired Generation and Capacity Requirements of the Philippines; Taiwan Presentation; Korean Presentation; Hong Kong Future Coal Requirements; Indonesian Presentation; Electric Power System in Thailand; Coal in Malaysia -- A Position Paper; The US and Asia: Pacific Partners in Coal and Coal Technology; US Coal Production and Export; US Clean Coal Technologies; Developments in Coal Transport and Utilization; Alternative/Innovative Transport; Electricity Generation in Asia and the Pacific: Power Sector Demand for Coal, Oil and Natural Gas; Role of Clean Coal Technology in the Energy Future of the World; Global Climate Change: A Fossil Energy Perspective; Speaker: The Role of Coal in Meeting Hawaii's Power Needs; and Workshops on Critical Issues Associated with Coal Usage. Individual topics are processed separately for the data bases.

Not Available

1990-02-01T23:59:59.000Z

109

Steam turbine upgrading: low-hanging fruit  

SciTech Connect

The thermodynamic performance of the steam turbine, more than any other plant component, determines overall plant efficiency. Upgrading steam path components and using computerized design tools and manufacturing techniques to minimise internal leaks are two ways to give tired steam turbines a new lease on life. The article presents three case studies that illustrate how to do that. These are at Unit 1 of Dairyland's J.P. Madgett Station in Alma, WI, a coal-fired subcritical steam plant; the four units at AmerenUE's 600 MW coal-fired Labadie plant west of St. Louis; and Unit 3 of KeyPlan Corp's Northport Power Station on Long Island. 8 figs.

Peltier, R.

2006-04-15T23:59:59.000Z

110

Oxidation of advanced steam turbine alloys  

SciTech Connect

Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

2006-03-01T23:59:59.000Z

111

Steam Turbine Materials and Corrosion  

SciTech Connect

Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760 °C. In prior years this project examined the steamside oxidation of alloys for use in high- and intermediate-pressure USC turbines. This steamside oxidation research is continuing and progress is presented, with emphasis on chromia evaporation.

Holcomb, G.H.; Hsu, D.H.

2008-07-01T23:59:59.000Z

112

International Energy Outlook 1999 - Coal  

Gasoline and Diesel Fuel Update (EIA)

coal.jpg (1776 bytes) coal.jpg (1776 bytes) CoalÂ’s share of world energy consumption falls slightly in the IEO99 forecast. Coal continues to dominate many national fuel markets in developing Asia, but it is projected to lose market share to natural gas in some other areas of the world. Historically, trends in coal consumption have varied considerably by region. Despite declines in some regions, world coal consumption has increased from 84 quadrillion British thermal units (Btu) in 1985 to 93 quadrillion Btu in 1996. Regions that have seen increases in coal consumption include the United States, Japan, and developing Asia. Declines have occurred in Western Europe, Eastern Europe, and the countries of the former Soviet Union. In Western Europe, coal consumption declined by 30

113

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant (Redirected from Flash Steam Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility

114

EIA - 2010 International Energy Outlook - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2010 Coal In the IEO2010 Reference case, world coal consumption increases by 56 percent from 2007 to 2035, and coal's share of world energy consumption grows from 27 percent in 2007 to 28 percent in 2035. Figure 60. World coal consumption by country grouping, 1980-2035. Click to enlarge » Figure source and data excel logo Figure 61. Coal share of world energy consumption by sector, 2007, 2020, and 2035. Click to enlarge » Figure source and data excel logo Figure 62. OECD coal consumption by region, Click to enlarge » Figure source and data excel logo Figure 63. Non-OECD coal consumption by region, 1980,2007,2020, and 2035. Click to enlarge » Figure source and data excel logo Figure 64. Coal consumption in China by sector, 2007, 2020, and 2035.

115

Steam Turbine Cogeneration  

E-Print Network (OSTI)

Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

Quach, K.; Robb, A. G.

2008-01-01T23:59:59.000Z

116

Method of operating a two-stage coal gasifier  

DOE Patents (OSTI)

A method of operating an entrained flow coal gasifier (10) via a two-stage gasification process. A portion of the coal (18) to be gasified is combusted in a combustion zone (30) with near stoichiometric air to generate combustion products. The combustion products are conveyed from the combustion zone into a reduction zone (32) wherein additional coal is injected into the combustion products to react with the combustion products to form a combustible gas. The additional coal is injected into the reduction zone as a mixture (60) consisting of coal and steam, preferably with a coal-to-steam weight ratio of approximately ten to one.

Tanca, Michael C. (Tariffville, CT)

1982-01-01T23:59:59.000Z

117

EIA - International Energy Outlook 2007 - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2007 Chapter 5 - Coal In the IEO2007 reference case, world coal consumption increases by 74 percent from 2004 to 2030, international coal trade increases by 44 percent from 2005 to 2030, and coalÂ’s share of world energy consumption increases from 26 percent in 2004 to 28 percent in 2030. Figure 54. World Coal Consumption by Region, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy at 202-586-8800. Figure Data Figure 55. Coal Share of World Energy Consumption by Sector, 2004, 2015, and 2030 (Percent). Need help, contact the National Energy at 202-586-8800. Figure Data In the IEO2007 reference case, world coal consumption increases by 74 percent over the projection period, from 114.4 quadrillion Btu in 2004 to

118

Achieve Steam System Excellence- Steam Overview  

Energy.gov (U.S. Department of Energy (DOE))

This fact sheet describes a steam systems approach to help companies operate and maintain their industrial steam plants and thermal manufacturing processes more efficiently.

119

HP Steam Trap Monitoring  

E-Print Network (OSTI)

Consumption Peak Demand Mgt Peak Demand Mgt Similar Weather Day Analysis Metering and Verafication Steam Meter Monitoring ? Peak Demand Management ? Steam Consumption Management ? Steam Bill Verification ? Measurement and Verification ... Consumption Peak Demand Mgt Peak Demand Mgt Similar Weather Day Analysis Metering and Verafication Steam Meter Monitoring ? Peak Demand Management ? Steam Consumption Management ? Steam Bill Verification ? Measurement and Verification ...

Pascone, S.

2011-01-01T23:59:59.000Z

120

Extraction Steam Controls at EPLA-W  

E-Print Network (OSTI)

ExxonMobil's Baton Rouge site encompasses a world-scale refinery, chemical plant and third party power station. Historically, inflexible and unreliable control systems on two high-pressure, extracting/condensing steam turbines prevented the site...

Brinker, J. L.

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "world steam coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The revolutionary impact of the steam engine  

E-Print Network (OSTI)

Sitting with a model of Stephenson’s Rocket, Simon Schaffer reflects on the steam revolution and how it changed the world in the nineteenth century in so many different ways....

Dugan, David

2004-08-18T23:59:59.000Z

122

COAL LOGISTICS. Tracking U.S. Coal Exports  

SciTech Connect

COAL LOGISTICS has the capability to track coal from a U. S. mine or mining area to a foreign consumer`s receiving dock. The system contains substantial quantities of information about the types of coal available in different U. S. coalfields, present and potential inland transportation routes to tidewater piers, and shipping routes to and port capabilities in Italy, Japan, South Korea, Taiwan, and Thailand. It is designed to facilitate comparisons of coal quality and price at several stages of the export process, including delivered prices at a wide range of destinations. COAL LOGISTICS can be used to examine coal quality within or between any of 18 U. S. coalfields, including three in Alaska, or to compare alternative routes and associated service prices between coal-producing regions and ports-of-exit. It may be used to explore the possibilities of different ship sizes, marine routes, and foreign receiving terminals for coal exports. The system contains three types of information: records of coal quality, domestic coal transportation options, and descriptions of marine shipment routes. COAL LOGISTICS contains over 3100 proximate analyses of U. S. steam coals, usually supplemented by data for ash softening temperature and Hardgrove grindability; over 1100 proximate analyses for coals with metallurgical potential, usually including free swelling index values; 87 domestic coal transportation options: rail, barge, truck, and multi-mode routes that connect 18 coal regions with 15 U. S. ports and two Canadian terminals; and data on 22 Italian receiving ports for thermal and metallurgical coal and 24 coal receiving ports along the Asian Pacific Rim. An auxiliary program, CLINDEX, is included which is used to index the database files.

Sall, G.W. [US Department of Energy, Office of Fossil Energy, Washington, DC (United States)

1988-06-28T23:59:59.000Z

123

International Energy Outlook 2000 - Coal  

Gasoline and Diesel Fuel Update (EIA)

Although coal use is expected to be displaced by natural gas in some parts of the world, Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2020. Coal continues to dominate many national fuel markets in developing Asia. Historically, trends in coal consumption have varied considerably by region. Despite declines in some regions, world coal consumption has increased from 84 quadrillion British thermal units (Btu) in 1985 to 93 quadrillion Btu in 1997. Regions that have seen increases in coal consumption include the United States, Japan, and developing Asia. Declines have occurred in Western Europe, Eastern Europe, and the countries of the former Soviet Union (FSU). In Western Europe, coal consumption declined by 33 percent between 1985 and 1997, displaced in considerable measure by

124

International Energy Outlook 2001 - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal picture of a printer Printer Friendly Version (PDF) Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2020. Coal continues to dominate many national fuel markets in developing Asia. World coal consumption has been in a period of generally slow growth since the late 1980s, a trend that is expected to continue. Although 1999 world consumption, at 4.7 billion short tons,9 was 15 percent higher than coal use in 1980, it was lower than in any year since 1984 (Figure 51). The International Energy Outlook 2001 (IEO2001) reference case projects some growth in coal use between 1999 and 2020, at an average annual rate of 1.5 percent, but with considerable variation among regions.

125

EIA - International Energy Outlook 2008-Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2008 Chapter 4 - Coal In the IEO2008 reference case, world coal consumption increases by 65 percent and international coal trade increases by 53 percent from 2005 to 2030, and coalÂ’s share of world energy consumption increases from 27 percent in 2005 to 29 percent in 2030. Figure 46. World Coal Consumption by Country Grouping, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 47. Coal Share of World Energy Consumption by Sector, 2005, 2015, and 2030 (Percent). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 48. OECD Coal Consumption by Region, 1980, 2005, 2015, and 2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

126

Coal Gasification  

Energy.gov (U.S. Department of Energy (DOE))

DOE's Office of Fossil Energy supports activities to advance coal-to-hydrogen technologies, specifically via the process of coal gasification with sequestration. DOE anticipates that coal...

127

Steam System Survey Guide  

Energy.gov (U.S. Department of Energy (DOE))

This guide provides technical information for steam system operational personnel and plant energy managers on some of the major opportunities available to improve the energy efficiency and productivity of industrial steam systems. The guide covers five main areas of investigation: (1) profiling a steam system, (2) identifying steam properties for the steam system, (3) improving boiler operations, (4) improving resource utilization in the steam system, and (5) investigating energy losses in the steam distribution system.

128

Steam Path Audits on Industrial Steam Turbines  

E-Print Network (OSTI)

steam Path Audits on Industrial steam Turbines DOUGLAS R. MITCHELL. ENGINEER. ENCOTECH, INC., SCHENECTADY, NEW YORK ABSTRACT The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits... not extend the turbine outage. To assure that all of the turbine audit data are available, the audit engineer must be at the turbine site the day the steam path is first exposed. A report of the opening audit findings is generated to describe the as...

Mitchell, D. R.

129

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility Type Commercial Online Date Geothermal Area

130

Ultra supercritical turbines--steam oxidation  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy?s Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538?C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620?C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which would require steam temperatures of up to 760?C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Ziomek-Moroz, Margaret; Alman, David E.

2004-01-01T23:59:59.000Z

131

Thomas Reddinger Director, Steam  

E-Print Network (OSTI)

Thomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance Supervisor (Distribution) Deborah Moorhead Office Coordinator III Martin Bower Steam Plant Operator Richard Redfield Steam Plant Operator SU Steam Station/Chilled Water Plant Bohdan Sawa Steam Plant Operator Robert

McConnell, Terry

132

Slurry atomizer for a coal-feeder and dryer used to provide coal at gasifier pressure  

DOE Patents (OSTI)

The present invention is directed to a coal-water slurry atomizer for use a high-pressure dryer employed in a pumping system utilized to feed coal into a pressurized coal gasifier. The slurry atomizer is provided with a venturi, constant area slurry injection conduit, and a plurality of tangentially disposed steam injection ports. Superheated steam is injected into the atomizer through these ports to provide a vortical flow of the steam, which, in turn, shears slurry emerging from the slurry injection conduit. The droplets of slurry are rapidly dispersed in the dryer through the venturi where the water is vaporized from the slurry by the steam prior to deleterious heating of the coal.

Loth, John L. (Morgantown, WV); Smith, William C. (Morgantown, WV); Friggens, Gary R. (Morgantown, WV)

1982-01-01T23:59:59.000Z

133

WCI Case for Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Coal The role of as an energy source The role of coal as an energy source Key Messages * Energy demand has grown strongly and will continue to increase, particularly in developing countries where energy is needed for economic growth and poverty alleviation. * All energy sources will be needed to satisfy that demand by providing a diverse and balanced supply mix. * Coal is vital for global energy security. It is abundantly available, affordable, reliable and easy and safe to transport. * In an energy hungry world the challenge for coal, as for other fossil fuels, is to further substantially reduce its greenhouse gas and other emissions, while continuing to make a major contribution to economic and social development and energy security. * Coal is part way down a technology pathway that has already delivered major

134

coking coal  

Science Journals Connector (OSTI)

coking coal [A caking coal suitable for the production of coke for metallurgical use] ? Kokskohle f, verkokbare Kohle

2014-08-01T23:59:59.000Z

135

EIA - International Energy Outlook 2009-Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2009 Chapter 4 - Coal In the IEO2009 reference case, world coal consumption increases by 49 percent from 2006 to 2030, and coalÂ’s share of world energy consumption increases from 27 percent in 2006 to 28 percent in 2030. Figure 42. World Coal Consumption by Country Grouping, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 43. Coal Share of World Energy Consumption by Sector, 2006, 2015, and 2030 (Percent). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 44. OECD Coal Consumption by Region, 1980, 2006, 2015, and 2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

136

Estimating coal production peak and trends of coal imports in China  

SciTech Connect

More than 20 countries in the world have already reached a maximum capacity in their coal production (peak coal production) such as Japan, the United Kingdom and Germany. China, home to the third largest coal reserves in the world, is the world's largest coal producer and consumer, making it part of the Big Six. At present, however, China's coal production has not yet reached its peak. In this article, logistic curves and Gaussian curves are used to predict China's coal peak and the results show that it will be between the late 2020s and the early 2030s. Based on the predictions of coal production and consumption, China's net coal import could be estimated for coming years. This article also analyzes the impact of China's net coal import on the international coal market, especially the Asian market, and on China's economic development and energy security. 16 refs., 5 figs., 6 tabs.

Bo-qiang Lin; Jiang-hua Liu [Xiamen University, Xiamen (China). China Center for Energy Economics Research (CCEER)

2010-01-15T23:59:59.000Z

137

Methane and Coal  

Science Journals Connector (OSTI)

... stored source of the energy supplies of the world ; every twenty years the world burns a volume of coal equivalent to the volume of Snowdon (a cone of base ... hole method being most in favour. This method is being applied in about twelve British pits. The amount of methane drawn off appears to depend on the movement of the ...

ALFRED EGERTON

1952-07-19T23:59:59.000Z

138

Chapter 5 - Technologies for Coal Utilization  

Science Journals Connector (OSTI)

Publisher Summary This chapter deals with the technologies for coal utilization. Coal use in the United States had been primarily for iron and steel production, locomotives for transportation, and household heat. In addition, many chemicals, including medicines, dyes, flavorings, ammonia, and explosives were produced from coal. Coal is used in the industrial sector for producing steam and to a lesser extent electricity, and some chemicals are produced from coal. The chapter explores the technologies used for generating power, heat, coke, and chemicals and includes combustion, carbonization, gasification, and liquefaction, which have been referred to as the four “grand processes” of coal utilization. Advances in materials of construction, system designs, and fuel firing have led to increasing capacity and higher steam operating temperatures and pressures. In the United States, utilities typically choose between two basic pulverized coal-fired watertube steam generators: subcritical drum-type boilers with nominal operating pressures of either 1900 or 2600 psig or once-through supercritical units operating at 3800 psig advances. The chapter concludes by emphasizing on coal combustion, as this technology is the single largest user of coal.

Bruce G. Miller

2005-01-01T23:59:59.000Z

139

SteamMaster: Steam System Analysis Software  

E-Print Network (OSTI)

STEAMMASTER: STEAM SYSTEM ANALYSIS SOFTW ARE Greg Wheeler Associate Professor Oregon State University Corvallis, OR 9733 I ABSTRACT As director of Oregon's ]ndustrial Assessment Center, [ have encountered many industrial steam systems during... plant visits. We analyze steam systems and make recommendations to improve system efficiency. [n nearly 400 industrial assessments, we have recommended 210 steam system improvements, excluding heat recovery, that would save $1.5 million/year with a...

Wheeler, G.

140

Definition: Bituminous coal | Open Energy Information  

Open Energy Info (EERE)

Bituminous coal Bituminous coal Jump to: navigation, search Dictionary.png Bituminous coal A dense coal, usually black, sometimes dark brown, often with well-defined bands of bright and dull material, used primarily as fuel in steam-electric power generation, with substantial quantities also used for heat and power applications in manufacturing and to make coke; contains 45-86% carbon.[1][2] View on Wikipedia Wikipedia Definition Bituminous coal or black coal is a relatively soft coal containing a tarlike substance called bitumen. It is of higher quality than lignite coal but of poorer quality than anthracite. Formation is usually the result of high pressure being exerted on lignite. Its composition can be black and sometimes dark brown; often there are well-defined bands of bright and dull

Note: This page contains sample records for the topic "world steam coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Integrated coal cleaning, liquefaction, and gasification process  

DOE Patents (OSTI)

Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

Chervenak, Michael C. (Pennington, NJ)

1980-01-01T23:59:59.000Z

142

Coal competition: prospects for the 1980s  

SciTech Connect

This report consists of 10 chapters which present an historical overview of coal and the part it has played as an energy source in the economic growth of the United States from prior to World War II through 1978. Chapter titles are: definition of coals, coal mining; types of coal mines; mining methods; mining work force; development of coal; mine ownership; production; consumption; prices; exports; and imports. (DMC)

Not Available

1981-03-01T23:59:59.000Z

143

Clean Fuels from Coal Gasification  

Science Journals Connector (OSTI)

...appreciably larger sizes than coal to other...they grew to a size to fall upon an...air-blown Winkler gasifier pro-ducing power...additional gasification medium (air or oxygen-steam...provide "pure" gasifier Test revamp Develop larger sizes Develop pressure...

Arthur M. Squires

1974-04-19T23:59:59.000Z

144

Clean Fuels from Coal Gasification  

Science Journals Connector (OSTI)

...superheating and water-heating sections of the boiler...percent on a higher heating value basis. Conclusions...made historically by heating bitumi-nous coal in...heart of the anthracite district only about 5 years ago...energy, wind, and geothermal steam and brines, will...

Arthur M. Squires

1974-04-19T23:59:59.000Z

145

Integration and operation of post-combustion capture system on coal-fired power generation: load following and peak power  

E-Print Network (OSTI)

Coal-fired power plants with post combustion capture and sequestration (CCS) systems have a variety of challenges to integrate the steam generation, air quality control, cooling water systems and steam turbine with the ...

Brasington, Robert David, S.M. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

146

Energy Tips: Benchmark the Fuel Cost of Steam Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Type (sales unit) Type (sales unit) Energy Content Combustion (Btu/sales unit) Efficiency (%) Natural Gas (therm) 100,000 81.7 Natural Gas (cubic foot) 1,030 81.7 Distillate/No. 2 Oil (gallon) 138,700 84.6 Residual/No. 6 Oil (gallon) 149,700 86.1 Coal (ton) 27,000,000 87.6 Benchmark the Fuel Cost of Steam Generation Benchmarking the fuel cost of steam generation ($/1000 lbs of steam) is an effective way to assess the efficiency of your steam system. This cost is dependent upon fuel type, unit fuel cost, boiler efficiency, feedwater temperature, and steam pressure. This calculation provides a good first approximation for the cost of generating steam and serves as a tracking device to allow for boiler performance monitoring. Table 1 shows the heat input required to produce one pound of saturated

147

Methane-steam reforming  

SciTech Connect

A discussion covers steam reforming developments to the 1950's; the kinetics of methane-steam reforming, of the water-gas shift during methane-steam reforming, and of the carbon formation during methane-steam reforming, as approached by Akers and Camp.

Van Hook, J.P.

1980-01-01T23:59:59.000Z

148

Report of Shelton wood-coal firing tests conducted March 16-April 2, 1980  

SciTech Connect

Wood and coal combinations were tested at representative steam rates while boiler performance, gaseous and particulate emissions were measured. Wood and coal combinations were tested at representative steam rates while boiler performance, gaseous and particulate emissions were measured. Wood contributed up to 50% of the Btu requirements of the boilers during the tests. The Quinault-Pacific system will permit selected green mill residues to be used in place of coal at the rate of 2.5 tons of wood per ton of coal. Green wood and coal are compatible fuels. Heat provided by the coal and other combustion effects are enough to offset the effects of moisture in green wood and in some cases improve boiler performance. The combined firing of wood with coal at typical steam rates results in better flyash collection, lower emissions, improved opacity, better cinder recovery and lower steam costs.

Not Available

1980-05-09T23:59:59.000Z

149

NYMEX Coal Futures - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

NYMEX Coal Futures Near-Month Contract Final Settlement Price 2013 NYMEX Coal Futures Near-Month Contract Final Settlement Price 2013 Data as of: December 13, 2013 | Release Date: December 16, 2013 | Next Release Date: December 30, 2013 U.S. coal exports, chiefly Central Appalachian bituminous, make up a significant percentage of the world export market and are a relevant factor in world coal prices. Because coal is a bulk commodity, transportation is an important aspect of its price and availability. In response to dramatic changes in both electric and coal industry practices, the New York Mercantile Exchange (NYMEX) after conferring with coal producers and consumers, sought and received regulatory approval to offer coal futures and options contracts. On July 12, 2001, NYMEX began trading Central Appalachian Coal futures under the QL symbol.

150

1 - Social and economic value of coal  

Science Journals Connector (OSTI)

Abstract: As the world’s leading source of electric power, coal is the continuing cornerstone of economic development, social progress, and a higher quality of life. Coal is powering the twenty-first century economic miracles rapidly unfolding in China and India, as reliability, affordability, and availability make coal the fuel of choice in the developing world. Demand modeling from both the International Energy Agency and US Energy Information Administration indicates that coal will provide the most amount of incremental energy over the next two decades. Looking forward, with the expanding implementation of clean coal technologies, the door to coal’s global leadership role will remain open as the world strives to meet the ever-rising demand for energy while reducing greenhouse gas emissions.

J. Clemente; F. Clemente

2013-01-01T23:59:59.000Z

151

NETL: Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

use of our domestic energy resources and infrastructure. Gasification Systems | Advanced Combustion | Coal & Coal-Biomass to Liquids | Solid Oxide Fuel Cells | Turbines CO2...

152

Steam Systems | Department of Energy  

Office of Environmental Management (EM)

Reduction: Opportunities and Issues How to Calculate the True Cost of Steam Industrial Heat Pumps for Steam and Fuel Savings Industrial Steam System Heat-Transfer Solutions...

153

Development of a coal reserve GIS model and estimation of the recoverability and extraction costs.  

E-Print Network (OSTI)

??The United States has the world largest coal resource and coal will serve as the major and dependable energy source in the coming 200 years… (more)

Apala, Chandrakanth, Reddy.

2009-01-01T23:59:59.000Z

154

Coal mine methane global review  

SciTech Connect

This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

NONE

2008-07-01T23:59:59.000Z

155

Annual Coal Distribution Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Foreign Distribution of U.S. Coal by Major Coal-Exporting States and Foreign Distribution of U.S. Coal by Major Coal-Exporting States and Destination, 2001 Coal-Exporting State and Destination Metallurgical Steam Total Alaska - 761 761 South Korea - 761 761 Alabama 4,667 167 4,834 Argentina 155 - 155 Belgium 989 - 989 Brazil 1,104 - 1,104 Bulgaria 82 - 82 Egypt 518 - 518 Italy 115 - 115 Netherlands 56 83 139 Spain 412 84 496 Turkey 581 - 581 United Kingdom 654 - 654 Kentucky 2,130 - 2,130 Canada 920 - 920 France 22 - 22 Iceland 9 - 9 Italy 430 - 430 Netherlands 417 - 417 Spain 9 - 9 United Kingdom 323 - 323 Pennsylvania 1,086 14,326 15,722 Belgium - 203 203 Brazil 372 - 373 Canada - 12,141 12,418 France - 84 84 Germany 495 165 661 Ireland - 136 136 Netherlands 219 879 1,097 Norway - - 7 Peru - - 21 Portugal - 634 634 United Kingdom - 85 85 Venezuela - - 3 Utah - 1,420 1,420 Japan - 1,334 1,334 Taiwan - 86 86 Virginia 4,531

156

Steam atmosphere drying exhaust steam recompression system  

DOE Patents (OSTI)

This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

1994-03-08T23:59:59.000Z

157

The end of cheap coal  

Science Journals Connector (OSTI)

... World energy policy is gripped by a fallacy — the idea that coal is destined to stay cheap for decades to come. This assumption supports investment in ... destined to stay cheap for decades to come. This assumption supports investment in 'clean-coal' technology and trumps serious efforts to increase energy conservation and develop alternative energy sources. ...

Richard Heinberg, David Fridley

2010-11-17T23:59:59.000Z

158

Quantitative description of steam channels after steam flooding  

Science Journals Connector (OSTI)

Steam channeling is one of the main barriers for EOR after steam flooding. In order to enhance the oil recovery in steam flooded reservoirs, steam channel volumes should be precisely known. In ... methods has bee...

Qiang Zheng; HuiQing Liu; Fang Li; Qing Wang…

2013-05-01T23:59:59.000Z

159

Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000  

SciTech Connect

The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over $5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric power marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal--abundant, secure, and economical--can continue in its role as a key component in the U.S. and world energy markets. The CCT Program also has global importance in providing clean, efficient coal-based technology to a burgeoning energy market in developing countries largely dependent on coal. Based on 1997 data, world energy consumption is expected to increase 60 percent by 2020, with almost half of the energy increment occurring in developing Asia (including China and India). By 2020, energy consumption in developing Asia is projected to surpass consumption in North America. The energy form contributing most to the growth is electricity, as developing Asia establishes its energy infrastructure. Coal, the predominant indigenous fuel, in that region will be the fuel of choice in electricity production. The CCTs offer a means to mitigate potential environmental problems associated with unprecedented energy growth, and to enhance the U.S. economy through foreign equipment sales and engineering services.

NONE

2000-09-01T23:59:59.000Z

160

Waste Steam Recovery  

E-Print Network (OSTI)

An examination has been made of the recovery of waste steam by three techniques: direct heat exchange to process, mechanical compression, and thermocompression. Near atmospheric steam sources were considered, but the techniques developed are equally...

Kleinfeld, J. M.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "world steam coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Downhole steam quality measurement  

DOE Patents (OSTI)

The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

1985-06-19T23:59:59.000Z

162

Steam Digest 2001  

SciTech Connect

Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

Not Available

2002-01-01T23:59:59.000Z

163

Desulfurization of Texas lignite using steam and air  

E-Print Network (OSTI)

in Coal Sulfur Removal From Coal By Pyrolysis EXPERIMENTAL METHOD Experimental Apparatus Experimental Procedure Analyses of the Products RESULTS AND DISCUSSION Temperature Effect Upon Desulfurization Pressure Effect Upon Desulfurization... . Treatment Composition Effect Pyrolysis Conditions vs. Addition of' Air V1 V111 ix 10 15 20 24 31 31 35 39 43 45 49 52 53 V11 TABLE OF CONTENTS (Continued) PAGE Pyrolysis Conditions vs. Addition of Steam and Air . . 53 Sulfur Removal...

Stone, Robert Reginald

1981-01-01T23:59:59.000Z

164

Sequential steam; An engineered cyclic steaming method  

SciTech Connect

Cyclic steam injection has been the most widely used EOR method in areas of the Potter sand in the Midway-Sunset field, Kern County, CA. This paper discusses the field pilot and the statistical and theoretical studies leading to the design of a sequential steaming process,plus the implementation of this process on three leases.

Jones, J. (Santa Fe Energy Resources Inc., Bakersfield, CA (US)); Cawthon, J. (Groundwater Resources Inc. (US))

1990-07-01T23:59:59.000Z

165

Hydrocarbon steam reforming using series steam superheaters  

SciTech Connect

In a process for steam reforming of a hydrocarbon gas feedstream wherein: the hydrocarbon gas feedstream is partially reformed at elevated temperatures in indirect heat exchange with hot combustion gases in a direct fired primary reforming furnace provided with a convection section for recovery of excess heat from said combustion gases; and the partially reformed feedstream is then further reformed in the presence of an oxygen-containing gas and steam in a secondary reformer to form a secondary reformer gaseous effluent; the improvement which comprises recovering waste heat from said secondary reformer effluent gas and from said primary reforming combustion products by heating a high pressure saturated steam in a first steam superheating zone by indirect heat exchange with at least a portion of said secondary reformer effluent gas to form a first superheated steam stream; and further heating said first superheated steam in a second steam superheating zone by indirect heat exchange with at least a portion of said primary reformer hot combustion gases for form a second superheated steam stream.

Osman, R. M.

1985-10-08T23:59:59.000Z

166

Effect of Adsorption Contact Time on Coking Coal Particle Desorption Characteristics  

Science Journals Connector (OSTI)

Effect of Adsorption Contact Time on Coking Coal Particle Desorption Characteristics ... Esp. in the last decade a large amt. of data has been published characterizing coals from various coal basins world-wide for their gas sorption capacity. ...

Wei Zhao; Yuanping Cheng; Meng Yuan; Fenghua An

2014-03-20T23:59:59.000Z

167

Coal Gasification in a Transport Reactor  

Science Journals Connector (OSTI)

These simulations were used to compare the response of coals gasified to those combusted substoichiometrically, to evaluate the optimum operating conditions and to predict the performance in larger-scale units with less heat loss. ... Entrained-flow gasifiers use high temperatures (1350?1550 °C) and gasify coals in 2?3 s. ... Kinetic studies were carried out to elucidate the mechanisms of steam and CO2 gasification of char and the interactions of these gasifying agents. ...

Lawrence J. Shadle; Esmail R. Monazam; Michael L. Swanson

2001-05-25T23:59:59.000Z

168

Short Communication Catalytic coal gasification: use of calcium versus potassium*  

E-Print Network (OSTI)

Short Communication Catalytic coal gasification: use of calcium versus potassium* Ljubisa R on the gasification in air and 3.1 kPa steam of North Dakota lignitic chars prepared under slow and rapid pyrolysis of calcium is related to its sintering via crystallite growth. (Keywords: coal; gasification; catalysis

169

Structural characteristics and gasification reactivity of chars prepared from K{sub 2}CO{sub 3} mixed HyperCoals and coals  

SciTech Connect

HyperCoal is a clean coal with mineral matter content <0.05 wt %. Oaky Creek (C = 82%), and Pasir (C = 68%) coals were subjected to solvent extraction method to prepare Oaky Creek HyperCoal, and Pasir HyperCoal. Experiments were carried out to compare the gasification reactivity of HyperCoals and parent raw coals with 20, 40, 50 and 60% K{sub 2}CO{sub 3} as a catalyst at 600, 650, 700, and 775{sup o}C with steam. Gasification rates of coals and HyperCoals were strongly influenced by the temperature and catalyst loading. Catalytic steam gasification of HyperCoal chars was found to be chemical reaction controlled in the 600-700{sup o}C temperature range for all catalyst loadings. Gasification rates of HyperCoal chars were found to be always higher than parent coals at any given temperature for all catalyst loadings. However, X-ray diffraction results showed that the microstructures of chars prepared from coals and HyperCoals were similar. Results from nuclear magnetic resonance spectroscopy show no significant difference between the chemical compositions of the chars. Significant differences were observed from scanning electron microscopy images, which showed that the chars from HyperCoals had coral-reef like structures whereas dense chars were observed for coals. 26 refs., 8 figs., 2 tabs.

Atul Sharma; Hiroyuki Kawashima; Ikuo Saito; Toshimasa Takanohashi [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan). Advanced Fuel Group

2009-04-15T23:59:59.000Z

170

CoalFleet RD&D augmentation plan for integrated gasification combined cycle (IGCC) power plants  

SciTech Connect

To help accelerate the development, demonstration, and market introduction of integrated gasification combined cycle (IGCC) and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiative, which facilitates collaborative research by more than 50 organizations from around the world representing power generators, equipment suppliers and engineering design and construction firms, the U.S. Department of Energy, and others. This group advised EPRI as it evaluated more than 120 coal-gasification-related research projects worldwide to identify gaps or critical-path activities where additional resources and expertise could hasten the market introduction of IGCC advances. The resulting 'IGCC RD&D Augmentation Plan' describes such opportunities and how they could be addressed, for both IGCC plants to be built in the near term (by 2012-15) and over the longer term (2015-25), when demand for new electric generating capacity is expected to soar. For the near term, EPRI recommends 19 projects that could reduce the levelized cost-of-electricity for IGCC to the level of today's conventional pulverized-coal power plants with supercritical steam conditions and state-of-the-art environmental controls. For the long term, EPRI's recommended projects could reduce the levelized cost of an IGCC plant capturing 90% of the CO{sub 2} produced from the carbon in coal (for safe storage away from the atmosphere) to the level of today's IGCC plants without CO{sub 2} capture. EPRI's CoalFleet for Tomorrow program is also preparing a companion RD&D augmentation plan for advanced-combustion-based (i.e., non-gasification) clean coal technologies (Report 1013221). 7 refs., 30 figs., 29 tabs., 4 apps.

NONE

2007-01-15T23:59:59.000Z

171

Section 5 - Coal  

Science Journals Connector (OSTI)

Coal has the longest history of use among the fossil fuels, with use as a fuel dating to 3000 BC in China and Wales. Marco Polo’s “Description of the World” (1298) comments on many novel customs and practices of China, including the use of “stones that burn like logs” (coal). By the thirteenth century the mining of coal was widespread in England in regions such as Durham, Nottinghamshire, Derbyshire, Staffordshire, and North and South Wales. By the early seventeenth century nearly half of England’s maritime trade consisted of coal exports. Coal was the fuel that launched the Industrial Revolution in Europe and then the United States. By the late 1890s, the U.S. assumed the lead in world coal production. Britain now ranked second, after having been the world leader since the beginnings of the formal industry in the 1500s. Germany was third, an indication of its growing industrial power relative to continental rival France. Coal’s leading role in energy use peaked in the early twentieth century, after which it was supplanted by oil and natural gas. By the late twentieth century China’s rapid economic expansion, surging demand for electricity, and prodigious coal resources combined to propel it to become the world leader in production. Continuous improvements in coal mining technology have produced lower costs, improved safety, and greater labor productivity. John Buddle introduced the first air pump to ventilate coal mines (1803), followed shortly by the miner’s safety lamps that were developed independently by Sir Humphry Davy, William Clanny, and George Stephenson (1813-1816). Coal mining underwent a rapid transition in the 1880s to mechanical coal cutting in mines in the United Kingdom, the United States, and Russia. The St. Joseph Lead Company of Missouri (1900) invented the first underground mine roof bolts that became a key safety feature in underground coal mines. The first commercially successful bucket wheel excavator was used at the Luise Mine in Braunkohlemwerke, Germany (1925), followed by the first successful continuous miners in U.S. underground coal mining (1948). The first mechanized U.S. longwall mining system appeared in 1951, and was followed by the self-advancing hydraulic longwall support system that provided greater support for the roof of the mine. LeTourneau Technologies, Inc. of Texas manufactured the largest rubber tired front-end wheel loader in the world, the L-2350, which would play an important role in loading coal in Wyoming’s large surface mines (2005). Coal mining has always been a very hazardous occupation, and has produced some of history’s worst industrial disasters. The Courrières mine disaster, Europe's worst mining accident, caused the death of 1,099 miners in Northern France (1906). An explosion in a coal mine in Liaoning province in northeastern China killed more than 1,500 Chinese miners (1942), as did other major accidents in Ky?sh?, Japan (1914), Wankie, Rhodesia (1972), Wales (1913), Bihar, India (1965), and West Virginia, U.S. (1907), to name just a few. Legislation such as the Federal Coal Mine Health and Safety Act in the U.S. (1969) improved working conditions in many nations. The Great Smog of London (1952) occurred after an exceptionally cold winter forced homes and factories to burn large quantities of coal. A temperature inversion formed, trapping pollutants above the ground. More than 4,000 people died from respiratory ailments within the following week. The use of coal has been impacted by legislation to control the environmental impacts associated with its mining and combustion. The first known environmental regulation of coal dates to 1306 when King Edward II of England prohibited burning sea coal while Parliament was in session because of its offensive smoke. Sulfur dioxide from coal combustion was tied to acid rain in the 1960s, and carbon dioxide emissions became a concern beginning in the 1980s when climate change emerged as a critical environmental issue.

Cutler J. Cleveland; Christopher Morris

2014-01-01T23:59:59.000Z

172

FACT SHEET: Clean Coal University Research Awards and Project Descriptions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SHEET: Clean Coal University Research Awards and SHEET: Clean Coal University Research Awards and Project Descriptions IMPROVED ALLOYS By substantially increasing the pressure and temperature of the steam used to produce power, advanced ultrasupercritical (AUSC) coal-fired power plants improve generation efficiency, use less coal and release less carbon pollution. The implementation of AUSC boilers requires materials with high-temperature oxidation, corrosion and deformation resistance. These selected projects will develop new surface modification techniques or optimize existing techniques for the protection of high-temperature alloys used in AUSC coal-fired boilers and in advanced gas turbines. Southern Illinois University (Carbondale, Ill.) - Southern Illinois University Carbondale

173

Coal pump  

DOE Patents (OSTI)

A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

1983-01-01T23:59:59.000Z

174

Steam turbine materials and corrosion  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines. The list of alloys being examined is discussed, including the addition of new alloys to the study. These include alloy 625, selected because of its use as one of the two alloys used for turbine rotors, valves, casings, blading and bolts in the European AD700 full-scale demonstration plant (Scholven Unit F). The other alloy, alloy 617, is already one of the alloys currently being examined by this project. Other new alloys to the study are the three round robin alloys in the UK-US collaboration: alloys 740, TP347HFG, and T92. Progress on the project is presented on cyclic oxidation in 50% air – 50% water vapor, furnace exposures in moist air, and thermogravimetric analysis in argon with oxygen saturated steam. An update on the progress towards obtaining an apparatus for high pressure exposures is given.

Holcomb, G.R.; Ziomek-Moroz, M.

2007-01-01T23:59:59.000Z

175

Review of underground coal gasification technologies and carbon capture  

Science Journals Connector (OSTI)

It is thought that the world coal reserve is close to 150?years, which only includes recoverable reserves using conventional techniques. Mining is the typical method of extracting coal, but it has been estimat...

Stuart J Self; Bale V Reddy; Marc A Rosen

2012-08-01T23:59:59.000Z

176

Fuel supply system and method for coal-fired prime mover  

DOE Patents (OSTI)

A coal-fired gas turbine engine is provided with an on-site coal preparation and engine feeding arrangement. With this arrangement, relatively large dry particles of coal from an on-site coal supply are micro-pulverized and the resulting dry, micron-sized, coal particulates are conveyed by steam or air into the combustion chamber of the engine. Thermal energy introduced into the coal particulates during the micro-pulverizing step is substantially recovered since the so-heated coal particulates are fed directly from the micro-pulverizer into the combustion chamber.

Smith, William C. (Morgantown, WV); Paulson, Leland E. (Morgantown, WV)

1995-01-01T23:59:59.000Z

177

New developments in coal briquetting technology  

SciTech Connect

Briquetting of coal has been with us for well over a century. In the earliest applications of coal briquetting, less valuable fine coal was agglomerated into briquettes using a wide variety of binders, including coal tar, pitch and asphalt. Eventually, roll briquetters came into more widespread use, permitting the process to become a continuous one. Coal briquetting went out of favor during the 1950s in most of the industrialized world. The major reason for this decline in use was the discovery that the coal gas distillates used for binders were harmful to human health. Also, the abundance of cheap petroleum made coal briquettes a less attractive alternative as an industrial or domestic fuel. The re-emergence of coal as a primary industrial fuel and also its increased prominence as a fuel for thermal electric power stations led to a large increase in the annual volume of coal being mined worldwide. Coal preparation technology steadily improved over the years with the general exception of fine coal preparation. The processes available for treating this size range were considerably more expensive per unit mass of coal treated than coarse coal processes. Also, costly dewatering equipment was required after cleaning to remove surface moisture. Even with dewatering, the high surface area per unit mass of fine coal versus coarse coal resulted in high moisture contents. Therefore, little incentive existed to improve the performance of fine coal processes since this would only increase the amount of wet coal fines which would have to be dealt with. With such an ever-increasing volume of coal fines being created each year, there emerged an interest in recovering this valuable product. Several schemes were developed to recover coal fines discarded in abandoned tailings impoundments by previous operations.

Tucker, P.V. [Kilborn Inc., Ontario (Canada); Bosworth, G.B. [Kilborn Engineering Pacific Ltd., Vancouver, British Columbia (Canada); Kalb, G.W. [KKS Systems Inc., Wheeling, WV (United States)

1993-12-31T23:59:59.000Z

178

Geothermal steam quality testing  

SciTech Connect

Geothermal steam quality and purity have a significant effect on the operational efficiency and life of geothermal steam turbines and accessory equipment. Poor steam processing can result in scaled nozzles/blades, erosion, corrosion, reduced utilization efficiency, and early fatigue failures accelerated by stress corrosion cracking (SCC). Upsets formed by undetected slugs of liquid entering the turbine can cause catastrophic failure. The accurate monitoring and determination of geothermal steam quality/purity is intrinsically complex which often results in substantial errors. This paper will review steam quality and purity relationships, address some of the errors, complexities, calibration and focus on: thermodynamic techniques for evaluating and monitoring steam quality by use of the modified throttling calorimeters.

Jung, D.B. [Two-Phase Engineering & Research, Inc., Santa Rosa, CA (United States)

1995-12-31T23:59:59.000Z

179

Improving steam turbine efficiency  

SciTech Connect

This paper describes the condition of a significant number of fossil steam turbines operating in the United States and the maintenance practices used to improve their performance. Through the use of steam path audits conducted by the authors` company and by several utilities, a large data base of information on turbine heat rate, casing efficiency, and maintenance practices is available to help the power generation industry understand how different maintenance practices and steam path damage impact turbine performance. The data base reveals that turbine cycle heat rate is typically 5.23% poorer than design just prior to major outages. The degraded condition of steam turbines presents an opportunity for utilities to improve heat rate and reduce emissions without increasing fuel costs. The paper describes what losses typically contribute to the 5.23% heat rate degradation and how utilities can recover steam turbine performance through maintenance actions aimed at improving steam path efficiency.

Cioffi, D.H.; Mitchell, D.R.; Whitecar, S.C. [Encotech, Inc., Schenectady, NY (United States)

1995-06-01T23:59:59.000Z

180

Steam generator support system  

DOE Patents (OSTI)

A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

Moldenhauer, James E. (Simi Valley, CA)

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "world steam coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Steam generator support system  

DOE Patents (OSTI)

A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

Moldenhauer, J.E.

1987-08-25T23:59:59.000Z

182

Multi-point and Multi-level Solar Integration into a Conventional Coal-Fired Power Plant  

Science Journals Connector (OSTI)

The integration assists the power plant to reduce coal (gas) consumption and pollution emission or to increase power output. ... The solar direct generated steam is used to replace part of the steam extractions from turbines. ... In other words, the solar heat carried by steam does not enter the turbine directly, different from that in other solar-power-generating systems. ...

Qin Yan; Yongping Yang; Akira Nishimura; Abbas Kouzani; Eric Hu

2010-02-25T23:59:59.000Z

183

Task 1: Steam Oxidation,”  

SciTech Connect

Need to improve efficiency, decrease emissions (esp. CO2) associated with the continued use of coal for power generation

I. G. Wright and G. R. Holcomb

2009-03-01T23:59:59.000Z

184

Firing of pulverized solvent refined coal  

DOE Patents (OSTI)

A burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired successfully without any performance limitations and without the coking of the solvent refined coal on the burner components. The burner is provided with a tangential inlet of primary air and pulverized fuel, a vaned diffusion swirler for the mixture of primary air and fuel, a center water-cooled conical diffuser shielding the incoming fuel from the heat radiation from the flame and deflecting the primary air and fuel steam into the secondary air, and a watercooled annulus located between the primary air and secondary air flows.

Lennon, Dennis R. (Allentown, PA); Snedden, Richard B. (McKeesport, PA); Foster, Edward P. (Macungie, PA); Bellas, George T. (Library, PA)

1990-05-15T23:59:59.000Z

185

The Invisibility of Steam  

Science Journals Connector (OSTI)

Almost everyone “knows” that steam is visible. After all one can see the cloud of white issuing from the spout of a boiling tea kettle. In reality steam is the gaseous phase of water and is invisible. What you see is light scattered from the tiny droplets of water that are the result of the condensation of the steam as its temperature falls below 100 °C (under standard conditions).

Thomas B. Greenslade Jr.

2014-01-01T23:59:59.000Z

186

Risk assessment of mortality for all-cause, ischemic heart disease, cardiopulmonary disease, and lung cancer due to the operation of the world's largest coal-fired power plant  

Science Journals Connector (OSTI)

Abstract Based on recent understanding of PM2.5 health-related problems from fossil-fueled power plants emission inventories collected in Taiwan, we have determined the loss of life expectancy (LLE) and the lifetime (75-year) risks for PM2.5 health-related mortalities as attributed to the operation of the world's largest coal-fired power plant; the Taichung Power Plant (TCP), with an installed nominal electrical capacity of 5780 MW in 2013. Five plausible scenarios (combinations of emission controls, fuel switch, and relocation) and two risk factors were considered. It is estimated that the lifetime (75-y) risk for all-cause mortality was 0.3%–0.6% for males and 0.2%–0.4% for females, and LLE at 84 days in 1997 for the 23 million residents of Taiwan. The risk has been reduced to one-fourth at 0.05%–0.10% for males and 0.03%–0.06% for females, and LLE at 15 days in 2007, which was mainly attributed to the installation of desulfurization and de-NOx equipment. Moreover, additional improvements can be expected if we can relocate the power plant to a downwind site on Taiwan, and convert the fuel source from coal to natural gas. The risk can be significantly reduced further to one-fiftieth at 0.001%–0.002% for males and 0.001% for females, and LLE at 0.3 days. Nonetheless, it is still an order higher than the commonly accepted elevated-cancer risk at 0.0001% (10?6), indicating that the PM2.5 health-related risk for operating such a world-class power plant is not negligible. In addition, this study finds that a better-chosen site (involving moving the plant to the leeward side of Taiwan) can reduce the risk significantly as opposed to solely transitioning the fuel source to natural gas. Note that the fuel cost of using natural gas (0.11 USD/kWh in 2013) in Taiwan is about twice the price of using coal fuel (0.05 USD/kWh in 2013).

Pei-Hsuan Kuo; Ben-Jei Tsuang; Chien-Jen Chen; Suh-Woan Hu; Chun-Ju Chiang; Jeng-Lin Tsai; Mei-Ling Tang; Guan-Jie Chen; Kai-Chen Ku

2014-01-01T23:59:59.000Z

187

High-Sulfur Coal for Generating Electricity  

Science Journals Connector (OSTI)

...made historically by heating bitumi-nous coal in...heart of the anthracite district only about 5 years ago...energy, wind, and geothermal steam and brines, will...15.7 Nuclear 3.1 Geothermal Negligible 1973, use...home and commercial heating, transporta-tion...

James T. Dunham; Carl Rampacek; T. A. Henrie

1974-04-19T23:59:59.000Z

188

Upgrading low-rank coals using the liquids from coal (LFC) process  

SciTech Connect

Three unmistakable trends characterize national and international coal markets today that help to explain coal`s continuing and, in some cases, increasing share of the world`s energy mix: the downward trend in coal prices is primarily influenced by an excess of increasing supply relative to increasing demand. Associated with this trend are the availability of capital to expand coal supplies when prices become firm and the role of coal exports in international trade, especially for developing nations; the global trend toward reducing the transportation cost component relative to the market, preserves or enhances the producer`s profit margins in the face of lower prices. The strong influence of transportation costs is due to the geographic relationships between coal producers and coal users. The trend toward upgrading low grade coals, including subbituminous and lignite coals, that have favorable environmental characteristics, such as low sulfur, compensates in some measure for decreasing coal prices and helps to reduce transportation costs. The upgrading of low grade coal includes a variety of precombustion clean coal technologies, such as deep coal cleaning. Also included in this grouping are the coal drying and mild pyrolysis (or mild gasification) technologies that remove most of the moisture and a substantial portion of the volatile matter, including organic sulfur, while producing two or more saleable coproducts with considerable added value. SGI International`s Liquids From Coal (LFC) process falls into this category. In the following sections, the LFC process is described and the coproducts of the mild pyrolysis are characterized. Since the process can be applied widely to low rank coals all around the world, the characteristics of coproducts from three different regions around the Pacific Rim-the Powder River Basin of Wyoming, the Beluga Field in Alaska near the Cook Inlet, and the Bukit Asam region in south Sumatra, Indonesia - are compared.

Nickell, R.E.; Hoften, S.A. van

1993-12-31T23:59:59.000Z

189

Chapter 18 - Worldwide Coal Mine Methane and Coalbed Methane Activities  

Science Journals Connector (OSTI)

Abstract The chapter provides an overview of coal bed methane production in all countries (except USA; covered in Chapter 17) around the world where there is a viable coal deposit. Coal deposits are shown in a map and coal bed methane reserves are estimated. All countries can follow the lead provided by USA in CBM production where 10% of total gas consumption (2 TCF/year) comes from coal seams. Exploitation of thick and deep coal seams using the latest technology can create a vast source of domestic energy for many countries around the world.

Charlee Boger; James S. Marshall; Raymond C. Pilcher

2014-01-01T23:59:59.000Z

190

High Hydrogen, Low Methane Syngas from Low-Rank Coals for Coal-to-Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

High Hydrogen, Low Methane Syngas from Low-Rank Coals for Coal-to-Liquids Production High Hydrogen, Low Methane Syngas from Low-Rank Coals for Coal-to-Liquids Production Southern Research Institute (SRI) Project Number: FE0012054 Project Description The focus of the project will be to develop, test, and optimize steam-reforming catalysts for converting tars, C2+ hydrocarbons, NH3, and CH4 in high-temperature and sulfur environments, increasing the ratio of hydrogen in syngas, as part of a modified, advanced gasification platform for the conversion of low-rank coals to syngas for coal-to-liquid and integrated gasification combined cycle applications. Project Details Program Background and Project Benefits Project Scope and Technology Readiness Level Accomplishments Contacts, Duration, and Cost Project Images Abstract Performer website: Southern Research Institute

191

Appalachia: the land of coal  

SciTech Connect

The Appalachian region of the United States is an area known worldwide for its long history as a source of coal. If any area of the Unted States is to gain from the projected growth of the coal industry, both domestic and international, it would surely be the coal mining areas of this region, including its biggest coal producing states - Pennsylvania, West Virginia, Kentucky and Ohio. An important facet of the region's coal industry is not only the presence of the giant coal companies but also the small, independent operator. These men are owner-operators and every dollar spent for their operations must bring a return. There is no room for error. WORLD COAL editors have recently traveled to areas in Appalachia and visited mines that are run by these independent operators. One such area was Harlan County, Kentucky. Virtually all mining done in Harlan is underground. Shaft mines are uncommon; most operations have access to exposed seams in the hillsides. Most of the small operations in this region use room and pillar mining and productivity is quite good. It is imperative that the transportation infrastructure be improved so that the expected increased movement of coal out of the region be handled efficiently. Potential domestic consumers of coal from Appalachia are numerous. New England, New York, the mid-Atlantic states, and the South are all looking to this nearby region to help reduce their dependence on oil. Other countries also are looking to the area.

Schneiderman, S.J. (ed.)

1980-12-01T23:59:59.000Z

192

Options for Generating Steam Efficiently  

E-Print Network (OSTI)

This paper describes how plant engineers can efficiently generate steam when there are steam generators and Heat Recovery Steam Generators in their plant. The process consists of understanding the performance characteristics of the various equipment...

Ganapathy, V.

193

Measurements and Modeling of Coal Ash Deposition in an Entrained-Flow Reactor.  

E-Print Network (OSTI)

??Coal plays a significant role in meeting the world’s need for energy and will continue to do so for many years to come. Economic, environmental,… (more)

Blanchard, Ryan P 1980-

2008-01-01T23:59:59.000Z

194

Solar Steam Nanobubbles  

Science Journals Connector (OSTI)

Solar Steam Nanobubbles ... The generated steam may also be used to drive a turbine directly for electricity generation. ... Furthermore, sputtering at gas–solid and gas–liquid interfaces may occur, and thermal desorption at the metal–water interface may affect the heat transfer as well. ...

Albert Polman

2013-01-02T23:59:59.000Z

195

Inspect and Repair Steam Traps  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on inspecting and repairing steam traps provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

196

Organic compounds in water extracts of coal: links to Balkan endemic nephropathy  

Science Journals Connector (OSTI)

Most of the world’s energy is provided by fossil fuels, and coal is the world’s most abundant fossil fuel with reserves substantially greater than those of oil and...2008). “Lignite” ranks in between peat and sub...

S. V. M. Maharaj; W. H. Orem; C. A. Tatu…

2014-02-01T23:59:59.000Z

197

The value of steam turbine upgrades  

SciTech Connect

Technological advances in mechanical and aerodynamic design of the turbine steam path are resulting in higher reliability and efficiency. A recent study conducted on a 390 MW pulverized coal-fired unit revealed just how much these new technological advancements can improve efficiency and output. The empirical study showed that the turbine upgrade raised high pressure (HP) turbine efficiency by 5%, intermediate pressure (IP) turbine efficiency by 4%, and low pressure (LP) turbine efficiency by 2.5%. In addition, the unit's highest achievable gross generation increased from 360 MW to 371 MW. 3 figs.

Potter, K.; Olear, D.; [General Physics Corp. (United States)

2005-11-01T23:59:59.000Z

198

Field measurement of solid particle erosion in utility steam turbines  

SciTech Connect

For the first time, extensive field testing has characterized solid particle erosion (SPE) in terms of size and frequency. This is particularly important because SPE damage to large steam turbine components can degrade plant efficiency, increasing operating costs by up to $3 million/yr per unit for a total of $150 million nationwide. The objective was to characterize under various operating conditions the level and distribution of magnetite particles in turbine steam and the resulting SPE. The project team developed a field test program to characterize the solid particles in turbine steam and measure the erosion resistance of various coatings. At Dayton Power Light, a 600-MW turbine generator unit with a coal-fired once-through supercritical boiler was fitted with two steam sampling systems, the first for isokinetic sampling and the second for erosion evaluation. The team took roughly 300 isokinetic steam samples from the main steam line during both startup and full-load operation. They condensed and filtered each steam sample, then determined the level and distribution of magnetite particles.

Duncan, D.; Vohr, J.H.; Shalvoy, R.S. (General Electric Co., Schenectady, NY (United States). Turbine Technology Dept.)

1992-01-01T23:59:59.000Z

199

X-ray Computed Tomography of coal: Final report  

SciTech Connect

X-ray Computed Tomography (CT) is a method of mapping with x-rays the internal structures of coal. The technique normally produces 2-D images of the internal structures of an object. These images can be recast to create pseudo 3-D representations. CT of coal has been explored for a variety of different applications to coal and coal processing technology. In a comparison of CT data with conventional coal analyses and petrography, CT was found to offer a good indication of the total ash content of the coal. The spatial distribution of the coal mineral matter as seen with CT has been suggested as an indicator of coal washability. Studies of gas flow through coal using xenon gas as a tracer have shown the extremely complicated nature of the modes of penetration of gas through coal, with significant differences in the rates at which the gas can pass along and across the bedding planes of coal. In a special furnace designed to allow CT images to be taken while the coal was being heated, the pyrolysis and gasification of coal have been studied. Gasification rates with steam and CO/sub 2/ for a range of coal ranks have been obtained, and the location of the gasification reactions within the piece of coal can be seen. Coal drying and the progress of the pyrolysis wave into coal have been examined when the coal was subjected to the kind of sudden temperature jump that it might experience in fixed bed gasifier applications. CT has also been used to examine stable flow structures within model fluidized beds and the accessibility of lump coal to microbial desulfurization. 53 refs., 242 figs., 26 tabs.

Maylotte, D.H.; Spiro, C.L.; Kosky, P.G.; Lamby, E.J.

1986-12-01T23:59:59.000Z

200

Apparatus for fixed bed coal gasification  

DOE Patents (OSTI)

An apparatus for fixed-bed coal gasification is described in which coal such as caking coal is continuously pyrolyzed with clump formation inhibited, by combining the coal with a combustible gas and an oxidant, and then continually feeding the pyrolyzed coal under pressure and elevated temperature into the gasification region of a pressure vessel. The materials in the pressure vessel are allowed to react with the gasifying agents in order to allow the carbon contents of the pyrolyzed coal to be completely oxidized. The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

Sadowski, Richard S. (Greenville, SC)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "world steam coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Hydrogen production from steam reforming of coke oven gas and its utility for indirect reduction of iron oxides in blast  

E-Print Network (OSTI)

of coal and coke are consumed for heating and reducing iron oxides [2,3]. As a result, BFs have becomeHydrogen production from steam reforming of coke oven gas and its utility for indirect reduction 2012 Available online 18 June 2012 Keywords: Steam reforming Hydrogen and syngas production Coke oven

Leu, Tzong-Shyng "Jeremy"

202

Fluidized Bed Combustion of Low Grade Coals and Biomass  

Science Journals Connector (OSTI)

This technology is being used all over the world for biomass as well as for coal combustion. Nevertheless, there are no results available...

L. Armesto; A. Cabanillas; A. Bahillo

1997-01-01T23:59:59.000Z

203

Streams of Steam The Steam Boiler Specification Case Study  

E-Print Network (OSTI)

Streams of Steam ­ The Steam Boiler Specification Case Study Manfred Broy, Franz Regensburger-tuned con- cepts of FOCUS by its application of the requirements specification of a steam boiler, see [Abr96-studies. In this context, applying FOCUS to the steam boiler case study ([Abr96]) led us to a couple of questions re- #12

204

Coal properties and system operating parameters for underground coal gasification  

SciTech Connect

Through the model experiment for underground coal gasification, the influence of the properties for gasification agent and gasification methods on underground coal gasifier performance were studied. The results showed that pulsating gasification, to some extent, could improve gas quality, whereas steam gasification led to the production of high heating value gas. Oxygen-enriched air and backflow gasification failed to improve the quality of the outlet gas remarkably, but they could heighten the temperature of the gasifier quickly. According to the experiment data, the longitudinal average gasification rate along the direction of the channel in the gasifying seams was 1.212 m/d, with transverse average gasification rate 0.069 m/d. Experiment indicated that, for the oxygen-enriched steam gasification, when the steam/oxygen ratio was 2:1, gas compositions remained stable, with H{sub 2} + CO content virtually standing between 60% and 70% and O{sub 2} content below 0.5%. The general regularities of the development of the temperature field within the underground gasifier and the reasons for the changes of gas quality were also analyzed. The 'autopneumatolysis' and methanization reaction existing in the underground gasification process were first proposed.

Yang, L. [China University of Mining & Technology, Xuzhou (China)

2008-07-01T23:59:59.000Z

205

The National Energy Modeling System: An Overview 1998 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

COAL MARKET MODULE COAL MARKET MODULE blueball.gif (205 bytes) Coal Production Submodule blueball.gif (205 bytes) Coal Distribution Submodule blueball.gif (205 bytes) Coal Export Component The coal market module (CMM) represents the mining, transportation, and pricing of coal, subject to end-use demand. Coal supplies are differentiated by heat and sulfur content. The CMM also determines the minimum cost pattern of coal supply to meet exogenously defined U.S. coal export demands as a part of the world coal market. Coal supply is projected on a cost-minimizing basis, constrained by existing contracts. Twelve different coal types are differentiated with respect to thermal grade, sulfur content, and underground or surface mining. The domestic production and distribution of coal is forecast for 13 demand regions and 11 supply

206

Effects of HyperCoal addition on coke strength and thermoplasticity of coal blends  

SciTech Connect

Ashless coal, also known as HyperCoal (HPC), was produced by thermal extraction of three coals of different ranks (Gregory caking coal, Warkworth steam coal, and Pasir subbituminous coal) with 1-methylnaphthalene (1-MN) at 360, 380, and 400{sup o}C. The effects of blending these HPCs into standard coal blends were investigated. Blending HPCs as 5-10% of a standard blend (Kouryusho:Goonyella:K9) enhanced the thermoplasticity over a wide temperature range. For blends made with the Pasir-HPC, produced from a noncaking coal, increasing the extraction temperature from 360 to 400{sup o}C increased the thermoplasticity significantly. Blends containing Warkworth-HPC, produced from a slightly caking coal, had a higher tensile strength than the standard blend in semicoke strength tests. The addition of 10% Pasir-HPC, extracted at 400{sup o}C, increased the tensile strength of the semicokes to the same degree as those made with Gregory-HPC. Furthermore, all HPC blends had a higher tensile strength and smaller weight loss during carbonization. These results suggest that the HPC became integrated into the coke matrix, interacting strongly with the other raw coals. 14 refs., 11 figs., 1 tab.

Toshimasa Takanohashi; Takahiro Shishido; Ikuo Saito [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Energy Technology Research Institute

2008-05-15T23:59:59.000Z

207

Foreign Distribution of U.S. Coal by Major Coal-Exporting States and Destination  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 (Thousand Short Tons) " " Coal-Exporting State and Destination ",,"Metallurgical ","Steam ","Total "," " "Alabama ",,3977,"-",3977," " ," Argentina ",225,"-",225," " ," Belgium ",437,"-",437," " ," Brazil ",1468,"-",1468," " ," Bulgaria ",75,"-",75," " ," Egypt ",363,"-",363," " ," Germany ",71,"-",71," " ," Italy ",61,"-",61," " ," Netherlands ",219,"-",219," " ," Spain ",415,"-",415," " ," Turkey ",362,"-",362," "

208

Refurbishing steam turbines  

SciTech Connect

Power-plant operators are reducing maintenance costs of their aging steam turbines by using wire-arc spray coating and shot peening to prolong the service life of components, and by replacing outmoded bearings and seals with newer designs. Steam-turbine operators are pressed with the challenge of keeping their aging machines functioning in the face of wear problems that are exacerbated by the demand for higher efficiencies. These problems include intense thermal cycling during both start-up and shutdown, water particles in steam and solid particles in the air that pit smooth surfaces, and load changes that cause metal fatigue.

Valenti, M.

1997-12-01T23:59:59.000Z

209

Evaluating Steam Trap Performance  

E-Print Network (OSTI)

~LmT " TRIf' 1 TRIf' 2 Figure 2 It has become common practice for engineers to oversize steam traps and place more emphasis on first cost than on maintenance cost and operating 766 3 4 ESL-IE-86-06-126 Proceedings from the Eighth Annual Industrial...EVALUATING STEAM TRAP PERFORMANCE Noel Y Fuller, P.E. Holston Defense Corporation Kingsport, Tennessee ABSTRACT Laboratory tests were conducted on several types of steam traps at Holston Defense Corporation in Kingsport, Tennessee. Data...

Fuller, N. Y.

210

The nuclear heated steam reformer — Design and semitechnical operating experiences  

Science Journals Connector (OSTI)

Good operating experiences of the EVA I- and EVA II-plant have been described. Therin the comparison of the different catalyst concepts has been given. Further the behaviour of the bundle of EVA II plant by isolation of individual reformer tubes as well as the performance of the bundle under transient conditions have been explained. Different design concepts for a nuclear heated steam reformer based on the concentric tubes and baffles have been given. Main points of studies are constructional details, thermohydraulic of the bundle and stress analysis. It can be shown that the present standard of knowledge allows the application of the steam reformer for coal refinement with nuclear heat.

J. Singh; H.F. Niessen; R. Harth; H. Fedders; H. Reutler; W. Panknin; W.D. Müller; H.G. Harms

1984-01-01T23:59:59.000Z

211

Coal extraction  

SciTech Connect

Coal is extracted using a mixed solvent which includes a substantially aromatic component and a substantially naphthenic component, at a temperature of 400/sup 0/ to 500/sup 0/C. Although neither component is an especially good solvent for coal by itself, the use of mixed solvent gives greater flexibility to the process and offers efficiency gains.

Clarke, J.W.; Kimber, G.M.; Rantell, T.D.; Snape, C.E.

1985-06-04T23:59:59.000Z

212

Water Use at Pulverized Coal Power Plants with Postcombustion Carbon Capture and Storage  

Science Journals Connector (OSTI)

Water Use at Pulverized Coal Power Plants with Postcombustion Carbon Capture and Storage ... (24) When CO2 is captured, the heat rejected around the primary condenser does not include the steam extracted for CO2 regeneration. ...

Haibo Zhai; Edward S. Rubin; Peter L. Versteeg

2011-02-17T23:59:59.000Z

213

Theoretical principles of use of coal fractions with different densities for combustion  

Science Journals Connector (OSTI)

It is reasonable to complement the conventional preparation of steam coal involving the removal of ash components and pyritic sulfur by the isolation of the lightest organic fractions, which possess enhanced p...

S. G. Gagarin; A. M. Gyul’maliev

2009-02-01T23:59:59.000Z

214

Investigation of coal fired combined-cycle cogeneration plants for power, heat, syngas, and hydrogen  

Science Journals Connector (OSTI)

The methodology for determination of technical and economic efficiency of coal fired combined-cycle cogeneration plant (CCCP) with low-pressure ... steam-gas generator and continuous flow gasifier at combined pro...

V. E. Nakoryakov; G. V. Nozdrenko; A. G. Kuzmin

2009-12-01T23:59:59.000Z

215

Development of the Shell-Koppers Coal Gasification Process [and Discussion  

Science Journals Connector (OSTI)

...research-article Development of the Shell-Koppers...entrained-bed technology, is characterized...production of a clean gas without by-products...featuring both gas and steam turbines. The integration...feed coals. The development programme includes...

1981-01-01T23:59:59.000Z

216

Steam Champions in Manufacturing  

E-Print Network (OSTI)

into equivalent corporate rewards, such as increased profitability, reliability, workplace safety, and other benefits. The prerequisites for becoming a true steam champion will include engineering, business, and management skills....

Russell, C.

217

Maintaining and Improving Marketability of Coal Fly Ash  

E-Print Network (OSTI)

1 Maintaining and Improving Marketability of Coal Fly Ash John N. Ward Ben Franklin Headwaters;2 A Headline You May Have Seen What is the future of coal fly ash utilization in a mercury controls world? What is produced when coal is consumed by power plants Fly ash can be used beneficially in numerous applications

218

The National Energy Modeling System: An Overview 2000 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

coal market module (CMM) represents the mining, transportation, and pricing of coal, subject to end-use demand. Coal supplies are differentiated by heat and sulfur content. CMM also determines the minimum cost pattern of coal supply to meet exogenously defined U.S. coal export demands as a part of the world coal market. Coal supply is projected on a cost-minimizing basis, constrained by existing contracts. Twelve different coal types are differentiated with respect to thermal grade, sulfur content, and underground or surface mining. The domestic production and distribution of coal is forecast for 13 demand regions and 11 supply regions (Figures 19 and 20). coal market module (CMM) represents the mining, transportation, and pricing of coal, subject to end-use demand. Coal supplies are differentiated by heat and sulfur content. CMM also determines the minimum cost pattern of coal supply to meet exogenously defined U.S. coal export demands as a part of the world coal market. Coal supply is projected on a cost-minimizing basis, constrained by existing contracts. Twelve different coal types are differentiated with respect to thermal grade, sulfur content, and underground or surface mining. The domestic production and distribution of coal is forecast for 13 demand regions and 11 supply regions (Figures 19 and 20). Figure 19. Coal Market Module Demand Regions Figure 20. Coal Market Module Supply Regions

219

Steam Trap Application  

E-Print Network (OSTI)

characteristics. 2. Understand advantages and limitations of various checking methods. 3. Use more than one checking method. 4. Understand flash condensate. 5. Condensate makes more noise than steam. 6. Trouble shoot the system. 7. Review trap... or failed steam and condensate flow~' H closed to be undetected -Not always insensitive to back ground or ambient noise -Noise in electrical system if volume too high -Head set quality important -Location of probe on trap, contact force, pressure drop...

Murphy, J. J.

1982-01-01T23:59:59.000Z

220

Economic assessment of coal-burning locomotives: Topical report  

SciTech Connect

The General Electric Company embarked upon a study to evaluate various alternatives for the design and manufacture a coal fired locomotive considering various prime movers, but retaining the electric drive transmission. The initial study was supported by the Burlington-Northern and Norfolk-Southern railroads, and included the following alternatives: coal fired diesel locomotive; direct fired gas turbine locomotives; direct fired gas turbine locomotive with steam injection; raw coal gasifier gas turbine locomotive; and raw coal fluid bed steam turbine locomotive. All alternatives use the electric drive transmission and were selected for final evaluation. The first three would use a coal water slurry as a fuel, which must be produced by new processing plants. Therefore, use of a slurry would require a significant plant capital investment. The last two would use classified run-of-the-mine (ROM) coal with much less capital expenditure. Coal fueling stations would be required but are significantly lower in capital cost than a coal slurry plant. For any coal fired locomotive to be commercially viable, it must pass the following criteria: be technically feasible and environmentally acceptable; meet railroads' financial expectations; and offer an attractive return to the locomotive manufacturer. These three criteria are reviewed in the report.

Not Available

1986-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "world steam coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Steam Oxidation and Chromia Evaporation in Ultra-Supercritical Steam Boilers and Turbines  

SciTech Connect

U.S. Department of Energy’s goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 °C and 340 atm, so-called ultra-supercritical (USC) conditions. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

Gordon H. Holcomb

2009-01-01T23:59:59.000Z

222

Steam oxidation and chromia evaporation in ultrasupercritical steam boilers and turbines  

SciTech Connect

The U.S. Department of Energy's goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 {sup o}C and 340 atm, so-called ultrasupercritical conditions. Evaporation of protective chromia scales is a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

Holcomb, G.R. [US DOE, Albany, OR (United States)

2009-07-01T23:59:59.000Z

223

Clean Coal Diesel Demonstration Project  

SciTech Connect

A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

Robert Wilson

2006-10-31T23:59:59.000Z

224

Coal consumption | OpenEI  

Open Energy Info (EERE)

consumption consumption Dataset Summary Description Total annual coal consumption by country, 1980 to 2009 (available as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords coal Coal consumption EIA world Data text/csv icon total_coal_consumption_1980_2009quadrillion_btu.csv (csv, 38.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 1980 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments

225

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network (OSTI)

DOE's BestPractices Steam End User Training Steam End User Training Steam Distribution Losses Module 1 June 29, 2010 Steam EndUser Training Steam Distribution System Losses Module Slide 1 pressure. #12;DOE's BestPractices Steam End User Training Steam End User Training Steam Distribution

Oak Ridge National Laboratory

226

Co-firing coal and biomass waste in an FB boiler  

SciTech Connect

The CSIR has been involved in the field of FBC since 1976, when a small 0.25m{sup 2} test facility was erected. Work really began in earnest in 1984, when the National Fluidised Bed Combustion (NFBC) boiler was commissioned. This facility, situated at the CSIR`s pilot plant terrain in Pretoria West, was designed to produce 12 tph steam while utilising {open_quotes}waste{close_quotes} coal reserves are large, accounting for some 11% of the worlds reserves. Unfortunately the quality of the coal is comparatively poor, and beneficiation is required in order to produce an acceptable fuel for the local and international markets. This leads to a large production of {open_quotes}waste{close_quotes} coal. More detail is given. It was concern about this waste that prompted the Department of Mineral and Energy Affairs (DMEA) to fund the construction of the NFBC boiler, the purpose of which was to prove the ability of FBC technology to utilize the low quality discard coal. The running costs of the unit were at first provided by the DMEA, and later by the National Energy Council (NEC). The NEC also played an active role in the formulation of test campaigns on the boiler. Management of the NFBC was undertaken by the division of Energy Technology (Enertek) at the CSIR in Pretoria, and it was sited at the CSIR`s pilot plant facility in Pretoria West. The boiler has been running since 1984 and many thousands of tonnes of low-grade coal have been burnt in it. During the course of the test campaign on the NFBC the CSIR developed a great deal of experience in the field of FBC, and in particular use of low grade fuels in FBC equipment. The following paper describes the highlights of this test work and details the commercial plant which have since been built using CSIR technology.

North, B.C.

1995-12-31T23:59:59.000Z

227

Advanced coal-fueled gas turbine systems  

SciTech Connect

Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

Wenglarz, R.A.

1994-08-01T23:59:59.000Z

228

Sedimentology, Stratigraphy and Petrography of the Permian-Triassic Coal-bearing New Lenton Deposit, Bowen Basin, Australia .  

E-Print Network (OSTI)

??The Bowen Basin is one of the most intensely explored sedimentary basins in Australia and hosts one of the world’s largest coking coal deposits. This… (more)

Coffin, Lindsay M.

2013-01-01T23:59:59.000Z

229

SustainableCoal_FC.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is a vital energy resource, is a vital energy resource, not only for the United States, but also for many developed and developing economies around the world. Finding ways to use coal cleanly and more efficiently at lower costs is a major research and development (R&D) challenge, and an ongoing focus of activities by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE). According to a Congressional Research Service analysis, coal represents 93 percent of total U.S. - and over half of world - fossil fuel reserves (expressed in barrels of oil equivalent). Based on recent rates of domestic consumption (averaging 1 billion tons annually, 2000-2010), estimated U.S. recoverable coal reserves of nearly 261 billion short tons are sufficient to last more than 2½ centuries.

230

Oxidation of alloys targeted for advanced steam turbines  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines.

Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Alman, D.E.

2006-03-12T23:59:59.000Z

231

Imminence of peak in US coal production and overestimation of reserves  

E-Print Network (OSTI)

. The estimated energy ultimate recoverable reserves (URR) from the logistic model is 2750 quadrillion BTU (2900, coal reserves, coal production forecast, peak coal, USA energy, non- linear fitting #12;3 1 reported coal reserves of any nation, containing approximately 28% of the world

Khare, Sanjay V.

232

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

1994. Steam Coal Utilization Technology. Beijing. ChinaFazhan Baogao (World Coal Industry Development Report).Editorial Board of the China Coal Industry Yearbook. 1982-

Fridley, Ed., David

2008-01-01T23:59:59.000Z

233

Methane-steam reforming  

SciTech Connect

The literature relating to the kinetics of methane-steam reforming involving integral and differential reactor data, porous nickel catalysts and nickel foil, and data over large ranges of temperature (500 to 1700/sup 0/F), pressure (0.01 to 50 atm), and intrinsic catalyst activities (200,000-fold) was reviewed. A simple reversible first-order kinetic expression for the steam-methane reaction appears to be applicable throughout the operable region of steam-to-carbon ratios. Internal pore diffusion limitation on the conversion rate, due to catalyst size and/or intrinsic catalyst activity and total operating pressure was underlined. S-shaped Arrhenium plots (changing activation energy) are obtained when steam reforming is conducted over a temperature range sufficient to produce intrinsic kinetics (low temperature, inactive catalyst, or small catalyst size), pore diffusional limitations, and reaction on the outside surface. Homogeneous gas-phase kinetics appear to contribute only at relatively high temperature (1400/sup 0/F). In steam reforming, the water-gas shift reaction departs from its equilibrium position, especially at low methane conversion level. A general correlation of approach to water-gas shift equilibration as a function of conversion level only was indicated. (DP) 18 figures, 6 tables.

Van Hook, J.P.

1980-01-01T23:59:59.000Z

234

Promotion of Mn(II) Oxidation and Remediation of Coal Mine Drainage in Passive Treatment Systems by Diverse Fungal and Bacterial Communities  

Science Journals Connector (OSTI)

...Oxidation and Remediation of Coal Mine Drainage in Passive Treatment...concentrations of dissolved Mn(II) from coal mine drainage (CMD). Studies...and throughout the world. In Appalachia, centuries of coal mining has left thousands of abandoned...

Cara M. Santelli; Donald H. Pfister; Dana Lazarus; Lu Sun; William D. Burgos; Colleen M. Hansel

2010-05-21T23:59:59.000Z

235

Steam Basics: Use Available Data to Lower Steam System Cost  

E-Print Network (OSTI)

Industrial steam users recognize the need to reduce system cost in order to remain internationally competitive. Steam systems are a key utility that influence cost significantly, and represent a high value opportunity target. However, the quality...

Risko, J. R.

2011-01-01T23:59:59.000Z

236

Topping PCFB combustion plant with supercritical steam pressure  

SciTech Connect

Research is being conducted to develop a new type of coal fired plant for electric power generation. This new type of plant, called a second generation or topping pressurized circulating fluidized bed combustion (topping PCFB) plant, offers the promise of efficiencies greater than 46 percent (HHV), with both emissions and a cost of electricity that are significantly lower than conventional pulverized coal fired plants with scrubbers. The topping PCFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized bed combustor (PCFB), and the combustion of carbonizer fuel gas in a topping combustor to achieve gas turbine inlet temperatures of 2,300 F and higher. After completing pilot plant tests of a carbonizer, a PCFB, and a gas turbine topping combustor, all being developed for this new plant, the authors calculated a higher heating value efficiency of 46.2 percent for the plant. In that analysis, the plant operated with a conventional 2,400 psig steam cycle with 1,000 F superheat and reheat steam and a 2.5 inch mercury condenser back pressure. This paper identifies the efficiency gains that this plant will achieve by using supercritical pressure steam conditions.

Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States); White, J. [Parsons Power Group Inc., Reading, PA (United States)

1997-11-01T23:59:59.000Z

237

Materials Performance in USC Steam Portland  

SciTech Connect

Goals of the U.S. Department of Energy's Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, co-called advanced ultrasupercritical (A-USC) steam conditions. A limitation to achieving the goal is a lack of cost-effective metallic materials that can perform at these temperatures and pressures. Some of the more important performance limitations are high-temperature creep strength, fire-side corrosion resistance, and steam-side oxidation resistance. Nickel-base superalloys are expected to be the materials best suited for steam boiler and turbine applications above about 675 C. Specific alloys of interest include Haynes 230 and 282, Inconel 617, 625 and 740, and Nimonic 263. Further validation of a previously developed chromia evaporation model is shown by examining the reactive evaporation effects resulting from exposure of Haynes 230 and Haynes 282 to moist air environments as a function of flow rate and water content. These two alloys differ in Ti and Mn contents, which may form outer layers of TiO{sub 2} or Cr-Mn spinels. This would in theory decrease the evaporation of Cr{sub 2}O{sub 3} from the scale by decreasing the activity of chromia at the scale surface, and be somewhat self-correcting as chromia evaporation concentrates the Ti and Mn phases. The apparent approximate chromia activity was found for each condition and alloy that showed chromia evaporation kinetics. As expected, it was found that increasing the gas flow rate led to increased chromia evaporation and decreased chromia activity. However, increasing the water content in moist air increased the evaporation, but results were mixed with its effect on chromia activity.

G.R. Holcomb; J. Tylczak; R. Hu

2011-04-26T23:59:59.000Z

238

Steam System Improvements at a Manufacturing Plant  

E-Print Network (OSTI)

BWX Technologies, Naval Nuclear Fuel Division (NNFD) is a manufacturing company with a steam system consisting of two Babcock & Wilcox boilers and approximately 350 steam traps. The steam system is used to produce and distribute steam for space...

Compher, J.; Morcom, B.

239

Coal-fired diesel generator  

SciTech Connect

The objective of the proposed project is to test the technical, environmental, and economic viability of a coal-fired diesel generator for producing electric power in small power generating markets. Coal for the diesel generator would be provided from existing supplies transported for use in the University`s power plant. A cleanup system would be installed for limiting gaseous and particulate emissions. Electricity and steam produced by the diesel generator would be used to supply the needs of the University. The proposed diesel generator and supporting facilities would occupy approximately 2 acres of land adjacent to existing coal- and oil-fired power plant and research laboratory buildings at the University of Alaska, Fairbanks. The environmental analysis identified that the most notable changes to result from the proposed project would occur in the following areas: power plant configuration at the University of Alaska, Fairbanks; air emissions, water use and discharge, and the quantity of solid waste for disposal; noise levels at the power plant site; and transportation of coal to the power plant. No substantive adverse impacts or environmental concerns were identified in analyzing the effects of these changes.

NONE

1997-05-01T23:59:59.000Z

240

Steam Power Partnership: Improving Steam System Efficiency Through Marketplace Partnerships  

E-Print Network (OSTI)

to support the steam efficiency program. Today, the Steam Team includes, the North American Insulation Manufacturers Association (NAIMA), the American Gas Association (AGA), the Council of Industrial Boiler Owners (ClBO), Armstrong International... pinch technology, and high performance steam. ? Armstrong International - Three worldwide factory seminar facilities, 13 North American sales representative facilities, 4 international sales representative facilities, 8 co-sponsored facilities, 2...

Jones, T.

Note: This page contains sample records for the topic "world steam coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

5 - Introduction to Coal Utilization Technologies  

Science Journals Connector (OSTI)

Publisher Summary The primary applications for coal use became electricity generation and the production of iron and steel. Coal has varied uses in the industrial sector for producing steam and electricity and also some chemicals are produced from coal. This chapter introduces the technologies and explains the processes for generating power, heat, coke, and chemicals including carbonization, combustion, liquefaction and gasification. These are referred to as “grand processes” in coal utilization and are explained in detail under separate sections. A brief history on the history of the processes and designs are provided with figures. The modern designs and processes are explained further with diagrams and the different boiler types and their relevance in technologies are available. The chemical processes involved in coal combustion, the involved and characteristics are summarized in table. Emphasis is also made on coal combustion and sets the stage for further reading on clean coal technologies in later portion of the book. Several direct liquefaction processes are introduced in this chapter. Although these are important, however, there are other processes conceived and researched.

Bruce G. Miller

2011-01-01T23:59:59.000Z

242

Coal: An energy bridge to the future  

SciTech Connect

For years, coal drove the transportation business in this country and it may be poised for a comeback when it comes to moving people and things. A hundred years ago, steam engines burned tons of coal as they pulled trains across the country. Now researchers are looking at converting that coal to liquid fuel that would fill up our gas tanks and move our cars and trucks. The technology already exists to transform coal into a liquid fuel. In fact, Pacific Northwest National Laboratory scientists and engineers have researched forms of coal and hydrocarbon gasification on and off for more than 30 years. But oil has never sustained a high enough price to kick start a coal-to-liquid fuel industry. That may be changing now. In addition to high crude oil prices, experts agree worldwide petroleum resources won’t last forever, and hydrocarbon resources like coal may be the only resource available, at a large enough scale, to off-set oil consumption, in the near term.

Bauer, Susan J.

2006-09-29T23:59:59.000Z

243

Reduction in Unit Steam Production  

E-Print Network (OSTI)

In 2001 the company's Arch-Brandenburg facility faced increased steam costs due to high natural gas prices and decreased production due to shutdown of a process. The facility was challenged to reduce unit steam consumption to minimize the effects...

Gombos, R.

2004-01-01T23:59:59.000Z

244

Belgrade Lot Steam Plant Lot  

E-Print Network (OSTI)

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Hamlin Steam Plant Crosby Machine Tool Lab Children's Center Rogers N S Estabrooke Memorial Gym Stevens

Thomas, Andrew

245

Heat Recovery Steam Generator Simulation  

E-Print Network (OSTI)

The paper discusses the applications of Heat Recovery Steam Generator Simulation. Consultants, plant engineers and plant developers can evaluate the steam side performance of HRSGs and arrive at the optimum system which matches the needs...

Ganapathy, V.

246

Consider Steam Turbine Drives for Rotating Equipment  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet outlines the benefits of steam turbine drives for rotating equipment as part of optimized steam systems.

247

Coal and Coal-Biomass to Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

and Coal-Biomass to Liquids News Gasifipedia Coal-Biomass Feed Advanced Fuels Synthesis Systems Analyses International Activity Project Information Project Portfolio Publications...

248

Jute in the world, worlds of jute  

Science Journals Connector (OSTI)

This paper is in two parts. The first sketches out the reach of jute round the world from ancient times to the present, and, through examples ranging from Brazil to Bangladesh and from Cote d'Ivoire to the USA, makes the case that jute has played such a significant role that it deserves a place in world history alongside other great commodities like spices, sugar, tea, cotton, coal, and oil, that have shaped global history. The second part of the paper opens up the worlds of jute - from peasants who grew the jute, to male and female workers in Calcutta and Dundee, to the factory owners and managers - and makes comparisons between jute settings in different countries. A key issue explored is the interplay between the economic and ideological forces inherent in the manufacturing and marketing of jute products and the local cultures and traditions of workers and peasants within which the drama of jute was played out.

Gordon T. Stewart

2014-01-01T23:59:59.000Z

249

Watt steam governor  

Science Journals Connector (OSTI)

The physics of the fly-ball governor, introduced to regulate the speed of steam engines, is here analysed anew. The original analysis is generalized to arbitrary governor geometry. The well-known stability criterion for the linearized system breaks down for large excursions from equilibrium; we show approximately how this criterion changes.

Mark Denny

2002-01-01T23:59:59.000Z

250

Steamed dinosaur eggs  

Science Journals Connector (OSTI)

... a Cretaceous hatchery shows that some dinosaurs liked their nesting sites steam-heated — by geothermal vents. A paper in Nature Communications today says that certain dinosaurs regularly returned to ... vents. A paper in Nature Communications today says that certain dinosaurs regularly returned to geothermal fields to shape nests and deposit eggs more than 100 million years ago. ...

Rex Dalton

2010-06-29T23:59:59.000Z

251

Steam management in composite mature steam floods, Midway Sunset field  

SciTech Connect

Vogel noted that oil production rates in many steam floods are not predictable from steam injection rates and must be estimated on some other basis. He presented a conservative method, based on simple models assuming instantaneous steam overlay, to calculate heat requirements once the oil rate is known. By more accurately describing the reservoir being flooded and the steam flood process, Vogel`s method was refined resulting in significant steam savings for SWEPI`s leasehold in the northern part of the Midway Sunset field. Analytical expressions are presented for (1) the heat required to support a steam chest descending into an oil column, (2) the heating of a cap or base rock already partially heated by an adjacent steam flood and (3) the heating of a cap or base rock which is exposed to a uniformly growing steam zone. A method is also described to operate a mature steam flood at a constant oil steam ratio while scavenging some heat stored in the steam zone.

Dorp, J.J. van; Roach, R.H.

1995-12-31T23:59:59.000Z

252

Stochastic Modeling for Uncertainty Analysis and Multiobjective Optimization of IGCC System with Single-Stage Coal Gasification  

Science Journals Connector (OSTI)

The work initially focuses on developing a computational fluid dynamics (CFD) model for the single-stage coal gasifier, which is a part of the IGCC system. ... Medium pressure (MP) steam is produced from the heat liberated from this reaction. ...

Yogendra Shastri; Urmila Diwekar

2010-11-22T23:59:59.000Z

253

Large Field Erected and Packaged High Temperature Water (HTW) Generators for Coal Firing  

E-Print Network (OSTI)

and closer temperature control. The heat storage capacity of water per cubic foot is considerably greater than steam at equivalent saturation pressures, as shown in Table No. II (below). This inherent reserve or "fly wheel" effect permits closer... furnace and convection section. Coal ash fouling characteristics will have a bearing on the convection section tube spacing. Low grade coals should be reviewed for their slagging and fouling characteristics. For example, lignite and low grade coals...

Boushell, C. C.

1980-01-01T23:59:59.000Z

254

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

Pollutants Associated With Coal Combustion. • E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal • . . . . Coal Desulfurization

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

255

Electricity from coal and utilization of coal combustion by-products  

SciTech Connect

Most electricity in the world is conventionally generated using coal, oil, natural gas, nuclear energy, or hydropower. Due to environmental concerns, there is a growing interest in alternative energy sources for heat and electricity production. The major by-products obtained from coal combustion are fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) materials. The solid wastes produced in coal-fired power plants create problems for both power-generating industries and environmentalists. The coal fly ash and bottom ash samples may be used as cementitious materials.

Demirbas, A. [Sila Science, Trabzon (Turkey)

2008-07-01T23:59:59.000Z

256

Jute fiber composites from coal, super clean coal, and petroleum vacuum residue-modified phenolic resin  

SciTech Connect

Jute fiber composites were prepared with novolac and coal, phenolated-oxidized super clean coal (POS), petroleum vacuum residue (XVR)-modified phenol-formaldehyde (novolac) resin. Five different type of resins, i.e., coal, POS, and XVR-modified resins were used by replacing (10% to 50%) with coal, POS, and XVR. The composites thus prepared have been characterized by tensile strength, hardness, thermogravimetric analysis (TGA), Fourier-transfer infrared (FT-IR), water absorption, steam absorption, and thickness swelling studies. Twenty percent POS-modified novolac composites showed almost the same tensile strength as that of pure novolac composites. After 30% POS incorporation, the tensile strength decreased to 25.84MPa from 33.96MPa in the case of pure novolac resin composites. However, after 50% POS incorporation, the percent retention of tensile strength was appreciable, i.e., 50.80% retention of tensile strength to that of pure novolac jute composites. The tensile strength of coal and XVR-rnodified composites showed a trend similar to that shown by POS-modified novolac resin composites. However, composites prepared from coal and XVR-modified resin with 50% phenol replacement showed 25.4% and 42% tensile strength retention, respectively, compared to that of pure novolac jute composites. It was found that the hardness of the modified composites slightly decreased with an increase in coal, POS, and XVR incorporation in the resin. The XVR-modified composites showed comparatively lower steam absorption than did coal or POS-modified composites. The thermal stability of the POS-modified composites was the highest among the composites studied. The detailed results obtained are being reported.

Ahmaruzzaman, M.; Sharma, D.K. [Indian Institute of Technology, New Delhi (India). Center of Energy Studies

2005-07-01T23:59:59.000Z

257

Integrating catalytic coal gasifiers with solid oxide fuel cells  

SciTech Connect

A review was conducted for coal gasification technologies that integrate with solid oxide fuel cells (SOFC) to achieve system efficiencies near 60% while capturing and sequestering >90% of the carbon dioxide [1-2]. The overall system efficiency can reach 60% when a) the coal gasifier produces a syngas with a methane composition of roughly 25% on a dry volume basis, b) the carbon dioxide is separated from the methane-rich synthesis gas, c) the methane-rich syngas is sent to a SOFC, and d) the off-gases from the SOFC are recycled back to coal gasifier. The thermodynamics of this process will be reviewed and compared to conventional processes in order to highlight where available work (i.e. exergy) is lost in entrained-flow, high-temperature gasification, and where exergy is lost in hydrogen oxidation within the SOFC. The main advantage of steam gasification of coal to methane and carbon dioxide is that the amount of exergy consumed in the gasifier is small compared to conventional, high temperature, oxygen-blown gasifiers. However, the goal of limiting the amount of exergy destruction in the gasifier has the effect of limiting the rates of chemical reactions. Thus, one of the main advantages of steam gasification leads to one of its main problems: slow reaction kinetics. While conventional entrained-flow, high-temperature gasifiers consume a sizable portion of the available work in the coal oxidation, the consumed exergy speeds up the rates of reactions. And while the rates of steam gasification reactions can be increased through the use of catalysts, only a few catalysts can meet cost requirements because there is often significant deactivation due to chemical reactions between the inorganic species in the coal and the catalyst. Previous research into increasing the kinetics of steam gasification will be reviewed. The goal of this paper is to highlight both the challenges and advantages of integrating catalytic coal gasifiers with SOFCs.

Siefert, N.; Shamsi, A.; Shekhawat, D.; Berry, D.

2010-01-01T23:59:59.000Z

258

Steam System Balancing and Tuning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steam System Balancing and Steam System Balancing and Tuning Building America Stakeholder Meeting Austin, TX Jayne Choi, Energy Analyst, CNT Energy March 2, 2012 PARR Current collaboration with GTI as a part of the PARR Building America team - Steam Systems Balancing and Tuning Study - Heating season 2011-2012 Background In Chicago, heating is the focus of residential energy use Of the 470,000 multifamily units in the Chicago region, at least 70,000 of those are steam heated Old steam systems invariably suffer from imbalance - Tenants must use supplemental heat or open their windows to cool their apartments during the heating season Buildings are often overheated Problem Statement (CNT Energy) Steam Heating Steam heat was the best option for buildings constructed between 1900 and 1930

259

Zero emission coal  

SciTech Connect

We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

Ziock, H.; Lackner, K.

2000-08-01T23:59:59.000Z

260

Coal preparation: The essential clean coal technology  

SciTech Connect

This chapter is a brief introduction to a broad topic which has many highly specialized areas. The aim is to summarize the essential elements of coal preparation and illustrate its important role in facilitating the clean use of coal. Conventional coal preparation is the essential first step in ensuring the economic and environmentally acceptable use of coal. The aim of coal preparation is to produce saleable products of consistent, specified quality which satisfy customer requirements while optimizing the utilization of the coal resource. Coal preparation covers all aspects of preparing coal for the market. It includes size reduction, blending and homogenization and, most importantly, the process of physical beneficiation or washing, which involves separation of undesirable mineral matter from the coal substance itself. Coal preparation can be performed at different levels of sophistication and cost. The degree of coal preparation required is decided by considering the quality of the raw coal, transport costs and, in particular, the coal quality specified by the consumer. However, the cost of coal beneficiation rises rapidly with the complexity of the process and some coal is lost with the waste matter because of process inefficiencies, therefore each situation requires individual study to determine the optimum coal preparation strategy. The necessary expertise is available within APEC countries such as Australia. Coals destined for iron making are almost always highly beneficiated. Physical beneficiation is mostly confined to the higher rank, hard coals, but all other aspects of coal preparation can be applied to subbituminous and lignitic coals to improve their utilization. Also, there are some interesting developments aimed specifically at reducing the water content of lower rank coals.

Cain, D.

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "world steam coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Liquid Fuels from Coal: From R & D to an Industry  

Science Journals Connector (OSTI)

...10 FEBRUARY 1978 the major tool that the United States is now...2). Coal is gasified with steam by the Lurgi technology to...in-frastructure and logistics system for feed and products. It...pe-troleum. While no accurate assessment of costs was really possible...

L. E. Swabb Jr.

1978-02-10T23:59:59.000Z

262

FBC could give new life to low-grade coal  

SciTech Connect

Fluidised-bed combustion is gaining a foothold in the US industrial steam boiler market because of the wide range of coals that can be utilised, including those which are of very low grade. The prospects for using this technology for electricity generation are also considered to be good, and information is given on several demonstration plants which are planned.

Not Available

1984-08-01T23:59:59.000Z

263

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Dry Steam) (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

264

Performance tests for steam methane reformers  

SciTech Connect

Most of the synthesis gas plants in operation in the United States for production of hydrogen, carbon monoxide, methanol, and ammonia use steam methane reforming (SMR). Economic projections indicate that the SMR plant may continue to be the most favorable process choice through the 1980s or until partial oxidation or coal gasification processes are technically proven. The complexity of an efficiently designed SMR plant for production of these chemicals requires a thorough understanding of many unit operations to correctly evaluate the performance of an operating plant. Air Products and Chemicals, Inc. (APCI) owns and operates various types of SMR plants for production of hydrogen and carbon monoxide gases for pipe line sales, liquid hydrogen for merchant sale, methanol and ammonia. Over the past few years, APCI has developed guidelines and procedures for plant performance tests done at its major SMR plants. This article documents the plant test procedure used in conducting onsite SMR plant performance tests.

Wang, S.I.; DiMartino, S.P.; Patel, N.M.; Smith, D.D.

1982-08-01T23:59:59.000Z

265

Coal based electric generation comparative technologies report  

SciTech Connect

Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

Not Available

1989-10-26T23:59:59.000Z

266

Gasification of New Zealand Coals: A Comparative Simulation Study  

Science Journals Connector (OSTI)

The aim of this study was to conduct a preliminary feasibility assessment of gasification of New Zealand (NZ) lignite and sub-bituminous coals, using a commercial simulation tool. ... Coal is a nonrenewable resource; however, the world’s coal reserves amount to twice the combined oil and gas reserves. ... The reasons for the entrained flow gasifier selection include its high suitability to low rank coals (lignites) and the use of entrained flow gasifiers for an IGCC as the industrially preferred choice dictated through experience. ...

Smitha V. Nathen; Robert D. Kirkpatrick; Brent R. Young

2008-06-10T23:59:59.000Z

267

Process for fixed bed coal gasification  

DOE Patents (OSTI)

The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

Sadowski, Richard S. (Greenville, SC)

1992-01-01T23:59:59.000Z

268

dist_steam.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

District Steam Usage Form District Steam Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed questionnaire is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our company. a. You may submit a single report for the entire building, or if it i s easier, a separate report for each of several accounts in the building. These will then be aggregated by the survey contractor. b. If you are concerned about your individual account information, you may c

269

Coal Ash and Clean Coal  

Science Journals Connector (OSTI)

... IT is the normal view that the incombustible part of coal is not only a useless but even objectionable diluent. At times in the past, ... , familiar with the theory of contact catalysis of gas reactions, have speculated that the ash constituents might well play an active role in the processes of carbonisation and combustion. ...

H. J. HODSMAN

1926-09-04T23:59:59.000Z

270

Coal Industry Annual 1995  

SciTech Connect

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

NONE

1996-10-01T23:59:59.000Z

271

Profitability analysis of non-coking coal preparation for power plants in India  

SciTech Connect

Currently coal-based power plants produce about 70% of the total electricity generated in India, where non-coking (steam) coals are utilized mostly without any preparation. A massive capacity addition of at least 140,000 MWe is required (over the 81,000 MWe of current installed capacity) during the next 15 years to meet growing energy demand. Such a rapid expansion of power generation capacity poses a serious challenge to the environment (at emission controls) and transportation infrastructure in India. Furthermore, the high ash content of indigenous coals and concentration of coal mines in central and northeastern India away from urban centers exacerbate the problem. Thus, coal preparation is envisioned to play a major role in shaping the energy future of India. Under the Indo-US Coal Preparation Program, the US Department of Energy`s Pittsburgh Energy Technology Center (PETC) is coordinating coal preparation activities for the US Agency for International Development. In this context, a detailed analysis of the washability characteristics of non-coking coals was performed using the PETC Coal Preparation Plant Simulator (CPPS) to identify coal preparation strategies for India. Based on these strategies, a profitability analysis of non-coking coal preparation has been conducted considering coal preparation and transportation costs, and coal quality impacts on power plant operations. This paper summarizes the results of this analysis and quantifies the significance of coal preparation for the Indian power sector.

Gollakota, S.V.; Rao, S.N. [Burns and Roe Services Corp., Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Staats, G.E. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center

1996-12-31T23:59:59.000Z

272

Solar coal gasification reactor with pyrolysis gas recycle  

DOE Patents (OSTI)

Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

Aiman, William R. (Livermore, CA); Gregg, David W. (Morago, CA)

1983-01-01T23:59:59.000Z

273

The decline of the world’s energy intensity  

Science Journals Connector (OSTI)

Energy intensity of the total primary energy supply (TPES), total final energy consumption (TFC) and LOSSES in the conversion from TPES to TFC were analyzed for the World, OECD and Rest of the World (ROW) countries. LOSSES increased significantly for all groups of countries due to the increase of electricity production from coal in the period studied (1971–2008). Electricity share final consumption almost doubled, increasing from 8.8% to 17.2% in the period studied. However the energy intensity of LOSSES remained practically constant, which reflects the fact that the efficiency of electricity generation from coal (the main source of electricity) remained practically constant in that period. Despite the attractiveness of end-use devices running on electricity such as computers, which is typical of modern societies, the CO2 emissions are bound to increase unless coal is replaced by less carbon emitting sources such as natural gas, renewables and nuclear energy.

José Goldemberg; Luiz Tadêo Siqueira Prado

2011-01-01T23:59:59.000Z

274

Microbial solubilization of coal  

DOE Patents (OSTI)

The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

Strandberg, G.W.; Lewis, S.N.

1988-01-21T23:59:59.000Z

275

NPO Turboatom steam turbine design features and modifications  

SciTech Connect

Since its foundation in 1934, the Kharkov Turbine Works, parent of Turboatom has developed, manufactured, adjusted and operated steam turbine plants for thermal and nuclear power stations. More than 300 steam turbines for thermal power stations with a total capacity over 100,000 MW have been manufactured. Steam turbines rated 25 to 500 MW for pressures of 2.9 to 23.5 MPa for stations operating on fossil fuel and turbines rated 30 to 1100 MW for nuclear power stations (NPS) have been produced. unique experience was gained during building and operation of the SKR-100 turbine rated 100 MW for initial steam conditions of 29.4 MPa, 650{sup o}C with steam cooling and minimum use of high-temperature materials. In addition to the turbine plants made for the power stations of the former USSR, Turboatom has manufactured 95 steam turbines for export. These are installed at 7 nuclear and 16 thermal power stations throughout the world, including Bulgaria, China, Cuba, Finland, Germany, Hungary, Korea and Rumania. Turboatom produces turbines operating at 25; 50 or 60 l/s speed of rotation.

Levchenko, E.V. [NPO Turboatom, Kharkov (Ukraine)

1995-06-01T23:59:59.000Z

276

Foreign Distribution of U.S. Coal by Major Coal-Exporting States and Destination  

U.S. Energy Information Administration (EIA) Indexed Site

3" 3" "(Thousand Short Tons)" "Coal-Exporting State and Destination ",,"Metallurgical ","Steam ","Total " "Alabama ",,5156,"-",5156 ,"Argentina ",345,"-",345 ,"Belgium ",387,"-",387 ,"Brazil ",1825,"-",1825 ,"Bulgaria ",363,"-",363 ,"Egypt ",477,"-",477 ,"Germany ",167,"-",167 ,"Italy ",87,"-",87 ,"Netherlands ",399,"-",399 ,"Spain ",198,"-",198 ,"Turkey ",551,"-",551 ,"United Kingdom ",359,"-",359 "Kentucky ",,1449,"-",1449 ,"Canada ",566,"-",566

277

World Energy Outlook 2008  

U.S. Energy Information Administration (EIA) Indexed Site

OECD/IEA - OECD/IEA - 2008 © OECD/IEA - 2008 © OECD/IEA - 2008 To Cover... To Cover To Cover ... ... Transport Energy and CO 2 Where are we going? What are the dangers? How do we change direction? Primarily reporting on: IEA WEO 2008 IEA ETP 2008 On-going work with IEA's Mobility Model One or two detours to talk about modelling © OECD/IEA - 2008 0 2 000 4 000 6 000 8 000 10 000 12 000 14 000 16 000 18 000 1980 1990 2000 2010 2020 2030 Mtoe Other renewables Hydro Nuclear Biomass Gas Coal Oil World energy demand expands by 45% between now and 2030 - an average rate of increase of 1.6% per year - with coal accounting for more than a third of the overall rise Where are we headed? World Energy Outlook 2008 Where are we headed? World Energy Outlook Where are we headed? World Energy Outlook

278

Air-cooled vacuum steam condenser  

SciTech Connect

This patent describes a steam powered system. It comprises: a turbine for converting steam energy into mechanical energy upon expansion of steam therein, a boiler for generating steam to be fed to the turbine, and a conduit arrangement coupling the boiler to the turbine and then recoupling the turbine exhaust to the boiler through steam condensing mechanisms.

Larinoff, M.W.

1990-02-27T23:59:59.000Z

279

Clean coal  

SciTech Connect

The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

Liang-Shih Fan; Fanxing Li [Ohio State University, OH (United States). Dept. of Chemical and Biomolecular Engineering

2006-07-15T23:59:59.000Z

280

The atmospheric bubbling fluidized bed combustion of coal in the Netherlands, cleaner it can't be  

SciTech Connect

The use of coal in atmospheric bubbling fluidized bed combustors for the generation of process steam is still a viable option for industrial applications world wide but interest in this as and electricity generation technology has also grown. The general advantages of AB-FBC are environmental acceptability and great fuel flexibility. As will be shown in this paper, it has a great potential for meeting possible future, even more stringent, regulations. Since 1979, Stork Boilers, TNO and Twente University have been carrying out a joint national research programme aimed at the design of industrial installations operating to stringent emission standards. This has led to the demonstration of a 90 MWth industrial boiler at the AKZO Chemical Works. The work has been under the control of NOVEM, the Netherlands Agency of Energy and the Environment. This body provides the financial resources on behalf of the Dutch Ministry of Economic Affairs by awarding annual contracts.

van Gasselt, M.L.G. (TNO-Apeldoorn, P.O. Box 342,7300 AH Apeldoorn (NL))

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "world steam coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Steam Pressure Reduction: Opportunities and Issues; A BestPractices Steam Technical Brief  

SciTech Connect

A BestPractices Technical Brief describing industrial steam generation systems and opportunities for reducing steam system operating pressure.

Not Available

2005-11-01T23:59:59.000Z

282

Steam Cracker Furnace Energy Improvements  

E-Print Network (OSTI)

Channel, ~ 25 mi. east of Houston ? Includes 4 manufacturing sites, 2 technology/engineering offices ?Significant community involvement Baytown Refinery Page 4 Steam Cracking to Olefins ? Process 60+ years old; ExxonMobil one of pioneers... Steam Cracker Furnace Energy Improvements Tim Gandler Energy Coordinator Baytown Olefins Plant, Baytown Tx 2010 Industrial Energy Technology Conference May, 2010 Page 2 ? Baytown Complex ? Steam Cracking to Olefins ? Furnace overview...

Gandler, T.

283

Steam System Forecasting and Management  

E-Print Network (OSTI)

by manipulation of operating schedules to avoid steam balances that result in steam venting, off gas-flaring, excessive condensing on extraction/condensing turbines, and ineffective use of extraction turbines. For example, during the fourth quarter of 1981... minimum turndown levels. Several boilers would have oeen shut down; by-product fuel gas would have been flared; and surplus low level steam would have been vented to the atmosphere. Several scenarios were studied with SFC and evaluated based...

Mongrue, D. M.; Wittke, D. O.

1982-01-01T23:59:59.000Z

284

Coal liquefaction and hydrogenation  

DOE Patents (OSTI)

Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

Schindler, Harvey D. (Fair Lawn, NJ); Chen, James M. (Edison, NJ)

1985-01-01T23:59:59.000Z

285

Coal industry annual 1993  

SciTech Connect

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

286

Measurements and Modeling of Coal Ash Deposition in an Entrained-Flow Reactor.  

E-Print Network (OSTI)

??Coal plays a significant role in meeting the world's need for energy and will continue to do so for many years to come. Economic, environmental,… (more)

Blanchard, Ryan P.

2008-01-01T23:59:59.000Z

287

High ash non-coking coal preparation by tribo-electrostatic dry process.  

E-Print Network (OSTI)

??Coal is the single largest fossil fuel used world-wide and accounts for more than 60% of the total commercial energy consumed. Between 60 to 80%… (more)

Ranjan Dwari

2008-01-01T23:59:59.000Z

288

Deaerators in Industrial Steam Systems  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on deaerators provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

289

Appalachian coal awareness conference: promoting Eastern coal  

SciTech Connect

Promoting the development and use of coal, especially coal from the Appalachian region, was the focus of introductory and keynote speeches and a discussion by representatives of the Virginia Coal Council, mining engineers, industry, and the Edison Electric Institute. Governor Dalton's keynote address noted that both producers and consumers attending the conference should work together to promote coal as a solution to the US energy future, and reported the impact that a commitment to coal has had on Virginia's economic growth. Participants in the coal consumers panel discussion raised various economic and regulatory issues.

Not Available

1984-01-01T23:59:59.000Z

290

Superalloys for ultra supercritical steam turbines--oxidation behavior  

SciTech Connect

Goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 °C and 340 atm, so called ultra-supercritical (USC) steam conditions. One of the important materials performance considerations is steam-side oxidation resistance. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism under USC conditions. A methodology to calculate Cr evaporation rates from chromia scales with cylindrical geometries was developed that allows for the effects of CrO2(OH)2 saturation within the gas phase. This approach was combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles as a function of exposure time and to predict the time until the alloy surface concentration of Cr reaches zero. This time is a rough prediction of the time until breakaway oxidation. A hypothetical superheater tube, steam pipe, and high pressure turbine steam path was examined. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. The predicted time until breakaway oxidation increases dramatically with decreases in temperature and total pressure. Possible mitigation techniques were discussed, including those used in solid oxide fuel cell metallic interconnects (lowering the activity of Cr in the oxide scale by adding Mn to the alloy), and thermal barrier coating use on high pressure turbine blades for both erosion and chromia evaporation protection.

Holcomb, G.R.

2008-09-01T23:59:59.000Z

291

Secretary Chu's Remarks at the World Renewable Energy Forum Press...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

sustainable world. The first industrial revolution grew out of the invention of the steam engine, and most importantly, the huge improvements in its efficiency by James Watt in the...

292

"1. Cumberland","Coal","Tennessee Valley Authority",2470 "2. Johnsonville","Coal","Tennessee Valley Authority",2341  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee" Tennessee" "1. Cumberland","Coal","Tennessee Valley Authority",2470 "2. Johnsonville","Coal","Tennessee Valley Authority",2341 "3. Sequoyah","Nuclear","Tennessee Valley Authority",2278 "4. Raccoon Mountain","Pumped Storage","Tennessee Valley Authority",1653 "5. Gallatin","Coal","Tennessee Valley Authority",1575 "6. Lagoon Creek","Gas","Tennessee Valley Authority",1481 "7. Kingston","Coal","Tennessee Valley Authority",1398 "8. Allen Steam Plant","Coal","Tennessee Valley Authority",1203 "9. Watts Bar Nuclear Plant","Nuclear","Tennessee Valley Authority",1123

293

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. In addition, the report

294

Clean Coal Power Initiative  

Energy.gov (U.S. Department of Energy (DOE))

"Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other pollutants from coal-burning power plants.

295

Coal Mining (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These sections describe procedures for coal exploration and extraction, as well as permitting requirements relating to surface and underground coal mining. These sections also address land...

296

USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS  

SciTech Connect

Low rank fuels such as subbituminous coals and lignites contain significant amounts of moisture compared to higher rank coals. Typically, the moisture content of subbituminous coals ranges from 15 to 30 percent, while that for lignites is between 25 and 40 percent, where both are expressed on a wet coal basis. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit. High fuel moisture results in fuel handling problems, and it affects heat rate, mass rate (tonnage) of emissions, and the consumption of water needed for evaporative cooling. This project deals with lignite and subbituminous coal-fired pulverized coal power plants, which are cooled by evaporative cooling towers. In particular, the project involves use of power plant waste heat to partially dry the coal before it is fed to the pulverizers. Done in a proper way, coal drying will reduce cooling tower makeup water requirements and also provide heat rate and emissions benefits. The technology addressed in this project makes use of the hot circulating cooling water leaving the condenser to heat the air used for drying the coal (Figure 1). The temperature of the circulating water leaving the condenser is usually about 49 C (120 F), and this can be used to produce an air stream at approximately 43 C (110 F). Figure 2 shows a variation of this approach, in which coal drying would be accomplished by both warm air, passing through the dryer, and a flow of hot circulating cooling water, passing through a heat exchanger located in the dryer. Higher temperature drying can be accomplished if hot flue gas from the boiler or extracted steam from the turbine cycle is used to supplement the thermal energy obtained from the circulating cooling water. Various options such as these are being examined in this investigation. This is the eleventh Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report.

Edward Levy

2005-10-01T23:59:59.000Z

297

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

298

Steam System Improvement: A Case Study  

E-Print Network (OSTI)

. For industries, this will result in the reduction of production cost. In industry where steam is utilized, the steam production and distribution system consumes a significant portion of energy. Therefore, optimization of steam system is among the biggest energy...

Venkatesan, V. V.; Leigh, N.

299

American Coal Council 2004 Spring Coal Forum  

NLE Websites -- All DOE Office Websites (Extended Search)

American Coal Council American Coal Council 2004 Spring Coal Forum Dallas, Texas May 17-19, 2004 Thomas J. Feeley, III Technology Manager National Energy Technology Laboratory ACC Spring Coal Forum, 2004 Presentation Outline * Background * Power plant-water issues * DOE/NETL R&D program * Conclusion/future plans ACC Spring Coal Forum, 2004 Global Water Availability Ocean 97% Fresh Water 2.5% 0 20 40 60 80 100 Ice Groundwater Lakes and Rivers ACC Spring Coal Forum, 2004 Three Things Power Plants Require 1) Access to transmission lines 2) Available fuel, e.g., coal or natural gas 3) Water ACC Spring Coal Forum, 2004 Freshwater Withdrawals and Consumption Mgal / Day Irrigation 81,300 Irrigation 81,300 Thermoelectric 3,310 Consumption Sources: "Estimated Use of Water in the United States in 1995," USGS Circular 1200, 1998

300

Coal Characterization in Relation to Coal Combustion  

Science Journals Connector (OSTI)

Most coals are used worldwide for combustion today. Generally all kinds of coals are applicable for combustion. The major methods of burning are fixed bed firing, fluidized bed firing and suspension firing. Th...

Harald Jüntgen

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "world steam coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Clean Coal Technology Program Clean Coal 101 Lesson 2: The Clean Coal Technology Program The Clean Coal Technology Program began in 1985 when the United States and Canada decided that something had to be done about the "acid rain" that was believed to be damaging rivers, lakes, forests, and buildings in both countries. Since many of the pollutants that formed "acid rain" were coming from big coal-burning power plants in the United States, the U.S. Government took the lead in finding a solution. One of the steps taken by the U.S. Department of Energy was to create a partnership program between the Government, several States, and private companies to test new methods developed by scientists to make coal burning much cleaner. This became the "Clean Coal Technology Program."

302

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2005-01-31T23:59:59.000Z

303

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2005-04-27T23:59:59.000Z

304

Boiler Materials for Ultrasupercritical Coal Power Plants  

SciTech Connect

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

R. Viswanathan; J. Sarver; M. Borden; K. Coleman; J. Blough; S. Goodstine; R.W. Swindeman; W. Mohn; I. Perrin

2003-04-21T23:59:59.000Z

305

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2004-04-23T23:59:59.000Z

306

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April to June 30, 2004.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2004-07-30T23:59:59.000Z

307

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

K. Coleman; R. Viswanathan; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2004-01-23T23:59:59.000Z

308

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April to June 30, 2004.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2004-10-30T23:59:59.000Z

309

Production of Middle Caloric Fuel Gas from Coal by Dual-Bed Gasification Technology  

Science Journals Connector (OSTI)

This work demonstrated the dual-bed gasification technology on a pilot plant (1000 tons of coal/a) mainly consisting of a fluidized-bed gasifier and a pneumatic combustor using the coal with a particle size of less than 20 mm. ... It can be seen in Table 1 that the mass fraction of the coal with sizes less than 2.0 mm was about 45 wt %. ... Coal was continuously fed in the gasifier, and meanwhile, air or gas mixture (air and steam) as the fluidizing medium and gasifying reagent was introduced from the bottom of the gasifier. ...

Yin Wang; Wen Dong; Li Dong; Junrong Yue; Shiqiu Gao; Toshiyuki Suda; Guangwen Xu

2010-04-23T23:59:59.000Z

310

Coal liquefaction  

DOE Patents (OSTI)

In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

Schindler, Harvey D. (Fairlawn, NJ)

1985-01-01T23:59:59.000Z

311

Controlling coal fires using the three-phase foam and water mist techniques in the Anjialing Open Pit Mine, China  

Science Journals Connector (OSTI)

Coal fires are a serious environment, health, and safety hazard throughout the world. They damage the environment, threaten the health of people living nearby, burn away non-renewable coal, and result in ... to c...

Zhenlu Shao; Deming Wang; Yanming Wang; Xiaoxing Zhong; Xiaofei Tang…

2014-09-01T23:59:59.000Z

312

Training: Steam Systems | Department of Energy  

Office of Environmental Management (EM)

required to register. Steam End User - 1 day workshop Availability: Onsite instructor-led and online self-paced workshop This course covers the operation of typical steam...

313

Benchmark the Fuel Cost of Steam Generation  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

314

Steam System Modeler | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency (%) Isentropic Efficiency (%) Blowdown Rate (%) Deaerator Vent Rate (%) Heat Loss (%) Condensate Return (%) Steam Mass Flow Feedwater Mass Flow Initial HP Steam...

315

Coal Ash Corrosion Resistant Materials Testing Program  

SciTech Connect

The "Coal Ash Corrosion Resistant Materials Testing Program" is being conducted by The Babcock & Wilcox Company (B&W), the U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) at Reliant Energy?s Niles plant in Niles, Ohio to provide full-scale, in-situ testing of recently developed boiler superheater materials. Fireside corrosion is a key issue for improving efficiency of new coal fired power plants and improving service life in existing plants. In November 1998, B&W began development of a system to permit testing of advanced tube materials at metal temperatures typical of advanced supercritical steam temperatures (1100°F and higher) in a boiler exhibiting coal ash corrosive conditions. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. In the spring of 1999 a system consisting of three identical sections, each containing multiple segments of twelve different materials, was installed. The sections are cooled by reheat steam, and are located just above the furnace entrance in Niles? Unit #1, a 110 MWe unit firing high sulfur Ohio coal. In November 2001 the first section was removed for thorough metallurgical evaluation after 33 months of operation. The second and third sections remain in service and the second is expected to be removed in the fall of 2003; the last is tentatively planned for the fall of 2004. This paper describes the program; its importance; the design, fabrication, installation and operation of the test system; materials utilized; experience to date; and results of the evaluation of the first section.

McDonald, D.K.

2003-04-22T23:59:59.000Z

316

Advances in pulverized coal combustion  

SciTech Connect

A combustion system has been developed to operate cost effectively in the difficult regulatory and economic climate of the 1980's. The system is designed to reduce auxiliary fuel oil comsumption by at least 30% while meeting all relevant emissions limits. This is achieved with the fewest components consistent with practical reliable design criteria. The Controlled Flow Split/Flame low NO/sub x/ burner, MBF pulverizer and Two-Stage ignition system are integrated into a mutually supporting system which is applicable to both new steam generators and, on a retrofit basis, to existing units. In the future, a pulverized coal ignition system will be available to eliminate fuel oil use within the boiler.

Vatsky, J.

1981-01-01T23:59:59.000Z

317

Pulverized Coal-Fired Boilers and Pollution Control  

Science Journals Connector (OSTI)

Fossil fuels, such as coal, natural gas, and fuel oil, are used to generate electric power for industrial, commercial, and residential use. ... production and approximately 41% of the world power generation was s...

David K. Moyeda

2013-01-01T23:59:59.000Z

318

Evolving performance characteristics of clean coal technologies  

SciTech Connect

The United States Department of Energy (US DOE) Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of {open_quotes}semicommercial{close_quotes} facilities. These demonstrations are on a scale large enough to generate all the data, from design, construction, and operation, that are necessary for the private sector to judge commercial potential and make informed, confident decisions on commercial readiness. The projects in the program are demonstrating technologies that will encompass advanced electric power generation systems, high-performance pollution control devices, coal processing for clean fuels and industrial applications. The innovative CCTs being demonstrated offer tremendous potential as solutions to many complex problems in a rapidly changing arena dominated by energy, economic, and environmental issues. These issues include the following: air quality; global climate change; energy security; international competitiveness; acid rain; power production; and technology awareness. These technologies are expected to be of particular importance to the utility industry. Power production in the United States, particularly in the form of electricity, is expected to increase rapidly during the next 20 years. The growth in electricity consumption between 1990 and 2000 translates into the need for at least an additional 200,000 MWe of capacity by 2010. The ability to continue to use coal to produce electricity and as a source of industrial heat and power is critical. In the United States approximately 86 percent of coal is critical. The CCT Program is developing through demonstration new power and steam production systems using coal-based technologies that will permit coal to be a clean, efficient, reliable source of affordable energy.

Miller, C.L.

1993-12-31T23:59:59.000Z

319

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

transportation component of coal price should also increase;investment. Coal costs and prices are functions of a numberto forecast coal demand, supply, and prices from now to

McCollum, David L

2007-01-01T23:59:59.000Z

320

Coal Market Module This  

Gasoline and Diesel Fuel Update (EIA)

51 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2012, DOE/EIA-M060(2012) (Washington, DC, 2012). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

Note: This page contains sample records for the topic "world steam coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 153 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2011, DOE/EIA-M060(2011) (Washington, DC, 2011). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

322

EIA -Quarterly Coal Distribution  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Distribution Coal Distribution Home > Coal> Quarterly Coal Distribution Back Issues Quarterly Coal Distribution Archives Release Date: June 27, 2013 Next Release Date: September 2013 The Quarterly Coal Distribution Report (QCDR) provides detailed quarterly data on U.S. domestic coal distribution by coal origin, coal destination, mode of transportation and consuming sector. All data are preliminary and superseded by the final Coal Distribution - Annual Report. Year/Quarters By origin State By destination State Report Data File Report Data File 2009 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf October-December pdf xls pdf 2010 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf xls

323

ULTRA-SUPERCRITICAL STEAM CORROSION  

SciTech Connect

Efficiency increases in fossil energy boilers and steam turbines are being achieved by increasing the temperature and pressure at the turbine inlets well beyond the critical point of water. To allow these increases, advanced materials are needed that are able to withstand the higher temperatures and pressures in terms of strength, creep, and oxidation resistance. As part of a larger collaborative effort, the Albany Research Center (ARC) is examining the steam-side oxidation behavior for ultrasupercritical (USC) steam turbine applications. Initial tests are being done on six alloys identified as candidates for USC steam boiler applications: ferritic alloy SAVE12, austenitic alloy Super 304H, the high Cr-high Ni alloy HR6W, and the nickel-base superalloys Inconel 617, Haynes 230, and Inconel 740. Each of these alloys has very high strength for its alloy type. Three types of experiments are planned: cyclic oxidation in air plus steam at atmospheric pressure, thermogravimetric ana lysis (TGA) in steam at atmospheric pressure, and exposure tests in supercritical steam up to 650 C (1202 F) and 34.5 MPa (5000 psi). The atmospheric pressure tests, combined with supercritical exposures at 13.8, 20.7, 24.6, and 34.5 MPa (2000, 3000, 4000, and 5000 psi) should allow the determination of the effect of pressure on the oxidation process.

Holcomb, G.R.; Alman, D.E.; Bullard, S.B.; Covino, B.S., Jr.; Cramer, S.D.; Ziomek-Moroz, M.

2003-04-22T23:59:59.000Z

324

Design and fabrication of an internal condensation loop for effectiveness and robustness testing of nanostructured superhydrophobic steam condenser  

E-Print Network (OSTI)

The Rankine cycle is at the heart of steam-electric power stations, which are responsible for generating about 90% of the world's electricity. Improving the efficiency of the cycle thus of great importance, and the greatest ...

Saranadhi, Dhananjai (Dhananjai V.)

2014-01-01T23:59:59.000Z

325

How Coal Gasification Power Plants Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gasification » How Coal Gasification » How Coal Gasification Power Plants Work How Coal Gasification Power Plants Work How Coal Gasification Power Plants Work The heart of a gasification-based system is the gasifier. A gasifier converts hydrocarbon feedstock into gaseous components by applying heat under pressure in the presence of steam. A gasifier differs from a combustor in that the amount of air or oxygen available inside the gasifier is carefully controlled so that only a relatively small portion of the fuel burns completely. This "partial oxidation" process provides the heat. Rather than burning, most of the carbon-containing feedstock is chemically broken apart by the gasifier's heat and pressure, setting into motion chemical reactions that produce "syngas." Syngas is primarily hydrogen and carbon monoxide, but can include

326

GCFR steam generator conceptual design  

SciTech Connect

The gas-cooled fast reactor (GCFR) steam generators are large once-through heat exchangers with helically coiled tube bundles. In the GCFR demonstration plant, hot helium from the reactor core is passed through these units to produce superheated steam, which is used by the turbine generators to produce electrical power. The paper describes the conceptual design of the steam generator. The major components and functions of the design are addressed. The topics discussed are the configuration, operating conditions, design criteria, and the design verification and support programs.

Holm, R.A.; Elliott, J.P.

1980-01-01T23:59:59.000Z

327

U.S. zero emission coal alliance techology  

SciTech Connect

For coal to maintain its major role in supplying the world's energy, eventually all emissions to the atmosphere must be eliminated. Not only must conventional pollutants, like sulfur compounds and dust particles be kept out of the air, but also the far larger quantities of carbon dioxide that result from the combustion of carbon. We present a new technology for coal-based power that generates hydrogen from carbon and water, avoids emissions to the atmosphere, and disposes of the carbon dioxide as inert, solid mineral carbonates. Based on the available resources, coal power is sustainable for centuries. Our zero emission technology makes coal energy as clean as renewable energy.

Lackner, K. S. (Klaus S.); Ziock, H. J. (Hans-Joachim)

2001-01-01T23:59:59.000Z

328

Combined Heat and Power Plant Steam Turbine  

E-Print Network (OSTI)

Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

329

Steam System Tool Suite Introduction Guide  

E-Print Network (OSTI)

)........................................................................................8 Steam System Assessment Tool (SSAT Tool, the Steam System Assessment Tool, and the 3E Plus Insulation Tool. Each one of these trainings.S.DOE Steam Tools are designed to aid in assessing steam systems by identifying areas to investigate

Oak Ridge National Laboratory

330

Wet-steam erosion of steam turbine disks and shafts  

SciTech Connect

A study of wet-steam erosion of the disks and the rotor bosses or housings of turbines in thermal and nuclear power plants shows that the rate of wear does not depend on the diagrammed degree of moisture, but is determined by moisture condensing on the surfaces of the diaphragms and steam inlet components. Renovating the diaphragm seals as an assembly with condensate removal provides a manifold reduction in the erosion.

Averkina, N. V. [JSC 'NPO TsKTI' (Russian Federation); Zheleznyak, I. V. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation); Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G., E-mail: orlikvg@mail.ru [JSC 'NPO TsKTI' (Russian Federation); Shishkin, V. I. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation)

2011-01-15T23:59:59.000Z

331

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network (OSTI)

DOE's BestPractices Steam End User Training Steam End User Training Welcome Module - 1 8/27/2010 Steam End User Training Welcome Module Slide 1 ­ Steam End User Training Welcome to the Department of Energy's Industrial Technologies Program BestPractices Steam End-User Training. The Department of Energy

Oak Ridge National Laboratory

332

The Steam System Scoping Tool: Benchmarking Your Steam Operations Through Best Practices  

E-Print Network (OSTI)

system efficiency. The BestPractices Steam effort, a part of the DOE-OIT effort, has developed a new tool that steam energy managers and operations personnel can use to assess their steam operations and improve their steam energy usage -the Steam System...

Wright, A.; Hahn, G.

333

Investigations into coal coprocessing and coal liquefaction  

SciTech Connect

The conversion of coal to liquid suitable as feedstock to a petroleum refinery is dependent upon several process variables. These variables include temperature, pressure, coal rank, catalyst type, nature of the feed to the reactor, type of process, etc. Western Research Institute (WRI) has initiated a research program in the area of coal liquefaction to address the impact of some of these variables upon the yield and quality of the coal-derived liquid. The principal goal of this research is to improve the efficiency of the coal liquefaction process. Two different approaches are currently being investigated. These include the coprocessing of a heavy liquid, such as crude oil, and coal using a dispersed catalyst and the direct liquefaction of coal using a supported catalyst. Another important consideration in coal liquefaction is the utilization of hydrogen, including both externally- and internally-supplied hydrogen. Because the incorporation of externally-supplied hydrogen during conversion of this very aromatic fossil fuel to, for example, transportation fuels is very expensive, improved utilization of internally-supplied hydrogen can lead to reducing processing costs. The objectives of this investigation, which is Task 3.3.4, Coal Coprocessing, of the 1991--1992 Annual Research Plan, are: (1) to evaluate coal/oil pretreatment conditions that are expected to improve the liquid yield through more efficient dispersion of an oil-soluble, iron-based catalyst, (2) to characterize the coke deposits on novel, supported catalysts after coal liquefaction experiments and to correlate the carbon skeletal structure parameters of the coke deposit with catalyst performance as measured by coal liquefaction product yield, and (3) to determine the modes of hydrogen utilization during coal liquefaction and coprocessing. Experimental results are discussed in this report.

Guffey, F.D.; Netzel, D.A.; Miknis, F.P.; Thomas, K.P. [Western Research Inst., Laramie, WY (United States); Zhang, Tiejun; Haynes, H.W. Jr. [Wyoming Univ., Laramie, WY (United States). Dept. of Chemical Engineering

1994-06-01T23:59:59.000Z

334

Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol  

SciTech Connect

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the fourth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of July 1-Sept 30, 2004 along with a recap of progress from the start of the project on Oct 1, 2003 to Sept 30, 2004. All of the projects are proceeding on or slightly ahead of schedule. This year saw progress in several areas. These areas are: (1) External and internal evaluation of coal based methanol and a fuel cell grade baseline fuel, (2) Design set up and initial testing of three laboratory scale steam reformers, (3) Design, set up and initial testing of a laboratory scale autothermal reactor, (4) Hydrogen generation from coal-derived methanol using steam reformation, (5) Experiments to determine the axial and radial thermal profiles of the steam reformers, (6) Initial catalyst degradation studies with steam reformation and coal based methanol, and (7) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2004-09-30T23:59:59.000Z

335

Gasification world database 2007. Current industry status  

SciTech Connect

Information on trends and drivers affecting the growth of the gasification industry is provided based on information in the USDOE NETL world gasification database (available on the www.netl.doe.gov website). Sectors cover syngas production in 2007, growth planned through 2010, recent industry changes, and beyond 2010 - strong growth anticipated in the United States. A list of gasification-based power plant projects, coal-to-liquid projects and coal-to-SNG projects under consideration in the USA is given.

NONE

2007-10-15T23:59:59.000Z

336

Experimental Study on Microwave Pyrolysis of an Indonesian Low-Rank Coal  

Science Journals Connector (OSTI)

Microwave pyrolysis of an Indonesian lignite is investigated in this study. ... About half of the world’s coal reserves are low-rank coals. ... Considerable amts. of 3,4-dihydro-1(2H)-naphthalenone (alpha-tetralone) were found in the oil fractions of lignites treated by microwave energy. ...

Nan Wang; Jianglong Yu; Arash Tahmasebi; Yanna Han; John Lucas; Terry Wall; Yu Jiang

2013-10-14T23:59:59.000Z

337

Lead contents of coal, coal ash and fly ash  

Science Journals Connector (OSTI)

Flameless atomic absorption spectrometry is applied for the determination of Pb in coal, coal ash and fly ash. Lead concentrations in coal and coal ash ranging from respectively 7 to 110 µg...?1 and 120 to 450 µg...

C. Block; R. Dams

1975-12-01T23:59:59.000Z

338

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

Coal Cleaning Costs Process Clean Coal Produced, * T/D (DryMM$ Net Operating Cost, $/T (Clean Coal Basis) Net OperatingCost, $/T (Clean Coal Bases) Case NA Hazen KVB Battelle

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

339

Coal Integrated Gasification Fuel Cell System Study  

SciTech Connect

This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

2004-01-31T23:59:59.000Z

340

Operating experience of large ultra super critical steam turbine with latest technology  

SciTech Connect

In Japan, the main large capacity fossil-fuel power plant larger than 500 MW are supercritical units and the steam condition of 24.2 MPa, 538/566 C has been adopted. Through extensive development work, design and material technologies for steam turbines with a 593 C steam temperature have been established, and the steam condition of 24.2 MPa, 583/593 C was applied to the 700 MW steam turbine of Hekinan No.3 Unit, Chubu Electric Power Co., Inc. for the first time in Japan. This is also the world`s largest unit with a steam condition of 593 C. The Hekinan No. 3 Unit was designed and manufactured applying the latest technologies established for 593 C application. The unit was first rolled with steam in July 1992 and after successful trial operation and tests, the No. 3 Unit started commercial operation in April 1993. This paper introduces the latest technologies and the overhaul inspection results after about one year`s commercial operation.

Kishimoto, Masaru; Minami, Yoshihiro [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan); Takayanagi, Kiyoshi; Umaya, Masahide [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "world steam coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hydraulic model and steam flow numerical simulation of the Cerro Prieto geothermal field, Mexico, pipeline network  

Science Journals Connector (OSTI)

Abstract The development of a hydraulic model and numerical simulation results of the Cerro Prieto geothermal field (CPGF) steam pipeline network are presented. Cerro Prieto is the largest water-dominant geothermal field in the world and its transportation network has 162 producing wells, connected through a network of pipelines that feeds 13 power-generating plants with an installed capacity of 720 MWe. The network is about 125 km long and has parallel high- and low-pressure networks. Prior to this study, it was suspected that steam flow stagnated or reversed from its planned direction in some segments of the network. Yet, the network complexity and extension complicated the analysis of steam transport for adequate delivery to the power plants. Thus, a hydraulic model of the steam transportation system was developed and implemented numerically using an existing simulator, which allowed the overall analysis of the network in order to quantify the pressure and energy losses as well as the steam flow direction in every part of the network. Numerical results of the high-pressure network were obtained which show that the mean relative differences between measured and simulated pressures and flowrates are less than 10%, which is considered satisfactory. Analysis of results led to the detection of areas of opportunity and to the recommendation of changes for improving steam transport. A main contribution of the present work is having simulated satisfactorily the longest (to our knowledge), and probably the most complex, steam pipeline network in the world.

A. García-Gutiérrez; A.F. Hernández; J.I. Martínez; M. Ceceñas; R. Ovando; I. Canchola

2015-01-01T23:59:59.000Z

342

EIA - International Energy Outlook 2007-Coal Graphic Data  

Gasoline and Diesel Fuel Update (EIA)

7 7 Figure 54. World Coal Consumption by Region, 1980-2030 Figure 54 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 55. Coal share of World Energy Consumption by Sector, 2004, 2015, and 2030 Figure 55 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 56. OECD Coal Consumption by Region, 1980, 2004, 2015, and 2030 Figure 56 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 57. Non-OECD Coal Consumption by Region, 1980, 2004, 2015, and 2030 Figure 57 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 58. Coal Consumption in China by Sector, 2004, 2015, and 2030 Figure 58 Data. Need help, contact the National Energy Information Center at 202-586-8800.

343

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Distribution of U.S. Coal by Origin State, Domestic Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys

344

Hydrogen from Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U.S. Department of Energy DOE Workshop on Hydrogen Separations and Purification Technologies September 8, 2004 Presentation Outline ƒ Hydrogen Initiatives ƒ Hydrogen from Coal Central Production Goal ƒ Why Coal ƒ Why Hydrogen Separation Membranes ƒ Coal-based Synthesis Gas Characteristics ƒ Technical Barriers ƒ Targets ƒ Future Plans 2 3 Hydrogen from Coal Program Hydrogen from Coal Program FutureGen FutureGen Hydrogen Fuel Initiative Hydrogen Fuel Initiative Gasification Fuel Cells Turbines Gasification Fuel Cells Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Supports the Hydrogen Fuel Initiative and FutureGen * The Hydrogen Fuel Initiative is a $1.2 billion RD&D program to develop hydrogen

345

Steam Field | Open Energy Information  

Open Energy Info (EERE)

Field Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Steam Field Dictionary.png Steam Field: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in 2005 at the request of DOE and GEA, as reported in Classification of Geothermal Systems: A Possible Scheme. Extremely Low Temperature Very Low Temperature Low Temperature Moderate Temperature High Temperature Ultra High Temperature Steam Field Steam field reservoirs are special cases where the fluid is predominantly found in a gas phase between 230°C to 240°C. "This special class of resource needs to be recognized, its uniqueness being the remarkably consistent initial temperature and pressure

346

Steam in the Ring Discharge  

Science Journals Connector (OSTI)

The behaviour of steam and its decomposition products in the ring discharge has been examined. Dry hydrogen is not dissociated. The production of atomic hydrogen is dependent upon the presence of steam which dissociates into hydroxyl and atomic hydrogen. A secondary source of atomic hydrogen is then afforded by the interaction of hydroxyl with molecular hydrogen. The escape from the discharge of atomic hydrogen, a long-lived species, favours the dissociation of steam. Mercury vapour, on the other hand, inhibits the formation of atomic hydrogen and thus leads to a high equilibrium steam concentration. Unlike dry hydrogen, dry oxygen is dissociated into atoms, but these have a short life as such and recombine in the discharge to form molecular oxygen and ozone. The reaction mechanisms occurring in the discharge are discussed in the light of spectrographic results.

G I Finch

1949-01-01T23:59:59.000Z

347

Managing the Steam Trap Population  

E-Print Network (OSTI)

hundred steam traps installed only 58 were working effectively -- 42% needed attention! These programs had associated cost benefits of at least 100% return on investment, a maximum six month breakeven on cash flow, and an energy cost reduction amounting...

Atlas, R. D.

1983-01-01T23:59:59.000Z

348

Foam Cleaning of Steam Turbines  

E-Print Network (OSTI)

The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

Foster, C.; Curtis, G.; Horvath, J. W.

349

The steam engine and industrialization  

E-Print Network (OSTI)

Simon Schaffer in York Rail Museum talks to the camera about the relationship between the steam engine and industrialization and whatsteam meant; a regular supply of moving power for workshops and factories....

Dugan, David

2004-08-17T23:59:59.000Z

350

Capturing Energy Savings with Steam Traps  

E-Print Network (OSTI)

Capturing Energy Savings with Steam Traps Richard C; Bockwinkel General Manager Armstrong Service? A Division of Armstrong International, Inc. Orlando, Florida ABSTRACT This paper will discuss the energy savings potential of steam... Engineer Steam Traps Armstrong International, Inc. Three Rivers, Michigan basis. Finally, it's important to recognize that a steam trap program will reduce steam waste> which will reduce the amount of fuel burned> which will reduce pollutants...

Bockwinkel, R. G.; French, S. A.

351

Review of Orifice Plate Steam Traps  

Energy.gov (U.S. Department of Energy (DOE))

This guide was prepared to serve as a foundation for making informed decisions about when orifice plate steam traps should be considered for use in new or existing steam systems. It presents background information about different types of steam traps and defines their unique functional and operational characteristics. The advantages and disadvantages associated with using orifice plate steam traps are provided to highlight their capabilities and limitations. Finally, recommendations for using orifice plate steam traps are presented, and possible applications are identified.

352

Small boiler uses waste coal  

SciTech Connect

Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables a three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.

Virr, M.J. [Spinheat Ltd. (United States)

2009-07-15T23:59:59.000Z

353

The Elimination of Steam Traps  

E-Print Network (OSTI)

claims and misinformation gener ated by over thirty-six steam trap manufacturers in the United States alone. A PARTIAL LIST OF STEAM TRAP MANUFACTURERS AAF GESTRA ANDERSON HIROSS ARMSTRONG HOFFMAN BARNES &JONES HONEYWELL BRAUKMANN BESTOBELL... removal had been devised and these same methods, with minor variations, are employed today. The inverted bucket trap was in vented in 1910 by Otto Arner, a friend of Adam Armstrong. Armstrong began his business career by making bicycle spokes...

Dickman, F.

354

EIS-0357 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 - Gilberton Coal-to-Clean Fuels and Power Project in 7 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA EIS-0357 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA Summary This Environmental Impact Statement (EIS) assesses the potential environmental impacts that would result from a proposed Department of Energy (DOE) action to provide cost-shared funding for construction and operation of facilities near Gilberton, Pennsylvania, which have been proposed by WMPI PTY, LLC, for producing electricity, steam, and liquid fuels from anthracite coal waste (culm). The project was selected by DOE under the Clean Coal Power Initiative (CCPI) to demonstrate the integration of coal waste gasification and Fischer-Tropsch (F-T) synthesis of liquid hydrocarbon fuels at commercial scale. PUBLIC COMMENT OPPORTUNITIES

355

The Largest Tandem Compound Steam Turbines in the world  

Science Journals Connector (OSTI)

The improvement of turbine efficiency is extremely important subject from the...2 and consumption of fossil fuel.

Hiromitsu Iijima

2007-01-01T23:59:59.000Z

356

Polygeneration of Liquid Fuels and Electricity by the Atmospheric Pressure Hybrid Solar Gasification of Coal  

Science Journals Connector (OSTI)

(16, 17, 29, 30) The technical viability of the atmospheric pressure, windowed solar vortex reactor to gasify petroleum coke (petcoke) has been demonstrated on a small scale,(16, 29, 31) and a 300 kW pilot scale reactor has also been tested successfully. ... Inputs to the reactor were the model coal (as discussed above), nitrogen used for the carrier gas for the coal feed, steam used as a gasifying agent, and oxygen that is needed when ? gas turbine for electricity generation. ...

Ashok A. Kaniyal; Philip J. van Eyk; Graham J. Nathan; Peter J. Ashman; Jonathan J. Pincus

2013-05-20T23:59:59.000Z

357

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network (OSTI)

to make additional steam for the steam turbine cycle. Thein multi-pressure-level steam turbines to produce additionalthe superheated steam to the steam turbine cycle. The most

Lu, Xiaoming

2012-01-01T23:59:59.000Z

358

Coal Severance Tax (North Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

The Coal Severance Tax is imposed on all coal severed for sale or industrial purposes, except coal used for heating buildings in the state, coal used by the state or any political subdivision of...

359

Upgraded Coal Interest Group  

SciTech Connect

The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

Evan Hughes

2009-01-08T23:59:59.000Z

360

Chapter 2 - Coal as Multiple Sources of Energy  

Science Journals Connector (OSTI)

Abstract Coal as multiple sources of energy is mined for its solid and gas-, oil-, and condensate-derived hydrocarbons as well as liquefied for synfuels. More than 50 countries mine coal as feedstock for power plants to generate electricity but only six of these countries monopolize 73% of the total recoverable coalbed gas resources of the world. Worldwide, about 30,000 coal mine explosions are caused by methane and carbon dioxide, and to prevent outbursts and emissions, underground, surface, and abandoned coalmine gases are exploited for industrial and commercial uses. Still, a large volume of unrecovered fugitive coalmine gases is released as global greenhouse gas emissions. An alternative source for foreign oil dependent countries is synfuels from coal liquefaction technology. Also, coal-derived hydrocarbons are a part of the conventional resources that is, gas, oil, and condensate sourced from coal but expelled into adjoining reservoirs, are attractive alternative energy sources.

Romeo M. Flores

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "world steam coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Exploratory Research on Novel Coal Liquefaction Concept.  

SciTech Connect

Microautoclave tests confirmed that first-stage subbituminous coal conversions were greater in a more aromatic first-stage solvent. First-stage liquefaction tests with hydride ion `E` showed that high coal conversions can be obtained with a number of different first-stage water-gas-shift catalysts. Eight one-liter autoclave tests were completed. All tests used Black Thunder Mine subbituminous coal and Reilly Industries anthracene oil. Differences among the tests were the hydride ion reagent used, the post-run flash of water, and the shift catalyst. Filtration tests were conducted with five one-liter autoclave products of subbituminous coal. The filtration rates were slower than those that had been obtained with North Dakota lignite products, but were still within a commercially acceptable range. The influence of the first-stage shift catalyst on filtration rates is being investigated. Second-stage hydrotreating of products of tests made to simulate the British coal LSE process and the Wilsonville pilot plant preheaters had lower resid conversion and higher hydrogen uptake than the products of the hydride ion liquefaction reaction. The 300 mL second-stage reactor system went on line this quarter. Refinements in the experimental procedures are under way. A conceptual commercial plant design for the hydride ion reagent `A` case was completed. Evaluations of hydride ion reagent `D` and `E` cases were initiated, and an integrated liquefaction system balance for the hydride ion reagent `E` case was begun. A preliminary review of the final technical and economic reports from the Alberta Research Council study of low-rank coal conversion using the CO-steam process generated a number of questions on the published reports; further analysis of the reports is planned.

Brandes, S.D.; Winschel, R.A.

1997-06-12T23:59:59.000Z

362

Engineering development of advanced physical fine coal cleaning for premium fuel applications  

SciTech Connect

The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction and operation of 2 t/hr process development unit (PDU). This report represents the findings of the PDU Advanced Column Flotation Testing and Evaluation phase of the program and includes a discussion of the design and construction of the PDU. Three compliance steam coals, Taggart, Indiana VII and Hiawatha, were processed in the PDU to determine performance and design parameters for commercial production of premium fuel by advanced flotation. Consistent, reliable performance of the PDU was demonstrated by 72-hr production runs on each of the test coals. Its capacity generally was limited by the dewatering capacity of the clean coal filters during the production runs rather than by the flotation capacity of the Microcel column. The residual concentrations of As, Pb, and Cl were reduced by at least 25% on a heating value basis from their concentrations in the test coals. The reduction in the concentrations of Be, Cd, Cr, Co, Mn, Hg, Ni and Se varied from coal to coal but the concentrations of most were greatly reduced from the concentrations in the ROM parent coals. The ash fusion temperatures of the Taggart and Indiana VII coals, and to a much lesser extent the Hiawatha coal, were decreased by the cleaning.

Shields, G.L.; Smit, F.J.; Jha, M.C.

1997-08-28T23:59:59.000Z

363

Catalyst-free carbon nanotubes from coal-based material  

SciTech Connect

DC-Arc Discharge technique has been used to synthesize carbon nanotubes from super clean coal samples instead of graphite electrodes filled with metal catalysts. The adverse effect of the mineral matter present in coal may be, thus, avoided. The cathode deposits showed the presence of single walled carbon nanotubes as well, which are generally known to be formed only in presence of transition metal catalysts and lanthanides. The process also avoids the tedious purification treatments of carbon nanotubes by strong acids to get rid of metal catalysts produced as impurities along with nanotubes. Thus, coal may be refined and demineralized by an organorefining technique to obtain super clean coal, an ultra low ash coal which may be used for the production of carbon nanotubes. The residual coal obtained after the organorefining may be used as an energy source for raising steam for power generation. Thus, coal may afford its use as an inexpensive feedstock for the production of carbon nanotubes besides its conventional role as a fuel for power generation.

Mathur, R.B.; Lal, C.; Sharma, D.K. [Indian Institute of Technology, New Delhi (India)

2007-01-01T23:59:59.000Z

364

Coal Combustion Science  

SciTech Connect

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

1991-08-01T23:59:59.000Z

365

Best Management Practice #8: Boiler and Steam Systems | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

implement a routine inspection and maintenance program to check steam traps and steam lines for leaks. Repair leaks and replace faulty steam traps as soon as possible. Develop...

366

Integrating coal cleaning with pulverized coal and fluidized bed boilers to meet the Clean Air Act Amendment and for new plant construction  

SciTech Connect

Integrating coal cleaning into a two boiler, pulverized coal-fired/fluidized bed (PC/FBC) power plant can reduce emissions at low cost for both retrofit projects and new power plants. The technology, because it relies on proven equipment and practices, albeit in a novel context, is low risk and near term. Its low cost makes it particularly suitable to retrofit many of the older coal- fired power plants in the US, and also for retrofitting power plants in the less affluent Eastern European and Asian countries that rely on coal for power generation and need to reduce emission but cannot afford scrubbers. In retrofit applications the technology involves a simple coal cleaning plant and the addition of a small fluidized bed boiler with its steam circuitry integrated into the plant's steam cycle. The clean coal stream will be fired in the existing boiler while the fluidized bed will use the low grade (waste) stream from the coal cleaning plant. This paper reports that this approach is particularly applicable to the many power plants along the Ohio River.

Miliaras, E.S.; Lawrence, D.W. (Energotechnology Corp., Cambridge, MA (United States))

1990-01-01T23:59:59.000Z

367

World energy consumption  

SciTech Connect

Historical and projected world energy consumption information is displayed. The information is presented by region and fuel type, and includes a world total. Measurements are in quadrillion Btu. Sources of the information contained in the table are: (1) history--Energy Information Administration (EIA), International Energy Annual 1992, DOE/EIA-0219(92); (2) projections--EIA, World Energy Projections System, 1994. Country amounts include an adjustment to account for electricity trade. Regions or country groups are shown as follows: (1) Organization for Economic Cooperation and Development (OECD), US (not including US territories), which are included in other (ECD), Canada, Japan, OECD Europe, United Kingdom, France, Germany, Italy, Netherlands, other Europe, and other OECD; (2) Eurasia--China, former Soviet Union, eastern Europe; (3) rest of world--Organization of Petroleum Exporting Countries (OPEC) and other countries not included in any other group. Fuel types include oil, natural gas, coal, nuclear, and other. Other includes hydroelectricity, geothermal, solar, biomass, wind, and other renewable sources.

NONE

1995-12-01T23:59:59.000Z

368

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on steam jet ejectors and thermocompressors provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

369

Systematic Errors in Measuring the Energy of Wet Steam with Dry-Steam Meters  

Science Journals Connector (OSTI)

Systematic errors are considered in measuring mass flow rate, specific enthalpy, thermal power, and energy for wet steam by means of meters intended for dry saturated steam.

E. G. Abarinov; K. S. Sarelo

2002-03-01T23:59:59.000Z

370

Some Comments on James Watt's Published Account of His Work on Steam and Steam Engines  

Science Journals Connector (OSTI)

1 June 1971 research-article Some Comments on James Watt's Published Account of His Work on Steam and Steam Engines W. A. Smeaton

1971-01-01T23:59:59.000Z

371

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

SciTech Connect

Industrial Technologies Program's BestPractices tip sheet on improving efficiency of industrial steam systems by recovery latent heat from low-pressure steam.

Not Available

2005-09-01T23:59:59.000Z

372

Steam Pressure Reduction, Opportunities, and Issues  

SciTech Connect

Steam pressure reduction has the potential to reduce fuel consumption for a minimum capital investment. When the pressure at the boiler is reduced, fuel and steam are saved as a result of changes in the high-pressure side of the steam system from the boiler through the condensate return system. In the boiler plant, losses from combustion, boiler blowdown, radiation, and steam venting from condensate receivers would be reduced by reducing steam pressure. Similarly, in the steam distribution system, losses from radiation, flash steam vented from condensate receivers, and component and steam trap leakage would also be reduced. There are potential problems associated with steam pressure reduction, however. These may include increased boiler carryover, boiler water circulation problems in watertube boilers, increased steam velocity in piping, loss of power in steam turbines, and issues with pressure reducing valves. This paper is based a Steam Technical Brief sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and Enbridge Gas Distribution, Inc. (5). An example illustrates the use of DOE BestPractices Steam System Assessment Tool to model changes in steam, fuel, electricity generation, and makeup water and to estimate resulting economic benefits.

Berry, Jan [ORNL; Griffin, Mr. Bob [Enbridge Gas Distribution, Inc.; Wright, Anthony L [ORNL

2006-01-01T23:59:59.000Z

373

The First Coal Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Plants Coal Plants Nature Bulletin No. 329-A January 25, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation THE FIRST COAL PLANTS Coal has been called "the mainspring" of our civilization. You are probably familiar, in a general way, with the story of how it originated ages ago from beds of peat which were very slowly changed to coal; and how it became lignite or brown coal, sub-bituminous, bituminous, or anthracite coal, depending on bacterial and chemical changes in the peat, how much it was compressed under terrific pressure, and the amount of heat involved in the process. You also know that peat is formed by decaying vegetation in shallow clear fresh-water swamps or bogs, but it is difficult to find a simple description of the kinds of plants that, living and dying during different periods of the earth's history, created beds of peat which eventually became coal.

374

Coal gasification: Belgian first  

Science Journals Connector (OSTI)

... hope for Europe's coal production came with the announcement this month that the first gasification of coal at depths of nearly 1,000 metres would take place this May in ... of energy.

Jasper Becker

1982-03-04T23:59:59.000Z

375

Microbial solubilization of coal  

DOE Patents (OSTI)

This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.

Strandberg, Gerald W. (Farragut, TN); Lewis, Susan N. (Knoxville, TN)

1990-01-01T23:59:59.000Z

376

“From Coal to Coke”  

Science Journals Connector (OSTI)

... IN the Sixth Coal Science Lecture, organized by the British ... Science Lecture, organized by the British Coal Utilization Research Association, and given at the Institution of Civil Engineers on October 16, ...

1957-11-02T23:59:59.000Z

377

Coal Production 1992  

SciTech Connect

Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

Not Available

1993-10-29T23:59:59.000Z

378

Chemicals from coal  

SciTech Connect

This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

2004-12-01T23:59:59.000Z

379

Coal Distribution Database, 2008  

Annual Energy Outlook 2012 (EIA)

4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal...

380

Indonesian coal mining  

SciTech Connect

The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

NONE

2008-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "world steam coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Status of coal ash corrosion resistant materials test program  

SciTech Connect

In November of 1998, Babcock and Wilcox (B and W) began development of a system to permit testing of several advanced tube materials at metal temperatures typical of advanced supercritical steam conditions of 1100 F and higher in a boiler exhibiting coal ash corrosive conditions. The U.S. Department of Energy (DOE), the Ohio Coal Development Office (OCDO), B and W, and First Energy's Ohio Edison jointly fund the project. CONSOL Energy Company is also participating as an advisor. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. The coal-ash corrosion resistant materials test program will provide full scale, in-situ testing of recently developed boiler superheater and reheater tube materials. These newer materials may be capable of operating at higher steam temperatures while resisting external/fire-side corrosion. For high sulfur coal applications, this is a key issue for advanced cycle pulverized coal-fired plants. Fireside corrosion is also a critical issue for many existing plants. Previous testing of high temperature materials in the United States has been based primarily on using laboratory test coupons. The test coupons did not operate at conditions representative of a high sulfur coal-fired boiler. Testing outside of the United States has been with low sulfur coal or natural gas firing and has not addressed corrosion issues. This test program takes place in an actual operating boiler and is expected to confirm the performance of these materials with high sulfur coal. The system consists of three identical sections, each containing multiple pieces of twelve different materials. They are cooled by reheater steam, and are located just above the furnace exit in Ohio Edison's Niles Unit No.1, a 110 MWe unit firing high sulfur Ohio coal. After one year of operation, the first section will be removed for thorough metallurgical evaluation. The second and third sections will operate for three and five years respectively prior to removal and evaluation. The objective is to determine how well each material resists corrosion at different operating temperatures and over different time periods and provide characteristic data. Selection of the test materials, system engineering, fabrication, installation and startup of this system is now completed and data acquisition is in progress. This paper gives an overview of the program and its objectives, explains the system, describes section fabrication, identifies the materials selected, and describes ORNL's experience in fabricating four of the advanced materials.

McDonald, D.K.; Meisenhelter, D.K.; Sikka, V.K.

1999-07-01T23:59:59.000Z

382

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)  

U.S. Energy Information Administration (EIA) Indexed Site

Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," " 1985-2010 (Megawatts)" "Year","Coal",,,,"Petroleum and Natural Gas",,,,"Total 1" ,,,"Flue Gas","Total 2",,,"Flue Gas","Total 2",,,"Flue Gas","Total 2" ,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization" ,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)"

383

Coal gasification apparatus  

DOE Patents (OSTI)

Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

Nagy, Charles K. (Monaca, PA)

1982-01-01T23:59:59.000Z

384

NETL: Coal Gasification Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Gasification Systems News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program Plan...

385

Coal gasification development intensifies  

Science Journals Connector (OSTI)

Coal gasification development intensifies ... Three almost simultaneous developments in coal gasification, although widely divergent in purpose and geography, rapidly are accelerating the technology's movement into an era of commercial exploitation. ... A plant to be built in the California desert will be the first commercialsize coal gasification power plant in the U.S. In West Germany, synthesis gas from a coal gasification demonstration plant is now being used as a chemical feedstock, preliminary to scaleup of the process to commercial size. ...

1980-02-25T23:59:59.000Z

386

Ore components in coal  

SciTech Connect

The dependence of the mineral content in coal and concentrates on the degree of metamorphism is analyzed.

Kh.A. Ishhakov [Russian Academy of Sciences, Kemerovo (Russian Federation). Institute of Coal and Coal Chemistry, Siberian Branch

2009-05-15T23:59:59.000Z

387

A river runs through it: impact of acid mine drainage on the geochemistry of West Little Sugar Creek pre- and post-reclamation at the Green Valley coal mine, Indiana, USA  

Science Journals Connector (OSTI)

...Acid mine drainage (AMD) associated with coal waste material at the abandoned Green Valley mine in Indiana discharges into West Little Sugar Creek, a nearby steam....4, Fe3+, Al, Fe2+, Ca, Mg, Na, Cl, Mn, K, S...

S. Brake; K. Connors; S. Romberger

2001-10-01T23:59:59.000Z

388

International Clean Coal, Carbon Capture Experts to Gather at 28th Annual  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal, Carbon Capture Experts to Gather at 28th Clean Coal, Carbon Capture Experts to Gather at 28th Annual Pittsburgh Coal Conference International Clean Coal, Carbon Capture Experts to Gather at 28th Annual Pittsburgh Coal Conference August 10, 2011 - 1:00pm Addthis Washington, DC - The role of fossil fuels in a sustainable energy future will be one of the topics under discussion when experts from around the world meet at the 28th Annual International Pittsburgh Coal Conference, Sept. 12-15, at the David L. Lawrence Convention Center in Pittsburgh, Pa. Hosted by the University of Pittsburgh's Swanson School of Engineering, the conference is attended by industry, government and academia representatives from around the world. It focuses on environmental and technological issues surrounding the continued use of coal and the

389

International Clean Coal, Carbon Capture Experts to Gather at 28th Annual  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Clean Coal, Carbon Capture Experts to Gather at 28th International Clean Coal, Carbon Capture Experts to Gather at 28th Annual Pittsburgh Coal Conference International Clean Coal, Carbon Capture Experts to Gather at 28th Annual Pittsburgh Coal Conference August 10, 2011 - 1:00pm Addthis Washington, DC - The role of fossil fuels in a sustainable energy future will be one of the topics under discussion when experts from around the world meet at the 28th Annual International Pittsburgh Coal Conference, Sept. 12-15, at the David L. Lawrence Convention Center in Pittsburgh, Pa. Hosted by the University of Pittsburgh's Swanson School of Engineering, the conference is attended by industry, government and academia representatives from around the world. It focuses on environmental and technological issues surrounding the continued use of coal and the

390

The 1986-93 Clean Coal Technology Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1986-93 Clean Coal Technology Program 1986-93 Clean Coal Technology Program The 1986-93 Clean Coal Technology Program Begun in 1986, the Clean Coal Technology Program was the most ambitious government-industry initiative ever undertaken to develop environmental solutions for the Nation's abundant coal resources. "The U.S. Clean Coal Technology Demonstration Program is the envy of the world." Robert W. Smock Editorial Director, Power Engineering The program's goal: to demonstrate the best, most innovative technology emerging from the world's engineering laboratories at a scale large enough so that industry could determine whether the new processes had commercial merit. Originally, the Clean Coal Technology Demonstration Program was a response to concerns over acid rain, which is formed by sulfur and nitrogen

391

Catalytic steam reforming of hydrocarbons  

SciTech Connect

The hot effluent from the catalytic steam reforming of a major portion of a fluid hydrocarbon feed stream in the reformer tubes of a primary reformer, or said effluent after secondary reforming thereof, is mixed with the hot effluent from the catalytic steam reforming of the remaining portion of the feed discharged from the reformer tubes of a primary reformer-exchanger. The combined gas steam is passed on the shell side of the reformer-exchanger countercurrently to the passage of feed in the reformer tubes thereof, thus supplying the heat for the reforming of the portion of the feed passed through the reformer tubes of the reformerexchanger. At least about 2/3 of the hydrocarbon feed stream is passed to the reformer tubes of said primary reformer, heated by radiant heat transfer and/or by contact with combustion gases, at a steam/hydrocarbon mole ratio of about 2-4/1. The remainder of said feed stream is passed to the reformer tubes of said reformer -exchanger at a steam/hydrocarbon mole ratio of about 3-6/1. The reformer shell of the reformer-exchanger is internally insulated by a refractory lining or by use of a double shell with passage of water or a portion of the feed material between the inner and outer shells. There is no significant difference between the pressure inside and outside of the reformer tubes of said primary reformer-exchanger.

Fuderer, A.

1982-06-29T23:59:59.000Z

392

The magnetohydrodynamics Coal-Fired Flow Facility  

SciTech Connect

In this quarterly technical progress report, UTSI summarizes the results of a multi-task research and development project directed toward the development of the technology for the commercialization of the steam bottoming plant for the MHD steam combined cycle power plant. The report covers the final test in a 2000-hour proof-of-concept (POC) test series on eastern coal, the plans and progress for the facility modifications and the conduct of the POC tests to be conducted with western coal. Results summarized in the report include chloride emissions from the particle removal (ESP/BH) processes, nitrogen and sulfur oxide emissions for various tests conditions, measurements of particulate control efficiency and management of the facility holding ponds during testing. Activities relating to corrosion and deposition probe measurements during testing and the fouling of heat transfer tubes and interaction with sootblowing cycles are summarized. The performance of both UTSI and Mississippi State University (MSU) advanced diagnostic systems is reported. Significant administrative and contractual actions are included. 2 refs., 28 figs., 7 tabs.

Not Available

1991-07-01T23:59:59.000Z

393

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2005.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2005-10-27T23:59:59.000Z

394

Boiler Materials For Ultrasupercritical Coal Power Plants  

SciTech Connect

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2006.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2006-09-30T23:59:59.000Z

395

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2005.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2005-08-01T23:59:59.000Z

396

Boiler Materials for Ultrasupercritical Coal Power Plants  

SciTech Connect

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2005.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2006-01-31T23:59:59.000Z

397

Boiler Materials for Ultrasupercritical Coal Power Plants  

SciTech Connect

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2006.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2006-07-17T23:59:59.000Z

398

Boiler Materials for Ultrasupercritical Coal Power Plants  

SciTech Connect

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of January 1 to March 31, 2006.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2006-04-20T23:59:59.000Z

399

Coal Study Guide for Elementary School  

Energy.gov (U.S. Department of Energy (DOE))

Focuses on the basics of coal, history of coal use, conversion of coal into electricity, and climate change concerns.

400

A fresh look at coal-derived liquid fuels  

SciTech Connect

35% of the world's energy comes from oil, and 96% of that oil is used for transportation. The current number of vehicles globally is estimated to be 700 million; that number is expected to double overall by 2030, and to triple in developing countries. Now consider that the US has 27% of the world's supply of coal yet only 2% of the oil. Coal-to-liquids technologies could bridge the gap between US fuel supply and demand. The advantages of coal-derived liquid fuels are discussed in this article compared to the challenges of alternative feedstocks of oil sands, oil shale and renewable sources. It is argued that pollutant emissions from coal-to-liquid facilities could be minimal because sulfur compounds will be removed, contaminants need to be removed for the FT process, and technologies are available for removing solid wastes and nitrogen oxides. If CO{sub 2} emissions for coal-derived liquid plants are captured and sequestered, overall emissions of CO{sub 2} would be equal or less than those from petroleum. Although coal liquefaction requires large volumes of water, most water used can be recycled. Converting coal to liquid fuels could, at least in the near term, bring a higher level of stability to world oil prices and the global economy and could serve as insurance for the US against price hikes from oil-producing countries. 7 figs.

Paul, A.D. [Benham Companies LLC (USA)

2009-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "world steam coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Analysis and decision document in support of acquisition of steam supply for the Hanford 200 Area  

SciTech Connect

The US Department of Energy (DOE) is now evaluating its facility requirements in support of its cleanup mission at Hanford. One of the early findings is that the 200-Area steam plants, constructed in 1943, will not meet future space heating and process needs. Because the 200 Area will serve as the primary area for waste treatment and long-term storage, a reliable steam supply is a critical element of Hanford operations. This Analysis and Decision Document (ADD) is a preliminary review of the steam supply options available to the DOE. The ADD contains a comprehensive evaluation of the two major acquisition options: line-term versus privatization. It addresses the life-cycle costs associated with each alternative, as well as factors such as contracting requirements and the impact of market, safety, security, and regulatory issues. Specifically, this ADD documents current and future steam requirements for the 200 Area, describes alternatives available to DOE for meeting these requirements, and compares the alternatives across a number of decision criteria, including life-cycle cost. DOE has currently limited the ADD evaluation alternatives to replacing central steam plants rather than expanding the study to include alternative heat sources, such as a distributed network of boilers or heat pumps. Thirteen project alternatives were analyzed in the ADD. One of the alternatives was the rehabilitation of the existing 200-East coal-fired facility. The other twelve alternatives are combinations of (1) coal- or gas-fueled plants, (2) steam-only or cogeneration facilities, (3) primary or secondary cogeneration of electricity, and (4) public or private ownership.

Brown, D.R.; Daellenbach, K.K.; Hendrickson, P.L.; Kavanaugh, D.C.; Reilly, R.W.; Shankle, D.L.; Smith, S.A.; Weakley, S.A.; Williams, T.A. [Pacific Northwest Lab., Richland, WA (United States); Grant, T.F. [Battelle Human Affairs Research Center, Seattle, WA (United States)

1992-02-01T23:59:59.000Z

402

Evaluation of steam path audits  

SciTech Connect

Tri-State Generation and Transmission association is the operating agent for the 1350 megawatt Craig Generating Station, located in northwestern Colorado. Tri-State has recently incorporated turbine steam path audits into their aggressive performance improvement program. The intent of the audits are to quantify and attain the most cost effective increase in turbine performance as a result of a major outage. Valuable information about performance losses in the turbine has been obtained from steam path audits conducted on the three Craig Units. However, accurate audit results often depend on the quality of measurements and the experience of the auditor. Without a second method to verify the results of a steam path audit, repairs might be performed on a non-cost effective basis, or significant performance degradations might be overlooked. In addition, an inaccurate audit may lead to erroneous expectations for performance improvements resulting from the maintenance performed during the outage.

Caudill, M.B. [Tri-State Generation and Transmission Association, Inc., Montrose, CO (United States); Griebenow, R.D. [SAIC, Huntersville, NC (United States)

1995-06-01T23:59:59.000Z

403

Coal recovery process  

DOE Patents (OSTI)

A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

Good, Robert J. (Grand Island, NY); Badgujar, Mohan (Williamsville, NY)

1992-01-01T23:59:59.000Z

404

Process for converting heavy oil deposited on coal to distillable oil in a low severity process  

DOE Patents (OSTI)

A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

Ignasiak, Teresa (417 Heffernan Drive, Edmonton, Alberta, CA); Strausz, Otto (13119 Grand View Drive, Edmonton, Alberta, CA); Ignasiak, Boleslaw (417 heffernan Drive, Edmonton, Alberta, CA); Janiak, Jerzy (17820 - 76 Ave., Edmonton, Alberta, CA); Pawlak, Wanda (3046 - 11465 - 41 Avenue, Edmonton, Alberta, CA); Szymocha, Kazimierz (3125 - 109 Street, Edmonton, Alberta, CA); Turak, Ali A. (Edmonton, CA)

1994-01-01T23:59:59.000Z

405

HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL  

SciTech Connect

Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the sixth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1-March 31, 2005. This quarter saw progress in four areas. These areas are: (1) Autothermal reforming of coal derived methanol, (2) Catalyst deactivation, (3) Steam reformer transient response, and (4) Catalyst degradation with bluff bodies. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2005-04-01T23:59:59.000Z

406

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

Coal Prices..AEO 2007 forecast for coal prices for PRB coal. Transmissionregimes. Sensitivity to Coal Prices Figure 9 is similar to

Phadke, Amol

2008-01-01T23:59:59.000Z

407

Lowest Pressure Steam Saves More BTU's Than You Think  

E-Print Network (OSTI)

ABSTRACT Steam is the most transferring heat from But most steam systems LOWEST PRESSURE STEAM SAVES MORE BTU'S THAN YOU THINK Stafford J. Vallery Armstrong Machine Works Three Rivers, Michigan steam to do the process heating rather than...

Vallery, S. J.

408

Bio-coal briquette  

SciTech Connect

Some of the developing nations aim to earn foreign currency by exporting oil and/or gas and to increase the domestic consumption of coal to ensure a secure energy supply. Therefore, it is very important to promote effective coal utilization in these nations. Currently, these countries experience problems associated with coal use for household cooking and household industries. For household cooking, coal creates too much smoke and smells unpleasant. In addition, illegally obtained firewood is almost free in local agricultural regions. Coal is also used in household industries; however, simple stoker boilers are inefficient, since unburned coal particles tend to drop through screens during the combustion process. The bio-coal briquette, on the other hand, is an effective and efficient fuel, since it utilizes coal, which is to be used extensively in households and in small and medium-scale industry sectors in some coal-producing countries, as a primary fuel and bamboos (agricultural waste) as a secondary fuel. In addition, the use of bio-coal briquettes will greatly help reduce unburned coal content.

Honda, Hiroshi

1993-12-31T23:59:59.000Z

409

Cool Water: Demonstration of a Clean and Efficient New Coal Technology  

Science Journals Connector (OSTI)

...date achieved First syngas production 1 June 7...the gasifier. Partial combustion ofthe coal at approximately...Frame 7 (Model E) combustion turbine. An associated...released during gas combustion, the HRSG also superheats...steam pro-duced in the syngas coolers. Ofthe 117...

D. F. SPENCER; S. B. ALPERT; H. H. GILMAN

1986-05-02T23:59:59.000Z

410

A parametric study on coal gasification for the production of syngas  

Science Journals Connector (OSTI)

In this parametric study, the effects of coal and oxidiser type, air-to-fuel ratio, steam-to-fuel ratio, reactor temperature, and pressure on H2 and CO amounts at the gasifier output, H2/CO, and higher heating va...

Afsin Gungor; Murat Ozbayoglu; Cosku Kasnakoglu; Atilla Biyikoglu…

2012-07-01T23:59:59.000Z

411

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

Trends, 2001 - 2010 Trends, 2001 - 2010 Transportation infrastructure overview In 2010, railroads transported over 70 percent of coal delivered to electric power plants which are generally concentrated east of the Mississippi River and in Texas. The U.S. railroad market is dominated by four major rail companies that account for 99 percent of U.S. coal rail shipments by volume. Deliveries from major coal basins to power plants by mode Rail Barge Truck Figure 2. Deliveries from major coal basins to power plants by rail, 2010 figure data Figure 3. Deliveries from major coal basins to power plants by barge, 2010 figure data Figure 4. Deliveries from major coal basins to power plants by truck, 2010 figure data The Powder River Basin of Wyoming and Montana, where coal is extracted in

412

Coal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Coal Coal Coal Coal is the largest domestically produced source of energy in America and is used to generate a significant chunk of our nation's electricity. The Energy Department is working to develop technologies that make coal cleaner, so we can ensure it plays a part in our clean energy future. The Department is also investing in development of carbon capture, utilization and storage (CCUS) technologies, also referred to as carbon capture, utilization and sequestration. Featured Energy Secretary Moniz Visits Clean Coal Facility in Mississippi On Friday, Nov. 8, 2013, Secretary Moniz and international energy officials toured Kemper, the nation's largest carbon capture and storage facility, in Liberty, Mississippi. A small Mississippi town is making history with the largest carbon capture

413

Chemical comminution of coal  

SciTech Connect

The objective of the present research is to study the chemical reactivity of a mixture of methyl alcohol and aqueous sodium hydroxide solution in the temperature range 298 to 363 K, and a caustic concentration of 0 to 10 wt. %, on an Iowa bituminous coal. The sample studied was collected from coal zone 4, equivalent to most historical references to Laddsdale coal. The coals in this zone are typical high-sulfur, high-ash middle Pennsylvania Cherokee group coals. The apparent rank is high-volatile C bituminous coal. The relatively high content of sulfur and 23 other elements in these coals is related to near neutral (6-8) pH conditions in the depositional and early diagenetic environments, and to postdepositional sphalerite/calcite/pyrite/kaolinite/barite mineralization.

Mamaghani, A.H.; Beddow, J.K.; Vetter, A.F.

1987-02-01T23:59:59.000Z

414

Coal dust explosibility  

Science Journals Connector (OSTI)

This paper reports US Bureau of Mines (USBM) research on the explosibility of coal dusts. The purpose of this work is to improve safety in mining and other industries that process or use coal. Most of the tests were conducted in the USBM 20 litre laboratory explosibility chamber. The laboratory data show relatively good agreement with those from full-scale experimental mine tests. The parameters measured included minimum explosible concentrations, maximum explosion pressures, maximum rates of pressure rise, minimum oxygen concentrations, and amounts of limestone rock dust required to inert the coals. The effects of coal volatility and particle size were evaluated, and particle size was determined to be at least as important as volatility in determining the explosion hazard. For all coals tested, the finest sizes were the most hazardous. The coal dust explosibility data are compared to those of other hydrocarbons, such as polyethylene dust and methane gas, in an attempt to understand better the basics of coal combustion.

Kenneth L. Cashdollar

1996-01-01T23:59:59.000Z

415

Coal: the new black  

SciTech Connect

Long eclipsed by oil and natural gas as a raw material for high-volume chemicals, coal is making a comeback, with oil priced at more than $100 per barrel. It is relatively cheap feedstock for chemicals such as methanol and China is building plants to convert coal to polyolefins on a large scale and interest is spreading worldwide. Over the years several companies in the US and China have made fertilizers via the gasification of coal. Eastman in Tennessee gasifies coal to make methanol which is then converted to acetic acid, acetic anhydride and acetate fiber. The future vision is to convert methanol to olefins. UOP and Lurgi are the major vendors of this technology. These companies are the respective chemical engineering arms of Honeywell and Air Liquide. The article reports developments in China, USA and India on coal-to-chemicals via coal gasification or coal liquefaction. 2 figs., 2 photo.

Tullo, A.H.; Tremblay, J.-F.

2008-03-15T23:59:59.000Z

416

The steam engine and what it needs  

E-Print Network (OSTI)

Simon Schaffer explains that to produce an effective steam engine you do not just need specific inventions, such as the separate condenser of James Watt, but also skills from clockworking, distillation, metal working and so on. Then the steam power...

Dugan, David

2004-08-18T23:59:59.000Z

417

Insulate Steam Distribution and Condensate Return Lines  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on insulating steam distribution and condensate return lines provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

418

The Future of Steam: A Preliminary Discussion  

E-Print Network (OSTI)

Steam production represents a significant proportion of today's industrial energy demand. But the evolution of process technologies, as well as turbulence in energy markets, suggests that steam's role may be subject to change in the next decade...

Russell, C.; Harrell, G.; Moore, J.; French, S.

419

Benchmark the Fuel Cost of Steam Generation  

SciTech Connect

This revised ITP tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

420

Insulate Steam Distribution and Condensate Return Lines  

SciTech Connect

This revised ITP tip sheet on insulating steam distribution and condensate return lines provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "world steam coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Steam System Assessment Tool (CD-ROM)  

SciTech Connect

The tool will help users determine the potential energy cost and emission savings of key steam-system improvements. The tool is designed for energy operations, production, project managers, and engineers who are responsible for steam systems.

Not Available

2002-12-01T23:59:59.000Z

422

FEMP-FTA--Steam Trap Performance Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steam Trap Function Steam Trap Function Steam traps are automatic valves used in every steam system to remove conden- sate, air, and other non-condensable gases while preventing or minimizing the passing of steam. If condensate is allowed to collect, it reduces the flow capacity of steam lines and the thermal capacity of heat transfer equipment. In addition, excess condensate can lead to "water hammer," with potentially destructive and dangerous results. Air that remains after system startup reduces steam pressure and temperature and may also reduce the thermal capacity of heat transfer equipment. Non-condensable gases, such as oxygen and carbon dioxide, cause corrosion. Steam that passes through the trap provides no heating ser- vice. This effectively reduces the heating capacity

423

Warm or Steaming Ground | Open Energy Information  

Open Energy Info (EERE)

Warm or Steaming Ground Warm or Steaming Ground Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Warm or Steaming Ground Dictionary.png Warm or Steaming Ground: An area where geothermal heat is conducted to the earth's surface, warming the ground and sometimes causing steam to form when water is present. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Steam rising from the ground at Eldvorp, a 10 km row of craters, in Southwestern Iceland. http://www.visiticeland.com/SearchResults/Attraction/eldvorp Warm or steaming ground is often an indicator of a geothermal system beneath the surface. In some cases a geothermal system may not show any

424

Improving Steam System Performance: A Sourcebook for Industry...  

Energy Savers (EERE)

in Industrial Steam Systems Insulate Steam Distribution and Condensate Return Lines Advanced Manufacturing Home Key Activities Research & Development Projects Facilities...

425

"Greening" Industrial Steam Generation via On-demand Steam Systems  

E-Print Network (OSTI)

boiler technology currently in service in the U.S., it is critical to raise awareness and examine the role of emerging new technologies to address the energy and environmental challenges inherent with steam generation. In the same way that tank...

Smith, J. P.

2010-01-01T23:59:59.000Z

426

The Increased Expansion of Steam Attainable in Steam Trubines1  

Science Journals Connector (OSTI)

... of steam discovered by James Watt, and to endeavour to trace their application in the engines constructed by him and by the firm of Bolton and Watt, then in the ... and Watt, then in the more highly developed forms of compound, triple, and quadruple reciprocating ...

1909-02-25T23:59:59.000Z

427

Coal - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Analysis & Projections Analysis & Projections ‹ See all Coal Reports U.S. Coal Supply and Demand: 2010 Year in Review Release Date: June 1, 2011 | Next Release Date: Periodically | full report Exports and Imports Exports Total U.S. coal exports for 2010 increased by 38.3 percent to 81.7 million short tons (Figure 8). Figure Data This increase was largely due to two factors. First, heavy rains and flooding in Australia, Indonesia, and Colombia reduced world coal supply and forced many coal importing nations to look elsewhere, primarily to the United States, to fulfill their coal needs. In addition, the shortage of their own domestic coal in relation to growing needs, namely for China and India, provided ample opportunities for U.S. coal producers to export to these markets.

428

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network (OSTI)

DOE's BestPractices Steam End User Training Steam End User Training Navigational Tutorial - 1 8/27/2010 Steam End User Training Navigational Tutorial Module Slide 1 ­ Introduction Hello, and welcome to the Steam End User Training. I would like to take a few minutes to show you how to navigate through

Oak Ridge National Laboratory

429

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network (OSTI)

DOE's BestPractices Steam End User Training Steam End User Training Introduction Module - 1 8/27/2010 Steam End User Training Introduction Module Slide 1 - Introduction Title Page Hello, and welcome to the Steam System End User training. In this training, we will investigate how to assess, evaluate

Oak Ridge National Laboratory

430

Low pressure combustor for generating steam downhole  

SciTech Connect

A compact catalytic combustor for generating steam downhole in an oil reservoir has steam generating tubes that are attached to a metal catalyst support. The metal support comprises sheets of metal that are spaced apart and transverse to the tubes. Heat from combustion is generated on the metal sheets and is conducted to the steam generating tubes. The steam is injected into the oil reservoir. The combustion gas is vented to ground level.

Retallick, W.B.

1983-03-22T23:59:59.000Z

431

Save Energy Now in Your Steam Systems  

Energy.gov (U.S. Department of Energy (DOE))

This brief outlines typical ways to increase steam system efficiency through changes in distribution, generation, and recovery.

432

Development of a novel 2-stage entrained flow coal dry powder gasifier  

Science Journals Connector (OSTI)

Abstract Coal-fired gasifiers are the key technology for clean power generation and coal chemical process. This paper presents a 2-stage entrained flow dry powder gasifier in which coal is entrained into the lower chamber burner with oxygen and steam to raise the temperature of the crude gas up to 1700 °C. The lower chamber is linked to the upper gasification chamber through a middle throat, where additional coal and steam is fed to cool down the slag to less than 900 °C for deslagging from the lower chamber bottom. Various coals have been characterized and gasified with this 2-stage entrained flow dry powder gasifier and comparisons made with single stage gasifiers. The results show that the 2-stage gasifier is suitable for a broad range of coal varieties and gives carbon conversion up to 98.9% with cold syngas efficiency of 83.2% at a pressure of 3.0 MPa, while the oxygen and coal consumption are lower than with the single stage gasifier.

Shisen Xu; Yongqiang Ren; Baomin Wang; Yue Xu; Liang Chen; Xiaolong Wang; Tiancun Xiao

2014-01-01T23:59:59.000Z

433

An economic analysis of coal-fired magnetohydrodynamics  

SciTech Connect

This paper is an economic comparison of the coal-fired magnetohydrodynamics (MHD) technology with conventional coal-fired steam power plants; the comparisons made are based on a levelized Cost of Electricity for similarly sized plants. A revenue requirement analysis was used for the economic evaluation of engineering alternatives in the electric utility industry. The basis for the MHD technology used in the comparison is a recently completed conceptual design done by the MHD Development Corporation for retrofitting the coal-fired J.E. Corette plant with a 250-MW MHD unit. A 500-MW MHD consideration is based on the Advanced Power Train predictions of the Department of Energy (DOE), and the conventional plant considerations are based on the Technical Assessment Guide of the Electric Power Research Institute (EPRI). The economic comparisons indicate that MHD is considerably more attractive than a conventional unit.

Lohrasbi, J.; Ashby, G. (MSE, Inc., Butte, MT (United States)); Walter, F.E. (Montana Power Co., Butte, MT (United States))

1991-01-01T23:59:59.000Z

434

Plant View On Reducing Steam Trap Energy Loss  

E-Print Network (OSTI)

of the steam traps are passing excess steam. This is caused by neglect of aged steam traps which have worn out and misapplication of steam traps by oversizing or using the 'wrong' type trap. Elimination of steam wastes by an effective well engineered steam trap...

Vallery, S. J.

1982-01-01T23:59:59.000Z

435

Florida CFB demo plant yields low emissions on variety of coals  

SciTech Connect

The US Department of Energy (DOE) has reported results of tests conducted at Jacksonville Electric Authority (JEA)'s Northside power plant using mid-to-low-sulfur coal, which indicate the facility is one of the cleanest burning coal-fired power plants in the world. A part of DOE's Clean Coal Technology Demonstration Program, the JEA project is a repowering demonstration of the operating and environmental performance of Foster Wheeler's utility-scale circulating fluidized bed combustion (CFB) technology on a range of high-sulfur coals and blends of coal and high-sulfur petroleum coke. The 300 MW demonstration unit has a non-demonstration 300 MW twin unit.

NONE

2005-07-01T23:59:59.000Z

436

Steam reformer study proposed by Battelle  

Science Journals Connector (OSTI)

Steam reformer study proposed by Battelle ... At a meeting held at Battelle's Columbus, Ohio, laboratories, D. B. Roach told representatives of 24 firms involved in various aspects of steam reforming that, though production of hydrogen through steam reforming has been a highly successful process, "increased plant size and more severe operating conditions have given rise to serious problems." ...

1969-01-13T23:59:59.000Z

437

Steam System Improvement: A Case Study  

E-Print Network (OSTI)

usage) where steam generation accounts for 85% of the total energy used. Therefore, optimization of the steam system has the biggest energy saving potential. This paper mill produces 40,000 pounds of steam at 600 psig and distributes it to the paper...

Leigh, N.; Venkatesan, V. V.

438

Materials Performance in USC Steam  

SciTech Connect

The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C).

G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk

2010-05-01T23:59:59.000Z

439

Recover heat from steam reforming  

SciTech Connect

Steam reforming is one of the most important chemical processes--it is used in the manufacture of ammonia, hydrogen, methanol, and many chemicals made from hydrogen and carbon monoxide. Furthermore, many current trends will increase its importance. For example, methanol for addition to gasoline is likely to be produced by steam reforming. Because steam reforming occurs at high temperatures--typically 750 C--900 C--it generates a large amount of waste heat. Clearly, heat recovery is crucial to process economics. A typical 50,000 Nm[sup 3]/h hydrogen plant using natural gas feed has a radiant heat duty of about 50 MW. At a radiant efficiency of 50% and fuel cost of $3/GJ, this means that the reformer fires $9 million worth of fuel per year. Obviously, this amount of fuel justifies a close loot at ways to reduce costs. This article first provides a brief overview of steam reforming. It then outlines the available heat-recovery options and explains how to select the best method.

Fleshman, J.D. (Foster Wheeler USA Corp., Livingston, NJ (United States))

1993-10-01T23:59:59.000Z

440

Generating Steam by Waste Incineration  

E-Print Network (OSTI)

Combustible waste is a significant source of steam at the new John Deere Tractor Works assembly plant in Waterloo, Iowa. The incinerators, each rated to consume two tons of solid waste per hour, are expected to provide up to 100 percent of the full...

Williams, D. R.; Darrow, L. A.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "world steam coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NETL: News Release - International Clean Coal, Carbon Capture Experts to  

NLE Websites -- All DOE Office Websites (Extended Search)

0, 2011 0, 2011 International Clean Coal, Carbon Capture Experts to Gather at 28th Annual Pittsburgh Coal Conference Plants State of Clean Coal Technology, Carbon Capture, Utilization, and Storage on Agenda Washington, DC - The role of fossil fuels in a sustainable energy future will be one of the topics under discussion when experts from around the world meet at the 28th Annual International Pittsburgh Coal Conference, Sept. 12-15, at the David L. Lawrence Convention Center in Pittsburgh, Pa. MORE INFO Learn more about the conference Registration information Hosted by the University of Pittsburgh's Swanson School of Engineering, the conference is attended by industry, government and academia representatives from around the world. It focuses on environmental and

442

NETL: News Release - DOE, Jacksonville Utility Complete Major Clean Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

August 2, 2005 August 2, 2005 DOE, Jacksonville Utility Complete Major Clean Coal Technology Project Eight Year Demonstration Project Results in One of World's Cleanest Coal-Based Power Plants WASHINGTON, DC - The U.S. Department of Energy and JEA, the public utility of Florida, have achieved a significant milestone in the DOE's Clean Coal Technology Demonstration Program by completing a project in which JEA's Northside Generating Station was converted into one of the cleanest burning coal-fired power plants in the world. MORE INFO Read the final project report [PDF-438KB] As part of the 8-year, $320 million cost-shared project, JEA installed state-of-the-art technology known as circulating fluidized bed combustion in a 300?megawatt combustor-triple the size of any previous

443

Coal Storage and Transportation  

Science Journals Connector (OSTI)

Abstract Coal preparation, storage, and transportation are essential to coal use. Preparation plants, located near to the mine, remove some inorganic minerals associated with raw coal. Coal is transported from the mines to the point of consumption, often an electric generating plant, by rail, barge and trucks. Railroads are the predominant form of coal transportation within a country. Global coal trade, movement by large ocean-going vessels, continues to increase. At the end use site, the coal is crushed, ground, and the moisture content reduced to the proper specifications for end use. Coal is stored at various points in the supply chain. Processed coal will weather and oxidize, changing its properties; it can self-ignite, unless precautions are taken. Technology in use today is similar to that used in previous decades. Performance improvements have come from improved software and instruments that deliver real-time data. These improve management of sub-processes in the coal supply chain and reduce costs along the supply chain.

J.M. Ekmann; P.H. Le

2014-01-01T23:59:59.000Z

444

Coal Ash Corrosion Resistant Materials Testing  

SciTech Connect

In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a reasonably high alkali content, thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was well within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that the aggressive alkali-iron-trisulfate constituent was present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. This report provides the results of the evaluation of Test Section C, including the samples that remained in the Test Section for the full exposure period as well as those that were removed early. The analysis of Test Section C followed much the same protocol that was employed in the assessment of Test Section A. Again, the focus was on determining and documenting the relative corrosion rates of the candidate materials. The detailed results of the investigation are included in this report as a series of twelve appendices. Each appendix is devoted to the performance of one of the candidate alloys. The table below summarizes metal loss rate for the worst case sample of each of the candidate materials for both Test Sections A and C. The body of this report compares these for all of the samples in the test section. The 'Coal Ash Corrosion Resistant Materials Testing Program' is being conducted by The Babcock & Wilcox Company (B&W), the U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) at Reliant Energy's Niles plant in Niles, Ohio to provide full-scale, in-situ testing of recently developed boiler superheater materials. Fireside corrosion is a key issue for improving efficiency of new coal fired power plants and improving service life in existing plants. In November 1998, B&W began development of a system to permit testing of advanced tube materials at metal temperatures typical of advanced supercritical steam temperatures (1100 F and higher) in a boiler exhibiting coal ash corrosive conditions. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. In the spring of 1999 a system consisting of three identical sections, each containing multiple segments of twelve different materials, was installed. The sections are cooled by reheat steam, and are located just above the furnace entrance in Niles Unit No.1, a 110 MWe unit firing high sulfur Ohio coal. In November 2001 the first section was removed for thorough metallurgical evaluation after 29 months of operation. The second section was removed in August of 2003. Its evaluation has been completed and is the subject of this report. The final section remains in service and is expected to be removed in the spring of 2005. This paper describes the program; its importance, the design, fabrication, installation and operation of the test system, materials utilized, and experience to date. This report briefly reviews the results of the evaluation of the first section and then presents the results of the evaluation of the second section.

D. K. McDonald; P. L. Daniel; D. J. DeVault

2003-08-31T23:59:59.000Z

445

Influence of coal as an energy source on environmental pollution  

SciTech Connect

This article considers the influence of coal energy on environmental pollution. Coal is undoubtedly part of the greenhouse problem. The main emissions from coal combustion are sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), particulates, carbon dioxide (CO{sub 2}), and mercury (Hg). Since 1980, despite a 36% increase in electricity generation and more than a 50% increase in coal use, electric utility SO{sub 2} and NOx emissions have declined significantly. Globally, the largest source of anthropogenic greenhouse gas (GHG) emissions is CO{sub 2} from the combustion of fossil fuels - around 75% of total GHG emissions covered under the Kyoto Protocol. At the present time, coal is responsible for 30-40% of world CO{sub 2} emission from fossil fuels.

Balat, M. [University of Mahallesi, Trabzon (Turkey)

2007-07-01T23:59:59.000Z

446

Testing for market integration crude oil, coal, and natural gas  

SciTech Connect

Prompted by the contemporaneous spike in coal, oil, and natural gas prices, this paper evaluates the degree of market integration both within and between crude oil, coal, and natural gas markets. Our approach yields parameters that can be readily tested against a priori conjectures. Using daily price data for five very different crude oils, we conclude that the world oil market is a single, highly integrated economic market. On the other hand, coal prices at five trading locations across the United States are cointegrated, but the degree of market integration is much weaker, particularly between Western and Eastern coals. Finally, we show that crude oil, coal, and natural gas markets are only very weakly integrated. Our results indicate that there is not a primary energy market. Despite current price peaks, it is not useful to think of a primary energy market, except in a very long run context.

Bachmeier, L.J.; Griffin, J.M. [Texas A& amp; M Univ, College Station, TX (United States)

2006-07-01T23:59:59.000Z

447

Peak Population: Timing and Influences of Peak Energy on the World and the United States  

E-Print Network (OSTI)

Peak energy is the notion that the world’s total production of usable energy will reach a maximum value and then begin an inexorable decline. Ninety-two percent of the world’s energy is currently derived from the non-renewable sources (oil, coal...

Warner, Kevin 1987-

2012-11-28T23:59:59.000Z

448

Evaluation of the Materials Technology Required for a 760?C Power Steam Boiler  

SciTech Connect

The U.S. Ultra-supercritical (USC) Steam Boiler Consortium, funded by the U.S. Department of Energy and the Ohio Coal Development Office, has been working to develop the necessary materials technology to construct a steam power boiler with maximum steam conditions of 760 C and 35MPa. One large component of this work is to evaluate the properties of the materials chosen for such a boiler. While long-term creep strength of base metal is initially used to set temperatures, stresses, and simple design rules, it is clear that base metal creep strength is not always the material property of most importance when selecting an alloy. The fabrication issues (typically weldability), the properties of materials after fabrication, the corrosion resistance of the material, and material cost all need to be considered in addition to baseline mechanical properties. Work is ongoing at Oak Ridge National Laboratory to evaluate the material technologies being developed by the USC Steam Boiler Consortium and perform additional advanced research activities in areas where new materials developments and better fundamental understanding are needed to ensure the long-term success of a 760 C power steam boiler.

Shingledecker, John P [ORNL; Wright, Ian G [ORNL

2006-01-01T23:59:59.000Z

449

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

fixation in slag or bottom ash, coal gasification, or coallimestone and coal that form little fly ash and trap sulfurSulfate Organic Ash (%) "Organic Sulfur", in Wheelock, Coal

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

450

Industrial coking of coal batch without bituminous coal  

Science Journals Connector (OSTI)

For many years, Kuznetsk-coal batch has always included bituminous coal. Depending on the content of such coal, the batch may be characterized as lean ... classification was adopted by specialists of the Eastern

P. V. Shtark; Yu. V. Stepanov; N. K. Popova; D. A. Koshkarov…

2008-03-01T23:59:59.000Z

451

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

a particular type of coal, each of which is inherentlyThere are four classes of coal: bituminous, sub-bituminous,minerals Metallic ores Coal Crude petroleum Gasoline Fuel

McCollum, David L

2007-01-01T23:59:59.000Z

452

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

4Q 2009 4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by transportation mode. The data sources beginning with the 2008 Coal Distribution Report

453

Air-cooled vacuum steam condenser  

SciTech Connect

This patent describes a steam powered system. It comprises: a turbine for converting steam energy into mechanical energy upon expansion of steam therein, a boiler for generating steam to be fed to the turbine, and a conduit arrangement coupling the boiler to the turbine and then recoupling the turbine exhaust to the boiler through steam condensing mechanisms. The condensing mechanisms including: a plurality of finned tubes through which the expanded exhaust steam flows and is condensed; a plurality of bundle from headers at the lower ends of the condensing tubes for receiving exhaust steam from the turbine; a plurality of bundle divided rear headers, one for each tube row in the bundle, at the higher ends of the condensing tubes for receiving non-condensible gases; and means in the rear and last headers to remove non-condensible gasses from the rear headers along their full length.

Larinoff, M.W.

1990-03-06T23:59:59.000Z

454

Low emission boiler system: Clean and efficient power from coal  

SciTech Connect

The US Department of Energy, Federal Energy Technology Center, is working with private industry to develop the Low Emission Boiler System (LEBS), an advanced coal-fired power generation system for the 21st century. LEBS will provide the utility industry with an opportunity to meet the anticipated increase in electricity demand throughout the world by offering cleaner and more efficient coal-fired power plants. LEBS has significantly higher thermal efficiency, superior environmental performance and a lower cost of electricity than conventional coal-fired systems. This paper presents an overall summary of the LEBS program.

Ruth, L.; Winslow, J. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center; Ramezan, M. [Burns and Roe Services Corp., Pittsburgh, PA (United States)

1997-09-01T23:59:59.000Z

455

Pulverized coal fuel injector  

DOE Patents (OSTI)

A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

Rini, Michael J. (Hebron, CT); Towle, David P. (Windsor, CT)

1992-01-01T23:59:59.000Z

456

EIA - Will carbon capture and storage reduce the world's carbon dioxide  

Gasoline and Diesel Fuel Update (EIA)

Will carbon capture and storage reduce the world's carbon dioxide emissions? Will carbon capture and storage reduce the world's carbon dioxide emissions? International Energy Outlook 2010 Will carbon capture and storage reduce the world'ss carbon dioxide emissions? The pursuit of greenhouse gas reductions has the potential to reduce global coal use significantly. Because coal is the most carbon-intensive of all fossil fuels, limitations on carbon dioxide emissions will raise the cost of coal relative to the costs of other fuels. Under such circumstances, the degree to which energy use shifts away from coal to other fuels will depend largely on the costs of reducing carbon dioxide emissions from coal-fired plants relative to the costs of using other, low-carbon or carbon-free energy sources. The continued widespread use of coal could rely on the cost and availability of carbon capture and storage (CCS) technologies that capture carbon dioxide and store it in geologic formations.

457

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

coal (PC) or integrated gasification combined cycle ( IGCC)coal (PC) or integrated gasification combined cycle (IGCC)will be integrated gasification combined cycle (IGCC) (Same

McCollum, David L

2007-01-01T23:59:59.000Z

458

Clinkering properties of rammed coking coal and coal batches  

Science Journals Connector (OSTI)

The clinkering properties of rammed coking coal and coal batches are investigated. There is a close relation between the clinkering properties and coke quality.

V. M. Shmal’ko; M. A. Solov’ev

2009-03-01T23:59:59.000Z

459

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

Credit Extra Fuel Oil Coal to gasifier Na cost· Na processoiL Replace res. with coal as gasifier feed. 543 ton/day @$

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

460

Coal Mining Tax Credit (Arkansas)  

Energy.gov (U.S. Department of Energy (DOE))

The Coal Mining Tax Credit provides an income or insurance premium tax credit of $2.00 per ton of coal mined, produced or extracted on each ton of coal mined in Arkansas in a tax year. An...

Note: This page contains sample records for the topic "world steam coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Illinois Coal Revival Program (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

The Illinois Coal Revival Program is a grants program providing partial funding to assist with the development of new, coal-fueled electric generation capacity and coal gasification or IGCC units...

462

Weekly Coal Production Estimation Methodology  

NLE Websites -- All DOE Office Websites (Extended Search)

Weekly Coal Production Estimation Methodology Step 1 (Estimate total amount of weekly U.S. coal production) U.S. coal production for the current week is estimated using a ratio...

463

Sandia National Laboratories: Clean Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

ManagementClean Coal Clean Coal The term clean coal refers to a number of initiatives that seek to reduce or eliminate the hazardous emission or byproducts that result from using...

464

COAL DESULFURIZATION PRIOR TO COMBUSTION  

E-Print Network (OSTI)

Corporation, 5-25~79. on Coal Liquefaction at ChevronHamersma, et a L, "Meyers Process for Coal Desulfurization,"in Wheelock, Coal Desulfurization, ACS Symp. Ser 64 (1977(.

Wrathall, J.

2013-01-01T23:59:59.000Z

465

Coal extraction process  

SciTech Connect

Sub-divided coal is extracted under non-thermally destructive conditions with a solvent liquid containing a compound having the general formula:

Hammack, R. W.; Sears, J. T.; Stiller, A. H.

1981-06-09T23:59:59.000Z

466

Clean Coal Projects (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

467

Coal Development (Nebraska)  

Energy.gov (U.S. Department of Energy (DOE))

This section provides for the development of newly-discovered coal veins in the state, and county aid for such development.

468

Clean coal technology applications  

SciTech Connect

{open_quotes}Coal is a stratified rock formed of the more or less altered remains of plants (together with associated mineral matter) which flourished in past ages{hor_ellipsis} The problem of the origin and maturing of coal is complicated by the fact that every coal contains, in addition to carbon, hydrogen and oxygen, variable proportions of nitrogen and sulfur which are combined in unknown ways in the organic molecules...{close_quotes}. The challenge with coal has always been the management of its mineral matter, sulfur and nitrogen contents during use. The carbon content of fuels, including coal, is a more recent concern. With clean coal technologies, there are opportunities for ensuring the sustained use of coal for a very long time. The clean coal technologies of today are already capable of reducing, if not eliminating, harmful emissions. The technologies of the future will allow coal to be burned with greatly reduced emissions, thus eliminating the necessity to treat them after they occur.

Bharucha, N.

1993-12-31T23:59:59.000Z

469

Spitsbergen Tertiary Coal Fossils  

Science Journals Connector (OSTI)

... grains and spores to be observed in coal deposits of Tertiary age in west Spitsbergen (Norsk Polarinstitutt, Med. 79, pp. 1-9; 1954; English summary).

1955-08-06T23:59:59.000Z

470

Coal Gasification Systems Solicitations  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost Coal Conversion to High Hydrogen Syngas; FE0023577 Alstom's Limestone Chemical Looping Gasification Process for High Hydrogen Syngas Generation; FE0023497 OTM-Enhanced...

471

Coal liquefaction quenching process  

DOE Patents (OSTI)

There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

Thorogood, Robert M. (Macungie, PA); Yeh, Chung-Liang (Bethlehem, PA); Donath, Ernest E. (St. Croix, VI)

1983-01-01T23:59:59.000Z

472

Handbook of coal analysis  

SciTech Connect

The Handbook deals with the various aspects of coal analysis and provides a detailed explanation of the necessary standard tests and procedures that are applicable to coal in order to help define usage and behavior relative to environmental issues. It provides details of the meaning of various test results and how they might be applied to predict coal behavior during use. Emphasis is on ASTM standards and test methods but ISO and BSI standards methods are included. Chapter headings are: Coal analysis; Sampling and sample preparation; Proximate analysis; Ultimate analysis; Mineral matter; Physical and electrical properties; Thermal properties; Mechanical properties; Spectroscopic properties; Solvent properties; and Glossary.

James G. Speight

2005-05-01T23:59:59.000Z

473

US coal market softens  

SciTech Connect

The operators table some near term expansion plans, meanwhile long-term fundamentals look strong. This is one of the findings of the Coal Age Forecast 2007 survey of readers predictions on production and consumption of coal and attitudes in the coal industry. 50% of respondents expected product levels in 2007 to be higher than in 2006 and 50% described the attitude in the coal industry to be more optimistic in 2007 than in 2006. Most expenditure is anticipated on going on new equipment but levels of expenditure will be less than in 2006. 7 figs.

Fiscor, S.

2007-01-15T23:59:59.000Z

474

Annual Coal Distribution Report  

Gasoline and Diesel Fuel Update (EIA)

Distribution Report Release Date: December 19, 2013 | Next Release Date: December 12, 2014 | full report | RevisionCorrection Revision to the Annual Coal Distribution Report...

475

Gasification of New Zealand coals: a comparative simulation study  

SciTech Connect

The aim of this study was to conduct a preliminary feasibility assessment of gasification of New Zealand (NZ) lignite and sub-bituminous coals, using a commercial simulation tool. Gasification of these coals was simulated in an integrated gasification combined cycle (IGCC) application and associated preliminary economics compared. A simple method of coal characterization was developed for simulation purposes. The carbon, hydrogen, and oxygen content of the coal was represented by a three component vapor solid system of carbon, methane, and water, the composition of which was derived from proximate analysis data on fixed carbon and volatile matter, and the gross calorific value, both on a dry, ash free basis. The gasification process was modeled using Gibb's free energy minimization. Data from the U.S. Department of Energy's Shell Gasifier base cases using Illinios No. 6 coal was used to verify both the gasifier and the IGCC flowsheet models. The H:C and O:C ratios of the NZ coals were adjusted until the simulated gasifier output composition and temperature matched the values with the base case. The IGCC power output and other key operating variables such as gas turbine inlet and exhaust temperatures were kept constant for study of comparative economics. The results indicated that 16% more lignite than sub-bituminous coal was required. This translated into the requirement of a larger gasifier and air separation unit, but smaller gas and steam turbines were required. The gasifier was the largest sole contributor (30%) to the estimated capital cost of the IGCC plant. The overall cost differential associated with the processing of lignite versus processing sub-bituminous coal was estimated to be of the order of NZ $0.8/tonne. 13 refs., 9 tabs.

Smitha V. Nathen; Robert D. Kirkpatrick; Brent R. Young [University of Auckland, Auckland (New Zealand). Department of Chemical and Materials Engineering

2008-07-15T23:59:59.000Z

476

Coal within a revised energy perspective  

SciTech Connect

The author considers the use of coal within a revised energy perspective, focusing on the factors that will drive which fuels are used to generate electricity going forward. He looks at the world markets for fossil fuels and the difficulties of predicting oil and natural gas supply and prices, as demonstrated by the variability in projections from one year to another in the EIA's Annual Energy Outlook. 4 refs., 1 tab.

Darmstadter, J. [Resources for the Future (RFF), Washington, DC (United States)

2006-07-15T23:59:59.000Z

477

Cooperative research program in coal liquefaction  

SciTech Connect

This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

Huffman, G.P. (ed.)

1991-01-01T23:59:59.000Z

478

Cooperative research program in coal liquefaction  

SciTech Connect

Research continues on coal liquefaction in the following areas: (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

Huffman, G.P. (ed.)

1992-01-01T23:59:59.000Z

479

Illinois Coal Development Program (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

The Illinois Coal Development Program seeks to advance promising clean coal technologies beyond research and towards commercialization. The program provides a 50/50 match with private industry...

480

Clean coal technologies market potential  

SciTech Connect

Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

Drazga, B. (ed.)

2007-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "world steam coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

NETL: Clean Coal Demonstrations - Clean Coal Today Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Today Newsletter Clean Coal Today Newsletter Clean Coal Demonstrations Clean Coal Today Newsletter Clean Coal Today is a quarterly newsletter of the U.S. Department of Energy, Office of Fossil Energy (FE), Office of Clean Coal. Among other things, Clean Coal Today highlights progress under the Clean Coal Power Initiative, the Power Plant Improvement Initiative, and the few remaining projects of the original Clean Coal Technology Demonstration Program. Reporting on coal R&D performed at government laboratories, as well as in conjunction with stakeholders, it provides key information on FE's coal-related activities, most of which are directed toward near-zero emissions, ultra-efficient technologies of the future. Subscriptions are free – to have your name placed on the mailing list, contact the Editor at Phoebe.Hamill@hq.doe.gov.