Powered by Deep Web Technologies
Note: This page contains sample records for the topic "world metallurgical coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

AEO2011: World Metallurgical Coal Flows By Importing Regions and Exporting  

Open Energy Info (EERE)

Metallurgical Coal Flows By Importing Regions and Exporting Metallurgical Coal Flows By Importing Regions and Exporting Countries Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 143, and contains only the reference case. The dataset uses million short tons. The data is broken down into Metallurgical coal exports to Europe, Asia and America. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO coal EIA Data application/vnd.ms-excel icon AEO2011: World Metallurgical Coal Flows By Importing Regions and Exporting Countries- Reference Case (xls, 103.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

2

Process for converting coal into liquid fuel and metallurgical coke  

DOE Patents [OSTI]

A method of recovering coal liquids and producing metallurgical coke utilizes low ash, low sulfur coal as a parent for a coal char formed by pyrolysis with a volatile content of less than 8%. The char is briquetted and heated in an inert gas over a prescribed heat history to yield a high strength briquette with less than 2% volatile content.

Wolfe, Richard A. (Abingdon, VA); Im, Chang J. (Abingdon, VA); Wright, Robert E. (Bristol, TN)

1994-01-01T23:59:59.000Z

3

Russian metallurgical coal supplies. A near-term perspective  

SciTech Connect (OSTI)

Calculations were made to estimate the changes in metallurgical coal supplies during the next 10 years. These calculations are based on three sets of data for the forecast period: (1) estimated changes in production at existing coal production and cleaning facilities in Kuznetsk, Pechora, and South Yakutsk basins; (2) production from new facilities as stipulated in licensing agreements for metallurgical coal production; and (3) Russian output of coke and washed coals. Estimates are given for two years: 2010 and 2015. A two-year base period of 2004 and 2005 was chosen because production was low in 2005 due to poor market conditions in the metal industry.

B.P. Kiselev; S.A. Liskovets [FGUP Eastern Coal Chemistry Research Institute (Russian Federation)

2007-01-15T23:59:59.000Z

4

Table 11. U.S. Metallurgical Coal Exports  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Metallurgical Coal Exports U.S. Metallurgical Coal Exports (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 11. U.S. Metallurgical Coal Exports (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Continent and Country of Destination April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change North America Total 1,503,162 764,701 1,411,897 2,267,863 2,261,900 0.3 Canada* 975,783 343,309 1,260,473 1,319,092 1,895,263 -30.4 Dominican Republic 94 51,064 - 51,158 - - Mexico 527,285 370,328 151,424 897,613 366,637 144.8 South America Total 2,091,488 2,561,772 2,389,018 4,653,260 4,543,747 2.4 Argentina 104,745 155,806 203,569 260,551 253,841 2.6 Brazil 1,921,144 2,352,098 2,185,449 4,273,242

5

Table 15. Metallurgical Coal Exports by Customs District  

U.S. Energy Information Administration (EIA) Indexed Site

Metallurgical Coal Exports by Customs District Metallurgical Coal Exports by Customs District (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 15. Metallurgical Coal Exports by Customs District (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Customs District April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change Eastern Total 11,716,074 14,136,513 15,167,377 25,852,587 27,578,514 -6.3 Baltimore, MD 2,736,470 4,225,450 5,123,600 6,961,920 9,037,970 -23.0 Boston, MA - - - - 28,873 - Buffalo, NY 247,714 121,347 524,040 369,061 725,698 -49.1 Norfolk, VA 8,730,257 9,784,866 9,519,119 18,515,123 17,784,479 4.1 Ogdensburg, NY 1,633 4,850 618 6,483 1,494 333.9 Southern Total 3,551,564 3,824,484

6

Prediction of metallurgical coke strength from the petrographic composition of coal blends  

SciTech Connect (OSTI)

Turkey, especially Zonguldak on the West Coast of Black Sea region, has large reserves of bituminous coal that can be used either directly or in blends with other coals for metallurgical coke production. It is possible to predict the coking properties of these coals by petrographic analysis. In this study, semi- and non-coking coals were blended with coking bituminous coals in varying proportions and an estimation was made as to their stability factors through petrographic techniques. It was established that semi- and non-coking bituminous coals could be used in the production of metallurgical coke.

Sutcu, H.; Toroglu, I.; Piskin, S. [Zonguldak Karaelmas University, Zonguldak (Turkey)

2009-07-01T23:59:59.000Z

7

Table 12. Average Price of U.S. Metallurgical Coal Exports  

U.S. Energy Information Administration (EIA) Indexed Site

Average Price of U.S. Metallurgical Coal Exports Average Price of U.S. Metallurgical Coal Exports (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 12. Average Price of U.S. Metallurgical Coal Exports (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Continent and Country of Destination April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change North America Total 92.50 99.40 146.56 94.82 140.70 -32.6 Canada* 99.83 125.20 142.46 106.43 138.19 -23.0 Dominican Republic 114.60 77.21 - 77.27 - - Mexico 78.93 78.54 180.76 78.77 153.65 -48.7 South America Total 119.26 117.51 167.05 118.30 168.12 -29.6 Argentina 146.70 131.08 182.47 137.36 196.37 -30.1 Brazil 119.21 117.38 165.61 118.20

8

International Energy Outlook 2006 - World Coal Markets  

Gasoline and Diesel Fuel Update (EIA)

Coal Markets Coal Markets International Energy Outlook 2006 Chapter 5: World Coal Markets In the IEO2006 reference case, world coal consumption nearly doubles from 2003 to 2030, with the non-OECD countries accounting for 81 percent of the increase. CoalÂ’s share of total world energy consumption increases from 24 percent in 2003 to 27 percent in 2030. Figure 48. World Coal Consumption by Region, 1980-2030 (Billion Short Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 49. Coal Share of World energy Consumption by Sector 2003, 2015, and 2030 (Percent). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Table 10. World Recoverable Coal Reserves (Billion Short Tons) Printer friendly version

9

Use of resin-bearing wastes from coke and coal chemicals production at the Novokuznetsk Metallurgical Combine  

SciTech Connect (OSTI)

The coke and coal chemicals plant at the Novokuznetsk Metallurgical Combine is making trial use of a technology that recycles waste products in 'tar ponds.' Specialists from the Ekomash company have installed a recycling unit in one area of the plant's dump, the unit including an inclined conveyor with a steam heater and a receiving hopper The coal preparation shop receives the wastes in a heated bin, where a screw mixes the wastes with pail of the charge for the coking ovens. The mixture subsequently travels along a moving conveyor belt together with the rest of the charge materials. The addition of up to 2% resin-bearing waste materials to the coal charge has not had any significant effect on the strength properties of the coke.

Kul'kova, T.N.; Yablochkin, N.V.; Gal'chenko, A.I.; Karyakina, E.A.; Litvinova, V.A.; Gorbach, D.A.

2007-03-15T23:59:59.000Z

10

Role of coal in the world and Asia  

SciTech Connect (OSTI)

This paper examines the changing role of coal in the world and in Asia. Particular attention is given to the rapidly growing demand for coal in electricity generation, the importance of China as a producer and consumer of coal, and the growing environmental challenge to coal. Attention is given to the increasing importance of low sulfur coal and Clean Coal Technologies in reducing the environmental impacts of coal burning.

Johnson, C.J.; Li, B.

1994-10-01T23:59:59.000Z

11

World Coal Resources and their Future Potential [and Discussion  

Science Journals Connector (OSTI)

30 May 1974 research-article World Coal Resources and their Future Potential...inferences from the published figures of world coal resources which are based on a variety...procedures, there can be no doubt that coal is the world's most abundant fossil fuel...

1974-01-01T23:59:59.000Z

12

coking coal  

Science Journals Connector (OSTI)

coking coal [A caking coal suitable for the production of coke for metallurgical use] ? Kokskohle f, verkokbare Kohle

2014-08-01T23:59:59.000Z

13

Study on the effect of heat treatment and gasification on the carbon structure of coal chars and metallurgical cokes using fourier transform Raman spectroscopy  

SciTech Connect (OSTI)

Differences in the development of carbon structures between coal chars and metallurgical cokes during high-temperature reactions have been investigated using Raman spectroscopy. These are important to differentiate between different types of carbons in dust recovered from the top gas of the blast furnace. Coal chars have been prepared from a typical injectant coal under different heat-treatment conditions. These chars reflected the effect of peak temperature, residence time at peak temperature, heating rate and pressure on the evolution of their carbon structures. The independent effect of gasification on the development of the carbon structure of a representative coal char has also been studied. A similar investigation has also been carried out to study the effect of heat-treatment temperature (from 1300 to 2000{sup o}C) and gasification on the carbon structure of a typical metallurgical coke. Two Raman spectral parameters, the intensity ratio of the D band to the G band (I{sub D}/I{sub G}) and the intensity ratio of the valley between D and G bands to the G band (I{sub V}/I{sub G}), have been found useful in assessing changes in carbon structure. An increase in I{sub D}/I{sub G} indicates the growth of basic graphene structural units across the temperature range studied. A decrease in I{sub V}/I{sub G} appears to suggest the elimination of amorphous carbonaceous materials and ordering of the overall carbon structure. The Raman spectral differences observed between coal chars and metallurgical cokes are considered to result from the difference in the time-temperature history between the raw injectant coal and the metallurgical coke and may lay the basis for differentiation between metallurgical coke fines and coal char residues present in the dust carried over the top of the blast furnace. 41 refs., 17 figs., 3 tabs.

S. Dong; P. Alvarez; N. Paterson; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

2009-03-15T23:59:59.000Z

14

RELATION BETWEEN TEXTURE AND REACTIVITY IN METALLURGICAL COKES OBTAINED FROM COAL USING PETROLEUM COKE AS ADDITIVE  

E-Print Network [OSTI]

Reactivity to C O2 is, perhaps, the most importam quality parameter used to evaluate the performance of a metallurgical coke in the blast furnace [ 1]. A lot of effort has been made to study how it is influenced by the

J. J. Pis; J. A. Men~ndez; R. Alvarez; M. A. Diez; J. B. Parra

15

Coal: world energy security. The Clearwater clean coal conference  

SciTech Connect (OSTI)

Topics covered include: oxy-fuel (overview, demonstrations, experimental studies, burner developments, emissions, fundamental and advanced concepts); post-combustion CO{sub 2} capture; coal conversion to chemicals and fuels; advanced materials; hydrogen production from opportunity fuels; mercury abatement options for power plants; and carbon capture and storage in volume 1. Subjects covered in volume 2 include: advanced modelling; advanced concepts for emission control; gasification technology; biomass; low NOx technology; computer simulations; multi emissions control; chemical looping; and options for improving efficiency and reducing emissions.

Sakkestad, B. (ed.)

2009-07-01T23:59:59.000Z

16

Coal: evolving supply and demand in world seaborne steam coal trade. [1975 to 1985; forecasting to 1995  

SciTech Connect (OSTI)

This paper describes the evolution of world seaborne steam coal trade since 1975. It highlights current trends and the historic and present sources of supply and demand and discusses selected factors that may affect future world trade patterns. It concludes with a general discussion on the prospects for United States participation in the growing world markets for steam coal. Worldwide seaborne steam coal trade is linked very closely to the generation of electricity and industrial use of process heat in cement and other manufacturing plants. The main factors that influence this trade are: economic growth, electricity demand, indigenous coal production (and degree of protection from lower cost coal imports), and the delivered costs of coal relative to other substitutable fuels. It may be of interest to know how these factors have changed seaborne steam coal trade in the past twelve years. In 1970, the total world use of steam coal was about two billion short tons. International trade in steam coal was only 80 million tons or about 4% of the total. Seaborne trade accounted for about 30% of international trade, or about 25 million tons. In 1982, the latest year for which good statistics are available, total world use of steam coal was about 3.6 billion tons. Seaborne steam coal trade was 110 million tons which is about 3% of the total and 37% of the international trade. 11 figs., 2 tabs.

Yancik, J.

1986-01-01T23:59:59.000Z

17

The 2006-2011 world outlook for coal mining  

SciTech Connect (OSTI)

This study covers the world outlook for coal mining across more than 200 countries. For each year reported, estimates are given for the latent demand, or potential industry earnings (P.I.E.), for the country in question (in millions of U.S. dollars), the percent share the country is of the region and of the globe. These comparative benchmarks allow the reader to quickly gauge a country against others. Using econometric models which project fundamental economic dynamics within each country and across countries, latent demand estimates are created. This report does not discuss the specific players in the market serving the latent demand, nor specific details at the product level. The study, therefore, is strategic in nature, taking an aggregate and long-run view, irrespective of the players or products involved. This study does not report actual sales data. This study gives, however, estimates for the worldwide latent demand, or the P.I.E., for coal mining. It also shows how the P.I.E. is divided across the world's regional and national markets. For each country, estimates are given of how the P.I.E. grows over time (positive or negative growth).

Park, P.M. [INSEAD, Fontainebleau (France)

2006-10-15T23:59:59.000Z

18

Annual prospects for world coal trade 1985: with projections to 1995  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) projects US and world coal trade to 1995, and annually updates the projections in the Annual Energy Outlook. The current projections assume that world coal trade will expand between now and 1995 in response to increasing demand for steam coal. US coal exports rose rapidly between 1979 and 1981, from 66 million short tons to 113 million short tons, partly as a result of labor problems in Poland and Australia. After declining slightly to 106 million short tons in 1982, US coal exports decreased sharply to 78 million short tons in 1983 due to increased supplies of Polish coal in Western Europe and Australian coal in Asia. Moreover, the continued strength of the US dollar made US coal more expensive overseas. US coal exports rose slightly in 1984, to 81 million short tons. Exports of US coal in 1985 are projected to be approximately 71 million short tons. As a high-cost supplier of export coal, the United States has been the ''swing supplier'' because of its ability to ship large amounts of coal on short notice. The United States is likely to maintain a significant share of the world market as a reliable supplier of high-quality coal. EIA projections of US coal exports and world coal trade for 1990 and 1995 are provided in a mid-demand (or base) case as well as in two other cases, a low-demand case and a high-demand case, that reflect uncertainties in the projections. EIA estimates of import coal demand for 1990 and 1995 were developed using key energy supply and demand information for the principal coal-importing countries in Western Europe and Asia, and evaluating that information in the context of estimated trends in economic growth and energy use. 3 figs., 26 tabs.

Tukenmez, E.; Tuck, N.

1985-05-01T23:59:59.000Z

19

EIA - Future role of the United States in world coal trade  

Gasoline and Diesel Fuel Update (EIA)

Future role of the United States in world coal trade Future role of the United States in world coal trade International Energy Outlook 2010 Future role of the United States in world coal trade U.S. coal exports increased each year from 2002 to 2008 at an average annual rate of 12.8 percent, to 82 million tons in 2008. Some analysts have viewed the sharp increase in U.S. exports as an indication of the growing importance of the United States as a world coal supplier. There has also been speculation that China's growing demand for coal will support this trend in the future. However, U.S. coal is a relatively high-cost supply source when shipped to Asian markets, and in the long term U.S. coal will be competing in the Chinese market with lower cost suppliers, notably Australia and Indonesia among others. U.S. exports compete most strongly in European markets and then only when less expensive options are unavailable. In IEO2010, the United States remains a marginal coal supplier over the long term, responding to short-term disruptions or spikes in demand rather than significantly expanding its market share of world coal trade.

20

Southern Coal finds value in the met market  

SciTech Connect (OSTI)

The Justice family launches a new coal company (Southern Coal Corp.) to serve metallurgical and steam coal markets. 1 tab., 3 photos.

Fiscor, S.

2009-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "world metallurgical coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NETL: News Release - World's First Coal Mine Methane Fuel Cell Powers Up in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

22, 2003 22, 2003 World's First Coal Mine Methane Fuel Cell Powers Up in Ohio New Technology Mitigates Coal Mine Methane Emissions, Produces Electricity HOPEDALE, OH - In a novel pairing of old and new, FuelCell Energy of Danbury, Conn., has begun operating the world's first fuel cell powered by coal mine methane. Funded by the Department of Energy, the demonstration harnesses the power of a pollutant - methane emissions from coal mines - to produce electricity in a new, 21st Century fuel cell. MORE INFO Remarks by DOE's James Slutz FuelCell Energy Web Site "We believe this technology can reduce coal mine methane emissions significantly while producing clean, efficient, and reliable high-quality power," Secretary of Energy Spencer Abraham said. "This has the dual

22

AEO2011: World Total Coal Flows By Importing Regions and Exporting  

Open Energy Info (EERE)

Total Coal Flows By Importing Regions and Exporting Total Coal Flows By Importing Regions and Exporting Countries Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 144, and contains only the reference case. The dataset uses million short tons. The data is broken down into total coal exports to Europe, Asia and America. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO coal EIA Data application/vnd.ms-excel icon AEO2011: World Total Coal Flows By Importing Regions and Exporting Countries - Reference Case (xls, 104 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

23

AEO2011: World Steam Coal Flows By Importing Regions and Exporting  

Open Energy Info (EERE)

Steam Coal Flows By Importing Regions and Exporting Steam Coal Flows By Importing Regions and Exporting Countries Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 142, and contains only the reference case. The dataset uses million short tons. The data is broken down into steam coal exports to Europe, Asia and America. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Coal flows countries EIA exporting importing Data application/vnd.ms-excel icon AEO2011: World Steam Coal Flows By Importing Regions and Exporting Countries- Reference Case (xls, 103.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

24

Effect of weathering on coal characteristics and coke qualities.  

E-Print Network [OSTI]

??The effect of weathering on the modification of chemical, petrological and rheological properties of four metallurgical coals in different rank and geology was investigated. And… (more)

Lee, Seung Jae

2012-01-01T23:59:59.000Z

25

Problems of Expanding Coal Production  

Science Journals Connector (OSTI)

...metallurgical or coking coal marketed widely here and abroad. Appalachian coal generally has a high...are characteristic of Appalachia, al-though there has also been extensive strip mining including destructive...Mid-western bituminous coal has a large market as...

John Walsh

1974-04-19T23:59:59.000Z

26

Annual book of ASTM Standards 2008. Section Five. Petroleum products, lubricants, and fossil fuels. Volume 05.06. Gaseous fuels; coal and coke  

SciTech Connect (OSTI)

The first part covers standards for gaseous fuels. The second part covers standards on coal and coke including the classification of coals, determination of major elements in coal ash and trace elements in coal, metallurgical properties of coal and coke, methods of analysis of coal and coke, petrogrpahic analysis of coal and coke, physical characteristics of coal, quality assurance and sampling.

NONE

2008-09-15T23:59:59.000Z

27

Annual book of ASTM Standards 2005. Section Five. Petroleum products, lubricants, and fossil fuels. Volume 05.06. Gaseous fuels; coal and coke  

SciTech Connect (OSTI)

The first part covers standards for gaseous fuels. The standard part covers standards on coal and coke including the classification of coals, determination of major elements in coal ash and trace elements in coal, metallurgical properties of coal and coke, methods of analysis of coal and coke, petrographic analysis of coal and coke, physical characteristics of coal, quality assurance and sampling.

NONE

2005-09-15T23:59:59.000Z

28

Study of the sulphur in coal and its distribution between the gases and the residue in coking.  

E-Print Network [OSTI]

??Sulphur exists in metallurgical coke as a source of annoyance and difficulties in the economic progress of the metal industries. It ie present in coal… (more)

Wenger, Arthur W.

1923-01-01T23:59:59.000Z

29

Mid-South Metallurgical Makes Electrical and Natural Gas System...  

Broader source: Energy.gov (indexed) [DOE]

Mid-South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy Use and Achieve Cost Savings Mid-South Metallurgical Makes Electrical and Natural Gas...

30

Dr. Norman Hilberry Metallurgical Laboratory  

Office of Legacy Management (LM)

December 23, 1942 December 23, 1942 217, i Dr. Norman Hilberry Metallurgical Laboratory University of Chicago Chicago, Illlnols Dear Dr. Hllbarry: In akcordance with the arrangments made with Dr. Compton, I am attachIng.heretb Copy No. 13 of Dr. Kraus' Progreee Report dated December 15, 1942. Thle report contains addltloral information on the preparation of metallic uranium by the, reduction of UC13 with sodium. Very truly goAre, RR:OT Attaohment CONFIFIMEOTOSE l,NCL&.$.,Fl&, DOEOFFICE OF OECMS.W,,3,~ HERSERTSCHMIOT A.D.D. i DUIE: . 9 pages: 0 figures., G&es 1 to 19. inci, SeriesA. . . Progress Report By Charles A. Kraus December 15, 1942 Contract No. OEMsr~290, Supplement 2 Contract No, OZMsr-688. A. PrepeZ+tion of UC& L-cm lJJa and Ccl,. The study of the va.?ious, i'actors which may influence the

31

Coal News and Markets - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Coal News and Markets Coal News and Markets Release Date: December 16, 2013 | Next Release Date: December 24, 2013 "Coal News and Markets Report" summarizes spot coal prices by coal commodity regions (i.e., Central Appalachia (CAPP), Northern Appalachia (NAPP), Illinois Basin (ILB), Powder River Basin (PRB), and Uinta Basin (UIB)) in the United States. The report includes data on average weekly coal commodity spot prices, total monthly coal production, eastern monthly coal production, electric power sector coal stocks, and average cost of metallurgical coal at coke plants and export docks. The historical data for coal commodity spot market prices are proprietary and not available for public release. Average weekly coal commodity spot prices (dollars per short ton)

32

COAL LOGISTICS. Tracking U.S. Coal Exports  

SciTech Connect (OSTI)

COAL LOGISTICS has the capability to track coal from a U. S. mine or mining area to a foreign consumer`s receiving dock. The system contains substantial quantities of information about the types of coal available in different U. S. coalfields, present and potential inland transportation routes to tidewater piers, and shipping routes to and port capabilities in Italy, Japan, South Korea, Taiwan, and Thailand. It is designed to facilitate comparisons of coal quality and price at several stages of the export process, including delivered prices at a wide range of destinations. COAL LOGISTICS can be used to examine coal quality within or between any of 18 U. S. coalfields, including three in Alaska, or to compare alternative routes and associated service prices between coal-producing regions and ports-of-exit. It may be used to explore the possibilities of different ship sizes, marine routes, and foreign receiving terminals for coal exports. The system contains three types of information: records of coal quality, domestic coal transportation options, and descriptions of marine shipment routes. COAL LOGISTICS contains over 3100 proximate analyses of U. S. steam coals, usually supplemented by data for ash softening temperature and Hardgrove grindability; over 1100 proximate analyses for coals with metallurgical potential, usually including free swelling index values; 87 domestic coal transportation options: rail, barge, truck, and multi-mode routes that connect 18 coal regions with 15 U. S. ports and two Canadian terminals; and data on 22 Italian receiving ports for thermal and metallurgical coal and 24 coal receiving ports along the Asian Pacific Rim. An auxiliary program, CLINDEX, is included which is used to index the database files.

Sall, G.W. [US Department of Energy, Office of Fossil Energy, Washington, DC (United States)

1988-06-28T23:59:59.000Z

33

From metallurgical coatings to surface engineering  

Science Journals Connector (OSTI)

The history of the Vacuum Metallurgy Division (VMD) which is now the Advanced Surface Engineering Division (ASED) of the American Vacuum Society is reviewed briefly. The focus of the VMD moved from vacuum melting of materials to metallurgical coatings. The division sponsored two conferences the Conference on Vacuum Metallurgy and the International Conference on Metallurgical Coatings. As the interest in vacuum metallurgy eventually subsided interest grew in the deposition of metallurgical coatings. However the emphasis at the Metallurgical Coatings conference has changed from just depositingcoatings to surface engineering of a component. Today the challenge is to use the tools of surface engineering with advances in deposition technology such as high-power pulsed sputtering. To align itself with the changing interests of the majority of its members the VMD changed its name to the ASED.

William D. Sproul

2003-01-01T23:59:59.000Z

34

International Energy Outlook - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2004 Coal Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2025. Coal continues to dominate fuel markets in developing Asia. Figure 52. World Coal Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 53. Coal Share of World Energy Consumption by Sector, 2001 and 2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 54. Coal Share of Regional Energy Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data World coal consumption has been in a period of generally slow growth since

35

World Energy Resources  

Science Journals Connector (OSTI)

World Energy Resources ... Coal reserves are by far the largest proved energy sources we have, said Parker. ...

1954-05-17T23:59:59.000Z

36

4 - Future industrial coal utilization: forecasts and emerging technological and regulatory issues  

Science Journals Connector (OSTI)

Abstract: Coal production and utilization will grow substantially in the future. This chapter starts by describing coal production and consumption, with a focus on future trends. A discussion of major technology and regulatory issues for coal-fired power plants and the production of metallurgical coal then follows.

J.K. Alderman

2013-01-01T23:59:59.000Z

37

Coal - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Summary Summary The U.S. coal industry rebounded in 2010, with coal exports showing impressive gains and domestic production up over the previous year. Metallurgical coal export prices hit record levels as weather problems continued to plague Australian producers, and steel-hungry China and India continued to import relatively large amounts of metallurgical coal. U.S. domestic coal price increases moderated for the electric power sector and declined for industrial plants and for commercial and institutional users. Positive trends established in 2010 are expected to carry over to 2011. Domestic coal consumption as well as metallurgical coal exports are expected to increase as U.S. and most other industrial economies continue to grow. Coal prices should continue to increase at a moderate pace. As

38

AMG Advanced Metallurgical Group NV | Open Energy Information  

Open Energy Info (EERE)

AMG Advanced Metallurgical Group NV AMG Advanced Metallurgical Group NV Jump to: navigation, search Name AMG Advanced Metallurgical Group NV Place Wayne, Pennsylvania Zip 19087 Product US-based specialty metals company offering metallurgical products and vacuum furnace systems; manufactures high purity polysilicon. References AMG Advanced Metallurgical Group NV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. AMG Advanced Metallurgical Group NV is a company located in Wayne, Pennsylvania . References ↑ "AMG Advanced Metallurgical Group NV" Retrieved from "http://en.openei.org/w/index.php?title=AMG_Advanced_Metallurgical_Group_NV&oldid=342143" Categories: Clean Energy Organizations

39

Selenium Bioaccumulation in Stocked Fish as an Indicator of Fishery Potential in Pit Lakes on Reclaimed Coal Mines  

E-Print Network [OSTI]

on Reclaimed Coal Mines in Alberta, Canada L. L. Miller · J. B. Rasmussen · V. P. Palace · G. Sterling · A to selenium (Se) and other metals and metalloids in pit lakes formed by open pit coal mining in Tertiary (thermal coal) and in Cretaceous (metallurgical coal) bedrock. Juvenile hatchery rainbow trout

Hontela, Alice

40

HS_Coal_Studyguide.indd  

Broader source: Energy.gov (indexed) [DOE]

Coal Coal Fossil Energy Study Guide: Coal Coal is the most plentiful fuel in the fossil family. The United States has more coal reserves than any other country in the world. In fact, one-fourth of all known coal in the world is in the United States, with large deposits located in 38 states. The United States has almost as much energ y in coal that can be mined as the rest of the world has in oil that can be pumped from the ground. TYPES OF COAL Coal is a black rock made up of large amounts of carbon. Like all fossil fuels, coal can be burned to release energy. Coal contains elements such as hydrogen, oxygen, and nitrogen; has various amounts of minerals; and is itself considered to be a mineral of organic origin. Due to the variety of materials buried over time in the

Note: This page contains sample records for the topic "world metallurgical coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

NETL: Clean Coal Demonstrations - Coal 101  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A "Bed" for Burning Coal A "Bed" for Burning Coal Clean Coal 101 Lesson 4: A "Bed" for Burning Coal? It was a wet, chilly day in Washington DC in 1979 when a few scientists and engineers joined with government and college officials on the campus of Georgetown University to celebrate the completion of one of the world's most advanced coal combustors. It was a small coal burner by today's standards, but large enough to provide heat and steam for much of the university campus. But the new boiler built beside the campus tennis courts was unlike most other boilers in the world. A Fluidized Bed Boiler A Fluidized Bed Boiler In a fluidized bed boiler, upward blowing jets of air suspend burning coal, allowing it to mix with limestone that absorbs sulfur pollutants.

42

MS_Coal_Studyguide.indd  

Broader source: Energy.gov (indexed) [DOE]

COAL-OUR MOST ABUNDANT FUEL COAL-OUR MOST ABUNDANT FUEL America has more coal than any other fossil fuel resource. Th e United States also has more coal reserves than any other single country in the world. In fact, 1/4 of all the known coal in the world is in the United States. Th e United States has more energy in coal that can be mined than the rest of the world has in oil that can be pumped from the ground. Currently, coal is mined in 25 of the 50 states. Coal is used primarily in the United States to generate electricity. In fact, it is burned in power plants to produce nearly half of the electricity we use. A stove uses about half a ton of coal a year. A water heater uses about two tons of coal a year. And a refrigerator, that's another half-ton a year. Even though you

43

Production of iron from metallurgical waste  

DOE Patents [OSTI]

A method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking comprising steps of providing an iron-bearing metallurgical waste containing more than 55% by weight FeO and FeO equivalent and a particle size of at least 80% less than 10 mesh, mixing the iron-bearing metallurgical waste with a carbonaceous material to form a reducible mixture where the carbonaceous material is between 80 and 110% of the stoichiometric amount needed to reduce the iron-bearing waste to metallic iron, and as needed additions to provide a silica content between 0.8 and 8% by weight and a ratio of CaO/SiO.sub.2 between 1.4 and 1.8, forming agglomerates of the reducible mixture over a hearth material layer to protect the hearth, heating the agglomerates to a higher temperature above the melting point of iron to form nodules of metallic iron and slag material from the agglomerates by melting.

Hendrickson, David W; Iwasaki, Iwao

2013-09-17T23:59:59.000Z

44

Sustainable Coal Use | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sustainable Coal Use Sustainable Coal Use Coal is a vital energy resource, not only for the United States, but also for many developed and developing economies around the world....

45

4 - Coal resources and reserves  

Science Journals Connector (OSTI)

Abstract: Coal resources still make up a significant proportion of the world’s energy supplies. Coal resources are estimated to be 860 billion tonnes. These resources are geographically well distributed and current production provides fuel for 29% of the world’s primary energy consumption. The classification of coal resources and reserves has been redefined in recent years, with the standards and codes of practice adopted by the principal coal-producing countries being equated on a global basis. Details of the principal classifications are given, together with their international equivalents. Reporting of resources and reserves plus methods of calculation are also given, together with recent assessments of global coal reserves.

L.P. Thomas

2013-01-01T23:59:59.000Z

46

Natural radioactivity of Zambian coal and coal ash  

Science Journals Connector (OSTI)

226Ra and232Th specific activities in coal from Maamba Collieries in Zambia have been...?1..., respectively. These values are nearly two and a half times larger than the world average for coal an...

P. Hayumbu; M. B. Zaman; S. S. Munsanje

1995-11-01T23:59:59.000Z

47

DOE - Office of Legacy Management -- Ohio State University Metallurgic...  

Office of Legacy Management (LM)

METALLURGICAL ENGINEERING EXPERIMENT STATION OH.0-05-1 - Memorandum; Roth to Armstrong; Source Material License No. C-3622; March 1, 1957. Attachment: Source Material...

48

Chapter 12 - Coal use in iron and steel metallurgy  

Science Journals Connector (OSTI)

Abstract: This chapter discusses the role of coal in iron and steel metallurgy. The chapter first gives information about routes for steel manufacture, current levels of steel production and forecasts for the future. It then discusses the use of coal in different metallurgical processes with emphasis on various ironmaking technologies as the most energy consuming step of the process chain. Alternatives to coal like biomass, hydrogen or waste plastics are discussed from the point of view of CO2 reduction.

A. Babich; D. Senk

2013-01-01T23:59:59.000Z

49

The Asia-Pacific coal technology conference  

SciTech Connect (OSTI)

The Asia-Pacific coal technology conference was held in Honolulu, Hawaii, November 14--16, 1989. Topics discussed included the following: Expanded Horizons for US Coal Technology and Coal Trade; Future Coal-Fired Generation and Capacity Requirements of the Philippines; Taiwan Presentation; Korean Presentation; Hong Kong Future Coal Requirements; Indonesian Presentation; Electric Power System in Thailand; Coal in Malaysia -- A Position Paper; The US and Asia: Pacific Partners in Coal and Coal Technology; US Coal Production and Export; US Clean Coal Technologies; Developments in Coal Transport and Utilization; Alternative/Innovative Transport; Electricity Generation in Asia and the Pacific: Power Sector Demand for Coal, Oil and Natural Gas; Role of Clean Coal Technology in the Energy Future of the World; Global Climate Change: A Fossil Energy Perspective; Speaker: The Role of Coal in Meeting Hawaii's Power Needs; and Workshops on Critical Issues Associated with Coal Usage. Individual topics are processed separately for the data bases.

Not Available

1990-02-01T23:59:59.000Z

50

Foreign Distribution of U.S. Coal by Major Coal-Exporting States and Destination  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 (Thousand Short Tons) " " Coal-Exporting State and Destination ",,"Metallurgical ","Steam ","Total "," " "Alabama ",,3977,"-",3977," " ," Argentina ",225,"-",225," " ," Belgium ",437,"-",437," " ," Brazil ",1468,"-",1468," " ," Bulgaria ",75,"-",75," " ," Egypt ",363,"-",363," " ," Germany ",71,"-",71," " ," Italy ",61,"-",61," " ," Netherlands ",219,"-",219," " ," Spain ",415,"-",415," " ," Turkey ",362,"-",362," "

51

International Energy Outlook 1999 - Coal  

Gasoline and Diesel Fuel Update (EIA)

coal.jpg (1776 bytes) coal.jpg (1776 bytes) CoalÂ’s share of world energy consumption falls slightly in the IEO99 forecast. Coal continues to dominate many national fuel markets in developing Asia, but it is projected to lose market share to natural gas in some other areas of the world. Historically, trends in coal consumption have varied considerably by region. Despite declines in some regions, world coal consumption has increased from 84 quadrillion British thermal units (Btu) in 1985 to 93 quadrillion Btu in 1996. Regions that have seen increases in coal consumption include the United States, Japan, and developing Asia. Declines have occurred in Western Europe, Eastern Europe, and the countries of the former Soviet Union. In Western Europe, coal consumption declined by 30

52

Annual Coal Distribution Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Foreign Distribution of U.S. Coal by Major Coal-Exporting States and Foreign Distribution of U.S. Coal by Major Coal-Exporting States and Destination, 2001 Coal-Exporting State and Destination Metallurgical Steam Total Alaska - 761 761 South Korea - 761 761 Alabama 4,667 167 4,834 Argentina 155 - 155 Belgium 989 - 989 Brazil 1,104 - 1,104 Bulgaria 82 - 82 Egypt 518 - 518 Italy 115 - 115 Netherlands 56 83 139 Spain 412 84 496 Turkey 581 - 581 United Kingdom 654 - 654 Kentucky 2,130 - 2,130 Canada 920 - 920 France 22 - 22 Iceland 9 - 9 Italy 430 - 430 Netherlands 417 - 417 Spain 9 - 9 United Kingdom 323 - 323 Pennsylvania 1,086 14,326 15,722 Belgium - 203 203 Brazil 372 - 373 Canada - 12,141 12,418 France - 84 84 Germany 495 165 661 Ireland - 136 136 Netherlands 219 879 1,097 Norway - - 7 Peru - - 21 Portugal - 634 634 United Kingdom - 85 85 Venezuela - - 3 Utah - 1,420 1,420 Japan - 1,334 1,334 Taiwan - 86 86 Virginia 4,531

53

EIA - 2010 International Energy Outlook - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2010 Coal In the IEO2010 Reference case, world coal consumption increases by 56 percent from 2007 to 2035, and coal's share of world energy consumption grows from 27 percent in 2007 to 28 percent in 2035. Figure 60. World coal consumption by country grouping, 1980-2035. Click to enlarge » Figure source and data excel logo Figure 61. Coal share of world energy consumption by sector, 2007, 2020, and 2035. Click to enlarge » Figure source and data excel logo Figure 62. OECD coal consumption by region, Click to enlarge » Figure source and data excel logo Figure 63. Non-OECD coal consumption by region, 1980,2007,2020, and 2035. Click to enlarge » Figure source and data excel logo Figure 64. Coal consumption in China by sector, 2007, 2020, and 2035.

54

EIA - International Energy Outlook 2007 - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2007 Chapter 5 - Coal In the IEO2007 reference case, world coal consumption increases by 74 percent from 2004 to 2030, international coal trade increases by 44 percent from 2005 to 2030, and coalÂ’s share of world energy consumption increases from 26 percent in 2004 to 28 percent in 2030. Figure 54. World Coal Consumption by Region, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy at 202-586-8800. Figure Data Figure 55. Coal Share of World Energy Consumption by Sector, 2004, 2015, and 2030 (Percent). Need help, contact the National Energy at 202-586-8800. Figure Data In the IEO2007 reference case, world coal consumption increases by 74 percent over the projection period, from 114.4 quadrillion Btu in 2004 to

55

International Energy Outlook 2000 - Coal  

Gasoline and Diesel Fuel Update (EIA)

Although coal use is expected to be displaced by natural gas in some parts of the world, Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2020. Coal continues to dominate many national fuel markets in developing Asia. Historically, trends in coal consumption have varied considerably by region. Despite declines in some regions, world coal consumption has increased from 84 quadrillion British thermal units (Btu) in 1985 to 93 quadrillion Btu in 1997. Regions that have seen increases in coal consumption include the United States, Japan, and developing Asia. Declines have occurred in Western Europe, Eastern Europe, and the countries of the former Soviet Union (FSU). In Western Europe, coal consumption declined by 33 percent between 1985 and 1997, displaced in considerable measure by

56

International Energy Outlook 2001 - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal picture of a printer Printer Friendly Version (PDF) Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2020. Coal continues to dominate many national fuel markets in developing Asia. World coal consumption has been in a period of generally slow growth since the late 1980s, a trend that is expected to continue. Although 1999 world consumption, at 4.7 billion short tons,9 was 15 percent higher than coal use in 1980, it was lower than in any year since 1984 (Figure 51). The International Energy Outlook 2001 (IEO2001) reference case projects some growth in coal use between 1999 and 2020, at an average annual rate of 1.5 percent, but with considerable variation among regions.

57

EIA - International Energy Outlook 2008-Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2008 Chapter 4 - Coal In the IEO2008 reference case, world coal consumption increases by 65 percent and international coal trade increases by 53 percent from 2005 to 2030, and coalÂ’s share of world energy consumption increases from 27 percent in 2005 to 29 percent in 2030. Figure 46. World Coal Consumption by Country Grouping, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 47. Coal Share of World Energy Consumption by Sector, 2005, 2015, and 2030 (Percent). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 48. OECD Coal Consumption by Region, 1980, 2005, 2015, and 2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

58

Coal - prices tumble as the glut continues  

SciTech Connect (OSTI)

The oil price collapse was the major event affecting coal markets around the world in 1986. The 8% expansion in international coal trade in 1985 was halted, and prices fell considerably. World coking coal trade declined and import and export prices fell due to a decrease in steel production and the use of oil, rather than pulverized coal, in blast furnaces. However steam coal trade increased by about 5 million mt because of various institutional constraints to utilities switching from coal burning to oil burning. The article covers coal trade and production in the following countries: Australia; Canada; China; Colombia; Western Europe; Japan; Poland; South Africa; and the USSR.

Lee, H.M.

1987-03-01T23:59:59.000Z

59

Coal Gasification  

Broader source: Energy.gov [DOE]

DOE's Office of Fossil Energy supports activities to advance coal-to-hydrogen technologies, specifically via the process of coal gasification with sequestration. DOE anticipates that coal...

60

DOE - Office of Legacy Management -- Fansteel Metallurgical Corp - IL 16  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fansteel Metallurgical Corp - IL 16 Fansteel Metallurgical Corp - IL 16 FUSRAP Considered Sites Site: Fansteel Metallurgical Corp. (IL.16 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Chicago , Illinois IL.16-1 Evaluation Year: 1987 IL.16-3 Site Operations: Sole producer and supplier of tantalum and columbium metals to the MED. IL.16-1 IL.16-3 Site Disposition: Eliminated - No radioactive materials handled at this site IL.16-2 IL.16-3 Radioactive Materials Handled: No Primary Radioactive Materials Handled: None IL.16-2 Radiological Survey(s): No Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to Fansteel Metallurgical Corp. IL.16-1 - MED Memorandum; Greninger to the File; Subject: Visit to

Note: This page contains sample records for the topic "world metallurgical coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Metallurgical Laboratory at the University of Chicago | Department of  

Broader source: Energy.gov (indexed) [DOE]

Operational Management » History » Manhattan Project » Signature Operational Management » History » Manhattan Project » Signature Facilities » Metallurgical Laboratory at the University of Chicago Metallurgical Laboratory at the University of Chicago Photo of the Met Lab and the Stagg Field Bleachers Photo of the Met Lab and the Stagg Field Bleachers One of the most important branches of the Manhattan Project was the Metallurgical Laboratory (Met Lab) in Chicago. Using the name "Metallurgical Laboratory" as cover at the University of Chicago, scientists from the east and west coasts were brought together to this central location to develop chain-reacting "piles" for plutonium production, to devise methods for extracting plutonium from the irradiated uranium, and to design a weapon. In all, four methods of plutonium

62

A survey of metallurgical research on several actinides  

SciTech Connect (OSTI)

A Los Alamos perspective on metallurgical research on neptunium, plutonium, americium, curium, and californium is presented. Alloying behaviors of these metals are discussed. Metal fabrication technologies, principally for plutonium, are emphasized.

Olivas, J.D.; Schonfeld, F.W.

1993-11-01T23:59:59.000Z

63

Graph Model for Carbon Dioxide Emissions from Metallurgical Plants  

Science Journals Connector (OSTI)

Mathematical models are presented for estimating carbon dioxide emissions from metallurgical processes. The article also presents ... in graph form to calculate transit and net emissions of carbon dioxide based o...

Yu. N. Chesnokov; V. G. Lisienko; A. V. Lapteva

2013-03-01T23:59:59.000Z

64

Coke quality for blast furnaces with coal-dust fuel  

SciTech Connect (OSTI)

Recently, plans have been developed for the introduction of pulverized coal injection (PCI) at various Russian metallurgical enterprises. The main incentive for switching to PCI is the recent price rises for Russian natural gas. The paper discusses the quality of coke for PCI into blast furnaces.

Y.A. Zolotukhin; N.S. Andreichikov [Eastern Coal-Chemistry Institute, Yekaterinburg (Russian Federation)

2009-07-01T23:59:59.000Z

65

WCI Case for Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Coal The role of as an energy source The role of coal as an energy source Key Messages * Energy demand has grown strongly and will continue to increase, particularly in developing countries where energy is needed for economic growth and poverty alleviation. * All energy sources will be needed to satisfy that demand by providing a diverse and balanced supply mix. * Coal is vital for global energy security. It is abundantly available, affordable, reliable and easy and safe to transport. * In an energy hungry world the challenge for coal, as for other fossil fuels, is to further substantially reduce its greenhouse gas and other emissions, while continuing to make a major contribution to economic and social development and energy security. * Coal is part way down a technology pathway that has already delivered major

66

EIA - International Energy Outlook 2009-Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2009 Chapter 4 - Coal In the IEO2009 reference case, world coal consumption increases by 49 percent from 2006 to 2030, and coalÂ’s share of world energy consumption increases from 27 percent in 2006 to 28 percent in 2030. Figure 42. World Coal Consumption by Country Grouping, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 43. Coal Share of World Energy Consumption by Sector, 2006, 2015, and 2030 (Percent). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 44. OECD Coal Consumption by Region, 1980, 2006, 2015, and 2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

67

Estimating coal production peak and trends of coal imports in China  

SciTech Connect (OSTI)

More than 20 countries in the world have already reached a maximum capacity in their coal production (peak coal production) such as Japan, the United Kingdom and Germany. China, home to the third largest coal reserves in the world, is the world's largest coal producer and consumer, making it part of the Big Six. At present, however, China's coal production has not yet reached its peak. In this article, logistic curves and Gaussian curves are used to predict China's coal peak and the results show that it will be between the late 2020s and the early 2030s. Based on the predictions of coal production and consumption, China's net coal import could be estimated for coming years. This article also analyzes the impact of China's net coal import on the international coal market, especially the Asian market, and on China's economic development and energy security. 16 refs., 5 figs., 6 tabs.

Bo-qiang Lin; Jiang-hua Liu [Xiamen University, Xiamen (China). China Center for Energy Economics Research (CCEER)

2010-01-15T23:59:59.000Z

68

Methane and Coal  

Science Journals Connector (OSTI)

... stored source of the energy supplies of the world ; every twenty years the world burns a volume of coal equivalent to the volume of Snowdon (a cone of base ... hole method being most in favour. This method is being applied in about twelve British pits. The amount of methane drawn off appears to depend on the movement of the ...

ALFRED EGERTON

1952-07-19T23:59:59.000Z

69

The methods of steam coals usage for coke production  

SciTech Connect (OSTI)

Nowadays, high volatile bituminous coals are broadly used for metallurgical coke production in Russia. The share of such coals in the coking blend is variable from 20 to 40% by weight. There are some large coal deposits in Kuznetskii basin which have coals with low caking tendency. The low caking properties of such coals limit of its application in the coking process. At the same time the usage of low caking coals for coke production would allow flexibility of the feedstock for coke production. Preliminary tests, carried out in COAL-C's lab has shown some differences in coal properties with dependence on the size distribution. That is why the separation of the well-caking fraction from petrographically heterogeneous coals and its further usage in coking process may be promising. Another way for low caking coals application in the coke industry is briquettes production from such coals. This method has been known for a very long time. It may be divided into two possible directions. First is a direct coking of briquettes from the low caking coals. Another way is by adding briquettes to coal blends in defined proportion and combined coking. The possibility of application of coal beneficiation methods mentioned above was investigated in present work.

Korobetskii, I.A.; Ismagilov, M.S.; Nazimov, S.A.; Sladkova, I.L.; Shudrikov, E.S.

1998-07-01T23:59:59.000Z

70

Coal competition: prospects for the 1980s  

SciTech Connect (OSTI)

This report consists of 10 chapters which present an historical overview of coal and the part it has played as an energy source in the economic growth of the United States from prior to World War II through 1978. Chapter titles are: definition of coals, coal mining; types of coal mines; mining methods; mining work force; development of coal; mine ownership; production; consumption; prices; exports; and imports. (DMC)

Not Available

1981-03-01T23:59:59.000Z

71

Letter Report on Metallurgical Examination of the High Fluence RPV  

Broader source: Energy.gov (indexed) [DOE]

Report on Metallurgical Examination of the High Fluence RPV Report on Metallurgical Examination of the High Fluence RPV Specimens From the Ringhals Nuclear Reactors Letter Report on Metallurgical Examination of the High Fluence RPV Specimens From the Ringhals Nuclear Reactors Regulations which govern the operation of commercial nuclear power plants require conservative margins of fracture toughness, both during normal operation and under accident scenarios. In the irradiated condition, the fracture toughness of the RPV may be severely degraded, with the degree of toughness loss dependent on the radiation sensitivity of the materials. As stated in previous progress reports, the available embrittlement predictive models, e.g. [1], and our present understanding of radiation damage are not fully quantitative, and do not treat all potentially significant variables

72

DOE - Office of Legacy Management -- Ohio State University Metallurgical  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ohio State University Metallurgical Ohio State University Metallurgical Engineering Experiment Station -OH 0-05 FUSRAP Considered Sites Site: OHIO STATE UNIVERSITY, METALLURGICAL ENGINEERING EXPERIMENT STATION (OH.0-05 ) Eliminated from consideration under FUSRAP - Referred to NRC Designated Name: Not Designated Alternate Name: None Location: Columbus , Ohio OH.0-05-1 Evaluation Year: 1986 OH.0-05-2 Site Operations: Ohio State ordered 130 grams of uranium from the AEC. This commercial supply order was filled by Fernald. OH.0-05-1 OH.0-05-3 Site Disposition: Eliminated - AEC/NRC licensed operation OH.0-05-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium OH.0-05-1 OH.0-05-3 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP - Referred to NRC

73

Podolsky Chemical and Metallurgical Plant PCMP | Open Energy Information  

Open Energy Info (EERE)

Podolsky Chemical and Metallurgical Plant PCMP Podolsky Chemical and Metallurgical Plant PCMP Jump to: navigation, search Name Podolsky Chemical and Metallurgical Plant (PCMP) Place Moscow, Russian Federation Zip 142103 Sector Solar Product Russian manufacturer of monocrystalline silicon ingots, wafers, cells and quartz crucibles; serves both solar and semiconductor industries. Coordinates 55.75695°, 37.614975° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.75695,"lon":37.614975,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

74

Foreign Distribution of U.S. Coal by Major Coal-Exporting States and Destination  

U.S. Energy Information Administration (EIA) Indexed Site

3" 3" "(Thousand Short Tons)" "Coal-Exporting State and Destination ",,"Metallurgical ","Steam ","Total " "Alabama ",,5156,"-",5156 ,"Argentina ",345,"-",345 ,"Belgium ",387,"-",387 ,"Brazil ",1825,"-",1825 ,"Bulgaria ",363,"-",363 ,"Egypt ",477,"-",477 ,"Germany ",167,"-",167 ,"Italy ",87,"-",87 ,"Netherlands ",399,"-",399 ,"Spain ",198,"-",198 ,"Turkey ",551,"-",551 ,"United Kingdom ",359,"-",359 "Kentucky ",,1449,"-",1449 ,"Canada ",566,"-",566

75

NYMEX Coal Futures - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

NYMEX Coal Futures Near-Month Contract Final Settlement Price 2013 NYMEX Coal Futures Near-Month Contract Final Settlement Price 2013 Data as of: December 13, 2013 | Release Date: December 16, 2013 | Next Release Date: December 30, 2013 U.S. coal exports, chiefly Central Appalachian bituminous, make up a significant percentage of the world export market and are a relevant factor in world coal prices. Because coal is a bulk commodity, transportation is an important aspect of its price and availability. In response to dramatic changes in both electric and coal industry practices, the New York Mercantile Exchange (NYMEX) after conferring with coal producers and consumers, sought and received regulatory approval to offer coal futures and options contracts. On July 12, 2001, NYMEX began trading Central Appalachian Coal futures under the QL symbol.

76

Chapter 3 - Coal-fired Power Plants  

Science Journals Connector (OSTI)

Abstract Coal provides around 40% of the world’s electricity, more than any other source. Most modern coal-fired power stations burn pulverized coal in a boiler to raise steam for a steam turbine. High efficiency is achieved by using supercritical boilers made of advanced alloys that produce high steam temperatures, and large, high-efficiency steam turbines. Alternative types of coal-fired power plants include fluidized bed boilers that can burn a variety of poor fuels, as well as coal gasifiers that allow coal to be turned into a combustible gas that can be burned in a gas turbine. Emissions from coal plants include sulfur dioxide, nitrogen oxide, and trace metals, all of which must be controlled. Capturing carbon dioxide from a coal plant is also under consideration. This can be achieved using post-combustion capture, a pre-combustion gasification process, or by burning coal in oxygen instead of air.

Paul Breeze

2014-01-01T23:59:59.000Z

77

1 - Social and economic value of coal  

Science Journals Connector (OSTI)

Abstract: As the world’s leading source of electric power, coal is the continuing cornerstone of economic development, social progress, and a higher quality of life. Coal is powering the twenty-first century economic miracles rapidly unfolding in China and India, as reliability, affordability, and availability make coal the fuel of choice in the developing world. Demand modeling from both the International Energy Agency and US Energy Information Administration indicates that coal will provide the most amount of incremental energy over the next two decades. Looking forward, with the expanding implementation of clean coal technologies, the door to coal’s global leadership role will remain open as the world strives to meet the ever-rising demand for energy while reducing greenhouse gas emissions.

J. Clemente; F. Clemente

2013-01-01T23:59:59.000Z

78

NETL: Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

use of our domestic energy resources and infrastructure. Gasification Systems | Advanced Combustion | Coal & Coal-Biomass to Liquids | Solid Oxide Fuel Cells | Turbines CO2...

79

Characterization of Metallurgical Chars by Small Angle Neutron Scattering  

Science Journals Connector (OSTI)

Characterization of Metallurgical Chars by Small Angle Neutron Scattering ... Small angle scattering measures the intensity I(q) of scattered neutrons as a function of scattering angle ? from the input beam, or alternatively, as a function of the scattering vector q:? q = |q| = (4?/?) sin(?/2), where ? is the wavelength of the incident wave. ...

I. Snook; I. Yarovsky; H. J. M. Hanley; M. Y. Lin; D. Mainwaring; H. Rogers; P. Zulli

2002-08-06T23:59:59.000Z

80

Development of a coal reserve GIS model and estimation of the recoverability and extraction costs.  

E-Print Network [OSTI]

??The United States has the world largest coal resource and coal will serve as the major and dependable energy source in the coming 200 years… (more)

Apala, Chandrakanth, Reddy.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "world metallurgical coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Coal mine methane global review  

SciTech Connect (OSTI)

This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

NONE

2008-07-01T23:59:59.000Z

82

The end of cheap coal  

Science Journals Connector (OSTI)

... World energy policy is gripped by a fallacy — the idea that coal is destined to stay cheap for decades to come. This assumption supports investment in ... destined to stay cheap for decades to come. This assumption supports investment in 'clean-coal' technology and trumps serious efforts to increase energy conservation and develop alternative energy sources. ...

Richard Heinberg, David Fridley

2010-11-17T23:59:59.000Z

83

PRELIMINARY SURVEY OF SYLVANIA-CORNING NUCLEAR CORPORATION METALLURGICAL LABORATORY  

Office of Legacy Management (LM)

SYLVANIA-CORNING NUCLEAR CORPORATION SYLVANIA-CORNING NUCLEAR CORPORATION METALLURGICAL LABORATORY BAYSIDE, NEW YORK Work performed by the Health and Safety Research Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 March 1980 OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY as part of the Formerly Utilized Sites-- Remedial Action Program SYLVANIA-CORNING NUCLEAR CORPORATION METALLURGICAL LABORATORY BAYSIDE, NEW YORK At the request of the Department of Energy (DOE), a preliminary survey was performed at the former Sylvania-Corning Nuclear Corporation in Bayside, New York (see Fig. l), on November 29, 1977, to assess the radiological status of those facilities uti 7 Commission (AEC) contract during the 1950s. _ _ ._. __

84

Effect of Adsorption Contact Time on Coking Coal Particle Desorption Characteristics  

Science Journals Connector (OSTI)

Effect of Adsorption Contact Time on Coking Coal Particle Desorption Characteristics ... Esp. in the last decade a large amt. of data has been published characterizing coals from various coal basins world-wide for their gas sorption capacity. ...

Wei Zhao; Yuanping Cheng; Meng Yuan; Fenghua An

2014-03-20T23:59:59.000Z

85

Section 5 - Coal  

Science Journals Connector (OSTI)

Coal has the longest history of use among the fossil fuels, with use as a fuel dating to 3000 BC in China and Wales. Marco Polo’s “Description of the World” (1298) comments on many novel customs and practices of China, including the use of “stones that burn like logs” (coal). By the thirteenth century the mining of coal was widespread in England in regions such as Durham, Nottinghamshire, Derbyshire, Staffordshire, and North and South Wales. By the early seventeenth century nearly half of England’s maritime trade consisted of coal exports. Coal was the fuel that launched the Industrial Revolution in Europe and then the United States. By the late 1890s, the U.S. assumed the lead in world coal production. Britain now ranked second, after having been the world leader since the beginnings of the formal industry in the 1500s. Germany was third, an indication of its growing industrial power relative to continental rival France. Coal’s leading role in energy use peaked in the early twentieth century, after which it was supplanted by oil and natural gas. By the late twentieth century China’s rapid economic expansion, surging demand for electricity, and prodigious coal resources combined to propel it to become the world leader in production. Continuous improvements in coal mining technology have produced lower costs, improved safety, and greater labor productivity. John Buddle introduced the first air pump to ventilate coal mines (1803), followed shortly by the miner’s safety lamps that were developed independently by Sir Humphry Davy, William Clanny, and George Stephenson (1813-1816). Coal mining underwent a rapid transition in the 1880s to mechanical coal cutting in mines in the United Kingdom, the United States, and Russia. The St. Joseph Lead Company of Missouri (1900) invented the first underground mine roof bolts that became a key safety feature in underground coal mines. The first commercially successful bucket wheel excavator was used at the Luise Mine in Braunkohlemwerke, Germany (1925), followed by the first successful continuous miners in U.S. underground coal mining (1948). The first mechanized U.S. longwall mining system appeared in 1951, and was followed by the self-advancing hydraulic longwall support system that provided greater support for the roof of the mine. LeTourneau Technologies, Inc. of Texas manufactured the largest rubber tired front-end wheel loader in the world, the L-2350, which would play an important role in loading coal in Wyoming’s large surface mines (2005). Coal mining has always been a very hazardous occupation, and has produced some of history’s worst industrial disasters. The Courrières mine disaster, Europe's worst mining accident, caused the death of 1,099 miners in Northern France (1906). An explosion in a coal mine in Liaoning province in northeastern China killed more than 1,500 Chinese miners (1942), as did other major accidents in Ky?sh?, Japan (1914), Wankie, Rhodesia (1972), Wales (1913), Bihar, India (1965), and West Virginia, U.S. (1907), to name just a few. Legislation such as the Federal Coal Mine Health and Safety Act in the U.S. (1969) improved working conditions in many nations. The Great Smog of London (1952) occurred after an exceptionally cold winter forced homes and factories to burn large quantities of coal. A temperature inversion formed, trapping pollutants above the ground. More than 4,000 people died from respiratory ailments within the following week. The use of coal has been impacted by legislation to control the environmental impacts associated with its mining and combustion. The first known environmental regulation of coal dates to 1306 when King Edward II of England prohibited burning sea coal while Parliament was in session because of its offensive smoke. Sulfur dioxide from coal combustion was tied to acid rain in the 1960s, and carbon dioxide emissions became a concern beginning in the 1980s when climate change emerged as a critical environmental issue.

Cutler J. Cleveland; Christopher Morris

2014-01-01T23:59:59.000Z

86

Coal pump  

DOE Patents [OSTI]

A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

1983-01-01T23:59:59.000Z

87

Review of underground coal gasification technologies and carbon capture  

Science Journals Connector (OSTI)

It is thought that the world coal reserve is close to 150?years, which only includes recoverable reserves using conventional techniques. Mining is the typical method of extracting coal, but it has been estimat...

Stuart J Self; Bale V Reddy; Marc A Rosen

2012-08-01T23:59:59.000Z

88

Purifying metallurgical silicon to solar grade silicon by metal-assisted chemical etching  

Science Journals Connector (OSTI)

Metal impurities have detrimental effects on the performance of Si solar cells. Through metal assisted chemical etching, we fabricate Si nanowires from metallurgical Si while purifying...

Li, Xiaopeng; Sprafke, Alexander N; Schweizer, Stefan L; Wehrspohn, Ralf

89

New developments in coal briquetting technology  

SciTech Connect (OSTI)

Briquetting of coal has been with us for well over a century. In the earliest applications of coal briquetting, less valuable fine coal was agglomerated into briquettes using a wide variety of binders, including coal tar, pitch and asphalt. Eventually, roll briquetters came into more widespread use, permitting the process to become a continuous one. Coal briquetting went out of favor during the 1950s in most of the industrialized world. The major reason for this decline in use was the discovery that the coal gas distillates used for binders were harmful to human health. Also, the abundance of cheap petroleum made coal briquettes a less attractive alternative as an industrial or domestic fuel. The re-emergence of coal as a primary industrial fuel and also its increased prominence as a fuel for thermal electric power stations led to a large increase in the annual volume of coal being mined worldwide. Coal preparation technology steadily improved over the years with the general exception of fine coal preparation. The processes available for treating this size range were considerably more expensive per unit mass of coal treated than coarse coal processes. Also, costly dewatering equipment was required after cleaning to remove surface moisture. Even with dewatering, the high surface area per unit mass of fine coal versus coarse coal resulted in high moisture contents. Therefore, little incentive existed to improve the performance of fine coal processes since this would only increase the amount of wet coal fines which would have to be dealt with. With such an ever-increasing volume of coal fines being created each year, there emerged an interest in recovering this valuable product. Several schemes were developed to recover coal fines discarded in abandoned tailings impoundments by previous operations.

Tucker, P.V. [Kilborn Inc., Ontario (Canada); Bosworth, G.B. [Kilborn Engineering Pacific Ltd., Vancouver, British Columbia (Canada); Kalb, G.W. [KKS Systems Inc., Wheeling, WV (United States)

1993-12-31T23:59:59.000Z

90

Modification of sub-bituminous coal by steam treatment: Caking and coking properties  

Science Journals Connector (OSTI)

A Chinese sub-bituminous Shenfu (SF) coal was steam treated under atmospheric pressure and the caking and coking properties of the treated coals were evaluated by caking indexes (GRI) and crucible coking characterizations. The results show that steam treatment can obviously increase the GRI of SF coal. When the steam treated coals were used in the coal blends instead of SF raw coal, the micro-strength index (MSI) and particle coke strength after reaction (PSR) of the coke increased, and particle coke reactivity index (PRI) decreased, which are beneficial for metallurgical coke to increase the gas permeability in blast furnace. The quality of the coke obtained from 8% of 200 °C steam treated SF coal in coal blends gets to that of the coke obtained from the standard coal blends, in which there was no SF coal addition in the coal blends. The removal of oxygen groups, especially hydroxyl group thus favoring the breakage of the coal macromolecules and allowing the treated coal formation of much more amount of hydrocarbons, may be responsible for the modified results. The mechanism of the steam treatment was proposed based on the elemental analysis, thermo gravimetric (TG) and FTIR spectrometer characterizations of the steam treated coal.

Hengfu Shui; Haiping Li; Hongtao Chang; Zhicai Wang; Zhi Gao; Zhiping Lei; Shibiao Ren

2011-01-01T23:59:59.000Z

91

Risk assessment of mortality for all-cause, ischemic heart disease, cardiopulmonary disease, and lung cancer due to the operation of the world's largest coal-fired power plant  

Science Journals Connector (OSTI)

Abstract Based on recent understanding of PM2.5 health-related problems from fossil-fueled power plants emission inventories collected in Taiwan, we have determined the loss of life expectancy (LLE) and the lifetime (75-year) risks for PM2.5 health-related mortalities as attributed to the operation of the world's largest coal-fired power plant; the Taichung Power Plant (TCP), with an installed nominal electrical capacity of 5780 MW in 2013. Five plausible scenarios (combinations of emission controls, fuel switch, and relocation) and two risk factors were considered. It is estimated that the lifetime (75-y) risk for all-cause mortality was 0.3%–0.6% for males and 0.2%–0.4% for females, and LLE at 84 days in 1997 for the 23 million residents of Taiwan. The risk has been reduced to one-fourth at 0.05%–0.10% for males and 0.03%–0.06% for females, and LLE at 15 days in 2007, which was mainly attributed to the installation of desulfurization and de-NOx equipment. Moreover, additional improvements can be expected if we can relocate the power plant to a downwind site on Taiwan, and convert the fuel source from coal to natural gas. The risk can be significantly reduced further to one-fiftieth at 0.001%–0.002% for males and 0.001% for females, and LLE at 0.3 days. Nonetheless, it is still an order higher than the commonly accepted elevated-cancer risk at 0.0001% (10?6), indicating that the PM2.5 health-related risk for operating such a world-class power plant is not negligible. In addition, this study finds that a better-chosen site (involving moving the plant to the leeward side of Taiwan) can reduce the risk significantly as opposed to solely transitioning the fuel source to natural gas. Note that the fuel cost of using natural gas (0.11 USD/kWh in 2013) in Taiwan is about twice the price of using coal fuel (0.05 USD/kWh in 2013).

Pei-Hsuan Kuo; Ben-Jei Tsuang; Chien-Jen Chen; Suh-Woan Hu; Chun-Ju Chiang; Jeng-Lin Tsai; Mei-Ling Tang; Guan-Jie Chen; Kai-Chen Ku

2014-01-01T23:59:59.000Z

92

Upgrading low-rank coals using the liquids from coal (LFC) process  

SciTech Connect (OSTI)

Three unmistakable trends characterize national and international coal markets today that help to explain coal`s continuing and, in some cases, increasing share of the world`s energy mix: the downward trend in coal prices is primarily influenced by an excess of increasing supply relative to increasing demand. Associated with this trend are the availability of capital to expand coal supplies when prices become firm and the role of coal exports in international trade, especially for developing nations; the global trend toward reducing the transportation cost component relative to the market, preserves or enhances the producer`s profit margins in the face of lower prices. The strong influence of transportation costs is due to the geographic relationships between coal producers and coal users. The trend toward upgrading low grade coals, including subbituminous and lignite coals, that have favorable environmental characteristics, such as low sulfur, compensates in some measure for decreasing coal prices and helps to reduce transportation costs. The upgrading of low grade coal includes a variety of precombustion clean coal technologies, such as deep coal cleaning. Also included in this grouping are the coal drying and mild pyrolysis (or mild gasification) technologies that remove most of the moisture and a substantial portion of the volatile matter, including organic sulfur, while producing two or more saleable coproducts with considerable added value. SGI International`s Liquids From Coal (LFC) process falls into this category. In the following sections, the LFC process is described and the coproducts of the mild pyrolysis are characterized. Since the process can be applied widely to low rank coals all around the world, the characteristics of coproducts from three different regions around the Pacific Rim-the Powder River Basin of Wyoming, the Beluga Field in Alaska near the Cook Inlet, and the Bukit Asam region in south Sumatra, Indonesia - are compared.

Nickell, R.E.; Hoften, S.A. van

1993-12-31T23:59:59.000Z

93

Chapter 18 - Worldwide Coal Mine Methane and Coalbed Methane Activities  

Science Journals Connector (OSTI)

Abstract The chapter provides an overview of coal bed methane production in all countries (except USA; covered in Chapter 17) around the world where there is a viable coal deposit. Coal deposits are shown in a map and coal bed methane reserves are estimated. All countries can follow the lead provided by USA in CBM production where 10% of total gas consumption (2 TCF/year) comes from coal seams. Exploitation of thick and deep coal seams using the latest technology can create a vast source of domestic energy for many countries around the world.

Charlee Boger; James S. Marshall; Raymond C. Pilcher

2014-01-01T23:59:59.000Z

94

Appalachia: the land of coal  

SciTech Connect (OSTI)

The Appalachian region of the United States is an area known worldwide for its long history as a source of coal. If any area of the Unted States is to gain from the projected growth of the coal industry, both domestic and international, it would surely be the coal mining areas of this region, including its biggest coal producing states - Pennsylvania, West Virginia, Kentucky and Ohio. An important facet of the region's coal industry is not only the presence of the giant coal companies but also the small, independent operator. These men are owner-operators and every dollar spent for their operations must bring a return. There is no room for error. WORLD COAL editors have recently traveled to areas in Appalachia and visited mines that are run by these independent operators. One such area was Harlan County, Kentucky. Virtually all mining done in Harlan is underground. Shaft mines are uncommon; most operations have access to exposed seams in the hillsides. Most of the small operations in this region use room and pillar mining and productivity is quite good. It is imperative that the transportation infrastructure be improved so that the expected increased movement of coal out of the region be handled efficiently. Potential domestic consumers of coal from Appalachia are numerous. New England, New York, the mid-Atlantic states, and the South are all looking to this nearby region to help reduce their dependence on oil. Other countries also are looking to the area.

Schneiderman, S.J. (ed.)

1980-12-01T23:59:59.000Z

95

Office of the Chief Financial Officer Annual Report 2007  

E-Print Network [OSTI]

Metallurgical Processes Clean Coal Contractual Services AndMetallurgical Processes Clean Coal Contractual Services And

Fernandez, Jeffrey

2008-01-01T23:59:59.000Z

96

Measurements and Modeling of Coal Ash Deposition in an Entrained-Flow Reactor.  

E-Print Network [OSTI]

??Coal plays a significant role in meeting the world’s need for energy and will continue to do so for many years to come. Economic, environmental,… (more)

Blanchard, Ryan P 1980-

2008-01-01T23:59:59.000Z

97

Coal flows | OpenEI  

Open Energy Info (EERE)

Coal flows Coal flows Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 142, and contains only the reference case. The dataset uses million short tons. The data is broken down into steam coal exports to Europe, Asia and America. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Coal flows countries EIA exporting importing Data application/vnd.ms-excel icon AEO2011: World Steam Coal Flows By Importing Regions and Exporting Countries- Reference Case (xls, 103.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License

98

Organic compounds in water extracts of coal: links to Balkan endemic nephropathy  

Science Journals Connector (OSTI)

Most of the world’s energy is provided by fossil fuels, and coal is the world’s most abundant fossil fuel with reserves substantially greater than those of oil and...2008). “Lignite” ranks in between peat and sub...

S. V. M. Maharaj; W. H. Orem; C. A. Tatu…

2014-02-01T23:59:59.000Z

99

Energy conservation and efficiency in Giprokoks designs at Ukrainian ferrous-metallurgical enterprises  

SciTech Connect (OSTI)

Energy conditions at Ukrainian ferrous-metallurgical enterprises are analyzed. Measures to boost energy conservation and energy efficiency are proposed: specifically, the introduction of systems for dry slaking of coke; and steam-gas turbines that employ coke-oven gas or a mixture of gases produced at metallurgical enterprises. Such turbines may be built from Ukrainian components.

M.I. Fal'kov [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

100

ROADMAP TO YOUR GRADUATION Metallurgical & Materials Engineering Curriculum BS MTE Degree Revised Jan. 2013 (2013-2014)  

E-Print Network [OSTI]

ROADMAP TO YOUR GRADUATION Metallurgical & Materials Engineering Curriculum JUNIOR YEAR SENIOR YEAR Fall Spring Fall Spring Fall Spring Fall Spring and math elec0ves is available in the metallurgical and materials engineering

Carver, Jeffrey C.

Note: This page contains sample records for the topic "world metallurgical coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Fluidized Bed Combustion of Low Grade Coals and Biomass  

Science Journals Connector (OSTI)

This technology is being used all over the world for biomass as well as for coal combustion. Nevertheless, there are no results available...

L. Armesto; A. Cabanillas; A. Bahillo

1997-01-01T23:59:59.000Z

102

14 - Economic factors affecting coal preparation: plant design worldwide and case studies illustrating economic impact  

Science Journals Connector (OSTI)

Abstract: The economic drivers behind the differences in design of plants treating coal destined for thermal and metallurgical coal markets worldwide are considered. Differences between plant designs in Australia, South Africa and the United States for both coal types will be discussed. Environmental constraints on plant design will be reviewed, in particular the means of dealing with ‘dry rejects disposal’ and water scarcity. Dealing with the ever-deteriorating quality of plant feed material, with the inevitable increase in near density material, will also be considered.

P.J. Bethell

2013-01-01T23:59:59.000Z

103

The National Energy Modeling System: An Overview 1998 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

COAL MARKET MODULE COAL MARKET MODULE blueball.gif (205 bytes) Coal Production Submodule blueball.gif (205 bytes) Coal Distribution Submodule blueball.gif (205 bytes) Coal Export Component The coal market module (CMM) represents the mining, transportation, and pricing of coal, subject to end-use demand. Coal supplies are differentiated by heat and sulfur content. The CMM also determines the minimum cost pattern of coal supply to meet exogenously defined U.S. coal export demands as a part of the world coal market. Coal supply is projected on a cost-minimizing basis, constrained by existing contracts. Twelve different coal types are differentiated with respect to thermal grade, sulfur content, and underground or surface mining. The domestic production and distribution of coal is forecast for 13 demand regions and 11 supply

104

Valorization of Automotive Shredder Residues in metallurgical furnaces Project REFORBA  

E-Print Network [OSTI]

) and the electric arc furnace (EAF) routes, P1 could be used as substitute for coal or coke, and P2 could replace with raw materials cheaper than coke. As additional potential benefits the amount of CO2 generated

Paris-Sud XI, Université de

105

Planning the future of Botswana's coal  

Science Journals Connector (OSTI)

Botswana has vast proven deposits of steam coal, which, for a long time, the government has wanted to develop but without much success. The main objectives of this study are: to forecast possible coal exports from Botswana and the land routes for these exports; to determine the competitiveness of Botswana's coal in world steam coal trade; to make recommendations on the appropriate policy for the exploitation of this coal. To accomplish these objectives, we construct a model of the global steam coal trade and apply this model to forecast the likely optimal size of mine, timing of capacity, and choice of export port for the years 2005 and 2010 from a 2000 base forecast year. The results of our regional analysis suggest that Botswana's coal exports are competitive in Asia and Western Europe. These results are shown to be least sensitive to changes in rail transportation costs and marginal supply costs but more sensitive to changes in capital costs for mine development.

Khaulani Fichani; Walter C. Labys

2006-01-01T23:59:59.000Z

106

Coal extraction  

SciTech Connect (OSTI)

Coal is extracted using a mixed solvent which includes a substantially aromatic component and a substantially naphthenic component, at a temperature of 400/sup 0/ to 500/sup 0/C. Although neither component is an especially good solvent for coal by itself, the use of mixed solvent gives greater flexibility to the process and offers efficiency gains.

Clarke, J.W.; Kimber, G.M.; Rantell, T.D.; Snape, C.E.

1985-06-04T23:59:59.000Z

107

METALLURGICAL EVALUATION OF CAST DUPLEX STAINLESS STEELS AND THEIR WELDMENTS  

Office of Scientific and Technical Information (OSTI)

FINAL REPORT FINAL REPORT VOLUME 1 METALLURGICAL EVALUATION OF CAST DUPLEX STAINLESS STEELS AND THEIR WELDMENTS SUBMITTED TO U. S. DEPARTMENT OF ENERGY Award Number - DE-FC36-00 ID13975 OCTOBER 1, 2000 - SEPTEMBER 30, 2005 SONGQING WEN CARL D. LUNDIN GREG BATTEN MATERIALS JOINING GROUP MATERIALS SCIENCE AND ENGINEERING THE UNIVERSITY OF TENNESSEE, KNOXVILLE CARL D. LUNDIN PROFESSOR OF METALLURGY MATERIALS JOINING GROUP MATERIALS SCIENCE AND ENGINEERING THE UNIVERSITY OF TENNESSEE KNOXVILLE 37996-2200 TELEPHONE (865) 974-5310 FAX (865) 974-0880 lundin@utk.edu This is Volume 1of 5 of the final report for The Department of Energy Grant # DE-FC36-00 ID13975 entitled "Behavior of Duplex Stainless Steel Castings." ii FOREWARD

108

Maintaining and Improving Marketability of Coal Fly Ash  

E-Print Network [OSTI]

1 Maintaining and Improving Marketability of Coal Fly Ash John N. Ward Ben Franklin Headwaters;2 A Headline You May Have Seen What is the future of coal fly ash utilization in a mercury controls world? What is produced when coal is consumed by power plants Fly ash can be used beneficially in numerous applications

109

The National Energy Modeling System: An Overview 2000 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

coal market module (CMM) represents the mining, transportation, and pricing of coal, subject to end-use demand. Coal supplies are differentiated by heat and sulfur content. CMM also determines the minimum cost pattern of coal supply to meet exogenously defined U.S. coal export demands as a part of the world coal market. Coal supply is projected on a cost-minimizing basis, constrained by existing contracts. Twelve different coal types are differentiated with respect to thermal grade, sulfur content, and underground or surface mining. The domestic production and distribution of coal is forecast for 13 demand regions and 11 supply regions (Figures 19 and 20). coal market module (CMM) represents the mining, transportation, and pricing of coal, subject to end-use demand. Coal supplies are differentiated by heat and sulfur content. CMM also determines the minimum cost pattern of coal supply to meet exogenously defined U.S. coal export demands as a part of the world coal market. Coal supply is projected on a cost-minimizing basis, constrained by existing contracts. Twelve different coal types are differentiated with respect to thermal grade, sulfur content, and underground or surface mining. The domestic production and distribution of coal is forecast for 13 demand regions and 11 supply regions (Figures 19 and 20). Figure 19. Coal Market Module Demand Regions Figure 20. Coal Market Module Supply Regions

110

Clean Coal Diesel Demonstration Project  

SciTech Connect (OSTI)

A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

Robert Wilson

2006-10-31T23:59:59.000Z

111

Coal consumption | OpenEI  

Open Energy Info (EERE)

consumption consumption Dataset Summary Description Total annual coal consumption by country, 1980 to 2009 (available as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords coal Coal consumption EIA world Data text/csv icon total_coal_consumption_1980_2009quadrillion_btu.csv (csv, 38.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 1980 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments

112

Sedimentology, Stratigraphy and Petrography of the Permian-Triassic Coal-bearing New Lenton Deposit, Bowen Basin, Australia .  

E-Print Network [OSTI]

??The Bowen Basin is one of the most intensely explored sedimentary basins in Australia and hosts one of the world’s largest coking coal deposits. This… (more)

Coffin, Lindsay M.

2013-01-01T23:59:59.000Z

113

SustainableCoal_FC.indd  

Broader source: Energy.gov (indexed) [DOE]

is a vital energy resource, is a vital energy resource, not only for the United States, but also for many developed and developing economies around the world. Finding ways to use coal cleanly and more efficiently at lower costs is a major research and development (R&D) challenge, and an ongoing focus of activities by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE). According to a Congressional Research Service analysis, coal represents 93 percent of total U.S. - and over half of world - fossil fuel reserves (expressed in barrels of oil equivalent). Based on recent rates of domestic consumption (averaging 1 billion tons annually, 2000-2010), estimated U.S. recoverable coal reserves of nearly 261 billion short tons are sufficient to last more than 2½ centuries.

114

Imminence of peak in US coal production and overestimation of reserves  

E-Print Network [OSTI]

. The estimated energy ultimate recoverable reserves (URR) from the logistic model is 2750 quadrillion BTU (2900, coal reserves, coal production forecast, peak coal, USA energy, non- linear fitting #12;3 1 reported coal reserves of any nation, containing approximately 28% of the world

Khare, Sanjay V.

115

Promotion of Mn(II) Oxidation and Remediation of Coal Mine Drainage in Passive Treatment Systems by Diverse Fungal and Bacterial Communities  

Science Journals Connector (OSTI)

...Oxidation and Remediation of Coal Mine Drainage in Passive Treatment...concentrations of dissolved Mn(II) from coal mine drainage (CMD). Studies...and throughout the world. In Appalachia, centuries of coal mining has left thousands of abandoned...

Cara M. Santelli; Donald H. Pfister; Dana Lazarus; Lu Sun; William D. Burgos; Colleen M. Hansel

2010-05-21T23:59:59.000Z

116

Improving Process Performances in Coal Gasification for Power and Synfuel Production  

Science Journals Connector (OSTI)

The basic idea is to thermally couple a gasifier, fed with coal and steam, and a combustor where coal is burnt with air, thus overcoming the need of expensive pure oxygen as a feedstock. ... Considering the world’s insatiable appetite for energy and oil, the only reasonable large-scale conventional source left in the medium term will have to be coal. ...

M. Sudiro; A. Bertucco; F. Ruggeri; M. Fontana

2008-09-17T23:59:59.000Z

117

Mechanical and metallurgical properties of MMC friction welds  

SciTech Connect (OSTI)

The mechanical and metallurgical properties of similar and dissimilar welds involving aluminum-based metal matrix composite (MMC) base material were investigated using factorial experimentation. The test materials comprised aluminum-based alloy 6061/Al{sub 2}O{sub 3} (W6A.10A-T6), aluminum Alloy 6061-T6 and AISI 304 stainless steel. Notch tensile strength increased when high friction pressures were employed during MMC/MMC, MMC/Alloy 6061, MMC/AISI 304 stainless steel and Alloy 6061/Alloy 6061 friction welding. In MMC/Alloy 6061 welds, notch tensile strength also increased when high forging pressures were employed. Applied oxide films on both the MMC and AISI stainless steel substrates had a markedly detrimental effect on dissimilar weld mechanical properties. The optimum notch tensile strength properties were produced when high friction pressure values were applied during dissimilar MMC/AISI 304 stainless steel welding. High friction pressure had two beneficial effects, i.e., it decreased the thickness of the FeAl{sub 3} intermetallic film and it promoted disruption and dispersal of oxide films at the joint interface. In direct contrast, the presence of thick anodized oxide films on the MMC substrate surface prior to friction welding had no observable influence on MMC/MMC weld mechanical properties.

Li, Z.; Maldonado, C.; North, T.H. [Univ. of Toronto, Ontario (Canada). Dept. of Metallurgy and Materials Science; Altshuller, B. [Alcan R and D Labs., Kingston, Ontario (Canada)

1997-09-01T23:59:59.000Z

118

Coal and Coal-Biomass to Liquids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Coal-Biomass to Liquids News Gasifipedia Coal-Biomass Feed Advanced Fuels Synthesis Systems Analyses International Activity Project Information Project Portfolio Publications...

119

Jute in the world, worlds of jute  

Science Journals Connector (OSTI)

This paper is in two parts. The first sketches out the reach of jute round the world from ancient times to the present, and, through examples ranging from Brazil to Bangladesh and from Cote d'Ivoire to the USA, makes the case that jute has played such a significant role that it deserves a place in world history alongside other great commodities like spices, sugar, tea, cotton, coal, and oil, that have shaped global history. The second part of the paper opens up the worlds of jute - from peasants who grew the jute, to male and female workers in Calcutta and Dundee, to the factory owners and managers - and makes comparisons between jute settings in different countries. A key issue explored is the interplay between the economic and ideological forces inherent in the manufacturing and marketing of jute products and the local cultures and traditions of workers and peasants within which the drama of jute was played out.

Gordon T. Stewart

2014-01-01T23:59:59.000Z

120

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

Pollutants Associated With Coal Combustion. • E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal • . . . . Coal Desulfurization

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "world metallurgical coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Electricity from coal and utilization of coal combustion by-products  

SciTech Connect (OSTI)

Most electricity in the world is conventionally generated using coal, oil, natural gas, nuclear energy, or hydropower. Due to environmental concerns, there is a growing interest in alternative energy sources for heat and electricity production. The major by-products obtained from coal combustion are fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) materials. The solid wastes produced in coal-fired power plants create problems for both power-generating industries and environmentalists. The coal fly ash and bottom ash samples may be used as cementitious materials.

Demirbas, A. [Sila Science, Trabzon (Turkey)

2008-07-01T23:59:59.000Z

122

Zero emission coal  

SciTech Connect (OSTI)

We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

Ziock, H.; Lackner, K.

2000-08-01T23:59:59.000Z

123

Coal preparation: The essential clean coal technology  

SciTech Connect (OSTI)

This chapter is a brief introduction to a broad topic which has many highly specialized areas. The aim is to summarize the essential elements of coal preparation and illustrate its important role in facilitating the clean use of coal. Conventional coal preparation is the essential first step in ensuring the economic and environmentally acceptable use of coal. The aim of coal preparation is to produce saleable products of consistent, specified quality which satisfy customer requirements while optimizing the utilization of the coal resource. Coal preparation covers all aspects of preparing coal for the market. It includes size reduction, blending and homogenization and, most importantly, the process of physical beneficiation or washing, which involves separation of undesirable mineral matter from the coal substance itself. Coal preparation can be performed at different levels of sophistication and cost. The degree of coal preparation required is decided by considering the quality of the raw coal, transport costs and, in particular, the coal quality specified by the consumer. However, the cost of coal beneficiation rises rapidly with the complexity of the process and some coal is lost with the waste matter because of process inefficiencies, therefore each situation requires individual study to determine the optimum coal preparation strategy. The necessary expertise is available within APEC countries such as Australia. Coals destined for iron making are almost always highly beneficiated. Physical beneficiation is mostly confined to the higher rank, hard coals, but all other aspects of coal preparation can be applied to subbituminous and lignitic coals to improve their utilization. Also, there are some interesting developments aimed specifically at reducing the water content of lower rank coals.

Cain, D.

1993-12-31T23:59:59.000Z

124

Coal Ash Corrosion Resistant Materials Testing Program  

SciTech Connect (OSTI)

The "Coal Ash Corrosion Resistant Materials Testing Program" is being conducted by The Babcock & Wilcox Company (B&W), the U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) at Reliant Energy?s Niles plant in Niles, Ohio to provide full-scale, in-situ testing of recently developed boiler superheater materials. Fireside corrosion is a key issue for improving efficiency of new coal fired power plants and improving service life in existing plants. In November 1998, B&W began development of a system to permit testing of advanced tube materials at metal temperatures typical of advanced supercritical steam temperatures (1100°F and higher) in a boiler exhibiting coal ash corrosive conditions. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. In the spring of 1999 a system consisting of three identical sections, each containing multiple segments of twelve different materials, was installed. The sections are cooled by reheat steam, and are located just above the furnace entrance in Niles? Unit #1, a 110 MWe unit firing high sulfur Ohio coal. In November 2001 the first section was removed for thorough metallurgical evaluation after 33 months of operation. The second and third sections remain in service and the second is expected to be removed in the fall of 2003; the last is tentatively planned for the fall of 2004. This paper describes the program; its importance; the design, fabrication, installation and operation of the test system; materials utilized; experience to date; and results of the evaluation of the first section.

McDonald, D.K.

2003-04-22T23:59:59.000Z

125

Gasification of New Zealand Coals: A Comparative Simulation Study  

Science Journals Connector (OSTI)

The aim of this study was to conduct a preliminary feasibility assessment of gasification of New Zealand (NZ) lignite and sub-bituminous coals, using a commercial simulation tool. ... Coal is a nonrenewable resource; however, the world’s coal reserves amount to twice the combined oil and gas reserves. ... The reasons for the entrained flow gasifier selection include its high suitability to low rank coals (lignites) and the use of entrained flow gasifiers for an IGCC as the industrially preferred choice dictated through experience. ...

Smitha V. Nathen; Robert D. Kirkpatrick; Brent R. Young

2008-06-10T23:59:59.000Z

126

Coal combustion under conditions of blast furnace injection; [Quarterly] technical report, September 1--November 30, 1993  

SciTech Connect (OSTI)

A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. steel company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals f or such use.

Crelling, J.C.

1993-12-31T23:59:59.000Z

127

Coal Ash and Clean Coal  

Science Journals Connector (OSTI)

... IT is the normal view that the incombustible part of coal is not only a useless but even objectionable diluent. At times in the past, ... , familiar with the theory of contact catalysis of gas reactions, have speculated that the ash constituents might well play an active role in the processes of carbonisation and combustion. ...

H. J. HODSMAN

1926-09-04T23:59:59.000Z

128

Coal Industry Annual 1995  

SciTech Connect (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

NONE

1996-10-01T23:59:59.000Z

129

The decline of the world’s energy intensity  

Science Journals Connector (OSTI)

Energy intensity of the total primary energy supply (TPES), total final energy consumption (TFC) and LOSSES in the conversion from TPES to TFC were analyzed for the World, OECD and Rest of the World (ROW) countries. LOSSES increased significantly for all groups of countries due to the increase of electricity production from coal in the period studied (1971–2008). Electricity share final consumption almost doubled, increasing from 8.8% to 17.2% in the period studied. However the energy intensity of LOSSES remained practically constant, which reflects the fact that the efficiency of electricity generation from coal (the main source of electricity) remained practically constant in that period. Despite the attractiveness of end-use devices running on electricity such as computers, which is typical of modern societies, the CO2 emissions are bound to increase unless coal is replaced by less carbon emitting sources such as natural gas, renewables and nuclear energy.

José Goldemberg; Luiz Tadêo Siqueira Prado

2011-01-01T23:59:59.000Z

130

Microbial solubilization of coal  

DOE Patents [OSTI]

The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

Strandberg, G.W.; Lewis, S.N.

1988-01-21T23:59:59.000Z

131

DOE - Office of Legacy Management -- Oregon Metallurgical Corp - OR 0-02  

Office of Legacy Management (LM)

Oregon Metallurgical Corp - OR 0-02 Oregon Metallurgical Corp - OR 0-02 FUSRAP Considered Sites Site: OREGON METALLURGICAL CORP. ( OR.0-02 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Albany , Oregon OR.0-02-1 Evaluation Year: 1994 OR.0-02-2 OR.0-02-3 Site Operations: Research and development of uranium alloy processes in the 1940s and 1950s. OR.0-02-1 Site Disposition: Eliminated - AEC licensed - Potential for contamination remote based on limited quantity of materials handled OR.0-02-1 OR.0-02-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Enriched Uranium, Zirconium OR.0-02-1 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see

132

World Energy Outlook 2008  

U.S. Energy Information Administration (EIA) Indexed Site

OECD/IEA - OECD/IEA - 2008 © OECD/IEA - 2008 © OECD/IEA - 2008 To Cover... To Cover To Cover ... ... Transport Energy and CO 2 Where are we going? What are the dangers? How do we change direction? Primarily reporting on: IEA WEO 2008 IEA ETP 2008 On-going work with IEA's Mobility Model One or two detours to talk about modelling © OECD/IEA - 2008 0 2 000 4 000 6 000 8 000 10 000 12 000 14 000 16 000 18 000 1980 1990 2000 2010 2020 2030 Mtoe Other renewables Hydro Nuclear Biomass Gas Coal Oil World energy demand expands by 45% between now and 2030 - an average rate of increase of 1.6% per year - with coal accounting for more than a third of the overall rise Where are we headed? World Energy Outlook 2008 Where are we headed? World Energy Outlook Where are we headed? World Energy Outlook

133

Clean coal  

SciTech Connect (OSTI)

The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

Liang-Shih Fan; Fanxing Li [Ohio State University, OH (United States). Dept. of Chemical and Biomolecular Engineering

2006-07-15T23:59:59.000Z

134

Coal liquefaction and hydrogenation  

DOE Patents [OSTI]

Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

Schindler, Harvey D. (Fair Lawn, NJ); Chen, James M. (Edison, NJ)

1985-01-01T23:59:59.000Z

135

Coal industry annual 1993  

SciTech Connect (OSTI)

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

136

Measurements and Modeling of Coal Ash Deposition in an Entrained-Flow Reactor.  

E-Print Network [OSTI]

??Coal plays a significant role in meeting the world's need for energy and will continue to do so for many years to come. Economic, environmental,… (more)

Blanchard, Ryan P.

2008-01-01T23:59:59.000Z

137

High ash non-coking coal preparation by tribo-electrostatic dry process.  

E-Print Network [OSTI]

??Coal is the single largest fossil fuel used world-wide and accounts for more than 60% of the total commercial energy consumed. Between 60 to 80%… (more)

Ranjan Dwari

2008-01-01T23:59:59.000Z

138

Appalachian coal awareness conference: promoting Eastern coal  

SciTech Connect (OSTI)

Promoting the development and use of coal, especially coal from the Appalachian region, was the focus of introductory and keynote speeches and a discussion by representatives of the Virginia Coal Council, mining engineers, industry, and the Edison Electric Institute. Governor Dalton's keynote address noted that both producers and consumers attending the conference should work together to promote coal as a solution to the US energy future, and reported the impact that a commitment to coal has had on Virginia's economic growth. Participants in the coal consumers panel discussion raised various economic and regulatory issues.

Not Available

1984-01-01T23:59:59.000Z

139

Energy efficiency of alternative coke-free metallurgical technologies  

SciTech Connect (OSTI)

Energy analysis is undertaken for the blast-furnace process, for liquid-phase processes (Corex, Hismelt, Romelt), for solid-phase pellet reduction (Midrex, HYL III, LP-V in a shaft furnace), for steel production in systems consisting of a blast furnace and a converter, a Midrex unit and an arc furnace, or a Romelt unit and an arc furnace, and for scrap processing in an arc furnace or in an LP-V shaft furnace. Three blast-furnace processes with sinter and coke are adopted as the basis of comparison, as in: the standard blast-furnace process used in Russia; the improved blast-furnace process with coal-dust injection; and the production of vanadium hot metal from vanadium-bearing titanomagnetite ore (with a subsequent duplex process, ferrovanadium production, and its use in the arc furnace).

V.G. Lisienko; A.V. Lapteva; A.E. Paren'kov [Ural State Technical University - Ural Polytechnic Institute, Yekaterinburg (Russian Federation)

2009-02-15T23:59:59.000Z

140

Create a Consortium and Develop Premium Carbon Products from Coal  

SciTech Connect (OSTI)

The objective of these projects was to investigate alternative technologies for non-fuel uses of coal. Special emphasis was placed on developing premium carbon products from coal-derived feedstocks. A total of 14 projects, which are the 2003 Research Projects, are reported herein. These projects were categorized into three overall objectives. They are: (1) To explore new applications for the use of anthracite in order to improve its marketability; (2) To effectively minimize environmental damage caused by mercury emissions, CO{sub 2} emissions, and coal impounds; and (3) To continue to increase our understanding of coal properties and establish coal usage in non-fuel industries. Research was completed in laboratories throughout the United States. Most research was performed on a bench-scale level with the intent of scaling up if preliminary tests proved successful. These projects resulted in many potential applications for coal-derived feedstocks. These include: (1) Use of anthracite as a sorbent to capture CO{sub 2} emissions; (2) Use of anthracite-based carbon as a catalyst; (3) Use of processed anthracite in carbon electrodes and carbon black; (4) Use of raw coal refuse for producing activated carbon; (5) Reusable PACs to recycle captured mercury; (6) Use of combustion and gasification chars to capture mercury from coal-fired power plants; (7) Development of a synthetic coal tar enamel; (8) Use of alternative binder pitches in aluminum anodes; (9) Use of Solvent Extracted Carbon Ore (SECO) to fuel a carbon fuel cell; (10) Production of a low cost coal-derived turbostratic carbon powder for structural applications; (11) Production of high-value carbon fibers and foams via the co-processing of a low-cost coal extract pitch with well-dispersed carbon nanotubes; (12) Use of carbon from fly ash as metallurgical carbon; (13) Production of bulk carbon fiber for concrete reinforcement; and (14) Characterizing coal solvent extraction processes. Although some of the projects funded did not meet their original goals, the overall objectives of the CPCPC were completed as many new applications for coal-derived feedstocks have been researched. Future research in many of these areas is necessary before implementation into industry.

Frank Rusinko; John Andresen; Jennifer E. Hill; Harold H. Schobert; Bruce G. Miller

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "world metallurgical coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. In addition, the report

142

Clean Coal Power Initiative  

Broader source: Energy.gov [DOE]

"Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other pollutants from coal-burning power plants.

143

Coal Mining (Iowa)  

Broader source: Energy.gov [DOE]

These sections describe procedures for coal exploration and extraction, as well as permitting requirements relating to surface and underground coal mining. These sections also address land...

144

American Coal Council 2004 Spring Coal Forum  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

American Coal Council American Coal Council 2004 Spring Coal Forum Dallas, Texas May 17-19, 2004 Thomas J. Feeley, III Technology Manager National Energy Technology Laboratory ACC Spring Coal Forum, 2004 Presentation Outline * Background * Power plant-water issues * DOE/NETL R&D program * Conclusion/future plans ACC Spring Coal Forum, 2004 Global Water Availability Ocean 97% Fresh Water 2.5% 0 20 40 60 80 100 Ice Groundwater Lakes and Rivers ACC Spring Coal Forum, 2004 Three Things Power Plants Require 1) Access to transmission lines 2) Available fuel, e.g., coal or natural gas 3) Water ACC Spring Coal Forum, 2004 Freshwater Withdrawals and Consumption Mgal / Day Irrigation 81,300 Irrigation 81,300 Thermoelectric 3,310 Consumption Sources: "Estimated Use of Water in the United States in 1995," USGS Circular 1200, 1998

145

Coal Characterization in Relation to Coal Combustion  

Science Journals Connector (OSTI)

Most coals are used worldwide for combustion today. Generally all kinds of coals are applicable for combustion. The major methods of burning are fixed bed firing, fluidized bed firing and suspension firing. Th...

Harald Jüntgen

1987-01-01T23:59:59.000Z

146

NETL: Clean Coal Demonstrations - Coal 101  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Coal Technology Program Clean Coal Technology Program Clean Coal 101 Lesson 2: The Clean Coal Technology Program The Clean Coal Technology Program began in 1985 when the United States and Canada decided that something had to be done about the "acid rain" that was believed to be damaging rivers, lakes, forests, and buildings in both countries. Since many of the pollutants that formed "acid rain" were coming from big coal-burning power plants in the United States, the U.S. Government took the lead in finding a solution. One of the steps taken by the U.S. Department of Energy was to create a partnership program between the Government, several States, and private companies to test new methods developed by scientists to make coal burning much cleaner. This became the "Clean Coal Technology Program."

147

Coal liquefaction  

DOE Patents [OSTI]

In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

Schindler, Harvey D. (Fairlawn, NJ)

1985-01-01T23:59:59.000Z

148

ROADMAP TO YOUR GRADUATION Metallurgical & Materials Engineering Curriculum BS MTE Degree Revised April 2014  

E-Print Network [OSTI]

ROADMAP TO YOUR GRADUATION Metallurgical & Materials Engineering Curriculum � BS MTE Degree / 29 Fall Spring Fall Spring Fall Spring Fall Spring 12 hrs 17 hrs 17 hrs 17 hrs 16 hrs 15 hrs 14 hrs engineering department office. 2. MTE students may take any MTE 400-level or higher courses

Carver, Jeffrey C.

149

Controlling coal fires using the three-phase foam and water mist techniques in the Anjialing Open Pit Mine, China  

Science Journals Connector (OSTI)

Coal fires are a serious environment, health, and safety hazard throughout the world. They damage the environment, threaten the health of people living nearby, burn away non-renewable coal, and result in ... to c...

Zhenlu Shao; Deming Wang; Yanming Wang; Xiaoxing Zhong; Xiaofei Tang…

2014-09-01T23:59:59.000Z

150

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2003-01-20T23:59:59.000Z

151

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2002-10-15T23:59:59.000Z

152

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), and up to 5500 psi with emphasis upon 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally-acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national perspective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan

2002-04-15T23:59:59.000Z

153

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2002-07-15T23:59:59.000Z

154

PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS  

SciTech Connect (OSTI)

This Department of Energy National Energy Technology Laboratory sponsored project developed carbon products, using mildly hydrogenated solvents to extract the organic portion of coal to create synthetic pitches, cokes, carbon foam and carbon fibers. The focus of this effort was on development of lower cost solvents, milder hydrogenation conditions and improved yield in order to enable practical production of these products. This technology is needed because of the long-term decline in production of domestic feedstocks such as petroleum pitch and coal tar pitch. Currently, carbon products represents a market of roughly 5 million tons domestically, and 19 million tons worldwide. Carbon products are mainly derived from feedstocks such as petroleum pitch and coal tar pitch. The domestic supply of petroleum pitch is declining because of the rising price of liquid fuels, which has caused US refineries to maximize liquid fuel production. As a consequence, the long term trend has a decline in production of petroleum pitch over the past 20 years. The production of coal tar pitch, as in the case of petroleum pitch, has likewise declined significantly over the past two decades. Coal tar pitch is a byproduct of metallurgical grade coke (metcoke) production. In this industry, modern metcoke facilities are recycling coal tar as fuel in order to enhance energy efficiency and minimize environmental emissions. Metcoke production itself is dependent upon the production requirements for domestic steel. Hence, several metcoke ovens have been decommissioned over the past two decades and have not been replaced. As a consequence sources of coal tar are being taken off line and are not being replaced. The long-term trend is a reduction in coal tar pitch production. Thus import of feedstocks, mainly from Eastern Europe and China, is on the rise despite the relatively large transportation cost. To reverse this trend, a new process for producing carbon products is needed. The process must be economically competitive with current processes, and yet be environmentally friendly as well. The solvent extraction process developed uses mild hydrogenation of low cost oils to create powerful solvents that can dissolve the organic portion of coal. The insoluble portion, consisting mainly of mineral matter and fixed carbon, is removed via centrifugation or filtration, leaving a liquid solution of coal chemicals and solvent. This solution can be further refined via distillation to meet specifications for products such as synthetic pitches, cokes, carbon foam and fibers. The most economical process recycles 85% of the solvent, which itself is obtained as a low-cost byproduct from industrial processes such as coal tar or petroleum refining. Alternatively, processes have been developed that can recycle 100% of the solvent, avoiding any need for products derived from petroleum or coal tar.

Dady Dadyburjor; Philip R. Biedler; Chong Chen; L. Mitchell Clendenin; Manoj Katakdaunde; Elliot B. Kennel; Nathan D. King; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2004-08-31T23:59:59.000Z

155

Pulverized Coal-Fired Boilers and Pollution Control  

Science Journals Connector (OSTI)

Fossil fuels, such as coal, natural gas, and fuel oil, are used to generate electric power for industrial, commercial, and residential use. ... production and approximately 41% of the world power generation was s...

David K. Moyeda

2013-01-01T23:59:59.000Z

156

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

transportation component of coal price should also increase;investment. Coal costs and prices are functions of a numberto forecast coal demand, supply, and prices from now to

McCollum, David L

2007-01-01T23:59:59.000Z

157

Introduction of clean coal technology in Japan  

SciTech Connect (OSTI)

Coal is an abundant resource, found throughout the world, and inexpensive and constant in price. For this reason, coal is expected to play a role as one of the energy supply sources in the world. The most critical issues to promote utilization of coal are to decrease the environmental load. In this report, the history, outline and recent developments of the clean coal technology in Japan, mainly the thermal power generation technology are discussed. As recent topics, here outlined first is the technology against global warming such as the improvement of steam condition for steam turbines, improvement of power generation efficiency by introducing combined generation, carbon neutral combined combustion of biomass, and carbon dioxide capture and storage (CCS) technology. Also introduced are outlines of Japanese superiority in application technology against NOx and SO{sub 2} which create acid rain, development status of the technical improvement in the handling method for coal which is a rather difficult solid-state resource, and utilization of coal ash.

Takashi Kiga [Japan Coal Energy Center (JCOAL), Tokyo (Japan). R and D Department

2008-01-15T23:59:59.000Z

158

Coal Market Module This  

Gasoline and Diesel Fuel Update (EIA)

51 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2012, DOE/EIA-M060(2012) (Washington, DC, 2012). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

159

Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 153 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2011, DOE/EIA-M060(2011) (Washington, DC, 2011). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

160

EIA -Quarterly Coal Distribution  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Distribution Coal Distribution Home > Coal> Quarterly Coal Distribution Back Issues Quarterly Coal Distribution Archives Release Date: June 27, 2013 Next Release Date: September 2013 The Quarterly Coal Distribution Report (QCDR) provides detailed quarterly data on U.S. domestic coal distribution by coal origin, coal destination, mode of transportation and consuming sector. All data are preliminary and superseded by the final Coal Distribution - Annual Report. Year/Quarters By origin State By destination State Report Data File Report Data File 2009 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf October-December pdf xls pdf 2010 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf xls

Note: This page contains sample records for the topic "world metallurgical coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Relationship between the technical parameters of cokes produced from blends of three Polish coals of different coking ability  

Science Journals Connector (OSTI)

The demand for metallurgical coke for blast furnaces is forcing the coking industry to look for new sources of coking coals. The physical and chemical parameters of coals used in coking blends determine the quality (reactivity and strength) of the finished cokes. This study examines the technical properties of the cokes produced from various blends of three Polish coals with different coking. These coals were collected from three mines: Zofiówka, Szczyg?owice, and Krupi?ski (Upper Silesian Coal Basin, Poland). The coal charges were coked in the laboratory scale, at temperatures of up to 1000 °C, in an inert atmosphere. The coke reactivity (index CRI) and the coke strength after reaction (CSR) were measured and correlated to the properties of parent coals using statistical analysis. The result of this study shows strong relationships between the concentration of the best coking coal (Zofiówka) in the blend and the CRI and CSR of the resulting coke. The CRI and CSR parameters for cokes obtained from single coals and from their blends show the additive character. This study also confirms the linear relationship between CRI and CSR parameters of the cokes.

A. Koszorek; M. Krzesi?ska; S. Pusz; B. Pilawa; B. Kwieci?ska

2009-01-01T23:59:59.000Z

162

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2003-10-20T23:59:59.000Z

163

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2003-08-04T23:59:59.000Z

164

U.S. zero emission coal alliance techology  

SciTech Connect (OSTI)

For coal to maintain its major role in supplying the world's energy, eventually all emissions to the atmosphere must be eliminated. Not only must conventional pollutants, like sulfur compounds and dust particles be kept out of the air, but also the far larger quantities of carbon dioxide that result from the combustion of carbon. We present a new technology for coal-based power that generates hydrogen from carbon and water, avoids emissions to the atmosphere, and disposes of the carbon dioxide as inert, solid mineral carbonates. Based on the available resources, coal power is sustainable for centuries. Our zero emission technology makes coal energy as clean as renewable energy.

Lackner, K. S. (Klaus S.); Ziock, H. J. (Hans-Joachim)

2001-01-01T23:59:59.000Z

165

Investigations into coal coprocessing and coal liquefaction  

SciTech Connect (OSTI)

The conversion of coal to liquid suitable as feedstock to a petroleum refinery is dependent upon several process variables. These variables include temperature, pressure, coal rank, catalyst type, nature of the feed to the reactor, type of process, etc. Western Research Institute (WRI) has initiated a research program in the area of coal liquefaction to address the impact of some of these variables upon the yield and quality of the coal-derived liquid. The principal goal of this research is to improve the efficiency of the coal liquefaction process. Two different approaches are currently being investigated. These include the coprocessing of a heavy liquid, such as crude oil, and coal using a dispersed catalyst and the direct liquefaction of coal using a supported catalyst. Another important consideration in coal liquefaction is the utilization of hydrogen, including both externally- and internally-supplied hydrogen. Because the incorporation of externally-supplied hydrogen during conversion of this very aromatic fossil fuel to, for example, transportation fuels is very expensive, improved utilization of internally-supplied hydrogen can lead to reducing processing costs. The objectives of this investigation, which is Task 3.3.4, Coal Coprocessing, of the 1991--1992 Annual Research Plan, are: (1) to evaluate coal/oil pretreatment conditions that are expected to improve the liquid yield through more efficient dispersion of an oil-soluble, iron-based catalyst, (2) to characterize the coke deposits on novel, supported catalysts after coal liquefaction experiments and to correlate the carbon skeletal structure parameters of the coke deposit with catalyst performance as measured by coal liquefaction product yield, and (3) to determine the modes of hydrogen utilization during coal liquefaction and coprocessing. Experimental results are discussed in this report.

Guffey, F.D.; Netzel, D.A.; Miknis, F.P.; Thomas, K.P. [Western Research Inst., Laramie, WY (United States); Zhang, Tiejun; Haynes, H.W. Jr. [Wyoming Univ., Laramie, WY (United States). Dept. of Chemical Engineering

1994-06-01T23:59:59.000Z

166

Gasification world database 2007. Current industry status  

SciTech Connect (OSTI)

Information on trends and drivers affecting the growth of the gasification industry is provided based on information in the USDOE NETL world gasification database (available on the www.netl.doe.gov website). Sectors cover syngas production in 2007, growth planned through 2010, recent industry changes, and beyond 2010 - strong growth anticipated in the United States. A list of gasification-based power plant projects, coal-to-liquid projects and coal-to-SNG projects under consideration in the USA is given.

NONE

2007-10-15T23:59:59.000Z

167

Experimental Study on Microwave Pyrolysis of an Indonesian Low-Rank Coal  

Science Journals Connector (OSTI)

Microwave pyrolysis of an Indonesian lignite is investigated in this study. ... About half of the world’s coal reserves are low-rank coals. ... Considerable amts. of 3,4-dihydro-1(2H)-naphthalenone (alpha-tetralone) were found in the oil fractions of lignites treated by microwave energy. ...

Nan Wang; Jianglong Yu; Arash Tahmasebi; Yanna Han; John Lucas; Terry Wall; Yu Jiang

2013-10-14T23:59:59.000Z

168

Lead contents of coal, coal ash and fly ash  

Science Journals Connector (OSTI)

Flameless atomic absorption spectrometry is applied for the determination of Pb in coal, coal ash and fly ash. Lead concentrations in coal and coal ash ranging from respectively 7 to 110 µg...?1 and 120 to 450 µg...

C. Block; R. Dams

1975-12-01T23:59:59.000Z

169

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

Coal Cleaning Costs Process Clean Coal Produced, * T/D (DryMM$ Net Operating Cost, $/T (Clean Coal Basis) Net OperatingCost, $/T (Clean Coal Bases) Case NA Hazen KVB Battelle

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

170

EIA - International Energy Outlook 2007-Coal Graphic Data  

Gasoline and Diesel Fuel Update (EIA)

7 7 Figure 54. World Coal Consumption by Region, 1980-2030 Figure 54 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 55. Coal share of World Energy Consumption by Sector, 2004, 2015, and 2030 Figure 55 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 56. OECD Coal Consumption by Region, 1980, 2004, 2015, and 2030 Figure 56 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 57. Non-OECD Coal Consumption by Region, 1980, 2004, 2015, and 2030 Figure 57 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 58. Coal Consumption in China by Sector, 2004, 2015, and 2030 Figure 58 Data. Need help, contact the National Energy Information Center at 202-586-8800.

171

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Distribution of U.S. Coal by Origin State, Domestic Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys

172

Hydrogen from Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U.S. Department of Energy DOE Workshop on Hydrogen Separations and Purification Technologies September 8, 2004 Presentation Outline ƒ Hydrogen Initiatives ƒ Hydrogen from Coal Central Production Goal ƒ Why Coal ƒ Why Hydrogen Separation Membranes ƒ Coal-based Synthesis Gas Characteristics ƒ Technical Barriers ƒ Targets ƒ Future Plans 2 3 Hydrogen from Coal Program Hydrogen from Coal Program FutureGen FutureGen Hydrogen Fuel Initiative Hydrogen Fuel Initiative Gasification Fuel Cells Turbines Gasification Fuel Cells Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Supports the Hydrogen Fuel Initiative and FutureGen * The Hydrogen Fuel Initiative is a $1.2 billion RD&D program to develop hydrogen

173

Coal Severance Tax (North Dakota)  

Broader source: Energy.gov [DOE]

The Coal Severance Tax is imposed on all coal severed for sale or industrial purposes, except coal used for heating buildings in the state, coal used by the state or any political subdivision of...

174

Upgraded Coal Interest Group  

SciTech Connect (OSTI)

The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

Evan Hughes

2009-01-08T23:59:59.000Z

175

Market integration in the international coal industry: A cointegration approach  

SciTech Connect (OSTI)

The purpose of this paper is to test the hypothesis of the existence of a single economic market for the international coal industry, separated for coking and steam coal, and to investigate market integration over time. This has been conducted by applying cointegration and error-correction models on quarterly price series data in Europe and Japan over the time period 1980-2000. Both the coking and the steam coal markets show evidence of global market integration, as demonstrated by the stable long-run cointegrating relationship between the respective price series in different world regions. This supports the hypothesis of a globally integrated market. However, when analyzing market integration over time it is not possible to confirm cointegration in the 1990s for steam coal. Thus, compared to the coking coal market, the steam coal market looks somewhat less global in scope.

Warell, L. [University of Lulea, Lulea (Sweden). Dept. of Business Administration & Social Science

2006-07-01T23:59:59.000Z

176

Chapter 2 - Coal as Multiple Sources of Energy  

Science Journals Connector (OSTI)

Abstract Coal as multiple sources of energy is mined for its solid and gas-, oil-, and condensate-derived hydrocarbons as well as liquefied for synfuels. More than 50 countries mine coal as feedstock for power plants to generate electricity but only six of these countries monopolize 73% of the total recoverable coalbed gas resources of the world. Worldwide, about 30,000 coal mine explosions are caused by methane and carbon dioxide, and to prevent outbursts and emissions, underground, surface, and abandoned coalmine gases are exploited for industrial and commercial uses. Still, a large volume of unrecovered fugitive coalmine gases is released as global greenhouse gas emissions. An alternative source for foreign oil dependent countries is synfuels from coal liquefaction technology. Also, coal-derived hydrocarbons are a part of the conventional resources that is, gas, oil, and condensate sourced from coal but expelled into adjoining reservoirs, are attractive alternative energy sources.

Romeo M. Flores

2014-01-01T23:59:59.000Z

177

Plastic wastes as modifiers of the thermoplasticity of coal  

SciTech Connect (OSTI)

Plastic waste recycling represents a major challenge in environmental protection with different routes now available for dealing with mechanical, chemical, and energy recycling. New concepts in plastic waste recycling have emerged so that now such wastes can be used to replace fossil fuels, either as an energy source or as a secondary raw material. Our objective is to explore the modification of the thermoplastic properties of coal in order to assess the possibility of adding plastic waste to coal for the production of metallurgical coke. Two bituminous coals of different rank and thermoplastic properties were used as a base component of blends with plastic wastes such as high-density polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), poly(ethylene terephthalate) (PET), and acrilonitrile-butadiene-styrene copolymer (ABS). In all cases, the addition of plastic waste led to a reduction in Gieseler maximum fluidity, the extent of the reduction depending on the fluidity of the base coal, and the amount, the molecular structure, and the thermal behavior of the polymer. As a consequence, the amount of volatile matter released by the plastic waste before, during, and after the maximum fluidity of the coal and the hydrogen-donor and hydrogen-acceptor capacities of the polymer were concluded to be key factors in influencing the extent of the reduction in fluidity and the development of anisotropic carbons. The incorporation of the plastic to the carbon matrix was clearly established in semicokes produced from blends of a high-fluid coal and the plastic tested by SEM examination. 42 refs., 10 figs., 7 tabs.

M.A. Diez; C. Barriocanal; R. Alvarez [Instituto Nacional del Carbon (INCAR), Oviedo (Spain)

2005-12-01T23:59:59.000Z

178

Coal Combustion Science  

SciTech Connect (OSTI)

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

1991-08-01T23:59:59.000Z

179

World energy consumption  

SciTech Connect (OSTI)

Historical and projected world energy consumption information is displayed. The information is presented by region and fuel type, and includes a world total. Measurements are in quadrillion Btu. Sources of the information contained in the table are: (1) history--Energy Information Administration (EIA), International Energy Annual 1992, DOE/EIA-0219(92); (2) projections--EIA, World Energy Projections System, 1994. Country amounts include an adjustment to account for electricity trade. Regions or country groups are shown as follows: (1) Organization for Economic Cooperation and Development (OECD), US (not including US territories), which are included in other (ECD), Canada, Japan, OECD Europe, United Kingdom, France, Germany, Italy, Netherlands, other Europe, and other OECD; (2) Eurasia--China, former Soviet Union, eastern Europe; (3) rest of world--Organization of Petroleum Exporting Countries (OPEC) and other countries not included in any other group. Fuel types include oil, natural gas, coal, nuclear, and other. Other includes hydroelectricity, geothermal, solar, biomass, wind, and other renewable sources.

NONE

1995-12-01T23:59:59.000Z

180

The First Coal Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Plants Coal Plants Nature Bulletin No. 329-A January 25, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation THE FIRST COAL PLANTS Coal has been called "the mainspring" of our civilization. You are probably familiar, in a general way, with the story of how it originated ages ago from beds of peat which were very slowly changed to coal; and how it became lignite or brown coal, sub-bituminous, bituminous, or anthracite coal, depending on bacterial and chemical changes in the peat, how much it was compressed under terrific pressure, and the amount of heat involved in the process. You also know that peat is formed by decaying vegetation in shallow clear fresh-water swamps or bogs, but it is difficult to find a simple description of the kinds of plants that, living and dying during different periods of the earth's history, created beds of peat which eventually became coal.

Note: This page contains sample records for the topic "world metallurgical coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Coal gasification: Belgian first  

Science Journals Connector (OSTI)

... hope for Europe's coal production came with the announcement this month that the first gasification of coal at depths of nearly 1,000 metres would take place this May in ... of energy.

Jasper Becker

1982-03-04T23:59:59.000Z

182

Microbial solubilization of coal  

DOE Patents [OSTI]

This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.

Strandberg, Gerald W. (Farragut, TN); Lewis, Susan N. (Knoxville, TN)

1990-01-01T23:59:59.000Z

183

“From Coal to Coke”  

Science Journals Connector (OSTI)

... IN the Sixth Coal Science Lecture, organized by the British ... Science Lecture, organized by the British Coal Utilization Research Association, and given at the Institution of Civil Engineers on October 16, ...

1957-11-02T23:59:59.000Z

184

Coal Production 1992  

SciTech Connect (OSTI)

Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

Not Available

1993-10-29T23:59:59.000Z

185

Chemicals from coal  

SciTech Connect (OSTI)

This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

2004-12-01T23:59:59.000Z

186

Coal Distribution Database, 2008  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal...

187

Indonesian coal mining  

SciTech Connect (OSTI)

The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

NONE

2008-11-15T23:59:59.000Z

188

Effect of Indian Medium Coking Coal on Coke Quality in Non-recovery Stamp Charged Coke Oven  

Science Journals Connector (OSTI)

Abstract The maximum possibility of utilizing the Indian coking coals and inferior grade coking coal for producing metallurgical coke through non-recovery stamp charging technology was investigated. Indian indigenous coals contained low percent of vitrinite ( 15%) compared to imported coking coal. Therefore, the selection of appropriate proportion of different types of coals was a major challenge for coke makers. Coal blend selection criterion based on a single coefficient, named as composite coking potential (CCP), was developed. The use of increased proportion of semi-soft coal (crucible swelling number of 2.5) and high ash (? 15%) indigenous coal in the range of 20%–35% and 20%–65% respectively in the blends resulted in good quality of coke. Plant data of a non-recovery coke oven were used for developing and validating the model. The results showed that the coke strength after reaction (CSR) varied in the range of 63. 7%–67.7% and the M40 value was between 81.8 and 89.3 in both the cases.

H.P. Tiwari; P.K. Banerjee; V.K. Saxena; S.K. Haldar

2014-01-01T23:59:59.000Z

189

Coal gasification apparatus  

DOE Patents [OSTI]

Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

Nagy, Charles K. (Monaca, PA)

1982-01-01T23:59:59.000Z

190

NETL: Coal Gasification Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Gasification Systems News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program Plan...

191

Coal gasification development intensifies  

Science Journals Connector (OSTI)

Coal gasification development intensifies ... Three almost simultaneous developments in coal gasification, although widely divergent in purpose and geography, rapidly are accelerating the technology's movement into an era of commercial exploitation. ... A plant to be built in the California desert will be the first commercialsize coal gasification power plant in the U.S. In West Germany, synthesis gas from a coal gasification demonstration plant is now being used as a chemical feedstock, preliminary to scaleup of the process to commercial size. ...

1980-02-25T23:59:59.000Z

192

Ore components in coal  

SciTech Connect (OSTI)

The dependence of the mineral content in coal and concentrates on the degree of metamorphism is analyzed.

Kh.A. Ishhakov [Russian Academy of Sciences, Kemerovo (Russian Federation). Institute of Coal and Coal Chemistry, Siberian Branch

2009-05-15T23:59:59.000Z

193

Coal Ash Corrosion Resistant Materials Testing  

SciTech Connect (OSTI)

In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a reasonably high alkali content, thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was well within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that the aggressive alkali-iron-trisulfate constituent was present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. This report provides the results of the evaluation of Test Section C, including the samples that remained in the Test Section for the full exposure period as well as those that were removed early. The analysis of Test Section C followed much the same protocol that was employed in the assessment of Test Section A. Again, the focus was on determining and documenting the relative corrosion rates of the candidate materials. The detailed results of the investigation are included in this report as a series of twelve appendices. Each appendix is devoted to the performance of one of the candidate alloys. The table below summarizes metal loss rate for the worst case sample of each of the candidate materials for both Test Sections A and C. The body of this report compares these for all of the samples in the test section. The 'Coal Ash Corrosion Resistant Materials Testing Program' is being conducted by The Babcock & Wilcox Company (B&W), the U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) at Reliant Energy's Niles plant in Niles, Ohio to provide full-scale, in-situ testing of recently developed boiler superheater materials. Fireside corrosion is a key issue for improving efficiency of new coal fired power plants and improving service life in existing plants. In November 1998, B&W began development of a system to permit testing of advanced tube materials at metal temperatures typical of advanced supercritical steam temperatures (1100 F and higher) in a boiler exhibiting coal ash corrosive conditions. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. In the spring of 1999 a system consisting of three identical sections, each containing multiple segments of twelve different materials, was installed. The sections are cooled by reheat steam, and are located just above the furnace entrance in Niles Unit No.1, a 110 MWe unit firing high sulfur Ohio coal. In November 2001 the first section was removed for thorough metallurgical evaluation after 29 months of operation. The second section was removed in August of 2003. Its evaluation has been completed and is the subject of this report. The final section remains in service and is expected to be removed in the spring of 2005. This paper describes the program; its importance, the design, fabrication, installation and operation of the test system, materials utilized, and experience to date. This report briefly reviews the results of the evaluation of the first section and then presents the results of the evaluation of the second section.

D. K. McDonald; P. L. Daniel; D. J. DeVault

2003-08-31T23:59:59.000Z

194

International Clean Coal, Carbon Capture Experts to Gather at 28th Annual  

Broader source: Energy.gov (indexed) [DOE]

Clean Coal, Carbon Capture Experts to Gather at 28th Clean Coal, Carbon Capture Experts to Gather at 28th Annual Pittsburgh Coal Conference International Clean Coal, Carbon Capture Experts to Gather at 28th Annual Pittsburgh Coal Conference August 10, 2011 - 1:00pm Addthis Washington, DC - The role of fossil fuels in a sustainable energy future will be one of the topics under discussion when experts from around the world meet at the 28th Annual International Pittsburgh Coal Conference, Sept. 12-15, at the David L. Lawrence Convention Center in Pittsburgh, Pa. Hosted by the University of Pittsburgh's Swanson School of Engineering, the conference is attended by industry, government and academia representatives from around the world. It focuses on environmental and technological issues surrounding the continued use of coal and the

195

International Clean Coal, Carbon Capture Experts to Gather at 28th Annual  

Broader source: Energy.gov (indexed) [DOE]

International Clean Coal, Carbon Capture Experts to Gather at 28th International Clean Coal, Carbon Capture Experts to Gather at 28th Annual Pittsburgh Coal Conference International Clean Coal, Carbon Capture Experts to Gather at 28th Annual Pittsburgh Coal Conference August 10, 2011 - 1:00pm Addthis Washington, DC - The role of fossil fuels in a sustainable energy future will be one of the topics under discussion when experts from around the world meet at the 28th Annual International Pittsburgh Coal Conference, Sept. 12-15, at the David L. Lawrence Convention Center in Pittsburgh, Pa. Hosted by the University of Pittsburgh's Swanson School of Engineering, the conference is attended by industry, government and academia representatives from around the world. It focuses on environmental and technological issues surrounding the continued use of coal and the

196

The 1986-93 Clean Coal Technology Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

1986-93 Clean Coal Technology Program 1986-93 Clean Coal Technology Program The 1986-93 Clean Coal Technology Program Begun in 1986, the Clean Coal Technology Program was the most ambitious government-industry initiative ever undertaken to develop environmental solutions for the Nation's abundant coal resources. "The U.S. Clean Coal Technology Demonstration Program is the envy of the world." Robert W. Smock Editorial Director, Power Engineering The program's goal: to demonstrate the best, most innovative technology emerging from the world's engineering laboratories at a scale large enough so that industry could determine whether the new processes had commercial merit. Originally, the Clean Coal Technology Demonstration Program was a response to concerns over acid rain, which is formed by sulfur and nitrogen

197

Coal Study Guide for Elementary School  

Broader source: Energy.gov [DOE]

Focuses on the basics of coal, history of coal use, conversion of coal into electricity, and climate change concerns.

198

A fresh look at coal-derived liquid fuels  

SciTech Connect (OSTI)

35% of the world's energy comes from oil, and 96% of that oil is used for transportation. The current number of vehicles globally is estimated to be 700 million; that number is expected to double overall by 2030, and to triple in developing countries. Now consider that the US has 27% of the world's supply of coal yet only 2% of the oil. Coal-to-liquids technologies could bridge the gap between US fuel supply and demand. The advantages of coal-derived liquid fuels are discussed in this article compared to the challenges of alternative feedstocks of oil sands, oil shale and renewable sources. It is argued that pollutant emissions from coal-to-liquid facilities could be minimal because sulfur compounds will be removed, contaminants need to be removed for the FT process, and technologies are available for removing solid wastes and nitrogen oxides. If CO{sub 2} emissions for coal-derived liquid plants are captured and sequestered, overall emissions of CO{sub 2} would be equal or less than those from petroleum. Although coal liquefaction requires large volumes of water, most water used can be recycled. Converting coal to liquid fuels could, at least in the near term, bring a higher level of stability to world oil prices and the global economy and could serve as insurance for the US against price hikes from oil-producing countries. 7 figs.

Paul, A.D. [Benham Companies LLC (USA)

2009-01-15T23:59:59.000Z

199

Blackout: coal, climate and the last energy crisis  

SciTech Connect (OSTI)

Coal fuels more than 30 per cent of UK electricity production, and about 50 per cent in the US, providing a significant portion of total energy output. China and India's recent ferocious economic growth has been based almost entirely on coal-generated electricity. Coal currently looks like a solution to many of our fast-growing energy problems. However, while coal advocates are urging us full steam ahead, the increasing reliance on this dirtiest of all fossil fuels has crucial implications for energy policy, pollution levels, the global climate, world economy and geopolitics. Drawbacks to a coal-based energy strategy include: Scarcity - new studies suggest that the peak of world coal production may actually be less than two decades away; Cost - the quality of produced coal is declining, while the expense of transportation is rising, leading to spiralling costs and increasing shortages; and, Climate impacts - our ability to deal with the historic challenge of climate change may hinge on reducing coal consumption in future years.

Heinberg, R. [Post Carbon Institute in California, CA (United States)

2009-07-15T23:59:59.000Z

200

Status of coal ash corrosion resistant materials test program  

SciTech Connect (OSTI)

In November of 1998, Babcock and Wilcox (B and W) began development of a system to permit testing of several advanced tube materials at metal temperatures typical of advanced supercritical steam conditions of 1100 F and higher in a boiler exhibiting coal ash corrosive conditions. The U.S. Department of Energy (DOE), the Ohio Coal Development Office (OCDO), B and W, and First Energy's Ohio Edison jointly fund the project. CONSOL Energy Company is also participating as an advisor. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. The coal-ash corrosion resistant materials test program will provide full scale, in-situ testing of recently developed boiler superheater and reheater tube materials. These newer materials may be capable of operating at higher steam temperatures while resisting external/fire-side corrosion. For high sulfur coal applications, this is a key issue for advanced cycle pulverized coal-fired plants. Fireside corrosion is also a critical issue for many existing plants. Previous testing of high temperature materials in the United States has been based primarily on using laboratory test coupons. The test coupons did not operate at conditions representative of a high sulfur coal-fired boiler. Testing outside of the United States has been with low sulfur coal or natural gas firing and has not addressed corrosion issues. This test program takes place in an actual operating boiler and is expected to confirm the performance of these materials with high sulfur coal. The system consists of three identical sections, each containing multiple pieces of twelve different materials. They are cooled by reheater steam, and are located just above the furnace exit in Ohio Edison's Niles Unit No.1, a 110 MWe unit firing high sulfur Ohio coal. After one year of operation, the first section will be removed for thorough metallurgical evaluation. The second and third sections will operate for three and five years respectively prior to removal and evaluation. The objective is to determine how well each material resists corrosion at different operating temperatures and over different time periods and provide characteristic data. Selection of the test materials, system engineering, fabrication, installation and startup of this system is now completed and data acquisition is in progress. This paper gives an overview of the program and its objectives, explains the system, describes section fabrication, identifies the materials selected, and describes ORNL's experience in fabricating four of the advanced materials.

McDonald, D.K.; Meisenhelter, D.K.; Sikka, V.K.

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "world metallurgical coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Coal recovery process  

DOE Patents [OSTI]

A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

Good, Robert J. (Grand Island, NY); Badgujar, Mohan (Williamsville, NY)

1992-01-01T23:59:59.000Z

202

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

Coal Prices..AEO 2007 forecast for coal prices for PRB coal. Transmissionregimes. Sensitivity to Coal Prices Figure 9 is similar to

Phadke, Amol

2008-01-01T23:59:59.000Z

203

Bio-coal briquette  

SciTech Connect (OSTI)

Some of the developing nations aim to earn foreign currency by exporting oil and/or gas and to increase the domestic consumption of coal to ensure a secure energy supply. Therefore, it is very important to promote effective coal utilization in these nations. Currently, these countries experience problems associated with coal use for household cooking and household industries. For household cooking, coal creates too much smoke and smells unpleasant. In addition, illegally obtained firewood is almost free in local agricultural regions. Coal is also used in household industries; however, simple stoker boilers are inefficient, since unburned coal particles tend to drop through screens during the combustion process. The bio-coal briquette, on the other hand, is an effective and efficient fuel, since it utilizes coal, which is to be used extensively in households and in small and medium-scale industry sectors in some coal-producing countries, as a primary fuel and bamboos (agricultural waste) as a secondary fuel. In addition, the use of bio-coal briquettes will greatly help reduce unburned coal content.

Honda, Hiroshi

1993-12-31T23:59:59.000Z

204

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

Trends, 2001 - 2010 Trends, 2001 - 2010 Transportation infrastructure overview In 2010, railroads transported over 70 percent of coal delivered to electric power plants which are generally concentrated east of the Mississippi River and in Texas. The U.S. railroad market is dominated by four major rail companies that account for 99 percent of U.S. coal rail shipments by volume. Deliveries from major coal basins to power plants by mode Rail Barge Truck Figure 2. Deliveries from major coal basins to power plants by rail, 2010 figure data Figure 3. Deliveries from major coal basins to power plants by barge, 2010 figure data Figure 4. Deliveries from major coal basins to power plants by truck, 2010 figure data The Powder River Basin of Wyoming and Montana, where coal is extracted in

205

Coal | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Coal Coal Coal Coal Coal is the largest domestically produced source of energy in America and is used to generate a significant chunk of our nation's electricity. The Energy Department is working to develop technologies that make coal cleaner, so we can ensure it plays a part in our clean energy future. The Department is also investing in development of carbon capture, utilization and storage (CCUS) technologies, also referred to as carbon capture, utilization and sequestration. Featured Energy Secretary Moniz Visits Clean Coal Facility in Mississippi On Friday, Nov. 8, 2013, Secretary Moniz and international energy officials toured Kemper, the nation's largest carbon capture and storage facility, in Liberty, Mississippi. A small Mississippi town is making history with the largest carbon capture

206

Chemical comminution of coal  

SciTech Connect (OSTI)

The objective of the present research is to study the chemical reactivity of a mixture of methyl alcohol and aqueous sodium hydroxide solution in the temperature range 298 to 363 K, and a caustic concentration of 0 to 10 wt. %, on an Iowa bituminous coal. The sample studied was collected from coal zone 4, equivalent to most historical references to Laddsdale coal. The coals in this zone are typical high-sulfur, high-ash middle Pennsylvania Cherokee group coals. The apparent rank is high-volatile C bituminous coal. The relatively high content of sulfur and 23 other elements in these coals is related to near neutral (6-8) pH conditions in the depositional and early diagenetic environments, and to postdepositional sphalerite/calcite/pyrite/kaolinite/barite mineralization.

Mamaghani, A.H.; Beddow, J.K.; Vetter, A.F.

1987-02-01T23:59:59.000Z

207

Coal dust explosibility  

Science Journals Connector (OSTI)

This paper reports US Bureau of Mines (USBM) research on the explosibility of coal dusts. The purpose of this work is to improve safety in mining and other industries that process or use coal. Most of the tests were conducted in the USBM 20 litre laboratory explosibility chamber. The laboratory data show relatively good agreement with those from full-scale experimental mine tests. The parameters measured included minimum explosible concentrations, maximum explosion pressures, maximum rates of pressure rise, minimum oxygen concentrations, and amounts of limestone rock dust required to inert the coals. The effects of coal volatility and particle size were evaluated, and particle size was determined to be at least as important as volatility in determining the explosion hazard. For all coals tested, the finest sizes were the most hazardous. The coal dust explosibility data are compared to those of other hydrocarbons, such as polyethylene dust and methane gas, in an attempt to understand better the basics of coal combustion.

Kenneth L. Cashdollar

1996-01-01T23:59:59.000Z

208

Coal: the new black  

SciTech Connect (OSTI)

Long eclipsed by oil and natural gas as a raw material for high-volume chemicals, coal is making a comeback, with oil priced at more than $100 per barrel. It is relatively cheap feedstock for chemicals such as methanol and China is building plants to convert coal to polyolefins on a large scale and interest is spreading worldwide. Over the years several companies in the US and China have made fertilizers via the gasification of coal. Eastman in Tennessee gasifies coal to make methanol which is then converted to acetic acid, acetic anhydride and acetate fiber. The future vision is to convert methanol to olefins. UOP and Lurgi are the major vendors of this technology. These companies are the respective chemical engineering arms of Honeywell and Air Liquide. The article reports developments in China, USA and India on coal-to-chemicals via coal gasification or coal liquefaction. 2 figs., 2 photo.

Tullo, A.H.; Tremblay, J.-F.

2008-03-15T23:59:59.000Z

209

file://G:\mydocs\Coal\Distribution\2003\distable2.HTML  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 (Thousand Short Tons) Coal-Exporting State and Destination Metallurgical Steam Total Alabama 5,156 - 5,156 Argentina 345 - 345 Belgium 387 - 387 Brazil 1,825 - 1,825 Bulgaria 363 - 363 Egypt 477 - 477 Germany 167 - 167 Italy 87 - 87 Netherlands 399 - 399 Spain 198 - 198 Turkey 551 - 551 United Kingdom 359 - 359 Kentucky 1,449 - 1,449 Canada 566 - 566 France 104 - 104 Iceland 53 - 53 Italy 139 - 139 Netherlands 268 - 268 Norway 14 - 14 United Kingdom 304 - 304 Pennsylvania 476 8,251 8,820 Australia - 81 81 Belgium - 188 188 Brazil 85 - 87 Canada 203 6,622 6,893 Costa Rica - 40 40 Denmark - 184 184 Dominican Republic - 19 20 France - 193 193 Germany 89 - 89 Ireland - 148 148 Jamaica - 36 36 Morocco - 172 172 Netherlands 99 248 355 Peru - - 12 Portugal - 321 321 Venezuela - - 2 Virginia 4,786

210

Coal - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Analysis & Projections Analysis & Projections ‹ See all Coal Reports U.S. Coal Supply and Demand: 2010 Year in Review Release Date: June 1, 2011 | Next Release Date: Periodically | full report Exports and Imports Exports Total U.S. coal exports for 2010 increased by 38.3 percent to 81.7 million short tons (Figure 8). Figure Data This increase was largely due to two factors. First, heavy rains and flooding in Australia, Indonesia, and Colombia reduced world coal supply and forced many coal importing nations to look elsewhere, primarily to the United States, to fulfill their coal needs. In addition, the shortage of their own domestic coal in relation to growing needs, namely for China and India, provided ample opportunities for U.S. coal producers to export to these markets.

211

Florida CFB demo plant yields low emissions on variety of coals  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has reported results of tests conducted at Jacksonville Electric Authority (JEA)'s Northside power plant using mid-to-low-sulfur coal, which indicate the facility is one of the cleanest burning coal-fired power plants in the world. A part of DOE's Clean Coal Technology Demonstration Program, the JEA project is a repowering demonstration of the operating and environmental performance of Foster Wheeler's utility-scale circulating fluidized bed combustion (CFB) technology on a range of high-sulfur coals and blends of coal and high-sulfur petroleum coke. The 300 MW demonstration unit has a non-demonstration 300 MW twin unit.

NONE

2005-07-01T23:59:59.000Z

212

NETL: News Release - International Clean Coal, Carbon Capture Experts to  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0, 2011 0, 2011 International Clean Coal, Carbon Capture Experts to Gather at 28th Annual Pittsburgh Coal Conference Plants State of Clean Coal Technology, Carbon Capture, Utilization, and Storage on Agenda Washington, DC - The role of fossil fuels in a sustainable energy future will be one of the topics under discussion when experts from around the world meet at the 28th Annual International Pittsburgh Coal Conference, Sept. 12-15, at the David L. Lawrence Convention Center in Pittsburgh, Pa. MORE INFO Learn more about the conference Registration information Hosted by the University of Pittsburgh's Swanson School of Engineering, the conference is attended by industry, government and academia representatives from around the world. It focuses on environmental and

213

NETL: News Release - DOE, Jacksonville Utility Complete Major Clean Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

August 2, 2005 August 2, 2005 DOE, Jacksonville Utility Complete Major Clean Coal Technology Project Eight Year Demonstration Project Results in One of World's Cleanest Coal-Based Power Plants WASHINGTON, DC - The U.S. Department of Energy and JEA, the public utility of Florida, have achieved a significant milestone in the DOE's Clean Coal Technology Demonstration Program by completing a project in which JEA's Northside Generating Station was converted into one of the cleanest burning coal-fired power plants in the world. MORE INFO Read the final project report [PDF-438KB] As part of the 8-year, $320 million cost-shared project, JEA installed state-of-the-art technology known as circulating fluidized bed combustion in a 300?megawatt combustor-triple the size of any previous

214

Coal Storage and Transportation  

Science Journals Connector (OSTI)

Abstract Coal preparation, storage, and transportation are essential to coal use. Preparation plants, located near to the mine, remove some inorganic minerals associated with raw coal. Coal is transported from the mines to the point of consumption, often an electric generating plant, by rail, barge and trucks. Railroads are the predominant form of coal transportation within a country. Global coal trade, movement by large ocean-going vessels, continues to increase. At the end use site, the coal is crushed, ground, and the moisture content reduced to the proper specifications for end use. Coal is stored at various points in the supply chain. Processed coal will weather and oxidize, changing its properties; it can self-ignite, unless precautions are taken. Technology in use today is similar to that used in previous decades. Performance improvements have come from improved software and instruments that deliver real-time data. These improve management of sub-processes in the coal supply chain and reduce costs along the supply chain.

J.M. Ekmann; P.H. Le

2014-01-01T23:59:59.000Z

215

Application of artificial neural network to study the performance of jig for beneficiation of non-coking coal  

Science Journals Connector (OSTI)

Non-coking coal is the major resource of energy in India. Apart from its utilization in energy sector, the other major application of this coal is in metallurgical sector. The resource of high quality of non-coking coal is not available as per demand; as a result beneficiation of non-coking coal is now becoming essential. Jigging is one of the economical physical beneficiation processes for Indian high ash non-coking coal. At present scenario in coal washery in India, below 3 mm size is not being processed. Attempt has been taken to beneficiate the fine size non-coking coal fractions generated at different sizes of bed materials, feed rates and water rates using laboratory Denver mineral jig. The performance of jig was evaluated in term of Ep and imperfection value. Furthermore artificial neural network (ANN) model has been developed for determining combustible recovery and ash percent of the concentrate. The ANN architecture is made up of three layers (input – hidden – output). A back propagation algorithm was used for training of the ANN model. It has been observed that the predicted values by ANN model are in good agreement with the experimental results.

Lopamudra Panda; A.K. Sahoo; A. Tripathy; S.K. Biswal; A.K. Sahu

2012-01-01T23:59:59.000Z

216

Influence of coal as an energy source on environmental pollution  

SciTech Connect (OSTI)

This article considers the influence of coal energy on environmental pollution. Coal is undoubtedly part of the greenhouse problem. The main emissions from coal combustion are sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), particulates, carbon dioxide (CO{sub 2}), and mercury (Hg). Since 1980, despite a 36% increase in electricity generation and more than a 50% increase in coal use, electric utility SO{sub 2} and NOx emissions have declined significantly. Globally, the largest source of anthropogenic greenhouse gas (GHG) emissions is CO{sub 2} from the combustion of fossil fuels - around 75% of total GHG emissions covered under the Kyoto Protocol. At the present time, coal is responsible for 30-40% of world CO{sub 2} emission from fossil fuels.

Balat, M. [University of Mahallesi, Trabzon (Turkey)

2007-07-01T23:59:59.000Z

217

Testing for market integration crude oil, coal, and natural gas  

SciTech Connect (OSTI)

Prompted by the contemporaneous spike in coal, oil, and natural gas prices, this paper evaluates the degree of market integration both within and between crude oil, coal, and natural gas markets. Our approach yields parameters that can be readily tested against a priori conjectures. Using daily price data for five very different crude oils, we conclude that the world oil market is a single, highly integrated economic market. On the other hand, coal prices at five trading locations across the United States are cointegrated, but the degree of market integration is much weaker, particularly between Western and Eastern coals. Finally, we show that crude oil, coal, and natural gas markets are only very weakly integrated. Our results indicate that there is not a primary energy market. Despite current price peaks, it is not useful to think of a primary energy market, except in a very long run context.

Bachmeier, L.J.; Griffin, J.M. [Texas A& amp; M Univ, College Station, TX (United States)

2006-07-01T23:59:59.000Z

218

Peak Population: Timing and Influences of Peak Energy on the World and the United States  

E-Print Network [OSTI]

Peak energy is the notion that the world’s total production of usable energy will reach a maximum value and then begin an inexorable decline. Ninety-two percent of the world’s energy is currently derived from the non-renewable sources (oil, coal...

Warner, Kevin 1987-

2012-11-28T23:59:59.000Z

219

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

fixation in slag or bottom ash, coal gasification, or coallimestone and coal that form little fly ash and trap sulfurSulfate Organic Ash (%) "Organic Sulfur", in Wheelock, Coal

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

220

Industrial coking of coal batch without bituminous coal  

Science Journals Connector (OSTI)

For many years, Kuznetsk-coal batch has always included bituminous coal. Depending on the content of such coal, the batch may be characterized as lean ... classification was adopted by specialists of the Eastern

P. V. Shtark; Yu. V. Stepanov; N. K. Popova; D. A. Koshkarov…

2008-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "world metallurgical coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

a particular type of coal, each of which is inherentlyThere are four classes of coal: bituminous, sub-bituminous,minerals Metallic ores Coal Crude petroleum Gasoline Fuel

McCollum, David L

2007-01-01T23:59:59.000Z

222

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

4Q 2009 4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by transportation mode. The data sources beginning with the 2008 Coal Distribution Report

223

Low emission boiler system: Clean and efficient power from coal  

SciTech Connect (OSTI)

The US Department of Energy, Federal Energy Technology Center, is working with private industry to develop the Low Emission Boiler System (LEBS), an advanced coal-fired power generation system for the 21st century. LEBS will provide the utility industry with an opportunity to meet the anticipated increase in electricity demand throughout the world by offering cleaner and more efficient coal-fired power plants. LEBS has significantly higher thermal efficiency, superior environmental performance and a lower cost of electricity than conventional coal-fired systems. This paper presents an overall summary of the LEBS program.

Ruth, L.; Winslow, J. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center; Ramezan, M. [Burns and Roe Services Corp., Pittsburgh, PA (United States)

1997-09-01T23:59:59.000Z

224

Pulverized coal fuel injector  

DOE Patents [OSTI]

A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

Rini, Michael J. (Hebron, CT); Towle, David P. (Windsor, CT)

1992-01-01T23:59:59.000Z

225

Enhanced near net-shape ceramic refractory composite high temperature cartridge by VPS metallurgical alloying techniques  

SciTech Connect (OSTI)

High performance cartridges are being developed by vacuum plasma spray (VPS) forming to near net-shape for use in high temperature space furnaces. A VPS metallurgical alloying technique utilizing alloying elements (rhenium, nickel, etc.) has been developed that produces robust physical properties without jeopardizing the unique chemical properties of the VPS formed tungsten structure. Thin walled cartridges, 0.069 mm (0.027 in.) thick, are produced in continuous lengths of 58.4 cm (23 in.). A refractory metal (i.e. tungsten) is VPS formed as the cartridge wall structure, with a protective ceramic (i.e., alumina) coating inside and out. The ceramic-refractory-ceramic composite provides environmental protection to the refractory metal structure from both chemical attack inside and oxidation outside. The VPS metallurgical alloying process interjected during the spraying operation greatly reduces porosity of the microstructure while enhancing the ductility of the cartridge. Thin walled cartridges have been shown to hermetically seal demonstrating no through porosity. Microstructures have been characterized and material properties will be presented.

Krotz, P.D.; Liaw, Y.; McKechnie, T.N. [Rocketdyne, Huntsville, AL (United States); Holmes, R.; Zimmerman, F. [National Aeronautics and Space Administration, Huntsville, AL (United States). Marshall Space Flight Center

1995-12-31T23:59:59.000Z

226

EIA - Will carbon capture and storage reduce the world's carbon dioxide  

Gasoline and Diesel Fuel Update (EIA)

Will carbon capture and storage reduce the world's carbon dioxide emissions? Will carbon capture and storage reduce the world's carbon dioxide emissions? International Energy Outlook 2010 Will carbon capture and storage reduce the world'ss carbon dioxide emissions? The pursuit of greenhouse gas reductions has the potential to reduce global coal use significantly. Because coal is the most carbon-intensive of all fossil fuels, limitations on carbon dioxide emissions will raise the cost of coal relative to the costs of other fuels. Under such circumstances, the degree to which energy use shifts away from coal to other fuels will depend largely on the costs of reducing carbon dioxide emissions from coal-fired plants relative to the costs of using other, low-carbon or carbon-free energy sources. The continued widespread use of coal could rely on the cost and availability of carbon capture and storage (CCS) technologies that capture carbon dioxide and store it in geologic formations.

227

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

coal (PC) or integrated gasification combined cycle ( IGCC)coal (PC) or integrated gasification combined cycle (IGCC)will be integrated gasification combined cycle (IGCC) (Same

McCollum, David L

2007-01-01T23:59:59.000Z

228

Clinkering properties of rammed coking coal and coal batches  

Science Journals Connector (OSTI)

The clinkering properties of rammed coking coal and coal batches are investigated. There is a close relation between the clinkering properties and coke quality.

V. M. Shmal’ko; M. A. Solov’ev

2009-03-01T23:59:59.000Z

229

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

Credit Extra Fuel Oil Coal to gasifier Na cost· Na processoiL Replace res. with coal as gasifier feed. 543 ton/day @$

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

230

Catalytic steam gasification of coals  

Science Journals Connector (OSTI)

Catalytic steam gasification of coals ... Steam–Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ... Steam–Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ...

P. Pereira; G. A. Somorjai; H. Heinemann

1992-07-01T23:59:59.000Z

231

Coal Mining Tax Credit (Arkansas)  

Broader source: Energy.gov [DOE]

The Coal Mining Tax Credit provides an income or insurance premium tax credit of $2.00 per ton of coal mined, produced or extracted on each ton of coal mined in Arkansas in a tax year. An...

232

Illinois Coal Revival Program (Illinois)  

Broader source: Energy.gov [DOE]

The Illinois Coal Revival Program is a grants program providing partial funding to assist with the development of new, coal-fueled electric generation capacity and coal gasification or IGCC units...

233

Weekly Coal Production Estimation Methodology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Weekly Coal Production Estimation Methodology Step 1 (Estimate total amount of weekly U.S. coal production) U.S. coal production for the current week is estimated using a ratio...

234

Sandia National Laboratories: Clean Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ManagementClean Coal Clean Coal The term clean coal refers to a number of initiatives that seek to reduce or eliminate the hazardous emission or byproducts that result from using...

235

COAL DESULFURIZATION PRIOR TO COMBUSTION  

E-Print Network [OSTI]

Corporation, 5-25~79. on Coal Liquefaction at ChevronHamersma, et a L, "Meyers Process for Coal Desulfurization,"in Wheelock, Coal Desulfurization, ACS Symp. Ser 64 (1977(.

Wrathall, J.

2013-01-01T23:59:59.000Z

236

Coal extraction process  

SciTech Connect (OSTI)

Sub-divided coal is extracted under non-thermally destructive conditions with a solvent liquid containing a compound having the general formula:

Hammack, R. W.; Sears, J. T.; Stiller, A. H.

1981-06-09T23:59:59.000Z

237

Clean Coal Projects (Virginia)  

Broader source: Energy.gov [DOE]

This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

238

Coal Development (Nebraska)  

Broader source: Energy.gov [DOE]

This section provides for the development of newly-discovered coal veins in the state, and county aid for such development.

239

Clean coal technology applications  

SciTech Connect (OSTI)

{open_quotes}Coal is a stratified rock formed of the more or less altered remains of plants (together with associated mineral matter) which flourished in past ages{hor_ellipsis} The problem of the origin and maturing of coal is complicated by the fact that every coal contains, in addition to carbon, hydrogen and oxygen, variable proportions of nitrogen and sulfur which are combined in unknown ways in the organic molecules...{close_quotes}. The challenge with coal has always been the management of its mineral matter, sulfur and nitrogen contents during use. The carbon content of fuels, including coal, is a more recent concern. With clean coal technologies, there are opportunities for ensuring the sustained use of coal for a very long time. The clean coal technologies of today are already capable of reducing, if not eliminating, harmful emissions. The technologies of the future will allow coal to be burned with greatly reduced emissions, thus eliminating the necessity to treat them after they occur.

Bharucha, N.

1993-12-31T23:59:59.000Z

240

Spitsbergen Tertiary Coal Fossils  

Science Journals Connector (OSTI)

... grains and spores to be observed in coal deposits of Tertiary age in west Spitsbergen (Norsk Polarinstitutt, Med. 79, pp. 1-9; 1954; English summary).

1955-08-06T23:59:59.000Z

Note: This page contains sample records for the topic "world metallurgical coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Coal Gasification Systems Solicitations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low Cost Coal Conversion to High Hydrogen Syngas; FE0023577 Alstom's Limestone Chemical Looping Gasification Process for High Hydrogen Syngas Generation; FE0023497 OTM-Enhanced...

242

Coal liquefaction quenching process  

DOE Patents [OSTI]

There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

Thorogood, Robert M. (Macungie, PA); Yeh, Chung-Liang (Bethlehem, PA); Donath, Ernest E. (St. Croix, VI)

1983-01-01T23:59:59.000Z

243

Handbook of coal analysis  

SciTech Connect (OSTI)

The Handbook deals with the various aspects of coal analysis and provides a detailed explanation of the necessary standard tests and procedures that are applicable to coal in order to help define usage and behavior relative to environmental issues. It provides details of the meaning of various test results and how they might be applied to predict coal behavior during use. Emphasis is on ASTM standards and test methods but ISO and BSI standards methods are included. Chapter headings are: Coal analysis; Sampling and sample preparation; Proximate analysis; Ultimate analysis; Mineral matter; Physical and electrical properties; Thermal properties; Mechanical properties; Spectroscopic properties; Solvent properties; and Glossary.

James G. Speight

2005-05-01T23:59:59.000Z

244

US coal market softens  

SciTech Connect (OSTI)

The operators table some near term expansion plans, meanwhile long-term fundamentals look strong. This is one of the findings of the Coal Age Forecast 2007 survey of readers predictions on production and consumption of coal and attitudes in the coal industry. 50% of respondents expected product levels in 2007 to be higher than in 2006 and 50% described the attitude in the coal industry to be more optimistic in 2007 than in 2006. Most expenditure is anticipated on going on new equipment but levels of expenditure will be less than in 2006. 7 figs.

Fiscor, S.

2007-01-15T23:59:59.000Z

245

Annual Coal Distribution Report  

Gasoline and Diesel Fuel Update (EIA)

Distribution Report Release Date: December 19, 2013 | Next Release Date: December 12, 2014 | full report | RevisionCorrection Revision to the Annual Coal Distribution Report...

246

Coal within a revised energy perspective  

SciTech Connect (OSTI)

The author considers the use of coal within a revised energy perspective, focusing on the factors that will drive which fuels are used to generate electricity going forward. He looks at the world markets for fossil fuels and the difficulties of predicting oil and natural gas supply and prices, as demonstrated by the variability in projections from one year to another in the EIA's Annual Energy Outlook. 4 refs., 1 tab.

Darmstadter, J. [Resources for the Future (RFF), Washington, DC (United States)

2006-07-15T23:59:59.000Z

247

Cooperative research program in coal liquefaction  

SciTech Connect (OSTI)

This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

Huffman, G.P. (ed.)

1991-01-01T23:59:59.000Z

248

Cooperative research program in coal liquefaction  

SciTech Connect (OSTI)

Research continues on coal liquefaction in the following areas: (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

Huffman, G.P. (ed.)

1992-01-01T23:59:59.000Z

249

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect (OSTI)

This NETL sponsored effort seeks to develop continuous technologies for the production of carbon products, which may be thought of as the heavier products currently produced from refining of crude petroleum and coal tars obtained from metallurgical grade coke ovens. This effort took binder grade pitch, produced from liquefaction of West Virginia bituminous grade coal, all the way to commercial demonstration in a state of the art arc furnace. Other products, such as crude oil, anode grade coke and metallurgical grade coke were demonstrated successfully at the bench scale. The technology developed herein diverged from the previous state of the art in direct liquefaction (also referred to as the Bergius process), in two major respects. First, direct liquefaction was accomplished with less than a percent of hydrogen per unit mass of product, or about 3 pound per barrel or less. By contrast, other variants of the Bergius process require the use of 15 pounds or more of hydrogen per barrel, resulting in an inherent materials cost. Second, the conventional Bergius process requires high pressure, in the range of 1500 psig to 3000 psig. The WVU process variant has been carried out at pressures below 400 psig, a significant difference. Thanks mainly to DOE sponsorship, the WVU process has been licensed to a Canadian Company, Quantex Energy Inc, with a commercial demonstration unit plant scheduled to be erected in 2011.

Elliot Kennel; Chong Chen; Dady Dadyburjor; Mark Heavner; Manoj Katakdaunde; Liviu Magean; James Mayberry; Alfred Stiller; Joseph Stoffa; Christopher Yurchick; John Zondlo

2009-12-31T23:59:59.000Z

250

Illinois Coal Development Program (Illinois)  

Broader source: Energy.gov [DOE]

The Illinois Coal Development Program seeks to advance promising clean coal technologies beyond research and towards commercialization. The program provides a 50/50 match with private industry...

251

Clean coal technologies market potential  

SciTech Connect (OSTI)

Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

Drazga, B. (ed.)

2007-01-30T23:59:59.000Z

252

NETL: Clean Coal Demonstrations - Clean Coal Today Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Coal Today Newsletter Clean Coal Today Newsletter Clean Coal Demonstrations Clean Coal Today Newsletter Clean Coal Today is a quarterly newsletter of the U.S. Department of Energy, Office of Fossil Energy (FE), Office of Clean Coal. Among other things, Clean Coal Today highlights progress under the Clean Coal Power Initiative, the Power Plant Improvement Initiative, and the few remaining projects of the original Clean Coal Technology Demonstration Program. Reporting on coal R&D performed at government laboratories, as well as in conjunction with stakeholders, it provides key information on FE's coal-related activities, most of which are directed toward near-zero emissions, ultra-efficient technologies of the future. Subscriptions are free – to have your name placed on the mailing list, contact the Editor at Phoebe.Hamill@hq.doe.gov.

253

Iron Minerals in Coal, Weathered Coal and Coal Ash – SEM and Mössbauer Results  

Science Journals Connector (OSTI)

The aim of the present investigation was to identify and quantify the iron mineral phases present in South African coal from various coal fields and in coal ash, after industrial and laboratory combustion process...

F. B. Waanders; E. Vinken; A. Mans; A. F. Mulaba-Bafubiandi

254

NETL: 2010 World Gasification Database Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home > Technologies > Coal & Power Systems > Gasification Systems > 2010 World Gasification Database Home > Technologies > Coal & Power Systems > Gasification Systems > 2010 World Gasification Database Gasification Systems 2010 Worldwide Gasification Database Archive DOE/NETL 2010 Worldwide Gasification Database Worldwide Gasification Database Analysis The 2010 Worldwide Gasification Database describes the current world gasification industry and identifies near-term planned capacity additions. The database lists gasification projects and includes information (e.g., plant location, number and type of gasifiers, syngas capacity, feedstock, and products). The database reveals that the worldwide gasification capacity has continued to grow for the past several decades and is now at 70,817 megawatts thermal (MWth) of syngas output at 144 operating plants with a total of 412 gasifiers.

255

world bank | OpenEI  

Open Energy Info (EERE)

world bank world bank Dataset Summary Description No description given. Source World Bank Date Released Unknown Date Updated Unknown Keywords coal energy imports energy production energy use fossil fuels Fuel global Hydroelectric international nuclear oil renewables statistical statistics world bank Data application/zip icon Data in XML Format (zip, 1 MiB) application/zip icon Data in Excel Format (zip, 1.3 MiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 1970 - 2007 License License Other or unspecified, see optional comment below Comment Summary of Usage Terms ---------------------- You are free to copy, distribute, adapt, display or include the data in other products for commercial and noncommercial purposes at no cost subject to certain limitations summarized below. You must include attribution for the data you use in the manner indicated in the metadata included with the data. You must not claim or imply that The World Bank endorses your use of the data by or use The World Bank's logo(s) or trademark(s) in conjunction with such use. Other parties may have ownership interests in some of the materials contained on The World Bank Web site. For example, we maintain a list of some specific data within the Datasets that you may not redistribute or reuse without first contacting the original content provider, as well as information regarding how to contact the original content provider. Before incorporating any data in other products, please check the list: Terms of use: Restricted Data. The World Bank makes no warranties with respect to the data and you agree The World Bank shall not be liable to you in connection with your use of the data. Links ----- Summary of Terms: http://data.worldbank.org/summary-terms-of-use Detailed Usage Terms: http://www.worldbank.org/terms-datasets

256

Case Studies in Sustainable Development in the Coal Industry | Open Energy  

Open Energy Info (EERE)

Studies in Sustainable Development in the Coal Industry Studies in Sustainable Development in the Coal Industry Jump to: navigation, search Name Case Studies in Sustainable Development in the Coal Industry Agency/Company /Organization International Energy Agency Sector Energy Focus Area Conventional Energy Topics Implementation Resource Type Guide/manual, Lessons learned/best practices Website http://www.iea.org/papers/2006 Program Start 2006 References Case Studies in Sustainable Development in the Coal Industry[1] Summary "Widely held attitudes to coal's use have evolved greatly in the past five years - from those that largely dismissed a role for coal in sustainable development to a wider appreciation of coal's continuing role in providing a foundation for energy security and in meeting growing world energy

257

Coal Gasification in Australia  

Science Journals Connector (OSTI)

... P. S. Andrews gave a full account of the Federal project for the pressure gasification of non-coking coals for the combined purpose of town's gas ' and the ... of town's gas ' and the production of synthetic liquid fuel. Work on the gasification of brown coal in. Victoria was commenced in 1931 by the technical staff of ...

1955-06-11T23:59:59.000Z

258

Chemicals from Coal  

Science Journals Connector (OSTI)

...Mas-sachusetts Institute of Technology, 1974; J. B. Howard...Petras, in Coal Pro-cessing Technology (American Institute of Chem-ical...with the solidifcation of a fluid bituminous coal as it undergoes...Policy Analyst, Science and Technology Policy Office (Staff to the...

Arthur M. Squires

1976-02-20T23:59:59.000Z

259

Incentives boost coal gasification  

SciTech Connect (OSTI)

Higher energy prices are making technologies to gasify the USA's vast coal reserves attractive again. The article traces the development of coal gasification technology in the USA. IGCC and industrial gasification projects are now both eligible for a 20% investment tax credit and federal loan guarantees can cover up to 80% of construction costs. 4 photos.

Hess, G.

2006-01-16T23:59:59.000Z

260

STEO November 2012 - coal supplies  

U.S. Energy Information Administration (EIA) Indexed Site

Despite drop in domestic coal production, U.S. coal exports to reach Despite drop in domestic coal production, U.S. coal exports to reach record high in 2012. While U.S. coal production is down 7 percent this year due in part to utilities switching to low-priced natural gas to generate electricity, American coal is still finding plenty of buyers in overseas markets. U.S. coal exports are expected to hit a record 125 million tons in 2012, the U.S. Energy Information Administration says in its new monthly short-term energy outlook. Coal exports are expected to decline in 2013, primarily because of continuing economic weakness in Europe, lower international coal prices, and higher coal production in Asia. However, U.S. coal exports next year are still expected to top 100 million tons for the third year in a row

Note: This page contains sample records for the topic "world metallurgical coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

Origin State, Origin State, Consumer, Destination and Method of Transportation 3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by

262

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Distribution Category UC-950 Quarterly Coal Report April-June 1999 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of B.D. Hong, Leader, Coal Infor- mation Team, Office of Coal, Nuclear, Electric and Alternate Fuels. Questions addressing the Appendix A, U.S. Coal Imports section should be directed to Paulette Young at (202) 426-1150, email

263

By Coal Destination State  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report 2010 Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 7,906 821 1,242 - 9,969 Alabama Railroad 3,604 49 285 - 3,938 Alabama River 3,979 - - - 3,979 Alabama Truck 322 773 957 - 2,051 Colorado Total 2,113 - - - 2,113 Colorado Railroad 2,113 - - - 2,113 Illinois Total 336 - - - 336 Illinois River 336 - - - 336 Indiana Total 1,076

264

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) Distribution Category UC-950 Quarterly Coal Report January-March 1999 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of B.D. Hong, Leader, Coal Infor- mation Team, Office of Coal, Nuclear, Electric and Alternate Fuels. Questions addressing the Appendix A, U.S. Coal Imports section should be directed

265

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

Destination State, Destination State, Consumer, Destination and Method of Transportation 3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by

266

Coal in China  

SciTech Connect (OSTI)

The article gives an overview of the production and use of coal in China, for power generation and in other sectors. Coal use for power generation was 850 million tonnes in 2003 and 800 million tonnes in the non-power sector. The majority of power will continue to be produced from coal, with a trend towards new larger pulverised coal fired units and introduction of circulating fluidised bed combustors. Stricter regulations are forcing introduction of improved pollution control technologies. It seems likely that China will need international finance to supplement private and state investment to carry out a programme to develop and apply clean coal technologies. The author concludes that there is evidence of a market economy being established but there is a need to resolve inconsistencies with the planned aspects of the economy and that additional policies are needed in certain sectors to achieve sustainable development. 1 ref., 2 figs., 2 tabs.

Minchener, A.J. [IEA Clean Coal Centre, London (United Kingdom)

2005-07-01T23:59:59.000Z

267

By Coal Origin State  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report 2010 Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 7,906 821 1,242 - 9,969 Alabama Railroad 3,604 49 285 - 3,938 Alabama River 3,979 - - - 3,979 Alabama Truck 322 773 957 - 2,051 Florida Total - - 15 - 15 Florida Railroad - - 11 - 11 Florida Truck - - 3 - 3 Georgia Total 196 - 15 - 211 Georgia Railroad 189 - 1 - 190 Georgia Truck

268

Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California  

E-Print Network [OSTI]

geology and gas-phase (methane) seepage for the Coal Oil Point (COP) seep field, one of the worldORIGINAL Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field constructed from 3D seismic and well data allowed investigation of the relationship between the subsurface

Luyendyk, Bruce

269

Explosion bonding of dissimilar materials for fabricating APS front end components: Analysis of metallurgical and mechanical properties and UHV applications  

SciTech Connect (OSTI)

The front end beamline section contains photon shutters and fixed masks. These components are made of OFHC copper and GlidCOP AL-15. Stainless steels (304 or 316) are also used for connecting photon shutters and fixed masks to other components that operate in the ultrahigh vacuum system. All these dissimilar materials need to be joined together. However, bonding these dissimilar materials is very difficult because of their different mechanical and thermal properties and incompatible metallurgical properties. Explosion bonding is a bonding method in which the controlled energy of a detonating explosive is used to create a metallurgical bond between two or more similar or dissimilar materials. No intermediate filler metal, for example, a brazing compound or soldering alloy, is needed to promote bonding, and no external heat need be applied. A study of the metallurgical and mechanical properties and YGV applications of GlidCop AL-15, OFHC copper, and 304 stainless steel explosion-bonded joints has been done. This report contains five parts: an ultrasonic examination of explosion-bonded joints and a standard setup; mechanical-property and thermal-cycle tests of GlidCop AL-15/304 stainless steel explosion-bonded joints; leak tests of a GlidCop AL-15/304 stainless steel explosion-bonded interfaces for UHV application; metallurgical examination of explosion-bonded interfaces and failure analysis, and discussion and conclusion.

Li, Yuheng; Shu, Deming; Kuzay, T.M.

1994-06-15T23:59:59.000Z

270

Ash Deposition Behavior of Upgraded Brown Coal and Bituminous Coal  

Science Journals Connector (OSTI)

Ash Deposition Behavior of Upgraded Brown Coal and Bituminous Coal ... Ash with a low melting point causes slagging and fouling problems in pulverized coal combustion boilers. ... The ash composition in coal and operational conditions in boilers such as heat load greatly affect the ash deposition behavior. ...

Katsuya Akiyama; Haeyang Pak; Toshiya Tada; Yasuaki Ueki; Ryo Yoshiie; Ichiro Naruse

2010-07-22T23:59:59.000Z

271

Coal combustion under conditions of blast furnace injection. [Quarterly] technical report, 1 March 1993--31 May 1993  

SciTech Connect (OSTI)

A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. The basic program is designed to determine the reactivity of both coal and its derived char under blast furnace conditions and to compare the results to similar properties of blast furnace coke. The results of the first two experiments in which coal char pyrolyzed in nitrogen at 1000{degrees}C in an EPR were reacted isothermally in air at 1000{degrees}C and 1200{degrees}C. The reactivity values of the same char in these two experiments were different by an order of magnitude. The char reactivity at 1000{degrees}C was 9.7 {times} 10{sup {minus}4} grams per minute while the reactivity. of the char at 1200{degrees}C was 1.6 {times} 10{sup {minus}3} grams per minute. These results suggest that the temperature of the blast air in the tuyere may be critical in achieving complete carbon burnout.

Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology; Case, E.R. [Armco, Inc., Middletown, OH (United States). Research and Technology Div.

1993-09-01T23:59:59.000Z

272

Adsorption Behavior of CO2 in Coal and Coal Char  

Science Journals Connector (OSTI)

Coals of diverse characteristics have been chosen to provide a better understanding on the influence of various coal properties, such as maceral, volatile matter, and ash contents. ... In addition, char samples from two of these coals (a non-coking coal A and a coking coal B) were prepared by pyrolysis at 800 and 1000 °C in a nitrogen atmosphere and were tested for CO2 adsorption capacity. ... As stated earlier, virgin coal samples considered for the adsorption measurements include coals A, C, and D, which are of low-, high-, and medium-volatile sub-bituminous rank, respectively. ...

Shanmuganathan Ramasamy; Pavan Pramod Sripada; Md Moniruzzaman Khan; Su Tian; Japan Trivedi; Rajender Gupta

2014-07-01T23:59:59.000Z

273

Coal-to-Liquids in the U S Status and Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to-Liquids in the United States to-Liquids in the United States Status and Roadmap CTLtec Americas 2008 June 23 - 24, 2008 Daniel C. Cicero, Technology Manager, Hydrogen and Syngas National Energy Technology Laboratory CTL Tec Americas 2008 / Daniel Cicero / U.S. DOE-NETL / June 2008 * 35% of world energy consumption is from oil 2 * 96% of all world oil used for transportation * World vehicle population at 700 million; - double by 2030 to 1.5 billion; - developing countries to triple * World oil consumption is 84 MMBPD - 20% higher than 1995 - expect 120 MMBPD by 2030 * World oil supplies could peak between 2016 and 2037 3 * Increasing competition with China, India, and other growing nations for oil resources * Oil resources not equitably distributed globally; coal more wide spread 2 Ref: World Coal Institute Report "Coal-to-Liquids"

274

Regional Shares of World Carbon Emissions, 1997 and 2020  

Gasoline and Diesel Fuel Update (EIA)

Shares of World Carbon Emissions, 1997 and 2020 Shares of World Carbon Emissions, 1997 and 2020 Source: EIA, International Energy Outlook 2000 Previous slide Back to first slide View graphic version Notes: By country, the world's dominant coal consumers-the United States and China-were also the top two contributors to world carbon emissions in 1997, at 24 percent and 13 percent of the world total, respectively. By 2020, however, the U.S. share of world carbon emissions is projected to decline to 20 percent, with China's share increasing to 21 percent. The substantial increase in carbon emissions in China over the period is attributable to expectations of strong economic growth and the country's continuing heavy reliance on fossil fuels, especially coal which remains the country's primary source of energy.

275

Uncovering Coal's Secrets Through the University Coal Research Program |  

Broader source: Energy.gov (indexed) [DOE]

Uncovering Coal's Secrets Through the University Coal Research Uncovering Coal's Secrets Through the University Coal Research Program Uncovering Coal's Secrets Through the University Coal Research Program December 18, 2013 - 10:38am Addthis Uncovering Coal’s Secrets Through the University Coal Research Program The challenges confronting the environmentally sound use of our country's fossil energy resources are best addressed through collaborative research and development. That's why this approach, which stretches federal dollars, is at the heart of the Office of Fossil Energy's University Coal Research (UCR) Program. Managed by the National Energy Technology Laboratory (NETL), the UCR program funds university research to improve understanding of the chemical and physical properties of coal, one of our nation's most abundant

276

Coated graphite articles useful in metallurgical processes and method for making same  

DOE Patents [OSTI]

Graphite articles including crucibles and molds used in metallurgical processes involving the melting and the handling of molten metals and alloys that are reactive with carbon when in a molten state and at process temperatures up to about 2000.degree. C. are provided with a multiple-layer coating for inhibiting carbon diffusion from the graphite into the molten metal or alloys. The coating is provided by a first coating increment of a carbide-forming metal on selected surfaces of the graphite, a second coating increment of a carbide forming metal and a refractory metal oxide, and a third coating increment of a refractory metal oxide. The second coating increment provides thermal shock absorbing characteristics to prevent delamination of the coating during temperature cycling. A wash coat of unstabilized zirconia or titanium nitride can be applied onto the third coating increment to facilitate release of melts from the coating.

Holcombe, Cressie E. (Knoxville, TN); Bird, Eugene L. (Knoxville, TN)

1995-01-01T23:59:59.000Z

277

Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. First quarter 1995  

SciTech Connect (OSTI)

During first quarter 1995, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, field measurements, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Total organic halogens exceeded its Savannah River Site (SRS) Flag 2 criterion during first quarter 1995 as in fourth quarter 1994. Aluminum, iron, and manganese, which were not analyzed for during fourth quarter 1994, exceeded the Flag 2 criteria in at least two wells each during first quarter 1995. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting the determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters.

NONE

1995-06-01T23:59:59.000Z

278

Solar-Grade Silicon from Metallurgical-Grade Silicon Via Iodine Chemical Vapor Transport Purification: Preprint  

SciTech Connect (OSTI)

This conference paper describes the atmospheric-pressure in an ''open'' reactor, SiI2 transfers from a hot (>1100C) Si source to a cooler (>750C) Si substrate and decomposes easily via 2SiI2 Si+ SiI4 with up to 5?m/min deposition rate. SiI4 returns to cyclically transport more Si. When the source is metallurgical-grade Si, impurities can be effectively removed by three mechanisms: (1) differing free energies of formation in forming silicon and impurity iodides; (2) distillation; and (3) differing standard free energies of formation during deposition. Distillation has been previously reported. Here, we focused on mechanisms (1) and (3). We made feedstock, analyzed the impurity levels, grew Czochralski single crystals, and evaluated crystal and photovoltaic properties. Cell efficiencies of 9.5% were obtained. Incorporating distillation (step 2) should increase this to a viable level.

Ciszek, T. F.; Wang, T. H.; Page, M. R.; Bauer, R. E.; Landry, M. D.

2002-05-01T23:59:59.000Z

279

Conditioner for flotation of coal  

SciTech Connect (OSTI)

A method for recovering coal is described which comprises the steps of floating coal in an aqueous frothing medium containing an amount of a condensation product of an alkanolamine and naphthenic acid sufficient to increase the recovery of coal as compared to the recovery of coal in an identical process using none of the condensation product.

Nimerick, K.H.

1988-03-22T23:59:59.000Z

280

Coal market momentum converts skeptics  

SciTech Connect (OSTI)

Tight supplies, soaring natural gas prices and an improving economy bode well for coal. Coal Age presents it 'Forecast 2006' a survey of 200 US coal industry executives. Questions asked included predicted production levels, attitudes, expenditure on coal mining, and rating of factors of importance. 7 figs.

Fiscor, S.

2006-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "world metallurgical coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Coal Science: Basic Research Opportunities  

Science Journals Connector (OSTI)

...carbon is arranged in coal becomes real. What...NMR experiments at high temperatures. This...of characterizing high-boiling coal "liquids" which...reactions. Coal mineral matter. Most U.S. coals...burned is called ash. Techniques are...

Martin L. Gorbaty; Franklin J. Wright; Richard K. Lyon; Robert B. Long; Richard H. Schlosberg; Zeinab Baset; Ronald Liotta; Bernard G. Silbernagel; Dan R. Neskora

1979-11-30T23:59:59.000Z

282

Structure and thermoplasticity of coal  

SciTech Connect (OSTI)

Chapters cover: molecular structure and thermoplastic properties of coal; {sup 1}H-nmr study of relaxation mechanisms of coal aggregate; structural changes of coal macromolecules during softening; quantitative estimation of metaplsat in heat-treated coal by solvent extraction; effects of surface oxidation on thermoplastic properties of coal; analysis of dilatation and contraction of coal during carbonization; formation mechanisms of coke texture during resolidification; modified CPD model for coal devolatilization; mathematical modelling of coke mechanical structure; and simulating particulate dynamics in the carbonization process based on discrete element treatment.

Komaki, I.; Itagaki, S.; Miura, T. (eds.)

2004-07-01T23:59:59.000Z

283

PressurePressure Indiana Coal Characteristics  

E-Print Network [OSTI]

TimeTime PressurePressure · Indiana Coal Characteristics · Indiana Coals for Coke · Coal Indiana Total Consumption Electricity 59,664 Coke 4,716 Industrial 3,493 Major Coal- red power plantsTransportation in Indiana · Coal Slurry Ponds Evaluation · Site Selection for Coal Gasification · Coal-To-Liquids Study, CTL

Fernández-Juricic, Esteban

284

Upgrading of low-rank coals for conventional and advanced combustion systems  

SciTech Connect (OSTI)

Low-rank coals, subbituminous, lignitic, and brown coals, have a ubiquitous presence in the world, being found in all continents. Close to half of the world`s estimated coal resources are low- rank coals. Many countries have no alternative economic source of energy. In the lower 48 states of the United States, there are 220 billion tons of economically recoverable reserves of lignite and subbituminous coal. Add to this quantity 5 trillion tons of predominantly subbituminous coal in Alaska, and the combined amount represents the largest supply of the lowest-cost fuels available for generating electric power in the United States. However, to use these coals cost-effectively and in an environmentally acceptable way, it is imperative that their properties and combustion/gasification behavior be well understood. The Energy and Environmental Research Center (EERC) takes a cradle-to-grave approach (i.e., mining, precleaning, combustion/gasification, postcleaning, and reuse and disposal of residues) for all aspects of coal processing and utilization. The environmental impact of these activities must be matched with the appropriate technologies. Experience over many years has shown that variations in coal and ash properties have a critical impact on design, reliability and efficiency of operation, and environmental compliance when low-rank coals are burned in conventional systems. This chapter reviews the significant technical issues of beneficiation, which includes reduction in moisture as well as ash (including sulfur), in relation to low-rank coal properties and their impact on conventional and advanced power systems. Finally, the development and utilization of low-rank coal resources are briefly discussed in view of policy, economic, and strategic issues.

Young, B.C.; Musich, M.A.; Jones, M.L.

1993-12-31T23:59:59.000Z

285

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 914 12 66 - 992 Alabama River 949 - - - 949 Alabama Truck 78 189 237 - 504 Alabama Total 1,941 201 303 - 2,445 Colorado Railroad 575 - - - 575 Illinois River 99 - - - 99 Indiana River 241 - - - 241 Kentucky Railroad 827 - 12 - 839 Kentucky (East) Railroad 76 - - - 76 Kentucky (West) Railroad

286

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 839 11 83 - 933 Alabama River 1,347 - - - 1,347 Alabama Truck 118 216 236 - 571 Alabama Total 2,304 227 320 - 2,850 Colorado Railroad 514 - - - 514 Illinois River 99 - - - 99 Indiana River 172 - - - 172 Kentucky Railroad 635 - 11 - 647 Kentucky (East) Railroad 45 - - - 45 Kentucky (West)

287

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 944 16 77 - 1,037 Alabama River 781 - - - 781 Alabama Truck 77 224 220 - 521 Alabama Total 1,802 240 298 - 2,340 Colorado Railroad 385 - - - 385 Illinois River 15 - - - 15 Indiana Railroad 1 - - - 1 Indiana River 350 - - - 350 Indiana Total 351 - - - 351 Kentucky Railroad 682 - 2 - 685 Kentucky (East)

288

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

June 2010 DOE/EIA-0121 (2010/01Q) June 2010 DOE/EIA-0121 (2010/01Q) Revised: July 2012 Quarterly Coal Report January - March 2010 June 2010 U.S. Energy Information Administration Office of Oil, Gas, and Coal Supply Statistics U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.gov/coal/production/quarterly/ _____________________________________________ This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

289

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 907 10 59 - 975 Alabama River 903 - - - 903 Alabama Truck 150 144 253 - 546 Alabama Total 1,960 153 311 - 2,424 Colorado Railroad 640 - - - 640 Illinois River 123 - - - 123 Indiana River 312 - - - 312 Kentucky Railroad 622 - 36 - 658 Kentucky (East) Railroad 96 - 36 - 132 Kentucky (West)

290

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,896 182 327 - 2,405 Alabama Railroad 1,192 2 74 - 1,268 Alabama River 655 - - - 655 Alabama Truck 50 180 253 - 482 Colorado Total 468 - - - 468 Colorado Railroad 468 - - - 468 Illinois Total 90 - 26 - 116 Illinois River 90 - 26 - 116 Indiana Total 181 - - - 181 Indiana River 181 -

291

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2012 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,407 184 231 - 1,822 Alabama Railroad 801 9 49 - 859 Alabama River 519 - - - 519 Alabama Truck 87 175 182 - 444 Colorado Total 82 - - - 82 Colorado Railroad 82 - - - 82 Illinois Total 149 - 14 - 163 Illinois Railroad 44 - - - 44 Illinois River 105 - 14 - 119 Indiana Total 99 - - - 99

292

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) Quarterly Coal Report January - March 2008 July 2008 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

293

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Quarterly Coal Report April - June 2009 September 2009 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

294

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

7/01Q) 7/01Q) Quarterly Coal Report January - March 2007 June 2007 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

295

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 914 12 66 - 992 Alabama River 949 - - - 949 Alabama Truck 78 189 237 - 504 Alabama Total 1,941 201 303 - 2,445 Georgia Railroad 23 - - - 23 Georgia Truck s - - - s Georgia Total 23 - - - 23 Indiana Railroad - 115 - - 115 Indiana Truck - 71 - - 71 Indiana Total - 186 - - 186 Tennessee Railroad - - 1 - 1 Tennessee Truck

296

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

3Q) 3Q) Quarterly Coal Report July - September 2008 December 2008 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

297

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Quarterly Coal Report April - June 2008 September 2008 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

298

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

8/04Q) 8/04Q) Quarterly Coal Report October - December 2008 March 2009 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

299

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 1,040 18 80 - 1,138 Alabama River 668 - - - 668 Alabama Truck 52 164 223 - 438 Alabama Total 1,760 181 303 - 2,244 Colorado Railroad 600 - - - 600 Illinois River 203 - 13 - 217 Indiana River 180 - - - 180 Kentucky Railroad 465 - 10 - 475 Kentucky (West) Railroad 465 - 10 - 475 Utah Railroad 18 - - -

300

Coal combustion products (CCPs  

Broader source: Energy.gov (indexed) [DOE]

combustion products (CCPs) combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge. When properly managed, CCPs offer society environmental and economic benefits without harm to public health and safety. Research supported by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE) has made an important contribution in this regard. Fossil Energy Research Benefits Coal Combustion Products Fossil Energy Research Benefits

Note: This page contains sample records for the topic "world metallurgical coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Modelling coal gasification  

Science Journals Connector (OSTI)

Coal gasification processes in a slurry-feed-type entrained-flow gasifier are studied. Novel simulation methods as well as numerical results are presented. We use the vorticity-stream function method to study the characteristics of gas flow and a scalar potential function is introduced to model the mass source terms. The random trajectory model is employed to describe the behaviour of slurry-coal droplets. Very detailed results regarding the impact of the O2/coal ratio on the distribution of velocity, temperature and concentration are obtained. Simulation results show that the methods are feasible and can be used to study a two-phase reacting flow efficiently.

Xiang Jun Liu; Wu Rong Zhang; Tae Jun Park

2001-01-01T23:59:59.000Z

302

Coal liquefaction process  

DOE Patents [OSTI]

A process is described for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range. 1 fig.

Wright, C.H.

1986-02-11T23:59:59.000Z

303

Coal liquefaction process  

DOE Patents [OSTI]

A process for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range.

Wright, Charles H. (Overland Park, KS)

1986-01-01T23:59:59.000Z

304

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,486 155 328 - 1,970 Alabama Railroad 1,020 - 75 - 1,095 Alabama River 417 - - - 417 Alabama Truck 49 155 253 - 458 Colorado Total 195 - - - 195 Colorado Railroad 195 - - - 195 Illinois Total 127 - 18 - 145 Illinois Railroad 20 - - - 20 Illinois River 107 - 18 - 125 Indiana Total

305

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2012 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,407 184 231 - 1,822 Alabama Railroad 801 9 49 - 859 Alabama River 519 - - - 519 Alabama Truck 87 175 182 - 444 Georgia Total s - s - s Georgia Truck s - s - s Indiana Total - 98 - - 98 Indiana Railroad - 98 - - 98 Kentucky Total - - 12 - 12 Kentucky Truck - - 12 - 12 Ohio Total - 30 - - 30 Ohio

306

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,942 160 335 - 2,437 Alabama Railroad 1,149 - 57 - 1,206 Alabama River 741 - - - 741 Alabama Truck 52 160 278 - 490 Colorado Total 621 2 - - 623 Colorado Railroad 621 2 - - 623 Illinois Total 113 - 11 - 123 Illinois River 113 - 11 - 123 Indiana Total 265 - - - 265 Indiana Railroad

307

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2011 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,896 182 327 - 2,405 Alabama Railroad 1,192 2 74 - 1,268 Alabama River 655 - - - 655 Alabama Truck 50 180 253 - 482 Georgia Total s - - - s Georgia Truck s - - - s Indiana Total - 72 - - 72 Indiana Railroad - 72 - - 72 Tennessee Total - - 7 - 7 Tennessee Truck - - 7 - 7 Origin State Total 1,896

308

Discharge produces hydrocarbons from coal  

Science Journals Connector (OSTI)

Discharge produces hydrocarbons from coal ... Studies of the reactions of coal in electric discharges by two chemists at the U.S. Bureau of Mines' Pittsburgh Coal Research Center may lead to improved ways of producing acetylene and other useful chemicals from coal. ... Other workers have produced high yields of acetylene from coal by extremely rapid pyrolysis using energy sources such as plasma jets, laser beams, arc-image reactors, and flash heaters. ...

1968-01-22T23:59:59.000Z

309

Coal characterisation for \\{NOx\\} prediction in air-staged combustion of pulverised coals  

Science Journals Connector (OSTI)

A series of world-traded coal samples has been tested using the Imperial College high temperature wire mesh apparatus (HTWM) in order to assess the relationship between high temperature (1600°C) char nitrogen content and \\{NOx\\} formation in Hemweg Power Station (in the Netherlands) using deep furnace air staging. A linear relationship between high temperature char nitrogen and \\{NOx\\} formation has been confirmed. These results suggest that high temperature char N content is the main factor limiting \\{NOx\\} emissions with deep air-staged combustion. Char N and (hence apparently deep air-staged NOx) can be predicted with an accuracy of approximately ±20% for most coals from the coal proximate and ultimate analysis—but this might not be sufficient for stations operating close to their emission limits. Measuring high temperature char N directly reduces the likely uncertainty in deep air-staged \\{NOx\\} emissions for coals (and most blends) to approximately ±10%. Its use should be considered on a routine basis for coal selection on plants employing this technology.

C.K. Man; J.R. Gibbins; J.G. Witkamp; J. Zhang

2005-01-01T23:59:59.000Z

310

Year Average Transportation Cost of Coal  

Gasoline and Diesel Fuel Update (EIA)

delivered costs of coal, by year and primary transport mode Year Average Transportation Cost of Coal (Dollars per Ton) Average Delivered Cost of Coal (Dollars per Ton)...

311

A Stoichiometric Analysis of Coal Gasification  

Science Journals Connector (OSTI)

A Stoichiometric Analysis of Coal Gasification ... Gasification of New Zealand Coals: A Comparative Simulation Study ... Gasification of New Zealand Coals: A Comparative Simulation Study ...

James Wei

1979-07-01T23:59:59.000Z

312

Pore Structure of the Argonne Premium Coals  

Science Journals Connector (OSTI)

Pore Structure of the Argonne Premium Coals ... Constitution of Illinois No. 6 Argonne Premium Coal: A Review ... Constitution of Illinois No. 6 Argonne Premium Coal: A Review ...

John W. Larsen; Peter Hall; Patrick C. Wernett

1995-03-01T23:59:59.000Z

313

Density Measurements of Argonne Premium Coal Samples  

Science Journals Connector (OSTI)

Density Measurements of Argonne Premium Coal Samples ... Constitution of Illinois No. 6 Argonne Premium Coal: A Review ... Constitution of Illinois No. 6 Argonne Premium Coal: A Review ...

He Huang; Keyu Wang; David M. Bodily; V. J. Hucka

1995-01-01T23:59:59.000Z

314

Clean Coal Power Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean Coal Power Initiative Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other...

315

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

12 2.6. International coal prices and18 International coal prices and trade In parallel with the2001, domestic Chinese coal prices moved from stable levels

Aden, Nathaniel

2010-01-01T23:59:59.000Z

316

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

19 3.4. Coking coal for iron & steels FOB export value for coking coal was relatively stables FOB export value for coking coal significantly increased

Aden, Nathaniel

2010-01-01T23:59:59.000Z

317

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

of deploying advanced coal power in the Chinese context,”12 2.6. International coal prices and12 III. Chinese Coal

Aden, Nathaniel

2010-01-01T23:59:59.000Z

318

WEAR RESISTANT ALLOYS FOR COAL HANDLING EQUIPMENT  

E-Print Network [OSTI]

Proceedings of the Conference on Coal Feeding Systems, HeldWear Resistant Alloys for Coal Handling Equipment", proposalWear Resistant Alloys for Coal Handling Equi pment". The

Bhat, M.S.

2011-01-01T23:59:59.000Z

319

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic29 Figure 9. Sensitivity to Coal

Phadke, Amol

2008-01-01T23:59:59.000Z

320

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

to have indicated economic coal reserves of at least 15tonnes of indicated economic coal reserves. Map 1: Chinaand economic assessment of deploying advanced coal power in

Aden, Nathaniel

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "world metallurgical coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DOE-Supported Project Advances Clean Coal, Carbon Capture Technology |  

Broader source: Energy.gov (indexed) [DOE]

DOE-Supported Project Advances Clean Coal, Carbon Capture DOE-Supported Project Advances Clean Coal, Carbon Capture Technology DOE-Supported Project Advances Clean Coal, Carbon Capture Technology January 29, 2013 - 12:00pm Addthis Washington, DC - Researchers at The Ohio State University (OSU) have successfully completed more than 200 hours of continuous operation of their patented Coal-Direct Chemical Looping (CDCL) technology - a one-step process to produce both electric power and high-purity carbon dioxide (CO2). The test, led by OSU Professor Liang-Shih Fan, represents the longest integrated operation of chemical looping technology anywhere in the world to date. The test was conducted at OSU's 25 kilowatt thermal (kWt) CDCL combustion sub-pilot unit under the auspices of DOE's Carbon Capture Program, which is developing innovative environmental control technologies to foster the

322

DOE-Supported Project Advances Clean Coal, Carbon Capture Technology |  

Broader source: Energy.gov (indexed) [DOE]

DOE-Supported Project Advances Clean Coal, Carbon Capture DOE-Supported Project Advances Clean Coal, Carbon Capture Technology DOE-Supported Project Advances Clean Coal, Carbon Capture Technology January 29, 2013 - 12:00pm Addthis Washington, DC - Researchers at The Ohio State University (OSU) have successfully completed more than 200 hours of continuous operation of their patented Coal-Direct Chemical Looping (CDCL) technology - a one-step process to produce both electric power and high-purity carbon dioxide (CO2). The test, led by OSU Professor Liang-Shih Fan, represents the longest integrated operation of chemical looping technology anywhere in the world to date. The test was conducted at OSU's 25 kilowatt thermal (kWt) CDCL combustion sub-pilot unit under the auspices of DOE's Carbon Capture Program, which is developing innovative environmental control technologies to foster the

323

SNG Production from Coal: A Possible Solution to Energy Demand  

Science Journals Connector (OSTI)

Abstract In some areas of the world, natural gas demand cannot be fully satisfied either by domestic sources or foreign imports, while abundant coal resources are available. The conversion of coal to Substitute Natural Gas, SNG, by coal gasification and subsequent syngas methanation is one of the possible solutions to solve the problem. Foster Wheeler has developed a simple process for SNG production, named VESTA, utilizing catalysts from Clariant. The process concept has been proven by laboratory tests, and a demonstration unit will soon be completed. The VESTA process is very flexible and can handle syngas coming from several sources such as coal, biomass, petroleum coke and solid waste. In this paper our overview of the technology and its development status will be outlined.

Letizia Romano; Fabio Ruggeri; Robert Marx

2014-01-01T23:59:59.000Z

324

Safety at coal mines: what role does methane play?  

SciTech Connect (OSTI)

The recent Sago Mine disaster in West Virginia and other widely publicized coal mine accidents around the world have received a great deal of attention and have generated some confusion about the link between methane drainage and safety. In response, this article provides an overview of safety concerns faced by coal mines and how they do or do not relate to methane. The first section explains the variety of safety issues a coal mine must take into consideration, including methane build-up. The second section summarizes the recent coal mines accident at Sago Mine in West Virginia. The final section describes the regulatory and legislative responses in the US. 2 refs., 2 figs.

NONE

2006-04-01T23:59:59.000Z

325

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 December 2008 2007 Changes in Coal Distribution Table Format and Data Sources The changes in the coal distribution data sources made in 2006 are carried over to the 2007 tables. As in 2006, EIA used data from the EIA-3 survey to distribute synfuel to the electric generation sector on a state level, aggregated with all of the other coal (such as bituminous, subbituminous, and lignite coal) sent to electric generating plants. EIA supplemented the EIA-3 data with previously collected information to determine the mode of transportation from the synfuel plant to the electric generating consumer, which was not reported on the EIA-3A survey form. Although not contained in the EIA-6A master file, this information has been documented in an ancillary spreadsheet in the EIA

326

Coal Utilization Science Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Utilization SCienCe Program Coal Utilization SCienCe Program Description The Coal Utilization Science (CUS) Program sponsors research and development (R&D) in fundamental science and technology areas that have the potential to result in major improvements in the efficiency, reliability, and environmental performance of advanced power generation systems using coal, the Nation's most abundant fossil fuel resource. The challenge for these systems is to produce power in an efficient and environmentally benign manner while remaining cost effective for power providers as well as consumers. The CUS Program is carried out by the National Energy Technology Laboratory (NETL) under the Office of Fossil Energy (FE) of the U.S. Department of Energy (DOE). The program supports DOE's Strategic Plan to:

327

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

Methodology Methodology EIA uses the confidential version of the STB Waybill data, which includes actual revenue for shipments that originate and terminate at specific locations. The STB Waybill data are a sample of all rail shipments. EIA's 2011 report describes the sampling procedure. EIA aggregates the confidential STB data to three different levels: national, coal-producing basin to state, and state to state. EIA applies STB withholding rules to the aggregated data to identify records that must be suppressed to protect business-sensitive data. Also, EIA adds additional location fields to the STB data, identifying the mine from which the coal originates, the power plant that receives the coal, and, in some cases, an intermediate delivery location where coal is terminated by the initial carrier but then

328

Entrainment Coal Gasification Modeling  

Science Journals Connector (OSTI)

Entrainment Coal Gasification Modeling ... Equivalent Reactor Network Model for Simulating the Air Gasification of Polyethylene in a Conical Spouted Bed Gasifier ... Equivalent Reactor Network Model for Simulating the Air Gasification of Polyethylene in a Conical Spouted Bed Gasifier ...

C. Y. Wen; T. Z. Chaung

1979-10-01T23:59:59.000Z

329

On Coal-Gas  

Science Journals Connector (OSTI)

1860-1862 research-article On Coal-Gas W. R. Bowditch The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings of the Royal Society of London. www.jstor.org

1860-01-01T23:59:59.000Z

330

Aqueous coal slurry  

DOE Patents [OSTI]

An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

Berggren, Mark H. (Golden, CO); Smit, Francis J. (Arvada, CO); Swanson, Wilbur W. (Golden, CO)

1993-01-01T23:59:59.000Z

331

Clean Coal Technology (Indiana)  

Broader source: Energy.gov [DOE]

A public utility may not use clean coal technology at a new or existing electric generating facility without first applying for and obtaining from the Utility Regulatory Commission a certificate...

332

Quarterly coal report  

SciTech Connect (OSTI)

The Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for October through December 1995 and aggregated quarterly historical data for 1987 through the third quarter of 1995. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

Young, P.

1996-05-01T23:59:59.000Z

333

Rail Coal Transportation Rates  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Survey data. Each plant receiving CAPP or PRB coal in 2007 and 2010 were mapped and their data used to estimate costs for other cells by interpolating values based on inverse...

334

Clean Coal Research  

Broader source: Energy.gov [DOE]

DOE's clean coal R&D is focused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled...

335

Proximate analysis of coal  

SciTech Connect (OSTI)

This lab experiment illustrates the use of thermogravimetric analysis (TGA) to perform proximate analysis on a series of coal samples of different rank. Peat and coke are also examined. A total of four exercises are described. These are dry exercises as students interpret previously recorded scans. The weight percent moisture, volatile matter, fixed carbon, and ash content are determined for each sample and comparisons are made. Proximate analysis is performed on a coal sample from a local electric utility. From the weight percent sulfur found in the coal (determined by a separate procedure the Eschka method) and the ash content, students calculate the quantity of sulfur dioxide emissions and ash produced annually by a large coal-fired electric power plant.

Donahue, C.J.; Rais, E.A. [University of Michigan, Dearborn, MI (USA)

2009-02-15T23:59:59.000Z

336

WCI Case for Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with the steam cycle of coal-fired power plants offers the potential to convert 40% of solar energy into electricity. This compares to 13% for large-scale photovoltaic systems,...

337

Coal Supply Region  

Gasoline and Diesel Fuel Update (EIA)

Implicit Price Deflators for Gross Domestic Product, as published by the U.S. Bureau of Economic Analysis. For the composition of coal basins, refer to the definition of...

338

Coal to Liquids Technologies  

Science Journals Connector (OSTI)

By the mid-1940s, natural gas and oil production had become more developed and cost-competitive with coal, and technology for production of synthetic transportation fuels was not considered economic after the Sec...

Marianna Asaro; Ronald M. Smith

2013-01-01T23:59:59.000Z

339

Coal to Liquids Technologies  

Science Journals Connector (OSTI)

By the mid-1940s, natural gas and oil production had become more developed and cost-competitive with coal, and technology for production of synthetic transportation fuels was not considered economic after the Sec...

Marianna Asaro; Ronald M. Smith

2012-01-01T23:59:59.000Z

340

Dilmaya's World  

E-Print Network [OSTI]

burning on a funeral pyre. I had never lived for more than a day or in a world without toilets or toilet papers, where there was no central heating and no window glass to keep out the cold Himalayan winds. * * * Short of finding the very... infancy to puberty in a remote Himalayan village. So Dilmaya allowed this, as well as encouraging our love for her sons and husband. All this was achieved while she looked after us physically and stretched her mind and body to the limits...

Alan, Macfarlane

2014-08-27T23:59:59.000Z

Note: This page contains sample records for the topic "world metallurgical coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Coal liquefaction process  

DOE Patents [OSTI]

This invention relates to an improved process for the production of liquid carbonaceous fuels and solvents from carbonaceous solid fuels, especially coal. The claimed improved process includes the hydrocracking of the light SRC mixed with a suitable hydrocracker solvent. The recycle of the resulting hydrocracked product, after separation and distillation, is used to produce a solvent for the hydrocracking of the light solvent refined coal.

Skinner, Ronald W. (Allentown, PA); Tao, John C. (Perkiomenville, PA); Znaimer, Samuel (Vancouver, CA)

1985-01-01T23:59:59.000Z

342

Coal science for the clean use of coal  

SciTech Connect (OSTI)

Coal will need to be retained as a major source of energy in the next century. It will need to be used more effectively and more cleanly. In order to achieve this, it is necessary to introduce new technology supported by a local community of science and technology. Only in this way can the full benefits of international advances in coal utilization be fully achieved. It is important that full advantage be taken of the advances that have been achieved in laboratory techniques and in the better understanding of fundamental coal science. This paper reviews available technologies in power generation, industrial process heat, coal combustion, coal gasification, and coal analytical procedures.

Harrison, J.S. [Univ. of Leeds (United Kingdom)

1994-12-31T23:59:59.000Z

343

World Energy Consumption by Fuel Type, 1970-2020  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: Natural gas is projected to be the fastest-growing component of primary world energy consumption, more than doubling between 1997 and 2020. Gas accounts for the largest increment in electricity generation (41 percent of the total increment of energy used for electricity generation). Combined-cycle gas turbine power plants offer some of the highest commercially available plant efficiencies, and natural gas is environmentally attractive because it emits less sulfur dioxide, carbon dioxide, and particulate matter than does oil or coal. In the IEO2000 projection, world natural gas consumption reaches the level of coal by 2005, and by 2020 gas use exceeds coal by 29 percent. Oil currently provides a larger share of world energy consumption than any other energy source and is expected to remain in that position

344

5 World Oil Trends WORLD OIL TRENDS  

E-Print Network [OSTI]

5 World Oil Trends Chapter 1 WORLD OIL TRENDS INTRODUCTION In considering the outlook for California's petroleum supplies, it is important to give attention to expecta- tions of what the world oil market. Will world oil demand increase and, if so, by how much? How will world oil prices be affected

345

Weekly Coal Production by State  

U.S. Energy Information Administration (EIA) Indexed Site

Weekly Coal Production Weekly Coal Production Data for week ended: December 14, 2013 | Release date: December 19, 2013 | Next release date: December 30, 2013 For the week ended December 14, 2013: U.S. coal production totaled approximately 18.9 million short tons (mmst) This production estimate is 3.1% higher than last week's estimate and 2.9% lower than the production estimate in the comparable week in 2012 Coal production east of the Mississippi River totaled 8.2 mmst Coal production west of the Mississippi River totaled 10.8 mmst U.S. year-to-date coal production totaled 957.1 mmst, 1.9% lower than the comparable year-to-date coal production in 2012 EIA revises its weekly estimates of state-level coal production using Mine Safety and Health Administration (MSHA) quarterly coal production data.

346

M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities groundwater monitoring and corrective-action report (U). Third and fourth quarters 1996, Vol. I  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1996.

NONE

1997-03-01T23:59:59.000Z

347

Metallurgical Transactions B, Vol. 27B, No. 4 (August), 1996, pp. 617-632. Intermixing Model of Continuous Casting during a Grade Transition  

E-Print Network [OSTI]

1 Metallurgical Transactions B, Vol. 27B, No. 4 (August), 1996, pp. 617-632. Intermixing Model conditions should be chosen to minimize the amount of intermixed steel, and / or a secondary market must

Thomas, Brian G.

348

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

2 Syngas (H2 + CO + CO2) Coal Gasifier coal Fuel Production/2 Syngas (H2 + CO + CO2) Coal Gasifier coal Fuel Production/this operational mode, the gasifiers and other parts of the

Phadke, Amol

2008-01-01T23:59:59.000Z

349

Definition: Anthracite coal | Open Energy Information  

Open Energy Info (EERE)

coal Jump to: navigation, search Dictionary.png Anthracite coal A hard, brittle, and black lustrous coal, often referred to as hard coal; contains 86-97% carbon, and generally has...

350

Optimization of experimental conditions for recovery of coking coal fines by oil agglomeration technique  

Science Journals Connector (OSTI)

The significance of coking coal in the metallurgical sector as well as the meager coking coal reserves across the globe increase the necessity to recover coking coal fines from the fine coking coal slurries generated from coal preparation and utilization activities. Oil agglomeration studies were carried out by varying the experimental conditions for maximum recovery of coking coal fines i.e., yield of the agglomerates. The various operational parameters studied were oil dosage, agitation speed, agglomeration time and pulp density. By using Taguchi experimental design, oil dosage (20%), agitation speed (1100 rpm), agglomeration time (3 min) and pulp density (4.5%) were identified as the optimized conditions. A confirmation experiment has also been carried out at the optimized conditions. The percentage contribution of each parameter on agglomerate yield was analyzed by adopting analysis of variance (ANOVA) statistical method as well as multiple linear regression analysis. The order of influence of the parameters on the agglomerate yield is of the following order: pulp density > oil dosage > agitation speed > agglomeration time. A mathematical model was developed to fit the set of experimental conditions with the yield obtained at each test run and also at the optimized conditions. The experimentally obtained yield was compared with the predicted yield of the model and the results indicate a maximum error of 5% between the two. A maximum yield of 90.42% predicted at the optimized conditions appeared to be in close agreement with the experimental yield thus indicating the accuracy of the model in predicting the results.

G.H.V.C. Chary; M.G. Dastidar

2010-01-01T23:59:59.000Z

351

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

of coal sulfur K-T gasification process SRC I process U. S.flow sheet of a K-T coal gasification complex for producingProduction via K-T Gasification" © CEP Aug. 78. Feed

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

352

Method of extracting coal from a coal refuse pile  

DOE Patents [OSTI]

A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

Yavorsky, Paul M. (Monongahela, PA)

1991-01-01T23:59:59.000Z

353

Coking properties of coal pitch in coal batch  

Science Journals Connector (OSTI)

The coking properties of coal pitch depend significantly on its fractional composition, ... : 2: 2. This is typical of coal pitch with a softening temperature of 75– ... Such pitch is the best clinkering additive...

S. G. Gagarin; Yu. I. Neshin

2011-09-01T23:59:59.000Z

354

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

application of new clean coal technologies with near zeroapplication of new clean coal technologies with near zero

Phadke, Amol

2008-01-01T23:59:59.000Z

355

Composition and properties of coals from the Yurty coal occurrence  

SciTech Connect (OSTI)

Coals from the Yurty coal occurrence were studied. It was found that the samples were brown non-coking coals with low sulfur contents (to 1%) and high yields of volatile substances. The high heat value of coals was 20.6-27.7 MJ/kg. The humic acid content varied from 5.45 to 77.62%. The mineral matter mainly consisted of kaolinite, a-quartz, and microcline. The concentration of toxic elements did not reach hazardous values.

N.G. Vyazova; L.N. Belonogova; V.P. Latyshev; E.A. Pisar'kova [Irkutsk State University, Irkutsk (Russia). Research Institute of Oil and Coal Chemistry and Synthesis

2008-10-15T23:59:59.000Z

356

Coal combustion system  

DOE Patents [OSTI]

In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN); Tramm, Peter C. (Indianapolis, IN)

1988-01-01T23:59:59.000Z

357

Metallurgical failure analysis of a propane tank boiling liquid expanding vapor explosion (BLEVE).  

SciTech Connect (OSTI)

A severe fire and explosion occurred at a propane storage yard in Truth or Consequences, N.M., when a truck ran into the pumping and plumbing system beneath a large propane tank. The storage tank emptied when the liquid-phase excess flow valve tore out of the tank. The ensuing fire engulfed several propane delivery trucks, causing one of them to explode. A series of elevated-temperature stress-rupture tears developed along the top of a 9800 L (2600 gal) truck-mounted tank as it was heated by the fire. Unstable fracture then occurred suddenly along the length of the tank and around both end caps, along the girth welds connecting the end caps to the center portion of the tank. The remaining contents of the tank were suddenly released, aerosolized, and combusted, creating a powerful boiling liquid expanding vapor explosion (BLEVE). Based on metallography of the tank pieces, the approximate tank temperature at the onset of the BLEVE was determined. Metallurgical analysis of the ruptured tank also permitted several hypotheses regarding BLEVE mechanisms to be evaluated. Suggestions are made for additional work that could provide improved predictive capabilities regarding BLEVEs and for methods to decrease the susceptibility of propane tanks to BLEVEs.

Kilgo, Alice C.; Eckelmeyer, Kenneth Hall; Susan, Donald Francis

2005-01-01T23:59:59.000Z

358

Effect of laser tempering of high alloy powder metallurgical tool steels after laser cladding  

Science Journals Connector (OSTI)

Abstract The effect of tempering after laser cladding of a high alloyed powder metallurgical tool steel was studied for die repairing purposes. In particular, a high power diode laser with scanning optics was employed for tempering. The laser tempering temperature was proven to be a critical factor in improving the mechanical properties of the coatings. In order to measure and evaluate the effect of different processing parameters (mainly laser power and linear speed) on the achieved temperature, an infrared camera and a two-color pyrometer were used. The tempering effect was mainly evaluated through cross-section microhardness profiles. The microstructure of the coatings was also studied using optical and scanning electron microscope, and the volumetric fraction of retained austenite was determined by X-ray diffraction. Experimental results demonstrated that laser tempering is a useful and appealing technique to improve the hardness of laser deposited coatings of high alloyed tool steels, which is a clear advantage when large parts have to be repaired or reinforced by laser cladding.

Josu Leunda; Virginia García Navas; Carlos Soriano; Carmen Sanz

2014-01-01T23:59:59.000Z

359

Advanced Coal Wind Hybrid: Economic Analysis  

SciTech Connect (OSTI)

Growing concern over climate change is prompting new thinking about the technologies used to generate electricity. In the future, it is possible that new government policies on greenhouse gas emissions may favor electric generation technology options that release zero or low levels of carbon emissions. The Western U.S. has abundant wind and coal resources. In a world with carbon constraints, the future of coal for new electrical generation is likely to depend on the development and successful application of new clean coal technologies with near zero carbon emissions. This scoping study explores the economic and technical feasibility of combining wind farms with advanced coal generation facilities and operating them as a single generation complex in the Western US. The key questions examined are whether an advanced coal-wind hybrid (ACWH) facility provides sufficient advantages through improvements to the utilization of transmission lines and the capability to firm up variable wind generation for delivery to load centers to compete effectively with other supply-side alternatives in terms of project economics and emissions footprint. The study was conducted by an Analysis Team that consists of staff from the Lawrence Berkeley National Laboratory (LBNL), National Energy Technology Laboratory (NETL), National Renewable Energy Laboratory (NREL), and Western Interstate Energy Board (WIEB). We conducted a screening level analysis of the economic competitiveness and technical feasibility of ACWH generation options located in Wyoming that would supply electricity to load centers in California, Arizona or Nevada. Figure ES-1 is a simple stylized representation of the configuration of the ACWH options. The ACWH consists of a 3,000 MW coal gasification combined cycle power plant equipped with carbon capture and sequestration (G+CC+CCS plant), a fuel production or syngas storage facility, and a 1,500 MW wind plant. The ACWH project is connected to load centers by a 3,000 MW transmission line. In the G+CC+CCS plant, coal is gasified into syngas and CO{sub 2} (which is captured). The syngas is burned in the combined cycle plant to produce electricity. The ACWH facility is operated in such a way that the transmission line is always utilized at its full capacity by backing down the combined cycle (CC) power generation units to accommodate wind generation. Operating the ACWH facility in this manner results in a constant power delivery of 3,000 MW to the load centers, in effect firming-up the wind generation at the project site.

Phadke, Amol; Goldman, Charles; Larson, Doug; Carr, Tom; Rath, Larry; Balash, Peter; Yih-Huei, Wan

2008-11-28T23:59:59.000Z

360

Status of Coal Gasification: 1977  

Science Journals Connector (OSTI)

High-pressure technology is important to coal gasification for several reasons. When the end product ... of high pressures in all types of coal gasification reduces the pressure drop throughout the equipment,...

F. C. Schora; W. G. Bair

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "world metallurgical coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Montana Coal Mining Code (Montana)  

Broader source: Energy.gov [DOE]

The Department of Labor and Industry is authorized to adopt rules pertaining to safety standards for all coal mines in the state. The Code requires coal mine operators to make an accurate map or...

362

Low-rank coal research  

SciTech Connect (OSTI)

This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

Not Available

1989-01-01T23:59:59.000Z

363

2009 Coal Age Buyers Guide  

SciTech Connect (OSTI)

The buyers guide lists more than 1200 companies mainly based in the USA, that provide equipment and services to US coal mines and coal preparation plants. The guide is subdivided by product categories.

NONE

2009-07-15T23:59:59.000Z

364

2008 Coal Age buyers guide  

SciTech Connect (OSTI)

The buyers guide lists more than 1200 companies mainly based in the USA, that provide equipment and services to US coal mines and coal preparation plants. The guide is subdivided by product categories.

NONE

2008-07-15T23:59:59.000Z

365

Hydrogen from Coal Edward Schmetz  

E-Print Network [OSTI]

Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Cells, Turbines, and Carbon Capture & Sequestration #12;Production Goal for Hydrogen from Coal Central Separation System PSA Membrane Membrane Carbon Sequestration Yes (87%) Yes (100%) Yes (100%) Hydrogen

366

Dry cleaning of Turkish coal  

SciTech Connect (OSTI)

This study dealt with the upgrading of two different type of Turkish coal by a dry cleaning method using a modified air table. The industrial size air table used in this study is a device for removing stones from agricultural products. This study investigates the technical and economical feasibility of the dry cleaning method which has never been applied before on coals in Turkey. The application of a dry cleaning method on Turkish coals designated for power generation without generating environmental pollution and ensuring a stable coal quality are the main objectives of this study. The size fractions of 5-8, 3-5, and 1-3 mm of the investigated coals were used in the upgrading experiments. Satisfactory results were achieved with coal from the Soma region, whereas the upgrading results of Hsamlar coal were objectionable for the coarser size fractions. However, acceptable results were obtained for the size fraction 1-3 mm of Hsamlar coal.

Cicek, T. [Dokuz Eylul University, Izmir (Turkey). Faculty of Engineering

2008-07-01T23:59:59.000Z

367

Moon Dust and Coal Ash  

Science Journals Connector (OSTI)

... SIR,-The similarity of the description of moon dust particles and that of pulverized coal ...coalash ...

D. J. THORNE; J. D. WATT

1969-09-27T23:59:59.000Z

368

Annual Coal Report 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Coal Report 2012 Annual Coal Report 2012 December 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. iii U.S. Energy Information Administration | Annual Coal Report 2012 Contacts This publication was prepared by the U.S. Energy Information Administration (EIA). General information about the data in this report can be obtained from:

369

Coal | Open Energy Information  

Open Energy Info (EERE)

Coal Coal Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report Full figure data for Figure 101. Reference Case Tables Table 1. Total Energy Supply, Disposition, and Price Summary Table 15. Coal Supply, Disposition and Price Table 21. Carbon Dioxide Emissions by Sector and Source - New England Table 22. Carbon Dioxide Emissions by Sector and Source- Middle Atlantic Table 23. Carbon Dioxide Emissions by Sector and Source - East North Central Table 24. Carbon Dioxide Emissions by Sector and Source - West North Central Table 25. Carbon Dioxide Emissions by Sector and Source - South Atlantic Table 26. Carbon Dioxide Emissions by Sector and Source - East South Central Table 27. Carbon Dioxide Emissions by Sector and Source - West South

370

Rail Coal Transportation Rates  

U.S. Energy Information Administration (EIA) Indexed Site

reports reports Coal Transportation Rates to the Electric Power Sector With Data through 2010 | Release Date: November 16, 2012 | Next Release Date: December 2013 | Correction Previous editions Year: 2011 2004 Go Figure 1. Deliveries from major coal basins to electric power plants by rail, 2010 Background In this latest release of Coal Transportation Rates to the Electric Power Sector, the U.S. Energy Information Administration (EIA) significantly expands upon prior versions of this report with the incorporation of new EIA survey data. Figure 1. Percent of total U.S. rail shipments represented in data figure data Previously, EIA relied solely on data from the U.S. Surface Transportation Board (STB), specifically their confidential Carload Waybill Sample. While valuable, due to the statistical nature of the Waybill data,

371

Catalytic Coal Gasification Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Catalytic Coal Gasification Process Catalytic Coal Gasification Process for the Production of Methane-Rich Syngas Opportunity Research is active on the patent pending technology, titled "Production of Methane-Rich Syngas from Fuels Using Multi-functional Catalyst/Capture Agent." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview Reducing pollution emitted by coal and waste power plants in an economically viable manner and building power plants that co-generate fuels and chemicals during times of low electricity demand are pressing goals for the energy industry. One way to achieve these goals in an economically viable manner is through the use of a catalytic gasifier that

372

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 907 10 59 - 975 Alabama River 903 - - - 903 Alabama Truck 150 144 253 - 546 Alabama Total 1,960 153 311 - 2,424 Florida Truck - - 3 - 3 Georgia Railroad 105 - 1 - 106 Georgia Truck s - 4 - 4 Georgia Total 105 - 5 - 110 Indiana Railroad - 106 - - 106 Tennessee Railroad - - 1 - 1 Origin State Total 2,065 259 321 - 2,644

373

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 839 11 83 - 933 Alabama River 1,347 - - - 1,347 Alabama Truck 118 216 236 - 571 Alabama Total 2,304 227 320 - 2,850 Georgia Railroad 9 - - - 9 Georgia Truck 7 - 5 - 12 Georgia Total 16 - 5 - 21 Indiana Railroad - 126 - - 126 Tennessee Truck - - 1 - 1 Origin State Total 2,320 353 325 - 2,998 Railroad 848 137 83 - 1,068

374

coal | OpenEI  

Open Energy Info (EERE)

coal coal Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 32.3 KiB)

375

COAL & POWER SYSTEMS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COAL & POWER SYSTEMS COAL & POWER SYSTEMS STRATEGIC & MULTI-YEAR PROGRAM PLANS U.S. DEPARTMENT OF ENERGY * OFFICE OF FOSSIL ENERGY GREENER, SOONER... THROUGH TECHNOLOGY INTRODUCTION .......... i-1 STRATEGIC PLAN ........ 1-1 PROGRAM PLANS Vision 21 .......................... 2-1 Central Power Systems ...... 3-1 Distributed Generation ..... 4-1 Fuels ................................ 5-1 Carbon Sequestration ....... 6-1 Advanced Research ........... 7-1 TABLE OF CONTENTS STRATEGIC & MULTI-YEAR PROGRAM PLANS STRENGTH THROUGH SCIENCE... A "GREENER, SOONER" PHILOSOPHY Coal, natural gas, and oil fuel about 70 percent of the electricity generated in the United States. As promising as renewable and other alternative fuels are, it will be several decades before they can make significant energy contributions to the Nation's

376

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 944 16 77 - 1,037 Alabama River 781 - - - 781 Alabama Truck 77 224 220 - 521 Alabama Total 1,802 240 298 - 2,340 Florida Railroad - - 11 - 11 Georgia Railroad 52 - - - 52 Georgia Truck s - 5 - 5 Georgia Total 52 - 5 - 57 Indiana Railroad - 65 - - 65 Origin State Total 1,855 304 313 - 2,472 Railroad 996 81 89 - 1,165

377

Pyrolysis of coal  

DOE Patents [OSTI]

A method for mild gasification of crushed coal in a single vertical elongated reaction vessel providing a fluidized bed reaction zone, a freeboard reaction zone, and an entrained reaction zone within the single vessel. Feed coal and gas may be fed separately to each of these reaction zones to provide different reaction temperatures and conditions in each reaction zone. The reactor and process of this invention provides for the complete utilization of a coal supply for gasification including utilization of caking and non-caking or agglomerating feeds in the same reactor. The products may be adjusted to provide significantly greater product economic value, especially with respect to desired production of char having high surface area.

Babu, Suresh P. (Willow Springs, IL); Bair, Wilford G. (Morton Grove, IL)

1992-01-01T23:59:59.000Z

378

Healy Clean Coal Project  

SciTech Connect (OSTI)

The Healy Clean Coal Project, selected by the U.S. Department of Energy under Round 111 of the Clean Coal Technology Program, has been constructed and is currently in the Phase 111 Demonstration Testing. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the U.S. Department of Energy. Construction was 100% completed in mid-November of 1997, with coal firing trials starting in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate from this 50-megawatt plant are expected to be significantly lower than current standards.

None

1997-12-31T23:59:59.000Z

379

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2011 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,942 160 335 - 2,437 Alabama Railroad 1,149 - 57 - 1,206 Alabama River 741 - - - 741 Alabama Truck 52 160 278 - 490 Georgia Total s - 3 - 3 Georgia Truck s - 3 - 3 Ohio Total - 3 - - 3 Ohio River - 3 - - 3 Origin State Total 1,942 163 338 - 2,443 Railroad 1,149 - 57 - 1,206 River 741 3 - - 745 Truck 52 160

380

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2011 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 1,040 18 80 - 1,138 Alabama River 668 - - - 668 Alabama Truck 52 164 223 - 438 Alabama Total 1,760 181 303 - 2,244 Georgia Truck s - 2 - 2 Indiana Railroad - 148 - - 148 Ohio Railroad - 25 - - 25 Ohio River - 18 - - 18 Ohio Total - 43 - - 43 Origin State Total 1,760 373 305 - 2,438 Railroad 1,040 191 80 - 1,311 River

Note: This page contains sample records for the topic "world metallurgical coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Coal Gasification Report.indb  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Coal Integrated Coal Gasification Combined Cycle: Market Penetration Recommendations and Strategies Produced for the Department of Energy (DOE)/ National Energy Technology Laboratory (NETL) and the Gasification Technologies Council (GTC) September 2004 Coal-Based Integrated Gasification Combined Cycle: Market Penetration Strategies and Recommendations Final Report Study Performed by:

382

EIA - AEO2010 - Coal projections  

Gasoline and Diesel Fuel Update (EIA)

Coal Projections Coal Projections Annual Energy Outlook 2010 with Projections to 2035 Coal Projections Figure 88. Coal production by region, 1970-2035 Click to enlarge » Figure source and data excel logo Figure 89. U.S. coal production in six cases, 2008, 2020, and 2035 Click to enlarge » Figure source and data excel logo Figure 90. Average annual minemouth coal prices by region, 1990-2035 Click to enlarge » Figure source and data excel logo Figure 91. Average annual delivered coal prices in four cases, 1990-2035 Click to enlarge » Figure source and data excel logo Figure 92. Change in U.S. coal consumption by end use in two cases, 2008-2035 Click to enlarge » Figure source and data excel logo Coal production increases at a slower rate than in the past In the AEO2010 Reference case, increasing coal use for electricity generation, along with the startup of several CTL plants, leads to growth in coal production averaging 0.2 percent per year from 2008 to 2035. This is significantly less than the 0.9-percent average growth rate for U.S. coal production from 1980 to 2008.

383

Gasification of Coal and Oil  

Science Journals Connector (OSTI)

... , said the Gas Council is spending £120,000 this year on research into coal gasification, and the National Coal Board and the Central Electricity Generating Board £680,000 and ... coal utilization. The Gas Council is spending about £230,000 on research into the gasification of oil under a programme intended to contribute also to the improvement of the economics ...

1960-02-13T23:59:59.000Z

384

Underground Gasification of Coal Reported  

Science Journals Connector (OSTI)

Underground Gasification of Coal Reported ... RESULTS of a first step taken toward determining the feasibility of the underground gasification of coal were reported recently to the Interstate Oil Compact Commission by Milton H. Fies, manager of coal operations for the Alabama Power Co. ...

1947-05-12T23:59:59.000Z

385

CONSORTIUM FOR CLEAN COAL UTILIZATION  

E-Print Network [OSTI]

CONSORTIUM FOR CLEAN COAL UTILIZATION Call for Proposals Date of Issue: July 29, 2013 The Consortium for Clean Coal Utilization (CCCU) at Washington University in St. Louis was established in January of Clean Coal Utilization. The format may be a conference or workshop, or a seminar given by a leading

Subramanian, Venkat

386

Solvent–Coal–Mineral Interaction during Solvent Extraction of Coal  

Science Journals Connector (OSTI)

The solvent extraction of Poplar lignite coal was studied with three model solvents (tetralin, quinoline, and 1-naphtol) and one industrial coal liquid derived solvent. ... Thanks to its wide distribution and large reserves, coal is a feasible local substitute feed material for conventional crude oil in many countries. ... Physical dissolution dominates at lower temperature, around 200 °C and lower temperatures for lignites; the role of the solvent is to relax the coal matrix and drag soluble molecules from the coal into the bulk solvent phase. ...

Mariangel Rivolta Hernández; Carolina Figueroa Murcia; Rajender Gupta; Arno de Klerk

2012-10-26T23:59:59.000Z

387

Petroleum and Coal  

Science Journals Connector (OSTI)

Bettinelli and others (A5) presented a method for the determination of arsenic, selenium, and mercury in coals based on a partial solublization of the coal sample in a microwave oven with aqua regia and the subsequent determination of As, Se, and Hg by flow injection hydride generation inductively coupled plasma mass spectrometry (FI-HG-ICPMS); comparisons with other techniques are presented. ... Measures used to tackle environmental problems related to global warming and climate change were discussed in a review with 8 references by Hoppe (A40). ...

Cliff T. Mansfield; Bhajendra N. Barman; Jane V. Thomas; Anil K. Mehrotra; James M. McCann

1999-04-28T23:59:59.000Z

388

Clean Coal Power Initiative  

SciTech Connect (OSTI)

This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

2006-03-31T23:59:59.000Z

389

PNNL Coal Gasification Research  

SciTech Connect (OSTI)

This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

2010-07-28T23:59:59.000Z

390

Coal: An Energy Source for Future World Needs  

Science Journals Connector (OSTI)

There are now many different analyses available on the worldwide reserves of different natural resources and for various ... natural resources have been examined by the International Energy Agency (IEA 2008a, 201...

Thomas Thielemann

2012-01-01T23:59:59.000Z

391

NETL: Coal and Coal/Biomass to Liquids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

C&CBTL C&CBTL Coal and Power Systems Coal and Coal/Biomass to Liquids The Coal and Coal/Biomass to Liquids program effort is focused on technologies to foster the commercial adoption of coal and coal/biomass gasification and the production of affordable liquid fuels and hydrogen with excellent environmental performance. U.S. Economic Competitiveness U.S. Economic Competitiveness U.S. Economic Competitiveness U.S. Economic Competitiveness Advanced Fuels Synthesis U.S. Economic Competitiveness U.S. Economic Competitiveness U.S. Economic Competitiveness U.S. Economic Competitiveness Advanced Fuels Synthesis Systems Analyses Global Environmental Benefits Global Environmental Benefits Global Environmental Benefits Global Environmental Benefits Global Environmental Benefits Global Environmental Benefits

392

Process for coal liquefaction employing selective coal feed  

DOE Patents [OSTI]

An improved coal liquefaction process is provided whereby coal conversion is improved and yields of pentane soluble liquefaction products are increased. In this process, selected feed coal is pulverized and slurried with a process derived solvent, passed through a preheater and one or more dissolvers in the presence of hydrogen-rich gases at elevated temperatures and pressures, following which solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. The selected feed coals comprise washed coals having a substantial amount of mineral matter, preferably from about 25-75%, by weight, based upon run-of-mine coal, removed with at least 1.0% by weight of pyritic sulfur remaining and exhibiting vitrinite reflectance of less than about 0.70%.

Hoover, David S. (New Tripoli, PA); Givens, Edwin N. (Bethlehem, PA)

1983-01-01T23:59:59.000Z

393

Uncovering Coal's Secrets Through the University Coal Research Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8, 2013 8, 2013 Uncovering Coal's Secrets Through the University Coal Research Program Uncovering Coal's Secrets Through the University Coal Research Program The challenges confronting the environmentally sound use of our country's fossil energy resources are best addressed through collaborative research and development. That's why this approach, which stretches federal dollars, is at the heart of the Office of Fossil Energy's University Coal Research (UCR) Program. Managed by the National Energy Technology Laboratory (NETL), the UCR program funds university research to improve understanding of the chemical and physical properties of coal, one of our nation's most abundant resources. The program has forged partnerships between academia and the private sector that have led to advances not only in how we use coal, but

394

Chapter 8 - Coal Seam Degasification  

Science Journals Connector (OSTI)

Abstract The chapter discusses various techniques for coal seam degasification. All coal seams are gassy but they differ in their degree of gassiness. Pre-mining and post-mining techniques for underground coal mines are discussed. With good planning, 50–80% of in-situ gas in coal can be removed before mining improving both safety and productivity. Similarly, 50–80% of gas from mined-out areas (gobs) can be removed to minimize ventilation air requirements. Gas transport in underground mines and economics of coal seam degasification are also discussed.

Pramod Thakur

2014-01-01T23:59:59.000Z

395

The Public Subsidies of Coal  

Science Journals Connector (OSTI)

I have spent most of my life in western Pennsylvania, in the Appalachian coal belt of the U.S. I have direct experience with the economic, environmental, and social impacts of coal extraction and use. ... Although coal was important in building the economy of western Pennsylvania as well as the economies of other coal regions, its extraction and use left a legacy of damage: thousands of miles of streams severely impacted by acid drainage from abandoned mines; large piles of coal mine refuse; old strip mines that have not been refilled; damaged groundwater resources; and land subsidence from underground mining. ...

David A. Dzombak

2009-03-06T23:59:59.000Z

396

Coal Study Guide - High School | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

High School Coal Study Guide - High School Coal Study Guide - High School More Documents & Publications Coal Study Guide - Middle School Coal Study Guide for Elementary School...

397

Coal Study Guide - Middle School | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Middle School Coal Study Guide - Middle School Coal Study Guide - Middle School More Documents & Publications Coal Study Guide for Elementary School Coal Study Guide - High School...

398

Coke and Coal Research  

Science Journals Connector (OSTI)

... A. Mott at the University of Sheffield, are concerned with problems affecting the hard coke industry, which enjoys facilities for large-scale experimentation through its member firms such as ... of the body organizing this work visited the Kingston and Fulham Laboratories of the British Coal Utilisation Research Association on September 9. Mr. J. G. Bennett, director of ...

1943-09-18T23:59:59.000Z

399

Chemicals from Coal Coking  

Science Journals Connector (OSTI)

Chemicals from Coal Coking ... Since 2009, she has been at INCAR-CSIC, researching the preparation and characterization of carbon materials (cokes and fibers) and nanomaterials (nanotubes and graphenes) and their catalytic, environmental, and energy applications. ... He then joined the Fundamental Studies Section of the British Coke (later Carbonization) Research Association, eventually becoming Head of Fundamental Studies. ...

Marcos Granda; Clara Blanco; Patricia Alvarez; John W. Patrick; Rosa Menéndez

2013-09-30T23:59:59.000Z

400

Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Second quarter 1995  

SciTech Connect (OSTI)

During second quarter 1995, samples from seven new AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for a comprehensive list of constituents. Two parameters exceeded standards during the quarter. Lead and nickel appear to exceed final Primary Drinking Water Standards (PDWS) in AMB-18A. These data were suspect and a rerun of the samples showed levels below flagging criteria. This data will be monitored in 3Q95. Aluminum, iron, manganese, boron, silver and total organic halogens exceeded Flag 2 criteria in at least one well each during second quarter 1995. This data, as well, will be confirmed by 3Q95 testing. Groundwater flow directions in the M-Area Aquifer Zone were similar to previous quarters; the flow rate estimate, however, differs because of an error noted in the scales of measurements used for previous estimates. The estimate was 470 ft/year during second quarter 1995. Reliable estimates of flow directions and rates in the Upper Lost Lake Aquifer Zone could not be determined in previous quarters because data were insufficient. The first estimate from second quarter 1995 shows a 530 ft/year rate. Reliable estimates of flow directions and rates in the Lower Lost Lake Aquifer Zone and in the Middle Sand Aquifer Zone of the CBCU could not be calculated because of the low horizontal gradient and the near-linear distribution of the monitoring wells. During second quarter 1994, SRS received South Carolina Department of Health and Environmental Control approval for constructing five point-of-compliance wells and two plume definition wells near the Met Lab HWMF. This project began in July 1994 and was completed in March of this year. Analytical data from these wells are presented in this report for the first time.

Chase, J.A.

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "world metallurgical coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Characterization of the origin and distribution of the minerals and phases in metallurgical cokes  

SciTech Connect (OSTI)

Three industrial metallurgical cokes were examined using X-ray diffraction (XRD) and scanning electron microscopy combined with energy dispersive X-ray analysis (SEM/EDS). The study highlighted the difficulties and implications of identifying the inherent crystalline mineral phases in cokes using XRD such that increasing the ashing temperature led to the formation of anhydrite and destruction of metallic iron: microwave plasma ashing resulted in minimal alteration of the original coke mineralogy apart from the formation of bassanite and possibly jarosite. A preliminary scheme to characterize coke minerals is presented such that, physically, minerals can be classified as fine ({lt}50 {mu}m), coarse (50-100 {mu}m), and agglomerate ({gt}1000 {mu}m); chemically, minerals can be grouped as refractory, semirefractory, and reactive, while on the basis of distribution they can be described as discrete, disseminated, or pore inclusions. Quartz, cristobalite, mullite, and high melting point Al-silicates were found to be the predominant refractory phases while low melting point Al-silicates, e.g., containing high fluxing elements such as K, and Fe were the main semirefractory phases present in all cokes. A variety of iron containing phases including pyrrhotite, troilite, iron oxides, metallic iron, and iron silicates were also invariably present in all cokes while calcium phases were found to occur as sulfide, silicates, and phosphates. In general, iron and calcium phases can be categorized as reactive phases with few exceptions such as oldhamite (CaS). The study highlighted that most of the cokes possess a similar mineralogy, with the main distinction being in their relative abundance, particle size, and nature of distribution in the coke matrix. The study provides a basis to develop a mechanistic understanding of the influence of minerals on coke reactivity and strength at high temperatures. 41 refs., 13 figs., 4 tabs.

Sushil Gupta; Maria Dubikova; David French; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). School of Materials Science and Engineering

2007-01-15T23:59:59.000Z

402

Coal Ash Corrosion Resistant Materials Testing Program Evaluation of the First Section Removed in November 2001  

E-Print Network [OSTI]

at Reliant Energy’s Niles plant in Niles, Ohio to provide full-scale, in-situ testing of recently developed boiler superheater materials. Fireside corrosion is a key issue for improving efficiency of new coal fired power plants and improving service life in existing plants. In November 1998, B&W began development of a system to permit testing of advanced tube materials at metal temperatures typical of advanced supercritical steam temperatures (1100°F and higher) in a boiler exhibiting coal ash corrosive conditions. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. In the spring of 1999 a system consisting of three identical sections, each containing multiple segments of twelve different materials, was installed. The sections are cooled by reheat steam, and are located just above the furnace entrance in Niles ’ Unit #1, a 110 MWe unit firing high sulfur Ohio coal. In November 2001 the first section was removed for thorough metallurgical evaluation after 33 months of operation. The second and third sections remain in service and the second is expected to be removed in the fall of 2003; the last is tentatively planned for the fall of 2004. This paper describes the program; its importance; the design, fabrication, installation and operation of the test system; materials utilized; experience to date; and results of the evaluation of the first section.

Dennis K. Mcdonald

403

Definition: Coal | Open Energy Information  

Open Energy Info (EERE)

Coal Coal Jump to: navigation, search Dictionary.png Coal A combustible black or brownish-black sedimentary rock composed mostly of carbon and hydrocarbons. It is formed from plant remains that have been compacted, hardened, chemically altered, and metamorphosed by heat and pressure over geologic time (typically millions of years). It is the most abundant fossil fuel produced in the United States.[1][2] View on Wikipedia Wikipedia Definition Coal (from the Old English term col, which has meant "mineral of fossilized carbon" since the 13th century) is a combustible black or brownish-black sedimentary rock usually occurring in rock strata in layers or veins called coal beds or coal seams. The harder forms, such as anthracite coal, can be regarded as metamorphic rock because of later

404

Coal-oil slurry preparation  

DOE Patents [OSTI]

A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

Tao, John C. (Perkiomenville, PA)

1983-01-01T23:59:59.000Z

405

Characteristics of coking coal burnout  

SciTech Connect (OSTI)

An attempt was made to clarify the characteristics of coking coal burnout by the morphological analysis of char and fly ash samples. Laboratory-scale combustion testing, simulating an ignition process, was carried out for three kinds of coal (two coking coals and one non-coking coal for reference), and sampled chars were analyzed for size, shape and type by image analysis. The full combustion process was examined in industrial-scale combustion testing for the same kinds of coal. Char sampled at the burner outlet and fly ash at the furnace exit were also analyzed. The difference between the char type, swelling properties, agglomeration, anisotropy and carbon burnout were compared at laboratory scale and at industrial scale. As a result, it was found that coking coals produced chars with relatively thicker walls, which mainly impeded char burnout, especially for low volatile coals.

Nakamura, M. [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan); Bailey, J.G. [Univ. of Newcastle, New South Wales (Australia)

1996-12-31T23:59:59.000Z

406

A New Hydrogen Bond in Coal  

Science Journals Connector (OSTI)

During our study on hydrogen bond in coal by diffuse reflectance IR, we found that a weak peak at 2514 cm-1 always occurred for some coals. ... Infrared absorption spectra of coals and coal extracts ... The FTIR spectra during the heat-up of eight coals (seven Argonne premium coals and an Australian brown coal), an ion-exchange resin, and a lignin were measured every 20 °C from room temp. ...

Dongtao Li; Wen Li; Baoqing Li

2003-04-30T23:59:59.000Z

407

Underground Coal Thermal Treatment  

SciTech Connect (OSTI)

The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?¢ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?¢ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?¢ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?¢ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

2011-10-30T23:59:59.000Z

408

file://C:\Documents%20and%20Settings\ICR\My%20Documents\Coal\Di  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 (Thousand Short Tons) Coal-Exporting State and Destination Metallurgical Steam Total Alabama 3,977 - 3,977 Argentina 225 - 225 Belgium 437 - 437 Brazil 1,468 - 1,468 Bulgaria 75 - 75 Egypt 363 - 363 Germany 71 - 71 Italy 61 - 61 Netherlands 219 - 219 Spain 415 - 415 Turkey 362 - 362 United Kingdom 282 - 282 Kentucky 1,404 - 1,404 Canada 433 - 433 Italy 227 - 227 Netherlands 468 - 468 United Kingdom 276 - 276 Pennsylvania 391 10,295 10,867 Belgium - 251 251 Brazil 187 - 189 Canada 50 8,548 8,766 France - 307 307 Germany 153 195 348 Ireland - 383 383 Jamaica - 87 87 Morocco - 134 134 Netherlands - 269 269 Norway - - 5 Peru - - 6 Portugal - 121 121 Utah - 917 917 Japan - 917 917 Virginia 2,787 - 2,787 Belgium 288 - 288 Brazil 792 - 792 Bulgaria 70 - 70 Canada 138 - 138

409

Split and collectorless flotation to medium coking coal fines for multi-product zero waste concept  

Science Journals Connector (OSTI)

The medium coking coal fines of ? 0.5 mm from Jharia coal field were taken for this investigation. The release analysis of the composite coal reveals that yield is very low at 10.0% ash, about 25% at 14% ash and 50% at 17% ash level. The low yield is caused by the presence of high ash finer fraction. The size-wise ash analysis of ? 0.5 mm coal indicated that ? 0.5 + 0.15 mm fraction contains less ash than ? 0.15 mm fraction. Thus, the composite feed was split into ? 0.5 + 0.15 mm and ? 0.15 mm fractions and subjected to flotation separately. The low ash bearing fraction (? 0.5 + 0.15 mm) was subjected to two stages collectorless flotation to achieve the concentrate with 10% ash. The cleaner concentrate (18.9%) with 10% ash was recovered which has an application in metallurgical industries. The concentrate of 30.2% yield with 12.5% ash could be achieved in one stage collectorless flotation which is suitable for use in coke making as sweetener. As the ? 0.15 mm fraction contains relatively high ash, collector aided flotation using sodium silicate was performed to get a concentrate of 23.6% yield with about 17% ash. The blending of this product with cleaner tail obtained from ? 0.5 + 0.15 mm produces about 35.0% yield with 17% ash and that can be utilized for coke making. The reject from the two fractions can be used for conventional thermal power plant or cement industries using a 23.5% ash after one stage collector aided flotation and the final tailings produced content ash of 61.6% can be used for fluidization combustion bed (FBC). This eventually leads to complete utilization of coal.

Shobhana Dey; K.K. Bhattacharyya

2007-01-01T23:59:59.000Z

410

Coal surface control for advanced physical fine coal cleaning technologies  

SciTech Connect (OSTI)

This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

1992-01-01T23:59:59.000Z

411

Coal fires in China over the last decade: A comprehensive review  

Science Journals Connector (OSTI)

Abstract Coal fires pose great threats to valuable energy resources, the environment, and human health and safety. They occur in numerous countries in the world. It is well-known that China, the largest coal producer and user globally, is one of the countries that have badly suffered from coal fires. Thus, over the course of the last decade, a lot of local research studies on coal fires in China have been published in international and Chinese scientific journals. The goal of this paper is to set the scene on past and current coal fire research in China. In this review we explore multidisciplinary investigations undertaken during the last decade associated with coal fires in China including fire detection, modeling, the assessment of environmental and human health impacts as well as fire-fighting engineering. We outline a systematic framework of research on coal fires and address inter-relations of sub-topics within this systematic framework. Additionally, the scientific and technical studies and their advantages, shortcomings and challenges for coal mine administrations are discussed. It is hoped that this comprehensive overview provides scientific guidance for management and coordination of coal fire projects.

Zeyang Song; Claudia Kuenzer

2014-01-01T23:59:59.000Z

412

Underground coal gasification: a brief review of current status  

SciTech Connect (OSTI)

Coal gasification is a promising option for the future use of coal. Similarly to gasification in industrial reactors, underground coal gasification (UCG) produces syngas, which can be used for power generation or for the production of liquid hydrocarbon fuels and other valuable chemical products. As compared with conventional mining and surface gasification, UCG promises lower capital/operating costs and also has other advantages, such as no human labor underground. In addition, UCG has the potential to be linked with carbon capture and sequestration. The increasing demand for energy, depletion of oil and gas resources, and threat of global climate change lead to growing interest in UCG throughout the world. In this article, we review the current status of this technology, focusing on recent developments in various countries.

Shafirovich, E.; Varma, A. [Purdue University, West Lafayette, IN (United States). School of Chemical Engineering

2009-09-15T23:59:59.000Z

413

A Study on Coal Properties and Combustion Characteristics of Blended Coals in Northwestern China  

Science Journals Connector (OSTI)

Because of the tight supply situation and rising price of coals, the actual coals used in coal-fired power plants of China are usually significantly different from the design coal, which may seriously deteriorate the safety and economy of power plants. ... Accurate prediction of coal characteristics of blended coals from those of individual coals is quite significant to ensure the reliable and economic operation of a blended-coal-fired power plant. ...

Chang’an Wang; Yinhe Liu; Xiaoming Zhang; Defu Che

2011-07-11T23:59:59.000Z

414

Moist caustic leaching of coal  

DOE Patents [OSTI]

A process for reducing the sulfur and ash content of coal. Particulate coal is introduced into a closed heated reaction chamber having an inert atmosphere to which is added 50 mole percent NaOH and 50 mole percent KOH moist caustic having a water content in the range of from about 15% by weight to about 35% by weight and in a caustic to coal weight ratio of about 5 to 1. The coal and moist caustic are kept at a temperature of about 300.degree. C. Then, water is added to the coal and caustic mixture to form an aqueous slurry, which is washed with water to remove caustic from the coal and to produce an aqueous caustic solution. Water is evaporated from the aqueous caustic solution until the water is in the range of from about 15% by weight to about 35% by weight and is reintroduced to the closed reaction chamber. Sufficient acid is added to the washed coal slurry to neutralize any remaining caustic present on the coal, which is thereafter dried to produce desulfurized coal having not less than about 90% by weight of the sulfur present in the coal feed removed and having an ash content of less than about 2% by weight.

Nowak, Michael A. (Elizabeth, PA)

1994-01-01T23:59:59.000Z

415

Coal cleaning program for Kazakstan  

SciTech Connect (OSTI)

In 1992 the United States Agency for International Development (USAID) started sponsoring general projects in the Energy and Environmental Sector to improve health and well-being, to improve the efficiency of the existing fuel and energy base, and to assist in the establishment of a strong private sector. Coal Cleaning Program, covered in this report, is one of the recently completed projects by Burns and Roe, which is a prime USAID contractor in the field of energy and environment for the NIS. The basis for coal cleaning program is that large coal resources exist in northeast Kazakstan and coal represents the major fuel for heat and electricity generation at present and in the foreseeable future. The coal mined at Karaganda and Ekibastuz, the two main coal mining areas of Kazakstan, currently contains up to 55% ash, whereas most boilers in Kazakstan are designed to fire a coal with an ash content no greater than 36%. The objective of the task was to determine optimum, state-of-the-art coal cleaning and mining processes which are applicable to coals in Kazakstan considering ultimate coal quality of 36% ash, environmental quality, safety and favorable economics.

Popovic, N. [Burns and Roe Enterprises, Oradell. NJ (United States); Daley, D.P. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Jacobsen, P.S. [Jacobsen (P. Stanley), Littleton, CO (United States)

1996-12-31T23:59:59.000Z

416

Mid-South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy Use and Achieve Cost Savings  

Broader source: Energy.gov [DOE]

This case study describes how Mid-South Metallurgical implemented several recommendations resulting from a plant-wide energy assessment from DOE's Industrial Assessment Center (IAC) at Tennessee Technological University. This included installing new furnace insulation, implementing an electrical demand system, installing energy efficient equipment on its natural gas furnace burner tubes, and upgrading its lighting. Through these upgrades, the commercial heat treating business cut its overall energy use by 22%, reduced its peak demand by 21%, and decreased its total energy costs by 18%.

417

Fact Sheet: Clean Coal Technology Ushers In New Era in Energy  

Broader source: Energy.gov (indexed) [DOE]

Sheet: Clean Coal Technology Ushers In New Era in Energy Sheet: Clean Coal Technology Ushers In New Era in Energy "Coal is by far the most abundant and affordable energy resource...so we're developing clean coal technology." -President Bush, May 24, 2006 Today, Energy Secretary Samuel Bodman and Secretary of the Treasury Secretary Henry Paulson announced that $1 billion in tax credits are being allocated to support the construction of nine clean coal and advanced gasification projects. The Bush Administration's award of these tax credits is only one part of a comprehensive strategy to further promote the development, demonstration and deployment of emissions-free energy for the nation and, eventually, the world. Once we are successful in developing and commercializing these and other

418

Process for changing caking coals to noncaking coals  

DOE Patents [OSTI]

Caking coals are treated in a slurry including alkaline earth metal hydroxides at moderate pressures and temperatures in air to form noncaking carbonaceous material. Hydroxides such as calcium hydroxide, magnesium hydroxide or barium hydroxide are contemplated for slurrying with the coal to interact with the agglomerating constituents. The slurry is subsequently dewatered and dried in air at atmospheric pressure to produce a nonagglomerating carbonaceous material that can be conveniently handled in various coal conversion and combustion processes.

Beeson, Justin L. (Woodridge, IL)

1980-01-01T23:59:59.000Z

419

CBM and CO2-ECBM related sorption processes in coal: A review  

Science Journals Connector (OSTI)

This article reviews the state of research on sorption of gases (CO2, CH4) and water on coal for primary recovery of coalbed methane (CBM), secondary recovery by an enhancement with carbon dioxide injection (CO2-ECBM), and for permanent storage of CO2 in coal seams. Especially in the last decade a large amount of data has been published characterizing coals from various coal basins world-wide for their gas sorption capacity. This research was either related to commercial CBM production or to the usage of coal seams as a permanent sink for anthropogenic CO2 emissions. Presently, producing methane from coal beds is an attractive option and operations are under way or planned in many coal basins around the globe. Gas-in-place determinations using canister desorption tests and CH4 isotherms are performed routinely and have provided large datasets for correlating gas transport and sorption properties with coal characteristic parameters. Publicly funded research projects have produced large datasets on the interaction of CO2 with coals. The determination of sorption isotherms, sorption capacities and rates has meanwhile become a standard approach. In this study we discuss and compare the manometric, volumetric and gravimetric methods for recording sorption isotherms and provide an uncertainty analysis. Using published datasets and theoretical considerations, water sorption is discussed in detail as an important mechanisms controlling gas sorption on coal. Most sorption isotherms are still recorded for dry coals, which usually do not represent in-seam conditions, and water present in the coal has a significant control on CBM gas contents and CO2 storage potential. This section is followed by considerations of the interdependence of sorption capacity and coal properties like coal rank, maceral composition or ash content. For assessment of the most suitable coal rank for CO2 storage data on the CO2/CH4 sorption ratio data have been collected and compared with coal rank. Finally, we discuss sorption rates and gas diffusion in the coal matrix as well as the different unipore or bidisperse models used for describing these processes. This review does not include information on low-pressure sorption measurements (BET approach) to characterize pore sizes or pore volume since this would be a review of its own. We also do not consider sorption of gas mixtures since the data base is still limited and measurement techniques are associated with large uncertainties.

Andreas Busch; Yves Gensterblum

2011-01-01T23:59:59.000Z

420

Selective mining and beneficiation at Grootegeluk coal mine Waterberg Coalfield, South Africa  

SciTech Connect (OSTI)

Grootegeluk Coal Mine, situated in the Waterberg Coalfield in the Northern Province of South Africa, ranks among the largest open pit coal mines in the world in terms of run of mine tonnage. Commissioned in 1980 to provide steel producer Iscor with coking coal, Grootegeluk currently produces 53 Mt of coking coal per annum. At present Iscor consumes 1.2 Mt of coking coal while Matimba, the world's largest direct dry cooled PowerStation consumes an additional 12.6 Mt. Fine washing and screening plants currently beneficiate the run of mine feed from this multi-seam multi-product mine. Although the Waterberg Coalfield contains approximately 50% of South Africa's coal reserves, Grootegeluk is the only operating mine in this coalfield. The coal seams of the Waterberg Coalfield occur in the Volksrust and Vryheids formations of the Karoo Sequence. Numerous coal seams ranging from a few millimeters up to 8 meters occur over a stratigraphic thickness of at least 120 meters. These coal seams are grouped into eleven coal bearing zones that can be correlated across the coalfield. The coal- and coalbearing strata in the Waterberg are of late Paleozoic to early Mesozoic age. Coal from the Volksrust formation is autochthonous while the coal from the Vryheid formation is allochthonous. To ensure that sufficient geological and analytical data are obtained from exploration boreholes an extensive sampling procedure was established with washability data ranging from 1,35 to 2,20 g/cc. The analyses indicated that certain parts of the coalbearing strata is not suitable for the production of coking coal due to the high phosphorus content or the poor coking properties. This resulted in an open pit with 11 mining benches. The upper parts of the deposit is extracted by conventional shovel and truck operations while the coal seams of the lower part of the deposit are mined selectively with hydraulic shovels. At Grootegeluk down the hole geophysics (natural gamma) are used for grade control and also to quantify the effect of over- or undermining on the various mining benches. Reconciliation between the run of mine material dispatched to the various plants and their resulted yields/qualities are done regularly.

NONE

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "world metallurgical coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

FE Clean Coal News  

Broader source: Energy.gov (indexed) [DOE]

clean-coal-news Office of Fossil Energy Forrestal clean-coal-news Office of Fossil Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585202-586-6503 en NETL Innovations Recognized with R&D 100 Awards http://energy.gov/fe/articles/netl-innovations-recognized-rd-100-awards NETL Innovations Recognized with R&D 100 Awards

422

Coal Bed Methane Primer  

SciTech Connect (OSTI)

During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

Dan Arthur; Bruce Langhus; Jon Seekins

2005-05-25T23:59:59.000Z

423

NETL: Coal and Power Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Systems Technologies Coal and Power Systems Advancing our Nation's Portfolio of Coal RD&D Technologies - Rotating Images Advancing our Nation's Portfolio of Coal RD&D Technologies - Read More! Focus of NETL RD&D RD&D efforts in coal and power systems fall into three categories: Technologies that enable existing coal power plants to cost-effectively meet environmental requirements. NETL and its research partners are developing environmental control technologies for retrofitting existing power plants, with application to new plants as well. Key areas of research include cost-effective control of mercury, nitrogen oxides, sulfur dioxide, and fine particulate emissions; beneficial uses for coal utilization byproducts; and innovations to minimize the impact of

424

Theoretical principles of use of coal fractions with different densities for combustion  

SciTech Connect (OSTI)

It is reasonable to complement the conventional preparation of steam coal involving the removal of ash components and pyritic sulfur by the isolation of the lightest organic fractions, which possess enhanced performance characteristics. These fractions are smoothly saleable both on the domestic and world markets for effective pulverized-coal combustion via new combustion technologies. Heavier (inertinite) fractions of the coal preparation concentrate marketed at lower prices can be considered appropriate fuel for burning in circulating fluidized-bed combustion systems. 13 refs., 5 figs., 4 tabs.

S.G. Gagarin; A.M. Gyul'maliev [Institute for Fossil Fuels, Moscow (Russian Federation)

2009-02-15T23:59:59.000Z

425

2009 University Coal Research Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2009 University Coal Research Program 2009 University Coal Research Program Description The University Coal Research (UCR) Program provides grants to U.S. colleges and universities to support fundamental research and to develop efficient and environmentally responsible fossil energy technologies. Funded by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE), the program is carried out by DOE's National Energy Technology Laboratory (NETL).

426

NETL - World CO2 Emissions - Projected Trends Tool | Open Energy  

Open Energy Info (EERE)

NETL - World CO2 Emissions - Projected Trends Tool NETL - World CO2 Emissions - Projected Trends Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NETL - World CO2 Emissions - Projected Trends Tool Agency/Company /Organization: National Energy Technology Laboratory Sector: Energy Topics: GHG inventory Resource Type: Software/modeling tools Website: www.netl.doe.gov/energy-analyses/refshelf/results.asp?ptype=Models/Too References: NETL - World CO2 Emissions - Projected Trends Tool [1] NETL - World CO2 Emissions - Projected Trends Tool This interactive tool enables the user to look at both total and power sector CO2 emissions from the use of coal, oil, or natural gas, over the period 1990 to 2030. One can use the tool to compare five of the larger CO2 emitters to each other or to overall world emissions. The data are from the

427

Annual Coal Distribution Report - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

current Coal Distribution Report current Coal Distribution Report Annual Coal Distribution Report Release Date: November 7, 2012 | Next Release Date: November 2013 | full report Archive Domestic coal distribution by origin State, destination State, consumer category, method of transportation; foreign coal distribution by major coal-exporting state and method of transportation; and domestic and foreign coal distribution by origin state. Year Domestic and foreign distribution of U.S. coal by State of origin Foreign distribution of U.S. coal by major coal-exporting States and destination Domestic distribution of U.S. coal by origin State, consumer, destination and method of transportation1 Domestic distribution of U.S. coal by destination State, consumer, destination and method of transportation1

428

NETL: Coal/Biomass Feed and Gasification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal/Biomass Feed & Gasification Coal/Biomass Feed & Gasification Coal and Coal/Biomass to Liquids Coal/Biomass Feed and Gasification The Coal/Biomass Feed and Gasification Key Technology is advancing scientific knowledge of the production of liquid hydrocarbon fuels from coal and/or coal-biomass mixtures. Activities support research for handling and processing of coal/biomass mixtures, ensuring those mixtures are compatible with feed delivery systems, identifying potential impacts on downstream components, catalyst and reactor optimization, and characterizing the range of products and product quality. Active projects within the program portfolio include the following: Coal-biomass fuel preparation Development of Biomass-Infused Coal Briquettes for Co-Gasification Coal-biomass gasification modeling

429

Transport and Other Effects in Coal Gasification  

Science Journals Connector (OSTI)

The paper summarizes the kinetics of coal char gasification excepted surface reactions (mechanisms). The following subjects controlling coal char gasification are treated: Coal as the raw material ... of particle...

K. J. Hüttinger

1988-01-01T23:59:59.000Z

430

Low-rank coal oil agglomeration  

DOE Patents [OSTI]

A low-rank coal oil agglomeration process. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and usually coal derived.

Knudson, Curtis L. (Grand Forks, ND); Timpe, Ronald C. (Grand Forks, ND)

1991-01-01T23:59:59.000Z

431

Practical Use of Coal Combustion Research  

Science Journals Connector (OSTI)

Laboratory measurements of coal rapid pyrolysis char yield and char reactivity, together with a simple model of pulverized coal combustion, have been used to predict coal combustion efficiency in utility boile...

P. T. Roberts; C. Morley

1987-01-01T23:59:59.000Z

432

Technological value of coal used for coking  

Science Journals Connector (OSTI)

The technological value of coal used for coking is analyzed, with particular attention to clinkering coal, the coke group, and lean additives, as well as G and GZhO coal. A relation is established between the tec...

A. S. Stankevich; V. S. Stankevich

2013-09-01T23:59:59.000Z

433

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

of natural gas, along with the coal reserve base of 326s Fossil Fuel Reserve Base, 2007 Oil Natural Gas Coal 233ensured reserves”) of coal, oil and natural gas published in

Aden, Nathaniel

2010-01-01T23:59:59.000Z

434

Carbon Dioxide Emission Factors for Coal  

Reports and Publications (EIA)

The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

1994-01-01T23:59:59.000Z

435

Volatile coal prices reflect supply, demand uncertainties  

SciTech Connect (OSTI)

Coal mine owners and investors say that supply and demand are now finally in balance. But coal consumers find that both spot tonnage and new contract coal come at a much higher price.

Ryan, M.

2004-12-15T23:59:59.000Z

436

Commercialization of Coal-to-Liquids Technology  

SciTech Connect (OSTI)

The report provides an overview of the current status of coal-to-liquids (CTL) commercialization efforts, including an analysis of efforts to develop and implement large-scale, commercial coal-to-liquids projects to create transportation fuels. Topics covered include: an overview of the history of coal usage and the current market for coal; a detailed description of what coal-to-liquids technology is; the history of coal-to-liquids development and commercial application; an analysis of the key business factors that are driving the increased interest in coal-to-liquids; an analysis of the issues and challenges that are hindering the commercialization of coal-to-liquids technology; a review of available coal-to-liquids technology; a discussion of the economic drivers of coal-to-liquids project success; profiles of key coal-to-liquids developers; and profiles of key coal-to-liquids projects under development.

NONE

2007-08-15T23:59:59.000Z

437

Preliminary Experimental Studies of Waste Coal Gasification  

Science Journals Connector (OSTI)

Coal mining is one of Australia’s most important industries. It was estimated that coal washery rejects ... . To ensure sustainability of the Australian coal industry, we have explored a new potential pathway to ...

S. Su; Y. G. Jin; X. X. Yu; R. Worrall

2013-01-01T23:59:59.000Z

438

Production of Oil from Coal in Germany  

Science Journals Connector (OSTI)

... British Commonwealth there are cheaper supplies of coal than in Great Britain, as well as reserves of brown coal and ... of brown coal and lignite. Dr. Parker stated that bombing attacks between May and September 1944 caused a reduction ...

1947-02-01T23:59:59.000Z

439

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

Although lignite composes 16% of China’s coal reserves bys coal reserves are estimated to be 16% lignite by volume.reserves are classified as bituminous coal by volume, versus 29% sub-bituminous and 16% lignite.

Aden, Nathaniel

2010-01-01T23:59:59.000Z

440

Sequence optimization in longwall coal mining  

Science Journals Connector (OSTI)

BHP Billiton’s Illawarra Coal operates several longwall coal extraction systems in the Bulli and Wongawilli coal seams in the Southern Coalfields of the ... . This establishes a basis for comparing the economic m...

L. Rocchi; P. Carter; P. Stone

2011-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "world metallurgical coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The Complete Gasification of Coal  

Science Journals Connector (OSTI)

... plant designed by C. B. Tully, and operated at Bedford, for the complete gasification of coal. Altogether, since 1919, about two hundred such plants have been erected ...

J. S. G. THOMAS

1923-06-09T23:59:59.000Z

442

Coal Mine Safety Act (Virginia)  

Broader source: Energy.gov [DOE]

This Act is the primary legislation pertaining to coal mine safety in Virginia. It contains information on safety rules, safety standards and required certifications for mine workers, prohibited...

443

Coal production 1984. [USA; 1984  

SciTech Connect (OSTI)

Coal Production 1984 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. The data were collected and published by the Energy Information Administration (EIA), to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (PL 93-275) as amended. All data presented in this report, except the total production table presented in the Highlights section, the demonstrated reserve base data presented in Appendix A, and the 1983 coal preparation and shipments data presented in Appendix C, were obtained from Form EIA-7A, ''Coal Production Report,'' from companies owning mining operations that produced, processed, or prepared 10,000 or more short tons of coal in 1984. These mining operations accounted for 99.4% of total US coal production and represented 76.3% of all US coal mining operations in 1984. This report also includes data for the demonstrated reserve base of coal in the United States on January 1, 1984.

Not Available

1984-01-01T23:59:59.000Z

444

U. S. monthly coal production  

Gasoline and Diesel Fuel Update (EIA)

coal commodity regions (i.e., Central Appalachia (CAPP), Northern Appalachia (NAPP), Illinois Basin (ILB), Powder River Basin (PRB), and Uinta Basin (UIB)) in the United States....

445

The US coal industry 1996  

SciTech Connect (OSTI)

Several years ago a friend and former classmate, Dr. Doug Dahl, put the coal industry into perspective. At that time he worked for Consol, whose parent company was DuPont. I will use his story, but update it with today`s statistics. As can be seen in Figure 1, total US coal production continues to show healthy growth. In 1995 we produced 1,032,000,000 tons, and 1,046,000,000 tons are projected for 1996. Unfortunately as seen in Figure 2, the average price per ton of coal sold is still dropping. The coal industry is experiencing the unusual situation of falling coal prices with increasing coal demand! In 1994 (1995 data not available) the average price for a ton of coal was only $19.41. Multiplying the two numbers, yields the total sales value for our entire industry, $20.1 billion in 1994. That`s roughly half the approximately $40 billion per year sales value for a single chemical company, DuPont, Dr. Dahl`s parent company. As Dr. Dahl pointed out, the coal industry just isn`t that big. As we can see in Figure 3, the yearly trends show that the total value of the US coal production is shrinking. The total value has fallen through the 90`s and follows the average price per ton trend. Even increases in production have generally not been enough to offset the falling prices.

Campbell, J.A.L. [Custom Coals International, Inc., Oklahoma City, OK (United States)

1996-12-31T23:59:59.000Z

446

The Coal Transportation Rate Database  

Gasoline and Diesel Fuel Update (EIA)

Coal Transportation Rate Database (CTRDB) adds new data for 2000 and 2001. The Federal Energy Regulatory Commission's (FERC) Form 580 "interrogatories" are the primary source for...

447

Rationale for continuing R&D in direct coal conversion to produce high quality transportation fuels  

SciTech Connect (OSTI)

For the foreseeable future, liquid hydrocarbon fuels will play a significant role in the transportation sector of both the United States and the world. Factors favoring these fuels include convenience, high energy density, and the vast existing infrastructure for their production and use. At present the U.S. consumes about 26% of the world supply of petroleum, but this situation is expected to change because of declining domestic production and increasing competition for imports from countries with developing economies. A scenario and time frame are developed in which declining world resources will generate a shortfall in petroleum supply that can be allieviated in part by utilizing the abundant domestic coal resource base. One option is direct coal conversion to liquid transportation fuels. Continued R&D in coal conversion technology will results in improved technical readiness that can significantly reduce costs so that synfuels can compete economically in a time frame to address the shortfall.

Srivastava, R.D.; McIlvried, H.G. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Gray, D. [Mitre Corp, McLean, VA (United States)] [and others

1995-12-31T23:59:59.000Z

448

Coal availability and coal recoverability studies: A reevaluation of the United States coal resources  

SciTech Connect (OSTI)

A cooperative program between the US Geological Survey (USGS), US Bureau of Mines (USBM), and geological agencies of the principal coal-bearing States has began to (1) identify and delineate current major land-use/environmental and technologic/geologic restrictions on the availability of coal resources; (2) estimate the amount of remaining coal resources that may be available for development under those constraints; (3) estimate the amount that can be economically extracted and marketed; and (4) identify possible social and economic disruptions that could occur within local and regional economies as coal resources are exhausted. Within major coal-producing regions, selected 7.5-minute quadrangles are chosen to represent variations in geology, topography, and land-use patterns so that results might be extrapolated throughout the entire region. After identifying State and Federal coal mining regulations, USGS and State scientists consult with local coal-industry engineers, geologists, and mine operators to ascertain local mining practices. Coal bed outcrop lines, current and past mined areas, and restrictions to mining are plotted at 1:24,000 scale and geographic information system (GIS) techniques are applied. Coal availability/recoverability studies have expanded into the central and northern Appalachian regions, Illinois basin, and Powder River basin. The first four basins, with 75% of current US coal production, should be completed by 1998. The total program is designed to cover 150 quadrangles from within the 11 major coal regions of the US. These 11 regions represent 97% of current US coal production. Planned project completion is 2001.

Carter, M.D. [Geological Survey, Reston, VA (United States); Teeters, D.D. [Bureau of Mines, Denver, CO (United States)

1995-12-31T23:59:59.000Z

449

Technological value of coal concentrates for coking  

Science Journals Connector (OSTI)

Options are outlined for calculating the technological value of coal and coal concentrates in the context of contractual obligations and the quality of the coke produced.

E. N. Stepanov; G. V. Larin; A. E. Stepanova; I. V. Semiokhina

2010-02-01T23:59:59.000Z

450

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

s 2006 total primary energy consumption, compared to 24Coal Dependence of Primary Energy Consumption, 2007coal/primary energy consumption Source: BP Statistical

Aden, Nathaniel

2010-01-01T23:59:59.000Z

451

The recovery of purified coal from solution.  

E-Print Network [OSTI]

??A new process is being developed to produce graphite from prime coking coal. Coal is dissolved in dimethylformamide (DMF), on addition of sodium hydroxide. The… (more)

Botha, Mary Alliles

2008-01-01T23:59:59.000Z

452

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

raising transportation oil demand. Growing internationalcoal by wire could reduce oil demand by stemming coal roadEastern oil production. The rapid growth of coal demand

Aden, Nathaniel

2010-01-01T23:59:59.000Z

453

Model documentation, Coal Market Module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System`s (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 1998 (AEO98). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM`s two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS). CMM provides annual forecasts of prices, production, and consumption of coal for NEMS. In general, the CDS integrates the supply inputs from the CPS to satisfy demands for coal from exogenous demand models. The international area of the CDS forecasts annual world coal trade flows from major supply to major demand regions and provides annual forecasts of US coal exports for input to NEMS. Specifically, the CDS receives minemouth prices produced by the CPS, demand and other exogenous inputs from other NEMS components, and provides delivered coal prices and quantities to the NEMS economic sectors and regions.

NONE

1998-01-01T23:59:59.000Z

454

Report to the United States Congress clean coal technology export markets and financing mechanisms  

SciTech Connect (OSTI)

This report responds to a Congressional Conference Report that requests that $625,000 in funding provided will be used by the Department to identify potential markets for clean coal technologies in developing countries and countries with economies in transition from nonmarket economies and to identify existing, or new, financial mechanisms or financial support to be provided by the Federal government that will enhance the ability of US industry to participate in these markets. The Energy Information Administration (EIA) expects world coal consumption to increase by 30 percent between 1990 and 2010, from 5.1 to 6.5 billion short tons. Five regions stand out as major foreign markets for the export of US clean coal technologies: China; The Pacific Rim (other than China); South Asia (primarily India); Transitional Economies (Central Europe and the Newly Independent States); and Other Markets (the Americas and Southern Africa). Nearly two-thirds of the expected worldwide growth in coal utilization will occur in China, one quarter in the United States. EIA forecasts nearly a billion tons per year of additional coal consumption in China between 1990 and 2010, a virtual doubling of that country`s coal consumption. A 30-percent increase in coal consumption is projected in other developing countries over that same period. This increase in coal consumption will be accompanied by an increase in demand for technologies for burning coal cost-effectively, efficiently and cleanly. In the Pacific Rim and South Asia, rapid economic growth coupled with substantial indigenous coal supplies combine to create a large potential market for CCTS. In Central Europe and the Newly Independent States, the challenge will be to correct the damage of decades of environmental neglect without adding to already-considerable economic disruption. Though the situation varies, all these countries share the basic need to use indigenous low-quality coal cleanly and efficiently.

Not Available

1994-05-01T23:59:59.000Z

455

COAL SLAGGING AND REACTIVITY TESTING  

SciTech Connect (OSTI)

Union Fenosa's La Robla I Power Station is a 270-MW Foster Wheeler arch-fired system. The unit is located at the mine that provides a portion of the semianthracitic coal. The remaining coals used are from South Africa, Russia, Australia, and China. The challenges at the La Robla I Station stem from the various fuels used, the characteristics of which differ from the design coal. The University of North Dakota Energy & Environmental Research Center (EERC) and the Lehigh University Energy Research Center (LUERC) undertook a program to assess problematic slagging and unburned carbon issues occurring at the plant. Full-scale combustion tests were performed under baseline conditions, with elevated oxygen level and with redistribution of air during a site visit at the plant. During these tests, operating information, observations and temperature measurements, and coal, slag deposit, and fly ash samples were obtained to assess slagging and unburned carbon. The slagging in almost all cases appeared due to elevated temperatures rather than fuel chemistry. The most severe slagging occurred when the temperature at the sampling port was in excess of 1500 C, with problematic slagging where first-observed temperatures exceeded 1350 C. The presence of anorthite crystals in the bulk of the deposits analyzed indicates that the temperatures were in excess of 1350 C, consistent with temperature measurements during the sampling period. Elevated temperatures and ''hot spots'' are probably the result of poor mill performance, and a poor distribution of the coal from the mills to the specific burners causes elevated temperatures in the regions where the slag samples were extracted. A contributing cause appeared to be poor combustion air mixing and heating, resulting in oxygen stratification and increased temperatures in certain areas. Air preheater plugging was observed and reduces the temperature of the air in the windbox, which leads to poor combustion conditions, resulting in unburned carbon as well as slagging. A second phase of the project involved advanced analysis of the baseline coal along with an Australian coal fired at the plant. These analysis results were used in equilibrium thermodynamic modeling along with a coal quality model developed by the EERC to assess slagging, fouling, and opacity for the coals. Bench-scale carbon conversion testing was performed in a drop-tube furnace to assess the reactivity of the coals. The Australian coal had a higher mineral content with significantly more clay minerals present than the baseline coal. The presence of these clay minerals, which tend to melt at relatively low temperatures, indicated a higher potential for problematic slagging than the baseline coal. However, the pyritic minerals, comprising over 25% of the baseline mineral content, may form sticky iron sulfides, leading to severe slagging in the burner region if local areas with reducing conditions exist. Modeling results indicated that neither would present significant fouling problems. The Australian coal was expected to show slagging behavior much more severe than the baseline coal except at very high furnace temperatures. However, the baseline coal was predicted to exhibit opacity problems, as well as have a higher potential for problematic calcium sulfate-based low-temperature fouling. The baseline coal had a somewhat higher reactivity than the Australian coal, which was consistent with both the lower average activation energy for the baseline coal and the greater carbon conversion at a given temperature and residence time. The activation energy of the baseline coal showed some effect of oxygen on the activation energy, with E{sub a} increasing at the lower oxygen concentration, but may be due to the scatter in the baseline coal kinetic values at the higher oxygen level tested.

Donald P. McCollor; Kurt E. Eylands; Jason D. Laumb

2003-10-01T23:59:59.000Z

456

Central Appalachia: Coal industry profile  

SciTech Connect (OSTI)

Central Appalachia, the most complex and diverse coal-producing region in the United States, is also the principal source of very low sulfur coal in the East. This report provides detailed profiles of companies and facilities responsible for about 90% of the area's production, conveying a unique view of the aggregate industry as well as its many parts.

McMahan, R.L.; Kendall, L.K. (Resource Data International, Inc., Boulder, CO (USA))

1991-05-01T23:59:59.000Z

457

Commercialization of clean coal technologies  

SciTech Connect (OSTI)

The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

Bharucha, N. [Dept. of Primary Industries and Energy, Canberra (Australia)

1994-12-31T23:59:59.000Z

458

Centrifuge treatment of coal tar  

SciTech Connect (OSTI)

New technology is required for the removal of water and heavy fractions from regular coal tar. Centrifuges offer the best option. Purification of coal tar by means of centrifuges at OAO NLMK permits the production of pitch coke or electrode pitch that complies with current standards.

L.A. Kazak; V.Z. Kaidalov; L.F. Syrova; O.S. Miroshnichenko; A.S. Minakov [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

459

2009 coal preparation buyer's guide  

SciTech Connect (OSTI)

The guide contains brief descriptions and contact details of 926 US companies supplying coal preparation equipment who exhibited at the 26th annual Coal Prep exhibition and conference, 28-30 April - May 2009, in Lexington, KY, USA. An index of categories of equipment available from the manufacturers is included.

NONE

2009-04-15T23:59:59.000Z

460

Consensus Coal Production Forecast for  

E-Print Network [OSTI]

Rate Forecasts 19 5. EIA Forecast: Regional Coal Production 22 6. Wood Mackenzie Forecast: W.V. Steam to data currently published by the Energy Information Administration (EIA), coal production in the state in this report calls for state production to decline by 11.3 percent in 2009 to 140.2 million tons. During

Mohaghegh, Shahab

Note: This page contains sample records for the topic "world metallurgical coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS  

SciTech Connect (OSTI)

The availability of clean, affordable energy is essential for the prosperity and security of the United States and the world in the 21st century. Emissions of carbon dioxide (CO{sub 2}) into the atmosphere are an inherent part of electricity generation, transportation, and industrial processes that rely on fossil fuels. These energy-related activities are responsible for more than 80 percent of the U.S. greenhouse gas emissions, and most of these emissions are CO{sub 2}. Over the last few decades, an increased concentration of CO{sub 2} in the earth's atmosphere has been observed. Carbon sequestration technology offers an approach to redirect CO{sub 2} emissions into sinks (e.g., geologic formations, oceans, soils and vegetation) and potentially stabilize future atmospheric CO{sub 2} levels. Coal seams are attractive CO{sub 2} sequestration sinks, due to their abundance and proximity to electricity-generation facilities. The recovery of marketable coalbed methane (CBM) provides a value-added stream, potentially reducing the cost to sequester CO{sub 2} gas. Much research is needed to evaluate this technology in terms of CO{sub 2} storage capacity, sequestration stability, commercial feasibility and overall economics. CONSOL Energy Inc., Research & Development (CONSOL), with support from the US DOE, has embarked on a seven-year program to construct and operate a coal bed sequestration site composed of a series of horizontally drilled wells that originate at the surface and extend through two overlying coal seams. Once completed, all of the wells will be used initially to drain CBM from both the upper (mineable) and lower (unmineable) coal seams. After sufficient depletion of the reservoir, centrally located wells in the lower coal seam will be converted from CBM drainage wells to CO{sub 2} injection ports. CO{sub 2} will be measured and injected into the lower unmineable coal seam while CBM continues to drain from both seams. In addition to metering all injected CO{sub 2} and recovered CBM, the program includes additional monitoring wells to further examine horizontal and vertical migration of CO{sub 2}. This is the fifth Technical Progress report for the project. Progress this period was focused on reclamation of the north access road and north well site, and development of revised drilling methods. This report provides a concise overview of project activities this period and plans for future work.

William A. Williams

2004-03-01T23:59:59.000Z

462

Forecast of Advanced Technology for Coal Power Generation Towards the Year of 2050 in CO2 Reduction Model of Japan  

Science Journals Connector (OSTI)

Abstract In the fossil fuel, coal is enough to get easily because it has supply and price stability brought about its ubiquitously. Coal is used for power generation as the major fuel in the world. However it is true that control of global warming should be applied to coal power generations. Therefore, many people expect CO2 reduction by technical innovation such as efficiency improvement, Carbon dioxide Capture and Storage (CCS). In case of coal power plant are considered for improving efficiency. Some of them have already put into commercial operation but others are still under R&D stage. Especially, the technical development prospect of the power plant is very important for planning the energy strategy in the resource-importing country. Japan Coal Energy Center (JCOAL) constructed a program to forecast the share of advanced coal fired plants/natural gas power plants towards the year of 2050. Then, we simulated the future prediction about 2 cases (the Japanese scenario and the world scenario). The fuel price and the existence of CCS were considered in the forecast of the technical development of the thermal power generation. Especially in the Japanese scenario, we considered the CO2 reduction target which is 80% reduction in 1990. In the world scenario, coal price had almost no influence on the share of coal fired plant. However, when the gas price increased 1.5% or more, the share of coal fired plant increased. In that case, CO2 emissions increased because coal-fired plant increased. Compared with both cases, the amount of CO2 in 2050 without CCS case was 50% higher than that of with CCS case. In Japanese scenario, achievement of 80% CO2 reduction target is impossible without CCS. If CCS is introduced into all the new establishment coal fired plant, CO2 reduction target can be attained. In the Japanese scenario, the gas price more expensive than a coal price so that the amount of the coal fired plant does not decline. Since the reduction of the amount of CO2 will be needed in all over the world, introductory promotion and technical development of CCS are very important not only Japan but also all over the world.

Takashi Nakamura; Keiji Makino; Kunihiko Shibata; Michiaki Harada

2013-01-01T23:59:59.000Z

463

coal supply | OpenEI  

Open Energy Info (EERE)

coal supply coal supply Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 15, and contains only the reference case. The dataset uses gigawatts. The data is broken down into production, net imports, consumption by sector and price. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO coal coal supply disposition. prices EIA Data application/vnd.ms-excel icon AEO2011: Coal Supply, Disposition, and Prices- Reference Case (xls, 91.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL)

464

Annual Coal Distribution Report 2012  

U.S. Energy Information Administration (EIA) Indexed Site

December 2013 December 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 Annual Coal Distribution Report 2012 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. iii U.S. Energy Information Administration | Annual Coal Distribution Report 2012 Overview of Annual Coal Distribution Tables, 2012 Introduction The Annual Coal Distribution Report (ACDR) provides detailed information on domestic coal distribution by origin state,

465

Patterns of coal workers' pneumoconiosis in Appalachian former coal miners  

SciTech Connect (OSTI)

To aid in diagnostic chest film interpretation of coal workers' pneumoconiosis, a composite profile of common radiologic patterns was developed in 98 Appalachian former coal miners who were diagnosed as having coal miner's pneumoconiosis and who applied for black lung benefits. The mean age was 61 years, with a lifetime coal mine dust exposure of 18.7 years. Results showed that chest radiographs of coal workers' simple pneumoconiosis contained small irregular linear opacities more frequently (47%) than small rounded opacities. Sparse profusion of all small opacities was the rule. Small opacities involved two out of six lung zones simultaneously 39% of the time while other combinations occurred less frequently. Lower zones were involved more frequently than upper ones. Thickened pleura occurred in 18% of radiographs. Other frequent radiographic abnormalities were parenchymal calcifications (19%), marked emphysema (12%), and inactive tuberculosis (12%). Calcification of the aortic knob, a degenerative process reflecting age, occurred in 9%. Only one instance of complicated coal workers' pneumoconiosis (progressive massive fibrosis) was encountered (0.7%). Many of the descriptive features of coal workers' pneumoconiosis noted in the literature were not observed in this study. Only one instance of complicated pneumoconiosis was encountered.43 references.

Young, R.C. Jr.; Rachal, R.E.; Carr, P.G.; Press, H.C. (College of Pharmacy, Xavier University of Louisiana, New Orleans (United States))

1992-01-01T23:59:59.000Z

466

Coal surface control for advanced fine coal flotation  

SciTech Connect (OSTI)

The primary objective of this research project is to develop advanced flotation methods for coal cleaning in order to achieve near total pyritic-sulfur removal at 90% Btu recovery, using coal samples procured from six major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6% or less. Work this quarter concentrated on the following: washability studies, which included particle size distribution of the washability samples, and chemical analysis of washability test samples; characterization studies of induction time measurements, correlation between yield, combustible-material recovery (CMR), and heating-value recovery (HVR), and QA/QC for standard flotation tests and coal analyses; surface modification and control including testing of surface-modifying reagents, restoration of hydrophobicity to lab-oxidized coals, pH effects on coal flotation, and depression of pyritic sulfur in which pyrite depression with calcium cyanide and pyrite depression with xanthated reagents was investigated; flotation optimization and circuitry included staged reagent addition, cleaning and scavenging, and scavenging and middling recycling. Weathering studies are also discussed. 19 figs., 28 tabs.

Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Harris, G.; Sotillo, F.; Diao, J. (California Univ., Berkeley, CA (USA)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (USA)); Hu, Weibai; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (USA)); Choudhry, V.; Sehgal, R.; Ghosh, A. (Praxis Engineers, Inc., Milpitas, CA (USA))

1990-08-15T23:59:59.000Z

467

Annual Coal Distribution Tables  

U.S. Energy Information Administration (EIA) Indexed Site

and Foreign Distribution of U.S. Coal by State of Origin, 2001 and Foreign Distribution of U.S. Coal by State of Origin, 2001 State / Region Domestic Foreign Total Alabama 14,828 4,508 19,336 Alaska 825 698 1,524 Arizona 13,143 - 13,143 Arkansas 13 - 13 Colorado 32,427 894 33,321 Illinois 33,997 285 34,283 Indiana 36,714 - 36,714 Kansas 176 - 176 Kentucky Total 131,546 2,821 134,367 East 107,000 2,707 109,706 West 24,547 114 24,660 Louisiana 3,746 - 3,746 Maryland 4,671 319 4,990 Mississippi 475 - 475 Missouri 366 - 366 Montana 38,459 485 38,944 New Mexico 28,949 - 28,949 North Dakota 30,449 - 30,449 Ohio 25,463 12 25,475 Oklahoma 1,710 - 1,710 Pennsylvania Total 64,392 6,005 70,397 Anthracite 2,852 205 3,057 Bituminous 61,540 5,800 67,340 Tennessee 3,346 28 3,374 Texas 45,019 31 45,050 Utah 24,761 2,144 26,905 Virginia 25,685 7,071 32,756 Washington 4,623 - 4,623 West Virginia Total 144,584

468

Annual Coal Distribution Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Distribution of U.S. Coal by Destination State, Domestic Distribution of U.S. Coal by Destination State, Consumer, Destination and Method of Transportation, 2001 (Thousand Short Tons) DESTINATION: Alabama State of Origin by Method of Transportation Electricity Generation Coke Plants Industrial Plants (Except Coke) Residential and Commercial Total Alabama 7,212 375 6,032 3 13,622 Railroad 2,613 170 4,607 - 7,390 River 3,867 - - - 3,867 Truck 732 205 1,424 3 2,365 Illinois 1,458 - - * 1,458 Railroad 167 - - - 167 River 1,291 - - - 1,291 Truck - - - * * Kentucky Total 2,277 - 262 - 2,539 Railroad 1,928 - 165 - 2,093 River 349 - 83 - 432 Truck - - 14 - 14 Eastern 843 - 262 - 1,105 Railroad 843 - 165 - 1,008 River - - 83 - 83 Truck - - 14 - 14 Western 1,435 - - - 1,435 Railroad 1,086 - - - 1,086 River 349 - - - 349 Pennsylvania Total 242 - 62 - 304 Great Lakes - - 60 - 60 Railroad - - * - * River 242 - -

469

Low Rank Coal Optimization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low Rank Coal Optimization Low Rank Coal Optimization NETL Office of Research and Development Project Number: FWP-2012.03.03 Task 4 Project Description NETL's in-house research team is using an integrated approach to combine theory, computational modeling, experiment, and industrial input to develop physics-based methods, models, and tools to support the development and deployment of advanced gasification based devices and systems. The activities in this effort include developing and applying computational and modeling tools to simulate complex flows in applications such as transport or entrained flow gasifiers. TRIG Model Development - The primary objective of this work is to develop a hierarchy of models for numerical simulations of TRIG co-feed conditions that span fast running reduced order models (ROM's) to high fidelity multiphase computational fluid dynamics (CFD) models. Each model will have uncertainty quantification associated with its predictions to allow a user to choose a model based on the trade-offs between computational speed and uncertainty in the predictions.

470

Superfund explanation of significant difference for the Record of Decision (EPA Region 10): Bunker Hill Mining and Metallurgical Complex, Smelterville, Shoshone County, ID, April 18, 1998  

SciTech Connect (OSTI)

During the remedial design phase of cleanup, both EPA and DEQ identified revisions appropriate for the remedy identified in the Bunker Hill Mining and Metallurgical Complex Record of Decision (ROD). These revisions are necessary for several reasons. They will ensure that the remedy is cost-effective, maximizes the benefit to the environment, and is responsive to community concerns.

NONE

1998-09-01T23:59:59.000Z

471

BP Statistical Review of World Energy | Open Energy Information  

Open Energy Info (EERE)

Review of World Energy Review of World Energy Jump to: navigation, search Name BP Statistical Review of World Energy Data Format Excel Spreadsheet Geographic Scope Earth TODO: Import actual dataset contents into OpenEI The BP Statistical Review of World Energy is an Excel spreadsheet which contains consumption and production data for Coal, Natural Gas, Nuclear, Oil, and Hydroelectric energy. It is produced annually by British Petroleum.[1] Data from the BP Statistical Review is used in various tools, including the Energy Export Databrowser.[1] External links 2009 Data 2008 Data 2007 Data 2006 Data 2005 Data 2004 Data 2003 Data 2002 Data References ↑ 1.0 1.1 "Sources of data used in the Energy Export Databrowser" Retrieved from "http://en.openei.org/w/index.php?title=BP_Statistical_Review_of_World_Energy&oldid=272979"

472

India-World Bank Climate Projects | Open Energy Information  

Open Energy Info (EERE)

India-World Bank Climate Projects India-World Bank Climate Projects Agency/Company /Organization World Bank Sector Energy, Land Focus Area Energy Efficiency, Renewable Energy Topics Background analysis Country India Southern Asia References World Bank project database[1] Contents 1 World Bank Active Climate Projects in India 1.1 INDIA - Financing Energy Efficiency at SMEs 1.2 Karnataka Wind 1.3 Street Lighting Energy Efficiency 1.4 Sustainable Urban Transport Project 1.5 Karnataka Municipal Water Energy Efficiency Project 1.6 Sustainable Rural Livelihoods and Security through Innovations in Land and Ecosystem Mgmt /Additional GEF financing to India NAIP 1.7 Chiller Energy Efficiency 1.8 INDIA Chiller Energy Effiency Carbon Finance Operation 1.9 Coal-Fired Generation Rehabilitation 1.10 India - Chiller Energy Efficiency Project - MP Component

473

Color Removal from Pulp Mill Effluent Using Coal Ash Produced from Georgia Coal Combustion Power Plants  

E-Print Network [OSTI]

/0702/citing-global- warming-georgia-judge-blocks-coal-plant/picture1.jpg/5307532-1-eng-US/picture1.jpgColor Removal from Pulp Mill Effluent Using Coal Ash Produced from Georgia Coal Combustion Power color from pulp mill effluent using coal ash. Prevent coal ash adsorbent from leaching arsenic

Hutcheon, James M.

474

Coal surface control for advanced fine coal flotation  

SciTech Connect (OSTI)

The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. (California Univ., Berkeley, CA (United States)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (United States)); Hu, W.; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (United States)); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. (Praxis Engineers, Inc., Milpitas, CA (United States))

1992-03-01T23:59:59.000Z

475

FE Clean Coal News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

August 22, 2011 August 22, 2011 DOE Launches World-Class Virtual Energy Simulation Training and Research Center A new training center developed to teach personnel how to operate clean integrated gasification combined cycle power plants is now up and running with help from the U.S. Department of Energy. August 16, 2011 DOE Research Grant Leads to Gas Turbine Manufacturing Improvements Research sponsored by the U.S. Department of Energy's Office of Fossil Energy has led to a new licensing agreement that will improve the performance of state-of-the-art gas turbines, resulting in cleaner, more reliable and affordable energy. August 15, 2011 Projects Aimed at Advancing State-of-the-Art Carbon Capture from Coal Power Plants Selected for Further Development Four projects aimed at reducing the energy and cost penalties of advanced

476

Hydrogen from Coal in a Single Step  

Science Journals Connector (OSTI)

The CO2 generated, a greenhouse gas with a potential to contribute to global warming, is generally released to the atmosphere. ... The H2/CH4 ratio in the product gases from three different rank coals Datong coal (bituminous), Taiheiyo coal (sub-bituminous), Wyoming coal (lignite) followed the order Datong>Taiheiyo>Wyoming. ...

Kanchan Mondal; Krzystof Piotrowski; Debalina Dasgupta; Edwin Hippo; Tomasz Wiltowski

2005-06-11T23:59:59.000Z

477

Commercialization of coal to liquids technology  

SciTech Connect (OSTI)

After an overview of the coal market, technologies for producing liquids from coal are outlined. Commercialisation of coal-to-liquid fuels, the economics of coal-to-liquids development and the role of the government are discussed. Profiles of 8 key players and the profiles of 14 projects are finally given. 17 figs., 8 tabs.

NONE

2007-07-01T23:59:59.000Z

478

Insurance coverage for coal ash liabilities  

SciTech Connect (OSTI)

The paper discusses how liability insurance can be a valuable tool for limiting coal ash liabilities.

Elkind, D.L. [Dickstein Shapiro LLP (United States)

2009-07-01T23:59:59.000Z

479

High-Sulfur Coal for Generating Electricity  

Science Journals Connector (OSTI)

...amounts of coal, because...Director-Mineral Re-sources...of Gas from Coal through a...on coals of high ash-fusion temperature...per ton of high-sulfur coal burned. Absorp-tion...particulate matter as well as...capable of remov-ing up to...

James T. Dunham; Carl Rampacek; T. A. Henrie

1974-04-19T23:59:59.000Z

480

Formation and retention of methane in coal  

SciTech Connect (OSTI)

The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

Hucka, V.J.; Bodily, D.M.; Huang, H.

1992-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "world metallurgical coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Clean coal technologies: A business report  

SciTech Connect (OSTI)

The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base.

Not Available

1993-01-01T23:59:59.000Z

482

Coal: the cornerstone of America's energy future  

SciTech Connect (OSTI)

In April 2005, US Secretary of Energy Samuel W. Bodman asked the National Coal Council to develop a 'report identifying the challenges and opportunities of more fully exploring our domestic coal resources to meet the nation's future energy needs'. The Council has responded with eight specific recommendations for developing and implementing advanced coal processing and combustion technologies to satisfy our unquenchable thirst for energy. These are: Use coal-to-liquids technologies to produce 2.6 million barrels/day; Use coal-to-natural gas technologies to produce 4 trillion ft{sup 3}/yr; Build 100 GW of clean coal plants by 2025; Produce ethanol from coal; Develop coal-to-hydrogen technologies; Use CO{sub 2} to enhance recovery of oil and coal-bed methane; Increase the capacity of US coal mines and railroads; and Invest in technology development and implementation. 1 ref.; 4 figs.; 1 tab.

Beck, R.A. [National Coal Council (United Kingdom)

2006-06-15T23:59:59.000Z

483

Coal cutting research slashes dust  

SciTech Connect (OSTI)

US Bureau of Mines' research projects aimed at the reduction of coal dust during coal cutting operations are described. These include an investigation of the effects of conical bit wear on respirable dust generation, energy and cutting forces; the determination of the best conical bit mount condition to increase life by enhancing bit rotation; a comparison between chisel- and conical-type cutters. In order to establish a suitable homogeneous reference material for cutting experiments, a synthetic coal with a plaster base is being developed.

Roepke, W.W.

1983-10-01T23:59:59.000Z

484

INAA multielemental analysis of Nigerian bituminous coal and coal ash  

Science Journals Connector (OSTI)

Instrumental neutron activation analysis (INAA) was used to analyzed Nigerian bituminous coal and ash. Good statistical agreement (p...?0.05) between the literature and reported elemental values of USGS AGV-1 sam...

V. O. Ogugbuaja; W. D. James

1995-03-01T23:59:59.000Z

485

Coking of coal batch with different content of oxidized coal  

Science Journals Connector (OSTI)

The use of oxidized coal in coking batch increases the analytical moisture content and ... increases the oxygen content; reduces the gross coke yield and the yield of tar, benzene ... of carbon dioxide, pyrogenet...

D. V. Miroshnichenko; I. D. Drozdnik; Yu. S. Kaftan; N. B. Bidolenko…

2012-05-01T23:59:59.000Z

486

Clean coal technology. Coal utilisation by-products  

SciTech Connect (OSTI)

The need to remove the bulk of ash contained in flue gas from coal-fired power plants coupled with increasingly strict environmental regulations in the USA result in increased generation of solid materials referred to as